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Schauder estimates for an integro-differential equation
with applications to a nonlocal Burgers equation (∗)

Cyril Imbert (1), Tianling Jin (2) and Roman Shvydkoy (3)

ABSTRACT. — We obtain Schauder estimates for a general class of linear integro-
differential equations. The estimates are applied to a scalar non-local Burgers equa-
tion and complete the global well-posedness results obtained in [6].

RÉSUMÉ. — Nous obtenons des estimées de Schauder pour une classe générale
d’équations linéaires intégro-différentielles. Ces estimées sont utilisées pour obtenir
un résultat d’existence globale pour une équation scalaire de Burgers non-locale [6].

1. Introduction

This note studies the classical Schauder estimates for a general class of
linear integro-differential equations of the form

wt(t, x) = p.v.
∫
Rn

(w(t, y)− w(t, x)) m(t, x, y)
|x− y|n+1 dy. (1.1)
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We assume that m ∈ Cα((−6, 0] × Rn × Rn), λ 6 m 6 Λ, and w ∈
C1+α((−6, 0] × Rn), for some α > 0, λ,Λ > 0. Written in terms of w-
increments, it becomes

wt(t, x) = p.v.
∫
Rn

(w(t, x+ y)− w(t, x))m(t, x, x+ y)
|y|n+1 dy. (1.2)

The kernel K(t, x, y) = m(t,x,x+y)
|y|n+1 is typically assumed to satisfy an evenness

condition such as K(t, x, y) = K(t, x,−y) which appears naturally in the
case when equation (1.2) represents the generator of a Lévy process with
jumps. We do not make any such assumption. Our motivation primarily
comes from studying variational or hydrodynamical models, in particular the
non-local Burgers model introduced recently in the works of Lelievre [10, 11]
for viscous case and developed in the inviscid case by Imbert, Shvydkoy and
Vigneron in [6]. In this model, the classical Euler equation of conservation
of momentum ut + u · ∇u = −∇p is replaced by a non-local variant

ut − u(−∆) 1
2u+ (−∆) 1

2u2 = 0 in [0,∞)× Rn. (1.3)

In its integral form, the equation reads

ut(t, x) = p.v.
∫
Rn

(u(t, y)− u(t, x)) u(t, y)
|x− y|n+1 dy, (1.4)

or for the new variable w = u2 it takes the form of (1.1) with

m(t, x, y) = C(n)
√
w(t, x)w(t, y)√

w(t, x) +
√
w(t, y)

, (1.5)

where C(n) is a positive dimensional constant.

The emerged symmetry m(t, x, y) = m(t, y, x) in (1.5) allows to ap-
ply the De Giorgi regularization result in Caffarelli–Chan–Vasseur [1] or
Felsinger–Kassmann [4], and obtain Cα bound in space-time in terms of
L∞-norm of the initial condition (note the maximum principle). Parallel to
this, the regularity theory of fully nonlinear integro-differential equations
in non-divergence form was developed before in Caffarelli–Silvestre [2], and
Lara–Dávila [9].

This implies the Cα-regularity of m for solutions bounded away from
zero. However, the lack of evenness as stated above makes the equation
out of the range of immediate applicability of recently obtained Schauder
estimates for similar equations in non-divergence form, such as Mikulevicius–
Pragarauskas [12], Jin–Xiong [7] or most recently for the fully non-linear case
by Dong–Zhang [3]. It therefore needs to be addressed separately to fulfill the
need for higher order regularity which should come naturally from parabolic
nature of the equation.
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On the first step, we partially restore the evenness by “freezing the coef-
ficients” and introducing an active source term, i.e. rewriting (1.1) as

wt(t, x) =
∫
Rn

(w(t, y)− w(t, x)−∇w(t, x) · (y − x)χ|y−x|61) m(t, x, x)
|x− y|n+1 dy

+
∫
Rn

(w(t, y)− w(t, x))m(t, x, y)−m(t, x, x)
|x− y|n+1 dy. (1.6)

In this form it is clear that the C1+α regularity of w and Cα regularity of
m are sufficient to make sense of both integrals classically. Moreover, the
gradient term in the first one is superfluous due to vanishing, and thus not
changing the equation. We therefore will take a more general approach and
study a slightly broader class of equations, namely

ut(t, x) =
∫
Rn

(u(t, x+ y)− u(t, x))K(t, x, y) dy

+
∫
Rn

(u(t, x+ y)− u(t, x))G(t, x, y) dy + f(t, x)

in (−6, 0]× Rn, (1.7)

where K and G satisfy

(K1) K(t, x, y) = K(t, x,−y) for all (t, x, y) ∈ (−6, 0]× Rn × Rn,

(K2) λ|y|−n−16K(t, x, y)6Λ|y|−n−1 for all (t, x, y)∈ (−6, 0]×Rn×Rn,

(K3) |K(t1, x1, y) − K(t2, x2, y)| 6 Λ(|x1 − x2|α + |t1 − t2|α)|y|−n−1 for
all (t1, x1, y), (t2, x2, y) ∈ (−6, 0]× Rn × Rn.

(G1) |G(t, x, y)|6Λ min(1, |y|α)|y|−n−1 for all (t, x, y)∈ (−6, 0]×Rn×Rn,

(G2) |G(t1, x1, y)−G(t2, x2, y)| 6 Λ min(|x1−x2|α+|t1−t2|α, |y|α)|y|−n−1

for all (t1, x1, y), (t2, x2, y) ∈ (−6, 0]× Rn × Rn.

Note that K is assumed to be even in y, but G is not assumed to be even in
y, and all the assumptions are satisfied if K and G are derived from (1.6).
We assume that f is a passive source term independent of the solution. In
such formulation of the original equation we can view (1.7) as a perturbation
of the symmetric case and use [3, 7] to obtain the higher order regularity
estimates for (1.7) and hence for (1.1).

Theorem 1.1. — Suppose u ∈ C1+α((−6, 0])×Rn) is a solution of (1.7)
with f ∈ Cαx,t((−6, 0]) × Rn). Suppose K and G satisfy (K1), (K2), (K3),
(G1), (G2). Then for every β < α, there exists C > 0 depending only on
n, λ,Λ, α, β such that

‖u‖C1+β
x,t ((−1,0])×Rn) 6 C

(
‖u‖L∞((−6,0])×Rn) + ‖f‖Cβx,t((−6,0])×Rn)

)
. (1.8)
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At the end of this note we will elaborate more on how to obtain global
in time periodic solutions to (1.3) with the help of Theorem 1.1 (see also
the discussion in [6]). With regard to the higher order regularity the rela-
tion (1.5) clearly allows to bootstrap on the gain of smoothness. We obtain
the following as a consequence.

Corollary 1.2. — Suppose u is a positive smooth periodic (in x) solu-
tion of (1.3) in (−6, 0]× Rn. Then for every positive integer k, there exists
C > 0 depending only on n, k, ‖u‖L∞((−6,0]×Rn) and min(−6,0]×Rn u such that

‖u‖Ckx,t((−1,0]×Rn) 6 C. (1.9)

Let us now address the question of global well-posedness of periodic so-
lutions to (1.3) with positive initial data. Let u0 be, say, 2π-periodic with
bounds 0 < m0 < u0(x) < M0 < ∞. Note that positive solutions to (1.3)
enjoy both the maximum and minimum principles. So, the initial bounds
hold a priori for all time. This preserves the uniform parabolicity of (1.4).
Based on close similarity of (1.3) to the Euler equation, [6] develops a par-
allel classical local well-posedness theory for (1.3) with initial condition in
Hs with s > n/2 + 1 + ε, along with the analogue of the Beale–Kato–Majda
blowup criterion. Thus, for a mollified initial data uδ, δ > 0, we have a
local time interval of existence Iδ enjoying the same uniform L∞ bounds
from above and below. By the symmetrization (1.5), this solution gains Cα-
regularity for some α > 0 with bounds ‖uδ(t)‖Cα(Rn) 6 Ct−α‖u0‖L∞ , for
t ∈ Iδ, where C > 0 is independent of δ. Similar bounds hold for the kernel
m. Our Theorem 1.1 now applies to provide C1+β regularity, which in par-
ticular by rescaling in time reads ‖uδ(t)‖Cβ+1(Rn) 6 Ct−β−1‖u0‖L∞ . Thus
the BKM criterion clearly holds at the end of the interval Iδ, and hence uδ
can be extended beyond Iδ and to infinity since the bounds improve. We can
now pass to the limit as δ → 0 on any finite interval to obtain global weak
solution starting from L∞-data, which in turn becomes C∞ instantaneously
due to Corollary 1.2. We summarize the result in the following.

Theorem 1.3 (Global weak solution). — For any positive periodic ini-
tial data u0 ∈ L∞(Rn), there exists a global weak solution to (1.4) in the
class L∞(R+ × Rn) ∩ L2(R+; Ḣ1/2) ∩ C0(R+;L2). Furthermore, u satisfies
the instant regularization estimates (1.9) for all t > 0, and the original equa-
tion (1.4) is satisfied in the classical sense.

We note that the Schauder estimates used to obtain the global wellposed-
ness result in [6] have had a rougher regularization conclusion: going from
Ck,α to Ck+1,α2−ε on each step, which is less optimal. We also note that the
long-time dynamics of solutions to (1.3) is described by exponentially fast
convergence to a constant state, the state that is consistent with the energy
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conservation law for (1.3). This dual nature of the equation, conservative and
dissipative, ensures presence of the strong inverse energy cascade similar to
the one observed in turbulence theory of a two dimensional fluid.

Finally we remark, that although for our purposes the assumption of
C1+α regularity on w in Theorem 1.1 was sufficient, the theorem still holds
under any other assumption C1+ε unrelated to α that appears in (K1)–(G2).
It is only necessary to make sense of the integral expressions classically.

2. Preliminary

We first deal with the symmetric case (G = 0). Suppose that f(t, x) ∈
Cα((−6, 0]× Rn), and u ∈ C1+α((−6, 0]× Rn) is a solution of

ut(t, x) =
∫
Rn

(u(t, x+ y)− u(t, x))K(t, x, y) dy + f(t, x)

in (−6, 0]× Rn. (2.1)

Proposition 2.1. — Suppose K satisfies (K1), (K2), (K3). There exists
C > 0 depending only on n, λ,Λ such that

‖∇xu‖Cα((−2,0]×Rn) + ‖ut‖Cα((−2,0]×Rn)

6 C(‖u‖L∞((−6,0])×Rn) + ‖f‖Cα((−6,0]×Rn)).

Proof. — First of all, we know from the Hölder estimates in [9] that there
exist C, γ > 0 depending only on n, λ,Λ such that

‖u‖Cγ((−5,0]×Rn) 6 C(‖u‖L∞((−6,0])×Rn) + ‖f‖L∞((−6,0]×Rn)).
Then it follows from Theorem 1.1 in [3] that

‖∇xu‖Cβ((−4,0]×Rn) + ‖ut‖Cβ((−4,0]×Rn)

6 C(‖u‖L∞((−6,0])×Rn) + ‖f‖Cβ((−6,0]×Rn)),
where β = min(γ, α). If β = α, then we are done. If β < α, we can apply
Theorem 1.1 in [3] one more time to have

‖∇xu‖Cα((−2,0]×Rn) + ‖ut‖Cα((−2,0]×Rn)

6 C(‖u‖L∞((−6,0])×Rn) + ‖f‖Cα((−6,0]×Rn)). �

Let
Lu(t, x) = p.v.

∫
Rn

(u(t, x+ y)− u(t, x))K(t, x, y) dy.

and
g(t, x) =

∫
Rn

(u(t, x+ y)− u(t, x))G(t, x, y) dy. (2.2)
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The following calculations will be useful in proving Theorem 1.1 and Corol-
lary 1.2.

Lemma 2.2. — Let K satisfy (K1), (K3) and |K(t, x, y)| 6 Λ|y|−n−1 for
all (t, x, y) ∈ (−6, 0]×Rn×Rn (the lower bound in (K2) is not needed here).
There exists C > 0 depending only on n,Λ such that

‖Lu‖Cα((−2,0]×Rn) 6 C‖u‖C1+α
x,t ((−3,0]×Rn).

Proof. — Since K is symmetric in y, it is elementary to check that
‖Lu(t, · )‖L∞(Rn) 6 C‖u(t, · )‖C1+α(Rn).

For t ∈ (−2, 0] and x ∈ Rn, we have

|Lu(t, x)− Lu(0, x)|

=
∣∣∣∣ ∫

Rn
(u(t, x+ y)− u(t, x))K(t, x, y) dy

−
∫
Rn

(u(0, x+ y)− u(0, x))K(0, x, y) dy
∣∣∣∣

=
∣∣∣∣ ∫
B|t|

(u(t, x+ y)− u(t, x)− u(0, x+ y) + u(0, x))K(0, x, y) dy
∣∣∣∣

+
∣∣∣∣ ∫
Bc|t|

(u(t, x+ y)− u(t, x)− u(0, x+ y) + u(0, x))K(0, x, y) dy
∣∣∣∣

+
∣∣∣∣ ∫

Rn
(u(t, x+ y)− u(t, x))(K(t, x, y)−K(0, x, y) dy

∣∣∣∣
6 I + II + III.

As far as term I is concerned, we use the mean value theorem and (K1) in
order to get∫

B|t|

(u(t, x+ y)− u(t, x)− u(0, x+ y) + u(0, x))K(0, x, y) dy

=
∫
B|t|

(∇xu(t, x+ θy)−∇xu(t, x)−∇xu(0, x+ θy) +∇xu(0, x))

· yK(0, x, y) dy.

Since |K(t, x, y)| 6 Λ|y|−n−1, we obtain

I 6 Λ‖∇xu‖Cα((−3,0]×Rn)

∫
B|t|

|y|1+α|y|−n−1 dy

6 C‖∇xu‖Cα((−3,0]×Rn)|t|α.
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To estimate II, we observe that by mean value theorem and that
|K(t, x, y)| 6 Λ|y|−n−1,

II 6
∫
Bc|t|

|ut(s, x+ y)− ut(s, x)| |t| |K(0, x, y)|dy for some s ∈ (t, 0)

6 Λ‖ut(s, · )‖Cα(Rn)|t|
∫
Bc|t|

min(|y|α, 1)|y|−n−1 dy

6 C‖u‖C1+α((−3,0]×Rn)|t|α.

To estimate III, we proceed similarly by using (K3) in order to get

III 6 C‖∇xu‖Cα((−3,0]×Rn)

∫
B1

|y|1+α ∣∣K(t, x, y)−K(0, x, y)
∣∣dy

+ C‖u‖L∞((−3,0]×Rn)

∫
Bc1

∣∣K(t, x, y)−K(0, x, y)
∣∣ dy

6 C
(
‖∇xu‖Cα((−3,0]×Rn) + ‖u‖L∞((−3,0]×Rn)

)
|t|α.

Therefore, ∣∣Lu(t, x)− Lu(0, x)
∣∣ 6 C‖u‖C1+α

x,t ((−3,0]×Rn)|t|
α.

Similarly, we have∣∣Lu(t, x)− Lu(t, 0)
∣∣

=
∣∣∣∣ ∫

Rn

(
u(t, x+ y)− u(t, x)− u(t, y) + u(t, 0)

)
K(t, 0, y) dy

∣∣∣∣
+
∣∣∣∣ ∫

Rn

(
u(t, x+ y)− u(t, x)

)(
K(t, x, y)−K(t, 0, y)

)
dy
∣∣∣∣

6 C‖u(t, · )‖C1+α(Rn)|x|α,

where we have used the symmetry of K in y as above, and Lemma 2.4 of [8]
to estimate the first term in the left hand side of the inequality.

Finally, the desired estimate follows from standard translation argu-
ments. �

Lemma 2.3. — Let β ∈ (0, α), G satisfy (G1) and (G2), and g be defined
as in (2.2). There exists C > 0 depending only on n,Λ, β, α such that

‖g‖Cβ((−4,0]×Rn) 6 C‖u‖Lipx,t((−5,0]×Rn).
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Proof. — It is clear that

‖g‖L∞((−4,0]×Rn) 6 C
(
‖∇xu‖L∞((−4,0]×Rn) + ‖u‖L∞((−4,0]×Rn)

)
.

Moreover, for (t, x) ∈ (−4, 0]× Rn, s ∈ (−4, 0] and β < α, we have∣∣g(t, x)− g(s, x)
∣∣

6

∣∣∣∣ ∫
Rn

(u(t, y)− u(t, x))(G(t, x, y)−G(s, x, y) dy
∣∣∣∣

+
∣∣∣∣ ∫

Rn
(u(t, y)− u(t, x)− u(s, y) + u(s, x))G(s, x, y) dy

∣∣∣∣
6 C‖u‖Lip

∫
Rn

min(|y|, 1) min(|t− s|α, |y|α)|y|−n−1 dy

+ C‖u‖Lip
∫
Rn

min(|y|, |t− s|) min(1, |y|α)|y|−n−1 dy

6 C‖u‖Lip|t− s|α| log |t− s|| 6 C‖u‖Lip|t− s|β

where

‖u‖Lip((−5,0]×Rn)

= ‖u‖L∞((−5,0]×Rn) + ‖ut‖L∞((−5,0]×Rn) + ‖∇xu‖L∞((−5,0]×Rn).

Similarly, for (t, x) ∈ (−4, 0]× Rn, z ∈ Rn and β < α, we have∣∣g(t, x)− g(t, z)
∣∣

6

∣∣∣∣ ∫
Rn

(u(t, x+ y)− u(t, x))(G(t, x, y)−G(t, z, y)) dy
∣∣∣∣

+
∣∣∣∣ ∫

Rn
(u(t, x+ y)− u(t, x)− u(t, z + y) + u(t, z))G(t, z, y) dy

∣∣∣∣
6 C‖u‖Lip

∫
Rn

min(|y|, 1) min(|x− z|α, |y|α)|y|−n−1 dy

+ C‖u‖Lip
∫
Rn

min(|y|, |x− z|) min(1, |y|α)|y|−n−1 dy

6 C‖u‖Lip|x− z|α| log |x− z|| 6 C‖u‖Lip|x− z|β .

We conclude that for β < α,

‖g‖Cβ((−4,0]×Rn) 6 C‖u‖Lip. �

We shall also need the following iteration lemma.
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Lemma 2.4 ([5, Lemma 1.1]). — Let h : [T0, T1] → R be nonnegative
and bounded. Suppose that for all 0 6 T0 6 t < s 6 T1 we have

h(t) 6 A(s− t)−γ + 1
2h(s)

with γ > 0 and A > 0. Then there exists C = C(γ) such that for all T0 6
t < s 6 T1 we have

h(t) 6 CA(s− t)−γ .

3. Proofs of the main results

Proof of Theorem 1.1. — By Proposition 2.1 and Lemma 2.3,

‖u‖C1+β((−2,0]×Rn)

6 C
(
‖u‖L∞((−4,0])×Rn) + ‖g‖Cβ((−4,0]×Rn) + ‖f‖Cβ((−4,0]×Rn)

)
6 C

(
‖u‖Lip((−5,0]×Rn) + ‖f‖Cβ((−5,0]×Rn)

)
.

Let

h(γ, s) =
{

[∇xu]Cγ((s,0]×Rn) + [ut]Cγ((s,0]×Rn) if γ ∈ (0, 1)
‖∇xu‖L∞((s,0]×Rn) + ‖ut‖L∞((s,0]×Rn) if γ = 0.

Then we just proved that
h(β,−2) 6 C

(
‖u‖L∞((−5,0])×Rn) + ‖f‖Cβ((−5,0]×Rn) + h(0,−5)

)
. (3.1)

For every −2 < τ < s 6 −1, if we let

v(t, x) = u (µt+ t0, µx) with µ = s− τ
3 , t0 = 5s− 2τ

3 ,

then v satisfies that

vt(t, x) =
∫
Rn

(
v(t, x+ y)− v(t, x)

)
K̃(t, x, y) dy

+
∫
Rn

(
v(t, x+ y)− v(t, x)

)
G̃(t, x, y) dy + f̃(t, x)

in (−6, 0]× Rn,
where
K̃(t, x, y) = µn+1K(µt+ t0, µx, µy), G̃(t, x, y) = µn+1G(µt+ t0, µx, µy)

and f̃(t, x) = f(µt + t0, µx). Since µ < 1, each of K̃, G̃ and f̃ satisfies the
same assumptions on K,G, f , respectively. Therefore, (3.1) holds for v as
well. Rescaling back to v, we have for −2 < τ < s 6 − 1

2 ,

h(β, s) 6 C

|τ − s|1+β

(
‖u‖L∞((−5,0])×Rn) +‖f‖Cβ((−5,0]×Rn)

)
+ C

|τ − s|β
h(0, τ).
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By an interpolation inequality, we know that for every ε < 1, there exists
C > 0 independent of ε such that

h(0, τ) 6 εh(β, τ) + Cε−
1
β ‖u‖L∞((−6,0])×Rn).

Choosing ε = |τ−s|β
2C , we have that

h(β, s) 6 1
2h(β, τ) + C

|τ − s|1+β

(
‖u‖L∞((−6,0])×Rn) + ‖f‖Cβ((−5,0]×Rn)

)
.

By the iteration lemma, Lemma 2.4, we have that

h(β,−1) 6 C
(
‖u‖L∞((−6,0])×Rn) + ‖f‖Cβ((−6,0]×Rn)

)
.

This proves Theorem 1.1. �

Proof of Corollary 1.2. — First of all, it follows from [1] that a positive
smooth periodic solution w of (1.1) satisfies

‖w‖Cαx,t((−5,0]×Rn) 6 C

for some α, C > 0 depending only on n, ‖w‖L∞((−6,0]×Rn) and min(−6,0]×Rn w.

Now let m be as in (1.5), and

K(t, x, y) = m(t, x, x)
|y|n+1 and G(t, x, y) = m(t, x, x+ y)−m(t, x, x)

|y|n+1 .

Then ‖m‖Cα((−5,0]×Rn×Rn) 6 C. Therefore, it is elementary to check that K
and G satisfy the assumptions in Theorem 1.1. Therefore, we have

‖w‖
C

1+β1
x,t ((−5,0]×Rn) 6 C(β1)

for all β1 < α.

Differentiating (1.1) in x, we have for v = ∇xw,

∂tv = p.v.
∫
Rn

(
v(t, x+ y)− v(t, x)

)m(t, x, x)
|y|n+1 dy

+ p.v.
∫
Rn

(
v(t, x+ y)− v(t, x)

)m(t, x, y + x)−m(t, x, x)
|y|n+1 dy

+ p.v.
∫
Rn

(
w(t, x+ y)− w(t, x)

)2∇xm(t, x, x)
|y|n+1 dy

+ p.v.
∫
Rn

(
w(t, x+ y)− w(t, x)

)2(∇xm(t, x, y + x)−∇xm(t, x, x))
|y|n+1 dy.

= I + II + III + IV.

Here, for simplicity of the writing, we used that m(t, x, y) = m(t, y, x), but
actually this is not needed. The proof will go through without using this
symmetry.
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Notice that ‖∇xm(t, x, y+x)‖
C
β1
x,t((−5,0]×Rn×Rn) 6 C(β1). It follows from

Lemma 2.2 that
‖III‖

C
β1
x,t((−5,0]×Rn) 6 ‖w‖C1+β1

x,t ((−5,0]×Rn) 6 C(β1).

It follows from Lemma 2.3 that
‖IV ‖

C
β2
x,t((−5,0]×Rn) 6 C(β1, β2)

for every β2 < β1. Applying Theorem 1.1, we obtain
‖v‖

C
1+β2
x,t ((−5,0]×Rn) 6 C(β1, β2).

That is,
‖∇w‖

C
1+β2
x,t ((−5,0]×Rn) 6 C(β1, β2).

Similarly, we can differentiate (1.1) in t and obtain
‖wt‖C1+β2

x,t ((−5,0]×Rn) 6 C(β1, β2).

Then this corollary follows from keeping differentiating (1.1) and applying
Theorem 1.1 as above. �
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