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Maximal radius of quaternionic hyperbolic manifolds (∗)

Zoé Philippe (1)

ABSTRACT. — We derive an explicit lower bound on the radius of a ball embed-
ded in a quaternionic hyperbolic manifold (the maximal radius). We then deduce
a lower bound on the volume of a quaternionic hyperbolic manifold. Both those
bounds decrease with the dimension, when it is not clear that it should be the be-
haviour of the maximal radius or of the minimal volume. Related to that question,
we note however that the Margulis constant of the quaternionic hyperbolic space of
dimension n is smaller than C/

√
n, so is decreasing as the dimension grows.

RÉSUMÉ. — Nous donnons une borne inférieure explicite sur le rayon d’une boule
plongée dans une variété hyperbolique quaternionique (le rayon maximal). Nous en
déduisons une minoration du volume de telles variétés. Les deux bornes exhibées
décroissent avec la dimension, et il n’est pas clair que l’on doive s’attendre au même
comportement pour le rayon maximal ou pour le volume minimal. En lien avec
cette question, nous remarquons cependant que la constante de Margulis de l’espace
hyperbolique quaternionique de dimension n est inférieure à C/

√
n, et décroit donc

quand la dimension augmente.

1. Introduction

It has been known since the end of the 1960’s with the work of Každan
and Margulis [17], and the subsequent work of Wang [23], that any locally
symmetric manifold of non-compact type contains an embedded ball of ra-
dius rG/2 depending only on the group G of isometries of its universal cover.
Given a symmetric space X, denoting by G = I(X) its isometry group, a
lower bound for rG/2 provides geometric information on any manifold ob-
tained as a quotient of X: for instance, one can then deduce a lower bound
for the maximal injectivity radius of any such manifold, and information
about its thick-thin decomposition.

(*) Reçu le 22 septembre 2015, accepté le 15 octobre 2015.
(1) missing address — zoe.phlp@protonmail.com
Article proposé par Vincent Guiradel.
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In this article we focus on the case where X is the quaternionic hyper-
bolic space Hn

H. We adapt techniques developed by Martin [19] in the real
hyperbolic setting to obtain a bound λn for the maximal radius of a real
hyperbolic n-manifold. These ideas where recently adapted to the complex
hyperbolic case by Jiang, Wang and Xie [24].

The main result of this article is the following :

Main Theorem. — Let Γ ⊂ Sp(n, 1) be a discrete, torsion-free, non-
elementary subgroup acting by isometries on the quaternionic hyperbolic
space Hn

H. There exists a point p ∈ Hn
H such that, for all γ ∈ Γ,

ρ(p, γ(p)) > λn,

where λn = 0.05
9n+1 . Any quaternionic hyperbolic manifold thus contains an

embedded ball of radius λn/2.

No bounds have been previously known on this quantity, and further, our
result somewhat improves the earlier bounds known in the real and complex
case (see Remark 5.1).

Martin’s work crucially relies on a Jørgensen-like inequality established
in [20]. This inequality in turn depends on the explicit determination of
a Zassenhauss neighbourhood of the isometry group of the hyperbolic real
space. In [10], Friedland and Hersonsky slightly improved Martin’s inequality,
and used this new version to deduce a better bound for the maximal radius
of real hyperbolic manifolds. It is this improved inequality that Jiang, Wang
and Xie use in [24], and it is the one we shall use in this paper.

Section 3 is devoted to the presentation of these results: first we exhibit a
Zassenhauss neighbourhood of PSp(n, 1), the group of orientation preserving
isometries of the quaternionic hyperbolic space. We then deduce the Martin-
Jørgensen inequality and, following Martin, a stronger inequality satisfied
by the torsion-free lattices in PSp(n, 1) (Theorem 3.6).

In Section 4, we make explicit the fact that when A is an element of
PSp(n, 1), both ‖A‖ and ‖A − I‖ have to be small if A does not displace
enough a given point o of Hn

H. We finish by combining these results and
Theorem 3.6 to reach our conclusion in Section 5.

The bounds for the maximal radius given by the authors we first men-
tionned, and the one presented here, both decrease exponentially with the
dimension, though the methods employed do not allow us to discuss their
optimality. The description of the behaviour of the maximal radius with the
dimension (can it be uniformly bounded? Could it grow with dimension?) is
a matter that does not seem well understood yet.
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On the other hand, for open real hyperbolic manifold, Gendulphe [11]
recently derived a bound for the maximal radius, which is dimension-free
and optimal in dimension 3. His constructions greatly rely on packing theo-
rems and cannot be obviously adapted to the case of spaces of non-constant
sectional curvature.

Related to that matter, is the question of the behaviour of the Mar-
gulis constant with the dimension. This is the constant given by the fol-
lowing famous result, know as the Margulis Lemma (see for exemple [22,
Lemma 5.10.1]):

Theorem (Margulis). — For all n, there exists a positive constant
µHnH = ε such that, for all discrete subgroup Γ ⊂ Isom(Hn

H), and for all
point x ∈ Hn

H, the group
Γx(ε) = 〈g ∈ Γ | d(x, g(x)) 6 ε〉

is virtually nilpotent.

This theorem implies in particular that there is an embedded ball of
radius µHnH /2 in any quotient of Hn

H by a discrete subgroup of its isometry
group, so that

µHnH 6 rIsom(HnH ).

In the last section of this chapter, using a result of Kapovich mentionned
in a paper of Belolipetsky [5], we present an argument showing that the
Margulis constant of Hn

H (in fact, of Hn
K, for K = R,C or H) goes to 0 as

the dimension n goes to infinity. This of course does not answer the question
of the behaviour of the maximal radius with the dimension, but we believe
that it further shows that this matter is of interest.

To conclude this introduction, note that our result does not cover the case
of orbifolds. In this generality, to our knowledge, no bound for the maximal
radius is known, in any of the real, complex, or quaternionic hyperbolic
settings. In [21], Parker gave a bound for the maximal radius of an open
complex hyperbolic orbifold O, obtained by a close study of the maximal
embedded cusp of O. His methods are very different from the one we use in
this paper (that is, the methods developed by Martin in his above mentioned
work) and indeed, computing a bound for the maximal radius of an orbifold
with the later does not seem to be easily achievable.

However, using those methods, Adeboye was able to derive a bound on
the volume of a real hyperbolic orbifold, depending on the dimension and
the order of torsion. He proved, in [1], that an upper bound for the maximal
order of torsion of a discrete subgroup Γ ⊂ SO(n, 1) leads to a uniform
lower bound for ‖A− I‖ for all A in Γ− I. This fact in turn allowed him to
establish an upper bound for the number of elements of a discrete subgroup
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Γ ⊂ SO(n, 1) that fail to move a ball of radius r in Hn
R off itself. This last

quantity allowed him to give an explicit bound for the volume of an orbifold
covered by Hn

R , obtained by bounding the volume of the image of such a
ball in Γ\Hn

R . Note also that by different methods, Adeboye and Wei [2]
and [3] were able to derive a lower bound for the volume of real or complex
hyperbolic orbifolds, depending only on the dimension.

Aknowledgment.The author would like to thank the referee for very
useful and interesting remarks. Prior to the referee’s comments, the author
had no knowledge of the existence of the article of Belolipetsky that contains
Kapovich’s Proposition on the behaviour of the Margulis constant in the real
case, and she is very grateful for that piece of information.

2. Preliminaries

2.1. Linear algebra on H

In this text, H denotes the algebra of Hamilton quaternions H = R ⊕
iR⊕ jR⊕ kR, where i, j and k satisfy i2 = j2 = k2 = −1, ij = −ji = k, and
Hn the right vector space of dimension n over H.

A quaternion of modulus 1 can be written q = cos(θ) + µ sin(θ), where
µ2 = −1 is a purely imaginary quaternion of modulus 1:

µ ∈ {w ∈ H | |w| = 1 and w̄ = −w} ' S2,

and θ ∈ [0, π]. To denote such a quaternion we shall use a more compact
notation

cos(θ) + sin(θ)µ = eµ(θ).

This notation satisfies eµ(a)eµ(b) = eµ(a+b), and in particular,

eµ(a) =
(
eµ(a)

)−1
= eµ(−a).

If q is any quaternion, denoting by r its modulus, q can then be written

r(cos(θ) + sin(θ)µ) = reµ(θ), r ∈ [0,+∞[, θ ∈ [0, π], µ ∈ S2,

and this writing is unique if q is not in R, that is, if r 6= 0 and if θ 6= 0 or π.
We thence have the following decomposition of the non-real quaternions:

H− R = ]0,+∞[× ]0, π[× S2. (2.1)
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The group of unit quaternions Sp(1) acts by conjugacy on H. This action
is the identity on Z(H) = R and restricts to an action on the non-real quater-
nions, which leaves invariant the first two factors of the decomposition (2.1)
and is transitive on S2. Thus, for q ∈ H, the conjugacy class of q

O(q) =
{
z−1qz, z ∈ H, z 6= 0

}
= {w̄qw, w ∈ H, |w| = 1}

is reduced to a point if q is real, and is a sphere S2 otherwise. Further, if we
let

C = R[i] ⊂ H

be a distinguished maximal subfield of H, and

C+ = {q ∈ C | q − q̄ > 0} (2.2)

be the set of elements of C with positive or null imaginary part, then C+ is
a set of representatives of the orbits of this action.

The capital roman letters (A,B, . . . ) denote matrices.

The letter I denotes the identity matrix.

Given A ∈Mn(H), A∗ = tA denotes it’s conjugate transpose.

Let A ∈ Mn(H). An eigenvector of A is a vector ξ ∈ Hn such that
A · ξ = ξλ for some λ ∈ H. We call such a λ a right eigenvalue for A, or for
short an eigenvalue of A. Observe that given ξ and λ as above,

A · (ξq) = ξq(q−1λq), ∀ q ∈ H, q 6= 0.

Consequently, if λ is an eigenvalue of A, so is any quaternion in the orbit
O(λ) of λ under the action of Sp(1) described above.

A standard eigenvalue of A is an eigenvalue of A belonging to the set
C+ defined in (2.2). The set of standard eigenvalues of A thus bijectively
corresponds to the conjugacy classes of eigenvalues of A. We call it the
spectrum of A, and denote it by σ(A).

The spectral radius of A is the number

rσ(A) = max
λ∈σ(A)

|λ|.

The norm ‖·‖ denotes the spectral norm onMn(H):

‖A‖ =
√
rσ(A∗A).

The following remark will prove useful in the later sections:

Remark 2.1. — If U ∈ Sp(n), ‖UAU−1‖ = ‖A‖.
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Let Sp(n) denote the group of unitary matrices ofMn(H):

Sp(n) = {A ∈Mn(H), A∗A = I} .

In this setting, one can formulate the following spectral theorem:

Theorem 2.2. — If A is a normal matrix (in particular, if A is unitary),
there exists a unitary matrix U such that U∗AU is a diagonal matrix with
diagonal elements in C+.

(The reader may find more details on linear algebra on H in Zhang’s
survey [25] for example, or, regarding the spectral theory more specifically,
in Farenick and Pidkowich’s paper [9]).

Remark 2.3. — The orbit O(q) of a quaternion q always contains its
conjuguate q̄. In particular, any complex number λ ∈ C = C[i] is unitarily
equivalent, in H, to its conjugate λ̄. Let us emphasize here the fact that in
the spectral theorem over H, one can chose the cœfficients of the diagonal
matrix to have positive imaginary part, which need not be the case over C.

The brackets 〈 · , · 〉 denote a hermitian form of signature (n, 1) on Hn+1.

Let Sp(n, 1) denote the subgroup of GLn+1(H) formed by the matrices
(acting on Hn+1 on the left) preserving 〈 · , · 〉.

The lower case roman letters (f, g, h, . . . ) denote the isometries of Hn
H.

2.2. Quaternionic hyperbolic space and its isometries

2.2.1. The half-space model

Let Hn,1 denote the quaternionic vector space Hn+1 of dimension n + 1
endowed with a hermitian form of signature (n, 1). The quaternionic hyper-
bolic space Hn

H is the grassmannian of negative lines with respect to such a
form. Precisely, we consider the sets V− and V0 of negative and null vectors:

V− =
{
Z ∈ Hn,1, 〈Z,Z〉 < 0

}
;

V0 =
{
Z ∈ Hn,1, 〈Z,Z〉 = 0

}
;

denote by P the usual projection from Hn+1 onto Pn(H), and define

Hn
H = P (V−)

and ∂Hn
H = P (V0).
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To a choice of form corresponds a choice of model for Hn
H. In this text, we

will mainly work in the half-space model. This is the model given by the form

〈Z,W 〉 = W ∗JZ, J =

0 0 1
0 In−1 0
1 0 0


= w1zn+1 + w2z2 + · · ·+ wnzn + wn+1z1,

where Z and W are two column vectors of Hn,1.

In our setting we thus have

P (V−) = P
({
Z ∈ Hn,1, 2<(zn+1z1) + |z2|2 + · · ·+ |zn|2 < 0

})
,

i.e., in the chart {zn+1 = 1},

Hn
H =

{
2<(z1) + |z2|2 + · · ·+ |zn|2 < 0

}
.

The boundary consists of the points

Z = t
[
z1 . . . zn 1

]
, 2<(z1) + |z2|2 + · · ·+ |zn|2 = 0.

together with a distinguished point at infinity q∞ = t[ 1 0 ... 0 ] (the unique
point of P (V0) not contained in the chart {zn+1 = 1}).

We define the horospherical height of a point Z ∈ Hn
H:

uZ = −(2<(z1) + |z2|2 + · · ·+ |zn|2),

and then the horospherical coordinates of a point Z = t[ z1 ... zn 1 ] ∈ Hn
H:

(ξZ , vZ , uZ) = ((z2, . . . , zn), 2=(z1),−(2<(z1) + |z2|2 + · · ·+ |zn|2)).

These coordinates may be thought of as a generalization of the cartesian
coordinates on H2

R.

The vertical geodesics are the lines {(ξ0, v0, u), u ∈ R+} joining a point
(ξ0, v0, 0) on the boundary to q∞. In particular, we will denote by (0,∞) the
vertical geodesic {(0, 0, u), u ∈ R+} joining (0, 0, 0) and q∞.

We choose an origin in Hn
H, namely the point o = t[−1 0 ... 0 1 ], or (0, 0, 2)

in horospherical coordinates. It belongs to the vertical geodesic (0,∞).

Remark 2.4. — Another classical model is the ball model that comes with
the choice of the form J1 =

[
In 0
0 −1

]
. The Cayley transform from one model

to the other is given by the change of basis from J to J1, namely the unitary
matrix

C =


√

2
2 0

√
2

2
0 In−1 0√
2

2 0 −
√

2
2

 .
– 881 –
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In this model, the hyperbolic space

Hn
H = P (V−) = P

({
Z ∈ Hn,1, |z1|2 + |z2|2 + · · ·+ |zn|2 − |zn+1|2 < 0

})
'
{
|z1|2 + |z2|2 + · · ·+ |zn|2 < 1

}
is identified with the unit ball in Hn, and the origin o of the half-space model
is carried by the Cayley transform onto the origin 0 of the ball (the point
t[ 0 ... 0 1 ] in the inhomogenous coordinates).

We shall use this model when describing the maximal compact subgroup
of the isometry group of Hn

H, that is the stabilizer of a point in Hn
H. The

computations will prove to be more elegant in this setting. However, this
concerns only two small parts of our text (the description of the elliptic
elements in the next paragraph, and the proof of Lemma 4.5) so unless oth-
erwise explicitly stated, the reader should always think that we are working
in the half-space model.

2.2.2. Classification of the isometries

We shall now present a couple of facts regarding the isometries of Hn
H

that will be needed in the rest of the text. A more detailed account can be
found in the article of Kim and Parker mentioned in the introduction [18].

The group of orientation preserving isometries of Hn
H is the group

PSp(n, 1) = Sp(n, 1)/{±I}.

As in the real and complex hyperbolic cases, these isometries can be of one
of the following three kinds:

(1) loxodromic, if they fix exactly two points in ∂Hn
H (and have no fixed-

point in Hn
H);

(2) parabolic, if they fix exactly one point in ∂Hn
H (and have no fixed-

point in Hn
H);

(3) elliptic, if they fix a point in Hn
H.

In the ball model, a direct computation, using the fact that we are working
with elements perserving the form J1, shows that elliptic elements fixing the
origin 0 = t[ 0 ... 0 1 ] correspond to matrices of Sp(n, 1) of the form

A =
[
Θ 0
0 eµ(θ)

]
, Θ ∈ Sp(n).

We thus see that
Stab(0) ' P(Sp(n)× Sp(1)).
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Remark 2.5. — Elliptic elements stabilizing 0 thus have norm equal to 1.
These elements correspond, under the Cayley transform C, to those stabiliz-
ing the origin o in the half-space model. Since C is unitary, using Remark 2.1,
we see that elliptic elements stabilizing o in the half-space model also have
norm 1. This will prove usefull in the sequel.

Remark 2.6. — In the real or complex hyperbolic cases, after projectiviz-
ing, we can assume that an elliptic element has the form

A =
[
Θ 0
0 1

]
, Θ ∈ Un.

In our case however, scalar matrices are not central (except for ±I), and
we can no longer make this assumption. This fact is responsible for a slight
difference between our results and their analogue in the real and complex
cases (compare Lemma 4.2 of [24] and Lemma 4.1 of [10] with Lemma 4.5).

2.2.3. Elementary groups of isometries

The limit set of a discrete subgroup Γ of isometries of Hn
H is the set of

accumulation points of the orbit of an arbitrary point x ∈ Hn
H, denoted by

L(Γ). A discrete group Γ is called non-elementary if its limit set contains
strictly more than two points, elementary otherwise.

In case Γ is elementary, one of the three following holds (see e.g. [13]):

(1) L(Γ) = ∅. Then Γ is finite.
(2) L(Γ) = {x0}. Then every infinite order element of Γ is parabolic

with fixed point x0.
(3) L(Γ) = {x0, y0}. Then every infinite order element of Γ is loxodromic

with fixed points x0 and y0.

In particular, if Γ is discrete, elementary, and torsion free, the elements of
Γ are either all parabolic or all loxodromic. This is the only fact about
elementary groups that we need in this paper (in the proof of our main
inequality, Theorem 3.6).

2.2.4. Formulae

The distance in Hn
H can be explicitly described in terms of the hermitian

structure on Hn,1 (see for example Chen and Greenberg’s artcile, [7]). If X
and Y are two points in Hn

H and X̃, Ỹ two corresponding vectors of Hn,1,

cosh
(
ρ(X,Y )

2

)
= 〈X̃, Ỹ 〉〈Ỹ , X̃〉
〈X̃, X̃〉〈Ỹ , Ỹ 〉

. (2.3)
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Remark 2.7. — We did not choose the same normalization as Chen and
Greenberg, and in their paper, the 1

2 factor does not appear on the left
hand side of the equation. In our text, the metric is normalized so that the
sectional curvature is −1 on planes contained in quaternionic lines (and is
thus globally pinched between −1 and −1/4).

In order to obtain a lower bound for the volume of a quaternionic hy-
perbolic manifold, we need to be able to compute the volume of a ball of
given radius. This is given by the following lemma which can be found, for
instance, in an article of Alfred Gray [12]:

Lemma 2.8. — The volume of a ball of radius R in the quaternionic
hyperbolic space is

Vol(B(R)) = (4π)2n

(2n+ 1)! sinh4n
(
R

2

)(
2n cosh2

(
R

2

)
+ 1
)
.

3. Jørgensen-like inequality and consequences

As we announced, we begin by giving a Zassenhauss neighbourhood for
Sp(n, 1), that is a neighbourhood of the identity in Sp(n, 1) such that any
discrete subgroup of Sp(n, 1) generated by elements of this neighbourhood
is nilpotent.

Theorem 3.1. — Ω = B(I, τ) is a Zassenhauss neighbourhood for
Sp(n, 1), where τ ' 0.2971.. is the positive root of the equation 2τ(1+τ)2 =1.

This result, with a slightly worse bound, was established by Martin in [20]:
he obtained the Zassenhauss neighbourhood ΩO+(1,n) =B(I, 2−

√
3). It was

then improved and generalized by Friedland and Hersonsky in [10] who ob-
tained ΩG = B(I, τ) for a large class of Lie groups G. Friedland and Herson-
sky’s improvement comes from an elementary remark which in our setting
can be stated in this way:

for A ∈ Sp(n, 1), ‖A−1‖ = ‖A‖.
We give the proof of Theorem 3.1, for the reader convenience, and for it
reveals a crucial inequality (Inequality (3.1)) which we shall use again and
again.

Proof. — Let then A, B be in Ω = {M ∈ Sp(n, 1), ‖M − I‖ < τ}. We
have

[A,B]− I = ABA−1B−1 − I
= (AB −BA)A−1B−1

= ((A− I)(B − I)− (B − I)(A− I))A−1B−1.
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Hence
‖[A,B]− I‖ 6 2‖A− I‖‖B − I‖‖A−1‖‖B−1‖

< 2τ2(1 + τ)2 = τ.
(3.1)

Now, if Γ ⊂ Sp(n, 1) is a discrete subgroup, Γ ∩ Ω = {A1, . . . , An} is finite,
and there exists an r < τ < 1 such that ‖A− I‖ < r for all Ai ∈ Γ ∩ Ω.

From Inequality (3.1), we thus have, for all elements Ai0 , . . . , Aik of Γ∩Ω,
‖[Ai1 , Ai0 ]− I‖ < 2r(1 + r)2‖Ai0 − I‖ < r‖Ai0 − I‖

and
‖[Aik , . . . , [Ai1 , Ai0 ] . . . ]− I‖ < rk‖Ai0 − I‖.

Hence, Γ being discrete, there exists an integer m such that for all sequence
(Bk)k∈N given by

Bk = [Aik , . . . , [Ai1 , Ai0 ] . . . ],
we have Bj = I ∀ j > m. The group 〈A1, A2, . . . , An〉 is thus nilpotent. �

Remark 3.2. — A discrete and non-elementary group being non-nilpo-
tent, we immediately see that if two elements A and B of Sp(n, 1) generate a
discrete non-elementary subgroup, necessarily max {‖A− 1‖, ‖B − 1‖} > τ .
Furthermore, if one demands 〈A,B〉 to be torsion-free, A must be parabolic
or loxodromic, and it is easily seen that if 〈A,B−1AB〉 stabilizes one or two
points of the boundary ofHn

H, then so does the group 〈A,B〉. Therefore, when
〈A,B〉 is discrete and torsion-free, 〈A,B−1AB〉 = 〈A, [A,B]〉 is elementary if
and only if 〈A,B〉 is. Theorem 3.1 thus has an (almost) immediate corollary:

Corollary 3.3. — Let Γ ⊂ Sp(n, 1) be a discrete torsion-free subgroup,
and A and B be two elements of Γ. We have the following alternative:

(1) either A and B generate an elementary subgroup of Γ;
(2) or max{‖A− I‖, ‖B− I‖} > τ and max{‖A− I‖, ‖[A,B]− I‖} > τ.

We are now ready to established a Jørgensen-like inequality. This in-
equality is originally due to Martin, in [19]. We state it here in it’s improved
version as derived by Friedland and Hersonsky in [10].

Corollary 3.4 (Jørgensen–Martin inequality). — Let Γ ⊂ Sp(n, 1) be
a discrete torsion-free subgroup and A and B be two elements of Γ. Then,
either A and B generate an elementary subgroup of Γ, or

max {‖B‖‖B − I‖, ‖A‖‖A− I‖} > ω
where ω= ( τ2 )1/2' 0.3854.. is the positive root of the equation 2ω(2ω2+1)=1.

Proof. — Suppose that A and B are two elements of Γ that do not gen-
erate an elementary subgroup of Γ and such that

‖A‖‖A− I‖ < ω and ‖B‖‖B − I‖ < ω.
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Using Inequality (3.1) derived in the proof of Theorem 3.1, we get
‖[A,B]− I‖ 6 2‖A‖‖A− I‖‖B‖‖B − I‖ < 2ω2 = τ.

Next, since 〈[A,B], A〉 cannot be elementary (see Remark 3.2), by Corol-
lary 3.3 we must have

‖[A, [A,B]]− 1‖ > τ.
Therefore, using Inequality (3.1) again,

2‖A‖‖A− 1‖‖[A,B]‖‖[A,B]− 1‖ > τ,
so

2ω‖[A,B]‖ > 1.
However

‖[A,B]‖ 6 1 + ‖[A,B]− 1‖ < 1 + τ = 1
2ω

which is a contradiction. �

Remark 3.5. — Friedland and Hersonsky’s improvement is an immediate
consequence of their bettering of the Zassenhauss’ neighbourhood. Martin
considers the neighbourhood B(1, 2−

√
3) and obtains the bound ( 2−

√
3

2 )1/2.

The main result of this section is the following:

Theorem 3.6. — Let Γ be a discrete, torsion-free, non-elementary sub-
group of Sp(n, 1). There exists an H ∈ Sp(n, 1) such that

‖A‖‖A− 1‖ > ω for all A ∈ HΓH−1. (3.2)

Proof. — Let us assume, without loss of generality, that no element of
Γ fixes q∞ or 0 (the point of ∂Hn

H with horospherical coordinates (0, 0, 0)).
Denote by ht the loxodromic flow from 0 to q∞, and by Ht the corresponding
elements of Sp(n, 1). ht converges to q∞ locally uniformly onHn

H\{0, q∞} as t
goes to +∞, and h−1

t = h−t converges to 0 locally uniformly on Hn
H\{0, q∞}.

We argue by contradiction and suppose that there is no t ∈ R for which
HtΓH−1

t satisfies (3.2).

Firstly, remark that for a fixed element A of Sp(n, 1), ‖HtAH
−1
t ‖ goes

to infinity as t does. Indeed, denote by γ the isometry corresponding to A.
By assumption, γ does not fix 0, so

γh−1
t (o) −→

t→+∞
γ(0) ∈ ∂H2

H − {0}.

Consequently, the convergence being locally uniform,
htγh

−1
t (o) −→

t→+∞
q∞.

Put
htγh

−1
t = (ai,j(t))16i,j6n+1 ,
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then

htγh
−1
t (o) =


a1,1(t) + a1,n+1(t)
a2,1(t) + a2,n+1(t)

...
an+1,1(t) + an+1,n+1(t)

 .
Hence,

htγh
−1
t (o) −→

t→+∞
q∞

if and only if a1,1(t) −→
t→+∞

+∞ or a1,n+1(t) −→
t→+∞

+∞,

so that ‖HtAH
−1
t ‖∞ −→

t→+∞
∞, and finally, all norms being equivalent,

‖HtAH
−1
t ‖ −→

t→+∞
∞.

Naturally, a similar argument using the fact that γ does not fix q∞ shows
that ‖HtAH

−1
t ‖ goes to infinity as t goes to −∞.

Next, we exhibit a sequence ti going to infinity and a sequence of distinct
elements Ai of Γ such that

‖HtiAiH
−1
ti ‖‖HtiAiH

−1
ti − I‖ < ω (3.3)

and
‖HtiAi+1H

−1
ti ‖‖HtiAi+1H

−1
ti − I‖ < ω. (3.4)

To make the notation less cluttered, for t ∈ R and A ∈ Γ, we put
N(t, A) = ‖HtAH

−1
t ‖‖HtAH

−1
t − I‖.

We are thus looking for two sequences satisfying N(ti, Ai) < ω and
N(ti, Ai+1) < ω. To achieve this, for any element A of Γ put

VA = {t ∈ R, N(t, A) < ω}.
Since N(t, A) goes to infinty as t does, if VA is non-empty, VA is a bounded
open set. Further, by assumption, for all t ∈ R there is an element A ∈ Γ
contradicting (3.2), and the set {VA, A ∈ Γ} thus forms an open cover of R
by bounded sets.

Now, choose a locally finite open refinement of that cover, V = {V ′}. Put
t0 = 0. Then t0 is in some V ′ ∈ V which is in turn contained in some VB .
Put A0 = B.

We then construct the sequences by induction. Suppose ti and Ai are
constructed. We want to exhibit an element Ai+1 6= Ai such that ti ∈ VAi+1

(so that (3.4) is satisfied). ti is in some set V ′ ⊂ VAi of V. Any real number
close enough to the supremum of V ′ is contained in another set V ′′ of V.
If V ′′ ⊂ VB with B 6= Ai, choose any such real number for ti+1 and put
Ai+1 = B. If this is not the case, do the same procedure with the supremum
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of V ′′. Since V is locally finite, we are ensure to exit VAi after a finite number
of steps. The sequence ti constructed in this way is strictly increasing and
further, by local finiteness of V it can not accumulate and consequently goes
to infinity. Also by construction, ti ∈ VAi ∩ VAi+1 and Ai 6= Ai+1 for all i.

Finally, (3.3) and (3.4) are satisfied, and from the Jørgensen–Martin in-
equality (Corollary 3.4), we see that the group generated by HtiAi+1H

−1
ti

and HtiAiH
−1
ti must be elementary, hence its conjugate 〈Ai, Ai+1〉 must be

too.

Consequently (see Section 2.2.3), either Ai and Ai+1 are both parabolic
and then we fix the same point x0 of the boundary, or they are both loxo-
dromic and then we fix the two same points x0 and y0 of the boundary. That
being true for all i, we see that the Ai either are all parabolic or are all loxo-
dromic, and have a common fix point x0 on the boundary. Further, denoting
by fi the isometries corresponding to the Ai, we may assume, extracting a
subsequence if necessary,

fi(x) −→ x0

locally uniformly onHn
H\{x0} if all the fi are parabolic, and locally uniformly

on Hn
H \ {x0, y0} if they are all loxodromic.

Now, consider the sequence hifih−1
i with hi = hti . Since 0 and q∞ are

not fixed by any element of Γ, we have {0, q∞} ∩ {x0, y0} = ∅, and, the
convergence being locally uniform,

hifih
−1
i (0, q∞) = hifi(0, q∞) −→ hi(x0) −→ q∞.

But if a sequence {gi} of isometries of Hn
H satisfies |gi(x) − gi(y)| → 0

for two distinct points x and y in Hn
H, denoting by Bi the corresponding

elements of Sp(n, 1), necessarily ‖Bi‖ → ∞. However here, we see from (3.3)
that ‖HiAiH

−1
i ‖ is bounded (indeed, if X satisfies ‖X‖‖X − I‖ < ω, then

|‖X‖| |‖X‖ − 1| < ω, and ‖X‖ has to be smaller than 1+
√

1+4ω
2 ). We thus

obtain a contradiction, which concludes the proof of the theorem. �

4. Intermediate results

We now want to use Theorem 3.6 to derive the Main Theorem. To this
end, given an element f of a discrete torsion-free subgroup of the isometry
group of Hn

H and denoting the corresponding matrix by A, we seek to bound
the quantity

‖A‖‖A− I‖
from above by a function of the distance ρ(o, f(o)), in order to obtain a
contradiction if f does not displace the point o enough.
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In the rest of this section, f is an isometry of Hn
H and A ∈ Sp(n, 1) is the

corresponding matrix. We put
δ = ρ(o, f(o))

and
r = exp(δ/2).

We also put K = Stab(o) ' P(Sp(n)×Sp(1)). Recall (see Remark 2.5) that
elements of K have norm 1.

After conjugating A by an element of Sp(n, 1), we can assume that f
sends o to a point on the vertical geodesic (0,∞) at distance δ from o. We
thus suppose that

f(o) = t
[
−r2 0 . . . 0 1

]
∼ t
[
−r 0 . . . 0 1/r

]
.

The dilatation associated to f is the loxodromic element fixing 0 and q∞
sending o to f(o), with corresponding matrix

D =

r 0 0
0 In−1 0
0 0 1/r

 .
In particular, this element satisfies

AD−1 ∈ K,
and an immediate computation shows that

‖D‖ = r and ‖D − I‖ = ‖D−1 − I‖ = r − 1.
We easily bound ‖A‖ from above:

Lemma 4.1. — ‖A‖ 6 r.

Proof. — Since AD−1 ∈ K, we have ‖AD−1‖ = 1 and
‖A‖ = ‖AD−1D‖ 6 ‖AD−1‖‖D‖ = r. �

Remark 4.2. — Also, note that this implies that, for all integer q,
‖Aq‖ 6 rq.

This very simple remark is responsible for a slight improvement in the final
bound we derive in Main Theorem compared to those previously known for
the real and complex cases (compare this equation to the one at the bottom
of p. 772 of the article of Xie, Wang and Jiang [24] for instance).

Bounding ‖A−I‖ from above turns out to be more subtle: for some given
element in Sp(n, 1), it is not a priori clear weather it is close to the identity
or not. For an element R of K, however, either R is of finite order, or it is
an irrational rotation: it is therefore possible to approach I arbitrarily close
by some power of R, and this is what we make explicit in Lemma 4.5. We
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then use the triangle inequality to bound ‖A− I‖ (actually ‖Aq − I‖) from
above:

‖Aq − I‖ 6 ‖Aq −Rq‖+ ‖Rq − I‖. (4.1)
The following lemma gives a bound for the first part of the right side of this
expression:

Lemma 4.3. — There exists an element R of K such that

‖Aq −Rq‖ 6 r(rq − 1).

Proof. — Let R ∈ K. Recall the identity

Aq −Rq = (A−R)Rq−1 +R(A−R)Aq−2 + · · ·+Rq−1(A−R). (4.2)

Using the fact that ‖A‖ = r and that ‖R‖ = 1 we then obtain, for all R ∈ K,

‖Aq −Rq‖ 6 rq − 1
r − 1 ‖A−R‖.

Set R = AD−1. Then

‖A−AD−1‖ 6 ‖A‖‖1−D−1‖ 6 r(r − 1),

and finally we get
‖Aq − (AD−1)q‖ 6 r(rq − 1). �

Next, we have to bound the second part of the right side of (4.1) from
above. We shall do it by using the Dirichlet’s pigeon-hole principle, which
we recall (see for example [15, Chapter 3, Section 3]):

Lemma 4.4 (Dirichlet’s pigeon-hole principle). — Given n real numbers
θi ∈ [0, 1], i = 1, . . . , n, for all Q > 1, there exists an integer q 6 Qn and
integers pi, i = 1, 2 . . . , n such that∣∣∣∣θi − pi

q

∣∣∣∣ 6 1
qQ

.

We deduce:

Lemma 4.5. — Let R be in K. Then, for all Q > 1, there exists an
integer q, 1 6 q 6 Qn+1, such that

‖Rq − I‖ 6 π

Q
.

Proof. — For this proof, we place ourselves in the ball model. Recall that
K ' K ′, whereK ′ is the stabilizer of the origin 0 of the ball, the isomorphism
being given by the conjugation by the Cayley transform C, which is unitary.
By Remark 2.1, we thus see that proving Lemma 4.5 for elements of K ′
amounts to proving it for elements of K.
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Let then R be an element of K ′, and write R =
[
R′ 0
0 eµ1(2πθn+1)

]
. Without

loss of generality, we can actually assume that

R =
[
R′ 0
0 ei(πθn+1)

]
, R′ ∈ Sp(n), θn+1 ∈ [0, 1].

We diagonalize R′ (by the spectral theorem, see Section 2.1):

R′ = P ′ Diag(ei(πθ1), . . . , ei(πθn)) P ′−1,

with P ′ ∈ Sp(n). Then
R = PR1P

−1,

with
R1 = Diag(ei(πθ1), . . . , ei(πθn), eiπ(θn+1))

and
P =

[
P ′ 0
0 1

]
∈ K ′.

Let Q > 1 be an integer, and let q, pi, i = 1 . . . n + 1, be the integer corre-
sponding to the θi as in Lemma 4.4. Put

B = PB1P
−1 ∈ K ′,

where
B1 = Diag(ei(π

p1
q ), ei(π

p2
q ), . . . , ei(π

pn
q ), ei(π

pn+1
q )).

Then

‖R−B‖ = ‖R1 −B1‖ =
√
rσ ((R∗1 −B∗1)(R1 −B1))

= max
√∣∣∣ei(πθi) − ei(π piq )

∣∣∣2
= max

√
|2− 2 cos(π(θi −

pi
q

)|

= max
√
|4 sin2(π2 (θi −

pi
q

))|

= 2 max | sin(π2 (θi −
pi
q

))|

6 πmax |θi −
pi
q
| 6 π

qQ
.

Finally, we use Identity (4.2) stated in Lemma 4.3 and the fact that ‖R‖ =
‖B‖ = 1 to obtain:

‖Rq − I‖ = ‖Rq −Bq‖
6 q‖R−B‖

6
π

Q
. �
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Remark 4.6. — Let us emphasize: the fact that the eigenvalues of R′ can
be all chosen to have positive imaginary part is specific to the quaternionic
setting (see Remark 2.3). This is responsible for an improvement of the
constant λn bounding the maximal radius from below in the quaternionic
setting (compare with [24, Lemma 4.2] in the complex setting).

Let us summarize the results obtained in this section:

Lemma 4.7. — Let f be an isometry of Hn
H, and A ∈ Sp(n, 1) be the

corresponding matrix. Put δ = ρ(o, f(o)) and r = exp(δ/2). Then, for all
Q > 1, there exists an integer q, 1 < q 6 Qn+1, such that

‖Aq‖‖Aq − I‖ 6 rq
(
r(rq − 1) + π

Q

)
.

Proof. — According to Lemma 4.1, ‖A‖ 6 r, therefore ‖Aq‖ 6 rq. Com-
bining (4.1), Lemma 4.3, and Lemma 4.5 we thus obtain

‖Aq − I‖ 6 r(rq − 1) + π

Q
. �

5. Conclusion

5.1. Proof of Main Theorem

We are now ready to give a proof of the main theorem of this article,
which we state here again for convenience:

Main Theorem. — Let Γ ⊂ Sp(n, 1) be a discrete, torsion-free, non-
elementary subgroup acting by isometries on the quaternionic hyperbolic
space Hn

H. There exists a point p ∈ Hn
H such that, for all A ∈ Γ, denot-

ing by γ the corresponding isometry,
ρ(p, γ(p)) > λn,

where λn = 0.05
9n+1 . Every quaternionic hyperbolic manifold thus contains an

embedded ball of radius λn/2.

Proof. — Firstly, from Theorem 3.6, we know that there exists an H ∈
Sp(n, 1) such that, for all C ∈ HΓH−1, C 6= I,

‖C‖‖C − I‖ > ω ' 0.3854 . . . (5.1)
Denoting by h the isometry of Hn

H corresponding to H, we shall prove the
theorem with p = h−1(o).

Assume on the contrary that there is an isometry γ not satisfying the
inequality of the theorem. Denote by A the corresponding matrix in Sp(n, 1),
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put Â = HAH−1, and let γ̂ be the corresponding isometry. Also, put r =
exp(ρ(o, γ̂(o))/2).

Next, apply Lemma 4.7 with Q = 9: there exists an integer q 6 9n+1

such that
‖Âq‖‖Âq − I‖ 6 rq

(
r(rq − 1) + π

9

)
. (5.2)

By assumption r < eλn/2, so (since n > 2)

r < e
0.025
9n+1 6 e

0.025
93

and rq 6 r9n+1
< e

λn
2 ·9

n+1
= e0.025.

Consequently,

‖Â‖‖Â− I‖ < e0.025
(
e

0.025
93 (e0.025 − 1) + π

9

)
' 0.3838.. < 0.3854..

which contradicts (5.1). �

Remark 5.1. — We pointed out earlier, in Remarks 4.2 and 4.6, two facts
that allowed us to improve the previously known bound for the maximal
radius in the real and in the complex case. Precisely, in those two cases,
instead of our inequality (5.2), the estimates in [24] are

‖Âq‖‖Âq − I‖ 6 (r(rq − 1) + 1)
(
r(rq − 1) + 2π

Q

)
(with Q as in Lemma 4.4), and ultimately, this explains the differences be-
tween those results and the ours.

6. Related quantities

6.1. Volume

An immediate corollary of Main Theorem is that one can bound below
the volume of a quaternionic hyperbolic manifold Γ\Hn

H by the volume of
such a ball. We compute the later using Lemma 2.8.

Corollary 6.1. — Let M be a quaternionic hyperbolic manifold of di-
mension n. Then

Vol(M) > (4π)2n

(2n+ 1)! sinh4n
(

0.0175
9n+1

)
.
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However, as was shown by Corlette [8] and Gromov and Schoen [14],
all lattices in Sp(n, 1) are arithmetic. Hence, one could likely give a lower
bound for the volume of (finite volume) quaternionic hyperbolic manifolds
via arithmetic methods. Those methods have proven to be fruitful in the real
hyperbolic case (see for example the work of Belolipetsky [4] and Belolipetsky
and Emery [6]) and could probably be used to improve Corollary 6.1.

Nevertheless, information about the maximal radius of a manifold is not
the same as, though related to, information on the volume of such a manifold.
In particular, in this paper, the subgroup Γ need not be a lattice, but only
a discrete subgroup of isometries, and the result of Main Theorem remains
valid if M is of infinite volume.

6.2. Margulis constant

As we mentioned in the introduction, another quantity closely related to
the maximal radius is the Margulis constant µn of a hyperbolic manifold of
dimension n. For this number too, an interesting problem is to understand
how it depends on the dimension. If we restrict our attention to the arith-
metic case, conjecturally, µarithm.

n is uniformly bounded from below. On the
other hand, there is an argument for why the Margulis constant of an infinite
volume hyperbolic manifold can behave differently than in the finite volume
case, due to Mikhail Kapovich, which can be found in Belolipetsky’s 2014
ICM address.

To conclude this chapter, we show that Belolipetsky’s arguments imply
that if we take n large enough, we can exhibit a discrete subgroup Γ ⊂
Sp(n, 1), of infinite covolume, with Margulis constant arbitrarily small, for
it further motivates the methods we employed over the arithmetic ones.

Proposition 6.2 (Kapovich, see [5, Proposition 5.2]). — There exists
a constant C > 0 such that µHnR 6

C√
n
.

Which can be reformulated

Proposition 6.2′. — For all n, one can construct a discrete subgroup
Γ of Isom(Hn

R ) and a point x ∈ Hn
R such that

Γx(ε) = 〈g ∈ Γ | d(x, g(x)) 6 ε〉
is not virtually nilpotent, where ε = C√

n
.

Remark 6.3. — Further, the group Γ exhibited in the proof of Proposi-
tion 6.2′ has infinite covolume in Isom(Hn

R ). The idea of the construction
is as follows: consider the free group on two generators F2 = 〈f, g〉, and G
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its Cayley graph (relatively to the generating system {f, g}). Construct an
F2-equivariant map σ of G into Hn

R , sending the root of G and its two first
edges f and g on a point x = p0 in Hn

R and two geodesic segments of length
ε emanating from p0. Then, if σ is injective, the group

σ(F2)ε(p0) = 〈γ ∈ σ(F2) | d(p0, γ(p0)) 6 ε〉
is F2 itself, highly non virtually nilpotent. Therefore, once one has con-
structed such a map an proved that it is an embedding, Proposition 6.2′ is
proved, provided the image of F2 in Isom(Hn

H) is discrete.

At first, Kapovich thus constructs a local F2-equivariant embedding σ :
G → Hn

R , sending the first two edges of the graph on two geodesic segments
of length ε.

Secondly, he shows that for ε > C√
n
, this map is a quasi-isometric em-

bedding. This ensures that the image of F2 is discrete (see for instance his
article [16, Lemma 2.2]) which completes the proof.

Now, this proposition in turn implies

Proposition 6.4. — There exists a constant C > 0 such that µHnH 6
C√
n
.

Proof. — Indeed, fix an n, and let Γ ⊂ SO(n, 1) and x ∈ Hn
R be the

discrete group of isometries and point of Hn
R given by Proposition 6.2′. The

group SO(n, 1) is embedded in Sp(n, 1),
ι : SO(n, 1) ↪→ Sp(n, 1),

and acts on a totally geodesic isometric copy ι∗(Hn
R ) of Hn

R . So Γ itself is a
discrete subgroup of Sp(n, 1), acting on ι∗(Hn

R ), and the group
Γι∗(x)(ε) = 〈g ∈ Γ | d(ι∗(x), g(ι∗(x))) 6 ε〉

is not virtually nilpotent. �

Observe that the proof above also works forHn
C , so that ultimately Propo-

sition 6.2′ implies

Proposition 6.5. — There exists a constant C > 0 such that

µHnK 6
C√
n

for K = R,C or H.
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