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Combinatorics of the tame automorphism group (∗)

Stéphane Lamy (1)

ABSTRACT. — We study the group Tame(A3) of tame automorphisms of the
3-dimensional affine space, over a field of characteristic zero. We recover, in a uni-
fied way, previous results of Kuroda, Shestakov, Umirbaev and Wright, about the
theory of reduction and the relations in Tame(A3). The novelty in our presentation
is the emphasis on a simply connected 2-dimensional simplicial complex on which
Tame(A3) acts by isometries.

RÉSUMÉ. — Nous étudions le groupe Tame(A3) des automorphismes modérés de
l’espace affine de dimension 3, sur un corps de caractéristique nulle. Nous retrouvons,
de manière unifiée, des résultats de Kuroda, Shestakov, Umirbaev et Wright, concer-
nant la théorie des réductions et les relations dans Tame(A3). La nouveauté dans
notre approche réside dans la mise en avant d’un complexe simplicial de dimension 2
simplement connexe sur lequel Tame(A3) agit par isométries.

Introduction

Let k be a field, and let An = Ank be the affine space over k. We are
interested in the group Aut(An) of algebraic automorphisms of the affine
space. Concretely, we choose once and for all a coordinate system (x1, . . . , xn)
for An. Then any element f ∈ Aut(An) is a map of the form

f : (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),
where the fi are polynomials in n variables, such that there exists a map g
of the same form satisfying f ◦ g = id. We shall abbreviate this situation by
writing f = (f1, . . . , fn), and g = f−1. Observe a slight abuse of notation
here, since we are really speaking about polynomials, and not about the
associated polynomial functions. For instance over a finite base field, the
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group Aut(An) is infinite (for n > 2) even if there is only a finite number of
induced bijections on the finite number of k-points of An.

The group Aut(An) contains the following natural subgroups. First we
have the affine group An = GLn(k)nkn. Secondly we have the group En of
elementary automorphisms, which have the form

f : (x1, . . . , xn) 7→ (x1 + P (x2, . . . , xn), x2, . . . , xn),

for some choice of polynomial P in n− 1 variables. The subgroup

Tame(An) = 〈An, En〉

generated by the affine and elementary automorphisms is called the subgroup
of tame automorphisms.

A natural question is whether the inclusion Tame(An) ⊆ Aut(An) is in
fact an equality. It is a well-known result, which goes back to Jung (see
e.g. [8] for a review of some of the many proofs available in the literature),
that the answer is yes for n = 2 (over any base field), and it is a result by
Shestakov and Umirbaev [13] that the answer is no for n = 3, at least when
k is a field of characteristic zero.

The main purpose of the present paper is to give a self-contained re-
worked proof of this last result: see Theorem 4.1 and Corollary 4.2. We
follow closely the line of argument by Kuroda [7]. However, the novelty in
our approach is the emphasis on a 2-dimensional simplicial complex C on
which Tame(A3) acts by isometries. In fact, this construction is not partic-
ular to the 3-dimensional case: In §1 we introduce, for any n > 2 and over
any base field, a (n− 1)-dimensional simplicial complex on which Tame(An)
naturally acts.

We now give an outline of the main notions and results of the paper. Since
the paper is quite long and technical, we hope that this informal outline will
serve as a guide for the reader, even if we cannot avoid being somewhat
imprecise at this point.

• The 2-dimensional complex C contains three kinds of vertices, corre-
sponding to three orbits under the action of Tame(A3). In this introduc-
tion we shall focus on the so-called type 3 vertices, which correspond to a
tame automorphism (f1, f2, f3) up to post-composition by an affine auto-
morphism. Such an equivalence class is denoted v3 = [f1, f2, f3] (see §1.3
and Figure 1.1).

• Given a vertex v3 one can always choose a representative (f1, f2, f3)
such that the top monomials of the fi are pairwise distinct. Such a good
representative is not unique, but the top monomials are. This allows to
define a degree function (with values in N3) on vertices, with the identity
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automorphism corresponding to the unique vertex of minimal degree (see
§1.2).

• By construction of the complex C, two type 3 vertices v3 and v′3 are
at distance 2 in C if and only if they admit representatives of the form
v3 = [f1, f2, f3] and v′3 = [f1 + P (f2, f3), f2, f3], that is, representatives
that differ by an elementary automorphism. If moreover deg v3 > deg v′3, we
say that v′3 is an elementary reduction of v3. The whole idea is that it is
‘almost’ true that any vertex admits a sequence of elementary reductions to
the identity. However a lot of complications lie in this ‘almost’, as we now
discuss.

• Some particular tame automorphisms are triangular automorphisms,
of the form (up to a permutation of the variables) (x1 + P (x2, x3), x2 +
Q(x3), x3). There are essentially two ways to decompose such an automor-
phism as a product of elementary automorphisms, namely

(x1 + P (x2, x3), x2 +Q(x3), x3)
= (x1, x2 +Q(x3), x3) ◦ (x1 + P (x2, x3), x2, x3)
= (x1 + P (x2 −Q(x3), x3), x2, x3) ◦ (x1, x2 +Q(x3), x3).

This leads to the presence of squares in the complex C, see Figure 3.2. Con-
versely, the fact that a given vertex admits two distinct elementary reduc-
tions often leads to the presence of such a square, in particular if one of the
reductions corresponds to a polynomial that depends only on one variable in-
stead of two, like Q(x3) above. We call ‘simple’ such a particular elementary
reduction.

• When v′3 = [f1 + P (f2, f3), f2, f3] is an elementary reduction of v3 =
[f1, f2, f3], we shall encounter the following situations (see Corollary 4.20):

(i) The most common situation is when the top monomial of f1 is the
dominant one, that is, the largest among the top monomials of the fi.

(ii) Another (non-exclusive) situation is when P depends only on one
variable. As mentioned before this is typically the case when v3 admits sev-
eral elementary reductions. This corresponds to the fact that the top mono-
mial of a component is a power of another one, and we name ‘resonance’
such a coincidence (see definition in §1.2).

(iii) Finally another situation is when f1 does not realize the dominant
monomial, but f2, f3 nevertheless satisfy a kind of minimality condition via
looking at the degree of the 2-form df2∧df3. We call this last case an elemen-
tary K-reduction (see §3.3 for the definition, Corollary 3.10 for the charac-
terization in terms of the minimality of deg df2 ∧ df3, and §6 for examples).
This case is quite rigid (see Proposition 3.19), and at posteriori it forbids the
existence of any other elementary reduction from v3 (see Proposition 5.1).

• Finally we define (see §3.3 again) an exceptional case, under the ter-
minology ‘normal proper K-reduction’, that corresponds to moving from a
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vertex v3 to a neighbor vertex w3 of the same degree, and then realizing an
elementary K-reduction from w3 to another vertex u3. The fact that v3 and
w3 share the same degree is not part of the technical definition, but again is
true only at posteriori (see Corollary 5.2).

• Then the main result (Reducibility Theorem 4.1) is that we can go from
any vertex to the vertex corresponding to the identify by a finite sequence
of elementary reductions or normal proper K-reductions.

• The proof proceeds by a double induction on degrees which is quite
involved. The Induction Hypothesis is precisely stated on page 191. The
analysis is divided into two main branches:

(i) §4.2 where the slogan is “a vertex that admits an elementary K-
reduction does not admit any other reduction” (Proposition 4.19 is an inter-
mediate technical statement, and Proposition 5.1 the final one);

(ii) §4.3 where the slogan is “a vertex that admits several elementary
reductions must admit some resonance” (see in particular Lemmas 4.24
and 4.26).

For readers familiar with previous works on the subject, we now give a few
word about terminology. In the work of Kuroda [7], as in the original work of
Shestakov and Umirbaev [13], elementary reductions are defined with respect
to one of the three coordinates of a fixed coordinate system. In contrast, as
explained above, we always work up to an affine change of coordinates. In-
deed our simplicial complex C is designed so that two tame automorphisms
correspond to two vertices at distance 2 in the complex if and only if they
differ by the left composition of an automorphism of the form a1ea2, where
a1, a2 are affine and e is elementary. This slight generalization of the defi-
nition of reduction allows us to absorb the so-called “type I” and “type II”
reductions of Shestakov and Umirbaev in the class of elementary reductions:
In our terminology they become “elementary K-reductions” (see §3.3). On
the other hand, the “type III” reductions, which are technically difficult to
handle, are still lurking around. One can suspect that such reductions do
not exist (as the most intricate “type IV” reductions which were excluded
by Kuroda [7]), and an ideal proof would settle this issue. Unfortunately we
were not able to do so, and these hypothetical reductions still appear in our
text under the name of “normal proper K-reduction”. See Example 6.5 for
more comments on this issue.

One could say that the theory of Shestakov, Umirbaev and Kuroda con-
sists in understanding the relations inside the tame group Tame(A3). This
was made explicit by Umirbaev [14], and then it was proved by Wright [16]
that this can be rephrased in terms of an amalgamated product structure
over three subgroups (see Corollary 5.8). In turn, it is known that such a
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structure is equivalent to the action of the group on a 2-dimensional sim-
ply connected simplicial complex, with fundamental domain a simplex. Our
approach allows to recover a more transparent description of the relations
in Tame(A3). After stating and proving the Reducibility Theorem 4.1 in §4,
we directly show in §5 that the natural complex on which Tame(A3) acts
is simply connected (see Proposition 5.7), by observing that the reduction
process of [7, 13] corresponds to local homotopies.

We should stress once more that this paper contains no original result,
and consists only in a new presentation of previous works by the above cited
authors. In fact, for the sake of completeness we also include in Section 2
some preliminary results where we only slightly differ from the original arti-
cles [5, 12].

Our motivation for reworking this material is to prepare the way for new
results about Tame(A3), such as the linearizability of finite subgroups, the
Tits alternative or the acylindrical hyperbolicity. From our experience in
related settings (see [1, 3, 10, 11]), such results should follow from some non-
positive curvature properties of the simplicial complex. We plan to explore
these questions in some follow-up papers (see [9] for a first step).
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1. Simplicial complex

We define a (n − 1)-dimensional simplicial complex on which the tame
automorphism group of An acts. This construction makes sense in any di-
mension n > 2, over any base field k.

1.1. General construction

For any 1 6 r 6 n, we call r-tuple of components a morphism
f : An → Ar

x = (x1, . . . , xn) 7→ (f1(x), . . . , fr(x))
that can be extended as a tame automorphism f = (f1, . . . , fn) of An. One
defines n distinct types of vertices, by considering r-tuple of components
modulo composition by an affine automorphism on the range, r = 1, . . . , n.
We use a bracket notation to denote such an equivalence class:

[f1, . . . , fr] := Ar(f1, . . . , fr) = {a ◦ (f1, . . . , fr); a ∈ Ar}
where Ar = GLr(k) n kr is the r-dimensional affine group. We say that
vr = [f1, . . . , fr] is a vertex of type r, and that (f1, . . . , fr) is a representative
of vr. We shall always stick to the convention that the index corresponds to
the type of a vertex: for instance vr, v′r, ur, wr,mr will all be possible notation
for a vertex of type r.

Now given n vertices v1, . . . , vn of type 1, . . . , n, we attach a standard Eu-
clidean (n−1)-simplex on these vertices if there exists a tame automorphism
(f1, . . . , fn) ∈ Tame(An) such that for all i ∈ {1, . . . , n}:

vi = [f1, . . . , fi].
We obtain a (n − 1)-dimensional simplicial complex Cn on which the tame
group acts by isometries, by the formulas

g · [f1, . . . , fr] := [f1 ◦ g−1, . . . , fr ◦ g−1].

Lemma 1.1. — The group Tame(An) acts on Cn with fundamental do-
main the simplex

[x1], [x1, x2], . . . , [x1, . . . , xn].
In particular the action is transitive on vertices of a given type.

Proof. — Let v1, . . . , vn be the vertices of a simplex (recall that the in-
dex corresponds to the type). By definition there exists f = (f1, . . . fn) ∈
Tame(An) such that vi = [f1, . . . , fi] for each i. Then

[x1, . . . , xi] = [(f1, . . . , fi) ◦ f−1] = f · vi. �
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Remark 1.2. — (1) One could make a similar construction by working
with the full automorphism group Aut(An) instead of the tame group. The
complex Cn we consider is the gallery connected component of the standard
simplex [x1], [x1, x2], . . . , [x1, . . . , xn] in this bigger complex. See [1, §6.2.1]
for more details.

(2) When n = 2, the previous construction yields a graph C2. It is not
difficult to show (see [1, §2.5.2]) that C2 is isomorphic to the classical Bass-
Serre tree of Aut(A2) = Tame(A2).

1.2. Degrees

We shall compare polynomials in k[x1, . . . , xn] by using the graded lex-
icographic order on monomials. We find it more convenient to work with
an additive notation, so we introduce the degree function, with value in
Nn ∪ {−∞}, by taking

deg xa1
1 xa2

2 . . . xan
n = (a1, a2, . . . , an)

and by convention deg 0 = −∞. We extend this order to Qn ∪ {−∞}, since
sometimes it is convenient to consider difference of degrees, or degrees mul-
tiplied by a rational number. The top term of g ∈ k[x1, . . . , xn] is the
uniquely defined ḡ = cxd1

1 . . . xdn
n such that

(d1, . . . , dn) = deg g > deg(g − ḡ).
Observe that two polynomials f, g ∈ k[x1, . . . , xn] have the same degree if
and only if their top terms f̄ , ḡ are proportional. If f = (f1, . . . , fr) is a
r-tuple of components, we call top degree of f the maximum of the degree
of the fi:

topdeg f := max deg fi ∈ Nn.

Lemma 1.3. — Let f = (f1, . . . , fr) be a r-tuple of components, and
consider V ⊂ k[x1, . . . , xn] the vector space generated by the fi. Then

(1) The set H of elements g ∈ V satisfying topdeg f > deg g is a hy-
perplane in V ;

(2) There exist a sequence of degrees δr > · · · > δ1 and a flag of sub-
spaces V1 ⊂ · · · ⊂ Vr = V such that dimVi = i and deg g = δi for
any g ∈ Vi r Vi−1.

Proof. —

(1) Up to permuting the fi we can assume topdeg f = deg fr. Then for
each i = 1, . . . , r−1 there exists a unique ci ∈ k such that deg fr > deg(fi+
cifr). The conclusion follows from the observation that an element of V is
in H if and only if it is a linear combination of the fi+ cifr, i = 1, . . . , r− 1.
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(2) Immediate, by induction on dimension. �

Using the notation of the lemma, we call r-deg f = (δ1, . . . , δr) the r-
degree of f , and deg f =

∑r
i=1 δi ∈ Nn the degree of f . Observe that for

any affine automorphism a ∈ Ar we have r- deg f = r- deg(a ◦ f), so we get
a well-defined notion of r-degree and degree for any vertex of type r.

If vr = [f1, . . . , fr] ∈ Cn with the deg fi pairwise distinct, we say that f is
a good representative of vr (we do not ask deg fr > · · · > deg f2 > deg f1).
We use a double bracket notation such as v2 = [[f1, f2]] or v3 = [[f1, f2, f3]],
to indicate that we are using a good representative.

Lemma 1.4. — Let v1, . . . , vn be a (n − 1)-simplex in Cn. Then there
exists f = (f1, . . . , fn) ∈ Tame(An) such that vi = [[f1, . . . , fi]] for each
n > i > 1.

Proof. — We pick f1 such that v1 = [[f1]], and we define the other fi by
induction as follows. If the i-degree of vi = [[f1, . . . , fi]] is (δ1, . . . , δi) (recall
that by definition the δj are equal to the degrees of the fj only up to a
permutation), then there exist δ ∈ N3 and i + 1 > s > 1 such that the
(i+ 1)-degree of vi+1 is (δ1, . . . , δs−1, δ, δs, . . . , δi). That exactly means that
there exists fi+1 of degree δ such that vi+1 = [[f1, . . . , fi+1]]. �

1.3. The complex in dimension 3

Now we specialize the general construction to the dimension n = 3, which
is our main interest in this paper. We drop the index and simply denote by C
the 2-dimensional simplicial complex associated to Tame(A3). To get a first
feeling of the complex one can draw pictures such as Figure 1.1, where we
use the following convention for vertices: , • or corresponds respectively
to a vertex of type 1, 2 and 3. However one should keep in mind, as the
following formal discussion makes it clear, that the complex is not locally
finite. A first step in understanding the geometry of the complex C is to
understand the link of each type of vertex. In fact, we will now see that if
the base field k is uncountable, then the link of any vertex or any edge also
has uncountably many vertices.

Consider first the link L(v3) of a vertex of type 3. By transitivity of the
action of Tame(A3), it is sufficient to describe the link L([id]). A vertex of
type 1 at distance 1 from [id] has the form [a1x1 + a2x2 + a3x3] where the
ai ∈ k are uniquely defined up to a common multiplicative constant. In other
words, vertices of type 1 in L([id]) are parametrized by P2. We denote by
P2(v3) this projective plane of vertices of type 1 in the link of v3. Similarly,
vertices of type 2 in L(v3) correspond to lines in P2(v3), that is, to points in
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•

•

•

•

•

•

[x1,x2,x3]

[x2,x3]

[x1+Q(x2),x2,x3]

[x1+Q(x2),x2]

[x1+Q(x2),x2,x3+P (x1,x2)]

[x2,x3+P (x1,x2)]

[x1,x2,x3+P (x1,x2)]

[x1,x2]

[x2]

[x3]

[x1,x3]

[x1]

[x1+x3+Q(x2),x2]

[x1,x2,x3+Q(x2)]

[x1+x3]

Figure 1.1. A few simplexes of the complex C.

the dual projective space P̂2(v3). The edges in L(v3) correspond to incidence
relations (“a point belongs to a line”). We will often refer to a vertex of type
2 as a “line in P2(v3)”. In the same vein, we will sometimes refer to a vertex
of type 1 as being “the intersection of two lines in P2(v3)”, or we will express
the fact that v1 and v2 are joined by an edge in C by saying “the line v2
passes through v1”.

Now we turn to the description of the link of a vertex v2 of type 2. By
transitivity we can assume v2 = [x1, x2], and one checks that vertices of type
1 in L(v2) are parametrized by P1 and are of the form

[a1x1 + a2x2], (a1 : a2) ∈ P1.

On the other hand vertices of type 3 in L(v2) are of the form

[x1, x2, x3 + P (x1, x2)], P ∈ k[y, z].

Precisely by taking the P without constant or linear part we obtain a com-
plete set of representatives for such vertices of type 3 in L(v2). Using the
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transitivity of the action of Tame(A3) on vertices of type 2, the following
lemma and its corollary are then immediate:

Lemma 1.5. — The link L(v2) of a vertex of type 2 is the complete bi-
partite graph between vertices of type 1 and 3 in the link.

Corollary 1.6. — Let v2 = [f1, f2] and v3 = [f1, f2, f3] be vertices of
type 2 and 3. Then any vertex u3 distinct from v3 such that v2 ∈ P̂2(u3) has
the form

u3 = [f1, f2, f3 + P (f1, f2)]
where P ∈ k[y, z] is a non-affine polynomial in two variables (that is, not of
the form P (y, z) = ay+ bz+ c). In particular, v2 is the unique type 2 vertex
in P̂2(v3) ∩ P̂2(u3).

The link of a vertex of type 1 is more complicated. Let us simply mention
without proof, since we won’t need it in this paper (but see Lemma 5.6 for a
partial result, and also [9, §3]), that in contrast with the case of vertices of
type 2 or 3, the link of a vertex of type 1 is a connected unbounded graph,
which admits a projection to an unbounded tree.

2. Parachute Inequality and Principle of Two Maxima

We recall here two results from [5] (in turn they were adaptations from [12,
13]). The Parachute Inequality is the most important; we also recall some
direct consequences. From now on k denotes a field of characteristic zero.

2.1. Degree of polynomials and forms

Recall that we define a degree function on k[x1, x2, x3] with value in
N3∪{−∞} by taking deg xa1

1 xa2
2 xa3

3 = (a1, a2, a3) and by convention deg 0 =
−∞. We compare degrees using the graded lexicographic order.

We now introduce the notion of virtual degree in two distinct situations,
which should be clear by context.

Let g ∈ k[x1, x2, x3], and ϕ =
∑
i∈I Piy

i ∈ k[x1, x2, x3][y] where Pi 6= 0
for all i ∈ I, that is, I is the support of ϕ. We define the virtual degree of ϕ
with respect to g as

degvirt ϕ(g) := max
i∈I

(degPigi) = max
i∈I

(degPi + i deg g).
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Denoting by Ī ⊆ I the subset of indexes i that realize the maximum, we also
define the top component of ϕ with respect to g as

ϕg :=
∑
i∈Ī

P̄iy
i.

Similarly if g, h ∈ k[x1, x2, x3], and ϕ =
∑

(i,j)∈S ci,jy
izj ∈ k[y, z] with

support S, we define the virtual degree of ϕ with respect to g and h as

degvirt ϕ(g, h) := max
(i,j)∈S

deg gihj = max
(i,j)∈S

(ideg g + j deg h).

Observe that ϕ(g, h) can be seen either as an element coming from
ϕh(y) := ϕ(y, h) ∈ k[h][y] ⊂ k[x1, x2, x3][y] or from ϕ(y, z) ∈ k[y, z], and
that the two possible notions of virtual degree coincide:

degvirt ϕh(g) = degvirt ϕ(g, h).

Example 2.1. — In general we have degvirt ϕ(g) > degϕ(g) and
degvirt ϕ(g, h) > degϕ(g, h). We now give two simple examples where these
inequalities are strict.

(1) Let ϕ = x2
3y − x3y

2, and g = x3. Then ϕ(g) = 0, but

degvirt ϕ(g) = deg x3
3 = (0, 0, 3).

(2) Let ϕ = y2 − z3, and g = x3
1, h = x2

1. Then ϕ(g, h) = 0, but

degvirt ϕ(g, h) = deg x6
1 = (6, 0, 0).

We extend the notion of degree to algebraic differential forms. Given

ω =
∑

fi1,··· ,ikdxi1 ∧ · · · ∧ dxik

where k = 1, 2 or 3 and fi1,··· ,ik ∈ k[x1, x2, x3], we define

degω := max{deg fi1,··· ,ikxi1 · · ·xik} ∈ N3 ∪ {−∞}.

We gather some immediate remarks for future reference (observe that
here we use the assumption char k = 0).

Lemma 2.2. — If ω, ω′ are forms, and g is a non constant polynomial,
we have

degω + degω′ > degω ∧ ω′;
deg g = deg dg;

deg gω = deg g + degω.
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2.2. Parachute Inequality

If ϕ ∈ k[x1, x2, x3][y], we denote by ϕ(n) ∈ k[x1, x2, x3][y] the nth deriv-
ative of ϕ with respect to y. We simply write ϕ′ instead of ϕ(1).

Lemma 2.3. — Let ϕ ∈ k[x1, x2, x3][y] and g ∈ k[x1, x2, x3]. Then:

(1) If degy ϕg > 1, then degvirt ϕ
′(g) = degvirt ϕ(g)− deg g.

(2) If degy ϕg > j > 1, then ϕ(j)g = (ϕg)(j).

Proof. — We note as before

ϕ =
∑
i∈I

Piy
i, ϕg =

∑
i∈Ī

P̄iy
i and ϕ′ =

∑
i∈Ir{0}

iPiy
i−1,

where I is the support of ϕ, and Ī ⊆ I is the subset of indexes i that realize
the maximum maxi∈I(degPi + i deg g).

Now if degy ϕg > 1, that is, if Ī 6= {0}, then the indexes in Ī r {0} are
precisely those that realize the maximum maxi∈Ir{0}(degPi+ (i−1) deg g).
Thus we get assertion (1), and ϕ′g = (ϕg)′. Assertion (2) for j > 2 follows
by induction. �

Lemma 2.4. — Let ϕ ∈ k[x1, x2, x3][y] and g ∈ k[x1, x2, x3]. Then, for
m > 0, the following two assertions are equivalent:

(1) For j = 0, . . . ,m− 1 we have degvirt ϕ
(j)(g) > degϕ(j)(g), but

degvirt ϕ
(m)(g) = degϕ(m)(g).

(2) There exists ψ ∈ k[x1, x2, x3][y] such that ψ(ḡ) 6= 0 and

ϕg = (y − ḡ)m · ψ.

Proof. — Observe that we have the equivalences

degvirt ϕ(g) > degϕ(g) ⇐⇒ ϕg(ḡ) = 0 ⇐⇒ y − ḡ divides ϕg. (2.1)

First we prove (2) ⇒ (1). Assuming (2), by Lemma 2.3(2) we have
ϕ(j)g = (ϕg)(j) for j = 0, . . . ,m − 1. The second equivalence in (2.1) yields
(ϕg)(j)(g) = 0 for j = 0, . . . ,m − 1, and (ϕg)(m)(g) 6= 0, and then the first
equivalence gives the result.

To prove (1) ⇒ (2), it is sufficient to show that if degvirt ϕ
(j)(g) >

degϕ(j)(g) for j = 0, . . . , k − 1, then ϕg = (y − ḡ)k · ψk for some ψk ∈
k[x1, x2, x3][y]. The remark (2.1) gives it for k = 1. Moreover, by Lemma 2.3(2),
if ϕg depends on y then ϕ′g = (ϕg)′, hence the result by induction. �
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In the situation of Lemma 2.4, we call the integer m the multiplicity of
ϕ with respect to g, and we denote it by m(ϕ, g). In other words, the top
term ḡ is a multiple root of ϕg of order m(ϕ, g).

Following Vénéreau [15], where a similar inequality is proved, we call the
next result a “Parachute Inequality”. Indeed its significance is that the real
degree cannot drop too much with respect to the virtual degree. However we
follow Kuroda for the proof.

Recall that (over a field k of characteristic zero) some polynomials
f1, · · · , fr ∈ k[x1, . . . , xn] are algebraically independent if and only if df1 ∧
· · ·∧dfr 6= 0. Indeed this is equivalent to asking that the map f = (f1, . . . , fr)
from An to Ar is dominant, which in turn is equivalent to saying that the
differential of this map has maximal rank on an open set of An (for details
see for instance [4, Theorem III p 135]).

Proposition 2.5 (Parachute Inequality, see [5, Theorem 2.1]). — Let
r = 2 or 3, and let f1, · · · , fr ∈ k[x1, x2, x3] be algebraically independent.
Let ϕ ∈ k[f2, · · · , fr][y] r {0}. Then

degϕ(f1) > degvirt ϕ(f1)−m(ϕ, f1)(degω + deg f1 − deg df1 ∧ ω).

where ω = df2 if r = 2, or ω = df2 ∧ df3 if r = 3.

Proof. — Denoting as before ϕ′ the derivative of ϕ with respect to y, we
have

d(ϕ(f1)) = ϕ′(f1)df1 + other terms involving df2 or df3.

So we obtain d(ϕ(f1)) ∧ ω = ϕ′(f1)df1 ∧ ω. Using Lemma 2.2 this yields

degϕ(f1) + degω = deg d(ϕ(f1)) + degω > deg d(ϕ(f1)) ∧ ω
= degϕ′(f1)df1 ∧ ω = degϕ′(f1) + deg df1 ∧ ω,

which we can write as

− deg df1 ∧ ω + degω + degϕ(f1) > degϕ′(f1). (2.2)

Now we are ready to prove the inequality of the statement, by induction
on m(ϕ, f1).

If m(ϕ, f1) = 0, that is, if degϕ(f1) = degvirt ϕ(f1), there is nothing to
do.

If m(ϕ, f1) > 1, it follows from Lemma 2.4 that m(ϕ′, f1) = m(ϕ, f1)−1.
Moreover, the condition m(ϕ, f1) > 1 implies that ϕf1 does depend on y,
hence by Lemma 2.3(1) we have

degvirt ϕ
′(f1) = degvirt ϕ(f1)− deg f1.
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By induction hypothesis, we have
degϕ′(f1) > degvirt ϕ

′(f1)−m(ϕ′, f1)(degω + deg f1 − deg df1 ∧ ω)
= degvirt ϕ(f1)− deg f1

− (m(ϕ, f1)− 1)(degω + deg f1 − deg df1 ∧ ω)
= degvirt ϕ(f1)−m(ϕ, f1)(degω + deg f1 − deg df1 ∧ ω)
− deg df1 ∧ ω + degω.

Combining with (2.2), and canceling the terms −deg df1∧ω+ degω on each
side, one obtains the expected inequality. �

2.3. Consequences

We shall use the Parachute Inequality 2.5 mostly when r = 2, and when
we have a strict inequality degvirt ϕ(f1, f2) > degϕ(f1, f2). In this context
the following easy lemma is crucial. Ultimately this is here that lies the
difficulty when one tries to extend the theory in dimension 4 (or more!).

Lemma 2.6. — Let f1, f2 ∈ k[x1, x2, x3] be algebraically independent,
and ϕ ∈ k[y, z] such that degvirt ϕ(f1, f2) > degϕ(f1, f2). Then:

(1) There exist coprime p, q ∈ N∗such that
p deg f1 = q deg f2.

In particular, there exists δ ∈ N3 such that deg f1 = qδ, deg f2 = pδ,
so that the top terms of fp1 and fq2 are equal up to a constant: there
exists c ∈ k such that f̄p1 = cf̄q2 .

(2) Considering ϕ(f1, f2) as coming from ϕ(y, f2) ∈ k[x1, x2, x3][y], we
have

ϕf1 = (yp − f̄p1 )m(ϕ,f1) · ψ = (yp − cf̄q2 )m(ϕ,f1) · ψ
for some ψ ∈ k[x1, x2, x3][y].

Proof. —

(1) We write ϕ(f1, f2) =
∑
ci,jf

i
1f
j
2 . Since degvirt ϕ(f1, f2) > degϕ(f1, f2),

there exist distinct (a, b) and (a′, b′) such that

deg fa1 f b2 = deg fa
′

1 f
b′

2 = degvirt ϕ(f1, f2).
Moreover we can assume that a, a′ are respectively maximal and minimal
for this property. We obtain

(a− a′) deg f1 = (b′ − b) deg f2.

Dividing by m, the GCD of a− a′ and b′ − b, we get the expected relation.
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(2) With the same notation, we have a = a′ + pm where m > 1, and in
particular degy ϕ(y, f2) > p. So if p > degy P (y, f2) for some P ∈ k[f2][y],
we have degvirt P (f1, f2) = degP (f1, f2). By the first assertion, there exists
c ∈ k such that deg fp1 > deg (fp1 − cf

q
2 ). By successive Euclidean divisions

in k[f2][y] we can write:

ϕ(y, f2) =
∑

Ri(y) (yp − cfq2 )i

with p > degy Ri for all i. Denote by I the subset of indexes such that

ϕf1 =
∑
i∈I

Ri
f1 (

yp − cf̄q2
)i
. (2.3)

Let i0 be the minimal index in I. We want to prove that i0 > m(ϕ, f1).
By contradiction, assume that m(ϕ, f1) > i0. Since y − f̄1 is a simple factor
of (yp − cf̄q2 ) = (yp − f̄p1 ), and is not a factor of any Ri

f1 , we obtain that
(y − f̄1)i0+1 divides all summands of (2.3) except Ri0

f1(yp − cf̄q2 )i0 . In par-
ticular (y − f̄1)i0+1, hence also (y − f̄1)m(ϕ,f1), do not divide ϕf1 : This is a
contradiction with Lemma 2.4. �

We now list some consequences of the Parachute Inequality 2.5.

Corollary 2.7. — Let f1, f2 ∈ k[x1, x2, x3] be algebraically indepen-
dent with deg f1 > deg f2, and ϕ ∈ k[y, z] such that degvirt ϕ(f1, f2) >
degϕ(f1, f2). Following Lemma 2.6, we write pdeg f1 = q deg f2 where p, q ∈
N∗ are coprime. Then:

(1) degϕ(f1, f2) > p deg f1 − deg f1 − deg f2 + deg df1 ∧ df2;
(2) If deg f1 6∈ Ndeg f2, then degϕ(f1, f2) > deg df1 ∧ df2;
(3) Assume deg f1 6∈ N deg f2 and deg f1 > degϕ(f1, f2). Then p = 2,

q > 3 is odd, and

degϕ(f1, f2) > deg f1 − deg f2 + deg df1 ∧ df2.

If moreover deg f2 > degϕ(f1, f2), then q = 3.
(4) Assume deg f1 6∈ N deg f2 and deg f1 > degϕ(f1, f2). Then

deg d(ϕ(f1, f2)) ∧ df2 > deg f1 + deg df1 ∧ df2.

Proof. —

(1) By Lemma 2.6(2), we have

degvirt ϕ(f1, f2) > m(ϕ, f1)p deg f1. (2.4)

On the other hand the Parachute Inequality 2.5 applied to ϕ(y, f2) ∈ k[f2][y]
yields

degϕ(f1, f2) > degvirt ϕ(f1, f2)−m(ϕ, f1)(deg f1 + deg f2 − deg df1 ∧ df2).
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Combining with (2.4), and remembering that m(ϕ, f1) > 1, we obtain

degϕ(f1, f2) > degϕ(f1, f2)
m(ϕ, f1) > p deg f1 − deg f1 − deg f2 + deg df1 ∧ df2.

(2) From Lemma 2.6 we have deg f1 = qδ and deg f2 = pδ for some
δ ∈ N3. The inequality (1) gives

degϕ(f1, f2) > p deg f1 − deg f1 − deg f2 + deg df1 ∧ df2 =
(pq − p− q)δ + deg df1 ∧ df2. (2.5)

The assumption deg f1 6∈ N deg f2 implies q > p > 2. Thus pq − p − q > 0,
and finally

degϕ(f1, f2) > deg df1 ∧ df2.

(3) Again the assumptions imply q > p > 2. Since qδ = deg f1 >
degϕ(f1, f2), we get from (2.5) that q > pq − p − q. This is only possi-
ble if p = 2, and so q > 3 is odd. Replacing p by 2 in (2.5), we get the
inequality.

If deg f2 > degϕ(f1, f2), we obtain 2δ > (q − 2)δ, hence q = 3.

(4) Denote ϕ(y, z) =
∑
ci,jy

izj , and consider the partial derivatives

ϕ′y(y, z) =
∑

ici,jy
i−1zj ;

ϕ′z(y, z) =
∑

jci,jy
izj−1.

We have d(ϕ(f1, f2)) = ϕ′y(f1, f2)df1 + ϕ′z(f1, f2)df2. In particular
d(ϕ(f1, f2)) ∧ df2 = ϕ′y(f1, f2)df1 ∧ df2, and

deg d(ϕ(f1, f2)) ∧ df2 = degϕ′y(f1, f2) + deg df1 ∧ df2.

Now we consider ϕ′y(f1, f2) as coming from ϕ′y(y, f2) ∈ k[f2][y], and we
simply write ϕ′(f1) instead of ϕ′y(f1, f2), in accordance with the conven-
tion for derivatives introduced at the beginning of §2.2. We want to show
degϕ′(f1) > deg f1. Recall that by (2.4), degvirt ϕ(f1) > 2m(ϕ, f1) deg f1,
and so, using also Lemma 2.3(1):

degvirt ϕ
′(f1) = degvirt ϕ(f1)− deg f1 > 2(m(ϕ, f1)− 1) deg f1 + deg f1.

The Parachute Inequality 2.5 then gives (for the last inequality recall that
deg f1 > deg f2 by assumption):
degϕ′(f1) > degvirt ϕ

′(f1)−m(ϕ′, f1)(deg f1 + deg f2 − deg df1 ∧ df2)
> 2(m(ϕ, f1)− 1) deg f1 + deg f1

− (m(ϕ, f1)− 1)(deg f1 + deg f2 − deg df1 ∧ df2)
= (m(ϕ, f1)− 1)(deg f1 − deg f2 + deg df1 ∧ df2) + deg f1

> deg f1. �
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Corollary 2.8. — Let f1, f2, f3 ∈ k[x1, x2, x3] be algebraically inde-
pendent, and ϕ ∈ k[y, z] such that

degvirt ϕ(f1, f2) > degϕ(f1, f2),
degvirt ϕ(f1, f2) > deg f3.

Following Lemma 2.6, we write p deg f1 = q deg f2 where p, q ∈ N∗ are
coprime. Then

deg(f3 + ϕ(f1, f2)) > pdeg f1 − deg df2 ∧ df3 − deg f1,

Proof. — The Parachute Inequality 2.5 applied to ψ = f3 + ϕ(y, f2) ∈
k[f2, f3][y] gives

deg(f3 + ϕ(f1, f2)) > degvirt ψ(f1)
−m(ψ, f1)(deg df2 ∧ df3 + deg f1 − deg df1 ∧ df2 ∧ df3). (2.6)

By assumption degvirt ϕ(f1, f2) > deg f3. Thus not only degvirt ψ(f1) =
degvirt ϕ(f1), but also ψ

f1 = ϕf1 , hence m(ψ, f1) = m(ϕ, f1) > 1. By
Lemma 2.6(2), we obtain

degvirt ψ(f1) > m(ϕ, f1)p deg f1 = m(ψ, f1)p deg f1

Replacing in (2.6), and dividing by m(ψ, f1), we get the result. �

2.4. Principle of Two Maxima

The proof of the next result, which we call the “Principle of Two Max-
ima”, is one of the few places where the formalism of Poisson brackets used
by Shestakov and Umirbaev seems to be more transparent (at least for us)
than the formalism of differential forms used by Kuroda. In this section we
propose a definition that encompasses the two points of view, and then we
recall the proof following [12, Lemma 5].

Proposition 2.9 (Principle of Two Maxima, [5, Theorem 5.2] and [12,
Lemma 5]). — Let (f1, f2, f3) be an automorphism of A3. Then the maxi-
mum between the following three degrees is realized at least twice:

deg f1 + deg df2 ∧ df3, deg f2 + deg df1 ∧ df3, deg f3 + deg df1 ∧ df2.

Let Ω be the space of algebraic 1-forms
∑
fidgi where fi, gi ∈ k[x1, x2, x3].

We consider Ω as a free module of rank three over k[x1, x2, x3], with basis
dx1, dx2, dx3, and we denote by

T =
∞⊕
p=0

Ω⊗p
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the associative algebra of tensorial powers of Ω, where as usual Ω⊗0 =
k[x1, x2, x3]. The degree function on Ω extends naturally to a degree function
on T. Recall that T has a natural structure of Lie algebra: For any ω, µ ∈ T,
we define their bracket as

[ω, µ] := ω ⊗ µ− µ⊗ ω.
In particular, if df, dg ∈ Ω are 1-forms, we have

[df, dg] = df ⊗ dg − dg ⊗ df = df ∧ dg.
It is easy to check that the bracket satisfies the Jacobi identity: For any
α, β, γ ∈ T, we have

[[α, β], γ] + [[β, γ], α] + [[γ, α], β]
= α⊗ β ⊗ γ − β ⊗ α⊗ γ − γ ⊗ α⊗ β + γ ⊗ β ⊗ α
+ β ⊗ γ ⊗ α− γ ⊗ β ⊗ α− α⊗ β ⊗ γ + α⊗ γ ⊗ β
+ γ ⊗ α⊗ β − α⊗ γ ⊗ β − β ⊗ γ ⊗ α+ β ⊗ α⊗ γ
= 0

since each one of the six possible permutations appears twice, with different
signs.

Lemma 2.10. — The nine elements [dxi ∧ dxj , dxk], for 1 6 i < j 6 3
and 1 6 k 6 3 generate a 8-dimensional free submodule in T, the only
relation between them being the Jacobi identity:

[dx1 ∧ dx2, dx3] + [dx2 ∧ dx3, dx1]− [dx1 ∧ dx3, dx2] = 0.

Proof. — We work inside the 27-dimensional free sub-module of T gen-
erated by the dxi ⊗ dxj ⊗ dxk for 1 6 i, j, k 6 3. We compute, for i < j:
[dxi ∧ dxj , dxi] = [dxi ⊗ dxj − dxj ⊗ dxi, dxi]

= 2dxi ⊗ dxj ⊗ dxi − dxj ⊗ dxi ⊗ dxi − dxi ⊗ dxi ⊗ dxj ,
[dxi ∧ dxj , dxj ] = [dxi ⊗ dxj − dxj ⊗ dxi, dxj ]

= −2dxj ⊗ dxi ⊗ dxj + dxi ⊗ dxj ⊗ dxj + dxj ⊗ dxj ⊗ dxi.
This shows that the elements [dxi ∧ dxj , dxi] and [dxi ∧ dxj , dxj ], for i < j,
generate a 6-dimensional free submodule. On the other hand, for {i, j, k} =
{1, 2, 3}:

[dxi ∧ dxj , dxk] = [dxi ⊗ dxj − dxj ⊗ dxi, dxk]
= dxi⊗ dxj ⊗ dxk − dxj ⊗ dxi⊗ dxk − dxk ⊗ dxi⊗ dxj + dxk ⊗ dxj ⊗ dxi,
so that [dx1 ∧ dx2, dx3] and [dx2 ∧ dx3, dx1] are independent, and together
with the above family they generate a 8-dimensional free submodule. �

The proof of the Principle of Two Maxima 2.9 now follows from the
observation:
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Lemma 2.11. — Let f, g, h ∈ k[x1, x2, x3], with h non-constant. Then

deg [[df, dg] , dh] = deg h+ deg df ∧ dg.

Proof. — We have
dh =

∑
16k63

∂h
∂xk

dxk

and
[df, dg] = df ∧ dg =

∑
16i<j63

(
∂f
∂xi

∂g
∂xj
− ∂f

∂xj

∂g
∂xi

)
dxi ∧ dxj .

Thus

[[df, dg], dh] =
∑

16k63

∑
16i<j63

∂h
∂xk

(
∂f
∂xi

∂g
∂xj
− ∂f

∂xj

∂g
∂xi

)
[dxi ∧ dxj , dxk] .

If the degree of dh is realized by at most two of the terms ∂h
∂xk

dxk, k = 1, 2, 3,
then by Lemma 2.10 the terms realizing the maximum of the degrees

deg
(
∂h
∂xk

(
∂f
∂xi

∂g
∂xj
− ∂f

∂xj

∂g
∂xi

)
[dxi ∧ dxj , dxk]

)
(2.7)

are independent (because at most two of them occur in the Jacobi relation),
hence the result since deg [dxi ∧ dxj , dxk] = deg xixjxk.

On the other hand if the three terms ∂h
∂xk

dxk have the same degree, then
among the indexes (i, j, k) that realize the maximum of the degrees in (2.7),
we must find some with k = i or k = j, hence again we get the conclusion
since by Lemma 2.10 such terms cannot cancel each other. �

Proof of the Principle of Two Maxima 2.9. — Since by the Jacobi iden-
tity

[[df1, df2], df3] + [[df2, df3], df1] + [[df3, df1], df2] = 0,
the dominant terms must cancel each other. In particular the maximum of
the degrees, which are computed in Lemma 2.11, is realized at least twice:
This is the five lines proof of the Principle of Two Maxima by Shestakov and
Umirbaev! �

3. Geometric theory of reduction

In this section we mostly follow Kuroda [7], but we reinterpret his theory
of reduction in a combinatorial way, using the complex C. Recall that k is a
field of characteristic zero.
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3.1. Degree of automorphisms and vertices

Recall that in §1.2 we defined a notion of degree for an automorphism
f = (f1, f2, f3) ∈ Tame(A3). The point is that we want a degree that is
adapted to the theory of reduction of Kuroda, so for instance taking the
maximal degree of the three components of an automorphism is not good,
because we would not detect a reduction of the degree on one of the two lower
components (such reductions do exist, see §6). We also want a definition that
is adapted to working on the complex C, so directly taking the sum of the
degree of the three components is no good either, since it would not give a
degree function on vertices of C.

Recall that the 3-degree of f ∈ Tame(A3), or of the vertex v3 = [f ], is
the triple (δ1, δ2, δ3) given by Lemma 1.3, where in particular δ3 > δ2 > δ1.
By definition the top degree of v3 is δ3 ∈ N3, and the degree of v3 is the
sum

deg v3 := δ1 + δ2 + δ3 ∈ N3.

Similarly we have a 2-degree (ν1, ν2) associated with any vertex v2 of type 2,
a top degree equal to ν2 and a degree deg v2 := ν1 + ν2. Finally for a vertex
of type 1 the notions of 1-degree, top degree and degree coincide.

Lemma 3.1. — Let v3 be a vertex of type 3. Then

deg v3 > (1, 1, 1)

with equality if and only if v3 = [id].

Proof. — If v3 = [f ] with deg v3 = (1, 1, 1), then the 3-degree (δ1, δ2, δ3)
of v3 must be equal to

(
(0, 0, 1), (0, 1, 0), (0, 0, 1)

)
, hence the result. �

Let v3 be a vertex with 3-degree (δ1, δ2, δ3). The unique m1 ∈ P2(v3)
such that degm1 = δ1 is called the minimal vertex in P2(v3), and the
unique m2 ∈ P̂2(v3) such that degm2 = (δ1, δ2) is called the minimal line
in P2(v3). If v2 ∈ P̂2(v3) has 2-degree (ν1, ν2), there is a unique degree δ such
that v3 has degree ν1 +ν2 + δ. We denote this situation by δ := deg(v3 rv2).
Observe that, by definition, deg(v3 r v2) = deg v3 − deg v2. There is also a
unique v1 such that v2 passes through v1 and deg v1 = ν1: we call v1 the
minimal vertex of v2. Observe that if v2 = m2 ∈ P̂2(v3), then the minimal
vertex of v2 coincides with the minimal vertex of v3, and if v2 6= m2, then
v1 is the intersection of v2 with m2.

We call triangle T in P2(v3) the data of three non-concurrent lines. A
good triangle T in P2(v3) is the data of three distinct lines m2, v2, u2, such
that m2 is the minimal line, v2 passes through the minimal vertex m1, and
u2 does not pass through m1. Equivalently, a good triangle corresponds to
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a good representative v3 = [[f1, f2, f3]] with deg f1 > deg f2 > deg f3, by
putting m2 = [[f2, f3]], v2 = [[f1, f3]], u2 = [[f1, f2]]. If v1, v2, v3 is a simplex in
C, we say that a good triangle T in P2(v3) is compatible with this simplex
if v2 is one of the lines of T , and v1 is the intersection of v2 with another line
of T . Each simplex v1, v2, v3 admits such a compatible good triangle (not
unique in general): Indeed it corresponds to a choice of good representatives
as given by Lemma 1.4.

Let v2 ∈ P̂2(v3) be a vertex with 2-degree (δ1, δ2). We say that v2 has
inner resonance if δ2 ∈ Nδ1. We say that v2 has outer resonance in v3
if deg(v3 r v2) ∈ Nδ1 + Nδ2.

3.2. Elementary reductions

Let v3, v
′
3 be vertices of type 3. We say that v′3 is a neighbor of v3 if

v′3 6= v3 and there exists a vertex v2 of type 2 such that v2 ∈ P̂2(v3)∩ P̂2(v′3).
Equivalently, this means that v3 and v′3 are at distance 2 in C. We denote
this situation by v′3 G v3, or if we want to make v2 explicit, by v′3 Gv2 v3 We
also say that v2 is the center of v3 G v′3. Recall that the center v2 is uniquely
defined, and that we can choose representatives as in Corollary 1.6.

We say that v′3 is an elementary reduction (resp. a weak elementary
reduction) of v3 with center v2, if deg v3 > deg v′3 (resp. deg v3 > deg v′3) and
v′3 Gv2 v3. Let v1 be the minimal vertex in the line v2. We say that v1, v2, v3
is the pivotal simplex of the reduction, and that v1 is the pivot of the
reduction. Moreover we say that the reduction is optimal if v′3 has minimal
degree among all neighbors of v3 with center v2. We say that v′3 is a simple
elementary reduction (resp. a weak simple elementary reduction) of v3 if
there exist good representatives v3 = [[f1, f2, f3]] and v′3 = [[f1 + P (f2) +
af3, f2, f3]] for some a ∈ k and non-affine polynomial P , satisfying

deg f1 > max{f1 + P (f2), f1 + P (f2) + af3};
(resp. f1 > max{f1 + P (f2), f1 + P (f2) + af3}).

In this situation we say that v2 = [[f2, f3]], v1 = [[f2]] is the simple center
of the reduction, and when drawing pictures we represent this relation by
adding an arrow on the edge from v2 to v1 (see Figure 3.1). Beware that
this representation is imperfect, since the arrow does not depend only on
the edge from v2 to v1 but indicates a relation between the two vertices v3
and v′3.

Remark 3.2. — In the definition of a (weak) simple elementary reduction,
if deg f3 = topdeg v3, then we must have a = 0. For instance in the following
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•

v3 = [[f1,f2,f3]]

v2 = [[f2,f3]]

v′
3 = [[f1+P (f2)+af3,f2,f3]]

??
v1 = [f2]

Figure 3.1. Simple reduction with simple center v2, v1.

example:

v3 = [[x1 + x2
2, x2, x3 + x2

2 + x3
2]] = [[f1, f2, f3]],

v′3 = [[x1 − x3, x2, x3 + x2
2 + x3

2]] = [[f1 + f3
2 − f3, f2, f3]],

we do not want to call v′3 a simple reduction of v3 because deg(f1 + f3
2 ) >

deg f1.

On the other hand, consider the following example:

v3 = [[x1 + x2
2 + x3

2, x2, x3 + x2
2]] = [[f1, f2, f3]],

v′3 = [[x1 − x3, x2, x3 + x2
2]] = [[f1 − f3

2 − f3, f2, f3]].

Here v′3 is a simple elementary reduction of v3, and the coefficient a = −1 is
necessary to get a good representative.

Lemma 3.3. — Let v′3 be a neighbor of v3 = [f1, f2, f3] with center v′2 =
[[f1, f2]]. Then there exists a non-affine polynomial P ∈ k[y, z] such that
v′3 = [[f1, f2, f3 + P (f1, f2)]].

Moreover:

(1) If v′3 is a weak elementary reduction of v3, then deg f3 > degP (f1, f2);
(2) If v′3 is an elementary reduction of v3, then deg f3 = degP (f1, f2).

Proof. — From Corollary 1.6 we know that v′3 has the form v′3 = [f1, f2, f3+
P (f1, f2)]. Since by assumption deg f1 6= deg f2, there exist a, b ∈ k such
that (f1, f2, f3 + P (f1, f2) + af1 + bf2) is a good representative for v′3. So
up to changing P by a linear combination of f1 and f2 we can assume
v′3 = [[f1, f2, f3 + P (f1, f2)]].

If v′3 is a weak elementary reduction of v3, then we have

deg f1+deg f2+deg f3 > deg v3 > deg v′3 = deg f1+deg f2+deg(f3+P (f1, f2)).

So deg f3 > deg(f3 + P (f1, f2)), which implies deg f3 > degP (f1, f2).
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Finally if v′3 is an elementary reduction of v3, that is, deg v3 > deg v′3,
then the same computation gives deg f3 > deg(f3 +P (f1, f2)), which implies
that deg f3 = degP (f1, f2). �

Lemma 3.4 (Square Lemma). — Let v3, v
′
3, v
′′
3 be three vertices such that:

• v′3 Gv′
2
v3 and v′′3 Gv′′

2
v3 for some v′2 6= v′′2 that are part of a good triangle

of v3 (this is automatic if v′2 or v′′2 is the minimal line of v3);
• Denoting v1 the common vertex of v′2 and v′′2 , v′′3 is a (possibly weak)

simple elementary reduction of v3 with simple center v′′2 , v1;
• deg v3 > deg v′3, deg v3 > deg v′′3 , with at least one of the inequalities

being strict.

Then there exists u3 such that u3 G v′3, u3 G v′′3 and deg v3 > deg u3.

Proof. — We pick f2 such that v1 = [f2], and then we take good repre-
sentatives v′2 = [[f1, f2]], v′′2 = [[f2, f3]]. Since v′2 and v′′2 are part of a good
triangle, we have v3 = [[f1, f2, f3]]. By Lemma 3.3, and since v′′3 is a (possibly
weak) simple reduction of v3, there exist a ∈ k, Q ∈ k[f2] and P ∈ k[f1, f2]
such that

v′3 = [[f1, f2, f3 + P (f1, f2)]];
v′′3 = [[f1 + af3 +Q(f2), f2, f3]].

We have
deg f3 > deg(f3 + P (f1, f2)),
deg f1 > max{deg(f1 + af3 +Q(f2)),deg(f1 +Q(f2))},

with one of the two inequalities being strict. We define
u3 := [f1 +Q(f2), f2, f3 + P (f1, f2)].

Observe that u3 is a neighbor of both v′3, with center [[f2, f3 +P (f1, f2)]], and
v′′3 , with center [f1 + Q(f2), f2] (see Figure 3.2). The inequality on degrees
follows from:

deg v3 = deg f3 + deg f2 + deg f1

> deg(f3 + P (f1, f2)) + deg f2 + deg(f1 +Q(f2))
> deg u3. �

3.3. K-reductions

If f1, f2 ∈ k[x1, x2, x3] are two algebraically independent polynomials
with deg f1 > deg f2, we introduce the degree

∆(f1, f2) := deg f1 − deg f2 + deg df1 ∧ df2 ∈ Z3.
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•

•

•

•

v3=[[f1,f2,f3]]

v′
2=[[f1,f2]]

v′
3=[[f1,f2,f3+P (f1,f2)]]

u′′
2 =[[f2,f3+P (f1,f2)]]

u3=[f1+Q(f2),f2,f3+P (f1,f2)]

u′
2=[f1+Q(f2),f2]

v′′
3 =[[f1+af3+Q(f2),f2,f3]]

v′′
2 =[[f2,f3]]

__

v1=[f2]
��

Figure 3.2. Square Lemma 3.4.

Assuming that v2 = [[f1, f2]] is a vertex of type 2, we define

d(v2) := deg df1 ∧ df2 and ∆(v2) := ∆(f1, f2).

We call d(v2) and ∆(v2) respectively the differential degree and the delta
degree of v2. It is easy to check that these definitions do not depend on a
choice of representative. In fact, for any

(
α β
γ δ

)
∈ GL2(k) we have

d(αf1 + βf2) ∧ d(γf1 + δf2) = (αδ − βγ)df1 ∧ df2,

so in the definition of d(v2) we could use any representative. On the other
hand in the definition of ∆(v2), because of the term deg f1−deg f2, we really
need to work with a good representative. Observe also that, by definition,
for any vertex v2 we have

∆(v2) > d(v2).

We now introduce the key concept ofK-reduction, where we let the reader
decide for himself whether theK should stand for “Kuroda” or for “Kazakh”.

More precisely by a K-reduction we shall mean either an elementary
K-reduction, or a proper K-reduction, two notions that we now define. Let
v3 and u3 be vertices of type 3.

We say that u3 is an elementary K-reduction of v3 if u3 G v3 and:

(K0) deg v3 > deg u3;
(K1) the center v2 of v3 G u3 has no inner resonance;
(K2) v2 has no outer resonance in v3;
(K3) v2 is not the minimal line in P2(v3);
(K4) ∆(v2) > deg(u3 r v2).
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•	

v3=[[f1,f2,f3]]

v2=[[f1,f2]]

u3=[[f1,f2,g3]]v1=[f2]

• •	
v3=[[f1,f2,f3]]

v1=[f2]

m2=[[f2,f3]]

w3=[[g1,f2,f3]]

u3=[[g1,f2,g3]]

w2=[[g1,f2]]

Figure 3.3. Elementary and properK-reductions, with good represen-
tatives as in Set-Up 3.5.

Denoting by v1 the minimal point in v2, as before (see definition from
page 165) we call v1 the pivot, and v1, v2, v3 the pivotal simplex of the
elementary K-reduction (denoted by 	 on Figure 3.3).

We say that u3 is a proper K-reduction of v3 via the auxiliary vertex
w3 if v3 is a weak elementary reduction of w3 with center the minimal line of
w3, and u3 is an elementary K-reduction of w3. Formally, this corresponds
to the following conditions:

(K0′) degw3 > deg u3;
(K1′) the center w2 of w3 G u3 has no inner resonance;
(K2′) w2 has no outer resonance in w3;
(K3′) w2 is not the minimal line in P2(w3);
(K4′) ∆(w2) > deg(u3 r w2).
(K5′) degw3 > deg v3;
(K6′) the center m2 of w3 G v3 is the minimal line in P2(w3).

Observe that the pivot v1 of the elementary K-reduction from w3 to u3 is
the common vertex of the distinct lines m2 and w2 in P2(w3). The simplex
v1, w2, w3 is still called the pivotal simplex of the proper K-reduction. It
will be proved in Proposition 3.13 that the above conditions (K0′) to (K6′)
imply deg v3 > deg u3, so that the terminology of “reduction” is not mis-
leading, even if by no means obvious at this point.

Let v1, v2, v3 be a simplex, and let s > 3 be an odd integer. We say that
the simplex v1, v2, v3 has Strong Pivotal Form 	(s) if

(	1) deg v1 = 2δ and 2-deg v2 = (2δ, sδ) for some δ ∈ N3;
(	2) v2 has no outer resonance in v3;
(	3) v2 is not the minimal line in P2(v3);
(	4) deg(v3 r v2) > ∆(v2).
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In all the previous definitions we took care of working with vertices, and
not with particular representatives. However for writing proofs it will often
be useful to choose representatives.

Set-Up 3.5. (1) Let u3 be an elementary K-reduction of v3, with
pivotal simplex v1, v2, v3. Then there exist representatives

v1 = [f2] v3 = [[f1, f2, f3]]
v2 = [[f1, f2]] u3 = [[f1, f2, g3]]

such that g3 = f3+ϕ3(f1, f2), where ϕ3 ∈ k[x, y]. Observe that, by definition,
deg f1 > deg f2 and deg f1 > deg f3 > deg g3.

(2) Let u3 be a proper K-reduction of v3, with pivotal simplex v1, w2, w3.
Then there exist representatives

v1 = [f2] w3 = [[g1, f2, f3]]
m2 = [[f2, f3]] v3 = [[f1, f2, f3]]
w2 = [[g1, f2]] u3 = [[g1, f2, g3]]

such that g1 = f1+ϕ1(f2, f3) and g3 = f3+ϕ3(g1, f2), where ϕ1, ϕ3 ∈ k[x, y].

Proof. —

(1) Pick any good representatives v1 = [f2], v2 = [[f1, f2]], v3 = [[f1, f2, f3]]
as given by Lemma 1.4, and apply Lemma 3.3 to get g3.

(2) Pick any representative v1 = [f2], and then pick f3, g1 such that
v2 = [[f2, f3]] and w2 = [[g1, f2]]. Since m2 is the minimal line in P̂2(w3),
we have deg g1 > deg f2 and deg g1 > deg f3, hence (g1, f2, f3) is a good
representative for w3. Now apply Lemma 3.3 twice to get f1 and g3. �

We establish a first property of a simplex with Strong Pivotal Form.

Lemma 3.6. — Let v1, v2, v3 be a simplex with Strong Pivotal Form 	(s)
for some odd s > 3. Then the minimal line m2 in P2(v3) has no inner
resonance.

Proof. — We pick representatives v1 = [f2], v2 = [[f1, f2]], v3 = [[f1, f2, f3]]
as given by Lemma 1.4. By (	1) we have deg f1 = sδ > 2δ = deg f2. Since
v2 is not the minimal line by (	3), the minimal line must be m2 = [[f2, f3]].
Then by (	4) we have deg f3 > (s−2)δ > δ, so that deg f2 6∈ N deg f3. Since
by (	2) we also have deg f3 6∈ N deg f2, we conclude that the minimal line
m2 = [[f2, f3]] has no inner resonance. �

We can rephrase results from Corollary 2.7 with the previous definitions
(see also Example 6.3 for some complements):

Proposition 3.7. — Let v3 be a vertex that admits an elementary re-
duction with pivotal simplex v1, v2, v3.
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(1) Assume v2 has no inner resonance, and no outer resonance in v3.
Then

deg(v3 r v2) > d(v2).
(2) If moreover v2 is not the minimal line in P2(v3), then v1, v2, v3 has

Strong Pivotal Form 	(s) for some odd s > 3.

Proof. —

(1) We pick good representatives v1 = [f2], v2 = [[f1, f2]], v3 = [[f1, f2, f3]]
as given by Lemma 1.4. By Lemma 3.3, the elementary reduction has the
form u3 = [[f1, f2, f3 + P (f1, f2)]] with deg f3 = degP (f1, f2). Since v2 has
no outer resonance in v3, we have deg f3 6∈ Ndeg f1 + N deg f2, hence

degvirt P (f1, f2) > degP (f1, f2).
Since moreover v2 has no inner resonance, we can apply Corollary 2.7(2) to
get the inequality deg(v3 r v2) > d(v2).

(2) By assumption the simplex v1, v2, v3 already satisfies conditions (	2)
and (	3). The condition that v2 is not the minimal line in P2(v3) is equivalent
to

max{deg f1,deg f2} > deg f3 = degP (f1, f2),
hence we can apply Corollary 2.7(3), which yields conditions (	1) and (	4).

�

3.4. Elementary K-reductions

Here we list some properties of an elementary K-reduction. First we have
the following corollary from Proposition 3.7.

Corollary 3.8. — The pivotal simplex of a K-reduction has Strong
Pivotal Form 	(s) for some odd s > 3.

Proof. — First, let v1, v2, v3 be the pivotal simplex of an elementary K-
reduction. We know that, by (K1), v2 has no inner resonance, by (K2), v2
has no outer resonance in v3, and by (K3), v2 is not the minimal line in v3,
so we can apply Proposition 3.7(2).

Now the pivotal simplex of properK-reduction is by definition the pivotal
simplex of an elementary K-reduction from the auxiliary vertex, so that the
above argument applies. �

Lemma 3.9. — Let u3 be an elementary K-reduction of v3 with center
v2, m2 the minimal line in P2(v3), and u2 ∈ P2(v3) a line not passing through
the pivot v1 of the reduction. Then

(1) d(m2) > deg(v3 rm2) + d(v2);
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(2) d(u2) > d(m2) > d(v2);
(3) The function

t2 ∈ P̂2(v3) 7→ d(t2) ∈ N3

only takes the three distinct values d(u2) > d(m2) > d(v2), and it
takes its minimal value only at the point v2;

(4) deg(v1) + d(u2) > 2 deg(v3 rm2).

Proof. — The assumption means that v2,m2, u2 form a (not necessarily
good) triangle. We use the notation from Set-Up 3.5, we therefore have
m2 = [[f2, f3]], v2 = [[f1, f2]] and v1 = [f2].

(1) On the one hand:
df2 ∧ df3 = df2 ∧ dg3 − df2 ∧ d(ϕ3(f1, f2)).

On the other hand, the following sequence of inequalities holds, where the
first one comes from Corollary 2.7(4), the second one from (K4), and the
third one from Lemma 2.2:
deg df2∧d(ϕ3(f1, f2)) > deg f1+deg df1∧df2 > deg f2+deg g3 > deg df2∧dg3.

(3.1)
So deg df2 ∧ df3 = deg df2 ∧ d(ϕ3(f1, f2)), and replacing in (3.1) we obtain
the expected inequality:
d(m2) = deg df2 ∧ df3 > deg f1 + deg df1 ∧ df2 = deg(v3 rm2) + d(v2).
(2) By the previous point we have

deg f1 + deg df2 ∧ df3 > deg f3 + deg df1 ∧ df2,

hence by the Principle of Two Maxima 2.9 we get
deg f2 + deg df1 ∧ df3 = deg f1 + deg df2 ∧ df3. (3.2)

Since deg f1 > deg f2 we get deg df1 ∧ df3 > deg df2 ∧ df3, and finally
deg df1 ∧ df3 > deg df2 ∧ df3 > deg df1 ∧ df2. (3.3)

The general form of u2 being u2 = [[f1 + αf2, f3 + βf2]], we have
d(u2) = deg(df1 + αdf2) ∧ (df3 + β df2) = deg df1 ∧ df3,

so that the expected result is exactly (3.3).
(3) We just saw that if t2 is any line not passing through [f2], then

d(t2) = deg df1 ∧ df3 = d(u2).
Now consider t2 passing through [f2] but not equal to v2. Then t2 =

[f2, f3 + αf1] for some α ∈ k and, using (3.3):
d(t2) = deg

(
df2 ∧ df3 − αdf1 ∧ df2

)
= deg df2 ∧ df3 = deg(m2).

We obtain that v2 is the unique minimum of the function
t2 ∈ P̂2(v3) 7→ d(t2).
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(4) By (3.2) we have

deg(v1) + d(u2) = deg(v3 rm2) + d(m2).

Since by assertion (1) we have d(m2) > deg(v3 \m2), the result follows. �

As an immediate consequence of Lemma 3.9(3) we get:

Corollary 3.10. — Assume that v3 admits an elementary K-reduction,
and that one of the following holds:

(1) There exists a (non necessarily good) triangle u2, v2, w2 ∈ P̂2(v3)
such that

d(u2) > d(w2) > d(v2);
(2) m2 is the minimal line in P2(v3), and v2 is another line in P2(v3)

such that
d(m2) > d(v2).

Then v2 is the center of the K-reduction.

3.5. Proper K-reductions

In this section we list some properties of proper K-reductions, and intro-
duce the concept of a normal K-reduction.

Proposition 3.11. — Let u3 be a proper K-reduction of v3, via w3.
Then (using notation from Set-Up 3.5):

(1) g1 = f1 + ϕ1(f2, f3) with degvirt ϕ1(f2, f3) = degϕ1(f2, f3).
(2) If the pivotal simplex has Strong Pivotal Form 	(s) with s > 5, then

v3 is a weak simple elementary reduction of w3, with simple center
m2, v1, and deg v3 = degw3.

Proof. — First observe that by Corollary 3.8 we know that the pivotal
simplex v1, w2, w3 has Strong Pivotal Form 	(s). In particular by Lemma 3.6
the minimal line m2 = [[f2, f3]] of w3 has no inner resonance.

(1) Assume by contradiction that degvirt ϕ1(f2, f3) > degϕ1(f2, f3).
By non resonance of [[f2, f3]] we can apply Corollary 2.7(2) and Lemma 3.9(1)

to get the contradiction

degϕ1(f2, f3) > deg df2 ∧ df3 = d(m2) > deg g1.

(2) We just established

deg g1 > degϕ1(f2, f3) = degvirt ϕ1(f2, f3).
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Since v1, w2, w3 has Strong Pivotal Form 	(s), we have deg g1 = sδ, deg f2 =
2δ and deg f3 > (s − 2)δ, so that deg(f2f3) > deg g1. As soon as s > 5 we
also have 2(s − 2) > s, hence deg f2

3 > deg g1. This implies that if s > 5
then ϕ1 has the form ϕ1(f2, f3) = af3 +Q(f2), as expected. Moreover since
degQ(f2) = 2rδ for some r > 2 and since s is odd, we have deg g1 >
degvirt ϕ1(f2, f3) = degϕ(f2, f3) hence deg f1 = deg g1 and deg v3 = degw3.

�

In view of the previous proposition, we introduce the following definition.
We say that u3 is a normal K-reduction of v3 in any of the two following
situations:

• either u3 is an elementary K-reduction of v3;
• or u3 is a proper K-reduction of v3 via an auxiliary vertex w3, and,
denoting by v1 the pivot of the reduction and m2 the minimal line
in w3, the vertex v3 is not a weak simple elementary reduction of
w3 with center m2, v1.

Given a proper K-reduction, Corollary 3.8 and Proposition 3.11(2) say
that if the reduction is normal then the pivotal simplex has Strong Pivotal
Form 	(3). We now prove the converse, and give some estimations on the
degrees involved.

Lemma 3.12. — Assume that u3 is a proper K-reduction of v3, via w3,
and that the pivotal simplex has Strong Pivotal Form 	(3). Then the reduc-
tion is normal, and using representatives as from Set-Up 3.5, we have:

deg g1 = 3δ, deg f2 = 2δ, 3
2δ > deg f3 > δ, (3.4)

deg df1 ∧ df3 = δ + deg df2 ∧ df3 > 4δ + deg dg1 ∧ df2, (3.5)
deg df1 ∧ df2 = deg f3 + deg df2 ∧ df3. (3.6)

Moreover we have the implications:
degw3 > deg v3 =⇒ deg f3 = 3

2δ, deg f1 >
5
2δ. (3.7)

degw3 = deg v3 =⇒ deg f1 = deg g1 = 3δ. (3.8)
In any case we have

deg f1 > deg f2 > deg f3, (3.9)
deg df1 ∧ df2 > deg df1 ∧ df3 > deg df2 ∧ df3, (3.10)

m2 = [[f2, f3]] is the minimal line of v3, and for any other line `2 ∈ P̂2(v3),
we have

d(`2) > d(m2). (3.11)

Proof. — The equalities deg g1 = 3δ and deg f2 = 2δ come from the
fact that the pivotal simplex has Strong Pivotal Form 	(3). Property (	4)
gives deg f3 > δ, and Proposition 3.11(1) says that degvirt ϕ1(f2, f3) =
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degϕ1(f2, f3). Hence apart from f2, f3 and f2
3 , any monomial in f2, f3 has

degree strictly bigger than g1. So there exists a, b, c ∈ k such that

w3 = [[g1 = f1 + af2
3 + bf2 + cf3, f2, f3]].

Moreover, since w3 6= v3, we have a 6= 0, which implies 3δ = deg g1 >
2 deg f3. This proves (3.4), and the fact that the K-reduction is normal.

By Lemma 3.9(1) we have

deg df2∧df3 = d(m2) > deg(w3rm2)+d(w2) = deg g1+deg dg1∧df2. (3.12)

This implies

deg g1 + deg df2 ∧ df3 > deg f3 + deg dg1 ∧ df2.

By the Principle of Two Maxima 2.9, we get

deg g1 + deg df2 ∧ df3 = deg f2 + deg dg1 ∧ df3. (3.13)

Now dg1 ∧ df3 = df1 ∧ df3 + bdf2 ∧ df3, and the previous equality implies
deg dg1 ∧ df3 > deg df2 ∧ df3, so that

deg dg1 ∧ df3 = deg df1 ∧ df3.

Now combining (3.12) and (3.13) we get the expected inequality (3.5):

deg df1 ∧ df3 = δ + deg df2 ∧ df3 > 4δ + deg dg1 ∧ df2.

Observe that degw3 > deg v3 is equivalent to deg g1 = deg f2
3 > deg f1.

So in this situation deg f3 = 3
2δ, and since by Lemma 2.2 we have deg f1 +

deg f3 > deg df1 ∧ df3, from (3.5) we also get deg f1 > 4δ − 3
2δ = 5

2δ. This
proves (3.7), and (3.8) is immediate. These two assertions imply that we
always have deg f1 >

5
2δ, so that we get (3.9), and the minimal line m2 =

[[f2, f3]] of w3 also is the minimal line of v3.

For the equality (3.6) we start again from g1 = f1 +af2
3 +bf2 +cf3, which

gives
dg1 ∧ df2 = df1 ∧ df2 − 2af3df2 ∧ df3 − c df2 ∧ df3.

Since (3.12) implies deg(f3df2 ∧ df3) > deg dg1 ∧ df2, the first two terms
on the right-hand side must have the same degree, which is the expected
equality.

Now (3.5), (3.6) and the inequality deg f3 > δ from (3.4) immediately
implies (3.10).

Finally, for any line `2 distinct from m2 = [[f2, f3]], we have

d(`2) = deg(αdf1 ∧ df2 + β df1 ∧ df3 + γ df2 ∧ df3)

with (α, β) 6= (0, 0), from which we obtain (3.11). �
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Now we can justify the terminology of “reduction”, as announced when
we gave the definition of a proper K-reduction:

Proposition 3.13. — Let u3 be a proper K-reduction of a vertex v3.
Then

deg v3 > deg u3.

Proof. — We use the notation from Set-Up 3.5. Observe that if degw3 =
deg v3, then the proposition is obvious from (K0′).

Assume first that the reduction is not normal, that is, g1 = f1 + af3 +
Q(f2). We know by Corollary 3.8 that deg g1 = sδ, deg f2 = 2δ and sδ >
deg f3 > (s − 2)δ, where s > 3 is odd. An inequality deg g1 > deg f1 would
imply sδ = deg(g1) = degQ(f2) = 2rδ for some integer r (the degree of Q), a
contradiction with s odd. Thus we obtain deg g1 = deg f1 > deg(af3+Q(f2)),
hence degw3 = deg v3 and we are done.

Now assume we have a normal proper K-reduction, and that degw3 >
deg v3. By Proposition 3.11(2) (see also the discussion just before Lemme 3.12),
we are in the setting of Lemma 3.12. By condition (K4′) we have

δ + deg dg1 ∧ df2 > deg g3.

Adding 3δ = deg g1, and using (3.5) from Lemma 3.12, we get
deg df1 ∧ df3 > 4δ + deg dg1 ∧ df2 > deg g1 + deg g3.

Finally adding deg f2 we get
deg v3 = deg f1 + deg f2 + deg f3

> deg df1 ∧ df3 + deg f2 by Lemma 2.2
> deg g1 + deg g3 + deg f2

= deg u3. �

In the following result we prove that if a vertex admits a non-normal
proper K-reduction, then it already admits an elementary (and therefore
normal) K-reduction. It follows that any vertex admitting a K-reduction
admits a normal K-reduction.

Lemma 3.14 (Normalization of a K-reduction). — Let u3 be a non-
normal proper K-reduction of v3, via w3. Then there exists u′3 such that

(1) u′3 G v3 and u′3 G u3;
(2) u′3 is an elementary (hence by definition normal) K-reduction of v3.

Proof. — By Corollary 3.8 the pivotal simplex of the reduction has Strong
Pivotal Form 	(s) for some odd s, and by Lemma 3.12 we have s > 5. Note
also that by Proposition 3.11 we have deg v3 = degw3, and v3 is a weak
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•

•

•

•

	

	

w3=[[g1,f2,f3]]

m2=[[f2,f3]]

v3=[[f1=g1−af3−Q(f2),f2,f3]]

v2=[[g1−Q(f2),f2]]

u′
3=[[g1−Q(f2),f2,f3+P (g1,f2)]]

u2=[[f2,f3+P (g1,f2)]]

u3=[[g1,f2,f3+P (g1,f2)]]

w2=[[g1,f2]]

__

��

v1=[f2]

Figure 3.4. Normalization of a K-reduction.

simple elementary reduction of w3 with simple center m2, v1: see the upper-
half of Figure 3.4, where we use the notation of Set-Up 3.5.

By the Square Lemma 3.4, we get the existence of u′3 with u′3 G v3,
u′3 G u3 and degw3 > deg u′3: see Figure 3.4. In particular deg v3 > deg u′3,
which is (K0).

Since v3 and w3 have the same 3-degrees, the vertices v2 and w2 also have
the same 2-degrees. So Properties (K1′) and (K2′) for the initial proper K-
reduction from v3 to u3 imply (K1) and (K2) for the elementary reduction
from v3 to u′3.

Finally m2 is the minimal line of v3, and is distinct from v2, which
gives (K3), and v2 = [[g1−Q(f2), f2]] so that d(v2) = d(w2), which gives (K4).

�

Corollary 3.15. — If v3 = [[f1, f2, f3]] admits a K-reduction, then one
of the following holds:

(1) Any line in P2(v3) has no inner resonance;
(2) Up to permuting the fi, we have deg f1 = 2 deg f3 and 2 deg f1 =

3 deg f2. In particular with this numbering [f3] is the minimal vertex
of v3.

Proof. — Any line in P2(v3) has 2-degree (δ1, δ2) with
δi ∈ {deg f1,deg f2,deg f3} for i = 1, 2. So there exists a line in P2(v3) with
inner resonance if and only if there exist two indexes i 6= j in {1, 2, 3} such
that deg fi ∈ N deg fj .

If the K-reduction is elementary, using the notation from Set-Up 3.5(1),
we have deg f1 = sδ, deg f2 = 2δ and sδ > deg f3 > (s − 2)δ for some odd
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s > 3. Moreover an inner resonance in [[f2, f3]] would be of the form deg f3 =
(s− 1)δ = s−1

2 deg f2 for s > 5, but this is impossible by Property (K2). So
the only possible resonance is between deg f1 and deg f3, in the case s = 3,
as stated in (2).

If the K-reduction is proper, we use the notation from Set-Up 3.5(2).
Either deg g1 = deg f1 and we are reduced to the previous case; or deg g1 >
deg f1 and by Lemma 3.14 we can assume that the K-reduction is normal
(and proper, otherwise again we are reduced to the previous case). Then by
Lemma 3.12 we have 3δ > deg f1 > 5

2δ, deg f2 = 2δ, deg f3 = 3
2δ, hence

there is no relation of the form deg fi ∈ N deg fj for any i 6= j and we are in
case (1). �

Remark 3.16. — We shall see later in Corollary 5.3 that in fact Case (2)
in the previous corollary never happens.

3.6. Stability of K-reductions

Consider v3 a vertex that admits a normal K-reduction. In this section
we want to show that most elementary reductions of v3 still admit a K-
reduction. First we prove two lemmas that give some constraint on the (weak)
elementary reductions that such a vertex v3 can admit.

Lemma 3.17. — Let u3 be a normal K-reduction of v3, with pivot v1.
Let u2 be any line in P2(v3) not passing through v1. Then v3 does not admit
a weak elementary reduction with center u2.

Proof. — We start with the notation v3 = [[f1, f2, f3]] from Set-Up 3.5(1)
when u3 is an elementary K-reduction of v3, and with the Set-Up 3.5(2) to
which we apply Lemma 3.12 when u3 is a normal proper K-reduction of v3.
It follows that m2 = [[f2, f3]] is in both cases the minimal line of v3. We have
u2 = [[h1, h3]] where h1 = f1 + af2, h3 = f3 + bf2 for some a, b ∈ k. Then
[f2, h3] is the minimal line m2 in P2(v3), however it is possible that [f2, h3]
is not a good representative of m2. There are two possibilities:

• either (h1, f2, h3) is still a good representative for v3, and we have
deg h3 = deg f3, deg f2 = deg(v3 r u2);

• or deg f2 = deg h3 > degm1 where m1 = [f3] is the minimal point of
v3, and deg f2 > deg(v3 r u2) = deg f3.

In both cases we have

deg h1 = topdeg v3, deg f2 > deg(v3 r u2) and deg h3 > deg f3.
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Assume by contradiction that v3 admits a weak elementary reduction
with center u2. By Lemma 3.3 there exists a non-affine polynomial P ∈ k[y, z]
such that

deg(v3 r u2) > degP (h1, h3).
On the other hand we know from Corollary 3.8 that the pivotal simplex of
the K-reduction has Strong Pivotal Form 	(s) for some odd s > 3, hence

deg h3 > deg f3 > (s− 2)δ > δ which implies 2 deg h3 > 2δ = deg f2.

In consequence, since deg h1 > deg h3, we have

degvirt P (h1, h3) > 2 deg h3 > deg f2 > deg(v3 r u2),

so that
degvirt P (h1, h3) > degP (h1, h3).

If u2 has no inner resonance, then we get a contradiction as follows, in
both cases of an elementary or a normal proper K-reduction:

deg(v3 r u2) > degP (h1, h3)
> deg dh1 ∧ dh3 = d(u2) by Corollary 2.7(2),
> d(m2) by Lemma 3.9(2) or (3.11),
> deg(v3 rm2) by Lemma 3.9(1).

More precisely, in the case of a normal properK-reduction the last inequality
comes from d(m2) > deg(w3 rm2) > deg(v3 rm2) by Lemma 3.9(1) and
by (K5′).

Now consider the case where u2 = [[h1, h3]] has inner resonance. By Corol-
lary 3.15(2) we have deg h3 = min{deg f2,deg f3}, and since by assumption
deg h3 > deg f3 we get deg h3 = deg f3. Then Corollary 3.15(2) gives the two
relations

1
2 deg(v3 rm2) = 1

2 deg h1 = deg h3,

2
3 deg(v3 rm2) = 2

3 deg h1 = deg f2 > deg(v3 r u2).
(3.14)

In particular we have deg f1 > deg f2 > deg f3, and b = 0, that is, h3 = f3.
We apply Corollary 2.7(1) which gives

deg(v3 r u2) > degP (h1, h3) > d(u2)− deg h3,

which we rewrite as

deg h3 + 2 deg(v3 r u2) > deg(v3 r u2) + d(u2). (3.15)

If u3 is an elementary K-reduction of v3, and since in our situation deg(v3 r
u2) = deg[f2], by Lemma 3.9(4) we have

deg(v3 r u2) + d(u2) > 2 deg(v3 rm2). (3.16)
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If on the other hand u3 is a proper K-reduction of v3 via w3, let us prove
that (3.16) still holds, by using Lemma 3.12. First note that deg(v3 r u2) =
deg f2, deg(v3 rm2) = deg f1 and
d(u2) = deg dh1 ∧ dh3 = deg d(f1 + af2) ∧ df3 = deg df1 ∧ df3 by (3.5).

Then, using (3.4) and (3.5) from Lemma 3.12, we get
deg f2 + deg df1 ∧ df3 > 2δ + 4δ = 2 deg g1 > 2 deg f1

as expected.

Adding the first equality of (3.14) to twice the second one, and combining
with (3.15) and (3.16), we get the contradiction

( 1
2 + 2.2

3 ) deg(v3 rm2) > 2 deg(v3 rm2). �

Lemma 3.18. — Let u3 be a normal proper K-reduction of v3, with pivot
v1. Let v′2 6= m2 be a line in P2(v3) passing through v1. If v′3 is a weak
elementary reduction of v3 with center v′2, then this reduction is simple with
center v′2, v1.

Proof. — We use the notation from Set-Up 3.5(2), and set v′2 = [[h1, f2]]
with h1 = f1 + af3. By Lemma 3.12, h1 realizes the top degree of v3.
Then v3 = [[f1, f2, f3]] = [[h1, f2, f3]], and by Lemma 3.3 we have v′3 =
[[h1, f2, f3 + P (h1, f2)]] for some non-affine polynomial P . We want to prove
that P (h1, f2) ∈ k[f2]. It is sufficient to prove deg h1 > degvirt P (h1, f2).
Assume the contrary. Then

degvirt P (h1, f2) > deg h1 > deg f3 > degP (h1, f2).
By Lemma 3.12, we have deg f1 > deg f2 > deg f3, so that by Corollary 3.15
we have deg h1 = deg f1 6∈ N deg f2. Thus we can apply Corollary 2.7(2) to
get

deg f1 > degP (h1, f2) > deg dh1 ∧ df2.

By (3.6) of Lemma 3.12 we get
deg dh1 ∧ df2 = deg(df1 ∧ df2 − adf2 ∧ df3) = deg df1 ∧ df2 > deg df2 ∧ df3.

Then by (3.5) and (3.4) of Lemma 3.12 we have
deg df2 ∧ df3 > 3δ = deg g1 > deg f1,

hence the contradiction deg f1 > deg dh1 ∧ df2 > deg f1. �

Proposition 3.19 (Stability of a K-reduction). — Let u3 be a normal
K-reduction of v3, and v′3 a weak elementary reduction of v3 with center v′2.
Denote by m2 the minimal line of v3. If u3 is an elementary K-reduction,
assume moreover that the centers of v′3 G v3 and u3 G v3 are distinct. Then
u3 is a K-reduction of v′3, and more precisely, we are in one of the following
cases:
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(1) u3 is an elementary K-reduction of v3, and v′2 = m2: then u3 is a
(possibly non-normal) proper K-reduction of v′3, via v3;

(2) u3 is an elementary K-reduction of v3, and v′2 6= m2: then u3 is
a (possibly non-normal) proper K-reduction of v′3, via an auxiliary
vertex w′3 that satisfies degw′3 = deg v3;

(3) u3 is a normal proper K-reduction of v3 via w3, and v′3 = w3: then
u3 is an elementary K-reduction of v′3;

(4) u3 is a normal proper K-reduction of v3 via w3, and v′2 = m2: then
u3 also is a normal proper K-reduction of v′3 via w3.

Proof. — First assume that u3 is an elementary K-reduction of v3. We
denote by v1 = [f2], v2 = [[f1, f2]], v3 = [[f1, f2, f3]] the pivotal simplex of
the K-reduction u3 (following Set-Up 3.5(1)). By Lemma 3.17, the line v′2
passes through v1.

(1). If v′2 = m2, since by assumption deg v3 > deg v′3, we directly get that
u3 is a proper K-reduction of v′3, via v3.

(2). Now assume that v′2 6= m2, so that v′2 = [[f1 +af3, f2]] for some a ∈ k,
and a 6= 0 since we assume v′2 6= v2. Then by Lemma 3.3 we can write
v′3 = [[f1 + af3, f2, f3 + P (f1 + af3, f2)]] with deg f3 > degP (f1 + af3, f2).
If we can show that P depends only on f2 we are done: indeed then deg f3 6=
degP (f2), because m2 = [[f2, f3]] has no inner resonance by Corollary 3.15,
hence we have deg f3 = deg(f3 + P (f2)). It follows that u3 is a proper K-
reduction of v′3 via w′3 = [[f1, f2, f3 +P (f2)]], where m′2 = [[f2, f3 +P (f2)]] is
the minimal line of w′3 (see Figure 3.5, Case (2)).

To show that P depends only on f2 it is sufficient to show that deg f3 >
degvirt P (f1 + af3, f2). By contradiction, assume that this is not the case.
Then

degvirt P (f1 + af3, f2) > deg f3 > degP (f1 + af3, f2).
Since v′2 has the same 2-degree as v2, it has no inner resonance by (K1), and
by Corollary 2.7(2) we get

degP (f1 + af3, f2) > deg(df1 ∧ df2 − adf2 ∧ df3).
By Lemma 3.9(1) we have deg df2∧df3 > df1∧df2 and deg df2∧df3 > deg f3,
so finally we obtain the contradiction

degP (f1 + af3, f2) > deg df2 ∧ df3 > deg f3.

Now assume that u3 is a normal proper K-reduction of v3, via an auxiliary
vertex w3. Recall that the minimal line m2 of v3 is also the minimal line of
the intermediate vertex w3 (last assertion of Lemma 3.12).

(3). If v′3 = w3, then by definition u3 is an elementary K-reduction of v′3.
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Case (1) • •	
v′

3

v1=[f2]

v′
2=m2=[[f2,f3]]

v3=[[f1,f2,f3]]

u3

v2=[[f1,f2]]

Case (2)
• •

•

	

	
v′

3=[[f1+af3,f2,f3+P (f2)]]

v′
2=[[f1+af3,f2]]

v3=[[f1,f2,f3]]

v2=[[f1,f2]]
u3

v1

%%

m′
2=[[f2,f3+P (f2)]]

w′
3=[[f1,f2,f3+P (f2)]]

OO

Case (3) • •	
v3

v1

v′
2=m2

v′
3=w3

u3

w2

Case (4) • •	
v3

w3

u3

v′
2=m2

v′
3

v1

Figure 3.5. Stability of a K-reduction.

(4). If v′3 6= w3, but v′2 = m2, then the conclusion is also direct, because
degw3 > deg v3 > deg v′3.

Finally we prove that the situation where v′2 6= m2 leads to a contra-
diction. By Lemma 3.18 the reduction from v3 to v′3 is simple with center
v′2, v1. But then by Remark 3.2 (or directly from the proof of Lemma 3.18)
we should have v′2 = [[f1 + af3, f2]] and v′3 = [[f1 + af3, f2, f3 + P (f2)]]. By
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Lemma 3.12 we have
deg f2 = 2δ > 3

2δ > deg f3,

so degP (f2) > deg f3 and we get a contradiction with deg v3 > deg v′3. �

4. Reducibility Theorem

In this section we state and prove the main result of this paper, that is,
the Reducibility Theorem 4.1.

4.1. Reduction paths

Given a vertex v3 with a choice of good triangle T , we call elementary
T -reduction any elementary reduction with center one of the three lines of
T .

We now define the notion of a reducible vertex in a recursive manner
as follows:

• We declare that the vertex [id] is reducible, where by Lemma 3.1 [id]
is the unique type 3 vertex realizing the minimal degree (1, 1, 1).

• Let µ > ν be two consecutive degrees, and assume that we have already
defined the subset of reducible vertices among type 3 vertices of degree at
most ν. Then we say that a vertex v3 with deg v3 = µ is reducible if for any
good triangle T in P2(v3), there exists either a T -elementary reduction or a
(proper or elementary) K-reduction from v3 to u3, with u3 reducible.

Let v3, v′3 be vertices of type 3. A reduction path of length n > 0 from
v3 to v′3 is a sequence of type 3 vertices v3(0), v3(1), . . . , v3(n) such that:

• v3(0) = v3 and v3(n) = v′3;
• v3(i) is reducible for all i = 0, . . . , n;
• For all i = 0, . . . , n− 1, v3(i+ 1) is either an elementary reduction,
or a K-reduction, of v3(i).

Observe that, by definition, a reducible vertex v3 admits a reduction path
from v3 to the vertex [id].

In the following sections we shall prove the main result:

Theorem 4.1 (Reducibility Theorem). — Any vertex of type 3 in the
complex C is reducible.
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Directly from the definition, this theorem has the following consequence:
For any vertex v3 6= [id] of type 3 in the complex C, and for any good
triangle T in P2(v3), the vertex v3 admits either a T -elementary reduction
or a (proper or elementary) K-reduction.

We remark that this result immediately implies that Tame(A3) is a proper
subgroup of Aut(A3):

Corollary 4.2. — The Nagata’s automorphism

f = (x1 + 2x2(x2
2 − x1x3) + x3(x2

2 − x1x3)2, x2 + x3(x2
2 − x1x3), x3)

is not tame.

Proof. — Denote f = (f1, f2, f3) the components of f . Assume that f is
tame. Let v3 = [[f1, f2, f3]] be the associated vertex in C, and let T be the
good triangle associated with this representative. We have deg f1 = (2, 0, 3),
deg f2 = (1, 0, 2) and deg f3 = (0, 0, 1).

On the one hand, if f admits a K-reduction, by Corollary 3.8 one of the
fi (the pivot of the reduction) should have a degree of the form 2δ: this is
not the case.

On the other hand, the degrees of the fi are pairwise Z-independent, so for
any distinct i, j ∈ {1, 2, 3} and any polynomial P we have degvirt P (fi, fj) =
degP (fi, fj). This implies that if f admits an elementary T -reduction, then
one of the deg fi should be a N-combination of the other two. Again this is
not the case.

Thus v3 is not reducible, a contradiction. �

We shall prove Theorem 4.1 in §4.4. In the next two sections we establish
preliminaries technical results.

4.2. Reduction of a strongly pivotal simplex

First we describe the set-up that we shall use in this section.

Set-Up 4.3. — Let v1, v2, v3 be a simplex in C with Strong Pivotal Form
	(s) for some odd s > 3. We choose some good representatives v1 = [f2],
v2 = [[f1, f2]] and v3 = [[f1, f2, f3]]. Condition (	1) means that

deg f1 = sδ, deg f2 = 2δ.

By (	3) we have deg f1 > deg f3. we have

deg f3 > (s− 2)δ + deg df1 ∧ df2.
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Condition (	2) is equivalent to the condition

deg f3 6∈ N deg f2.

Since deg f3 > (s− 2)δ > δ, we also obtain

deg f2
3 > deg f2 and deg f2 6∈ N deg f3. (4.1)

In particular, as already noticed in Lemma 3.6, the minimal line m2 =
[[f2, f3]] of v3 has no inner resonance. Observe also that

deg f1 6∈ Ndeg f3 except if s = 3 and deg f1 = 2 deg f3. (4.2)

Lemma 4.4. — Assume Set-Up 4.3. Then v3 does not admit a normal
proper K-reduction.

Proof. — Assume v3 admits a normal proper K-reduction, via w3. Then
we get a contradiction as follows:

d(m2) > deg(w3 rm2) by Lemma 3.9(1)
> deg(v3 rm2) by (K5′)
> deg(v3 r v2) > ∆(v2) by (	3) and (	4)
> d(v2) > d(m2) by (3.11) in Lemma 3.12. �

Lemma 4.5. — Assume Set-Up 4.3, and deg f1 6= 2 deg f3. Assume that
v3 admits a weak elementary reduction v′3 with center v′2. Then v′2 passes
through v1.

Proof. — By contradiction, assume that v′2 does not pass through v1.
Recall that v1 = [f2] and v2 = [[f1, f2]] with deg f1 > deg f2. Up to replacing
f1 by f1 + af2 for some a ∈ k, we can assume v2 ∩ v′2 = [f1] while keeping
all the properties stated in Set-Up 4.3. Then let [h3] = [f3 + af2] be the
intersection of v′2 with the minimal line [[f2, f3]] of P2(v3). Then we have v′2 =
[[f1, h3]], v3 = [f1, f2, h3], and by Lemma 3.3 v′3 = [[f1, f2 +ϕ2(f1, h3), h3]] for
some non-affine polynomial ϕ2, with deg f1 > deg f2 > degϕ2(f1, h3). We
have either deg f2 = deg h3 or deg f3 = deg h3, hence in any case by (4.1)

degvirt ϕ2(f1, h3) > degϕ2(f1, h3).

In particular ϕ2(f1, h3) 6∈ k[h3], and then the inequality deg f1 > deg f2
implies

degvirt ϕ2(f1, h3) > deg f2.

By Lemma 2.6 there exist coprime q > p such that

q deg h3 = pdeg f1 = psδ.

Moreover if p = 1, we would have deg h3 = deg f3 and deg f1 = 2 deg f3, in
contradiction with our assumption. Hence we have q > p > 2.
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Observe that even if (f2, h3) is not a good representative of the minimal
line in P2(v3), in any case we have deg h3 > deg(v3 r v2) = deg f3, and
Property (	4) gives

deg h3 > (s− 2)δ + deg df1 ∧ df2.

Then Corollary 2.8 yields:

2δ = deg f2 > deg(f2 + ϕ2(f1, h3)) > q deg h3 − deg df1 ∧ df2 − deg h3

> q deg h3 − deg h3 + (s− 2)δ − deg h3.

Multiplying by q and replacing q deg h3 = psδ we get:

0 > (pqs− 2ps+ sq − 4q)δ,

hence
0 > ps(q − 2) + q(s− 4).

This implies s = 3, and we get the contradiction:

0 > 3pq − 6p− q = (3p− 1)(q − 2)− 2 > 5− 2. �

Lemma 4.6. — Assume Set-Up 4.3. Assume that v3 admits an elemen-
tary reduction v′3 with center m2, the minimal line of v3. Assume moreover
that v′3 is reducible. Then v′3 also admits an elementary reduction with center
m2.

Proof. — By Lemma 3.3 we can write v′3 = [[f ′1, f2, f3]], where f ′1 has the
form

f ′1 = f1 + ϕ1(f2, f3)

for some non-affine polynomial ϕ1, with deg f1 = degϕ1(f2, f3) > deg f ′1.
Without loss in generality we can assume that ϕ1 has no constant term.
Moreover we can also assume

deg f ′1 6∈ N deg f2 + Ndeg f3, (4.3)

otherwise the result is immediate.

Working with the good triangle associated with the representative
(f ′1, f2, f3), we want to prove that v′3 does not admit a K-reduction, nor
an elementary reduction with center [[f ′1, f2]] or [[f ′1, f3]]: Indeed since v′3 is
reducible by assumption, the only remaining possibility will be that v′3 admits
an elementary reduction with center m2 = [[f2, f3]], as expected. The proof
is quite long, so we prove several facts along the way. The first one is:

Fact 4.7. — If degvirt ϕ1(f2, f3) > degϕ1(f2, f3) then Lemma 4.6 holds.
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Proof. — If degvirt ϕ1(f2, f3) > degϕ1(f2, f3) then by Lemma 2.6, there
exist coprime p, q such that q deg f2 = p deg f3. Observe that (	2) and (4.1)
imply p, q 6= 1. We have

sδ = deg f1 > deg f ′1 = deg(f1 + ϕ1(f2, f3)) by Lemma 3.3
> pdeg f3 − deg df1 ∧ df2 − deg f3 by Corollary 2.8
> p deg f3 − (deg f3 − (s− 2)δ))
− deg f3 by (	4)

= (p− 2) deg f3 − 2δ + sδ.

Multiplying by p, recalling that deg f2 = 2δ, p deg f3 = q deg f2 and putting
δ in factor we get:

0 > 2q(p− 2)− 2p = (2p− 4)(q − 1)− 4 > 2p− 8. (4.4)

It follows that 3 > p. Now we deduce p = 3. If p = 2, then deg f3 = qδ.
Condition (	4) gives

sδ > deg f3 > (s− 2)δ,
so q = s− 1, which contradicts q coprime with 2.

Replacing p = 3 in the first inequality of (4.4) we get 6 > 2q, hence q = 2.
We obtain deg f3 = 4

3δ, and the condition deg f3 > (s − 2)δ yields s = 3.
Finally

deg f1 = 3δ, deg f2 = 2δ, deg f3 = 4
3δ, 3δ > deg f ′1 > 7

3δ. (4.5)

First we observe that these values are not compatible with v′3 admitting
a K-reduction. Indeed, by Corollary 3.8 an elementary K-reduction would
imply 2 deg f ′1 = s′ deg fj for some odd integer s′ > 3 and j ∈ {2, 3}, and
one checks from (4.5) that there is no such relation. Indeed if s′ = 3, we have
2 deg f1 >

14
3 δ > 4δ = s′ deg f3, and if s′ > 5 we have s′ deg f3 > 20

3 δ > 6δ >
2 deg f ′1. Finally, for any s′ > 3 we have s′ deg f2 > 6δ > 2 deg f ′1.

Now if v′3 admits a normal properK-reduction, then, noting that deg f ′1 >
deg f2 > deg f3, there should exist δ′ ∈ N3 such that all the conclusions of
Lemma 3.12 hold, with f ′1, f2, f3, δ

′ instead of f1, f2, f3, δ. In particular (3.7)
gives deg f2 = 2δ′, hence δ′ = δ. Now since 3δ > deg f ′1, by (3.7) and (3.8)
from Lemma 3.12 would imply deg f3 = 3

2δ, incompatible with deg f3 = 4
3δ.

On the other hand, if v′3 admits an elementary reduction with center
[[f ′1, fj ]] with j = 2 or 3, then, denoting by k the integer such that {j, k} =
{2, 3}, there would exist a non-affine polynomial ϕ such that deg fk >
deg(fk + ϕ(f ′1, fj)), and in particular deg f ′1 > deg fk = degϕ(f ′1, fj). Since
[[f2, f3]] has no inner resonance this implies ϕ(f ′1, fj) 6∈ k[fj ], so that
degvirt ϕ(f ′1, fj) > deg f ′1, and finally degvirt ϕ(f ′1, fj) > degϕ(f ′1, fj). Now
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by (4.3) we can apply Corollary 2.7(3) to get an odd integer q′ > 3 such that
2 deg f ′1 = q′ deg fj : again this is not compatible with (4.5). �

From now on we assume degvirt ϕ1(f2, f3) = degϕ1(f2, f3).

Fact 4.8. — deg f1 = 2 deg f3.

Proof. — By contradiction, assume deg f1 6= 2 deg f3. Then deg f1 6∈
Ndeg f3 by (4.2). Moreover we know that deg f1 6∈ N deg f2 and deg f2 +
deg f3 > deg f1. This is not compatible with the equalities

deg f1 = degϕ1(f2, f3) = degvirt ϕ1(f2, f3). �

We deduce from (4.2) and Fact 4.8 that s = 3, so that
deg f1 = 3δ, deg f2 = 2δ, deg f3 = 3

2δ,

and there exist a, c, e ∈ k such that (recall that ϕ1 has no constant term):
ϕ1(f2, f3) = af2

3 + cf3 + ef2 with a 6= 0. (4.6)

Now come some technical facts.

Fact 4.9. — deg df1 ∧ df3 = deg df ′1 ∧ df3 = δ + deg df2 ∧ df3.

Proof. — Recall from Set-Up 4.3 that we have 3
2δ = deg f3 > deg df1∧df2,

so
3δ > deg f3 + deg df1 ∧ df2.

Since deg f1 = 3δ we get
deg f1 + deg df2 ∧ df3 > deg f3 + deg df1 ∧ df2.

By the Principle of Two Maxima 2.9 we have
deg f2 + deg df1 ∧ df3 = deg f1 + deg df2 ∧ df3.

Passing deg f2 to the right-hand side we get one of the expected equalities
deg df1 ∧ df3 = deg f1 − deg f2 + deg df2 ∧ df3 = δ + deg df2 ∧ df3.

From (4.6) we get
df ′1 ∧ df3 = df1 ∧ df3 + e df2 ∧ df3.

By the previous equality we obtain deg df1 ∧ df3 = deg df ′1 ∧ df3. �

Fact 4.10. — deg df ′1 ∧ df2 = 3
2δ + deg df2 ∧ df3.

Proof. — From (4.6) we get
df ′1 ∧ df2 = df1 ∧ df2 + 2af3 df3 ∧ df2 + c df3 ∧ df2.

By (	4) we have deg f3 > deg df1 ∧ df2, so 2af3 df3 ∧ df2 has strictly larger
degree than the two other terms of the right-hand side. Finally,

deg df ′1 ∧ df2 = deg f3 df3 ∧ df2 = 3
2δ + deg df2 ∧ df3. �
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Fact 4.11. — deg f ′1 > δ.

Proof. — Consider P = f1 + ay2 + cy + ef2 ∈ k[f1, f2][y]. We have
degvirt P (f3) = deg f1 > deg f ′1 = degP (f3).

On the other hand P ′ = 2ay+c, so that degvirt P
′(f3) = degP ′(f3) = deg f3.

Thus m(P, f3) = 1, and the Parachute Inequality 2.5 yields
deg f ′1 = degP (f3) > degvirt P (f3) + deg df1 ∧ df2 ∧ df3 − deg df1 ∧ df2

− deg f3

> deg f1 − deg df1 ∧ df2 − deg f3

= deg f3 − deg df1 ∧ df2.

Recall that by (	4) we have
deg f3 > deg f1 − deg f2 + deg df1 ∧ df2 = δ + deg df1 ∧ df2.

Replacing in the previous inequality we get the result. �

Fact 4.12. — The vertices [[f ′1, f2]] and [[f ′1, f3]] do not have outer reso-
nance in v′3 = [[f ′1, f2, f3]].

Proof. — We have (the last inequality is Fact 4.11):
deg f2 = 2δ, deg f3 = 3

2δ, deg f ′1 > δ.

Moreover these degrees are pairwise distinct, because (f ′1, f2, f3) is a good
representative of v′3. This implies that deg f3 is not a N-combination of deg f ′1
and deg f2, and deg f2 is not a N-combination of deg f ′1 and deg f3. �

Now we are ready to finish the proof of Lemma 4.6. Observe that by
Lemma 3.14, to prove that v′3 does not admit a K-reduction it is sufficient
to exclude normal K-reductions. Recall also that from Facts 4.9 and 4.10 we
have

deg f ′1 ∧ f2 > deg f ′1 ∧ f3 > deg f2 ∧ f3. (4.7)

Fact 4.13. — v′3 does not admit an elementary K-reduction.

Proof. — By contradiction, assume that v′3 admits an elementary K-
reduction. By (4.7) and Corollary 3.10(1), it follows that the center of the
reduction is [[f2, f3]]. But then by Corollary 3.8 we should have 2 deg f2 =
s′ deg f3 for some odd integer s′ > 3, and this is not compatible with
deg f2 = 2δ and deg f3 = 3

2δ. �

Fact 4.14. — v′3 does not admit a normal proper K-reduction.

Proof. — By contradiction, assume that v′3 admits a normal proper K-
reduction u3 via w3. By comparing (4.7) with (3.10) from Lemma 3.12, we
obtain that the center v′2 of v′3 G w3 is equal to v′2 = [[f2, f3]], that v′2 is
the minimal line of v′3, and that degw3 = 3δ + deg f2 + deg f3 = deg v3.
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Since [[f2, f3]] is also the minimal line of v3, we get that u3 is also a proper
K-reduction of v3 via w3. This is a contradiction with Lemma 4.4. �

Now we are left with the task of proving that v′3 does not admit an
elementary reduction with center [[f ′1, f2]] or [[f ′1, f3]].

Fact 4.15. — v′3 does not admit an elementary reduction with center
[[f ′1, f2]].

Proof. — By contradiction, assume there exists ϕ3(f ′1, f2) such that
degϕ3(f ′1, f2) = deg f3.

By Fact 4.12 we have degvirt ϕ3(f ′1, f2) > degϕ3(f ′1, f2), and on the other
hand Proposition 3.7(1) gives

3
2δ = deg f3 = degϕ3(f ′1, f2) > deg df ′1 ∧ df2.

This is a contradiction with Fact 4.10. �

Fact 4.16. — v′3 does not admit an elementary reduction with center
[[f ′1, f3]].

Proof. — By contradiction, assume there exists ϕ2(f ′1, f3) such that
deg f2 > deg(f2 + ϕ2(f ′1, f3)), which implies

degϕ2(f ′1, f3) = deg f2.

By Fact 4.12 we have degvirt ϕ2(f ′1, f3) > degϕ2(f ′1, f3). By Lemma 2.6 there
exist coprime p, q ∈ N∗ and γ ∈ N3 such that

deg f ′1 = pγ, deg f3 = qγ.

Corollary 2.7(1) then yields
2δ = deg f2 = degϕ2(f ′1, f3) > pqγ + deg df ′1 ∧ df3 − pγ − qγ.

By Fact 4.9 we know that deg df ′1 ∧ df3 = δ + deg df2 ∧ df3, so that
δ > deg df2 ∧ df3 + (pq − p− q)γ. (4.8)

We know that qγ = deg f3 = 3
2δ > δ, and by Fact 4.11 we have pγ = deg f ′1 >

δ, so
min{p, q} > pq − p− q.

By Fact 4.12 we know that p 6= 1 and q 6= 1. The only possibilities for the
pair (p, q) are then (2, 3) or (3, 2).

If (p, q) = (2, 3) then Fact 4.11 gives the contradiction
3δ = 2 deg f3 = 3 deg f ′1 > 3δ.

If (p, q) = (3, 2), the equalities deg f ′1 = 3γ and deg f3 = 2γ = 3
2δ yield

γ = 3
4δ, deg f ′1 = 9

4δ, pq − p− q = 1.
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The inequality (4.8) becomes
δ
4 > deg df2 ∧ df3.

Corollary 2.8 then yields
deg(f2 + ϕ2(f ′1, f3)) > 2 deg f ′1 − deg df2 ∧ df3 − deg f ′1

>
( 9

4 −
1
4
)
δ

= 2δ.
This is a contradiction with 2δ = deg f2 > deg(f2 + ϕ2(f ′1, f3)). �

This finishes the proof of Lemma 4.6. �

We now introduce an induction hypothesis that will be the corner-stone
for the proof of the Reducibility Theorem 4.1.

Induction Hypothesis 4.17 (for degrees ν, µ in N3). — Let v3 be a
reducible vertex such that ν > deg v3. Then any neighbor u3 of v3 with µ >
deg u3 also is reducible.

We shall refer to this situation by saying that we can apply the (ν, µ)-
Induction Hypothesis 4.17 to v3 G u3.

Lemma 4.18. — Let µ > ν ∈ N3 be two consecutive degrees, and assume
Induction Hypothesis 4.17 for degrees ν, ν. Let v3 be a reducible vertex dis-
tinct from [id], with µ > deg v3, and let T be a good triangle for v3. Then
there exists a reducible vertex u3 such that

• either u3 is an optimal elementary T -reduction or an optimal ele-
mentary K-reduction of v3;

• or u3 is a normal proper K-reduction of v3.

Proof. — Let v3(1) be the first step of a reduction path from v3, with
respect to the triangle T . By this we mean that v3(1) is a reducible vertex
that is either a T -elementary reduction of v3, or a K-reduction of v3.

First assume that v3(1) is an elementary reduction of v3. If this reduction
is optimal, we can take u3 = v3(1) and we are done. If the reduction is non-
optimal, denote by v2 the center of v3 G v3(1). Then let u3 be an optimal
elementary reduction of v3 with the same center v2. Since µ > ν are two
consecutive degrees, the inequalities

µ > deg v3, deg v3 > deg v3(1) and deg v3 > deg u3

imply
ν > deg v3(1) and ν > deg u3.

By the (ν, ν)-Induction Hypothesis 4.17 applied to v3(1) G u3 we get that
u3 is reducible, as expected. Moreover since u3 is an elementary reduction

– 191 –



Stéphane Lamy

with center v2, by construction u3 is an optimal elementary T -reduction or
an optimal elementary K-reduction of v3.

Now assume that v3(1) is a proper K-reduction of v3. If this reduction
is normal, we are done. Otherwise, by Lemma 3.14, there exists u′3 an el-
ementary K-reduction of v3, such that u′3 G v3(1). By the (ν, ν)-Induction
Hypothesis 4.17 applied to v3(1) G u′3 we get that u′3 is reducible. So we can
take u′3 as the first step of a reduction path from v3, and we are reduced to
the first case of the proof. �

Proposition 4.19. — Let µ > ν ∈ N3 be two consecutive degrees, and
assume Induction Hypothesis 4.17 for degrees ν, ν. Let v3 be a vertex that
is part of a simplex v1, v2, v3 with Strong Pivotal Form 	(s) for some odd
s > 3. Let T be any good triangle compatible with the simplex v1, v2, v3.
Assume that v3 is reducible, and that µ > deg v3. Then

(1) There exists a reduction path from v3 to [id] that starts with an
elementary T -reduction or an elementary K-reduction;

(2) Any elementary T -reduction or elementary K-reduction of v3 admits
v2 as a center;

(3) Any optimal elementary T -reduction of v3 is an elementary K-
reduction;

(4) There exists an elementary K-reduction u3 of v3 with center v2,
such that u3 is reducible.

Proof. — Let v3(1) be the first step of a reduction path from v3 to [id],
with respect to the choice of good triangle T . By Lemma 4.18 we can assume
that if this first step is a K-reduction, then it is a normal K-reduction.
Moreover we know from Lemma 4.4 that v3 does not admit any normal
proper K-reduction. This gives (1).

We write v3 = [[f1, f2, f3]] as in Set-Up 4.3, such that the triangle T corre-
sponds to the choice of representative (f1, f2, f3). The remaining possibilities
for the first step v3(1) of the reduction path are:

(i) An elementary T -reduction with center [[f2, f3]];
(ii) An elementary T -reduction with center [[f1, f3]];
(iii) An elementary K-reduction;
(iv) An elementary T -reduction with center v2 = [[f1, f2]].

In case (i), by Lemma 4.18 we can moreover assume that the elementary
reduction is optimal. Then Lemma 4.6 gives a contradiction.

In case (ii), Lemma 4.5 implies that deg f1 = 2 deg f3, so there exists a ∈ k
such that w3 := [f1 + af2

3 , f2, f3] satisfies deg v3 > degw3. By the Square
Lemma 3.4, there exists u3 such that u3 G w3, u3 G v3(1) and deg v3 > deg u3.
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By the (ν, ν)-Induction Hypothesis 4.17 applied successively to v3(1) G u3
and u3 G w3, we obtain that w3 is reducible, and so could be chosen as the
first step of a reduction path. We are reduced to case (i), which leads to a
contradiction.

In case (iii), by Lemma 3.9(1) we have

d(m2) > topdeg v3.

Moreover by (	4) we have

topdeg v3 > deg(v3 r v2) > ∆(v2) > d(v2).

By Corollary 3.10(2) we conclude that v2 is the center of the K-reduction,
hence we also are in case (iv), which gives (2).

Now assume that u3 is an optimal elementary T -reduction of v3. By (2),
we know that the center of this reduction is v2, and by the (ν, ν)-Induction
Hypothesis 4.17 applied to v3(1) Gv2 u3, we get that u3 is reducible. We
want to prove that ∆(v2) > deg(u3 r v2), that is, Property (K4), which will
imply that u3 is a K-reduction of v3. By contradiction, assume deg(u3 r
v2) > ∆(v2), which is condition (	4) for the simplex v1, v2, u3. Moreover
conditions (	1) and (	3) for the simplex v1, v2, u3 directly follow from the
analogous conditions for the simplex v1, v2, v3, and condition (	2) follows
from the optimality of the reduction u3. Thus v1, v2, u3 has Strong Pivotal
Form 	(s), and from assertions (1) and (2) we conclude that u3 admits an
elementary reduction with center v2. This contradicts the optimality of the
reduction from v3 to u3, and so we obtain (3).

Finally to prove (4), consider a first step of a reduction path from v3
to [id], with respect to the good triangle T , as given by Lemma 4.18. By
Lemma 4.4 this first step is not a normal proper K-reduction, so that it
is an optimal elementary reduction, hence by (3) this is an elementary K-
reduction, as expected. �

Corollary 4.20. — Let µ > ν ∈ N3 be two consecutive degrees, and
assume Induction Hypothesis 4.17 for degrees ν, ν. Let v3 be a reducible vertex
with µ > deg v3, and assume that u3 is an optimal elementary reduction
of v3 with pivotal simplex v1, v2, v3. If v2 has no inner resonance, and no
outer resonance in v3, then either v2 is the minimal line of v3, or u3 is an
elementary K-reduction of v3.

Proof. — Assume v2 is not the minimal line of v3. By Proposition 3.7(2),
the simplex v1, v2, v3 has Strong Pivotal Form. Let T be a good triangle com-
patible with the simplex v1, v2, v3. In particular u3 is an optimal elementary
T -reduction of v3, so we can conclude by Proposition 4.19(3). �
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4.3. Vertex with two low degree neighbors

Set-Up 4.21. — Let µ > ν ∈ N3 be two consecutive degrees, and assume
the Induction Hypothesis 4.17 for degrees ν, µ. Let v3, v

′
3, v
′′
3 be vertices such

that

• µ > deg v3, deg v3 > deg v′3 (hence ν > deg v′3), deg v3 > deg v′′3 ;
• v′3 Gv′

2
v3 and v′′3 Gv′′

2
v3 with v′2 6= v′′2 ;

• v′3 is reducible (hence v3 also is by the (ν, µ)-Induction Hypothesis);
• v′2 is minimal, in the sense that if u3 is an elementary reduction of
v3 with center u2, which is the first step of a reduction path, then
deg u2 > deg v′2.

We denote by v1 = [f2] the intersection point of the lines v′2 and v′′2 . We
fix choices of f1, f3 such that v′2 = [[f1, f2]] and v′′2 = [[f2, f3]]. Observe that
it is possible that deg f1 = deg f3, and in this case (f1, f2, f3) is not a good
representative of v3. In any case by Lemma 3.3 there exist some non-affine
polynomials in two variables P1, P3 such that (see Figure 4.1):

v3 = [f1, f2, f3];
v′3 = [[f1, f2, f3 + P3(f1, f2)]];
v′′3 = [[f1 + P1(f2, f3), f2, f3]].

••
v′

3=[[f1,f2,f3+P3(f1,f2)]]

v1=[f2]

v′
2=[[f1,f2]]

v3=[f1,f2,f3]

v′′
3 =[[f1+P1(f2,f3),f2,f3]]

v′′
2 =[[f2,f3]]

Figure 4.1. Set-Up 4.21.

In this section we shall prove:

Proposition 4.22. — Assume Set-Up 4.21. Then v′′3 is reducible.

We divide the proof in several lemmas. The proposition will be a direct
consequence of Lemmas 4.24, 4.25, 4.26 and 4.27. We start with a conse-
quence from the minimality of v′2.

Lemma 4.23. — Assume Set-Up 4.21. If v′2 has inner resonance, then
v′2 is the minimal line of v3.
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Proof. — Assume first that there exists a ∈ k and r > 2 such that
deg f2 > deg(f2 + afr1 ). Then consider the vertex w3 = [f1, f2 + afr1 , f3],
which satisfies deg v3 > degw3. Assume by contradiction that v′2 is not the
minimal line of v3. Then we have deg f2 > deg f3, hence m2 = [f1, f3] is
the minimal line of v3. By the Square Lemma 3.4, we find u3 such that
u3 G w3, u3 G v′3 and deg v3 > deg u3. By applying the (ν, µ)-Induction
Hypothesis 4.17 successively to v′3 G u3 and u3 G w3, we find that w3 is
reducible. So we can take w3 as the first step of a reduction path from v3,
which contradicts the minimality of v′2.

Now assume that there exist a ∈ k∗ and r > 2 such that deg f1 >
deg(f1 + afr2 ). If v′2 is not the minimal line, we have deg f1 > deg f3.

If deg f1 = deg f3, there exists b ∈ k∗ such that deg f1 > deg(f1 + bf3).
Then [f2, f1 + bf3] is the minimal line of v3, and we consider w′3 = [f1 +
afr2 , f2, f1 + bf3], which satisfies deg v3 > degw′3. As above, by the Square
Lemma 3.4 and the (ν, µ)-Induction Hypothesis 4.17, we obtain that w′3 can
be chosen to be the first step of a reduction path from v3. This contradicts
the minimality of v′2.

If deg f1 > deg f3, v′′2 = [[f2, f3]] is the minimal line of v3. We consider
w′′3 = [f1 + afr2 , f2, f3] which satisfies deg v3 > degw′′3 . As before w′′3 can be
chosen to be the first step of a reduction path from v3, with center v′′2 : again
this contradicts the minimality of v′2. �

Lemma 4.24. — Assume Set-Up 4.21. If v′2 is not the minimal line in
v3, and has outer resonance in v3, then v′′3 is reducible.

Proof. — Since v′2 = [[f1, f2]] is not the minimal line in v3, one of the
degrees deg f1 or deg f2 must realize the top degree of v3.

First consider the case deg f2 = topdeg v3. In this case, we have deg f1 6=
deg f3. Indeed, assuming by contradiction that deg f1 = deg f3, there would
exist α ∈ k∗ such that f ′3 = f3−αf1 satisfies deg f3 > deg f ′3. Then, we would
have deg f2 > deg f1 > deg f ′3, and the line v′2 = [[f1, f2]] could not have outer
resonance in v3. Therefore, (f1, f2, f3) is a good representative of v3, and the
assumption on outer resonance means that deg f3 = deg fr1 for some r > 2.
Recall that by Lemma 3.3, the non-affine polynomial P1 ∈ k[y, z] associated
with the weak elementary reduction v′′3 of v3 satisfies deg f1 > P1(f2, f3).
We have deg f2 6∈ N deg f3, otherwise we would have deg f2 ∈ N deg f1, that
is, v′2 would have inner resonance, and by Lemma 4.23 this would contradict
v′2 6= m2. Corollary 2.7(3) then gives 2 deg f2 = 3 deg f3, and deg(v3 r v′′2 ) >
∆(v′′2 ). But then the existence of δ ∈ N such that deg f2 = 3δ, deg f3 = 2δ
and deg f1 > δ is not compatible with the existence of r > 2 such that
deg f3 = r deg f1: contradiction.
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u3

v′′
3

v3

w′
3

v′
3

??

��

•

• •v′′
3

v3

v′
3## {{

u′′
3 u′

3

deg f1 > deg f3 deg f1 = deg f3

Figure 4.2. Lemma 4.24, case deg f1 = topdeg v3.

Now consider the case deg f1 = topdeg v3. In particular deg f1 > deg f2
and v1 = [f2] is on the minimal line of v3. Now we distinguish two subcases
(see Figure 4.2):

• Case deg f1 > deg f3. Then there exist a ∈ k and r > 2 such that
deg f3 > deg(f3+afr2 ), and v′′2 is the minimal line of v3. We apply the Square
Lemma 3.4 to get u3 a common neighbor of v′′3 and w′3 = [f1, f2, f3 + afr2 ]
satisfying deg v3 > deg u3, and then we conclude by the (ν, µ)-Induction
Hypothesis 4.17 applied successively to w′3 G u3 and u3 G v′′3 .

• Case deg f1 = deg f3. Then there exists b ∈ k∗ such that deg f1 >
deg(bf1 + f3). As in the first case of the proof, the assumption on outer
resonance implies that (f1, f2, f3 + bf1) is a good representative of v3, and
there exists r > 2 such that deg(bf1 + f3) = deg fr2 . Then there exists a ∈ k
such that u′3 = [f1, f2, bf1 + f3 + afr2 ] and u′′3 = [bf1 + f3 + afr2 , f2, f3]
are (simple) elementary reductions of v3 with respective centers v′2 and v′′2 .
Moreover u′3 and u′′3 are neighbors, with center [bf1 + f3 + afr2 , f2]. Again
we conclude by applying the (ν, µ)-Induction Hypothesis 4.17 to v′3 G u′3,
u′3 G u

′′
3 and u′′3 G v′′3 successively. �

We conclude the case where v′2 is not equal to the minimal line m2 of v3
with the following:

Lemma 4.25. — Assume Set-Up 4.21, v′2 6= m2 (where m2 is the mini-
mal line in v3), and has no outer resonance in v3. Then there exists u3 an
elementary K-reduction of v3 with center v′2. Moreover, v′′3 is reducible, and
there exists a reduction path starting with a proper K-reduction from v′′3 to
u3.

Proof. — By Lemma 4.23, we know that v′2 has no inner resonance. Then
Corollary 4.20 says that any optimal elementary reduction u3 of v3 with cen-
ter v′2 is an elementary K-reduction. By the (ν, µ)-Induction Hypothesis 4.17
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applied to v′3 G u3, we get that u3 is reducible. The last assertion follows by
the Stability of K-reductions 3.19, Case (1) or (2). �

Now we treat the situation where v′2 = m2 is the minimal line of v3, and
first we identify some cases that we can handle with the Square Lemma 3.4.

Lemma 4.26. — Assume Set-Up 4.21, and v′2 = m2. In the following
cases, v′′3 is reducible:

(1) v3 admits a simple elementary reduction with simple center v′2, v1;
(2) v3 admits a simple elementary reduction with simple center v′′2 , v1;
(3) v′′3 is a simple weak elementary reduction of v3 with simple center

v′′2 , v1.

v1

•

•

•

•

u3

v′′
3

v3

w′
3

v′
2

v′
3

??

��

v1

•

•

•

•

u3

w′′
3

v3

v′
3

v′′
2

v′′
3

��

__
v1

•

•

•

•

u3

v′′
3

v′′
2

v3

v′
3��

__

Case (1) Case (2) Case (3)

Figure 4.3. Lemma 4.26.

Proof. — Since m2 = [[f1, f2]], we have v3 = [[f1, f2, f3]] with deg f3 =
topdeg v3.

(1) Denote by w′3 a simple elementary reduction of v3 with simple center
v′2, v1. By the Square Lemma 3.4, there exists u3 a neighbor of both w′3 and
v′′3 such that deg v3 > deg u3 (see Figure 4.3). Then we conclude by applying
the (ν, µ)-Induction Hypothesis 4.17 successively to v′3 G w′3, w′3 G u3 and
u3 G v′′3 .

(2) Denote by w′′3 a simple elementary reduction of v3 with simple center
v′′2 , v1. By the Square Lemma 3.4, there exists u3 a neighbor of both w′′3
and v′3 such that deg v3 > deg u3. Then we conclude by applying the (ν, µ)-
Induction Hypothesis 4.17 successively to v′3 G u3, u3 G w′′3 and w′′3 G v′′3 .

(3) By the Square Lemma 3.4, there exists u3 a neighbor of both v′′3 and
v′3 such that deg v3 > deg u3. Again the (ν, µ)-Induction Hypothesis 4.17
applied successively to v′3 G u3 and u3 G v′′3 yields that v′′3 is reducible. �

The last logical step to finish the proof of Proposition 4.22 is the following
lemma. However, we should mention that we will be able to prove a posteriori
that this case never happens: see Corollary 5.4.
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Lemma 4.27. — Assume Set-Up 4.21, v′2 = m2, and that we are not in
one of the cases covered by Lemma 4.26. Then there exists u′′3 an elementary
K-reduction of v3 with center v′′2 such that u′′3 is reducible. In particular, by
the (ν, µ)-Induction Hypothesis 4.17, v′′3 is reducible.

Proof. — It is sufficient to check that the simplex v1, v
′′
2 , v3 has Strong

Pivotal Form 	(s) for some odd s > 3: Indeed then one can apply Proposi-
tion 4.19(4) to get the result.

On the one hand deg f3 > deg f1 > degP1(f2, f3), and on the other hand
since we are not in the situation of Lemma 4.26(3) we have P1(f2, f3) 6∈ k[f2],
so that

degvirt P1(f2, f3) > degP1(f2, f3).
We also have deg f3 6∈ N deg f2 since otherwise we could apply Lemma 4.26(1).
So we are in the hypotheses of Corollary 2.7(3), and there exist a degree
δ ∈ N3 and an odd integer s > 3 such that deg f2 = 2δ, deg f3 = sδ and

sδ > degP1(f2, f3) > ∆(f3, f2).
It remains to check (	2): if v′′2 = [[f2, f3]] had outer resonance in v3 then we
would have deg f1 ∈ N deg f2, and we could apply Lemma 4.26(2), contrary
to our assumption. �

4.4. Proof of the Reducibility Theorem

Clearly Theorem 4.1 is a corollary of

Proposition 4.28. — If a vertex v3 of type 3 in the complex C is re-
ducible, then any neighbor of v3 also is reducible.

Proof. — We plan to prove Proposition 4.28 by induction on degree: we
need to prove that for any ν ∈ N3, the Induction Hypothesis 4.17 holds for
degrees ν, ν. Clearly when ν = (1, 1, 1) this is true (because empty!).

Let µ > ν be two consecutive degrees in N3. It is sufficient to prove the
two following facts.

Fact 4.29. — Assume the Induction Hypothesis 4.17 for degrees ν, ν.
Then it also holds for degrees ν, µ.

Fact 4.30. — Assume the Induction Hypothesis 4.17 for degrees ν, µ.
Then it also holds for degrees µ, µ.

To prove Fact 4.29, consider v′3 a reducible vertex with ν > deg v′3, and
let v3 be a neighbor of v′3, with center v′2, and with deg v3 = µ (otherwise
there is nothing to prove). We want to prove that v3 is reducible.
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If v′2 is the minimal line of v3, then v′3 is a T -reduction of v3 for any good
triangle T and we are done.

If v′2 is not the minimal line of v3, and has no inner or outer resonance
in v3, then by Corollary 4.20 any optimal reduction u3 of v3 with respect to
the center v′2 is an elementary K-reduction of v3. Since u3 is a neighbor of
v′3 and ν > deg u3, we conclude by the (ν, ν)-Induction Hypothesis 4.17 that
u3 is reducible. Hence v3 also is reducible, with first step of a reduction path
the K-reduction to u3.

Finally assume that v′2 has resonance, and that v′2 is not the minimal line
of v3. By Lemma 3.3 we can write

v3 = [[f1, f2, f3]], v′3 = [[f1, f2, g3]], v′2 = [[f1, f2]],
with deg f1 > max{deg f3,deg f2} and g3 = f3 + P (f1, f2) for some polyno-
mial P .

If v′2 has inner resonance, then deg f1 = r deg f2 for some r > 2. There
exists a ∈ k such that v′′3 = [f1 +afr2 , f2, f3] is a simple elementary reduction
of v3 with center [[f2, f3]], which is the minimal line of v3, hence belongs to
any good triangle T . Then we can apply the Square Lemma 3.4 to get u3
with ν > deg u3 and u3 G v′3, u3 G v′′3 . We conclude by the (ν, ν)-Induction
Hypothesis 4.17, applied successively to v′3 G u3 and u3 G v′′3 , that v′′3 is
reducible, hence v3 also is.

If v′2 has no inner resonance, but has outer resonance in v3, then deg f1 >
deg f3 > deg f2 and deg f3 = r deg f2 for some r > 2. There exists Q(f2)
such that deg f3 > deg(f3 +Q(f2)) and deg(f3 +Q(f2)) 6∈ Ndeg f2. Let T be
a good triangle of v3. One of the lines in T has the form u2 = [[f1 + af3, f2]].
Set u3 = [[f1 + af3, f2, f3 + Q(f2)]], which is an elementary T -reduction of
v3 with center u2, and a neighbor of w3 = [[f1, f2, f3 +Q(f2)]]. By the (ν, ν)-
Induction Hypothesis 4.17 applied successively to v′3 G w3 and w3 G u3, we
obtain that u3 is reducible, hence v3 also is.

To prove Fact 4.30, consider v3 a reducible vertex with deg v3 = µ, and
let v′′3 be a neighbor of v3, with center v′′2 , such that

deg v3 > deg v′′3 .
We want to prove that v′′3 is reducible.

First assume that v3 admits a reduction path such that the first step
v′3 is an elementary reduction, with center v′2. Moreover we assume that
v′2 has minimal degree between all possible such first center of a reduction
path. If v′2 = v′′2 , then v′′3 is a neighbor of v′3 and by the (ν, µ)-Induction
Hypothesis 4.17 we are done. If on the contrary v′2 and v′′2 are two different
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lines in P2(v3), we are in the situation of Set-Up 4.21. Then we conclude by
Proposition 4.22.

Finally assume that v3 admits a reduction path such that the first step
is a proper K-reduction v′3. If this proper K-reduction is normal, then by
Stability of K-reduction 3.19, Case (3) or (4), we obtain that v′3 is also a
K-reduction of v′′3 , and we are done. On the other hand if v′3 is a non-normal
proper K-reduction of v3, then by Lemma 3.14 we get the existence of a
vertex u3 that is both an elementary K-reduction of v3 and a neighbor of
v′3. By applying the (ν, µ)-Induction Hypothesis 4.17 to v′3 G u3 we get that
u3 is reducible, and we are reduced to the previous case of the proof. �

5. Simple connectedness

In this section we prove that the complex C is simply connected, which
amounts to saying that the group Tame(A3) is the amalgamated product of
three subgroups along their pairwise intersections.

5.1. Consequences of the Reducibility Theorem

Now that the Reducibility Theorem 4.1 is proved, all previous results
that were dependent of a reducibility assumption become stronger. This is
the case in particular for:

• The Induction Hypothesis 4.17, which is always true;
• Lemma 4.6, which now implies that if v3 is part of a simplex with
Strong Pivotal Form, then v3 does not admit an elementary reduc-
tion with center m2 the minimal line of v3: see the proof of Propo-
sition 5.1 below;

• Proposition 4.19 and Corollary 4.20;
• Set-Up 4.21, hence also all results in §4.3.

In particular we single out the following striking consequences of the Re-
ducibility Theorem 4.1.

Proposition 5.1. — Let u3 be an elementary K-reduction of v3, with
center v2. Then v3 does not admit any elementary reduction with center
distinct from v2.

Proof. — By contradiction, assume that v′3 is an elementary reduction of
v3, with center v′2 distinct from v2. Then by Stability of K-reduction 3.19,
Case (1) or (2), there exists w′3 with degw′3 = deg v3 such that u3 is a
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proper K-reduction of v′3 via w′3. In particular, v′3 is an elementary reduction
of w′3 with center m2, the minimal line of w′3. Moreover, by Corollary 3.8,
the pivotal simplex of this proper K-reduction has Strong Pivotal Form.
Now consider v′′3 an optimal elementary reduction of w′3 with center m2:
Lemma 4.6 gives a contradiction. �

Corollary 5.2. — Let u3 be a proper K-reduction of v3, via w3. Then
degw3 = deg v3.

Proof. — By Proposition 5.1 we cannot have degw3 > deg v3. �

Corollary 5.3. — Let v3 admitting a K-reduction, then any line u2 in
P2(v3) has no inner resonance. In other words, Case (2) in Corollary 3.15
never happens.

Proof. — We use the notation v3 = [[f1, f2, f3]] from Corollary 3.15, which
says that if there exists a line in v3 with inner resonance, then deg f1 =
2 deg f3 and deg f1 = 3

2 deg f2. But in this case we would have an elementary
reduction [f1 + af2

3 , f2, f3] of v3 with center the minimal line [[f2, f3]] 6= v2,
in contradiction with Proposition 5.1 �

We also obtain that the situation of Lemma 4.27 never happens:

Corollary 5.4. — Assume Set-Up 4.21, and v′2 = m2. Then we are in
one of the cases covered by Lemma 4.26.

Proof. — Otherwise by Lemma 4.27 there would exist an elementary K-
reduction of v3 with center v′′2 , in addition to the elementary reduction with
center v′2: This is not compatible with Proposition 5.1. �

5.2. Local homotopies

To prove the simple connectedness of C, the following terminology will
be convenient.

We call combinatorial path a sequence of vertices v3(i), i = 0, . . . , n,
such that for all i = 0, . . . , n − 1, v3(i) G v3(i + 1). Denoting by v2(i) the
center of v3(i) G v3(i + 1), we think of such a sequence as equivalent to a
path γ : [0, 2n] → C where for each i = 0, . . . , n − 1, the interval [2i, 2i + 2]
is mapped isometrically onto the union of the two edges v3(i), v2(i) and
v2(i), v3(i+ 1). In particular we have these parameterizations in mind when
we say that two such combinatorial paths are homotopic in C. We say that
a combinatorial path is locally geodesic if for all i, v2(i) 6= v2(i+ 1) (and
v3(i) 6= v3(i + 1), but this is already contained in the definition of v3(i) G
v3(i+ 1)). Observe that starting from any combinatorial path, by removing
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some vertices we can always obtain a locally geodesic one. If v3(0) = v3(n) we
say that the path is a combinatorial loop with base point v3(0). If v3(0) =
[id], the maximal vertex of such a loop is defined as the vertex v3(i0) that
realizes the maximum max deg v3(i), with i0 maximal. In particular, we have

deg v3(i0) > deg v3(i0 + 1) and deg v3(i0) > deg v3(i0 − 1).

Lemma 5.5. — Let v3(i), i = 0, . . . , n, be a locally geodesic loop with base
point at [id], and let v3(i0) be the maximal vertex. Then the combinatorial
path v3(i0 − 1), v3(i0), v3(i0 + 1) is homotopic in C to a combinatorial path
from v3(i0−1) to v3(i0 +1) where all type 3 intermediate vertices have degree
strictly less than deg v3(i0).

Proof. — Since deg v3(i0) > deg v3(i0 + 1), we know that v3(i0) admits
an elementary reduction, so it makes sense to choose v′2 a vertex of minimal
degree such that v3 = v3(i0) admits an elementary reduction v′3 with center
v′2. Then we are going to apply Set-Up 4.21 twice, taking v′′3 to be successively
v3(i0 − 1) and v3(i0 + 1). It is sufficient to prove that in both cases the
combinatorial path v′′3 , v3, v

′
3 is homotopic to a combinatorial path from v′′3

to v′3 where all type 3 intermediate vertices have degree strictly less than
deg v3. Observe that there are degenerate cases which are easy to handle.
First if v′3 = v′′3 , we just take the combinatorial path with one single vertex
v′3. Second, if v′3 and v′′3 share the same center with v3, we can just discard
v3 to obtain a combinatorial path from v′′3 to v′3 without any intermediate
vertex, so we can indeed assume that the centers v′2 and v′′2 are distinct as
required in Set-Up 4.21.

If v′2 = m2 then by Corollary 5.4 we are in one of the cases covered by
Lemma 4.26, and the homotopy is clear in all cases (see Figure 4.3). For
instance in Case (1) we replace the path v′′3 , v3, v

′
3 by v′′3 , u3, w

′
3, v
′
3, and the

other cases are similar.

If v′2 6= m2, and v′2 has outer resonance in v3, then we are in one of
the two cases covered by Lemma 4.24, and again the homotopy is clear (see
Figure 4.2).

If v′2 6= m2, and v′2 has no outer resonance in v3, then by Lemma 4.25 there
exists u3 an elementary K-reduction of v3 with center v′2. Therefore, in that
case, up to replacing v′3 by u3 we may assume without loss in generality that
v′3 is an elementary K-reduction of v3. By Proposition 5.1, this can only hap-
pen in the case v′′3 = v3(i0− 1), and deg v3(i0) = deg v3(i0− 1). By Stability
of K-reduction 3.19, Case (1) or (2), v′3 is a proper K-reduction of v3(i0−1),
and up to a local homotopy (see Figure 3.5, Case (2)) we can assume that
the intermediate vertex is v3 = v3(i0). If this proper K-reduction is not nor-
mal, we obtain the expected homotopy from the normalization process of
Lemma 3.14 (see Figure 3.4). Otherwise, By Stability of K-reduction 3.19,
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Case (3) or (4), we get that v′3 is a normal proper K-reduction of v3(i0− 2),
with v2(i0 − 2) = v2(i0 − 1) the minimal line of v3(i0): This contradicts our
assumption that we started with a locally geodesic loop. �

We need one last ingredient before proving the simple connectedness of
the complex C.

Lemma 5.6. — The link L(v1) of a vertex of type 1 is a connected graph.

Proof. — By transitivity of the action of Tame(A3) on vertices of type
1, it is sufficient to work with the link L([x3]). Let v3 = [[f1, f2, x3]] be a
vertex of type 3 in L([x3]), where we choose our representative such that
deg f1 > deg f2.

First observe that v3 does not admit any elementary K-reduction. Indeed
by Corollary 3.8 the pivotal simplex of such a reduction should have Strong
Pivotal Form 	(s) for some odd s > 3. In particular there exist δ ∈ N3 and
a reordering {g2, g3} = {f2, x3} such that

deg f1 = sδ, deg g2 = 2δ and sδ > deg g3 > (s− 2)δ.
But since deg x3 = (0, 0, 1) is the minimal possible degree of a component of
an automorphism, both cases g2 = x3 or g3 = x3 are impossible.

It follows that v3 also does not admit a proper K-reduction: such a re-
duction would be via w3 = [[g1, f2, x3]], but we just proved that such a w3
cannot admit an elementary K-reduction.

By Theorem 4.1, we conclude that v3 admits an elementary reduction
v′3, which clearly must admit [x3] as pivot, since there is no non-constant
polynomial P ∈ k[x1, x2, x3] with deg x3 > degP . In particular, v′3 also is in
L([x3]), and by induction on degree, we obtain the existence of a reduction
path from v3 to [id] that stays in L([x3]). �

Now we recover a result of [14] and [16], about relations in Tame(A3). Pre-
cisely, Umirbaev gives an algebraic description of the relations, and Wright
shows that this result can be rephrased in terms of an amalgamated product
structure over three subgroups. Our proof follows the same strategy as in [1,
Proposition 3.10].

Proposition 5.7. — The complex C is simply connected.

Proof. — Let γ be a loop in C. We want to show that it is homotopic
to a trivial loop. Without loss in generality, we can assume that the image
of γ is contained in the 1-skeleton of the square complex, and that γ(0) =
[[x1, x2, x3]] is the vertex of type 3 associated with the identity.

A priori (the image of) γ is a sequence of edges of arbitrary type. By
Lemma 5.6, we can perform a homotopy to avoid each vertex of type 1. So

– 203 –



Stéphane Lamy

now we assume that vertices in γ are alternatively of type 2 and 3. Precisely,
up to a reparametrization we can assume that for each i, γ(2i) has type 3
and γ(2i + 1) has type 2, so that γ defines a combinatorial path by setting
v3(i) = γ(2i) for each i. By removing some of these vertices we can also
assume that γ is a locally geodesic loop.

Let v3(i0) be the maximal vertex of the loop, and δ0 its degree. Then by
Lemma 5.5 we can conclude by induction on the couple (δ0, i0), ordered with
lexicographic order. �

Since Tame(A3) acts on a simply connected 2-dimensional simplicial com-
plex with fundamental domain a simplex, we can recover the group from the
data of the stabilizers of each type of vertex. This is a simple instance of the
theory of developable complexes of groups in the sense of Haefliger (see [2,
III.C]). Following Wright we can phrase this fact as follows:

Corollary 5.8 ([16, Theorem 2]). — The group Tame(A3) is the amal-
gamated product of the three following subgroups along their pairwise inter-
sections:

Stab([x1, x2, x3]) = A3;
Stab([x1, x2]) = {(ax1 + bx2 + c, a′x1 + b′x2 + c′, αx3 + P (x1, x2))};

Stab([x1]) = {(ax1 + b, f2(x1, x2, x3), f3(x1, x2, x3)}.

6. Examples

We gather in this last section a few examples of interesting reductions.

Example 6.1 (Elementary K-reduction with s = 3). — Let
g = (x1, x2, x3 + x2

1 − x3
2),

t1 = (x1 + αx2x3 + x3
3, x2 + x2

3, x3).
Clearly in the composition g ◦ t1 the terms of degree 6 cancel each other.
Moreover, if we choose α = 3

2 this is also the case for terms of degree 5:

g◦t1 =
(
x1 + 3

2x2x3 + x3
3, x2 + x2

3, x3 + x2
1 − x3

2 + 3x1x2x3 + x2
3

4 (8x1x3 − 3x2
2)
)
.

Consider now a triangular automorphism preserving the quadratic form
8x1x3 − 3x2

2 that appears as a factor:
t2 = (x1, x2 + x2

1, x3 + 3
4x1x2 + 3

8x
3
1).

A direct computation shows that the components of f = g ◦ t1 ◦ t2 =
(f1, f2, f3) admits the following degrees:

(9, 0, 0), (6, 0, 0), (7, 0, 1).
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Finally, u3 = [t1 ◦ t2], whose degrees of components are
(9, 0, 0), (6, 0, 0), (3, 0, 0),

is an elementaryK-reduction of v3 = [f1, f2, f3]. Following notation from the
definition of Strong Pivotal Form, we have s = 3 and δ = (3, 0, 0). Moreover

df1 ∧ df2 = − 3
2 (x2

1 − x2)dx2 ∧ dx3 + ( 27
16x

2
1x2 + 9

8x
2
2 + 3

2x1x3 + 1)dx1 ∧ dx2

+ (− 9
4x

3
1 − 3

2x1x2 + 2x3)dx1 ∧ dx3.

so that deg df1∧df2 = (4, 0, 1), from the contribution of the factor x3
1dx1∧dx3.

Example 6.2 (Elementary K-reduction with s = 5, see also [6]). — One
can apply the same strategy to produce examples of K-reduction with s > 3
an arbitrary odd number. We give the construction for s = 5, and leave the
generalization to the reader. Let

g = (x1, x2, x3 + x2
1 − x5

2),
t1 = (x1 + αx2

2x3 + βx2x
3
3 + x5

3, x2 + x2
3, x3).

Observe that αx2
2x3 + βx2x

3
3 + x5

3 is homogeneous of degree 5, by putting
weight 1 on x3 and weight 2 on x2. By choosing α = 15

8 , β = 5
2 , we minimize

the degree of the composition:
g◦t1 =

(
x1 + 15

8 x
2
2x3 + 5

2x2x
3
3 + x5

3, x2 + x2
3, x3 + 1

8x
4
3(16x1x3 − 5x3

2) + · · ·
)
.

Now take the following triangular automorphism, which preserves the poly-
nomial 16x1x3 − 5x3

2:
t2 =

(
x1, x2 + x2

1, x3 + 5
16 (3x1x

2
2 + 3x3

1x2 + x5
1)
)
.

We compute the degrees of the components of f = g ◦ t1 ◦ t2 = (f1, f2, f3):
(25, 0, 0), (10, 0, 0), (20, 3, 0).

Finally, u3 = [t1 ◦ t2], whose degrees of components are
(25, 0, 0), (10, 0, 0), (5, 0, 0),

is an elementary K reduction of v3 = [f1, f2, f3]. Here we have s = 5 and
δ = (5, 0, 0). Moreover

df1∧df2 = − 15
8
(
x2

1 + x2
)2
dx2∧dx3+

(
2x3 − 5

8 (5x5
1 − 9x3

1x2 − 3x1x
2
2)
)
dx1∧dx3

+
( 75

128 (5x4
1x

2
2 + 9x2

1x
3
2 + 3x4

2) + 15
8 (x3

1x3 + 2x1x2x3) + 1
)
dx1 ∧ dx2,

so that deg df1∧df2 = (5, 3, 0), from the contribution of the factor x4
1x

2
2dx1∧

dx2.

Example 6.3 (Elementary reduction without Strong Pivotal Form). — We
give examples of elementary reduction that show that the three assumptions
in Proposition 3.7 are necessary to get Strong Pivotal Form.
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(1) Let f = (f1, f2, f3) ∈ Tame(A3) and r > 2 such that

deg f1 > deg f3 = r deg f2.

In particular there exists a ∈ k such that deg f3 > deg(f3+afr2 ). For instance
f = (x1 + x3

3, x2, x3 + x2
2) is such an automorphism, for r = 2 and a = −1.

Then u3 = [[f1, f2, f3 + afr2 ]] is an elementary reduction of v3 = [[f1, f2, f3]],
and the pivotal simplex does not have Strong Pivotal Form. Observe that
v2 = [[f1, f2]] has outer resonance in v3.

(2) Let u3 = [[f1, f2, f3 + P (f1, f2)]] be an elementary K-reduction of
w3 = [[f1, f2, f3]], with 2 deg f1 = sdeg f2 for some odd s > 3. For instance
we can start with one of the examples 6.1 or 6.2. Pick any integer r > s+1

2 .
Then v′3 = [[f1 + fr2 , f2, f3 + P (f1 − fr2 , f2)]] is an elementary reduction of
v3 = [[f1 + fr2 , f2, f3]], and the pivotal simplex does not have Strong Pivotal
Form. Observe that the center v2 = [[f1 + fr2 , f2]] has inner resonance.

(3) With the notation of Example 6.1 or 6.2, the elementary reduction
from [[g ◦ t1]] to [[t1]] gives an example of an elementary reduction where the
center m2, which is the minimal line, does not have inner or outer resonance,
and again the pivotal simplex does not have Strong Pivotal Form.

Example 6.4 (Non-normal proper K-reduction). — Pick the elementary
K-reduction from Example 6.2, and set v′3 = [f1 +f2

2 , f2, f3], which is a weak
elementary reduction of v3. Then u3 is a non-normal proper K-reduction of
v′3, via v3. This corresponds to Case (1) of Stability of aK-reduction 3.19. We
mention again that it is an open question whether there exists any normal
proper K-reduction.

Non Example 6.5 (Hypothetical type II and type III reductions). — From
Corollary 3.8 we know that if v3 admits an elementary K-reduction, then
the pivotal simplex has Strong Pivotal Form 	(s) for some odd s > 3. In
particular if s = 3, then v3 = [[f1, f2, f3]] with deg f1 = 3δ, deg f2 = 2δ and
deg f3 > δ for some δ ∈ N3. It is not clear if there exists an example of such
a reduction with 3

2δ > deg f3, or even 2δ > deg f3. Observe that such an
example would be the key for the existence of the following reductions (for
the definition of a reduction of type II or III, see the original paper [13],
or [7, §7]):

(1) If 3
2δ > deg f3, then v′3 = [[f1 + f2

3 , f2, f3]] would admit a normal
proper K-reduction, via v3: This would correspond to a type III
reduction.

(2) If 2δ > deg f3 >
3
2δ, then v3 would admit an elementaryK-reduction

such that the pivot [f2] is distinct from the minimal vertex [f3]: This
would correspond to a type II reduction.

(3) If 3
2δ > deg f3, then v′′3 = [[f1, f2 + f2

3 , f3]] would be an example of a
vertex that admits a reduction along a center with outer resonance
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in v′′3 , but that does not admit a reduction with center the minimal
line of v′′3 (see Lemma 4.24).
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