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A Torelli type theorem for exp-algebraic curves (∗)

Indranil Biswas (1) and Kingshook Biswas (2)

ABSTRACT. — An exp-algebraic curve consists of a compact Riemann surface S
together with n equivalence classes of germs of meromorphic functions modulo germs
of holomorphic functions, H = {[h1], . . . , [hn]}, with poles of orders d1, . . . , dn > 1
at points p1, . . . , pn. This data determines a space of functions OH (respectively, a
space of 1-forms Ω0

H) holomorphic on the punctured surface S′ = S − {p1, . . . , pn}
with exponential singularities at the points p1, . . . , pn of types [h1], . . . , [hn], i.e.,
near pi any f ∈ OH is of the form f = gehi for some germ of meromorphic function
g (respectively, any ω ∈ Ω0

H is of the form ω = αehi for some germ of meromorphic
1-form).

For any ω ∈ Ω0
H the completion of S′ with respect to the flat metric |ω| gives

a space S∗ = S′ ∪ R obtained by adding a finite set R of
∑

i
di points, and it

is known that integration along curves produces a nondegenerate pairing of the
relative homology H1(S∗,R;C) with the de Rham cohomology group defined by
H1

dR(S,H) := Ω0
H/dOH.

There is a degree zero line bundle LH associated to an exp-algebraic curve, with
a natural isomorphism between Ω0

H and the space WH of meromorphic LH-valued
1-forms which are holomorphic on S′, so that H1(S∗,R;C) maps to a subspace
KH ⊂W ∗H. We show that the exp-algebraic curve (S,H) is determined uniquely by
the pair (LH,KH ⊂W ∗H).

RÉSUMÉ. — Une courbe exp-algébrique est une surface de Riemann S munie de
n classes d’équivalence de germes de fonctions méromorphes modulo les germes de
fonctions holomorphes H = {[h1], . . . , [hn]}, avec des pôles d’ordre d1, . . . , dn > 1
aux points p1, . . . , pn. Cette donnée détermine un espace de fonctions OH (respec-
tivement, un espace de 1-formes Ω0

H) holomorphes sur la surface épointée S′ =
S − {p1, . . . , pn} avec des singularités exponentielles aux points p1, . . . , pn de type
[h1], . . . , [hn], i.e., au voisinage du point pi toute f ∈ OH est de la forme f = gehi

pour un germe de fonction méromorphe g (respectivement toute forme ω ∈ Ω0
H est

de la forme ω = αehi pour un germe de 1-forme méromorphe α.

(*) Reçu le 26 juin 2016, accepté le 14 mai 2018.
2020 Mathematics Subject Classification: 30F30, 34M03.
(1) School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha

Road, Bombay 400005 (India) — indranil@math.tifr.res.in
(2) Indian Statistical Institute, Stat-Math Unit, 203, Barrackpore Trunk Road,

Baranagar, Kolkata, 700108 (India) — kingshook@isical.ac.in
Article proposé par Jean-Pierre Otal.

– 357 –

mailto:indranil@math.tifr.res.in
mailto:kingshook@isical.ac.in


Indranil Biswas and Kingshook Biswas

Pour toute ω ∈ Ω0
H la complétion de S′ par rapport à la métrique plate |ω| donne

un espace S∗ = S′∪R obtenu en ajoutant un ensemble fini R de
∑

i
di points. Il est

connu que l’intégration le long des courbes fournit un accouplement non dégénéré
sur l’homologie relative H1(S∗,R;C) où le groupe de cohomologie de de Rham est
défini par H1

dR(S,H) := Ω0
H/dOH.

Il existe un fibré en droites LH de degré zéro associé à toute courbe exp-
algébrique, avec un isomorphisme naturel entre Ω0

H et l’espace WH des 1-formes
méromorphes à valeurs dans LH, holomorphes sur S′ et tel que H1(S∗,R;C) s’en-
voie sur un sous-espace KH ⊂ W ∗H. Nous montrons que la courbe exp-algébrique
(S,H) est déterminée de façon univoque par la paire (LH,KH ⊂W ∗H).

1. Introduction

A choice of nonconstant meromorphic function z on a compact Riemann
surface S realizes S as a finite sheeted branched covering of the Riemann
sphere Ĉ. Log-Riemann surfaces of finite type are certain branched cover-
ings, in a generalized sense, of C by a punctured compact Riemann surface,
namely, which are given by certain transcendental functions of infinite de-
gree. Formally a log-Riemann surface consists of a Riemann surface together
with a local holomorphic diffeomorphism π from the surface to C such that
the set of points R added to the surface, in the completion S∗ = S′ ∪ R
with respect to the path-metric induced by the flat metric |dπ|, is discrete.
Log-Riemann surfaces were defined and studied in [6] (see also [5]), where it
was shown that the map π restricted to any small enough punctured metric
neighbourhood of a point w∗ in R gives a covering of a punctured disc in
C, and is thus equivalent to either (z 7−→ zn) restricted to a punctured disc
{0 < |z| < ε} (in which case we say w∗ is a ramification point of order n) or
to (z 7→ ez) restricted to a half-plane {<z < C} (in which case we say w∗ is
a ramification point of infinite order).

A log-Riemann surface is said to be of finite type if it has finitely many
ramification points and finitely generated fundamental group. We will only
consider those for which the set of infinite order ramification points is
nonempty (otherwise the map π has finite degree and is given by a mero-
morphic function on a compact Riemann surface). In [4, 7], uniformization
theorems were proved for log-Riemann surfaces of finite type, which im-
ply that a log-Riemann surface of finite type is given by a pair (S′ =
S − {p1, . . . , pn}, π), where S is a compact Riemann surface, and π is a
meromorphic function on the punctured surface S′ such that the differen-
tial dπ has essential singularities at the punctures of a specific type, namely
exponential singularities.
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Given a germ of meromorphic function h at a point p of a Riemann
surface, a function f with an isolated singularity at p is said to have an
exponential singularity of type h at p if locally f = geh for some germ of
meromorphic function g at p, while a 1-form ω is said to have an exponential
singularity of type h at p if locally ω = αeh for some germ of meromorphic
1-form α at p. Note that the spaces of germs of functions and 1-forms with
exponential singularity of type h at p only depend on the equivalence class
[h] in the space Mp/Op of germs of meromorphic functions at p modulo
germs of holomorphic functions at p.

Thus the uniformization theorems of [4, 7] give us n germs of meromor-
phic functions h1, . . . , hn at the punctures p1, . . . , pn, with poles of orders
d1, . . . , dn > 1 say, such that near a puncture pj the map π is of the form∫
gje

hjdz, where gj is a germ of meromorphic function near pj and z a local
coordinate near pj . The punctures correspond to ends of the log-Riemann
surface, where at each puncture pj , dj infinite order ramification points are
added in the metric completion, so that the total number of infinite order
ramification points is

∑
j dj . The dj infinite order ramification points added

at a puncture pj correspond to the dj directions of approach to the puncture
along which <hj → −∞ so that ehj decays exponentially and

∫ z
gje

hjdz
converges. In the case of genus zero with one puncture for example, which
is considered in [7], the map π must have the form

∫
R(z)eP (z)dz where R

is a rational function and P is a polynomial of degree equal to the number
of infinite order ramification points.

In [3], certain spaces of functions and 1-forms on a log-Riemann surface
S∗ of finite type were defined, giving rise to a de Rham cohomology group
H1
dR(S∗). The integrals of the 1-forms considered along curves in S∗ joining

the infinite ramification points converge, giving rise to a pairing between
H1
dR(S∗) and H1(S∗,R;C), which was shown to be nondegenerate ([3]).

The spaces of functions and 1-forms defined were observed to depend only
on the types h1, . . . , hn of the exponential singularities, and so a notion less
rigid than that of a log-Riemann surface was defined, namely the notion of
an exp-algebraic curve, which consists of a compact Riemann surface S to-
gether with n equivalence classes of germs of meromorphic functions modulo
germs of holomorphic functions, H = {[h1], . . . , [hn]}, with poles of orders
d1, . . . , dn > 1 at points p1, . . . , pn. The relevant spaces of functions and 1-
forms with exponential singularities at p1, . . . , pn of types [h1], . . . , [hn] can
then be defined as follows:

MH :=
{
f

∣∣∣∣ f meromorphic function on S′
with exponential singularities of types [h1], . . . , [hn]

}
OH := {f ∈MH | f holomorphic on S′}
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ΩH :=
{
ω

∣∣∣∣ω meromorphic 1-form on S′
with exponential singularities of types [h1], . . . , [hn]

}
Ω0
H := {ω ∈ ΩH | ω holomorphic on S′}.

For f ∈ MH (respectively, ω ∈ ΩH) we can define a divisor (f) =∑
p∈S np · p (respectively, (ω) =

∑
p∈Smp · p) by np = ordp(f) if p ∈ S′

and np = ordpi
(g) if p = pi, where g is a germ of meromorphic function at pi

such that f = gehi (respectively,mp = ordp(ω) if p ∈ S′ and np = ordpi
(α) if

p = pi, where α is a germ of meromorphic 1-form at pi such that ω = αehi).

In [3] it is shown how to naturally associate to an exp-algebraic curve
(S,H) a degree zero line bundle LH together with a meromorphic connec-
tion ∇H with poles at p1, . . . , pn. The connection 1-form of ∇H near pi is
given (with respect to an appropriate local trivialization) by dhi, so that
the pair (LH,∇H) determines the exp-algebraic curve (S,H). There are nat-
urally defined isomorphisms between the space of meromorphic sections of
LH (respectively, the space of meromorphic LH-valued 1-forms) and MH
(respectively, ΩH), such that a meromorphic section s of LH (respectively,
a meromorphic LH-valued 1-form α) maps to an f ∈ MH with the same
divisor as s (respectively, an ω ∈ ΩH with the same divisor as α).

In particular the spaceWH of meromorphic LH-valued 1-forms which are
holomorphic on S′ is naturally isomorphic to the space Ω0

H. Fixing an f ∈ OH
inducing a log-Riemann surface structure on S, with completion S∗ = S′∪R,
the 1-forms in Ω0

H can be integrated along curves in H1(S∗,R;C), giving a
map

H1(S∗,R;C) −→ (Ω0
H)∗ 'W ∗H.

Let KH ⊂ W ∗H denote the image of H1(S∗,R;C) in W ∗H. Then our Torelli-
type theorem for exp-algebraic curves states that the pair (LH,KH) deter-
mines the exp-algebraic curve (S,H):

Theorem 1.1. — Let (S,H1), (S,H2) be two exp-algebraic curves with
the same underlying Riemann surface S, and the same set of punctures
p1, . . . , pn. Suppose that H1(S∗1 ,R;C) is nontrivial, that the line bundles
LH1 , LH2 are isomorphic and that the induced isomorphism W ∗H1

−→ W ∗H2
maps KH1 to KH2 . Then H1 = H2.

Finally, we mention briefly some appearances of functions with exponen-
tial singularities in the literature. Certain functions with exponential sin-
gularities, namely the n-point Baker–Akhiezer functions ([1, 2]), have been
used in the algebro-geometric integration of integrable systems (see, for ex-
ample, [14, 15] and the surveys [11, 12, 16, 17]). Given a divisor D on S′, an
n-point Baker–Akhiezer function (with respect to the data ({pj}, {hj}, D))
is a function f in the spaceM(S∗) satisfying the additional properties that
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the divisor (f) of zeroes and poles of f on S′ satisfies (f) + D > 0, and
that f · e−hj is holomorphic at pj for all j. For D a non-special divisor of
degree at least g, the space of such Baker–Akhiezer functions is known to
have dimension degD − g + 1.

Functions and differentials with exponential singularities on compact Rie-
mann surfaces have also been studied by Cutillas Ripoll ([8, 9, 10]), where
they arise naturally in the solution of the Weierstrass problem of realizing
arbitrary divisors on compact Riemann surfaces, and by Taniguchi ([18, 19]),
where entire functions satisfying certain topological conditions (called “struc-
tural finiteness”) are shown to be precisely those entire functions whose
derivatives have an exponential singularity at ∞, namely functions of the
form

∫
Q(z)eP (z)dz, where P,Q are polynomials.

Acknowledgements

This work grew out of a visit of the second author to TIFR, Mumbai.
He would like to thank TIFR for its hospitality. The first author is partially
supported by a J. C. Bose Fellowship.

2. Log-Riemann surfaces of finite type and exp-algebraic curves

We recall some basic definitions and facts from [4, 6, 7].

Definition 2.1. — A log-Riemann surface is a pair (S, π), where S is
a Riemann surface and π : S −→ C is a local holomorphic diffeomorphism
such that the set of points R added to S in the completion S∗ := S tR with
respect to the path metric induced by the flat metric |dπ| is discrete.

The map π extends to the metric completion S∗ as a 1-Lipschitz map.
In [6] it is shown that the map π restricted to a sufficiently small punctured
metric neighbourhood B(w∗, r)− {w∗} of a ramification point is a covering
of a punctured disc B(π(w∗), r) − {π(w∗)} in C, and so has a well-defined
degree 1 6 n 6 +∞, called the order of the ramification point (we assume
that the order is always at least 2, since order one points can always be
added to S and π extended to these points in order to obtain a log-Riemann
surface).

Definition 2.2. — A log-Riemann surface is of finite type if it has
finitely many ramification points and finitely generated fundamental group.
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For example, the log-Riemann surface given by (C, π = ez) is of finite
type (with the metric |dπ| it is isometric to the Riemann surface of the
logarithm, which is simply connected, with a single ramification point of
infinite order), as is the log-Riemann surface given by the Gaussian integral
(C, π =

∫
ez

2
dz), which has two ramification points, both of infinite order,

as in the figure below:

1

1

1

1

−1 1

−1

−1

−1

−1

Log-Riemann surface of the Gaussian integral

In [4], it is shown that a log-Riemann surface of finite type (which has
at least one infinite order ramification point) is of the form (S′, π), where
S′ is a punctured compact Riemann surface S′ = S − {p1, . . . , pn} and π
is meromorphic on S′ and dπ has exponential singularities at the punctures
p1, . . . , pn. Let h1, . . . , hn be the types of the exponential singularities of dπ at
the punctures p1, . . . , pn. As described in [4], each puncture pj corresponds
to an end of the log-Riemann surface where dj infinite order ramification
points are added, dj being the order of the pole of hj at pj .

Let w∗ be an infinite order ramification point associated to a puncture
pj . An ε-ball Bε around w∗ is isometric to the ε-ball around the infinite
order ramification point of the Riemann surface of the logarithm (given by
cutting and pasting infinitely many discs together), and there is an argument
function

argw∗ : B∗ε −→ R
defined on the punctured ball B∗ε . While the function π, which is of the form
π =

∫
ehjαj in a punctured neighbourhood of pj for some meromorphic

– 362 –



A Torelli type theorem for exp-algebraic curves

1-form αj , extends continuously to w∗ for the metric topology on S∗, in
general functions of the form f =

∫
ehjα (where α is a 1-form meromorphic

near pj) do not extend continuously to w∗ for the metric topology ([5]).
Limits of these functions in sectors {p ∈ B∗ε | c1 < argw∗(p) < c2} do exist
however and are independent of the sector; we say that the function is Stolz
continuous at points of R.

Definition 2.3. — Define spaces of functions and 1-forms on S∗:

M(S∗) :=
{
f meromorphic function on S′

∣∣∣∣f has exponential singularities
at p1, . . . , pn of types h1, . . . , hn

}
O(S∗) :={f ∈M(S∗) | f holomorphic on S′}

Ω(S∗) :=
{
ω meromorphic 1-form on S′

∣∣∣∣ω has exponential singularities
at p1, . . . , pn of types h1, . . . , hn

}
Ω0(S∗) :={ω ∈ Ω(S∗) | ω holomorphic on S′}

We remark that these are simply the spacesMH,OH,ΩH,Ω0
H defined in

the introduction, where H = {[h1], . . . , [hn]}. Functions inM(S∗) are Stolz
continuous at points of R taking the value 0 there. The integrals of 1-forms
ω in ΩII(S∗) over curves γ : [a, b] −→ S∗ joining points w∗1 , w∗2 of R converge
if γ is disjoint from the poles of ω and tends to these points through sectors

{p ∈ B∗ε | c1 < argw∗1 (p) < c2}, {p ∈ B∗ε | c1 < argw∗2 (p) < c2}

(since any primitive of ω on a sector is Stolz continuous).

The definitions of the above spaces only depend on the types {[hi] ∈
Mpi

/Opi
} of the exponential singularities of the 1-form dπ, which do not

change if dπ is multiplied by a meromorphic function. It is natural to define
then a structure less rigid than that of a log-Riemann surface of finite type.

Definition 2.4 (Exp-algebraic curve). — Given a punctured compact
Riemann surface S′ = S − {p1, . . . , pn}, two meromorphic functions π1, π2
on S′ inducing log-Riemann surface structures of finite type are considered
equivalent if dπ1/dπ2 is meromorphic on the compact surface S. An exp-
algebraic curve is an equivalence class of such log-Riemann surface structures
of finite type.

It follows from the uniformization theorem of [4] that an exp-algebraic
curve is given by the data of a punctured compact Riemann surface and
n (equivalence classes of) germs of meromorphic functions H = {[hi] ∈
Mpi/Opi} with poles at the punctures.

We can associate a topological space Ŝ to an exp-algebraic curve, given
as a set by Ŝ = S′ ∪ R, where R is the set of infinite ramification points
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added with respect to any map π in the equivalence class of log-Riemann
surfaces of finite type, and the topology is the weakest topology such that
all maps π̃ in the equivalence class extend continuously to Ŝ.

Finally, for a meromorphic function f on S′ (respectively, meromorphic
1-form ω on S′) with exponential singularities of types h1, . . . , hn at points
p1, . . . , pn we can define a divisor (f) =

∑
p∈S np · p (respectively, (ω) =∑

p∈Smp · p) by np = ordp(f) if p ∈ S′ and np = ordpi
(g) if p = pi, where

g is a germ of meromorphic function at pi such that f = gehi (respectively,
mp = ordp(ω) if p ∈ S′ and np = ordpi(α) if p = pi, where α is a germ of
meromorphic 1-form at pi such that ω = αehi).

Note that the divisor (f) can also be defined by np = Res(df/f, p), so it
follows from the Residue Theorem applied to the meromorphic 1-form df/f
that the divisor (f) has degree zero.

3. Exp-algebraic curves and line bundles with meromorphic
connections

Let (S,H = {h1, . . . , hn}) be an exp-algebraic curve, where S is a com-
pact Riemann surface of genus g and h1, . . . , hn are germs of meromorphic
functions at points p1, . . . , pn. Let Ω(S) be the space of holomorphic 1-forms
on S. The data H defines a degree zero line bundle LH together with a tran-
scendental section sH of this line bundle which is non-zero on the punctured
surface S′ as follows:

Solving the Mittag-Leffler problem locally for the distribution {h1, . . . , hn}
gives meromorphic functions on an open cover such that the differences are
holomorphic on intersections, and hence gives an element of H1(S,O). Un-
der the exponential this gives a degree zero line bundle as an element of
H1(S,O∗). Explicitly this is constructed as follows:

Let
B1, . . . , Bn

be pairwise disjoint coordinate disks around the punctures p1, . . . , pn and let
V be an open subset of S′ intersecting each disk Bi in an annulus Ui = V ∩Bi
around pi such that {B1, . . . , Bn, V } is an open cover of S. Define a line
bundle LH by taking the functions e−hi to be the transition functions for
the line bundle on the intersections Ui. Define a holomorphic non-vanishing
section of LH on S′ by:

sH :=
{

1 on V
e−hi on Bi − {pi}
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Define a connection ∇H on LH by declaring that ∇H(sH) = 0. Then for
any holomorphic section s on V , we have s = fsH for some holomorphic
function f , and also ∇H(s) = dfsH, so ∇H is holomorphic on V . On each
disk Bi, letting si be the section which is a constant equal to 1 on Bi (with
respect to the trivialization on Bi), for any holomorphic section s on Bi, we
have s = fsi for some holomorphic function f , and also si = ehisH, so

∇H(s) = ∇H(fsi)
= ∇H(fehisH)
= (df + fdhi)ehisH

= (df + fdhi)si

thus the connection 1-form of ∇H with respect to si is given by dhi, so ∇H
is meromorphic on Bi with a single pole at pi of order di + 1 > 2.

Let s∗H be the unique section of the dual bundle L∗H on S′ such that
sH⊗ s∗H = 1 on S′. Then for any non-zero meromorphic section s of LH, the
function

f := s⊗ s∗H

is meromorphic on S′ with exponential singularities at p1, . . . , pn of types
h1, . . . , hn, and the divisors of s and f coincide. Thus the line bundle LH
has degree zero. In summary we have:

Theorem 3.1. — For any log-Riemann surface of finite type S∗, the line
bundle LH has degree zero and the maps

s 7−→ s⊗ s∗H, f 7−→ f · sH

(respectively,

α 7−→ α⊗ s∗H, ω 7−→ ω · sH)

are mutually inverse isomorphisms between the spaces of meromorphic sec-
tions of LH andM(S∗) (respectively, the spaces of meromorphic LH-valued
1-forms and Ω(S∗)) preserving divisors.

In particular the vector spacesM(S∗),O(S∗),Ω(S∗),ΩII(S∗),Ω0(S∗) are
all non-zero.

Proof. — Since the isomorphisms above preserve divisors, the spaces
O(S∗), Ω0(S∗) correspond to the spaces of meromorphic sections of LH
and meromorphic LH-valued 1-forms which are holomorphic on S′, both of
which are non-empty. �
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Proposition 3.2. — The correspondence H 7→ (LH,∇H) gives a one-
to-one correspondence between exp-algebraic structures on S and degree zero
line bundles on S with meromorphic connections with all poles of order at
least two, zero residues, and trivial monodromy.

Proof. — Since the connection 1-form of ∇H is given by dhi on Bi, all
residues of ∇H are equal to zero, while the monodromy of ∇H is trivial since
sH is a single-valued horizontal section.

Conversely, given such a meromorphic connection ∇ on a degree zero line
bundle L, if p1, . . . , pn are the poles of∇ and ω1, . . . , ωn are the connection 1-
forms of ∇ with respect to trivializations near p1, . . . , pn, then each ωi has
zero residue at pi and pole order at least two, hence there exist meromorphic
germs h1, . . . , hn near p1, . . . , pn such that ωi = dhi. We obtain an exp-
algebraic curve (S,H(L,∇)).

It is clear for an exp-algebraic curve (S,H) that H(LH,∇H) = H, so the
correspondences are inverses of each other. �

Finally we remark that by Serre Duality, the degree zero line bundle LH,
given as an element of H1(S,O), can also be described as an element of
H0(S,Ω)∗ = Ω(S)∗ using residues, as the linear functional

ResH : Ω(S) −→ C

ξ 7−→
∑
i

Res(ξ · hi, pi)

4. Torelli-type theorem for exp-algebraic curves

We proceed to the proof of Theorem 1.1. We will need the following
theorems from [3] and [13]:

Theorem 4.1 ([3]). — Let S∗ = S′∪R be a log-Riemann surface of finite
type, and let H1

dR,0(S∗) = Ω0(S∗)/dO(S∗). Then the pairing H1(S∗,R;C)×
H1
dR,0(S∗) −→ C, given by integration along curves, is nondegenerate.

Theorem 4.2 (Gusman, [13]). — Let S be a compact Riemann surface
and E ⊂ S a closed subset such that S − E has finitely many connected
components V1, . . . , Vm, and for each i let qi be a point of Vi. Then any
continuous function f on E which is holomorphic in the interior of E can
be uniformly approximated on E by functions meromorphic on S with poles
only in the set {q1, . . . , qm}.

Let (S,H1), (S,H2) be two exp-algebraic curves with the same underlying
Riemann surface S and the same set of punctures p1, . . . , pn, and suppose
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the hypothesis of Theorem 1.1 holds, namely the line bundles LH1 , LH2 are
isomorphic and the induced isomorphism

W ∗H1
−→W ∗H2

mapsKH1 toKH2 . Since the spacesMH1 ,MH2 are isomorphic to the spaces
of meromorphic sections of LH1 and LH2 respectively, there is an induced
isomorphismMH1 −→MH2 which preserves divisors. We fix non-zero func-
tions fi ∈ MHi , i = 1, 2 which correspond to each other under this iso-
morphism, and let S∗i = S′ ∪ Ri denote the completions induced by the
corresponding log-Riemann surface structures. We also fix a meromorphic 1-
form α0 on S. Then the divisor preserving isomorphismsMH1 −→MH2 and
ΩH1 −→ ΩH2 induced by the isomorphism LH1 −→ LH2 can be expressed as

g · f1 7−→ g · f2 and gf1 · α0 7−→ gf2 · α0

respectively, where g varies over all meromorphic functions on S.

Lemma 4.3. — For any meromorphic function g2 on S such that g2f2 ∈
OH2 , the 1-form g2f1

(
df1
f1
− df2

f2

)
lies in the space dOH1 .

Proof. — The hypothesis of Theorem 1.1 implies that for any γ1 ∈
H1(S∗1 ,R1;C), there is a

γ2 ∈ H1(S∗2 ,R2;C)
such that

∫
γ1
gf1α0 =

∫
γ2
gf2α0 for all meromorphic functions g on S such

that gfiα0 is holomorphic on S′ for i = 1, 2. If g2 is a meromorphic function
on S such that g2f2 is holomorphic on S′, then

d(g2f2) = gf2α0

for some meromorphic function g on S such that gf2α0 is holomorphic on
S′. Since the isomorphism Ω(H1) −→ Ω(H2) is divisor preserving, we have
that gf1α0 is also holomorphic on S′, so for any γ1 ∈ H1(S∗1 ,R1;C) there is
a γ2 ∈ H1(S∗2 ,R2;C) such that∫

γ1

gf1α0 =
∫
γ2

gf2α0 =
∫
γ2

d(g2f2) = 0

Since this is true for all γ1 ∈ H1(S∗1 ,R1;C), it follows from Theorem 4.1
that gf1α0 ∈ dOH1 , so there exists a meromorphic function g1 on S such
that g1f1 is holomorphic on S′ and gf1α0 = d(g1f1).

It follows from the equalities gfiα0 = d(gifi), i = 1, 2 that

dg1 + g1
df1

f1
= gα0 = dg2 + g2

df2

f2
,

hence
dg1 + g1

df1

f1
=
(
dg2 + g2

df1

f1

)
+ g2

(
df2

f2
− df1

f1

)
,
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so multiplying above by f1 gives

g2f1

(
df2

f2
− df1

f1

)
= d(g1f1)− d(g2f1) ∈ dOH1

as required, since g1f1, g2f1 ∈ OH1 (note that g2f2 ∈ OH2 implies g2f1 ∈
OH1). �

Proof of Theorem 1.1. — We consider different cases:

Case 1. The genus of S is at least one. — In this case there exists a closed
curve γ disjoint from the punctures p1, . . . , pn and the poles and zeroes of
f1, f2 such that S− γ is connected. Fix a non-zero meromorphic function g0
on S such that g0f1 (and hence also g0f2) is holomorphic on S′.

If the meromorphic 1-form ω = df1
f1
− df2

f2
(which is holomorphic outside

the punctures and the zeroes and poles of f1, f2) is not identically zero,
then we can choose a continuous function u on γ such that

∫
γ
ug0f1ω 6= 0

(since the 1-form g0f1ω is holomorphic and not identically zero on γ). By
Theorem 4.2, since S − γ is connected and contains p1, we can choose a
meromorphic function v on S which is holomorphic on S−{p1} and uniformly
close enough to u on γ such that

∫
γ
vg0f1ω 6= 0. Letting g2 = vg0, we have

that g2f2 is holomorphic on S′ and
∫
γ
g2f1ω 6= 0, contradicting Lemma 4.3.

It follows that df1/f1 ≡ df2/f2, from which it follows easily that H1 = H2.

Case 2. The genus of S is zero and the number n of punctures is at least
two. — In this case S = Ĉ and we may assume p1 = 0, p2 = ∞. Fix a
non-zero polynomial P such that Pf1, Pf2 are holomorphic on S′. Then by
Lemma 4.3, for all k ∈ Z, taking g2 = zkP (z) we have

Res((zkP )f1ω, 0) = 0

from which it follows that the Laurent series of Pf1ω around z = 0 vanishes
identically, hence ω ≡ 0 and H1 = H2.

Case 3. The genus of S is zero and there is only one puncture. — In
this case S = Ĉ and we may assume the single puncture p1 = ∞, and that
the functions f1, f2 are of the form fi = ePi for some polynomials P1, P2.
In this case it follows from the main theorem of [3] that the dimension of
H1(S∗i ,Ri;C) equals deg(Pi) − 1. Since KH1 and KH2 are isomorphic by
hypothesis, it follows that deg(P1) = deg(P2) = d say, where d > 2 since
H1(S∗1 ,R1;C) is non-trivial.

Let P1(z) = adz
d+ . . .+a0, P2(z) = bdz

d+ . . .+ b0. Let γ1, . . . , γd−1 be a
basis for H1(S∗1 ,R1;C) as described in Section 4 of [3], each γk being a curve
joining a pair of ramification points w∗0 , w∗k, where R1 = {w∗0 , . . . , w∗d−1}. By
hypothesis, for each curve γk ∈ H1(S∗1 ,R1;C) there is a γ′k ∈ H1(S∗2 ,R2;C)
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such that ∫
γk

Q(z)eP1(z)dz =
∫
γ′

k

Q(z)eP2(z)dz

for all polynomials Q. Consider the (d− 1)× d matrix

M =


∫
γ1
eP1(z)dz . . .

∫
γ1
zd−2eP1(z)dz

∫
γ1
zd−1eP1(z)dz

...
...

. . .
...∫

γd−1
eP1(z)dz . . .

∫
γd−1

zd−2eP1(z)dz
∫
γd−1

zd−1eP1(z)dz



=


∫
γ′1
eP2(z)dz . . .

∫
γ′1
zd−2eP2(z)dz

∫
γ′1
zd−1eP2(z)dz

...
...

. . .
...∫

γ′
d−1

eP2(z)dz . . .
∫
γ′

d−1
zd−2eP2(z)dz

∫
γ′

d−1
zd−1eP2(z)dz


It follows from Theorem III.1.5.1 of [5] that the (d− 1) 1-forms

zkeP1dz, k = 0, . . . , (d− 2)
span H1

dR,0(S∗1 ), and hence form a basis for H1
dR,0(S∗1 ). Since by Theorem 4.1

the pairing with H1(S∗1 ,R1;C) is nondegenerate, it follows that the (d−1)×
(d− 1) submatrix formed by the first (d− 1) columns of M is nonsingular,
thusM has rank (d−1). On the other hand, since d(ePi) = P ′ie

Pidz, i = 1, 2,
it follows that

M ·


a1
...

(d− 1)ad−1
dad

 = M ·


b1
...

(d− 1)bd−1
dbd

 = 0

hence there is a scalar λ such that kbk = λkak, k = 1, . . . , d−1, so P ′2 = λP ′1.
It follows from Lemma 4.3 that for any polynomial Q the 1-form

QeP1(λ− 1)P ′1dz = QeP1(P ′2 − P ′1)dz
lies in dOH1 . Thus if λ 6= 1, then QP ′1eP1dz ∈ dOH1 , hence

Q′eP1dz = d(QeP1)−QP ′1eP1dz ∈ dOH1

for all polynomials Q. Since all 1-forms in Ω0
H1

are of the form PeP1dz for
some polynomial P and any P = Q′ for some polynomial Q, it follows that
H1
dR,0(S∗1 ) is trivial, a contradiction. Thus λ = 1, so P ′2 = P ′1 and hence
H1 = H2. �
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