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On the classification of normal G-varieties
with spherical orbits (∗)

Kevin Langlois (1)

ABSTRACT. — In this article, we investigate the geometry of reductive group ac-
tions on algebraic varieties. Given a connected reductive group G, we elaborate on
a geometric and combinatorial approach based on Luna–Vust theory to describe
every normal G-variety with spherical orbits. This description encompasses the clas-
sical case of spherical varieties and the theory of T-varieties recently introduced by
Altmann, Hausen, and Süss.

RÉSUMÉ. — Dans cet article, nous étudions la géométrie des opérations de groupes
réductifs dans les variétés algébriques. Étant donné un groupe algébrique réductif
connexe G, nous élaborons une approche géométrique et combinatoire basée sur la
théorie de Luna–Vust pour décrire toute G-variété normale avec orbites sphériques.
Cette description comprend le cas classique des variétés sphériques et la théorie des
T-variétés introduite récemment par Altmann, Hausen et Süss.

Introduction

Throughout this article, we consider algebraic varieties and algebraic
groups over an algebraically closed field k of characteristic 0.
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Goal

Toric varieties are known to provide applications to test conjectures and
general theories. They naturally come with a combinatorial description en-
coding their geometric properties in terms of simple objects of convex ge-
ometry (e.g. fans, monoids, polytopes etc.). The approach that is developed
here aims to establish a similar dictionary for a larger class of algebraic vari-
eties. More precisely, considering a connected reductive group G, the goal of
the paper is to study the classification of normal G-varieties with spherical
orbits. We propose a geometric and combinatorial construction of these G-
varieties which also generalizes the classical examples of spherical varieties
(case of an open G-orbit) [38] and of normal varieties with a torus action
(case where the acting group G is a torus) [4, 5], see Theorems B and C.
Moreover, for such reductive group actions new results are obtained, see
Theorems 4.2 and 5.1.

Context

Before stating our results, we start by recalling the definitions and some
basic facts on reductive group actions. Let us fix a Borel subgroup B ⊆ G
and a G-variety X. The complexity (cf. [73]) of the G-action on X, denoted
by c(X), is defined as the transcendence degree over k of the field of B-
invariant functions k(X)B . This number does not depend on the choice of
the Borel subgroup and corresponds by a result of Rosenlicht (see [63], [66,
Satz 2.2]) to the codimension of a B-orbit of X in general position. The
complexity has a remarkable property, namely, if Z ⊆ X is an irreducible
G-stable closed subvariety, then c(Z) 6 c(X) [72, Theorem 5.7]. A spherical
(G-)variety is a normal G-variety of complexity 0.

We will say that the G-variety X has a stabilizer in general position
(or has a (unique) general orbit) if there exist a G-stable dense open subset
X1 ⊆ X and a closed subgroup H ⊆ G such that for any x ∈ X1 the isotropy
group Gx is conjugate to H. In other words, this means that each G-orbit
of X1 is G-isomorphic to the homogeneous space G/H.

Moreover, the G-variety X is said to have trivial equivariant birational
type if there exist a variety S, a homogeneous G-space G/H and a G-
equivariant birational map X 99K S × G/H, where G acts on the product
S ×G/H by the trivial action on the first factor, and with the usual action
on the second one. By a result of Richardson (see [62]) any smooth affine
G-variety has a stabilizer in general position. In particular, this applies to
the case of finite dimensional rational representations of G. In addition, this
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is also true for G-varieties with spherical orbits which are, by definition, the
G-varieties whose all G-orbits are spherical. More precisely, the authors in [2]
have shown that for any G-scheme X of finite type over k, there exist a finite
number of conjugacy classes of isotropy groups of X giving rise to spherical
orbits (see [2, Theorem 3.1]).

The classification of algebraic varieties in algebraic geometry has an equi-
variant analogue, namely one can distinguish two types of classification:

(1) One determines a natural representative for each G-equivariant bi-
rational class.

(2) Given a G-variety S, one studies (or classifies) the G-isomorphism
classes of G-varieties X which are G-equivariantly birational to S.

Note that in general, we restrict ourselves to the case where the G-varieties
are normal; this is the viewpoint that we will adopt. In this case, following
the notation of (2), we will say that X is a G-model of S.

Several general approaches were given to study this classification prob-
lem. For the type (1), it can be reformulated in terms of the relative Galois
cohomology using the space of quasi-sections of a G-variety (see [75, Para-
graph 2.5]). A description for the type (2) was obtained by Luna–Vust in
the setting of embeddings of homogeneous spaces (cf. [53]). It turns out to
be effective in the case where the acting connected linear algebraic group is
reductive and the complexity is 6 1. A generalization for reductive group
actions can be found in [39], [69, Section 1]. The techniques for their clas-
sifications are based on commutative algebra, especially on the theory of
valuations.

Reductive group actions in small complexity still attract great interest.
The class of spherical varieties comprises several important examples appear-
ing in algebraic geometry and representation theory. It includes the classes
of toric varieties (cf. [29]), flag varieties, horospherical varieties [56, 58, 74],
embeddings of symmetric spaces (cf. [64, 76]), determinantal varieties, won-
derful compactifications (cf. [25, 50]), and many others. We refer to [38] for
a description of spherical varieties in terms of colored fans and [69] for a
generalization to the case of complexity one. Together they gave a complete
classification for the type (2) in the case where the complexity is 6 1.

The description of a spherical variety X in [38] uses the geometric struc-
ture of its open orbit and especially the (equivariant) birational invariants
attached to it, namely their lattice, colors and G-valuations (see Section 1.2
for a reminder). These invariants form the colored equipment of the spherical
variety X.
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In [52] Luna proposed a description of the spherical homogeneous spaces
and their colored equipment in terms of the root system of G and gave a
complete classification when G is of type A. While Losev showed that the
correspondence between a G-isomorphism class of a spherical homogeneous
G-space and its colored equipment is injective (see [49]), the conjectural
general case following Luna is reformulated from a conjecture based on the
classification of wonderful varieties [52, Section 2]. This problem was recently
solved by the efforts of several authors (see for instance [1, 15, 16, 17, 24, 77])
and completes the classification of type (1) for spherical varieties. Note that
there exist alternative solutions for this problem; see for instance [12, 13]
for a classification in the special case of spherical subgroups contained in a
Borel subgroup.

In 2006, Altmann and Hausen have developed a new theory for describ-
ing torus actions on normal affine varieties in the setting of arbitrary com-
plexity [4]. Their idea involves the geometry of line bundles on a normal
variety Γ (this later playing the role of a certain quotient for the torus ac-
tion) and the combinatorics coming from toric geometry. This description
specializes to the known cases when the acting torus T is of dimension one
(see [26, 27, 28, 61]) and intersects with the description for complexity-one
reductive group actions (see [36, 43, 69, 71]).

It is well known (see for instance [28, Section 2]) that one can construct
a normal surface X with a Gm-action by considering the affine cone of a
smooth projective algebraic curve Γ (modulo an appropriate action of a
finite group). In this case, the algebra of regular functions k[X] is described
by a Q-divisor D having positive degree on Γ via the equality

k[X] =
⊕
m>0

H0(Γ,OΓ(bmDc)).

For instance (see [26, Example 3.6]), if D is the divisor 1
2 [0] − 1

3 [1] − 1
7 [∞]

over P1, then we recover the hypersurface x2 + y3 + z7 = 0 in A3.

The formalism of polyhedral divisors introduced in [4] is a generalization
of this phenomenon for the multigraded case where we consider instead of a
Q-divisor a piecewise linear map

σ∨ → CaDivQ(Γ), m 7→ D(m) =
∑
Y⊆Γ

min
v∈DY

〈m, v〉 · Y

for describing the algebra of functions of an affine normal T-variety. The
set σ∨ is a polyhedral cone living in the vector space MQ generated by
the character lattice of the torus T and CaDivQ(Γ) is the vector space of
Cartier Q-divisors on the normal variety Γ. The polyhedron DY ⊆ NQ =
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Hom(MQ,Q) is referred to as the coefficient at the prime divisor Y ⊆ Γ of
the polyhedral divisor D , see the reminder in Section 2.1.

The generalization to the setting of normal T-varieties presented in [5]
involves considering a certain finite family E of polyhedral divisors {D i,
i ∈ I}, called the divisorial fan, and defined on a common normal variety
Γ (see [5, Definition 5.2] for a precise definition). Here the coefficient family
{D i

Y , i ∈ I} forms a polyhedral subdivision. In particular, this notion col-
lapses to the notion of the defining fan of a toric variety when the complexity
of the torus action is 0.

Main results

In this article, we generalize the combinatorial description in [4, 5] for
torus actions and the one of spherical varieties coming from the Luna–Vust
theory [38] to the setting of normal G-varieties with spherical orbits. We first
collect some classical results about the equivariant birational type of such
varieties. One knows for instance by [23, Theorem 2.13] that a G-variety
having a stabilizer in general position has trivial equivariant birational type
after making an étale base change on a G-stable dense open subset (see also
the reminder in Theorem 3.4).

A morphism π : Z1 → Z2 between two varieties is called a Galois covering
if it is dominant finite and the field extension k(Z1)/π?k(Z2) is Galois. By
using tools from the Luna–Vust theory, one can obtain the following inter-
mediate result as a consequence of [23, Theorem 2.13] (see Corollary 3.5 for
a proof).

Lemma A. — Let X be a normal G-variety with stabilizer H in general
position. Then there exist a normal G-variety X̃ with general stabilizer H
having trivial equivariant birational type and a G-equivariant Galois covering
X̃ → X.

In other words, this means that X̃ admits a generically free G-equivariant
action of a finite group F , the quotient X̃/F exists and is identified with
X. Note that a version of Lemma A was originally shown by Arzhantsev
(see [8, Section 3, Proposition 3]) for certain affine G-varieties of complexity
one with spherical orbits. Lemma A also gives a concrete picture for the
classification of type (1) of normal G-varieties with spherical orbits. Indeed,
it reduces the classification to the determination of birational models of the
rational quotient of the total space X̃, the description of the general spherical
orbit in terms of the Luna theory (cf. [52]), and the description of a certain
G-equivariant finite group action which is completely determined by a Galois

– 275 –



Kevin Langlois

cohomology class (see Corollary 3.6 for more details). This will allow us to
deal first with the trivial equivariant birational case and then to go back to
the general case via the finite group action.

We now explain how to combinatorially describe a normal G-variety with
spherical orbits. Our main motivation is provided by the case of a toric
variety V defined by a fan EV . In this setting G = B = T is an algebraic
torus and elements of EV are strictly convex polyhedral cones σ ⊆ NQ living
in the vector space generated by the lattice N of one-parameter subgroups
of T. Each element of σ ∈ EV determines a T-stable dense open affine subset
Vσ ⊆ V , and vice-versa. Moreover, one can recover σ as the set of the discrete
(geometric) valuations v : k(V )? → Q centered in the generic point of a T-
stable irreducible closed subvariety of Vσ. From this viewpoint, we have the
equality k[Vσ] = k[T] ∩

⋂
v∈σ Ov, where Ov is the valuation ring associated

with v. The Luna–Vust theory aims to exploit this observation in the general
setting of reductive group actions. Note that the analogous notion for the
Vσ’s in the context of an arbitrary G-variety is the notion of simplicity.
Let us recall that a B-chart of a G-variety is a B-stable dense affine open
subset. The G-variety is said to be simple(1) if it has a B-chart intersecting
any G-orbit. According to a result of Sumihiro (see [38, Theorem 1.3], [67,
Theorem 1]), any normal G-variety is covered by G-translates of B-charts,
or equivalently, admits a finite open covering of simple G-varieties.

Let X be a normal G-variety with spherical orbits having trivial equi-
variant birational type and consider a B-chart X0. Our first main result (see
Theorem B below) is a description of X0 in terms of a pair (D ,F ) called
a colored polyhedral divisor (see Definition 2.9). The symbol D denotes a
polyhedral divisor defined on a certain birational model Γ of the rational
quotient of X by G. More precisely, the polyhedral divisor D describes the
algebra of U -invariants k[X0]U graded by the B-eigencharacters of k(X),
where U is the unipotent radical of the Borel subgroup B. The finite set F
consists of colors (i.e., prime B-divisors of X that are not G-stable) that
intersect the open subset X0.

Similarly to the toric case, one can define the k-algebra k[X0] by consid-
ering valuations of k(X) that are centered in the generic point of a G-stable
closed irreducible subvariety or in a color of X, namely that k[X0] is equal
to a ring intersection

(k(Γ)⊗k k[Ω0]) ∩
⋂
D∈F

OvD ∩
⋂

v∈C(D)∩QΣ

Ov ⊆ k(X)

(1) In case of spherical varieties, the notion of simple G-varieties coincides with the
usual one, namely to require to have a unique closed G-orbit (see Theorem 3.1 and results
in Section 2 of [38]).
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depending on the combinatorial datum (D ,F ). Here Ω0 stands for the open
B-orbit of the general orbit of X and QΣ denotes the set of G-valuations of
k(X). We refer to Section 2.1 for further details. To sum up, we have the
following statement.

Theorem B. — Any B-chart of a normal G-variety X with spherical
orbits having trivial equivariant birational type arises from a colored polyhe-
dral divisor and vice-versa.

In the general situation (i.e. X has non-trivial equivariant birational
type), we have a G-equivariant Galois covering γ : X̃ → X (see Lemma A).
Since the general orbit of X̃ is spherical and therefore its G-equivariant au-
tomorphism group is a diagonalizable group (see [22, Section 5.2], [38, The-
orem 6.1]), the Galois group F of γ can be chosen to be abelian finite. Also,
we may assume that γ is trivial if and only if its Galois cohomology class is
trivial. In this case, γ is referred as a splitting of X (see Definition 3.12).

The geometric and combinatorial approach that we present in this article
is to consider a finite set of colored polyhedral divisors E that we will call
a colored divisorial fan. This set encodes the geometry of a G-stable open
covering by simple G-varieties of X̃ and the F -action on X̃ (given by the
splitting γ) in order to determine X as the quotient X̃/F . In the case where
G is a torus T, the splitting γ is the identity map and E corresponds exactly
to the divisorial fan introduced in [5] for describing normal T-varieties. Note
that we have exactly the same face relations (compare [5, Definition 5.1] and
Theorem 2.30).

In analogy with the toric case, the colored divisorial fan E will consist
of a finite set of colored polyhedral divisors on a common smooth projective
variety Γ stable under intersection, and such that for all (D ,F ), (D ′,F ′) ∈
E the corresponding natural maps between B-charts

X0(D ,F )← X0(D ∩D ′,F ∩F ′)→ X0(D ′,F ′)
are B-equivariant open immersions (see Definition 2.31 for more informa-
tion).

Moreover, we ask that E satisfies the additional condition (see Condi-
tion (iii) of Definition 2.31) corresponding to the separateness and that any
element is F -stable for the natural F -action on the valuation set (see Def-
inition 3.16). To mention this latter property, we will say that E is a col-
ored divisorial fan defined on the triple (Γ,S , γ), where here S denotes
the Luna invariant attached to the general G-orbit Ω. Considering γ as a
rational map, it can be defined as the quotient map of a generically free G-
equivariant F -action on the space Γ×Ω. Thus the datum γ encodes a priori
the G-equivariant birational information. Our classification result yields a
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“toric picture” of the classification of type (2) for normal G-varieties with
spherical orbits that can be stated as follows (see Theorem 3.18).

Theorem C. — Colored divisorial fans are the geometric and combi-
natorial realizations of normal G-varieties with spherical orbits. For any
normal G-variety X with spherical orbits there exist a splitting γ : X̃ → X
and a colored divisorial fan E = EX on a triple (Γ,S , γ) attached to it. The
(G × F )-variety X̃ is (G × F )-birational to Γ × Ω and is covered by the G-
translates of B-charts X0(D ,F ) for any colored polyhedral divisor (D ,F )
running through E . Moreover, if we let

X(D ,F ) := G ·X0(D ,F ), then we have

X(D ,F ) ∩X(D ′,F ′) = X(D ∩D ′,F ∩F ′) in X̃

for all (D ,F ), (D ′,F ′) ∈ E . Each G-stable open subvariety X(D ,F ) is F -
stable. Conversely, every colored divisorial fan defines a normal G-variety
with spherical orbits.

By extending the construction of Knop for simple spherical varieties (see
the proof of [38, Theorem 3.1]) to our setting (see Theorem 2.37), one can
explicitly define each simple G-variety X(D ,F ) as a locally closed G-stable
subvariety in the projectivization P(V ) of a finite dimensional rational G-
module V by choosing generators of the multigraded algebra associated with
the polyhedral divisor D . Hence the abstract G-variety X̃ associated with E
can be thought as the gluing of those G-varieties X(D ,F ) so that their in-
tersections agree with the intersections of colored polyhedral divisors. More-
over, in Theorem 3.18 we characterize the completeness property for normal
G-varieties with spherical orbits in terms of the colored divisorial fan in the
same way as in [5, Section 7].

Following the philosophy in [5], applications of our construction are ex-
pected where the combinatorics of toric varieties have proved their useful-
ness. We refer the reader to [6, 59] for surveys on the geometry of spherical
varieties and T-varieties. Especially in Theorem 4.2, we explicitly describe
the divisor class group of a normal G-varietyX with spherical orbits in terms
of its colored divisorial fan (see [28, Theorem 4.22], [46, Corollary 2.12], [60,
Corollary 3.15] for former cases). Using the Riemann–Hurwitz formula for
finite coverings of algebraic varieties, we give an explicit description of the
Weil divisor ]F ·KX (see Theorem 5.1), where KX is a canonical divisor of
X. The calculation is expressed in terms of the ramification indices of the
quotient map by F . In particular, this formula is a first step toward the clas-
sification of Fano varieties in this setting as it was studied in some particular
cases in [14, 32, 56, 57, 68]. We believe that the combinatorial description
developed in this article can be useful for describing the deformation theory
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of spherical varieties as in [2, 3]. We also refer to [9, 10, 11] for other results
on the geometry of normal G-varieties with spherical orbits.

Content of the article

Let us give a brief summary of the contents of each section. In Sec-
tion 1, we introduce the notation for reductive group actions by following
the viewpoint of the Luna–Vust theory. Section 2 establishes Theorem B
and Theorem C in the case where the G-equivariant birational type is triv-
ial. We also introduce combinatorial tools such as the concept of colored
polyhedral divisor. In Section 3, we investigate the equivariant birational
classification of a normal G-variety with spherical orbits and in particular
we prove Theorem C. Finally, in Sections 4 and 5 we provide some appli-
cations. We determine the divisor class group of a normal G-variety with
spherical orbits in 4.2 and obtain information on the canonical class in the
last section.

Notation

By a variety (resp. a linear algebraic group) we mean an integral separated
scheme (resp. an affine group scheme) of finite type over k. All subgroups
of a linear algebraic group are assumed to be closed. Let X be an integral
scheme of finite type over k. We denote by k[X] = Γ(X,OX) the algebra of
regular global functions. Moreover, k(X) is the field of rational functions on
X which is by definition the residue field of the generic point of X.

The letter G stands for a connected reductive linear algebraic group.
Changing G by a finite covering, we may restrict to the case where G is
simply-connected. This latter condition means that G is a direct product
C ×Gss, where C is an algebraic torus and Gss is a simply-connected semi-
simple linear algebraic group. We will consider a maximal torus T in a Borel
subgroup B of G. We denote by U the unipotent radical of B so that B = TU
and by ∆ the set of simple roots of G with respect to the pair (B, T ).

We will use [72] as our reference for the geometry of homogeneous spaces.

Remark. — The restriction to the case where the base field is charac-
teristic 0 is mainly due to the assumptions in the result of Alexeev and
Brion (see [2, Theorem 3.1]) used in our paper. It would be interesting to
develop the theory of G-varieties with spherical orbits over a field of positive
characteristic.
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1. Preliminaries

In this section, we briefly recall some basic notions on reductive group
actions that we will use in this paper. In Section 1.1, we define the notions of
G-valuations, colors and scheme of geometric localities of a given G-variety
X . We also mention the definitions of a B-chart and of an embedding of a
homogeneous space. Section 1.2 is devoted to the classification of spherical
subgroups of G, that is closed subgroups H ⊆ G such that G/H is a spherical
homogeneous G-space.

1.1. Valuations and colors

Many constructions that we will encounter deal with valuations and col-
ors. From the viewpoint of the Luna–Vust theory [72, Chapter 12], they
constitute the basic material for describing normal algebraic varieties with
a reductive group action.

Let X be an integral scheme of finite type over k. A discrete valuation of
k(X) is a group homomorphism

v : (k(X)?,×)→ (Q,+)

with kernel containing the subgroup k? and image aZ for some a ∈ Q, such
that v(f1 + f2) is greater or equal to

min{v(f1), v(f2)} for all f1, f2 ∈ k(X)? satisfying f1 + f2 6= 0.

For a possibly non-closed point ζ ∈ X (resp. a valuation v on k(X)), the
associated local ring is denoted by Oζ,X (resp. Ov). The valuation v of k(X)
has a center in X if there exists a schematic point ξ ∈ X such that the
valuation ring Ov dominates Oξ,X , i.e., Oξ,X ⊆ Ov and mξ ⊆ mv for the
corresponding maximal ideals.

Assume that X is a normal variety. Then every prime divisor D on the
variety X determines a discrete valuation vD on k(X) (called the vanishing
order along D) so that OvD = Oξ,X , where ξ is the generic point of D. The
geometric valuations are those of the forms α · vD for any possible choice of
normal varieties X ′ such that k(X) = k(X ′), prime divisors D ⊆ X ′ and
scalars α ∈ Q>0. Let L ⊆ G be a subgroup and suppose that G acts on X.
The valuation v on the field k(X) is said to be L-invariant (or simply called
an L-valuation) if it is geometric and if further the equalities v(g · f) = v(f)
hold for all f ∈ k(X)? and g ∈ L. It is moreover called central if its restriction
to the subfield of B-invariants k(X)B is trivial.
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Let us introduce some special subvarieties of the G-variety X which will
play an important role later on. An L-cycle (or L-germ if we rather look
at the corresponding generic point) of X is an L-stable irreducible closed
subvariety of X, an L-divisor is an L-cycle of codimension one, and a color
is a B-divisor which is not G-stable. In particular, every L-divisor on X
defines an L-valuation on k(X).

We now introduce the scheme of geometric localities [53, Section 1]. Let
X be a variety. A (geometric) locality of k(X ) is a local ring associated with
a prime ideal of a finitely generated normal subalgebra A ⊆ k(X ) having
field of fractions k(X ). The set of localities Mod(X ) of k(X ) is naturally
endowed with a structure of scheme over k where the possible affine schemes
SpecA are considered as open subsets. Note that the scheme Mod(X ) is
in general not separated over k. A (G-)model of X is a normal (G-)variety
equipped with a (G-equivariant) birational map

X 99KX ,

yielding an identification of (G-)algebras over k between k(X) and k(X ). We
denote by ModG(X ) the G-scheme of geometric localities of X (also called
the universal G-model). As a set, ModG(X ) consists of localities Oξ,X ⊆
k(X ), where ξ is a schematic point of a G-model X of X . Note that the
natural birational G-action on Mod(X ) is not regular in general. Actually,
ModG(X ) corresponds to the maximal open G-stable subset of Mod(X )
in which the G-action on Mod(X ) is regular. Summing up, any (G-)model
of X can be thought as a (G-stable) separated open subscheme of finite
type over k of Mod(G)(X ), and vice-versa. Notice that the generic point of
a color of a G-model of X meets any other G-model (compare with [72,
Remark 13.3]). Hence it is reasonable to speak about colors of ModG(X ).

Local information on the normal G-variety X can be read off from their
B-charts, that is, their affine B-stable dense open subsets. We will consider
B-charts of the G-scheme ModG(X ) which will be by definition the B-charts
of any G-model of X . The G-variety X will be called simple if it possesses
a B-chart intersecting every G-orbit. This terminology makes sense, since
according to the Sumihiro theorem (see [38, Theorem 1.3], [67, Theorem 1]),
every normal G-variety is a finite open union of simple G-varieties.

The next proposition is a well-known fact that we will constantly use in
the present paper.

Proposition 1.1 ([7, Section 2, Proposition 1]). — Let X be a G-
variety. Then the following are equivalent.

(i) For a general point x ∈ X , the G-orbit G · x is spherical.
(ii) Any G-orbit of X is spherical.
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We finish this section by recalling the notion of embeddings of homoge-
neous spaces.

Definition 1.2. — Let H ⊆ G be a closed subgroup. If the mention of
H is clear from the context, then an embedding of the homogeneous G-space
Ω = G/H is a pair (X,x) with the following properties. The letter X denotes
a normal G-variety and x is a point of X such that the stabilizer Gx at x
is H and the G-orbit G · x is open. To simplify the notation, in the sequel,
we will not indicate the base point x of (X,x) and rather write X for the
embedding (X,x).

1.2. Spherical subgroups

In [52] Luna attached to any spherical subgroup of G a discrete invariant
depending on the root system of G: the prominent combinatorial object
occurring is a homogeneous spherical datum. It was shown that these objects
classify the conjugacy classes of spherical subgroups of G [17, 49]. The aim
of this subsection is to give a brief overview of this description. We recall
that a subset C of a finite dimensional Q-vector space E is a polyhedral cone
if there exist vectors v1, . . . , vd ∈ E such that C = Q>0v1 + · · ·+ Q>0vd.

Let Ω = G/H be a spherical homogeneous G-space. We define the lattice
M as the set of B-eigencharacters of the B-algebra k(Ω). Denote by N =
Hom(M,Z) the dual lattice and by MQ = Q ⊗Z M , NQ = Q ⊗Z N the
associated dual vector spaces. The set of B-divisors of Ω consists of the
irreducible components of the complement of the open B-orbit in Ω. It forms
the set of colors FΩ of Ω.

Any valuation v on k(Ω) and any B-eigenfunction f ∈ k(Ω) gives a
pairing 〈%(v), χf 〉 = v(f), where χf is the B-weight associated with f . This
expression is well-defined since f is uniquely determined by χf up to the
multiplication of a nonzero constant.

It is known by [53, Proposition 7.4] that the map % is injective on the set
of G-valuations V of k(Ω). We will again denote by V the image %(V). The
subset V is a full dimensional cosimplicial polyhedral cone in NQ and admits
therefore a presentation

V =
⋂
γ∈Σ
{v ∈ NQ | 〈γ, v〉 6 0},

where Σ is a finite set of linear independent primitive lattice vectors of M
(compare with [22]). The set Σ is called the set of spherical roots of Ω.
By [49, Theorem 1], the triple (M,Σ,FΩ) determines uniquely the spherical
homogeneous space Ω up to a G-isomorphism.
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Let α ∈ ∆ be a simple root of (B, T ) and let FΩ(α) be the set of col-
ors D ⊆ G/H such that the corresponding minimal parabolic subgroup Pα
moves D, i.e., Pα ·D 6= D. The parabolic subgroup associated with the subset

∆p = {α ∈ ∆ |FΩ(α) = ∅}

is the subgroup of G preserving the open B-orbit of Ω. Moreover, denoting
by D1, . . . , Ds the distinct colors such that

{α ∈ ∆ |Pα ·Di 6= Di} ∩ Σ 6= ∅

for any i, we define the family A as (Di)16i6s.

Summarizing, to every spherical homogeneous G-space Ω = G/H we may
attach

SΩ = (∆p
Ω,ΣΩ,AΩ,MΩ) = (∆p,Σ,A,M).

It was shown that any datum SΩ satisfies the combinatorial conditions of
a homogeneous spherical datum; we refer to [52, Section 2] for the list of
axioms. Note that from SΩ one can recover the set of colors of Ω (see [52,
Section 2.3]). In addition, we have the following important result of classifi-
cation, see [17, 49, 52].

Theorem 1.3. — The correspondence

Ω 7→ SΩ = (∆p
Ω,ΣΩ,AΩ,MΩ)

is a well-defined map from the class of spherical homogeneous G-spaces to
the set of homogeneous spherical data. It induces an injective map on the
set of G-isomorphism classes of spherical homogeneous G-spaces. Every ho-
mogeneous spherical datum of G is geometrically realizable by a spherical
homogeneous G-space via the map Ω 7→ SΩ.

The next two examples deal with reductive spherical subgroups of SL2.

Example 1.4. — We consider the natural diagonal action of SL2 on P1 ×
P1. Let T be the subgroup of diagonal matrices and let B be the subgroup
of upper triangular matrices. Then the spherical homogeneous space SL2 /T
is identified with P1 × P1 \ diag(P1). It contains the B-chart

X0 := {([x0 : 1], [y0 : 1]) |x0 6= y0}.

We haveM = Zα, where α is the character
(
a 0
0 a−1

)
7→ a and k[χ−α, χα] is the

subalgebra of k(SL2 /T ) generated by k(SL2 /T )(B), where χα = (x0−y0)−1.
Moreover, SL2 /T has two colors obtained via the intersection with the two
subsets D+ = P1×{[0 : 1]} and D− = {[0 : 1]}×P1. Note that 〈%(D±), α〉 =
1. Finally, the homogeneous spherical datum S = (∆p,Σ,A,M) of SL2 /T
is given by ∆p = ∅, Σ = {α}, A = {D−, D+}, and M = Zα.
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Example 1.5. — We regard the projective plane P2 as the projectivization
of S2V , where V is a two-dimensional vector space over k and S2V is the
space of binary forms S2V = k v2 ⊕ k vw ⊕ k w2. Let

τ : P1 × P1 \ diag(P1)→ P2 \ E
be the map whose restriction to X0 ⊆ P1 × P1 \ diag(P1) (see the notation
of Example 1.4) is

([x0 : 1], [y0 : 1]) 7→ [(x0v + w)(y0v + w)].
Then this map is identified with the natural projection SL2 /T → SL2 /H,
where H is the normalizer of T in SL2. The subset E equal to {[(x0v +
y0w)2] | [x0 : y0] ∈ P1} is the space of degenerate binary forms. The morphism
τ is a covering involution which sends the union D− ∪ D+ of the colors
of SL2 /T onto the unique color D of SL2 /H. Finally, the homogeneous
spherical datum S = (∆p,Σ,A,M) of SL2 /H is given by ∆p = ∅, Σ =
{2α}, A = ∅, and M = 2Zα.

Example 1.6 (Horospherical homogeneous spaces). — A closed subgroup
H ⊆ G is said to be horospherical if H contains a maximal unipotent sub-
group of G. Then in this case, the normalizer P = NG(H) is a parabolic
subgroup corresponding to a set of simple roots ∆p and P/H is an algebraic
torus T with character lattice M . Note that G/H is spherical and is equal
to the parabolic induction G×P T. Hence the homogeneous spherical datum
S of H is (∆p, ∅, ∅,M) (see [56, Proposition 2.4]).

2. Combinatorics

Let S be an arbitrary algebraic variety and denote by Ω = G/H a spheri-
cal homogeneous G-space. We consider the G-variety X := S×Ω, where the
action is defined by letting G act trivially on the variety S and by left trans-
lations on the homogeneous space Ω. We will denote by S = (∆p,Σ,A,M)
the homogeneous spherical datum corresponding to Ω. We recall that N is
the dual lattice of M . In the current section, we classify normal G-varieties
for the case of G-models of X .

Our approach splits into several sections that we now summarize. In
Section 2.1, we introduce the notion of colored polyhedral divisors inspired
by the works of Altmann and Hausen for torus actions. This will latter be
used to classify B-charts of any G-model of X . To have local information
on the G-action on ModG(X ), we deal with the local structure theorem
in Section 2.2. While we make preparations in Section 2.3, in Section 2.4
we describe equivariant open immersions of B-charts using the language
of colored polyhedral divisors. This allows us in Section 2.5 to construct
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via a gluing process any G-model of X in terms of a divisorial fan which
is roughly speaking a fan of colored polyhedral divisors. Finally, the last
section is devoted to providing an explicit description of a simple G-model
of X by means of an embedding into a projective space.

Remark 2.1. — There exists a natural bijection ψ between the set of
colors of Ω and ModG(X ). The map ψ sends a color D ⊆ Ω to the closure
of S × D in ModG(X ). The injectivity of ψ is clear and the surjectivity
comes from [30, Lemma 3]. In particular, the number of colors of ModG(X )
is finite.

2.1. Colored polyhedral divisors

Let us introduce the geometric environment where the G-valuations of
k(X ) are represented [72, Section 20.1]. More precisely, we want to construct
an injective map from the set of G-valuations of k(X ) to a set Q (called
later on hyperspace) depending only on S and N .

We call hyperspace associated to the pair (S,N) the quotient Q of ς(S)×
NQ ×Q>0 by the equivalence relation ≡ given by

(s, p, `) ≡ (s′, p′, `′) if and only if s = s′, p = p′, ` = `′ or p = p′, ` = `′ = 0,

where ς(S) is the set of geometric valuations of k(S) considered up to pro-
portionality. The equivalence class of (s, p, `) will be denoted by [s, p, `]. The
reader may think that Q is the geometric object obtained as the union of
the copies of upper spaces {s}×NQ×Q>0 (where s runs over ς(S)) in which
the boundaries {s} ×NQ × {0} are glued together into a common part. The
element [s, p, 0] does not depend on s and we will write it by the symbol
[ · , p, 0]. In particular, we have a natural inclusion NQ ⊆ Q where NQ is
identified with the image of the map

NQ → Q, p 7→ [ · , p, 0].

Let us consider the short exact sequence of abelian groups

0→ k(S)? → k(X )(B) →M → 0,

where k(X )(B) is the multiplicative group of the rational B-eigenfunctions
on X . The arrow k(X )(B) → M is the map sending a B-eigenfunction to
its B-weight. Let AM ⊆ k(X ) be the subalgebra generated by k(X )(B).
Then choosing a lifting M → k(X )(B) ∩ k(Ω), m 7→ χm we obtain the
decomposition

AM =
⊕
m∈M

k(S)⊗ χm.
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Every G-valuation v of k(X ) is uniquely determined by its values on AM
(see [72, Corollary 19.13]) and therefore [72, Proposition 20.7] defines an
element

[s, a, b] ∈ Q via v(f ⊗ χm) = b · s(f) + 〈m, a〉,
where f ∈ k(S)? and m ∈ M . We denote by QΣ the set of G-valuations
identified with a subset of Q. Note that if S is 0-dimensional, then Q = NQ
and QΣ is nothing but the valuation cone V of Ω.

The next proposition determines QΣ in terms of the homogeneous spher-
ical datum S . This result seems to be well known to the experts. For the
convenience of the reader we include here a short proof.

Proposition 2.2. — Let V be the valuation cone of the spherical homo-
geneous space Ω (which is completely determined by the set of spherical roots
Σ). Then we have the equality

QΣ = {[s, a, b] ∈ Q | s ∈ ς(S), (a, b) ∈ V ×Q>0}.

Proof. — Let v = [s, a, b] ∈ QΣ. The restriction of v to the subfield
k(Ω) ⊆ k(X ) is a G-valuation (see [72, Corollary 16.9]). This implies that
a ∈ V. Conversely, let us show that

{[s, a, b] ∈ Q | s ∈ ς(S), (a, b) ∈ V ×Q>0} ⊆ QΣ.

Let us fix elements a ∈ V and s ∈ ς(S). We first consider an embedding
Xa of the homogeneous space Ω. It has the property that the complement
of the open orbit is an orbit Da of codimension one with vanishing order
equal to a. Such embedding always exists (see [53, 3.3, 7.5, 8.10]). Since s
is a geometric valuation, there exist a model Γ of S and a prime divisor
Y ⊆ Γ such that s is the vanishing order of Y . By considering the vanishing
orders of Γ×Da and Y ×Xa in the G-model Γ×Xa of X , we obtain that
[s, a, 0], [s, 0, 1] ∈ QΣ. We conclude by using [72, Theorem 20.3]. �

Let σ ⊆ NQ be a strictly convex polyhedral cone (that is a polyhedral
cone containing no line) and let Γ be a model of S. A polytope of NQ is the
convex hull of a non-empty finite subset of NQ. The concept of polyhedral
divisor was invented by Altmann and Hausen in [4]. We recollect this notion
in the next paragraph.

Definition 2.3. — A σ-polyhedral divisor on Γ is a formal sum

D =
∑
Y⊆Γ

DY · Y,

where DY is empty or a σ-polyhedron (i.e., DY ⊆ NQ is a Minkowski sum
of σ and a polytope), Y ⊆ Γ runs over the set of prime divisors of Γ, and
DY = σ for all but finitely many prime divisors Y ⊆ Γ. The complement in
Γ of the union of prime divisors Y ⊆ Γ such that DY = ∅ and the cone σ
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are called respectively the locus and the tail of D ; we will denote them by
Loc(D) and Tail(D) if the notation is not explicitly specified.

Let D be a σ-polyhedral divisor on Γ. Let us denote by σ∨ the dual cone
defined as the subset

σ∨ = {m ∈MQ | ∀ v ∈ σ, 〈m, v〉 > 0}
which consists of the linear forms of MQ that are non-negative on σ. In
practice, it is convenient to see the polyhedral divisor D as a piecewise linear
function on σ∨; we call evaluation at the vector m ∈ σ∨ the Q-divisor

D(m) =
∑

Y⊆Loc(D)

min
v∈DY

〈m, v〉 · Y.

Consider the sheaf OLoc(D)(D(m)) where on each open subset V ⊆ Loc(D)
we have

OLoc(D)(D(m))(V ) = {f ∈ k(S)? | (div(f) + D(m))|V > 0} ∪ {0}.
Here div(f) =

∑
Y⊆Loc(D) vY (f) · Y is the principal divisor associated to f .

The expression
A =

⊕
m∈σ∨∩M

OLoc(D)(D(m)))⊗ χm

naturally defines a sheaf ofM -graded OLoc(D)-algebras where the multiplica-
tion on the homogeneous elements is induced by the multiplication on k(S).
The algebra of global sections A(Γ,D) := Γ(Loc(D),A) is the associated
algebra of D . Note that A(Γ,D) is an M -graded subalgebra of AM .

The properness is a technical condition on the polyhedral divisor D which
ensures that the algebra A(Γ,D) is of finite type over k and that its field of
fractions is equal to that of AM [4, Theorem 3.1]. Note that this condition
on D is needed for the finite generation condition even in the case where Γ
is an algebraic curve, see the counterexample of Knop in [72, Remark 16.22],
[40]. It is defined as follows.

Definition 2.4. — For a Q-divisor D on an algebraic variety Z, the
symbol supp(D) will denote the support of D that is the union of the prime
divisors of Z corresponding to nonzero coefficients of D.

The σ-polyhedral divisor D is said to be proper (cf. [4, Definition 2.7]) if
it satisfies the following additional properties.

• The locus Loc(D) is a semi-projective variety, i.e., it is projective
over an affine variety.
• For all m ∈ σ∨, the Q-divisor D(m) is a semi-ample Cartier Q-
divisor, i.e., a multiple of D(m) corresponds to a basepoint-free line
bundle.
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• For all m ∈ MQ in the relative interior of σ∨, the Q-divisor D(m)
is big, i.e., there exist a positive integer d and a global section f ∈
H0(Loc(D),OLoc(D)(D(dm))) such that

Loc(D) \ supp(div(f) + D(dm))

is affine.

Remark 2.5. — The bigness condition enunciated in Definition 2.4 gener-
alizes the classical one in the projective case (see [41, Lemma 2.60]). Recall
that a line bundle L on a normal projective algebraic variety Z is big if
for a sufficiently large positive integer d, the rational mapping of the total
system of divisors Z 99K P(Γ(Z,L ⊗d)) is birational on its image.

Note that any polyhedral divisor with Cartier evaluations and affine locus
is proper. The following result determines which multigraded algebras are
described by proper polyhedral divisors. They geometrically correspond to
algebras of regular functions on normal affine varieties with an effective torus
action.

Theorem 2.6 ([4, Theorem 3.4]). — Let σ ⊆ NQ be a strictly convex
polyhedral cone. Let A be a normal M -graded subalgebra of AM of finite
type over k with field of fractions equal to that of AM . For m ∈ M denote
by Am the m-th graded piece of A and assume that the cone generated by
{m ∈ M |Am 6= {0}} is σ∨. Then there exist an open semi-projective sub-
variety Γ ⊆ Mod(S) and a proper σ-polyhedral divisor D on Γ such that
A = A(Γ,D).

Let us give some examples of torus actions obtained from polyhedral
divisors.

Example 2.7. — Assume that NQ = Q. Consider the proper polyhedral
divisor D =

∑
y∈P1 Dy · [y] over the projective line P1 with the property that

Dy = Q>0 if y ∈ P1 \ {0,∞} and D0 = D∞ =
{

1
2

}
+ Q>0.

Here 0 and∞ are respectively the origin and the point at infinity with respect
to a local parameter t generating the function field k(P1). For m ∈ Z>0, let
Am := H0(P1,OP1(D(m))). Then a direct computation shows that A0 = k,
A1 ⊗ χ1 = k ⊗ χ1 and for m > 2,

Am ⊗ χm =

k ⊕ bm/2c⊕
i=1

kti ⊕
bm/2c⊕
i=1

k
1
ti

⊗ χm.
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Therefore we get that

A := A(P1,D) =
⊕
m>0

Am ⊗ χm = k

[
χ1, t⊗ χ2,

1
t
⊗ χ2

]
.

The spectrum SpecA is identified with the Gm-surface V(x4 − yz) ⊆ A3

and the action is given by the formula λ · (x, y, z) = (λx, λ2y, λ2z) for any
λ ∈ Gm.

Example 2.8. — We again assume that NQ = Q. Let n be a positive
integer. Consider the polyhedral divisor D =

∑
y∈A1 Dy · [y] over the affine

line A1 with the conditions

Dy = {0} if y ∈ A1 \ {0, 1}, D0 =
{

1
n

}
and D1 =

[
0, 1
n

]
.

Then a system of homogeneous generators of the Z-graded algebra A :=
A(A1,D) is given by

x := t−1 ⊗ χn, y := t(t+ 1)⊗ χ−n, z := χ1.

Using these coordinates, the spectrum SpecA is Gm-isomorphic to the
smooth Gm-surface

Wn = {x2y = x+ zn} ⊆ A3.

The action is given by λ · (x, y, z) = (λnx, λ−ny, λz) for any λ ∈ Gm.

Let us introduce various objects attached to the σ-polyhedral divisor D .
The Cayley cones of D are the cones CY (D) ⊆ NQ ⊕ Q generated by the
union of (σ, 0) and (DY , 1), where Y ⊆ Γ is a prime divisor. The hypercone
associated with D is the subset

C(D) = {[vY , a, b] ∈ Q |Y ⊆ Γ prime divisor, (a, b) ∈ CY (D)}.

We define in an obvious way the relative interior of C(D).

Here is the definition of a colored polyhedral divisor.

Definition 2.9. — Considering the set of colors FΩ of Ω, a pair (σ,F ),
where F is a subset of FΩ, is a colored cone(2) (cf. [38, Section 3]) if %(F )
does not contain 0 and σ is a strictly convex polyhedral cone generated by
the union of %(F ) and a finite subset of V. Colored cones are combinatorial

(2) To have more flexibility, we take a different viewpoint by modifying slightly the
definition of colored cone in [38, Section 3]. In our definition, we do not impose that the
relative interior of σ intersects V. The reason is that in [38, Section 3] the author deals
only with minimal B-charts of spherical varieties in order to have a perfect dictionary
between colored cones and simple spherical embeddings (see [38, Theorem 3.1]). We refer
to [72, Section 15.1 and Remark 14.3] for more information.
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objects related to the classification of simple spherical varieties, see for in-
stance [72, Section 15.1]. The pair (D ,F ) is a colored σ-polyhedral divisor
on Γ if the following hold.

• (σ,F ) is a colored cone.
• D is a proper σ-polyhedral divisor.
• The hypercone C(D) is generated by the union of C(D) ∩QΣ and
%(F ).

We denote by CPDiv(Γ,S ) the set of colored polyhedral divisors with
respect to the normal semi-projective variety Γ ⊆ Mod(S) and the homoge-
neous spherical datum S . Note that colored polyhedral divisors have been
used in [44, 45, 46, 47] for studying the geometry of complexity-one horo-
spherical varieties.

Remark 2.10. — Recall that a vertex of a polyhedron Q in NQ is a 0-
dimensional face of Q. In Definition 2.9, one observes that the vertices of
DY for any prime divisor Y ⊆ Γ belong to V. This is due to Proposition 2.2
and the fact that %(F ) is contained in σ seen as a subset of the hyperspace Q.

Let us take subsets U ⊆ QΣ and F ⊆ FΩ, where FΩ is seen as the
set of colors of ModG(X ) (see Remark 2.1). With these two data, one can
construct a B-stable subalgebra of k(X ). Recall that Ov denotes the local
ring associated with the valuation v. We then let

R(U ,F ) = (k(Γ)⊗k k[Ω0]) ∩
⋂
D∈F

OvD ∩
⋂
v∈U

Ov ⊆ k(X ),

where Ω0 is the open B-orbit of Ω. The next lemma follows from an adapta-
tion of the results in [53, Section 8]. It gives conditions for the affine scheme
X0 = SpecR(U ,F ) to be a B-chart of ModG(X ).

Lemma 2.11 ([72, Theorem 13.8]). — Denote by E the set U t F
where F is considered as a set of valuations of k(X ). The affine scheme
X0 = SpecR(U ,F ) is a B-chart of ModG(X ) if and only if the following
conditions are satisfied.

(i) For any finite subset E0 ⊆ E, there exists a homogeneous element
ξ ∈ AM such that for all v ∈ E and w ∈ E0 we have v(ξ) > 0 and
w(ξ) > 0.

(ii) The subalgebra R(U ,F )U = k[R(U ,F )(B)] is of finite type over k,
where U ⊆ G is the unipotent radical of B.

Moreover, any B-chart of ModG(X ) arises in this way.
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Actually, Conditions (i), (ii) in the preceding lemma imply that the nor-
mal algebra R(U ,F ) has field of fractions k(X ) and is of finite type over
k, respectively, so that the affine scheme X0 is an open subset of Mod(X ).
Following the argument of [53, Section 8], it was shown [72, Theorem 13.8]
that R(U ,F ) is stable under the natural action of the Lie algebra of G
(see [72, Proposition 12.3]).

We will use the next two technical lemmata from the Luna–Vust theory.
Lemma 2.12 ([72, Lemma 19.12]). — For any nonzero element f ∈

k(Γ) ⊗k k[Ω0] and any G-valuation v ∈ QΣ, there exists a B-eigenfunction
f̃ ∈ AM such that the following hold.

(i) v(f̃) = v(f) and w(f̃) > w(f) for all w ∈ QΣ.
(ii) vD(f̃) > vD(f) for all D ∈ FΩ.
Lemma 2.13 ([72, Theorem 14.2]). — Let X0 be a B-chart of ModG(X )

described by a pair (U ,F ) as in Lemma 2.11. Let D ∈ F be a color, let
O ⊆ ModG(X ) be a G-cycle intersecting X0, and let v be a G-valuation
centered in the generic point of O. Then O is contained in D if and only if for
any B-eigenfunction f in R(U ,F ) such that v(f) = 0, we have vD(f) = 0.

The next result gives a combinatorial picture for the correspondence be-
tween G-valuations and colors, and the B-charts of X via the language of
polyhedral divisors.

Theorem 2.14. — Let (D ,F ) ∈ CPDiv(Γ,S ) be a colored polyhedral
divisor on an open semi-projective subvariety Γ ⊆ Mod(S). Then the affine
scheme X0(D ,F ) = SpecR(C(D) ∩ QΣ,F ) is a B-chart of ModG(X ).
Any B-chart of ModG(X ) arises from a colored polyhedral divisor as above.
Therefore any simple G-model of X is of the form

X(D ,F ) := G ·X0(D ,F ) ⊆ ModG(X ).
The algebra of U -invariants k[X0(D ,F )]U is identified with A(Γ,D).

Proof of Theorem 2.14. — Let us fix a colored polyhedral divisor
(D ,F ) ∈ CPDiv(Γ,S ).

Associated to it, we let E := C(D) ∩QΣ tF , where both sets C(D) ∩QΣ
and F are seen as sets of valuations of the function field k(X ). We start by
proving that X0(D ,F ) satisfies Conditions (i) and (ii) of Lemma 2.11. We
naturally have the following equivalences

ξ = f ⊗ χm ∈ R(C(D) ∩QΣ,F )U

⇐⇒ ∀ v ∈ C(D) ∩QΣ,∀ D ∈ F , v(ξ) > 0 and vD(ξ) > 0
⇐⇒ ∀ Y ⊆ Γ,∀ a ∈ DY ,∀ p ∈ σ, vY (f) + 〈m, a〉 > 0 and 〈m, p〉 > 0,
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for any homogeneous element ξ of AM . Hence R(C(D)∩QΣ,F )U = A(Γ,D)
and by [4, Theorem 3.1], Condition (ii) is verified. Let E0 ⊆ E be a finite set.
Denote by E1 and E2 the subsets of E0 of central and non-central valuations,
respectively. The elements of E1 can be represented as elements in σ :=
Tail(D), in the sense that

E1 ⊆ {[ · , p, 0] ∈ Q | p ∈ σ}.

Thus, we may find m ∈M such that for any v ∈ E1 we have v(1⊗χm) > 0.
Moreover, let f ∈ k(S)? such that v(f ⊗ χm) > 0 for all v ∈ E2. As D is a
proper polyhedral divisor, the field of fractions of A(Γ,D) is equal to that
of AM , and so there exist homogeneous elements ξ, ξ′ of A(Γ,D) such that
f ⊗ χm = ξ/ξ′. Hence v(ξ) > 0 for all v ∈ E and

w(ξ) > w(ξ)− w(ξ′) = w(f ⊗ χm) > 0

for all w ∈ E0, yielding Condition (i) of Lemma 2.11. This shows that
X0(D ,F ) is a B-chart of ModG(X ).

Conversely, let X0 be a B-chart of ModG(X ). Since k[X0] is a Krull ring,
we may write

k[X0] =
⋂

D∈D(X )tF

OvD ∩
⋂
v∈U

Ov,

where D(X ) stands for the set of prime divisors of X that are not B-stable
(see [69, Section 1.4], [72, Section 13]). Note that this set does not depend
on the choice of X and

k(Γ)⊗k k[Ω0] =
⋂

D∈D(X )

OvD so that k[X0] = R(U ,F ).

Given such a B-chart X0, the dependence of the sets U and F with respect
to X0 can be explained as follows. The set U corresponds to G-valuations
that are centered in the generic point of an irreducible closed subvariety of
X0. The set F is the set of colors of ModG(X ) that intersect X0. More-
over, we assume that the pair (U ,F ) satisfies Conditions (i) and (ii) of
Lemma 2.11. Let C be the linear span of (U ,F ) in Q. It is defined as the
subset

C = {[s, a, b] ∈ Q | b · s(f) + 〈m, a〉 > 0 for all f ⊗ χm ∈ R(U ,F )(B)}.

Let us show that k[X0] = R(C ∩QΣ,F ). Since U is a set of G-valuations
of k(X ), we have U ⊆ C ∩QΣ and therefore

R(C ∩QΣ,F ) ⊆ k[X0].

Let ζ ∈ k[X0] and take v ∈ C ∩QΣ. By Lemma 2.12, there exists ξ ∈ A(B)
M

such that

w(ξ) > w(ζ) > 0 and vD(ξ) > vD(ζ) > 0 for all w ∈ U , D ∈ F
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and v(ζ) = v(ξ). Remarking that these latter conditions imply that

ξ ∈ R(C ∩QΣ,F )U = k[X0]U

we get v(ζ) > 0. Hence ζ ∈ R(C ∩ QΣ,F ), yielding the desired equality
k[X0] = R(C ∩QΣ,F ).

In the sequel, we may assume that U = C∩QΣ. Now using Theorem 2.6,
there exist an open semi-projective subvariety Γ ⊆ Mod(S) and a proper
polyhedral divisor D on Γ such that k[X0]U = A(Γ,D).

We claim that k[X0] = R(C(D) ∩QΣ,F ). Indeed, by definition of the
set C, we have

C(D) ∩QΣ ⊆ C ∩QΣ and thus k[X0] ⊆ R(C(D) ∩QΣ,F ).

Let us assume that there exists ζ ∈ R(C(D) ∩QΣ,F ) such that ζ 6∈ k[X0].
A contradiction is expected. From this assumption there is a G-valuation
v ∈ U such that v(ζ) < 0. By Lemma 2.12, one can find a B-eigenfunction
ξ ∈ A(B)

M such that

(1) v(ξ) = v(ζ) < 0, and
(2) w(ξ) > w(ζ) > 0

for all w ∈ C(D)∩QΣtF . So Condition (2) implies that ξ ∈ A(Γ,D). Since
k[X0]U = A(Γ,D) the function ξ verifies w(ξ) > 0 for all w ∈ C ∩QΣ which
contradicts (1). This shows the equality k[X0] = R(C(D) ∩QΣ,F ).

We need to prove that the resulting pair (D ,F ) is a colored polyhedral
divisor. First, we may assume that Γ is smooth. Indeed, let ψ : Γ′ → Γ be
a projective desingularization and consider the pull back polyhedral divisor
ψ?(D), defined as ψ?(D)(m) = ψ?(D(m)) for any m ∈ σ∨ ∩M . Since ψ is a
projective fibration, we have the equality

H0(Γ,OΓ(D(m))) = H0(Γ′, ψ?OΓ(D(m))) = H0(Γ′,OΓ′(ψ?D(m)))

for any m ∈ σ∨ ∩M such that D(m) is an integral Cartier divisor. Hence
by normality, we have A(Γ,D) = A(Γ′, ψ?D). Note that ψ?(D) is proper
(see [4, Example 8.4(i)]). In the sequel, we assume Γ = Γ′.

In the next step, we deal with the polyhedral divisor D ′ over Γ corre-
sponding to the hypercone generated by C(D) ∩QΣ and %(F ). We wish to
have that D = D ′ (and therefore having C(D) generated by C(D)∩QΣ and
%(F )). Let Y1 ⊆ Loc(D) be a (smooth) dense affine open subset. Then by
construction

A(Y1,D|Y1) = R(C(D|Y1) ∩QΣ,F )U = A(Y1,D
′
|Y1

).
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Therefore we may assume that Γ is smooth and affine. Doing this reduc-
tion, the equality A(Γ,D) = A(Γ,D ′) implies that D = D ′ (see [4, Lem-
mata 6.4(iii), 9.1]).

It remains to check that the pair (σ,F ) is a colored cone, i.e. that %(F )
does not contain 0. But this latter is a consequence of Condition (i) of
Lemma 2.11. This finishes the proof of the theorem. �

As consequence of the proof of Theorem 2.14, we get the following known
result which says that colors and U -invariants determine uniquely a B-chart.

Corollary 2.15. — Let (D ,F ), (D ′,F ′) ∈ CPDiv(Γ,S ) be two col-
ored polyhedral divisors. Then the equalities

k[X0(D ,F )]U = k[X0(D ′,F ′)]U and F = F ′

hold if and only if X0(D ,F ) = X0(D ′,F ′).

Proof. — The “if” part is a consequence of the proof of Theorem 2.14
and the “only if” part of [72, Proposition 13.7(1)]. �

The next proposition states that a B-chart of ModG(X ) associated with
a colored polyhedral divisor (D ,F ) does not change if we modify the locus
of D by a birational projective morphism.

Proposition 2.16. — Let Γ,Γ′ be two semi-projective models of S with
a projective birational morphism ψ : Γ′ → Γ. Consider a colored polyhedral
divisor (D ,F ) ∈ CPDiv(Γ,S ) and denote by ψ?(D) the polyhedral divisor
defined by the equality ψ?(D)(m) = ψ?(D(m)) for any m ∈ Tail(D)∨. Then
(ψ?(D),F ) ∈ CPDiv(Γ′,S ) and we have

X0(D ,F ) = X0(ψ?(D),F ) in ModG(X ).

Proof. — It follows from the argument of the proof of Theorem 2.14. �

2.2. The local structure theorem

The local structure theorem is an important result which asserts that a
normal variety with an action of a connected reductive group can be locally
expressed as the product of an affine space and an affine variety with an ac-
tion of a Levi subgroup (see [21], [72, Section 4] for more information). In this
section, we investigate this result for simple normalG-varieties with spherical
orbits having trivial birational type. Using Theorem 2.14, we will translate it
into the language of colored polyhedral divisors, see Theorem 2.18. As usual,
the symbol S = SΩ = (∆p,Σ,A,M) denotes the homogeneous spherical
datum of the spherical homogeneous G-space Ω.
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We start by recalling the notion of localization of homogeneous spherical
data (cf. [51], [52, Section 3.2]). We first consider a subset ∆a ⊆ ∆ of the
set of simple roots of (B, T ). Then the localization of S with respect to ∆a

is the datum

Sa = (∆p
a,Σa,Aa,M), where


Σa = Σ ∩ vectQ(∆a),
∆p
a = ∆p ∩∆a,

Aa = {D ∈ A | ζ(D) ∩∆a 6= ∅}.
The symbol ζ(D) denotes the set of roots α ∈ ∆ such that the associated
minimal parabolic subgroup Pα moves D. It is a homogeneous spherical
datum for the Levi subgroup of G corresponding to ∆a. Let us fix a set of
colors F of Ω. The case which we will encounter is when

∆a = ∆? = ∆?,F := ∆ \
⋃
D 6∈F

ζ(D).

We denote by S? = (∆p
?,Σ?,A?,M) the corresponding homogeneous spher-

ical datum.

Let us explain the meaning of this operation in terms of spherical ho-
mogeneous spaces. For the parabolic subgroup P associated with ∆? and
a Levi decomposition P = G? n Pu, the datum S? corresponds to the
spherical homogeneous G?-space Ω? satisfying the following property (see
for instance [31, Proposition 3.2]). Considering a colored cone (σ,F ) and
the simple spherical embedding W of Ω attached to it, we may define the
B-chart

W0 = W \
⋃

D∈FΩ\F

D̄.

By the local structure theorem (see [72, Section 4.2]), we have a decom-
position Pu ×W? ' W0, where W? is a G?-stable closed subvariety of W0
which is spherical for the acting group G?. The open G?-orbit in W? is G?-
isomorphic to Ω?. In the sequel, we will denote by the letter F? the set
of colors of Ω?. Note that the spherical G?-variety W? is described by the
colored cone (σ,F?).

In order to study the local structure for the simple G-variety X =
X(D ,F ) associated with the colored polyhedral divisor

(D ,F ) ∈ CPDiv(Γ,S ),
we need to introduce the intermediate affine G?-variety X?. Its definition is
stated in the next paragraph. We keep the same notation as before for the
spherical homogeneous G?-space Ω?.
We now consider the multiplicity-free rational G?-module

k[Ω?] =
⊕
λ∈Λ

Vλ.
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Here Λ ⊆ M is a satured semigroup of dominant weights, and Vλ is the
simple G?-submodule associated with λ. For all λ, µ ∈ Λ the subset Vλ · Vµ
is a direct sum of simple submodules Vν . The possible differences λ+ µ− ν
belong to the semigroup generated by Σ?. In particular, the dual of the
cone generated by the possible differences ν − λ − µ (belonging to −Σ?) is
exactly the valuation cone V? of Ω? (see [18, Section 1.2, Proposition]). More
precisely, let us define the partial order 6Λ on Λ by letting µ 6Λ λ if λ−µ is
a non-negative integral linear combination of elements of Σ?. Thus, we have
the G?-module inclusion

Vλ · Vµ ⊆
⊕

ν6Λλ+µ
Vν .

Lemma 2.17. — Consider a colored polyhedral divisor

(D ,F ) ∈ CPDiv(Γ,S ).

Then the subset

A?(Γ,D) :=
⊕

λ∈Tail(D)∨∩M

H0(Loc(D),OLoc(D)(D(λ)))⊗kVλ ⊆ k(Γ)⊗k k(Ω?)

is a G?-stable subalgebra. Moreover, the G?-scheme X? = SpecA?(Γ,D)
identifies with the G?-model of X? = Γ × Ω? corresponding to the colored
polyhedral divisor (D ,F?).

Proof. — For the first claim, we only need to show that if λ, µ, ν ∈ Λ
satisfy ν 6Λ λ + µ, then D(ν) > D(λ + µ), i.e., D(ν) − D(λ + µ) is an
effective Q-divisor. Let V (DY ) be the set of vertices of DY . We recall that
for such λ, µ, ν we have ν−λ−µ ∈ V∨? , where V? is the valuation cone of Ω?.
Since Σ? ⊆ Σ, we have −Σ? ⊆ −Σ and therefore by duality the inclusions
V (DY ) ⊆ V ⊆ V? for any prime divisor Y ⊆ Γ. Hence we obtain that

min
v∈DY

〈ν, v〉 − min
v∈DY

〈λ+ µ, v〉 > min
v∈DY

〈ν − λ− µ, v〉 > 0,

yielding the first claim. By properness of D , the scheme X? is a G?-model of
X? (see [72, Theorem D5]). Finally, the colored polyhedral divisor (D ,F?)
describes X? since it is a B-chart (see [72, Corollary 13.10] and Theo-
rem 2.14). �

The next result determines the local structure of a simple G-model of X
in terms of its colored polyhedral divisor.

Theorem 2.18. — Let P ⊆ G be the parabolic subgroup associated with
the set of simple roots ∆?. The local structure for the simple G-variety
X = X(D ,F ) can be expressed as follows. Consider the B-chart X0 =
X0(D ,F ) ⊆ X attached to the colored polyhedral divisor (D ,F ). Then there
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exist a Levi decomposition P = Pu n G? and a closed G?-stable subvariety
X? ⊆ X0 such that the map

π? : P ×G? X? = Pu ×X? → X0, (u, x) 7→ u · x
is a P -isomorphism. The variety X? is the variety defined in Lemma 2.17
and it corresponds to the colored polyhedral divisor (D ,F?).

Proof. — Consider the parabolic subgroup P1 = {g ∈ G | g · X0 ⊆ X0}
that stabilizes the B-chart X0. By construction of the B-chart X0 (see the
comment after [72, Corollary 13.9]), we have the equality

X0 = X(D ,F ) \
⋃

D∈FΩ\F

D̄,

where we identify colors of Ω with colors of X(D ,F ). Indeed, X(D ,F ) has
a G-stable dense open subset G-isomorphic to Γ0 × Ω, where Γ0 ⊆ Γ is an
open subset. To any color D ∈ FΩ the closure D̄ of Γ0 × D in X(D ,F )
defines a color and each of them is obtained in this way. Hence P1 coincides
with the parabolic subgroup P preserving FΩ \F .

Consequently, by [70, Section 5, Lemma 2], there exists a closed G?-stable
subvariety Z ⊆ X0 such that the map

π? : P ×G? Z = Pu × Z → X0, (u, x) 7→ u · x
is a P -isomorphism. Let us show that Z is G?-isomorphic to X?. Denoting
by U? (resp. B?) the maximal unipotent subgroup G? ∩ U (resp. the Borel
subgroup G? ∩B), we obtain that

k[X0]U = A(Γ,D) = k[Z]U? and k(X0)B = k(Γ) = k(Z)B? .
Moreover, by identifying the complement of the union of the colors of FΩ\F
in Ω with the product Pu × Ω? and using the map π?, it follows that the
G?-variety Z has a G?-stable dense open subset G?-isomorphic to Γ0 × Ω?.
We conclude that Z is G?-isomorphic to X?. This finishes the proof of the
theorem. �

2.3. Some technical lemmata

In this section, we collect some technical results needed for our clas-
sification problem. The following classical lemma is a consequence of [67,
Section 5, Theorem 3] and [72, Theorems 12.11, 12.13]. It is an equivariant
version of the valuative criterion of properness and separateness.

Lemma 2.19. — If X is an integral scheme of finite type over k with
a G-action, then X is separated over k (resp. proper over k) if and only if
any G-valuation ν of k(X) has at most one center (resp. exactly one center)
in X.
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Let us recall some notation originally introduced in [5, Section 7]. Let
(D ,F ) ∈ CPDiv(Γ,S ) be a colored polyhedral divisor, where Γ is a smooth
semi-projective variety, and consider s a discrete valuation on the function
field k(Γ) with center a schematic point ξ ∈ Γ. Since Γ is smooth, any Weil
divisor is locally described by a hypersurface and so for any prime Y ⊆ Γ
we denote by fY the local equation of Y near the schematic point ξ. The
symbol s(D) will stand for the polyhedron

s(D) =
∑
Y⊆Γ

s(fY ) ·DY ⊆ NQ.

If s is trivial, then we make the convention that s(D) is equal to the tail of
D . Let m ∈ Tail(D)∨ such that D(m) is an integral Cartier divisor and let
f be a local equation of D(m) near ξ. The polyhedron s(D) is constructed
in a such way that minv∈s(D)〈m, v〉 = s(f).

Lemma 2.20. — Let (D ,F ) ∈ CPDiv(Γ,S ) be a colored polyhedral di-
visor on a smooth semi-projective variety Γ and let ν = [s, p, `] ∈ Q be a
G-valuation on k(X ). Denote by X = X(D ,F ) the simple G-model of X
associated with (D ,F ). Then ν has a center in X if and only if the valuation
s has center a schematic point of Γ and{

p/` ∈ s(D) if ` 6= 0,
p ∈ Tail(D) if ` = 0.

Proof. — Let X0 = X0(D ,F ). We start by using a similar argument
as in the proof of [5, Lemma 7.7]. Assume that ν has a center ζ ∈ X.
Since ζ is the generic point of a G-cycle X1, we have X0 ∩ X1 6= ∅ and
this implies that k[X0] ⊆ Oν . Hence restricting the valuation ν to k(Γ0),
where Γ0 := Spec k[Γ], and considering the projective morphism Γ→ Γ0, we
conclude by the valuative criterion of properness that s = ν|k(Γ) has a center
in Γ. Moreover, the inclusion A(Γ,D) = k[X0]U ⊆ Oν and [5, Lemma 7.7]
imply that p/` ∈ s(D) if ` 6= 0 and p ∈ Tail(D) otherwise.

Let us show the converse. By loc. cit. we directly have that A(Γ,D) ⊆
Oν . Now using [72, Lemma 19.12], for any f ∈ k[X0] there exists a B-
eigenfunction α ∈ k[X0](B) ⊆ A(Γ,D) such that ν(f) = ν(α) > 0. Hence
ν has a center in X0 and therefore in X. This completes the proof of the
lemma. �

The next result is a direct consequence of Lemma 2.20.

Lemma 2.21. — Let (D ,F ) ∈ CPDiv(Γ,S ) be a colored polyhedral di-
visor. Consider the sheaf of OLoc(D)-algebras

A? =
⊕

λ∈σ∨∩M

OLoc(D)(D(λ))⊗ Vλ.
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Here Ω? is the homogeneous space obtained from S by localization with
respect to F (see Section 2.2) and k[Ω?] =

⊕
λ∈Λ Vλ is the decomposition in

irreducible representations. Then the natural morphism

q : SpecLoc(D) A? → Spec Γ(Loc(D),A?)

is proper and birational.

Proof. — The fact that the map q is birational comes from the fact that
the polyhedral divisor D is proper. We note that Γ(Loc(D),A?) is equal to
the intersection of the A?(V )’s, where V runs over the open dense subsets
of Loc(D). So we conclude that q is proper by applying [72, Theorem 12.13]
and Lemma 2.20. �

We now describe the invariant cycles of simple G-models of X via the
local structure theorem (see Theorem 2.18).

Lemma 2.22. — Let (D ,F ) ∈ CPDiv(Γ,S ) be a colored polyhedral
divisor. Denote by X0 = X0(D ,F ) the associated B-chart and let X =
G ·X0(D ,F ). Let Z be a G-cycle in X and let ν be the G-valuation centered
in its generic point. Then the following assertions hold.

(i) The intersection Z∩X0 is identified via the map π? of Theorem 2.18
with the product Pu × Z?, where Z? is the G?-cycle in X? with cor-
responding vanishing ideal

I(Z?) = {f ∈ k[X?] \ {0} | ν(f) > 0} ∪ {0}.

(ii) The correspondence Z 7→ Z? defines an injective map from the set
of G-cycles in X to the set of G?-cycles in X? and preserves the
inclusion order.

Proof. — Self evident. �

Remark 2.23. — The map Z 7→ Z? is not a bijection in general, see the
comment in [72, Remark 15.19].

2.4. Localization of colored polyhedral divisors

In this subsection, we study and classify certain open immersions be-
tween B-charts of ModG(X ). As in the case of normal varieties with a
torus action (see [5, Sections 3, 4]), we characterize these immersions in the
language of (colored) polyhedral divisors. In the sequel, we will denote by
(D ,F ) ∈ CPDiv(Γ,S ) a colored polyhedral divisor with tail the polyhedral
cone σ ⊆ NQ.
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Definition 2.24. — Let m ∈ σ∨ ∩M and let
f ∈ H0(Loc(D),OLoc(D)(D(m)))

be a nonzero global section. The localization of (D ,F ) with respect to the
homogeneous element f ⊗ χm is the colored polyhedral divisor (D ,F )f (or
(D ,F )mf if we want to specify the degree of f) defined as follows. First of
all, for any σ-polyhedron C ⊆ NQ we denote

face(C,m) = {v ∈ C | 〈m, v〉 6 〈m, v′〉 for all v′ ∈ C} ⊆ NQ;
it is a σ ∩m⊥-polyhedron. One can also denote by Γf the subset

Γ \ supp(div(f) + D(m)).
Then considering

Df =
∑
Y⊆Γf

face(DY ,m) · Y and Fm = {D ∈ F | %(D) ∈ m⊥},

the colored polyhedral divisor (D ,F )f is the pair (Df ,Fm). Note that the
properness of Df is a consequence of [5, Proposition 3.3]. Moreover, the
symbol Dy :=

∑
Y⊆Γ, y∈Y DY ⊆ NQ will stand for the fiber polyhedron over

the point y ∈ Γ.

As expected, the localization of a colored polyhedral divisor geometrically
translates into the usual localization of the corresponding B-eigenfunction.

Lemma 2.25. — Let X0 = X0(D ,F ) be a B-chart associated to the
colored polyhedral divisor (D ,F ). Let ξ = f⊗χm be a homogeneous element
of A(Loc(D),D). Then (D ,F )f is a colored polyhedral divisor describing
the B-chart (X0)ξ := X0 \ supp(div(ξ)).

Proof. — By [5, Proposition 3.3] we know that
k[X0]Uξ = k[X0((D ,F )f )]U .

Hence letting f1/ξ
r be in k[X0]ξ with f1 ∈ k[X0]\{0}, we have v(f1/ξ

r) > 0
for any G-valuation v in C(Df ) (by using Lemma 2.12). Since Fm ⊆ F , we
also have

vD(f1/ξ
r) = vD(f1)− r〈m, %(D)〉 = vD(f1) > 0

for any D ∈ Fm. This implies that k[X0]ξ ⊆ k[X0((D ,F )f )].

For the opposite inclusion, we remark that the B-chart (X0)ξ can be
described by a colored polyhedral divisor (Df ,F ′) over Γf and it remains to
establish the equality F ′ = Fm. By the preceding step, we have F ′ ⊆ F
and therefore
D ∈ F ′ ⇐⇒ ∀ r ∈ Z, vD(ξr) > 0 ⇐⇒ 〈m, %(D)〉 = 0 ⇐⇒ D ∈ Fm,

finishing the proof of the lemma. �
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The following lemma shows that open immersions of B-charts can be
expressed in terms of localizations of colored polyhedral divisors.

Lemma 2.26. — Let X ′0, X0 be two B-charts of ModG(X ). Denote by
(D ′,F ′), (D ,F ) the colored polyhedral divisors describing X ′0 and X0 re-
spectively and assume that F ′ ⊆ F .

(i) Then we have an inclusion X ′0 ⊆ X0 if and only if there exists a
finite family of elements α1 = f1⊗χm1 , . . . , αr = fr⊗χmr of k[X0]U
such that

G ·X ′0 = G · ((X0)α1 ∪ · · · ∪ (X0)αr )
and (X0)αi = (X ′0)αi for all i ∈ {1, . . . , r}.

(ii) Let Γ and σ ⊆ NQ be respectively the (smooth) locus and the tail of
D and assume that X ′0 ⊆ X0. Denote by X1 the relative spectrum
over Γ of the sheaf

A =
⊕

m∈σ∨∩M
OΓ(D(m)).

Consider the contraction map r : X1 → X0//U and the quotient
morphism π : X1 → Γ. Then the subvariety

Γ′1 := π(r−1(X ′0//U)) ⊆ Γ
is open and semi-projective. Moreover, let

D1 =
∑
Y⊆Γ′1

D1
Y · Y, where D1

Y =
⋃

Y ∩(Γ′1)fi 6=∅

face(DY ,mi),

and write F 1 for the set
⋃r
i=1 Fmi . Then the pair (D1,F 1) is a

colored polyhedral divisor describing X ′0.

Proof.

(i). — Let us show the direct implication. Since X ′0 is an affine dense
open subset of X0, the complement D = X0 \X ′0 is pure of codimension 1.
So the closure of the irreducible components of D in X := G · X0 are de-
scribed by G-valuations and colors. Let ζ be the generic point of a G-cycle of
X(D ′,F ′) or a color intersecting X ′0. Then using Lemma 2.12, there exists
a homogeneous function aζ ∈ k[X0]U such that aζ vanishes on D and is
nonzero at ζ. Let X2 :=

⋃
ζ(X0)aζ , where (X0)aζ stands for the localization

of X0 with respect to aζ . Therefore X(D ′,F ′) = G ·X2 and since we only
consider finitely many (X0)aζ for defining X2, we conclude. For the converse,
our assumption gives X(D ′,F ′) ⊆ X(D ,F ). As F ′ ⊆ F it follows that

X ′0 = X(D ′,F ′) \
⋃

D∈FΩ\F ′
D̄ ⊆ X(D ,F ) \

⋃
D∈FΩ\F

D̄ = X0,
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yielding Assertion (i).

(ii). — The fact that Γ′1 is a semi-projective open subset of Γ and that
(D1,F 1) is a colored polyhedral divisor is a consequence of the proof of [5,
Proposition 4.3]. By the proof of Assertion (i), X ′0 has an open subset of the
form

Ω1 := (X0)α1 ∪ · · · ∪ (X0)αr
intersecting any of its color and G-cycle. From the description of k[X ′0] in
terms of valuation rings, we observe that k[Ω1] = k[X ′0]. Moreover for an
arbitrary B-eigenfunction ξ of k(X ), we have

ξ ∈ k[Ω1]U ⇐⇒ ξ ∈
r⋂
i=1

k[(X0)αi ]U

⇐⇒ ξ ∈
r⋂
i=1

A(Γ′fi ,Dfi)

⇐⇒ ξ ∈ A(Γ′1,D1),

and F ′ = F1, whence the result. �

With the same notation as in Lemma 2.26, we will write
⋃
i∈I(D ,F )αi

for the colored polyhedral divisor (D1,F 1).

Corollary 2.27. — Let X0 be a B-chart of ModG(X ) built from a
colored poyhedral divisor (D ,F ) ∈ CPDiv(Γ,S ) and consider two colored
polyhedral divisorsD1 =

∑
Y⊆Γ

D1
Y · Y,F 1

 =
⋃
i∈I

(D ,F )αi

and

D2 =
∑
Y⊆Γ

D2
Y · Y,F 2

 =
⋃
j∈J

(D ,F )βj

that describe B-equivariant open subsets

X1
0 :=

⋃
i∈I

(X0)αi and X2
0 :=

⋃
j∈J

(X0)βj

of X0 as in Lemma 2.26. Then the intersection can be computed as∑
Y⊆Γ

D1
Y ∩D2

Y · Y,F 1 ∩F 2

 =

 ⋃
(i,j)∈I×J

Dfigj ,
⋃

(i,j)∈I×J

Fwi+yj


and corresponds to the B-chart X1

0 ∩ X2
0 , where αi = fi ⊗ χwi and βj =

gj ⊗ χyj .
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Proof. — This immediately follows from the equivalences

ξ ∈ k[X1
0 ∩X2

0 ]U ⇐⇒ ξ ∈
⋂

(i,j)∈I×J

k[(X0)αi ∩ (X0)βj ]U

⇐⇒ ξ ∈
⋂

(i,j)∈I×J

k[(X0)αiβj ]U

⇐⇒ ξ ∈
⋂

(i,j)∈I×J

A(Loc(Dfigj ),Dfigj )

⇐⇒ ξ ∈ A

Loc

 ⋃
(i,j)∈I×J

Dfigj

 ,
⋃

(i,j)∈I×J

Dfigj


and the equality F 1∩F 2 =

⋃
(i,j)∈I×J Fwi+yj by remarking that the poly-

hedral divisor Dfigj is obtained by the component-wise intersection between
Dfi and Dgj . �

The next two lemmata are preparations for our next main result, namely
Theorem 2.30.

Lemma 2.28. — Let (D ,F ) ∈ CPDiv(Γ,S ) be a colored polyhedral divi-
sor with smooth locus Γ. For any G-orbit O of a simple model X = X(D ,F )
of X , there exists a closed point y ∈ Γ, a G-valuation v = [µ, p, `], where
` 6= 0, p/` ∈ Dy and y is the center of µ, such that v is centered in the
generic point of Ō.

Proof. — Denote by X0 the B-chart associated with (D ,F ) and let P
be the parabolic subgroup stabilizing X0. Using Theorem 2.18, there exist a
P -isomorphism X0 ' Pu×X?. We refer to Lemma 2.17 for the definition of
X?. Let X̂? = SpecA? be the relative spectrum over Γ of the sheaf

A? =
⊕

λ∈σ∨∩M

OΓ(D(λ))⊗k Vλ,

where σ is the tail of D . Then as in Lemma 2.21, we have the natural proper
birational P -equivariant morphism q : X̂0 → X0, where X̂0 = Pu × X̂?. By
Lemma 2.22, there exists a P -orbit Ô inside a fiber (π)−1(y) such that q(Ô)
is dense in the closure of X0 ∩O, where π : X̂0 → Γ is the quotient map. So
without loss of generality, we may assume that Γ is a smooth affine variety.

Now since Γ is smooth and affine, the polyhedral divisor D◦ over Γ de-
fined by the equality C(D◦) = C(D)∩QΣ is proper. Moreover, by combining
Lemma 2.20 and [72, Theorem 12.13], we get a natural G-equivariant projec-
tive morphism X(D◦, ∅) → X(D ,F ). Hence we may assume that D = D◦

and F = ∅. In this new situation, X? becomes SpecA(Γ,D) and we conclude
by using the description of torus orbits in [4, Section 7]. �
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Lemma 2.29. — Let (D ,F ), (D ′,F ′) ∈ CPDiv(Γ,S ) be two colored
polyhedral divisors with tails σ, σ′ living in NQ and smooth loci Γ1,Γ′1, re-
spectively. Assume that Γ′1 ⊆ Γ1, C(D ′) ⊆ C(D), and F ′ ⊆ F . Then the
induced B-equivariant dominant morphism X0(D ′,F ′) → X0(D ,F ) is an
open immersion if and only if for any geometric valuation µ centered in
a schematic point ζ of Γ′1 there exist m ∈ σ∨ ∩M and a nonzero section
f ∈ H0(Γ1,OΓ1(D(m))) such that (F ′)m = Fm,

ζ ∈ (Γ1)f ⊆ Γ′1, µ(D ′) ∩ V = face(µ(D),m) ∩ V,
and face(ν(D),m) ∩ V = face(ν(D ′),m) ∩ V

(?)

for any other valuation ν centered in (Γ1)f . Here V denotes the valuation
cone of Ω.

Proof.

⇒. — Assume that we have a B-equivariant immersion
X0(D ′,F ′)→ X0(D ,F ).

Let µ be a geometric valuation centered in a generic point of Γ′1. Consider
a G-valuation v = [µ, p, `] such that ` 6= 0 and p/` belongs to the relative
interior of µ(D ′)∩V. Then by Lemma 2.20, v is centered in the generic point
of a G-cycle Z ⊆ X(D ′,F ′), and any other choice as before of (p, l) gives the
same G-cycle. Using Lemma 2.26(i), there exists m ∈ σ∨∩M and a nonzero
f ∈ H0(Γ1,OΓ1(D(m))) such that the localization X0(D ,F )α intersects Z
andX0(D ,F )α = X0(D ′,F ′)α, where α = f⊗χm. From Lemma 2.20 we get
that µ is centered in (Γ1)f and the inclusion µ(D ′)∩V ⊆ face(µ(D),m)∩V,
the reverse inclusion is performed in the same way. Condition (?) follows
from the equality X0(D ,F )α = X0(D ′,F ′)α.

⇐. — This is the combinatorial translation of the characterization of
Lemma 2.26(i). �

The next theorem gives a combinatorial description of B-equivariant open
immersions of B-charts.

Theorem 2.30. — Let (D ,F ), (D ′,F ′) ∈ CPDiv(Γ,S ) be two colored
polyhedral divisors with tails σ, σ′ living in NQ and smooth loci Γ1,Γ′1, re-
spectively. Assume that Γ′1 ⊆ Γ1, C(D ′) ⊆ C(D), and F ′ ⊆ F . Then the
induced B-equivariant dominant morphism X0(D ′,F ′) → X0(D ,F ) is an
open immersion if and only if for any y ∈ Γ′1 there exist m ∈ σ∨ ∩M and a
nonzero section f ∈ H0(Γ1,OΓ1(D(m))) such that (F ′)m = Fm,

y ∈ (Γ1)f ⊆ Γ′1, D ′y ∩ V = face(Dy,m) ∩ V,

and face(Dz,m) ∩ V = face(D ′z,m) ∩ V
for any z ∈ (Γ1)f .
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Proof. — According to Lemma 2.28, we may restrict the characterization
of Lemma 2.29 to the case of fiber polyhedra. �

2.5. Colored divisorial fans

We now describe the G-models of X , that is, all normal G-varieties that
are G-birational to X = S × Ω in terms of geometric and combinatorial
objects which we will call colored divisorial fans. In the special case of torus
actions on normal varieties, this class of objects restricts to those of divisorial
fans introduced in [5, Definition 5.2] and encompasses the defining fans of
toric varieties.

Without loss of generality, we will assume that all polyhedral divisors are
defined on a smooth semi-projective variety Γ (where Γ is a model of S) by
taking a pull back by a projective resolution of singularities (compare with
Proposition 2.16) if necessary. We recall that S denotes the homogeneous
spherical datum of the spherical homogeneous G-space Ω.

Here we give the definition of a colored divisorial fan.
Definition 2.31. — A colored divisorial fan associated with the pair

(Γ,S ) is a finite set
E = {(D i,F i) ∈ CPDiv(Γ,S ) | i ∈ I}

of colored polyhedral divisors satisfying the following properties.

(i) The intersections (D i ∩Dj ,F i ∩F j), for all i, j ∈ I, belong to E ,
where

D i ∩Dj :=
∑
Y⊆Γ

D i
Y ∩Dj

Y · Y.

(ii) For all i, j ∈ I, the natural maps
X0(D i,F i)← X0(D i ∩Dj ,F i ∩F j)→ X0(Dj ,F j)

are open immersions (see Theorem 2.30 for a geometric and combi-
natorial description).

(iii) For any geometric valuation µ on the function field k(Γ) = k(S) we
have

µ(D i) ∩ µ(Dj) ∩ V = µ(D i ∩Dj) ∩ V
for all i, j ∈ I, where V is the valuation cone of the spherical homo-
geneous space Ω (see Section 2.3 for the definition of µ(D i)).

We define the locus of E as
Loc(E ) :=

⋃
(D,F)∈E

Loc(D) ⊆ Γ.
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Figure 2.1.

Example 2.32. — A spherical G-variety can be seen as a G-model (or an
embedding) of its open G-orbit Ω. Classically, such G-varieties are described
by colored fans (see [38, Section 3]). Let (σ1,F1), (σ2,F2) be two colored
cones of Ω. We say that (σ1,F1) is essential if its relative interior meets
the valuation cone V. Moreover, (σ1,F1) is a face of (σ2,F2) if σ1 is a face
of σ2 whose its relative interior intersects V and F1 = %−1(σ1) ∩ F2. A
colored fan F is a finite set of essential colored cones of Ω, stable under the
face relation, and such that for any v ∈ V there exists at most one colored
cone (σ,F ) ∈ F with v in the relative interior of σ. Each essential colored
cone exactly corresponds to a simple G-model of Ω and the open immersions
of B-charts are translated into their face relations. One may recover it from
Theorem 2.30. Colored divisorial fans are vast generalizations of colored fans,
where S is no longer assumed to be 0-dimensional.

Example 2.33 (Süss pictures and torus actions). — Figure 2.1 illustrates
a usual divisorial fan over the projective line. The three first polyhedral sub-
divisions represent the non-trivial polyhedral coefficients. The fourth poly-
hedral subdivision consists of their Minkowski sums. Moreover, there are
exactly four distinct polyhedral divisors with complete locus and maximal
tail cone. According to the classification of Süss in [68] of Fano threefolds ad-
mitting a faithful 2-torus action, this divisorial fan defines a smooth quadric
threefold of P4 with Picard number 1.

We now enunciate the main result of this section which classifiesG-models
of X .

Theorem 2.34. — Let Γ be a smooth projective model of the variety S
and let S be the homogeneous spherical datum of the spherical homogeneous
G-space Ω. Denote by E a colored divisorial fan on (Γ,S ). Then the open
subscheme

X(E ) :=
⋃

(D,F)∈E

X(D ,F ) ⊆ ModG(X )

is a G-model of X = S × Ω in which the open subsets X(D ∩D ′,F ∩F ′)
are identified with the intersections

X(D ,F ) ∩X(D ′,F ′) for all (D ,F ), (D ′,F ′) ∈ E .

Conversely, any G-model of X arises in this way.
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Proof. — Let E = {(D i,F i)}i∈I be a colored divisorial on (Γ,S ). We
start by proving the first claim, namely that the open subscheme X(E ) in
ModG(X ) is obtained by gluing chartsX(D ,F ) for (D ,F ) ∈ E , where their
intersections are given by the intersections of colored polyhedral divisors. We
first observe that we have the commutative diagram

Xj
0

// X0(D i,F i) X`
0

oo

X0(D i ∩Dj ,F i ∩F j) ∩X0(D i ∩D`,F i ∩F `)

OOjj 44

Here Xj
0 and X`

0 are defined by the equalities

Xe
0 = X0(D i ∩De,F i ∩F e)

for e = j, `. Note that the horizontal maps are the open immersions given by
the definition of a divisorial fan. Moreover, the other maps are clearly open
immersions.

The natural morphisms
X0(D i,F i)← X0(D i ∩Dj ,F i ∩F j)→ X0(Dj ,F j)

induce the open immersions
X(D i,F i)← X(D i ∩Dj ,F i ∩F j)→ X(Dj ,F j)

which we denote respectively by ηij and ηji. Put Xij = ηij(X(D i ∩ Dj ,
F i ∩ F j)). To see these maps define a gluing, we need to check that the
cocycle conditions are satisfied, namely:

ϕij(Xij ∩Xi`) = Xji ∩Xj` and ϕi` = ϕj` ◦ ϕij ,

where ϕij is the composition ηji ◦ η−1
ij . Since the maps ϕij are inclusions of

open subsets in the scheme ModG(X ), it suffices to show that

G · (X0(D i ∩Dj ,F i ∩F j) ∩X0(D i ∩D`,F i ∩F `))
= X(D i ∩Dj ∩D`,F i ∩F j ∩F `),

which follows from Corollary 2.27. Hence the open subset X(E ) is an integral
scheme of finite type over k in which the open subsets X(D ∩ D ′,F ∩F ′)
are identified with the intersections

X(D ,F ) ∩X(D ′,F ′) for all (D ,F ), (D ′,F ′) ∈ E .

We now show that X(E ) is separated over k by using Condition (iii) of
Definition 2.31 and Lemma 2.19. We follow the argument of the proof of [5,
Proposition 7.5]. Let ν = [s, p, `] be a G-valuation on k(X ) having centers
the schematic points ξ and ξ′ in X(E ). We may assume that ` 6= 0. Then
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ξ, ξ′ belong respectively to some dense open G-stable subsets X(D ,F ) and
X(D ′,F ′), where (D ,F ), (D ′,F ′) ∈ E . By Lemma 2.20, the restriction
s = ν|k(Γ) has a unique center in Γ and

p ∈ s(D) ∩ s(D ′) ∩ V = s(D ∩D ′) ∩ V.

This implies by Lemma 2.20 that ν has a center in X(D ∩D ′,F ∩F ′). As
X(D ,F ) and X(D ′,F ′) are separated over k, we obtain that ξ = ξ′. By
Lemma 2.19, we conclude that the subscheme X(E ) is a G-model of X .

Conversely, let us consider X a G-model of X . By the Sumihiro theorem
(see [67, Theorem 1 and Lemma 8], [38, Theorem 1.3]) there exists a G-stable
open covering (Xi)i∈I of X by simple G-varieties, where I is a finite set and
Xi ⊆ ModG(X ) for any i ∈ I. By Theorem 2.14, each Xi is described by
a colored polyhedral divisor (D i,F i) ∈ CPDiv(Γi,S ) on a normal semi-
projective variety Γi ⊆ Mod(S). We follow the argument of the proof of [5,
Theorem 5.6]. Let Γ̄i be a projective compactification of Γi such that the
complement Γ̄i \ Γi is the support of a semi-ample divisor. In this way, any
colored polyhedral divisor (D i,F i) is defined on Γ̄i by adding empty coeffi-
cients if necessary. Moreover the inclusions Xi ∩Xj ⊆ Xi induce birational
maps between Γ̄i and Γ̄j . By resolving the indeterminacies and using the Hi-
ronaka theorem, we obtain a smooth projective variety Γ ⊆ Mod(S) which
dominates all the Γ̄i’s and is compatible with the initial rational maps. Then
using Lemma 2.26, Corollary 2.27 and Proposition 2.16, we may choose the
colored polyhedral divisors (D i,F i)’s such that their pull-back to Γ forms
a set E satisfying Conditions (i) and (ii) of Definition 2.31.

It remains to show that E verifies the Condition 2.31(iii). Let us assume
that this condition does not hold for E . Then there exist (D ,F ), (D ′,F ′) ∈
E and a geometric valuation µ on k(S) such that

µ(D ∩D ′) ∩ V ( µ(D) ∩ µ(D ′) ∩ V.

Let p ∈ µ(D∩D ′)∩V and assume that p does not belong to µ(D)∩µ(D ′)∩V.
Then by Lemma 2.20, the G-valuation ν = [ν, p, 1] has no center in X(D ∩
D ′,F ∩F ′) but has center ξ, ξ′ in X(D ,F ) and X(D ′,F ′), respectively.
Since by the preceding steps we have

X(D ,F ) ∩X(D ′,F ′) = X(D ∩D ′,F ∩F ′),

we conclude that ξ 6= ξ′, which contradicts the separateness of X and com-
pletes the proof of the theorem. �

Our next task is to characterize the completeness property among the
G-models of X . For this purpose, we introduce the appropriate notion for
colored divisorial fans.
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Definition 2.35. — Let E be a colored divisorial fan on (Γ,S ). Recall
that V is the valuation cone of the spherical homogeneous G-space and the
variety Γ is always assume to be smooth and projective. We say E is complete
if for any geometric valuation s on the function field k(Γ) the condition⋃

(D,F)∈E s(D) ∩ V = V holds. In particular, this implies that Loc(E ) = Γ.

Proposition 2.36. — Let E be colored divisorial fan defining a G-model
X of X . Then the scheme X is proper over k if and only if E is complete.

Proof. — We will use the criterion of Lemma 2.19. From this result, the
fact that the completeness of E implies that the k-scheme X is proper is
straightforward. Assume that X is complete. If

E :=
⋃

(D,F)∈E

s(D) ∩ V ( V,

then choosing a vector p ∈ V \ E, the G-valuation [s, p, 1] ∈ QΣ on k(X )
has a center in X. This gives a contradiction and completes the proof of the
proposition. �

2.6. Explicit construction

This subsection aims to construct explicitly the simple G-variety asso-
ciated with a colored polyhedral divisor (D ,F ) via an embedding into a
projective space. We will follow the idea of the proof of [38, Theorem 3.1].

We start by taking homogeneous generators hi = fi ⊗ χmi (1 6 i 6 r)
of the M -graded algebra A(Γ,D), where every fi is in k(Γ)?. The functions
χmi considered as B-eigenfunctions on k(Ω) have their poles contained in
the subset

Z0 =
⋃

D∈FΩ\F

D ⊆ Ω,

where FΩ is the set of colors of Ω. Hence using that G is factorial (since
simply-connected), we may choose a function ξ0 ∈ k[G](B×H) with zero locus
equal to π−1

Ω (Z0) and such that
ξi := ξ0 · hi ∈ k(Γ)⊗k k[G] for 1 6 i 6 r,

where πΩ : G→ Ω is the natural projection.

Let V be the G-module generated by ξ0, ξ1, . . . , ξr in k(Γ) ⊗k k[G]. We
finally obtain a natural G-equivariant rational map

ι : Γ× Ω 99K P(V ∨).
In the next theorem, we may assume that the colored polyhedral divisor
(D ,F ) gives rise to a B-chart X0 in which every color D ∈ F contains a
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G-orbit of G · X0. From Lemmata 2.13 and 2.28, this is equivalent to ask
that there is one fiber polyhedron Dy (see Definition 2.24) whose relative
interior meets V.

Theorem 2.37. — Let X0 := X̄ ∩ {ξ0 6= 0} where X̄ is the closure of
the image of the map ι and let X = G · X0 ⊆ P(V ∨). The G-variety X is
G-isomorphic to X(D ,F ) and the B-chart X0(D ,F ) is identified with X0.

Proof. — Let Z be the affine cone arising from X̄ ↪→ P(V ∨). The grading
on k[Z] is given by

⊕
d∈NRd, where Rd is the subvector space generated by

monomials in elements of V of degree d. Moreover, we have
k[X0] = {f/ξd0 | f ∈ Rd, d ∈ N}.

From this we deduce that k[X0]U = A(Γ,D) (adapt the argument of [38,
Theorem 3.1]) and by [70, Section 3, Lemma 1] thatX0 (and soX) is normal.
Moreover, the rational map ι is induced by the inclusion

k[X0] ⊆ k(Γ)⊗k k(Ω).
Since D is proper, the map ι is birational. Hence, X is described by a colored
polyhedral divisor (D ,F ′) and it remains to show that F = F ′. Note that,
by construction, the irreducible components of the hyperplane ξ0 = 0 are
exactly the elements of FΩ \F . Therefore by [72, Proposition 13.7(1)] the
inclusion

k[X0] ⊆
⋂
D∈F

OvD implies that F ⊆ F ′.

By assumption, one can find a G-valuation ν = [s, p, `] with ` 6= 0 and p/` in
the relative interior of some fiber Dy. Then by Lemma 2.20, ν has a center
ξ ∈ X. Assume that ξ 6∈ D for some D ∈ F ′. By [72, Lemma 19.12] and
using that X0 ∩ D 6= ∅, one can find f ∈ k[X0](B) such that v(f) = 0 and
vD(f) > 0. But the fact that p/` is in the interior relative of Dy implies
that vD′(f) = 0 for all D′ ∈ F ′, which gives a contradiction and establishes
F = F ′. �

Example 2.38. — In this example,G = SL2×SL2. We consider the spher-
ical homogeneous G-space Ω = SL2 /U × SL2 /U , where U is a maximal
unipotent subgroup of SL2. Here M = N = Z2. We exactly have two colors
D1, D2 in Ω which are respectively sent on the first and second vectors of the
canonical basis. We denote by (D ,F ) the colored polyhedral divisor defined
by the equalities D = D0 · [0] + D1 · [1] + D∞ · [∞] and F = {D1}. The locus
of D is P1 and

D0 = [(1, 0), (1, 1)] + σ, D1 =
(
−1

3 , 0
)

+ σ, D∞ =
(
−5

8 , 0
)

+ σ,

with σ = Q>0(1, 0) + Q>0(1, 24) (see Figure 2.2). Using the natural G-
action on A2×A2, the irreducible representations inside k[Ω] are of the form
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D0 D1 D∞

1

1
1
3

5
8

Figure 2.2.

V (λ, ν) = E(λ)⊗k F (ν) (λ, ν ∈ Z>0) with

E(λ) =
⊕

i+j=λ,i,j>0
kxi0x

j
1 and F (ν) =

⊕
i+j=ν,i,j>0

kyi0y
j
1.

Then by [42, Example 2.6] we have A(P1,D) ' k[u, v, w, t]/(uv − w8 + t3),

where u 7→ y0, v 7→
(1− z)8

z23 x0
24y0

−1, w 7→ 1− z
z3 x0

3 and t 7→ (1− z)3

z8 x0
8.

Here z is a local coordinate of P1, i.e., k(P1) = k(z). The subvariety y0 = 0
in Ω corresponds to the color D2. Denote by V the G-submodule generated
by y2

0 , y0u, y0v, y0w, y0t in k(z)⊗k k(Ω). Then X̄ is the Zariski closure of the
image of the morphism

A1 \ {0} × Ω→ P(V ∨), (z, [M1], [M2]) 7→ [φz,[M1],[M2]],

where the linear form φz,[M1],[M2] is the usual evaluation function on the
triple (z, [M1], [M2]). Finally, by considering y0 as element of the bidual
V ' V ∨∨, the complement of {y0 = 0} in X̄ corresponds to the chart
X0(D ,F ).

3. Classification

In this section we present results to classify normalG-varieties with spher-
ical orbits. As explained in the introduction, this classification breaks into
two pieces: a birational part and a biregular part. In Section 3.1, we explain
how we can describe the equivariant birational type of a G-variety with
spherical orbits and how we can go back to the trivial equivariant birational
type case treated in Section 2. Finally, our main result is formulated in Sec-
tion 3.2 where we give a construction of any normal G-variety with spherical
orbits in terms of colored divisorial fans.
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3.1. Equivariant birational type

We start by collecting results on the birational type of a G-variety with
spherical orbits. Our starting point is the following theorem due to Alexeev
and Brion.

Theorem 3.1 ([2, Theorem 3.1]). — Let X be a G-variety with spherical
orbits. Then there exist a closed spherical subgroup H ⊆ G and a G-stable
dense open subset X1 ⊆ X such that any isotropy group of a point of X1 is
conjugate to H.

The homogeneous space Ω = G/H in the above statement will be called
the general orbit of X and H the stabilizer in general position. The reader is
referred to [62] for various results on the existence of a unique general orbit
for reductive group actions. We will also use the following lemma latter.

Lemma 3.2. — Let F be a finite group acting on an integral scheme X̃
of finite type over k. Then the following assertions hold.

(i) The F -action is faithfull if and only if it is generically free, i.e., for
a general point x ∈ X̃, the stabilizer Fx is trivial.

For the next points, assume that any F -orbit of X̃ is contained in an affine
open subset. For instance, this applies for the case where X̃ is covered by
F -stable quasi-projective open subsets.

(ii) ] The F -scheme X̃ admits a good categorical quotient γ : X̃ → X,
where X = X̃/F is an integral scheme of finite type over k.

(iii) ] If the F -action is free, then the quotient map γ : X̃ → X is an
étale morphism.

(iv) The field extension k(X̃)/k(X) is Galois with Galois group F if and
only if the F -action on X̃ is generically free.

Proof. — Assertion (i) follows from a classical argument: the complement
of the subset in which the F -action is free is the finite union of closed subsets⋃
F1
X̃F1, whereF1 runs over all subgroups of F of cardinality>1. Assertion(ii)

is a consequence of [55, p. 111, III, Theorem 1(A)]. For Assertion (iii), the
fact that γ : X̃ → X is a finite flat morphism is explained in [55, p. 112,
III, Theorem 1(B)]. Finally, the morphism γ is unramified since we work
over a base field of characteristic zero. Let us show Assertion (iv). Since the
extension k(X̃)/k(X) is separable, the number of points of a general fiber of

X̃ → X is [k(X̃) : k(X)].
Hence the F -action is generically free if and only if the cardinality of F is
[k(X̃) : k(X)]. This finishes the proof of the lemma. �
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The next lemma is a straightforward observation but useful for the sequel.
It determines the set of H-fixed points of the homogeneous space G/H. The
proof is left to the reader.

Lemma 3.3. — Let Ω be a homogeneous space G/H. Then we have the
equality

ΩH = {gH | g ∈ NG(H)} = NG(H)/H
and for any x ∈ ΩH the isotropy group Gx is equal to H.

By a Galois covering with Galois group F we mean a dominant finite
morphism γ : X̃ → X such that the field extension k(X̃)/k(X) is Galois with
Galois group F . The following classical theorem describes the birational type
of any G-variety having a general stabilizer in terms of its rational quotient
and its general orbit (see [23, Theorem 2.13]). It was inspired by the ideas of
Popov and Vinberg developed in [75, Section 2]. Note that the theorem was
also proved by Alexeev and Brion in [3, Section 3.1] for certain families of
affine spherical varieties. For reading convenience we give a detailed proof.

Theorem 3.4 ([23, Theorem 2.13]). — Let X be a G-variety having a
general G-orbit Ω = G/H (possibly not spherical). Then there exist a variety
S and a G-equivariant rational map

γ : X̃ := S × Ω 99KX

which is a finite Galois covering on a G-stable dense open subset. After
shrinking S, the map γ is constructed in a such way that it induces a Galois
covering S → S′ giving rise to a G-equivariant isomorphim between k(X̃ )
and the fraction field of k(S)⊗k(S′) k(X ), where k(X )G = k(S′).

Proof. — By the Rosenlicht theorem [63], [66, Satz 2.2], there exist a G-
stable dense open subset V ⊆ X such that every G-orbit is G-isomorphic
to Ω and a global geometric quotient π0 : V → S′ where S′ is a d-dimensional
variety. Note that the fibers of π0 are exactly the G-orbits of V and
they intersect the fixed point subscheme V H . Using the equality V H =⋃
x∈V (G · x)H and Lemma 3.3, we observe that all the isotropy groups

of points of V H for the G-action on V are equal to H. Let us take a d-
dimensional irreducible reduced closed subset S1 of V H sending dominantly
on S′ by the morphism π0; this latter being equivalent to find a closed
schematic point in the fiber of the generic point η ∈ S′ of π0|V ′ . By shrink-
ing S1 and S′ if necessary, one can find a variety S (via a Galois extension
of k(S1)) and a commutative diagram of finite morphisms

S
π2 //

π1 ��

S1

π0

��
S′
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such that π1 is a Galois covering. Therefore, we get a new commutative
diagram

S × Ω γ1 //

γ
%%

S ×S′ V

proj2
��
V

Here γ1 is defined by the formula γ1(s, gH) = (s, g · π2(s)) for all s ∈ S and
g ∈ G. By changing V by a G-stable open subset, we may assume that γ
(and therefore γ1) is surjective. Indeed, S1 is chosen in a such way that it
intersects a G-orbit of V taken in general position.

The fact that γ1 is injective is clear. Therefore applying the Zariski Main
Theorem, the map γ1 is a G-equivariant birational morphism. Finally, the
morphism proj2 is a finite morphism since it is obtained by base change of
a finite one. It is hence clear that γ is a Galois covering. This concludes the
proof of the theorem. �

Corollary 3.5. — Let X be a G-variety with a general orbit Ω = G/H
(possibly not spherical) and consider the rational map

γ : X̃ = S × Ω 99KX

obtained from Theorem 3.4. Let F be the corresponding Galois group acting
by G-equivariant birational transformations on X̃ . Then for any G-model
X of X , there exists an F -stable G-model X̃ of X̃ with a regular F -action
such that X = X̃/F .

Proof. — Let K = k(X ) and L = k(X̃ ). We consider a G-model X of
X . We define the variety X̃ as the normalization of X with respect to the
finite field extension L/K. One can construct X̃ as follows: denote by AL
the sheaf of OX -algebras associated with the presheaf

U 7→ ŌX(U) ⊆ L,

where ŌX(U) is the integral closure of OX(U) in the field extension L for
any dense open subset U ⊆ X. Then X̃ is the relative spectrum SpecX AL.
In particular, this normal scheme is finite over X, by [33, Section 1, Propo-
sition 1.2.4], it is separated over k and is therefore a model of X̃ . Moreover,
F acts regularly on X̃, has an open covering by F -stable affine subsets and
X is identified with the quotient X̃/F .

Let us show that the open subscheme X̃ ⊆ Mod(X̃ ) is a G-model of X̃ .
We may suppose that X is simple. Let X0 be a B-chart of X intersecting
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any G-orbit. Its coordinate ring can be regarded as

k[X0] =
⋂
v∈Q′

Ov ∩
⋂

D∈F ′∪D(X )

OvD ,

where (Q′,F ′) is an admissible pair as in [70, Theorem 3] and D(X ) is the
set of all prime divisors on any G-model of X that are not B-stable. Note
that Q′ is a set of G-valuations of K and F ′ is a set of colors. Using the
map γ, we deduce that the integral closure of⋂

D∈F ′∪D(X )

OvD in L is
⋂

D∈F∪D(X̃ )

OvD ,

where F consists of the irreducible components of γ−1(D) for D running
through F ′. Moreover, a discrete valuation v on K is G-invariant if and
only if any of its extensions on L is G-invariant. This follows from [72,
Corollary 19.6] and the fact that the Galois group F acts transitively on
the set of valuations rings of L dominating Ov (compare [54, Chapter 4,
Exercise 12.1]). Hence by considering the set Q′′ of valuations extending
those of Q′, the integral closure of k[X0] in L is

A =
⋂
v∈Q′′

Ov ∩
⋂

D∈F∪D(X̃ )

OvD .

Clearly, the pair (Q′′,F ) satisfies Conditions (i) and (ii) of Lemma 2.11.
We conclude that X̃0 := SpecA is a B-chart of ModG(X̃ ). As γ is a G-
equivariant map, the subset g · X̃0 coincides with the preimage of g · X0
under the natural map X̃ → X for any g ∈ G. Thus X̃ = G · X̃0 is a
G-model of X̃ . This completes the proof of the theorem. �

The next step is to give an interpretation of the equivariant birational
classes of G-varieties with spherical orbits in terms of Galois cohomology. Let
S′ be a variety with function field E = k(S′). Let us fix an algebraic closure Ē
of the field E. TheG-isomorphism classes of forms of theG-algebra E⊗kk(Ω)
over E are parameterized by the first pointed set of Galois cohomology

H := H1(Ē/E,AutG(Ē ⊗k k(Ω)))

with coefficients in the G-equivariant automorphism group of the Ē-algebra
Ē ⊗k k(Ω) (see [65, Chapter III, Section 1]). Writing K for NG(H)/H, we
have

AutG(Ē ⊗k k(Ω)) = AutG(Ē)(G(Ē)/H(Ē)) = NG(H)(Ē)/H(Ē) = K(Ē).

We note that according to [22, p. 283] the algebraic group K is a split diag-
onalizable group. Hence decomposing K = Ktor ×K0 into a direct product
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with its torsion group Ktor and its neutral component K0, we get the fol-
lowing identifications

H ' H1(Ē/E,K0(Ē))⊕H1(Ē/E,Ktor(Ē)) ' H1(Ē/E,Ktor(Ē)),

where the last isomorphism comes from the Hilbert Theorem 90.

Finally, from Theorem 3.4 we observe that H classifies the birational
type of any G-variety X with spherical orbits such that E = k(X)G and
Ē⊗Ek(X) ' Ē⊗kk(Ω). With this in hand, we obtain the following corollary.

Corollary 3.6. — The G-equivariant birational class of a G-variety
with general spherical orbit Ω = G/H and rational quotient S′ determine an
element of the set H, and vice-versa. Moreover, if NG(H) is connected, then
H is a singleton.

Proof. — The first claim is a direct consequence of Corollary 3.5 and the
above discussion. For the last claim, the connectedness of NG(H) implies
that H1(Ē/E,Ktor(Ē)) = {1} and so H is a singleton. �

We can reformulate the last corollary for the case of G-varieties with
horospherical orbits. In particular, we recover [37, Satz 2].

Corollary 3.7. — Let X be a G-variety with general horospherical
orbit Ω = G/H and geometric quotient S on a G-stable dense open subset.
Then X is G-equivariantly birational to S×Ω, where G acts on S×Ω with
the trivial action on S and the natural one on Ω.

Proof. — Since NG(H) is a parabolic subgroup (hence connected), we
conclude that H is a singleton by Corollary 3.6. �

Remark 3.8. — Denote byGĒ/E the absolute Galois group of E. A Galois
cohomology class in H corresponds to an equivalence class of semi-linear
actions of the group GĒ/E . Indeed, if

α : GĒ/E → AutG(Ē ⊗k k(Ω)), g 7→ αg

is a continuous 1-cocycle, then the corresponding semi-linear action is given
by the formula

g · (λ⊗ f) := αg ◦ g?(λ⊗ f), for all g ∈ GĒ/E , λ ∈ Ē, and f ∈ k(Ω).

Here the transformation g? : Ē⊗k k(Ω)→ Ē⊗k k(Ω) is induced by the usual
Galois action on the field extension Ē.

The next proposition gives an explicit description of the F -action on the
product S × Ω considered in Theorem 3.4.
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Proposition 3.9. — The GĒ/E-action on Ē ⊗k k(Ω) is induced by the
usual Galois action on Ē and by a continuous 1-cocycle with values in the
equivariant automorphism group of Ω (up to change with an equivalent semi-
linear action). Regarding the notation of Theorem 3.4, this geometrically
means that the F -action on the product S×Ω, assumed for simplicity regular,
is induced by a generically free F -action on S and by a G-equivariant one
on Ω.

Proof. — We will keep the same notation as in Remark 3.8. Set ΩĒ :=
Ω×Spec k Spec Ē. For a 1-cocycle α representing a cohomology class in H, the
action of αg on Ē(ΩĒ) is determined by the action on the B-eigenfunctions
χm ∈ k(Ω)(B) (see [72, Theorem 21.5]). Moreover, αg(χm) = ωg(m)χm for
all m ∈M and for some group homomorphism ωg : M → Gm(Ē). From the
relations

αg ◦ g? ◦αg′ ◦ (g′)?(χm) = αgg′ ◦ (gg′)?(χm) = αgg′(χm) for all g, g′ ∈ GĒ/E ,

we remark that
ωgg′(m) = ωg(m)g?(ωg′(m))

and so g 7→ ωg is a 1-cocycle with values in K(Ē). We get therefore an
automorphism H→ H sending the class of α to the class of ω. In the sequel
we will identify these two objects.

Now using the isomorphism

φ? : H→ H1(Ē/E,Ktor(Ē)), [g 7→ ωg] 7→ [g 7→ φ(ωg)],

where φ : K → Ktor is the natural projection, we may change the 1-cocycle ω
into a cohomologous one where its values are in Ktor(Ē). Doing this change
and using that k is algebraically closed, we obtain that

ωg ∈ Ktor(Ē) = Ktor(k) for all g ∈ GĒ/E ,

and thus the Ē-automorphism αg is the scalar extension of an automorphism
of k(Ω). �

Let us end this section with some examples.

Example 3.10 (Diagonalizable matrices). — In general, a G-variety with
a unique general orbit has non trivial equivariant birational type. A basic
example (see [19, p. 23]) is to look at the action by conjugacy of G = GLn
on the space of n×n-matrices X. The subset of diagonalizable matrices with
distinct eigenvalues forms an open subset X0 ⊆ X where all the stabilizers
are conjugate to a maximal torus T . In addition, the T -fixed point set of
X0 is irreducible while the T -fixed point set of S × G/T for any variety
S is isomorphic to the product S ×W , where W is the Weyl group of G
(see Lemma 3.3). This latter is the symmetric group with n letters, where
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n = dimT . Hence the equivariant birational type of X cannot be trivial for
n > 1.

Example 3.11 ([7], SL2-threefolds). — Let G = SL2 and let H ⊆ G be
the normalizer of a maximal torus. We will consider normal affine threefolds
that have a unique SL2-fixed point, an affine line as algebraic quotient, and
general stabilizer H. It follows from Corollary 3.6 that such SL2-varieties
have trivial equivariant birational type. Arzhantsev gave in [7] a concrete
classification of these threefolds in terms of a pair (a, b) of coprime non-
negative integers. Actually, the way of passing from our description to the
one in [7, Section 4] is to associate to the marked pair (a, b) the polyhedral
divisor

(D ,F ) = ((−b/a+ Q>0) · [0],F ) ∈ CPDiv(A1,S ),
where S is the homogeneous spherical datum of Ω = SL2 /H and F consists
to the unique color.

Let us start with an explicit example to illustrate this correspondence.
We first consider the case of a single marked point (`, 1) on the affine line
A1. Let us denote by x1, x2, x3 the coordinates of the affine space S2V ' A3,
where V is a two-dimensional vector space. The matrix A = ( a11 a12

a21 a22 ) ∈ SL2
acts on S2V via the formulae

A · x1 = a2
11x1 + 2a11a12x2 + a2

12x3;
A · x2 = a11a21x1 + (a11a22 + a12a21)x2 + a12a22x3;
A · x3 = a2

21x1 + 2a21a22x2 + a2
22x3.

Note that the stabilizer at any point (0, λ, 0) ∈ S2V for λ ∈ k? is conjugate
to H. Also, if U is the upper unipotent matrix subgroup of SL2, then

k[S2V ]U = k[x := x3, z := x2
2 − x1x3].

The degrees of z and x are respectively 0 and 1. So S2V is given by (D1,F ),
where D1 is the Q>0-polyhedral divisor over A1 satisfying D1(1) = −[0].
This can be seen geometrically by regarding the fibers of the quotient map

S2V → A1, (x1, x2, x3) 7→ x2
2 − x1x3,

where the fiber in 0 has a unique fixed point (0, 0, 0) and the other fibers are
all SL2-isomorphic to SL2 /H. The unique non-closed orbit of the fiber in 0
is SL2-isomorphic to SL2 /U2, where U2 =

{(±1 λ
0 ±1

)
;λ ∈ k

}
. The valuation

hypercone
QΣ = {[vz, a, b] | a ∈ Q60, b ∈ Q>0, z ∈ P1}

of k(S2V ) intersects in its relative the Cayley cone
C0(D1) = {[v0, a, b] | (a, b) ∈ Q>0(1, 0) + Q>0(−1, 1)}

at 0 but this does not hold for all the other Cayley cones.
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The group µ2`(k) acts on S2V via the usual multiplication on the coordi-
nates. In this way, it is easy to see that the general stabilizer of S2V//µ2`(k)
is H. Letting χ1 = x2/z and t = z`, we further observe that

k[S2V//µ2`(k)]U = k[S2V//U ]µ2`(k) = k[x2`, x2`−2z, . . . , z`]
= k[t, tχ1, . . . , tχ`] ' A(A1,D`),

where D` is the Q>0-polyhedral divisor over A1 determined by the Q-divisor
D`(1) = − 1

` · [0].

Let s ∈ Z>0 be an integer coprime to `. Now for a single marked pair (`, s)
on A1, the last step is to modify our variety via the cartesian commutative
diagram

A1 ×A1 S2V//µ2`(k)

��

// S2V//µ2`(k)

��
A1 t 7→ts // A1.

Denote by X`,s the normalization of A1 ×A1 S2V//µ2`(k). Then the alge-
bra k[X`,s]U is identified with the integral closure of A(A1,D`)[t1/s] in the
function field k(χ1, t1/s) (compare with [72, Section D, Lemma D.6]). It is
therefore isomorphic to A(A1,Ds

` ), where Ds
` is the Q>0-polyhedral divisor

over A1 defined by Ds
` (1) = − s` · [0] (apply [42, Theorem 2.4]). We conclude

that X`,s is described by the colored polyhedral divisor (Ds
` ,F ).

3.2. Classification of G-varieties with spherical orbits

We now pass to the biregular classification of normal G-varieties with
spherical orbits. Before stating our main result (see Theorem 3.18), we start
by introducing the notion of splitting associated to a G-variety with spherical
orbits X .

Definition 3.12. — Let Ω be the general orbit of X . By a splitting of
X we mean the datum γ of a G-equivariant generically free action of a finite
abelian group F on a product X̃ := S × Ω such that

• S is a quasi-projective variety;
• γ corresponds to a non-trivial cohomology class (see 3.6) if γ is not
the trivial action;
• F acts on X̃ via a generically free F -action on S and an equivariant
one on Ω;
• The quotient X̃ /F is G-birational to X .

We denote by the same letter the invariant rational map γ : X̃ 99KX .
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Remark 3.13. — Note that X admits always a splitting. Indeed by the
results of Section 3.1, there exists a finite group F0 acting on a product
S0×Ω such that X̃ /F0 is G-birational to X . The F0-action satisfies the first
and third conditions of Definition 3.12. Since the equivariant automorphism
group of Ω is abelian, the F0-action on Ω factorises into an F0/[F0, F0]-action,
where [F0, F0] is the derived subgroup of F0. Therefore, we may change F0 by
F0/[F0, F0] and S0 by S0/[F0, F0] and this yields the existence of a splitting
for X .

Remark 3.14. — Conversely, if S is a quasi-projective variety with a
generically free F -action and F acts by G-equivariant automorphisms on
Ω, then the quotient X0 := (S ×Ω)/F on the product exists (since S ×Ω is
quasi-projective) and X0 is a G-variety having Ω as general orbit.

Until now F is the Galois group of the splitting γ of X . In order to study
the G-models of X we need to consider the models of S admitting a natural
F -action. This leads us to state the following lemma where the proof, left to
the reader, is similar as in [72, Proposition 12.2].

Lemma 3.15. — The subset

ModF (S) :=
{
ξ ∈ Mod(S) | α?(Oξ,Mod(S)) ⊆ O(1,ξ),F×Mod(S)

}
is a dense open subscheme of Mod(S), where α is the comorphism of the
rational F -action.

The lattice of B-weights Mγ of k(X ) is in general different from the one
of k(X̃ ). More precisely,

Mγ = {m ∈M |m weight of f ∈ k(X̃ )(B) ∩ k(X̃ )F }.

However, Mγ is a sublattice of M of finite index and so MQ ' Q⊗Z Mγ . If
further Nγ = Hom(Mγ ,Z) is the dual lattice, then NQ ' Q⊗ZNγ . Thus we
may regard colored polyhedral divisors with respect to NQ for describing the
G-models of X (see Definition 3.16 later on). Let FΩ be the set of colors
of Ω. The group F naturally acts on FΩ by translation. Denoting by FΩ/F
the set of F -orbits, we observe that FΩ/F is in bijection with the set of
colors of ModG(X ). For any a ∈ k(X ) and any D ∈ FΩ, it follows that

vgD(a) = vD(g · a) = vD(a) for any g ∈ F,

where a is seen as an F -invariant rational function on X̃ and D is a color of
ModG(X̃ ). This defines a coloration map %γ : FΩ/F → Nγ . This map will
play a role in the computation of the divisor class group of a G-model of X
in Theorem 4.2.
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With the notation of Section 2.1, let ξ = f ⊗ χm ∈ AM ⊆ k(X̃ ) be a
B-eigenfunction invariant by the F -action (here f ∈ k(S)? and m ∈Mγ). If
g ∈ F , then the action of g on ξ is given by

g · ξ = g · f ⊗ ωg(m) · χm,
where ωg : M → Gm = k? is a group homomorphism (see the proof of
Proposition 3.9). Looking at the value of v(g · ξ) for any G-valuations v of
k(X̃ ), we obtain an action of F on the set QΣ of G-valuations of k(X̃ ).
It is determined by the relations g · v = [g · s, a, b] for any g ∈ F and any
v = [s, a, b] ∈ QΣ.

Let us introduce the notion of colored divisorial fans with respect to a
splitting γ of X . We let Γ be a smooth projective F -model of S.

Definition 3.16. — A colored divisorial fan on (Γ,S , γ) is a usual
colored divisorial fan E on (Γ,S ) (see Definition 2.31) with the following
properties.

(i) For every element (D ,F ) ∈ E , the subset C(D) ∩QΣ is F -stable
for the F -action on the valuation set QΣ.

(ii) For every element (D ,F ) ∈ E , the set of colors F is F -stable. In
particular, % : F → N factors through the map %γ : F/F → Nγ .

Before stating our result on the classification of G-models of X , we start
with the following lemma which gives conditions for the regularity of the
birational F -actions on the simple G-models of X̃ .

Lemma 3.17. — Let X̃ = X(D ,F ) be a simple G-model of X̃ = S ×
Ω, where (D ,F ) ∈ CPDiv(Γ,S ) is a colored polyhedral divisor. If (D ,F )
satisfies Conditions (i) and (ii) of Definition 3.16, then the birational F -
action on X̃ is regular.

Proof. — Assume that (D ,F ) satisfies Definition 3.16. Since X̃ = G ·X0
with X0 := X0(D ,F ), it suffices to show that F acts regularly on X0.
But this follows from the previous discussion on how F acts on colors and
G-valuations and the description of B-charts in Theorem 2.14 in terms of
intersection of valuation rings. �

The following theorem completes the construction of normal G-varieties
with spherical orbits. Indeed, each normal G-variety X with spherical orbits
has a general orbit Ω according to Alexeev and Brion (see [2, Theorem 3.1]).
The spherical homogeneous space Ω is entirely described by its homogeneous
spherical datum S (see [17, 49, 52]). Moreover, the G-equivariant birational
type of X can be explicitly constructed via a Galois covering with total
space a trivial family S × Ω (see Corollary 3.5 and Proposition 3.9) and it
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is determined by a Galois cohomology class (see Corollary 3.6). Finally as
stated thereafter, one can construct X by a geometric and combinatorial
object E depending only on the G-equivariant birational type of X.

Theorem 3.18. — Let X be an arbitrary G-variety with spherical or-
bits. Let γ : X̃ 99KX be a splitting (see Definition 3.12) with finite abelian
Galois group F . Denote by S the homogeneous spherical datum of the gen-
eral orbit of X . Let E be a colored divisorial fan on (Γ,S , γ). Then every
local chart X(D ,F ) corresponding to (D ,F ) ∈ E admits a G-equivariant
regular F -action coming from the rational action on X̃ . In addition,

X(E , γ) :=
⋃

(D,F)∈E

X(D ,F , γ) ⊆ ModG(X )

is a G-model of X , where X(D ,F , γ) = X(D ,F )/F . The subset X(D∩D ′,
F ∩F ′, γ) is identified with the intersection

X(D ,F , γ) ∩X(D ′,F ′, γ) for all (D ,F ), (D ′,F ′) ∈ E .

Conversely, any G-model of X arises in this way. The variety X(E , γ) is
complete if and only if E is complete.

Proof. — Let E be a colored divisorial fan on (Γ,S , γ). Note that each
F -variety X(D ,F ) is quasi-projective (see [70, Section 5, Lemma 2(1)])
and therefore the quotient X(D ,F , γ) is well-defined. Hence by combining
Theorem 2.34 and Lemmata 3.2(ii) and 3.17, we construct the quotient space
X(E , γ) = X(E )/F as a normal G-scheme of finite type over k which is G-
birational to X . Moreover, the separateness of X(E , γ) is equivalent to the
one of X(E ) (see [34, Exposé V, Corollaire 1.5]). We conclude that X(E , γ)
is a G-model of the G-variety X .

Conversely, let us consider a G-model X of X and again denote by the
same letter γ : X̃ → X the quotient map obtained from Corollary 3.5.
Since the morphism γ is affine and G-equivariant, the G-variety X̃ admits a
finite open covering of simple G-models (X̃i)i∈I provided by X̃i = γ−1(Xi),
where Xi is a simple G-stable dense open subset of X. Now each open subset
X̃i is described by a colored polyhedral divisor (D i,F i) ∈ CPDiv(Γi,S ),
where Γi is a normal semi-projective variety which is a model of S (see
Theorem 2.14). Using Lemma 2.16, we may assume that each D i is minimal
in the sense of [4, Definition 8.7]. Since k[X0(D i,F i)] is F -stable and the
group F acts as well on k[X0(D i,F i)]U = A(Γ,D i), by [4, Theorem 8.8] we
deduce that Conditions (i) and (ii) of Definition 3.16 are satisfied for each
(D i,F i).

Again by resolving the indeterminacy in an F -equivariant way, we may
construct a smooth projective F -model Γ in ModF (S) that dominates all
the Γi as in the argument of the proof of [5, Theorem 5.8]. By pulling back
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the colored polyhedral divisors (D i,F i) on Γ (see Lemma 2.16), we obtain
a colored divisorial fan E on (Γ,S , γ) such that X̃ = X(E ). Therefore the
quotient space gives X = X(E , γ). The last claim is a direct consequence of
Proposition 2.36 and the fact that the quotient map γ : X(E )→ X(E , γ) is
a proper morphism. This finishes the proof of the theorem. �

4. Invariant Weil divisors

For a normal G-variety X with spherical orbits, our next task is to give a
parameterization of the B-divisors of X in terms of its defining colored fan
E (see Theorem 4.2 and see [60, Corollary 3.15] for case of T-varieties). The
reason for this is that any prime divisor of X is linearly equivalent to a B-
stable one according to [30]. This allows us, in terms of our parameterization,
to give a presentation by generators and relations of the divisor class group
of X. In the case of a toric T-variety V with a defining fan EV , the T-divisors
of X are naturally in bijection with the one-dimensional cones of EV . This
description is useful in practice and we hope for similar applications in our
context.

In this section, we fix a normal G-variety with spherical orbits X . We
consider a splitting γ : X̃ 99K X with Galois group F and we let E be a
colored divisorial fan on (Γ,S , γ), where Γ is a smooth projective F -variety
such that k(Γ) = k(X̃ )G. We denote by Ω the general spherical orbit of X .

As a tool to study the geometry of normal G-varieties with spherical
orbits, we introduce the contraction morphism. Let (D ,F ) ∈ E . We consider
an affine F -stable open covering (Ui)i∈I of the algebraic variety Γ. Let Ec
be the colored divisorial fan generated by {(D|Ui ,F ) | i ∈ I}. Note that the
inclusions C(D|Ui) ⊆ C(D) induce a natural G-morphism

πc : X(Ec, γ)→ X = X(D ,F , γ).

We will also denote by X(Ec) the G-model of X̃ obtained as the lift of
X(Ec, γ). The next result collects some properties about the contraction map
πc. The reader is referred to [4, Theorem 3.1] for the case of torus actions.

Proposition 4.1. — The map πc is a G-equivariant proper birational
morphism and does not depend on the choice of the open covering (Ui)i∈I .
The G-variety X(Ec, γ) admits a global quotient and we have a commutative
diagram

X(Ec, γ) πc //

$$

X

~~
Γ/F
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where X 99K Γ/F is the rational quotient induced by the inclusion of function
fields k(X)G ⊆ k(X).

Proof. — Using the local structure theorem (see 2.18), we observe that
πc is locally described by the morphism q introduced in Lemma 2.21. We
conclude by remarking that the properness is a local condition. �

We now introduce the set of G-valuations for describing the G-divisors
of a normal G-variety with spherical orbits. We recall that Mγ is the lattice
of B-weights of k(X ) and Nγ = Hom(Mγ ,Z) is the dual.

Vertical valuations

Let us start with a single colored polyhedral divisor (D ,F ) ∈ E . We
denote by Vert(D) the set of pairs ([Y ], v), where [Y ] is an F -orbit of a
prime divisor of Loc(D) and v is a vertex of DY such that the following
conditions hold. The subset Γ(Loc(D),O(−Y ) · A) is the ideal of a prime
divisor of SpecA(Loc(D),D), where we recall that

A =
⊕

m∈Tail(D)∨∩M

O(D(m)).

Note that this notion does not depend on the choice of a representative
Y ∈ [Y ]. For an element of ([Y ], v) ∈ Vert(D), the center of the G-valuation
[v[Y ], µ(v)v, µ(v)] of k(X ) is the generic point of a G-cycle

D[Y ],v ⊆ X(D ,F , γ)
(see Lemma 2.20 and the discussion in Section 3.2 for the Galois action on
the set of G-valuations), where µ(v) is the smallest integer ` ∈ Z>0 such that
`v ∈ Nγ .

Horizontal valuations

For simplicity we denote by the same letter a ray (i.e. a one-dimensional
face) of a polyhedral cone of NQ and its primitive lattice generator in Nγ . We
will confuse these two notions when it is needed. We denote by Ray(D ,F )
the set of rays ρ of σ = Tail(D) such that %(F ) ∩ ρ = ∅ and such that
D(m) is a big Cartier Q-divisor for any m in the relative interior of σ∨∩ρ⊥.
Similarly, for an element of ρ ∈ Ray(D ,F ), the center of the G-valuation
[ · , ρ, 0] of k(X ) is the generic point of a G-cycle Dρ ⊆ X(D ,F , γ). We
define more generally the sets

Vert(E ) =
⋃

(D,F)∈E

Vert(D) and Ray(E ) =
⋃

(D,F)∈E

Ray(D ,F )
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for the colored divisorial fan E .

The following is the main upshot of this section. We refer to [28, Theo-
rem 4.22], [46, Corollary 2.12], [60, Corollary 3.15] for former special cases
where the theorem was proven.

Theorem 4.2. — Let X be a normal G-variety with spherical orbits. Let
E be a colored divisorial fan on (Γ,S , γ) describing X. If Div(E ) denotes
the set of G-divisors of X, then the map

φ : Vert(E )
⊔

Ray(E )→ Div(E ), ([Y ], v) 7→ D[Y ],v, ρ 7→ Dρ.

is well-defined and bijective. Moreover, the divisor class group Cl(X) is iso-
morphic to the abelian group

Cl(Loc(E )/F )⊕
⊕

([Y ],v)∈Vert(E )

ZD[Y ],v ⊕
⊕

Ray(E )

ZDρ ⊕
⊕

D∈FΩ/F

ZD,

modulo the relations

[Y ] =
∑

v∈NQ, ([Y ],v)∈Vert(E )

µ(v)D[Y ],v and

∑
([Y ],v)∈Vert(E )

µ(v)〈m, v〉D[Y ],v +
∑

ρ∈Ray(E )

〈m, ρ〉Dρ +
∑

D∈FΩ/F

〈m, %γ(D)〉D = 0,

where m ∈ Mγ and Y ⊆ Loc(E ) is a prime divisor. See Section 2.5 for the
definition of Loc(E ).

Proof. — Without loss of generality, we may assume thatX=X(D ,F , γ)
is simple. Note that the map φ is clearly injective if it is well-defined. Let
Z be a G-divisor of X. Then Z is the image under πc of a G-divisor Ẑ of
X̂ := X(Ec, γ) represented by the same valuation ν.

Case 1. — Assume that Ẑ is dominantly sent on Loc(E )/F , or equiva-
lently that ν is central, i.e., ν is trivial on k(S)F and ν = [·, ρ, 0] for some
ρ ∈ Nγ ∩ V. Hence Ẑ lifts uniquely into a G-divisor on X(Ec) that we de-
note by the same letter. Let S0 be the complement in Loc(D) of all prime
divisors where the polyhedral coefficients of D are non-trivial. Remark that
S0 × Xσ,F ⊆ X(Ec) is a G-stable dense open subset, where Xσ,F is the
general fiber of the quotient map π : X(Ec) → Loc(D). The pair (σ,F )
is the colored cone of the spherical G-variety Xσ,F and σ is the tail of D .
In addition, Ẑ restricted to the open subset S0 × Xσ,F is a product of S0
and a G-divisor on Xσ,F (compare with [30, Lemma 3]). Thus by using [38,
Lemma 2.4] and Lemma 2.20, we conclude that ρ ∈ Ray(Ec).
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Again, we write the letter Z for the lift of Z under the quotient map by
F . Let us consider the sheaf of OLoc(D)-algebras

Aρ :=
⊕

λ∈σ∨∩ρ⊥∩M

O(D(λ))⊗ Vλ

such that Z ∩ X0 = Pu × Spec Γ(Loc(D),Aρ) for some B-chart X0 ⊆ X
intersecting Z (see Lemma 2.22). Now the evaluations of D are big on the
relative interior of σ∨ ∩ ρ⊥ ∩M if and only if

dimZ = dim Γ(Loc(D),Aρ) = dim SpecLoc(D)Aρ = dim Ẑ

if and only if dimX − dimZ = dim X̂ − Ẑ = 1. We finally conclude that
ρ ∈ Ray(E ) and Z = Dρ. Our analysis shows that the assignment ρ 7→ Dρ

is a well-defined map.

Case 2. — We now pass to the case where the image of Ẑ by π is not
dense. Since Ẑ is a divisor, the closure Y of π(Ẑ) in Loc(D) is also a divisor.
In addition, ν = [vY , p, `] ∈ QΣ with ` 6= 0. Let Z1 ⊆ X(Ec) be the G-stable
subvariety obtained as the union of G-orbits contained in⋃

D∈FΩ

D and set X1 = X(Ec) \ Z1.

Since the codimension of each irreducible component of Z1 is at least 2, we
have X1∩Ẑ 6= ∅. Then X1 is described by an uncolored colored divisorial fan
on (Γ,S ) that we can suppose to be a singleton {(D1, ∅)}. We see (D1, ∅)
as an element of Ec. Now by virtue of Theorem 2.18, the B-chart X0(D1, ∅)
is expressed as a product P ′u × SpecA(Loc(D1),D1). Denoting by

π1 : SpecA(Loc(D1),D1)→ Loc(D1)

the quotient map, the G-divisor Ẑ is equal to the closure of P ′u × Z2, where
Z2 is an irreducible component of π−1

1 (π(Ẑ) ∩ Loc(D1)). According to [60,
Proposition 3.13] we deduce that (p, `) = (µ(v)v, µ(v)) for some vertex v of
a polyhedral coefficient of D1 and ([Y ], v) ∈ Vert(Ec).

We denote by the same letter Z a lift of Z under the quotient map by F .
Let us consider the sheaf of OLoc(D)-algebras

AY,v :=
⊕

λ∈σ∨∩M

O(bD(λ)c − Y )⊗ Vλ

such that Z∩X0(D ,F ) = Pu×Spec Γ(Loc(D),AY,v) (see Lemma 2.22). Now
(v, [Y ]) ∈ Vert(E ) (adapt arguments of the proof of [35, Proposition 4.11])
if and only if

dimZ = dim Γ(Loc(D),Av,Y ) = dim SpecLoc(D)Av,Y = dim Ẑ,
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if and only if Z is of codimension one. Our analysis shows that the assignment
φ is a bijective map.

For the presentation of the divisor class group Cl(X) by generators and
relations, the proof is based on the same argument as in [46, Corollary 2.12],
[60, Corollary 3.15]. We recall the key argument. By [30] every divisor of
X is linearly equivalent to a B-stable divisor. Hence Cl(X) is the quotient
of the free abelian group of the B-stable divisors modulo the subgroup of
principal divisors associated with the B-eigenfunctions f⊗χm of k(X), where
f ∈ k(S)? and χm is as in 2.1. The calculation of Cl(X) follows from the
expression of div(f ⊗ χm) in terms of B-valuations of k(X) corresponding
to B-divisors. This finishes the proof of the theorem. �

5. Canonical class

In this section, we investigate the canonical class of a normal G-variety
with spherical orbits. We will write ∼ for the linear equivalence relation
between Weil divisors. Our main result can be stated as follows (see [60,
Theorem 3.21] for the special case of normal varieties with a torus action).

Theorem 5.1. — Let KX be a canonical divisor of a normal G-variety
X with spherical orbits defined by a colored divisorial fan E on (Γ,S , γ).
Then we have

]F ·KX ∼ −]F

 ∑
ρ∈Ray(E )

Dρ +
∑

D∈FX

aDD


+ ]F

 ∑
([Y ],v)∈Vert(E )

[
µ(v)
r[Y ],v

(
b[Y ] + 1

)
− 1
]
D[Y ],v

 ,

where KLoc(E ) =
∑
Y⊆Loc(E ) bY · Y is a canonical divisor of the variety

Loc(E ), the number b[Y ] stands for 1
][Y ]

∑
Y ∈[Y ] bY , FX is the set of col-

ors of X and ]FaD ∈ Z>1 for any D ∈ FX . Moreover, the ramification
index r[Y ],v is defined as

r[Y ],v = ]{g ∈ F | g ·DY,v ⊆ DY,v and g · x = x},

where DY,v ⊆ γ−1(D[Y ],v) is an irreducible component and x is a general
closed point of DY,v. This number does not depend on the choice of the
prime divisor DY,v.

Proof. — We separate the proof into two parts. In the first part, we de-
termine the canonical class of X in the case where X = X̃ is a G-model
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of X̃ = S × Ω. In the second part, we deduce the general case to the
first step by applying the Riemann–Hurwitz formula for the quotient map
γ : X(E )→ X(E , γ).

Case 1. — Assume that X is a G-model of X̃ . We first make some
reduction by taking a local chart and removing closed subsets of codimension
> 2. In this way, we may suppose that X is smooth and X is determined by
an uncolored colored polyhedral divisor (D , ∅) with smooth affine locus. We
will consider the two following open subsets of the G-variety X:

(1) the subset X1 = S0 × Xσ,∅, where we remove the special fibers of
the quotient map by G and Xσ,∅ is the generic fiber. Here Xσ,∅ is
G-isomorphic to the spherical embedding of Ω corresponding to the
colored cone (σ, ∅) (see Example 2.32) and S0 is an open subset of
Loc(D);

(2) The B-chart X0 ⊆ X associated with (D , ∅) which is the comple-
ment of the union of the colors of X. By Theorem 2.18, the B-chart
X0 is identified with a product Pu × SpecA(Loc(D),D), where Pu
is an affine space. Note that the complement of X0 ∪X1 in X is a
closed subset with irreducible components of codimension at least 2.

Let α be the exterior product of a basis of the module of differential forms
of Pu and let δ be a global section of the canonical bundle of Loc(D). For a
basis e1, . . . , en of M , let χe1 , . . . , χen be the associated Laurent monomials.
Then by the argument of the proofs of [20, Section 4.1, Proposition 4.1]
and [60, Theorem 3.21], the differential form

ω = α ∧ δ ∧ dχe1
χe1

∧ · · · ∧ dχen
χen

restricts onX0,X1 andX0∩X1 to generators of the canonical sheaves onX0,
X1 and X0 ∩X1. Consequently, the differential form ω is a global section of
the canonical bundle of X. Hence for computing a canonical divisor KX , it is
sufficient to determine the order vD(ω) of ω along any prime divisor D of X.
Restricting on the chart X1, we have vD(ω) ∈ Z<0 and vDρ(ω) = −1 for all
ρ ∈ Ray(E ) and D ∈ FX (compare with [20, Section 4.1, Proposition 4.1]).
Restricting on X0, the computation of the order of ω at DY,v for (Y, v) ∈
Vert(E ) follows from the argument of the proof of [60, Theorem 3.21], where
the notation Vert(E ) is considered for the trivial F -action. Furthermore, the
order of ω along a prime divisor which is not B-stable is equal to 0. We
finally obtain the formula

KX = −
∑

ρ∈Ray(E )

Dρ +
∑

(Y,v)∈Vert(E )

(µ(v)(bY + 1)− 1)DY,v −
∑

D∈FX

aDD,

– 328 –



Classification of G-varieties

where KLoc(D) =
∑
Y⊆Loc(D) bY · Y is a canonical divisor of Loc(D) and

aD ∈ Z>1 for any D ∈ FX .

Case 2. — Let us assume that X is a G-model of X = X̃ /F with
colored divisorial fan E defined on (Γ,S , γ). Consider the quotient map
γ : X(E ) → X by F . By the Riemann–Hurwitz formula, we have KX(E ) ∼
γ?KX + R, where R =

∑
i∈I(ri − 1)Ri is a divisor supported on the rami-

fication locus of γ and ri is precisely the ramification index attached to the
prime divisor Ri. We recall that the ramification locus is the smallest closed
subset Z ⊆ X(E ) such that γ is étale on X(E ) \ Z and so R is G-stable.
Now using [48, Theorem 2.18, p. 271] we obtain that

]F ·KX = γ?γ
?KX ∼ γ?KX(E ) − γ?R.

Claim. — The F -action is free on the general points of the divisors Dρ

and D ∈ FX(E )

Indeed, by making the same reduction as in Case 1, we may find a G×F -
stable dense open subset of the form S0 × Xσ,∅ such that the F -action is
free. We conclude the proof of the claim by remarking that the open subset
S0 ×Xσ,∅ intersects any divisor Dρ and any color D ∈ FX(E ).

So the ramification divisor R is determined by a finite number of elements
of Vert(E ). By a direct computation we have

γ?R =
∑

([Y ],v)∈Vert(E )

 ∑
DY,v⊆γ−1(D[Y ],v)

[k(DY,v) : γ?k(D[Y ],v)](rY,v − 1)

D[Y ],v,

where rY,v is the ramification index of DY,v and k(D[Y ],v), k(DY,v) are the
residue fields of the generic points of D[Y ],v and DY,v, respectively. Since the
F -action transitively permutes the irreducible components of γ−1(D[Y ],v) for
any ([Y ], v) ∈ Vert(E ), we have rY,v = rY ′,v and

[k(DY,v) : γ?k(D[Y ],v)] = [k(DY ′,v) : γ?k(D[Y ],v)]
for all prime divisors DY,v, DY ′,v in γ−1(D[Y ],v).

Moreover, the formula involving ramification indices and inertial degrees
gives

]F = [k(X(E )) : γ?k(X)] =
∑

DY,v⊆γ−1(D[Y ],v)

[k(DY,v) : γ?k(D[Y ],v)]rY,v.

Let us translate this formula in terms of the F -action on X(E ). We denote
by FY,v the subgroup of F which preserves DY,v. Picking a general closed
point x in DY,v, we write StabDY,v for the stabilizer at x of the FY,v-action
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on DY,v. Then using Lemma 3.2(iv) we have

[k(DY,v) : γ?k(D[Y ],v)] = [k(DY,v) : k(DY,v)FY,v/ StabDY,v ] = ]FY,v
]StabDY,v

and ][Y ] = ]F

]FY,v
.

Hence the equality ]F = ][Y ] · [k(DY,v) : γ?k(D[Y ],v)] · rY,v by the argument
above yields rY,v = ]StabDY,v, as required. Letting r[Y ],v = rY,v, we finally
arrive at

γ?R =
∑

([Y ],v)∈Vert(E )

(]F − ]F/r[Y ],v)D[Y ],v.

By Case 1, it follows that γ?KX(E ) is equal to

− ]F

 ∑
ρ∈Ray(E )

Dρ +
∑

D∈FX

aDD


+

∑
([Y ],v)∈Vert(E )

(
µ(v) ]F

r[Y ],v

(
b[Y ] + 1

)
− ]F

r[Y ],v

)
D[Y ],v,

where for any D ∈ FX we let

aD = 1
]γ−1(D)

∑
D′⊆γ−1(D)

aD′ .

The difference γ?KX(E ) − γ?R and the preceding computations give the
desired formula. �

Remark 5.2. — The coefficient aD in Theorem 5.1 can be explicitly de-
termined in terms of the homogeneous spherical datum S of Ω. We refer
to [20, Theorem 4.2] for more details.

The next proposition gives an example where there are no ramification
divisors.

Proposition 5.3. — With the same notation as in Theorem 5.1, if the
group F acts freely on Γ, then r[Y ],v = 1 for all ([Y ], v) ∈ Vert(E ).

Proof. — Note that under our assumption the F -action on the variety
X(Ec) is free. Indeed, if g ∈ F belongs to the stabilizer of a point x ∈ X(Ec),
then we have

g · π(x) = π(g · x) = π(x),
where π : X(Ec) → Γ is the quotient map by G. Since the F -action on Γ is
free, we deduce that g = 1. Now there exists a (G × F )-stable dense open
subset ofX(E ) with complement of codimension > 2 and (G×F )-isomorphic
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to the one of X(Ec). This implies that the quotient map γ : X(E )→ X has
no ramification divisor. �
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