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Skeleta in non-Archimedean and tropical geometry (∗)

Andrew W. Macpherson (1)

ABSTRACT. — I describe an algebro-geometric theory of skeleta, which provides a
unified setting for the study of tropical varieties, skeleta of non-Archimedean analytic
spaces, and affine manifolds with singularities. Skeleta are spaces equipped with a
structure sheaf of topological semirings, and are locally modelled on the spectra of
the same. The primary result of this paper is that the topological space X underlying
a non-Archimedean analytic space may locally be recovered from the sections of the
sheaf |OX | of pointwise valuations of its analytic functions; in other words, (X, |OX |)
is a skeleton.

RÉSUMÉ. — Je décris une théorie algèbro-géometrique de squelettes, qui fournit
une cadre unifiée pour l’étude de variétés tropicaux, les squelettes des variétés analy-
tiques non Archimediennes, et les variétés différentielles avec structure affine singu-
lier. Ces squelettes sont des espaces munies d’un faisceau structural de semianneaux
topologiques, et sont localement isomorphes aux spectres de ceux-ci. Le résultat prin-
cipal de cet article dit que l’espace topologique sous-jacent d’une variété analytique
non-Archimedienne peut être localement reconstruit par les sections du faisceau de
valuations “point-par-point” de ses fonctions analytiques.

1. Introduction

There are several areas in modern geometry in which one is led to consider
spaces with affine or piecewise affine structure. The three with which I am
in particular concerned are, in order of increasing subtlety:

• skeleta of non-Archimedean analytic spaces ([4]);
• tropical geometry ([2, 17]);
• affine manifolds with singularities ([10, 15]).
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These cases share the following features:

• they are piecewise manifolds;
• it makes sense to ask which continuous, real-valued functions are
piecewise affine;
• they admit a stratification on which it makes sense to ask which of
these are convex.

Moreover, in each case the structure is determined entirely by an under-
lying space B, together with a sheaf

|OB | ⊆ C0 (B;R t {−∞})

of piecewise-affine, convex (where this is defined) functions.

The sheaf |OB | is naturally a sheaf of idempotent semirings under the
operations of pointwise maximum and addition. It has long been understood,
at least in the tropical geometry community (cf. e.g. [17]) that such semirings
are the correct algebraic structures to associate to piecewise-affine geometries
like B.

A natural question to ask is whether this sheaf-theoretic language can be
pushed further in this setting and, as in algebraic geometry, the underlying
space B recovered from the semirings of local sections of |OB |. In this paper,
I provide an affirmative answer to this question, though, as for the passage
from classical algebraic geometry to scheme theory, it will require us to alter
our expectations of what type of space underlies a piecewise-affine geometry.
The resulting theory is what I call the theory of skeleta.

The relationship between the theories of schemes and of skeleta goes
beyond mere analogy: they can in fact be couched within the same theoretical
framework (Appendix 2.1), à la Grothendieck (cf. also [6, 20]). Within this
framework, one need only specify which semiring homomorphisms

Γ(U ; |OU |)→ Γ(V, |OV |)

are dual to open immersions V ↪→ U of skeleta. This is enough to associate
to every semiring α a quasi-compact topological space, its spectrum Specα.
Skeleta can then be defined to be those semiringed spaces locally modelled
by the spectra of semirings.

My main contention in this paper is that the primary source of skeleta
is the non-Archimedean geometry, and this is why I have adopted the ter-
minology of this field. The initial concept that links non-Archimedean and
piecewise-affine geometry is that of a valuation. Indeed, semirings are the
natural recipients of valuations, while topological rings are the sources.
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The topology of skeleta is selected so as to ensure that there is a unique
functor

sk : Ad→ Sk
from the category Ad of adic spaces to the category Sk of skeleta, a natural
homeomorphism X

∼→ skX for X ∈ Ad, and a universal valuation OX →
|OX |. This universal skeleton skX of an analytic space X can be thought
of as the skeleton whose functions are the pointwise logarithmic norms of
analytic functions on X. In particular, X is locally the spectrum of the
semiring of these functions.

The existence of this functor is the primary result of this paper. I also
recover within the category of skeleta certain further examples that already
existed in the literature: the dual intersection or Clemens complex of a de-
generation (Section 8.2), and the tropicalisation of a subvariety of a toric
variety (Section 8.3).

Gist

The categories of skeleta (Section 7) and of non-Archimedean analytic
spaces may be constructed in the same way: as a category of locally rep-
resentable sheaves on some site whose underlying category is opposite to a
category of algebras (à la [20]). As such, to build a bridge between the two
categories, it is enough to build a bridge between the categories 1

2Ringt of
topological semirings (Definitions 5.2 and 5.23) and nA of non-Archimedean
rings (Definition 2.2), and to check that it satisfies certain compatibility
conditions.

One can associate to any non-Archimedean ring (A,A+) a free semiring
Bc(A;A+), which, as a partially ordered set, is the set of finitely generated
A+-submodules of A. The addition on Bc(A;A+) comes from the multipli-
cation on A. It comes with a valuation

A→ Bc(A;A+), f 7→ (f)
universal among continuous semivaluations of A into a semiring whose values
on A+ are negative (or zero). In other words, Bc(A;A+) corepresents the
functor

Val(A,A+; · ) : 1
2Ringt → Set

which takes a topological semiring α to the set of continuous semivaluations
val : A→ α satisfying val |A+ 6 0.

In particular, if A = A+, then BcA+ := Bc(A+;A+) is the set of finitely
generated ideals of A+, or of finitely presented subschemes of Spf A+.
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Everything in the above paragraph may also be phrased in the internal
logic of topoi so that, for example, it makes sense to replace A and α with
sheaves of non-Archimedean rings and semirings on a space. Thus if X is a
non-Archimedean analytic space, then

|OX | : U 7→ Bc(OU ;O+
U )

is a sheaf of topological semirings on X, universal among those receiving a
continuous semivaluation from OX .

Theorem 7.22. — Let X be quasi-compact and quasi-separated. There
is a natural homeomorphism

X
∼→ SpecBc(OX ;O+

X)
which matches the structure sheaf on the right with |OX | on the left.

In particular, if X is a qcqs formal scheme, then the spectrum of the
semiring BcOX of ideal sheaves on X is naturally homeomorphic to X itself.

This skeleton SpecBc(OX ;O+
X) is called the universal skeleton skX of

X. It follows from the universal property of its structure sheaf that the
real points skX(R∨) can be identified canonically with the Berkovich ana-
lytic space associated to X [3, §1.6], provided such a thing exists; see Theo-
rem 7.26.

A natural geometric counterpart to the universality of Bc might be to say
that the universal skeleton of an analytic space is universal among skeleta
B equipped with a continuous map ι : B → X and valuation OX → ι∗|OB |.
However, my point of view is that the very construction of the universal
semiring diminishes the importance of valuation theory in getting a handle
on the geometry of X. It tends to be easier, and perhaps more natural, to
construct skeleta B with a morphism X → B in the opposite direction.

For example, letX+ → Spf OK be a simple normal crossings degeneration
over a DVR OK , with general fibre j : X → X+ (so X is an analytic space,
smooth over K). The irreducible components Ei of the central fibre X+

0 of
the degeneration generate a subring |Osk(X,X+)|◦ ⊆ BcOX+ whose elements
are the ideals monomial with respect to normal co-ordinates (t =

∏k
i=1 x

ni
i ).

Their supports are the strata of X+
0 . Base-changing over K yields the dual

intersection semiring
Cl(X,X+) ↪→ Bc(OX+ ⊗K;OX+)

and, dually, dual intersection skeleton Spec Cl(X,X+) =: ∆(X,X+) µ← X
(Definition 8.3).

ThatX is defined overK means that the universal skeleton, dual intersec-
tion skeleton, and morphism µ are defined over its value group: the semifield
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of integers Z∨ := Z t {−∞}. The real points sk(X,X+)(R∨) of the dual
intersection skeleton are Z∨-semialgebra homomorphisms |Osk(X,X+)| → R∨
to the real semifield R∨ =:= R t {−∞}. They can be identified with the
points of the naïve dual intersection complex as defined in, for example, [15,
§A.3]. Indeed, the simplices of this complex are defined by the logarithms of
local equations for the intersections of X+

0 :
K{x1, . . . , xn}
(t =

∏k
i=1 x

ni
i )
 

Z∨{X1, . . . , Xn}
(−1 =

∑k
i=1 niXi)

,

where the curly braces on the right-hand side signify that Xi 6 0. The latter
equation 1 +

∑k
i=1 niXi = 0 cuts the dual intersection simplex

conv{(0, . . . , 0,−1/ni, 0, . . . , 0)}ki=1 ⊂ Rn60

out of the negative orthant in Rn. Under this identification, the elements of
the dual intersection semiring correspond to integral, piecewise-affine func-
tions whose restriction to each cell is convex.

The construction of such skeleta, perhaps partial skeleta of X, is the crux
of the theory. At this point I know of only a few examples (Section 8).

An elliptic curve

Let us consider now the case that X+ = E+/OK is an elliptic curve
degenerating semistably to a cycle of n > 3 P1

ks, which I denote {Di}ni=1 ∈
Z∨{X;X+}. Its general fibre E/K is a Tate elliptic curve. The dual inter-
section skeleton ∆(E,E+) is, at the level of real points, a cycle of n unit
intervals joined at their endpoints. The vertices {vi}ni=1 correspond to the
lines Di. Functions are allowed to be concave at these vertices. In particular,
the function Di takes the value -1 at vi and zero at the other vertices.

Now let us collapse one of the Dis
pi : E+ → E+

i

to an A1 singularity. The special fibre of E+
i is now a cycle of (n − 1) P1

ks
meeting transversally except at the discriminant locus of the blow-up, which
now has the local equation (xy − t2). With these co-ordinates, pi is the
blow-up of the ideal (x, y, t).

In the semialgebraic notation, the ideal is
(x, t, y) = D′i−1 ∨ −1 ∨D′i+1 ∈ Cl(E,E+),

where D′j denotes the divisor whose strict transform under pi is Dj , so
p∗iD

′
i±1 = Di±1+Di. The blow-up is monomial, and hence induces a pullback
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homomorphism p∗i : Cl(E,E+)→ Cl(E,E+), and dually, a morphism

pi : ∆(E,E+)→ ∆(E,E+
i )

of the dual intersection skeleta.

The segment of the dual intersection complex corresponding to the singu-
lar intersection Di−1 ∩Di+1 is an interval I of affine length two. Considered
as a function on I, the blow-up ideal D′i−1 ∨ −1 ∨ D′i+1 has real values as
the absolute value

| − | : I ' [−1, 1]→ R.
It has a kink in the middle. Because, in ∆(E,E+

i ), there is no vertex here,
the inverse of this function is not allowed; while of course the pullback Di is
invertible on ∆(E,E+).

In fact, Cl(E,E+) is a localisation of Cl(E,E+
i ) at D′i−1 ∨ −1 ∨ D′i+1,

and ∆(E,E+) is an open subset of ∆(E,E+
i ).

Varying i, we obtain therefore an atlas
n∐

i 6=j=1
∆(E,E+)⇒

n∐
i=1

∆(E,E+
i )

for a skeleton B which compactifies ∆(E,E+). Functions on B are required
to be convex everywhere, and B(R∨) is, as an affine manifold, the flat circle
R/nZ.

This skeleton is a kind of Calabi–Yau skeleton of E, and it depends only
on the intrinsic geometry of E and not on any choices of model. See also
Section 8.4.

Mirror symmetry context

Conjectures arising from homological mirror symmetry [14] suggest that
a Calabi–Yau n-fold X approaching a so-called large complex structure limit
acquires the structure of a completely integrable system µ : X → B with
singularities in (real) codimension one, shrinking to two in the limit. The
base B therefore acquires the structure of a Riemannian n-manifold with
integral affine co-ordinates yi, away from the singular fibres, given by the
Hamiltonians of the system. The metric is locally the Hessian, with respect to
these co-ordinates, of a convex function K, and satisfies the Monge–Ampère
equation

ddet
(

∂2K

∂yi∂yj

)
= 0
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which can be thought of as the “tropicalisation” of the complex Monge–
Ampère equation satisfied by the Yau metric.

The central idea of [15] is that the skeleton B can be constructed, with
the Legendre dual affine structure y̌i, from the non-Archimedean geometry
of Xan or, what is the same thing, the birational geometry of its formal mod-
els. Indeed, Kontsevich noted that the Gromov–Hausdorff limit of X should
resemble the dual intersection complex of a certain “crepant” model thereof.
To be precise, the real points of B should be embeddable intoXan(R∨) as the
dual intersection complex of any dlt minimal model ofX [18]. Its structure as
a dual intersection complex also endows it with the correct affine structure,
away from a subset of codimension one which contains the singularities.

More subtle is to construct the correct non-Archimedean torus fibration
µ : X → B. This would also determine the affine structure of B in the sense
that

|OB | ∼= Im(µ∗OX → µ∗|OX |).

Such a µ is determined by a choice of minimal model. Unfortunately, in di-
mensions greater than one, the morphisms µ coming from various models
differ. The affine structures they induce are related by so-called worm de-
formations, which move the singularities of the affine structure along their
monodromy-invariant lines. These deformations correspond to flops in bira-
tional geometry.

This forms the basis of a dictionary, motivated by mirror symmetry, be-
tween concepts in birational geometry and the tropical geometry of affine
manifolds. This dictionary has been partially developed along combinatorial
lines in the Gross–Siebert programme.(1) However, geometrically interesting
examples present enormous combinatorial complexity, already for the case
of K3 surfaces. I propose that a more geometric approach, such as outlined
in this paper, will be more robust in such applications.

There is some hope that, armed with a suitably flexible language, the bi-
rational geometry of X together with a polarisation can be used to construct
solutions to a real Monge–Ampère equation on B.

(1) In general the Gross–Siebert programme [11] bypasses the non-Archimedean geom-
etry to give a direct construction of the affine structure of B, up to worm deformations, in
terms of toric geometry. Using this approach, they were able to obtain many results with
a combinatorial flavour, and even a reconstruction of X (as an algebraic variety) from B
together with some cocycle data. To mimic at least their basic construction in the context
of skeleta is not difficult, but beyond the scope of this paper.
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1.1. How to read this paper

The structure of the paper is as follows. In the first three sections, we
establish the theory of semirings and their (semi)modules as a theory of
commutative algebras in a certain closed monoidal category, the category of
B-modules (ModB,⊕). The objects of ModB are also known in the literature
as “join-semilattices”. Since we wish to compare with non-Archimedean ge-
ometry, we actually need to work with topological B-modules (Section 4). At
this paper’s level of sophistication, this causes few complications.

Apart from establishing the formal properties of the categories of B-
modules and semirings, the secondary thrust of this part is to introduce
various versions of the subobject and free functors

B,Bc : ModA −→ ModB

Ring −→ 1
2Ring

etc.

which will pave the major highway linking algebraic and “semialgebraic”
geometry. I have spelled out in some detail the functoriality of these con-
structions, though they are mostly self-evident.

Section 6 sets about defining the localisation theory of semirings, which
is designed to parallel the one used for topological rings in non-Archimedean
geometry. These bounded localisations factorise into two types: cellular, and
free. The latter resemble ordinary localisations of algebras, and the algebr-
aically-minded reader will be unsurprised by their presence. The cellular
localisations, on the other hand, may be less familiar: they involve the non-
flat operation of setting a variable equal to zero. Thinking of a skeleton as a
polyhedral or cell complex, these localisations will be dual to the inclusions
of cells (of possibly lower dimension). Perhaps confusingly, these are the
semiring homomorphisms that correspond, under Bc, to open immersions
of formal schemes. The precise statements are the Zariski-open (6.18) and
cellular cover (7.10) formulas.

With some understanding of the “cellular topology” we are able, as an
aside, to describe the spectrum of contracting semirings in terms of a naïve
construction: the prime spectrum Section 6.3. This makes clear the relation-
ship between the topological space underlying a formal scheme X+ and the
spectrum of the ideal (sheaf) semiring BcO+

X .

It is also easy to describe the free localisations in terms of the polyhedral
complex picture. Inverting a strictly convex function has the effect of de-
stroying the affine structure along its non-differentiability locus (or “tropical
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set”); we therefore think of it as further subdividing our complex into the
cells on which the function is affine. We can also give an algebro-geometric
interpretation of these subdivisions: it is given by the blow-up formula (6.22).
In the setting of a formal scheme X+ over a DVR OK , it says that blowing
up an ideal sheaf J supported on the reduction has the effect of inverting J
in Bc(OX+ ⊗K;OX+). Intuitively, the blow-up of J is the universal way to
make it an invertible sheaf.

In Section 7 we meet the category Sk of skeleta, and introduce some uni-
versal constructions of certain skeleta from adic spaces and their models. The
construction of this category follows the general programme of glueing ob-
jects inside a topos, as outlined in [20]. The main result 7.22, which concerns
the main skeletal invariant of an analytic space X, the universal skeleton
skX, boils down to proving that for reasonable values of X, the topologi-
cal space underlying X can be identified with that of Spec Γ(X; |OX |). The
technical part of the proof is based on the Zariski-open, blow-up, and cellular
cover formulas, which together allow us to explicitly match the open subsets
of X with those of its skeleton.

As an artefact of the proof, we may notice that a surprisingly many skeleta
(those associated to any quasi-compact, quasi-separated analytic space) are
affine. As an aside in Section 7 I was able to obtain a kind of quantifica-
tion (Theorem 7.12) of this observation. We also glance at the relationship
(Theorem 7.26) between skeleta and the theory of Berkovich.

In the examples Section 8, we reconstruct some well-known “tropical
spaces” as skeleta: the dual intersection complexes of locally toric degener-
ations (Section 8.2), and the tropicalisations of subvarieties of a toric vari-
ety [19] (Section 8.3). I have also attempted to couch the construction of an
affine manifold from a Tate elliptic curve, summarised above, in more general
terms (Section 8.4). This forms the first test case of an ongoing project.
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2. Preliminaries and conventions

2.1. On sites and topoi

Our general notational conventions on sites and topoi follow the canon-
ical [1]. The central glueing construction of the paper revolves around the
notion of a locally representable sheaf, defined in [20, Def. 2.15]. I only wish
to replace the input, the authors’ notion of Zariski-open immersion, with
something a bit more flexible.

Definition 2.1. — Let U be a class of monomorphisms in a category
C stable for composition and base change. One defines the structure of a
Grothendieck site on C whose generating coverings are finite families of mor-
phisms in U that form a covering for the canonical site.

An open immersion in the associated topos C∼ is a morphism locally
representable by morphisms in U .

An object of C∼ is locally representable if it is a union of representable
open subobjects.

Much of the theory of [20] is valid with this more flexible input, notably
Proposition 2.18. I warn the reader only that without a locality requirement
for our definition of affine open immersion, part 2 of [20, Prop. 2.17] is false.
This is the case, for example, for the category of adic spaces (Section 2.2).

The resulting class of objects can also be characterised in terms of point-
set topology via a modern analogue of Stone’s construction:

(1) By construction, C∼ is a coherent topos and so by Deligne’s theo-
rem [16, §IX.11.3] it has enough points.

(2) Since the morphisms in U were assumed to be monic, the small topos
of an object X ∈ C∼ is localic.

(3) Being localic and having enough points, the small topos of an object
is therefore equivalent to a uniquely determined sober topological
space [16, §IX.3.1-4]. This determines a functor

C∼ → Top

that takes morphisms in U to open immersions.
(4) The topological space associated to a representable (or more gener-

ally, compact) object is quasi-compact and quasi-separated.
(5) Being locally representable corresponds to having a basis of open

sets coming from open immersions with representable source.
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A covering (or, more precisely, two-term hypercovering) of a space X will
be denoted U• � X, with the bullet ranging over a partially ordered set of
indices.

2.2. Non-Archimedean geometry

The perspective on non-Archimedean geometry taken in this paper was
influenced by the foundational works [13] and [8]. Broadly speaking, I have
adopted the categorical localisation constructions of the latter (after the
approach of Raynaud), but the language and notation of the former, in
particular, the nomenclature adic spaces.

I introduce the following innovations in terminology:

Definitions 2.2. — A marked formal scheme is a pair (X+, Z) con-
sisting of a formal scheme X+ and a collection Z of Cartier divisors. A
morphism of marked formal schemes is a morphism f : X+

1 → X+
2 such

that (f−1Z2)red ⊆ Z1. An admissible blow-up is a finite type blow-up whose
centre has underlying reduced scheme contained in Z.

A non-Archimedean ring is a pair (A,A+) consisting of an adic ring
A+ and a localisation A of A+. We only consider locally convex (A,A+)-
modules, that is, complete topological A-modules whose topology is generated
by A+-submodules; the category of such is denoted LC(A,A+), or just LCA
for short.

• The category Ad of adic spaces is defined by the same means as the
category Rf of [8, §II.2], with the modification that the input to the
localisation construction is instead the category of coherent marked
formal schemes at admissible blow-ups, as in Definition 2.2. This
ensures that the notion of adic space is a generalisation of that of
formal scheme.
• The glueing construction of [8, §II.2.2(c)], although expressed in less
standard language, is identical to the locally representable sheaves
story of Section 2.1.
• Following Huber, the sheaf of functions extending over a model is
denoted O+ (rather than Oint as in [8, §II.3.2(a)]). The structure
sheaf of the adic topos Ad∼ is a pair (O,O+). It is a sheaf of non-
Archimedean rings in the sense of Definition 2.2.
• Accordingly, we also adopt the notation X+ for models of a adic
space X. The category of models is denoted MdlX+ ; if X is qcqs,
it is cofiltered. The map j : X → X+ exhibiting the model is a
morphism of adic spaces.
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• An affine adic space X is one admitting an affine formal model
whose marking divisors are principal. By definition, this space is the
spectrum of the non-Archimedean ring A := ΓOX ; following Huber,
this spectrum is denoted SpaA.

The key aspect of this construction that we will use is that for quasi-
compact, quasi-separated X, as topologically ringed sites,

(X,O+
X) ' lim

X+∈Mdl(X)
X+ (2.1)

where the limit is over all formal models of X.

3. Subobjects and B-modules

The theory of B-modules plays the same role in tropical geometry that the
theory of Abelian groups plays in algebraic geometry: while rings are commu-
tative monoids in the category of Abelian groups, semirings are commutative
monoids instead in the category of B-modules. This is the fundamental point
of departure of the two theories. There is therefore a temptation to try to
treat B-modules as “broken” Abelian groups, and to literally translate as
many concepts and constructions from the category Ab as will survive the
transition.

In this paper, I adopt a different perspective. A B-module is a particular
type of partially ordered set which axiomatises some properties of subobject
posets in Abelian and similar categories. In particular, there is a functor
B : Ab → ModB which associates to an Abelian group its B-module of
subgroups. As such, I propose to treat B-modules as though they are lower
categorical shadows of structures in the category of Abelian groups, rather
than simply as elements of a single Abelian group. The theory of B-modules
is a naïve form of category theory, rather than a weak form of group theory.

There is also a dual, or more precisely, adjoint, perspective, which is
that a B-module is the natural recipient of a non-Archimedean seminorm
from an Abelian group. This fits well with traditional perspectives on non-
Archimedean geometry. In keeping with the ahistorical nature of this paper,
I barely touch upon this idea here (but see Example 5.5).

3.1. B-modules

Definition 3.1. — A B-module is an idempotent commutative monoid.
In other words, it is a commutative monoid (α,∨,−∞) in which the identity

X ∨X = X
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holds for all X ∈ α, and where −∞ is the identity for ∨. The category of
B-modules and their homomorphisms will be denoted ModB.

A B-module is automatically a partially ordered set with the relation
X 6 Y ⇐⇒ X ∨ Y = Y.

It has all finite joins (suprema). Conversely, any poset with finite joins is a
B-module under the binary join operation. They are more commonly called
join semilattices or simply semilattices.(2)

We may therefore introduce immediately a path to category theory in
the form of an essentially equivalent definition.

Definition 3.2. — A B-module is a preorder with finite colimits. A B-
module homomorphism is a right exact functor.

Example 3.3. — The null or trivial B-module is the B-module with one
element {−∞}. The Boolean semifield is the partial order B = {−∞, 0} '
{false,true}.

The integer, rational, and real semifields Z∨,Q∨,R∨ are obtained by dis-
jointly affixing −∞ to Z,Q,R, respectively. More generally, we can obtain
a semifield H∨ by adjoining −∞ to any totally ordered Abelian group H.
These semifields are totally ordered B-modules (in fact, semirings; cf. e.g.
Example 5.3).

If X is a topological space, the set C0(X,R∨) of continuous functions
X → R∨, where R∨ is equipped with the order topology, is a B-module.
So too are the subsets of bounded above functions, or of functions bounded
above by some fixed constant C ∈ R.

Suppose that X is a manifold (with boundary). The subset C1(X,R∨)
of differentiable functions is not a B-module, since the pointwise maximum
f ∨ g of two differentiable functions f, g needn’t be differentiable. One must
allow piecewise differentiable PC1 (or piecewise smooth PC∞) functions to
obtain submodules of C0(X,R∨). Since convexity is preserved under ∨, the
subsets of convex functions CPCr(X;R∨) are also submodules.

We can also endow X with some kind of affine structure [15, §2.1], which
gives rise to B-modules CPA∗(X,R∨), ∗ = R,Q,Z of piecewise-affine, convex
functions (with real, rational, or integer slopes, respectively). If X = ∆ ⊂ Rn
is a polytope, then it has a notion of integer points, and so one can define
a B-module CPAZ(X,Z∨) of piecewise-affine, convex functions with integer
slopes and which take integer values on lattice points Zn ∩ ∆. Note that

(2) I chose “B-module” instead of “semilattice” because it emphasises the analogy with
usual commutative algebra and to avoid overloading the prefix “semi-”.
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any function in this B-module that attains the value −∞ must in fact be
constant.

Example 3.4. — Let S be a set. The subset B-module BS is the power set
of S; its join operation is union. The free B-module BcS ⊆ BS is the set of
finite subsets of S. Its elements may be written uniquely (up to permutation
of terms) as idempotent linear expressions “with coefficients in B,” i.e. as
X1 ∨ · · · ∨Xk for some X1, . . . , Xk ∈ S.

Both constructions are functorial in S, so we have functors B,Bc : Set→
ModB; the latter is left adjoint to the forgetful functor.

The theory of B-modules is a finitary algebraic theory, and so limits, fil-
tered colimits, and quotients by groupoid relations are computed in Set; this
remains true with Set replaced by any topos. The following (Proposition 3.5)
also remains true in that generality.

For any B-modules α, β, we can construct the direct join α ∨ β as the
B-module whose underlying set is the Cartesian product α × β and whose
join is defined by the law

(X1, Y1) ∨ (X2, Y2) := (X1 ∨X2, Y1 ∨ Y2).

I simply writeX1∨X2 for (X1, X2) where this is not likely to cause confusion.

There are natural B-module homomorphisms α→ α ∨ β → α defined by

X 7→ X ∨ (−∞), X ∨ Y 7→ X,

and similarly for β, which make the direct join into a coproduct and product
in ModB. In particular, there are natural homomorphisms

α
∆−→ α ∨ α ∨−→ α,

the diagonal and the map defining the B-module structure, respectively. I
use also the direct join notation for a pushout α ∨β γ := α tβ γ.

The null B-module is the empty direct join, or zero object, of ModB. The
kernel and cokernel of a morphism f : α → β of B-modules are defined:
ker f := f−1(−∞), coker f = β ∨α {−∞}.

If f, g ∈ Hom(α, β), then their “sum” is given by the composition

α
id× id−→ α ∨ α −→ β ∨ β idt id−→ β

which takes X ∈ α to f(X) ∨ g(X). This description establishes that the
monoid Hom(α, β) is in fact a B-module in which f 6 g if and only if
f(X) 6 g(X) ∈ β ∀ X ∈ α; moreover Hom(−,−) is a bifunctor from ModB
to itself.
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Proposition 3.5. — The category ModB is semiadditive.(3) It is com-
plete and cocomplete.

It is harder to obtain an explicit description of general coequalisers; see
Section 3.5.2.

3.1.1. Subobjects

Beyond the geometric examples 3.3, the primary source of B-modules are
the subobject posets in certain finitely cocomplete categories. One could for-
mulate a general theory of subobjects in certain kinds of categories; however,
for the purposes of this paper we only need to know the version for modules
over a commutative ring (possibly in a Grothendieck topos).

Definition 3.6. — Let A be a ring, M an A-module. I write B(M ;A)
for the submodule lattice of M , the partially ordered set of all A-submodules
of M ; its join operation is submodule sum. I abbreviate B(A;A) to BA, the
ideal semiring of A.

The submodule lattice is functorial in A-module homomorphisms f :
M1 →M2

Bf : B(M1;A)→ B(M2;A), N 7→ Im(f |N )
and ring maps g : A→ B

Bg : B(M ;A)→ B(M ⊗A B;B), N 7→ Im(N ⊗A B →M ⊗A B).
In particular, BA→ BB.

Typically, A =: OX will be a sheaf of rings on some space X and M
an OX -module, in which case B(M ;OX) is the lattice of OX -subsheaves of
M . The submodule lattice is then functorial for maps defined in the sheaf
category X∼, but also for morphisms g : (Y,OY ) → (X,OX) of ringed
spaces. In the latter case, I will write

g∗ = Bg : B(M ;OX)→ B(g∗M ;OY ), N 7→ Im(g∗N → g∗M)
for the induced map of lattices, though this should not be confused with the
functor of pullback of OY -modules, which it equals only when g is flat.

Example 3.7 (Discs). — Let K be a complete, valued field, V a K-vector
space. I would like to be able to say that the subobjects of V are the discs [5,
§2.2]. If K is non-Archimedean with ring of integers OK , then a disc is the

(3) A category is semiadditive if it admits finite products and coproducts and the
natural map × → t is an isomorphism of bifunctors.
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same thing as an OK-submodule, and so the set of discs is B(V ;OK) (which
in loc. cit. is called D(V )).

If K is Archimedean, then we need an alternative theory of “abstract
discs” or “convex sets”. Following [6], one can describe it as a theory of
modules for a certain algebraic monad. For instance, if K = R = Q∞,
the corresponding monad is that Z∞ (also written OR) of convex, balanced
sets [6, §2.14]. An object of ModZ∞ is a set M equipped with a way of
evaluating convex linear combinations

k∑
i=1

λixi, xi ∈M, λi ∈ R,
k∑
i=1
|λi| 6 1

of its elements. A subset of V is a disc if and only if it is stable for the
action of Z∞. In other words, D(V ) = B(V ;Z∞), in a mild generalisation of
Definition 3.6.

3.2. Orders and lattices

The alternative Definition 3.2 puts B-module theory in the broader con-
text of order theory. In particular, there are sometimes defined infinitary
operations

(Xi)i∈I 7→ sup
i∈I

Xi.

I reserve the notation
∨k
i=1Xi for the (always defined) operation of finite

supremum or join.

The following definitions are standard in order theory:

Definitions 3.8. — A map of posets is monotone if it preserves the
order. A monotone map of posets is the same as a functor of preorders. The
category of posets and monotone maps is denoted POSet.

A B-module is a complete lattice if it has all suprema. A complete lat-
tice is the same thing as a cocomplete poset. In particular, meets exist. A
lattice homomorphism is a map of complete lattices preserving all suprema,
that is, a colimit-preserving functor. The category of complete lattices and
homomorphisms is denoted Lat ⊂ Span.

Let α be a B-module, S, T ⊆ α. The lower slice set

S6T := {Y ∈ S | ∃ X ∈ T s.t. X ∨ Y = X}
= {Y ∈ S | ∃ X ∈ T s.t. Y 6 X} (3.1)
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is the B-module of all elements contained in S that are bounded above by an
element of T . The upper slice set

S>T := {Y ∈ S | ∃ X ∈ T s.t. X ∨ Y = Y }

is defined dually.

A subset S is said to be lower (resp. upper) if S = α6S (resp. α>S). A
lower submodule of α is called an ideal of α.

The subset S is called coinitial (resp. cofinal) if all lower (resp. upper)
slice sets are non-empty, that is, ∀ X ∈ α, ∃ Y ∈ S such that Y 6 X (resp.
X 6 Y ).

Example 3.9. — A quotient of a B-module α by an ideal ι, that is, the
cokernel of the inclusion ι ↪→ α, is easy to make explicit: it is simply the
set-theoretic quotient α/ι of α by the equivalence relation ι ∼ −∞. If ι =
α6T is a slice set, we may also write α/T . The cokernel of a B-module
homomorphism f : α→ β is the quotient of β by β6f(α), the smallest ideal
containing f(α). In particular, α is an ideal if and only if it is the kernel of
its cokernel.

The set of all ideals of α can be thought of as a subobject poset in the
category of B-modules. It is a complete lattice.

Definition 3.10. — The lattice of ideals Bα of a B-module α is called
the lattice completion of α.

The lattice completion defines a left adjoint B : ModB → Lat to the
inclusion of Lat into ModB. The unit id→ B of the adjunction is an injective
homomorphism

α→ Bα, X 7→ α6X .

As a preorder, the lattice completion of α is its category of ind-objects [1,
§I.8.2].

3.3. Finiteness

In ordinary category theory, the notion of finite presentation of objects is
captured by compact objects, that is, objects whose associated co-represent-
able functor preserves filtered colimits. One then seeks to try to understand
all objects of the category in terms of its compact objects. In particular,
we like to work with compactly generated categories: those for which every
object is a colimit of compact objects.
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A compactly generated category C is equivalent

C ∼= Ind(Cc)

to its category of ind-compact objects. In particular, filtered colimits are
exact.

The order-theoretic version of compactness is finiteness. Its basic be-
haviour can be derived by applying the above results directly to the special
case of objects in pre-orders.

Definitions 3.11. — An element X of a complete lattice α is finite if,
for any formula X 6 supi∈I Xi in α, with the Xi a filtered family, there
exists an index i such that X 6 Xi.

A lattice is algebraic if every element is a supremum of finite elements.

A homomorphism f : α → β preserves finiteness if f(X) is finite when-
ever X is.

Be warned that it is not, in general, equivalent to replace the inequalities
in the above definition with equalities. An element X ∈ α can be finite as
an element of α6X without being finite in α.

Lemma 3.12. — A finite join of finite elements is finite.

Let α be a complete lattice. I denote by αc its subset of finite elements; by
the lemma, αc is a B-module. It is functorial for B-module homomorphisms
that preserve finiteness.

Proposition 3.13. — Let α ∈ Lat. The following are equivalent:

(1) α is algebraic;
(2) sup : B(αc)→ α is an isomorphism;
(3) Every element of α is a supremum of elements X that are finite in

their slice set α6X , and finite meets distribute over filtered suprema
in α.

Let α be any B-module. A B-module ideal ι ↪→ α is finite as an element
of Bα if and only if it is principal, that is, equal to some slice set α6X .
Therefore, α→ Bα identifies α with the B-module of finite elements of Bα.
This sets up an equivalence of categories

B : ModB � Latal : (−)c

between ModB and the category Latal of algebraic lattices.
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Example 3.14. — Let S be a set. A subset of S is finite as an element of
BS if and only if it has finitely many elements; (BS)c ∼= BcS in the notation
of Example 3.3. The power set BS ∼= BBcS is an algebraic lattice.

A submodule of a module M over a ring A is finite if and only if it is
finitely generated; B(M ;A) is an algebraic lattice.

Definition 3.15. — The finite submodule or free B-module on M is
the B-module Bc(M ;A) ∼= (B(M ;A))c of finitely generated A-submodules
of M ; since a sum of finite submodules is finite, this is closed in B(M ;A)
under joins. By algebraicity, BBc(M ;A) ∼= B(M ;A). We abbreviate Bc(A;A)
to BcA.

Example 3.16 (Seminorms). — Let A be an Abelian group. A (logarith-
mic) non-Archimedean seminorm on A with values in a B-module α is a map
of sets val : A→ α satisfying the ultrametric inequality val(f + g) 6 val f ∨
val g. One can take the supremum of any (non-Archimedean) seminorm on
A over any finitely generated subgroup X ⊆ A; indeed, if X = (x1, . . . , xn),
then

sup
f∈X

val f =
n∨
i=1

val xn.

This supremum defines a B-module homomorphism Bc(A;Z)→ α.

This correspondence exhibits the natural seminorm

A→ Bc(A;Z), a 7→ (a)

as universal among seminorms of A into any B-module. In other words,
Bc(A;Z) corepresents the functor

1
2 Nm(A,−) : ModB → Set

of seminorms on A.

Example 3.17. — Let K be a non-Archimedean field with ring of integers
OK and value group |K| ⊆ R. The given valuation induces a B-module iso-
morphism Bc(K;OK) ∼→ |K|∨. In fact, the same holds if K is Archimedean,
cf. e.g. Example 3.7.

Example 3.18 (Not enough finites). — Let K be a complete, discrete
valuation field with uniformiser t. Let K be an algebraic closure with ring
of integers OK . Then BcOK ∼= Q◦∨ = Q60 t {−∞} (cf. Definition 5.10) is
the set of principal ideals generated by positive rational powers tq of the
uniformiser. The “traditional” way to complete Q∨◦ would be to embed it
in its set R◦∨ of Dedekind cuts. The latter is a complete lattice with no finite
elements.
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Of course, it is more sensible in this case to consider Q◦∨ as the set of
finite elements in the well-behaved lattice BQ◦∨ ∈ Latal.

One can show that if the above statements are interpreted in the usual
semantics within the topos of sheaves on a spaceX, one obtains the following
set-theoretic characterisation of the finite submodule B-module (sheaf). Let
OX be a sheaf of rings on X, M an OX -module.

Definition 3.19. — A submodule N ↪→M is locally finitely generated
if there exists a covering {fi : Ui → X}i∈I and epimorphisms Oni

Ui
� f∗i N

for some numbers ni ∈ N.

The finite submodule or free B-module on M is the sheaf
Bc(M ;OX) : U 7→ Bc(M(U);OX(U))

of locally finitely generated OX-submodules of M .

One may simply take this as a set-theoretic definition of Bc, verifying
directly that Bc(M ;OX) is a sheaf.

Example 3.20 (Local seminorms). — Let X be a space, A a sheaf of
Abelian groups on X. A seminorm on A with values in a sheaf α of B-
modules is a map A → α of sheaves which induces over each U ⊆ X a
non-Archimedean seminorm on A(U) (e.g. Example 3.16).

One can define a universal seminorm A → Bc(A; ModOX
), which, for a

given U ⊆ X, takes f ∈ A(U) to the subsheaf of A|U that it locally generates.
Any seminorm val : A→ α factors uniquely through this universal one, with
the factoring arrow taking any finite subsheaf F ⊆ A|V to

sup
f•∈F (U•)

|val f•| =

∣∣∣∣∣
n•∨
i=1

val f•i

∣∣∣∣∣ ∈ |α(U•)| ∼= α(V )

In this formula, U• � V is a covering on which F is defined, and (f•1 , . . . , f•n•)
denotes a locally finite system of generators for F (U•). (Note that the num-
bers n• need not be bounded.)

3.4. Noetherian

Definition 3.21. — A B-module is called Noetherian if the slice sets
satisfy the ascending chain condition, that is, if every bounded, totally ordered
subset has a maximum.

Proposition 3.22. — Let {Xi}i∈I ⊆ α be a bounded family of elements
of a B-module α. If α is Noetherian, then supi∈I Xi =

∨
i∈J Xi for some

finite J ⊆ I.
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Proof. — We proceed by contraposition. Suppose that for all finite J ⊆ I,
there is some i(J) ∈ I \ J such that Xi(J) 66

∨
j∈J Xj , that is, such that∨

j∈J Xj < Xi(J) ∨
∨
j∈J Xj . Then I is infinite, and starting from any index

0 ∈ I we can inductively construct an infinite, strictly increasing sequence
X0 < (X1 ∨X0) < (X2 ∨X1 ∨X0) < · · ·

where n := i({0, . . . , n− 1}) ∈ I. Therefore α is not Noetherian. �

Corollary 3.23. — The following are equivalent for a bounded B-mod-
ule α:

(1) α is Noetherian;
(2) α is a complete lattice, and αc = α;
(3) α ∼→ Bα.

A B-module is Noetherian if and only if its every bounded ideal is Noetherian.

Example 3.24. — Let A be a ring. The following are equivalent:

(1) A is Noetherian;
(2) BA is Noetherian;
(3) BcA is Noetherian;
(4) BcM is Noetherian for all A-modules M ;

In this case, BcM = BM if and only if M is finitely generated.

3.5. Adjunction

As in category theory, the notion of adjoint map is central to the theory
of B-modules.

Definition 3.25. — Let f : α → β be a monotone map of B-modules.
We say that a monotone map g : β → α is right adjoint to f , and write
f† := g, if idα 6 gf and fg 6 idβ. In this situation, we also say †g := f is
left adjoint to g.

If α is a complete lattice, then by the adjoint functor theorem a right
adjoint exists for f if and only if it preserves arbitrary suprema. We have
the formula

X 7→ f†X = supα6f−1(X).

Alternatively, Bf always preserves suprema, and therefore we can always
find an adjoint

(Bf)† : Bβ → Bα, ι 7→ f−1ι
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at the level of the lattice completions. The restriction of (Bf)† to β is an
ind-adjoint in the sense of [1, §I.8.11]. If an ordinary right adjoint to f exists,
then the ind-adjoint is the composite of this with the inclusion α → Bα; I
therefore denote the ind-adjoint also by f† in general, since no confusion can
arise.

In particular, any B-module homomorphism gives rise to a diagram

Bα

α
f
//

OO

β

f†
``

in POSet, and idα 6 f†f .

3.5.1. Pullback and pushforward

Suppose that A is a ring, f : M1 →M2 an A-module homomorphism. If
N ↪→M2 is a submodule, then so is N ×M2 M1 →M1. The fibre product is
a monotone map

f† = f−1 : B(M2;A)→ B(M1;A), N 7→ N ×M2 M1,

right adjoint to the image functor Bf . It happens to be a lattice homomor-
phism.

Secondly, let g : X → Y be a morphism of ringed spaces, A = OX . Then
the pushforward functor f∗ is right adjoint to f∗ on the category ModO of
modules. Correspondingly,

g∗ : B(M ;OX)→ B(g∗M ;OY ), N 7→ g∗N

is right adjoint to the lattice homomorphism g∗ = Bg. Since pushforward is
left exact, this lattice homomorphism does agree with the functor on mod-
ules.

Example 3.26. — If X ↪→ Y is an open immersion of schemes, then the
right adjoint to f∗ : BOY → BOX sends a closed subscheme of X to its
scheme-theoretic closure in Y .

3.5.2. B-module quotients

In the theory of categorical localisation, certain types of adjunction can
provide a substitute for a linear calculus of quotients of categories. One can
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apply a similar technique to semilinear algebra in order to provide explicit
descriptions of B-module coequalisers and quotients.

Let s, t : α⇒ β be a pair of B-module homomorphisms.

Definition 3.27. — An ideal ι ↪→ β is invariant for the pair s, t if, for
all X ∈ α, sX ∈ ι⇔ tX ∈ ι.

Since s and t are B-module homomorphisms, the subset Bβ/(s ∼ t) ⊆ Bβ
of invariant ideals is closed under arbitrary suprema. The right adjoint to
the inclusion is a self-homomorphism

p := sup
n∈N

(
(ts†)n ∨ (st†)n

)
: Bβ → Bβ

taking an ideal to the smallest invariant ideal containing it. It coequalises
s, t. In fact, for any B-module homomorphism f : β → γ coequalising s, t,
Bf is independent of the action of s, t, that is, factors uniquely through p.
Setting

p : β → β/(s = t) := p(β) ⊆ Bβ/(s ∼ t) ⊆ Bβ
where p(β) is the set-theoretic image, we therefore obtain:

Lemma 3.28. — β/(s = t) is a coequaliser for s, t.

In the special case α = B, where s, t are determined by some elements
S, T ∈ β, we write also as usual β/(S = T ) for the B-module quotient (by
the congruence relation generated by the relation S = T ).

Specialisations of the above construction will come into play in later
sections; see, for example, Section 5.2.

4. Topological lattices

A topological space with linear structure is linearly topologised if its topol-
ogy is generated by linear subspaces. In other words, a linear topology on a
space is one that can be defined in terms of a certain decoration (a principal
topology) on its subobject lattice.

Let α be a complete lattice, αu ⊆ α a non-empty, upper subset, closed
under finite meets. Such an αu is called a fundamental system of opens, or
just fundamental system, for short.

Lemma 4.1. — The collection of slice sets α6X for X in a fundamental
system, together with ∅, are a topology on α for which ∨ is continuous.

Proof. — It is clear that these sets define a topology; for continuity of
∨ : α× α→ α, note simply that ∨−1(α6X) = α6X × α6X . �
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The topology in the lemma is that defined by the fundamental system.

Any intersection of fundamental systems is a fundamental system. There-
fore, for any family fi : α→ βi of maps of complete lattices and fundamental
systems βui on βi, there is a smallest fundamental system on α such that
the fi are continuous for the induced topology. Explicitly, it is given by the
closure of the upper set ⋃

i,X∈βu
i

α>f†
i

(X)

under finite meets.

Dually, any union of fundamental systems generates a new fundamental
system under finite meets. This coincides with the usual notion of generation
of new topologies. Hence, for any family gi : αi → β of homomorphisms and
fundamental systems αui , there is a largest fundamental system

βu :=
⋂
i

β>fi(αu
i

)

on β making the gi continuous, and the topology it defines is simply the
strong topology on the underlying set.

Definitions 4.2. — A complete lattice equipped with a principal topol-
ogy, that is, a topology defined by a fundamental system, is called simply a
topological lattice. A topological B-module is a B-module α equipped with an
ideal topology, that is, is the subspace topology with respect to some principal
topology on Bα ⊇ α. A fundamental system for α is a fundamental system
for Bα, and we write αu := (Bα)u.

A homomorphism of topological B-modules (resp. lattices), is a contin-
uous B-module homomorphism (resp. lattice homorphism). The category of
topological lattices is denoted Latt, the category of topological B-modules
ModB,t.

A topological B-module is a B-module whose inhabited open sets are
ideals, and in which every neighbourhood (of −∞) is open. A topological
lattice is the same, except that inhabited open sets are principal ideals. There
is also an obvious notion of principal topology on a possibly incomplete B-
module.

Example 4.3. — The semifields H∨ (e.g. Example 3.3) will always come
equipped with the (principal) topology Hu

∨ = H. (In particular, B is dis-
crete.) A net {Xi}i∈I converges to −∞ if and only if it does so with respect
to the order; in other words, if ∀ λ ∈ H ∃ i ∈ I such that Xj 6 λ for all
j > i.
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The category of topological B-modules (resp. lattices) comes with a for-
getful functor

ModB,t → ModB

which I suppress from the notation. Its left adjoint is given by equipping a
lattice α with the discrete topology αu = α, its right adjoint by the trivial
topology αutriv = {supα}. Both adjoints are fully faithful. We will treat the
category of B-modules as the (full) subcategory of discrete objects inside
ModB,t.

In particular, limits (resp. colimits) in ModB,t are computed by equipping
the limits (resp. colimits) of the underlying discrete B-modules with weak
(resp. strong) topologies.

Example 4.4. — A non-trivial topological B-module is never Hausdorff
in the sense of point-set topology, since every open set contains −∞. Let us
instead say that a B-module α is Hausdorff if inf αu = −∞. The category
ModB,ṫ of Hausdorff B-modules is a reflective subcategory of ModB,t.(4)

Definitions 4.5. — Let fi : αi → β be a family of continuous B-module
homomorphisms. We say that β carries the strong topology with respect to
the fi, or that the family fi is strong, if its topology is the strongest ideal
topology such that the fi are continuous.

In particular, if f is just a single map, f : α → β is strong if and only
if it sends αu into βu ⊆ Bβ. In this case, we may also say that f is open,
although beware that it may fail to be open in the sense of general topology.

If gj : α → βj are a family of continuous B-module homomorphisms,
then α carries the weak topology with respect to the gj, or that the family
gi is weak, if its topology is the weakest ideal topology such that the gi are
continuous.

From the definition of ideal topology, it follows:

Lemma 4.6. — A family fi is weak (resp. strong) if and only if the
induced family Bfi on the lattice completions is weak (resp. strong).

In particular, weak and strong topologies, and hence limits and colimits,
always exist.

Proposition 4.7. — The category ModB,t is complete, cocomplete, and
semi-additive. Filtered colimits are exact.

(4) The notation ṫ follows Bourbaki [5].
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Proof. — We need to check that the product and coproduct topology on
the direct join agree. The explicit formulas show that
(α× β)u = {(X, supβ)∧ (supα, Y ) |X ∈ αu, Y ∈ βu} = αu× βu = (αt β)u

which proves that ModB,t is semi-additive.

Now let αi, βi → γi be a filtered system, with α, β → γ its colimit. We
will confuse αi, βi with their image in α×γ β. To show that the natural map
colimi(αi ×γi

βi)→ α×γ β is a homeomorphism, it will suffice to show that
it is open. Let

U ∈
(

colim
i

(αi ×γi
βi)
)u

=
⋂
i

α×γ β>αu
i
∧βu

i

so there exist Xi ∈ αui , Yi ∈ βui such that supi(Xi ∧ Yi) 6 U . Since, in
B(α×γ β), filtered suprema distribute over meets (cf. Section 3.3),

U > (sup
i
Xi) ∧ (sup

i
Yi) ∈

(⋂
i

α×γ β>αu
i

)
∧

(⋂
i

α×γ β>βu
i

)
= (α×γ β)u

and is therefore open. �

Example 4.8. — There are two obvious ways to topologise the function
B-module C0(X,R∨) on a topological space X (and similarly PCr(X;−),
CPCr(X;−), etc., cf. e.g. Example 3.3): a topology of pointwise convergence,
which is the weak topology with respect to evaluation maps

evx : C0(X,R∨)→ R∨,

and one of uniform convergence, which is the strong topology with respect
to the inclusion R∨ ↪→ C0(X,R∨) of constants. In the important case
CPA∗(X,R∨) of convex, piecewise-affine functions, when X is compact with
affine structure, these two topologies agree.

4.1. Topological modules

Let A be a non-Archimedean ring (Definition 2.2),M a (complete locally
convex) A-module. We equip B(M ;A+) with a principal topology

(BM)u := {U ↪→M | U open},
which, by definition of local convexity, is enough to recover the topology
on M . We also consider Bc(M ;A+) as a topological B-module with respect
to the subspace topology. This topology is natural for continuous module
homomorphisms, and hence lifts B(c) to a functor

B(c)(−;M) : LCA → ModB,t .
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If g : A → B is a ring homomorphism, then the base extension must be
replaced with a completed base extension −⊗̂AB : LCA → LCB (that is,
ordinary base extension followed by topological completion with respect to
the projective tensor product topology). Correspondingly, there is a lattice
(resp. B-module) homomorphism

Bg : B(c)(M ;A+)→ B(c)(M⊗̂A+B+;B+),
N 7→ Im(N ⊗A+ B+ →M⊗̂AB);

in the case M = A this agrees with the homomorphism B(c)(A;A+) →
B(c)(B;B+) defined previously without taking into account the topology.
The same functoriality extends to morphisms of nA-ringed spaces.

Beware that the elements of Bc(M ;A+) correspond to not necessarily
closed submodules ofM , and hence might not be represented by a subobject
in LCA.

Example 4.9 (Continuous seminorms). — Let A be a linearly topologised
Abelian group. It follows immediately from the definition of the topology on
B(A;Z) that the universal seminorm A → Bc(A;Z) (e.g. Example 3.16) on
A is continuous. In fact, Bc(A;Z) carries the strong topology with respect to
this map. In other words, if A → α is any continuous seminorm into some
α ∈ ModB,t, then the factorisation Bc(A;Z)→ α is also continuous.

The topological free B-module Bc(A;Z) corepresents the functor of con-
tinuous seminorms

1
2 Nm(A, · ) : ModB,t → Set.

As we know, we may also use a seminorm ν : A→ α to induce a coarser
topology on A, the weak topology with respect to Bc(A Z) → α. This is
called the induced topology with respect to ν. It is Hausdorff if and only if
the image of Bc(A;Z) in α is.

Example 4.10. — Let K be a complete, rank one valuation field. The
isomorphism Bc(K;OK) ∼= |K|∨ of Example 3.17 is a homeomorphism.

One can also formulate a theory of pro-discrete completion for B-modules
and lattices to correspond to the completion operation for non-Archimedean
rings and their modules. Followed to the conclusion of this paper, this would
yield a different category of skeleta.

However, in situations typically encountered in geometry, one only has
to deal with rings A that have an ideal of definition I, and are therefore in
particular first countable. In this situation, one can use the axiom of depen-
dent choice to show that B(−;A+) is automatically pro-discrete. Moreover,
Nakayama’s lemma ensures that in these situations, even the free B-module
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Bc(−;A+) is pro-discrete. Indeed, if M �M/I is a quotient of discrete A+-
modules, any finite system of generators forM/I lifts to generators forM . A
pro-finite, I-adic A+-module is therefore finitely generated. Conversely, any
finite topological A-module is I-adically complete. It follows that Bc(M ;A+)
is pro-discrete for any complete A-module M .

The main results 7.22, 7.26 of this paper remain true, under such first-
countability hypotheses, if we work instead with pro-discrete B-modules.

5. Semirings

Any symmetric monoidal category C gives rise to a theory of commutative
algebras Alg(C) and their modules. In this section, I describe a closed, sym-
metric monoidal structure on the category of B-modules; the corresponding
theories are those of semirings and their semimodules. This semialgebra will
provide the algebraic underpinning of the theory of skeleta.

Let C a category equipped with a monoidal structure ⊗ with unit 1 = 1C.
One has a category Alg(C) of monoids or algebras in C, which are objects
A of C equipped with structural morphisms

A⊗A µ→ A
e← 1

satisfying various usual constraints, and morphisms respecting these. If A ∈
Alg(C), there is also a category ModA(C) of A-modules in C, which comes
equipped with a free-forgetful adjunction

−⊗A : C� ModA(C).

The (right adjoint) forgetful functor is conservative.

If ⊗ is symmetric, then there is also a category CAlg(C) of commutative
algebras. The module category ModA(C) over A ∈ CAlg(C) acquires its own
symmetric monoidal structure, the relative tensor product

−⊗A − = coeq(−⊗−⊗A⇒ −⊗−)

(as long as C has coequalisers).

If ⊗ is closed, that is, − ⊗ A has a right adjoint HomC(−, A), then the
forgetful functor also commutes with colimits and therefore −⊗A preserves
compactness. Limits and colimits of modules are computed in the underlying
category.
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5.1. The tensor sum

The category of B-modules carries a closed symmetric monoidal structure
given by the tensor sum operation ⊕ which, by definition, is characterised
by a natural isomorphism

HomB(α⊕ β, γ) ∼= HomB(α,HomB(β, γ))

where we use the internal Hom functor defined in Section 3. Alternatively, it
is characterised as universal with respect to order-preserving maps α×β → γ
that are right exact in each variable, that is, such that for each X ∈ β the
composite α→ α×{X} → γ is a B-module homomorphism, and similarly the
transpose of this property. There is a canonical monotone map α×β → α⊕β
such that for any such map, there is a unique extension

α⊕ β

!!
α× β

OO

// γ

to a commuting diagram of sets. It identifies α × {−∞} ∪ {−∞} × β with
{−∞}.

Explicitly, α ⊕ β is generated by symbols X ⊕ Y with X ∈ α, Y ∈ β
subject to the relations

X ⊕ (Y1 ∨ Y2) = (X ⊕ Y1) ∨ (X ⊕ Y2);
X ⊕ (−∞) = −∞

which ensure that the map

[f : α⊕ β → γ] 7→ [X 7→ [Y 7→ f(X ⊕ Y )]]

is well-defined and determines the promised adjunction.

Proposition 5.1. — The tensor sum defines a closed, symmetric mono-
idal structure on ModB.

Proof. — The argument is routine; I reproduce here the unit and counit
of the adjunction −⊕ α a Hom(α,−). First, we have maps

β → Hom(α, α⊕ β), X 7→ [Y 7→ Y ⊕X]

which is a B-module homomorphism by the relations above. Second, one
checks that the map

ev : Hom(α, β)× α→ β

preserves joins in each variable, and so descends to a homomorphism
Hom(α, β)⊕ α→ β. �
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The definitions of semirings and semimodules are those of algebras and
their modules in the category (ModB,⊕). I spell out some of these definitions
here, in order to fix notation.

Definitions 5.2. — An idempotent semiring α, or, more briefly, semir-
ing, is a commutative monoid object (α,+, 0) in the monoidal category
(ModB,⊕). Explicitly, it is a B-module equipped with an additional commu-
tative monoidal operation +, called addition, with identity 0, that satisfies

X + (Y1 ∨ Y2) = (X + Y1) ∨ (X + Y2) X + (−∞) = −∞ ∀ X.
In notation, addition takes priority over joins: X + Y ∨ Z = (X + Y ) ∨ Z.
A semiring homomorphism is a monoid homomorphism. The category of
semirings is denoted 1

2Ring.

We will also have occasion to use a category 1
2Alg := Alg(ModB,⊕) of

possibly non-commutative semialgebras.

A right semimodule over a semiring α, or (right) α-module, is a B-module
µ equipped with an action µ ⊕ α → µ of α, written X ⊕ Z 7→ X + Z. A
homomorphism of semimodules is a module homomorphism. The category of
α-modules is denoted Modα.

The relative tensor sum ⊕α on Modα is the quotient
µ⊕α ν ∼= coeq[µ⊕ ν ⊕ α⇒ µ⊕ ν]

in ModB. A commutative monoid in Modα is an α-algebra; it consists of the
same data as a semiring β equipped with a semiring homomorphism α→ β.
The category of α-algebras is denoted 1

2Ringα. The tensor sum of two α-
algebras over α has a semiring structure.

Example 5.3. — The Boolean semifield B = {−∞, 0} is a unit for the ten-
sor sum operation. It therefore carries a unique semiring structure, of which
the notation is indicative, rendering it initial in the category of semirings.
That is, B plays the role in the category of semirings that Z plays in the
category of rings.

Any B-module is in a canonical and unique way a module over B, with
0 acting as the identity and −∞ as the constant map −∞; whence the
terminology of B-modules.

More generally, the semifield H∨ = H t {−∞} associated to a totally
ordered Abelian group H (e.g. Example 3.3) carries an addition induced by
the group operation on H.

If H can be embedded into the additive group R, H∨ is a rank one semi-
field; these semifields play the role in tropical geometry that ordinary fields
play in algebraic geometry. Of particular interest are Z∨,Q∨,R∨, the value
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semifields of DVFs, their algebraic closures, and of Novikov fields, respec-
tively. Other semifields that arise from geometry, for example in Huber’s
work [13], include those with H of the form Zklex, that is, Zk with the lexi-
cographic ordering and −∞ adjoined. These semifields are non-Noetherian.
They fit into a tower

(Zklex)∨ → (Zk−1
lex )∨ → · · · → Z∨

of semiring homomorphisms which successively kill each irreducible convex
subgroup. See also [8, §0.6.1.(a)].

From general principles about algebra in monoidal categories, it follows:

Proposition 5.4. — The category of semirings is complete and cocom-
plete. Limits and filtered colimits are computed in ModB, and the latter are
exact. Pushouts are computed by the relative tensor sum.

5.1.1. Free semimodules

Let A be a ring, M1,M2 ∈ ModA. There are natural homomorphisms

m : B(c)(M1;A)⊕ B(c)(M2;A)→ B(c)(M1 ⊗AM2;A),
[N1]⊕ [N2] 7→ Im(N1 ⊗N2 →M1 ⊗AM2)

which in the case of the subobject B-module B is a lattice homomorphism.
These homomorphisms upgrade B(c) to lax monoidal functors

B(c) : (ModA,⊗A)→ (ModB,⊕).

It is therefore compatible with algebra on both sides, in the following ways:

(1) If B is an A-algebra, then the multiplication µ on B induces a
semiring structure on B(c)(B;A)

[N1] + [N2] = µ(N1 ⊗N2) ⊆ B

and therefore the subobject (resp. free) B-module functors are up-
graded to functors

B(c) : CAlgA →
1
2Ring.

Beware that the sum [N1] + [N2] of elements of this submodule
semiring corresponds to a product in B, and should not be confused
with the set of sums of elements of N1 and N2, which corresponds
instead to ∨.
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(2) If M is a B-module, then the B-action on M induces a B(c)(B;A)-
module structure on B(c)(M ;A).

B(c) : ModB → ModB(c)(B;A)

With respect to the relative tensor sum ⊕B(c)(B;A), these functors
are lax monoidal. In particular, B(c)(B;A) is a B(c)A-algebra.

Be warned that B(c) is not strongly monoidal: usually

B(c)(M1;A)⊕B(c)A B(c)(M2;A) 6∼= B(c)(M1 ⊗AM2;A).
Similarly, it does not commute with most base changes (but see Proposi-
tion 5.15).

Example 5.5 (Seminormed vector spaces). — Let V be a vector space over
a complete, valued field K, considered as an OK-module as in Example 3.7.
Let us discuss seminorms on V with values in |K|∨ = |K| t {−∞}, the
value semifield of K. Note that |K|∨ acts on the set of discs B(c)(V ;OK) (cf.
Section 5.1.1).

If K is non-Archimedean, then in the same vein as the previous Exam-
ple 3.16, the ultrametric inequality for a seminorm can be rephrased as

sup
z∈〈x,y〉

νz = νx ∨ νy,

where 〈x, y〉 denotes the OK-module span of x and y. In other words, a
seminorm is the same thing as a B-module homomorphism Bc(V ;OK) →
|K|∨, compatible with the actions of |K|∨ on both sides.

On the other hand, if K is Archimedean, and therefore either R or C,
then the subobjects are the convex, balanced discs. The join of two discs
is their convex hull, and a disc is finite if it is the convex hull of finitely
many “vertices”. Note that this implies that, for example, the unit disc of a
K-Banach space V is infinite as soon as dimV > 1.

The same triangle inequality as for the non-Archimedean case works if
we replace the OK-module span 〈x, y〉 by the convex hull conv(x, y). An
Archimedean seminorm is therefore once again a |K|∨-module homomor-
phism Bc(V ;OK)→ |K|∨.

In either case, the valuation on K induces a semiring isomorphism
Bc(K;OK) ∼→ |K|∨ (e.g. Example 3.17).

The space of seminorms is the hom-space Hom(BcV, |K|∨). The unit disc
associated to a seminorm ν is ν†0. Conversely, if D ∈ B(V ;OK) is a disc,
then the |K|∨-action thereon determines a homomorphism

|K|∨ → B(V ;OK), r 7→ rD,
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where we interpret r as the disc of radius r in K. Since
⋂
r>r0

rD = r0D,
this homomorphism preserves infima. If |K| = Z or R, then |K|∨ has all
infima, and hence this homomorphism has a left adjoint ν. Its behaviour on
elements of V is

νx = inf {r ∈ |K|∨ | x ∈ r} .
It therefore maps BcV into |K|∨ if and only if the disc D absorbs in the sense
that KD = V ; in this case, ν is a seminorm. This correspondence recovers
the well-known dictionary between seminorms and absorbing discs in the
theory of vector spaces over valued fields [5, §2.1.2].

5.1.2. Free semirings

Let α be a semiring. The forgetful functor 1
2Ringα → Set commutes

with limits and therefore has a left adjoint α[−]. It is the set of “tropical
polynomials”

α[S] ∼=

{ ∨
n∈NS

∑
X∈S

nXX + Cn

∣∣∣∣∣ Cn ∈ α,Cn = −∞ for n� 0
}

with the evident join and plus operations.

Definition 5.6. — Let α be a semiring, S a set; α[S] is called the free
semiring on S.

The free semiring construction commutes with colimits; in particular we
have the base change

α[S] ∼= α⊕ B[S]
and composition

α[S t T ] = α[S]⊕α α[T ]
for any α ∈ 1

2Ring.

There is similarly a free functor T 7→ B[T ] for a B-module T ; intuitively,
it is the free semiring generated by the set T , subject to the order relations
that exist in T .

5.2. Action by contraction

The concept of contracting operator is natural in analysis, and is inti-
mately related to the operator norm. In the context of this paper, we use
this concept to control the bounds of tropical functions, and hence the radii
of convergence of analytic functions.
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Definition 5.7. — An endomorphism f of a B-module α is contracting
if, for each ideal ι ↪→ α, f(ι) ⊆ ι. That is, f is contracting if and only if
f(X) 6 X for all X ∈ α.

Example 5.8. — Let A be an algebra and M an A-module. An A-linear
endomorphism of M induces a contracting endomorphism of B(M ;A) if and
only if it preserves all A-submodules; that is, if it is an element of A.

Let now α be a semiring, µ a semimodule. Let ι ↪→ α be an ideal.

Definition 5.9. — We say that ι contracts µ if it acts by contracting
endomorphisms, or equivalently, every ideal of µ is ι-invariant. If ι = α, we
say that µ is a contracting α-module. If also µ = α, we say simply that α is
contracting (as a semiring).

In particular, α is contracted by an ideal ι if and only if ι 6 0, and α
itself is contracting if and only if 0 is a maximal element.

Let Modα{ι} denote the full subcategory of Modα on whose objects ι
contracts. This subcategory is closed under limits and the tensor sum, and
so its inclusion has a lax monoidal left adjoint

Modα → Modα{ι}, µ 7→ µ{ι},

the contraction functor. In particular, α{ι} is an α-algebra, and an α-module
µ is contracting if and only if its action factors through the structure ho-
momorphism α → α{ι}. In other words, Modα{ι} really is the category of
modules over the contraction α{ι} of α.

The inclusion into 1
2Ring of the full subcategory 1

2Ring60 of contracting
semirings commutes with limits and colimits, and hence has left and right
adjoints

Left : α 7→ ◦α := α{α}
Right : α 7→ α◦ := α60

and unit and counit α◦ ↪→ α→ ◦α. We will also write
◦(−) := (−){α} ∼= −⊕α ◦α

for the corresponding functor Modα → Mod◦α; but beware that this notation
hides the dependence on α.

Definition 5.10. — The subring α◦ is the semiring of integers of α.
The (universal) contracting quotient is ◦α.

Proposition 5.11. — The semiring of integers functor commutes with
limits and filtered colimits.
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The contraction functor Modα → Modα{ι} defined above can be described
explicitly in terms of the ind-adjoint to µ→ µ{ι} (compare Section 3.5.2). To
be precise, the semiring homomorphism α◦ → α◦[ι] induces a homomorphism

(−)[ι] : Bµ = B(µ;α◦)→ B(µ;α◦[ι]),

where we write B(µ;α) for the set of ideals of µ that are also α-submodules.
Its right adjoint identifies the term on the right with the set of ι-invariant
ideals of µ. Any α-module homomorphism µ → ν to a semimodule ν con-
tracted by ι factors uniquely through the image of µ in B(µ, α◦[ι]). Thus,
µ{ι} ⊆ Bµ is the subset of ι-invariant ideals that are generated as such by a
single element.

Lemma 5.12. — The image of µ in B(µ, α◦[ι]) is uniquely isomorphic
to µ{ι}.

Example 5.13. — The ideal semiring B(c)A of a ring A is a contracting
semiring. If B is any A-algebra, then B(B;A)◦ is the image of BA→ B(B;A).
Indeed, the additive identity of BB is precisely the image of the unit A→ B
of the algebra.

Example 5.14 (Semivaluations). — Let A be a ring. A semivaluation on
A is a map val : A → α into a semiring α which is a seminorm of the
underlying Abelian group, and for which

val(fg) = val f + val g.

It is said to be contracting or integral if α is a contracting semiring.

Let A now be a non-Archimedean ring. A (non-Archimedean) semivalua-
tion of A is a continuous valuation on A whose restriction to A+ is integral.
Any such valuation factors uniquely through the adic semiring Bc(A;A+)
(Definition 5.23). That is, this semiring corepresents the functor

Hom(Bc(A;A+),−) ∼=
1
2 Val(A,A+,−) : 1

2Ringt → Set

of continuous semivaluations on A.

Proposition 5.15. — Let f : A → B be a ring homomorphism. The
extension of scalars transformation B(−;A) → B(−;B) induces an isomor-
phism

B(−;A)⊕B(B;A) BB ∼= ◦B(−;A) ∼= B(−;B)
of functors ModB → ModB(B;A), and similarly

◦Bc(−;A) ∼= Bc(−;B)

as functors ModB → ModBc(B;A).
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Proof. — Let M ∈ ModB . We will see that the morphism B(M ;A) →
B(M ;B) satisifies the universal property of ◦B(M ;A).

Let p : B(M ;A)→ α be a B(B;A)-module map. Precomposing with the
forgetful map Bf† : B(−;B)→ B(−;A) gives a map

pBf† : B(M ;B)→ α.

Now Bf†Bf is not the identity on B(−;A), but the endomorphism id +A >
id. However, since α is contracting, the diagram

B(M ;B)
pBf†

##
B(M ;A)

Bf

OO

p
// α

nonetheless commutes. In other words, pBf† exhibits B(−;B) as ◦B(−;A).

As for the finite version, since BBc(−;A) ∼= B(−;A), applying B across
the board embeds the picture into the one above. �

5.2.1. Freely contracting semirings

Let α be a contracting semiring. The forgetful functor
( 1

2Ring60
)
α
→

1
2Ringα → Set commutes with limits and therefore has a left adjoint α{−}.
It is the composite of left adjoints α 7→ α[−] 7→ ◦α[S].

Definition 5.16. — Let α be a contracting semiring, S a set (or α-
module); α{S} is called the freely contracting semiring on S. If α is any
semiring, we may also write α{S} := α⊕α◦ α◦{S}.

Note α{S} ∼= ◦(α◦[S])⊕α◦α ∼= α[S]/(S 6 0) = α[S]/(S∨0 = 0) (semiring
quotient).

The freely contracting functor commutes with colimits; in particular we
have the base change

α{S} ∼= α⊕ B{S}
and composition

α{S t T} = α{S} ⊕α α{T}
for any α ∈ 1

2Ring.

Example 5.17. — If A is a complete DVR with maximal ideal m, then its
ideal semiring BcA is freely contracting on the element m.

This can be understood as an explicit construction of a freely contract-
ing semiring on one element. More generally, B{S} for arbitrary S can be
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described as the semiring of monomial ideals in a polynomial ring k[S] on
the same set of variables.

Example 5.18. — Let ∆ = [−∞, 0] denote the infinite half-line, and con-
sider the semiring CPAZ(∆,R∨) of its convex, piecewise-affine functions with
integer slopes (e.g. Example 3.3). It is generated over R∨ by a single, con-
tracting elementX. However, this generation is not free: it satisfies additional
relations, such as

n(Y1 ∨ Y2) = nY1 ∨ nY2

for all n ∈ N and Yi ∈ CPAZ(∆,R∨). We can see that these relations are
not satisfied in R∨{X} by thinking of it as the set of monomial OK{x}-
submodules of K{x}, where K is any non-Archimedean field with value
group |K| = R.

The key difference between free semirings and function semirings is that
the latter are cancellative, while the former are not. In the present ex-
ample, cancellativity can be enforced by imposing the above list of rela-
tions in R∨{X}. The resulting universal cancellative quotient R∨{X} →
CPAZ(∆,R∨) is infinitely presented. In particular, CPAZ(∆,R∨) is not a
finitely presented R∨-algebra.

5.3. Projective tensor sum

The join of two continuous B-module homomorphisms is continuous. The
category of topological B-modules is therefore enriched over ModB. We ex-
tend this to an internal Hom functor by equipping the continuous homo-
morphism B-module HomModB,t

(α, β) with the weak topology with respect
to the evaluation maps

evX : f 7→ f(X)
for X ∈ α. In other words, it carries the topology of pointwise convergence.
A fundamental system for this topology is given

HomModB,t
(α, β)u := {UX,Y := {f | f(X) ⊆ Y } |X ∈ α, Y ∈ βu},

a formula that should evoke the compact-open topology of mapping spaces
in general topology.

Example 5.19. — This is not the only reasonable way of topologising the
continuous Hom B-module, though it is of course the weakest. For instance,
one could also define a topology of uniform convergence as the weak topology
with respect to the natural embedding

Hom(α, β)→ Hom(Bα,Bβ),
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where the right-hand term is equipped with the usual topology. These topolo-
gies are in general inequivalent; in fact, this embedding is not always con-
tinuous in the topology of pointwise convergence.

For example, a net {fn}n∈N in Hom(Z∨,Z∨) tends to −∞ as n → ∞ if
and only if fn(x) → −∞ for all x ∈ Z. For the same net to die away in
Hom(BZ∨,BZ∨), in addition {supx∈Z fn(x)}n∈N must tend to −∞ (and in
particular, be finite for cofinal n ∈ N).

We can also extend the monoidal structure to ModB,t. The projective
topological tensor sum of topological B-modules α, β is their algebraic tensor
sum equipped with the strong topology with respect to the maps

eY : α→ α⊕ β, X 7→ X ⊕ Y

for Y ∈ β and eX for X ∈ α. If α, β are lattices, a fundamental system is
generated by elements

X ⊕ β ∨ α⊕ Y, X ∈ αu, Y ∈ βu.

It is more difficult to give a fundamental system for general α and β.

Example 5.20. — The ideal B-module functor B is not lax monoidal for
the projective topology. For instance, the B-module Z∨ ⊕ Z∨ is topologised
so that a net Xn ⊕ Yn dies away if and only if either Xn dies and Yn is
bounded, or vice versa. However, from the description of the fundamental
system it follows that for the same net to die away in BZ∨⊕BZ∨ it is enough
that either Xn or Yn does. The natural lattice homomorphism

BZ∨ ⊕ BZ∨ → B(Z∨ ⊕ Z∨)
is discontinuous.

It is, however, lax monoidal on bounded B-modules, and in particular,
lattices.

Proposition 5.21. — The topological tensor sum and continuous inter-
nal Hom define a closed, symmetric monoidal structure on ModB,t extending
that of ModB.

Proof. — We only need to check that the unit and counit maps of Propo-
sition 5.1 are continuous. For the unit α → Hom(β, α ⊕ β), which by the
definition of the projective topology factors through the continuous Hom
module, it is enough that the compositions eX : α → α ⊕ β with the evalu-
ations at X ∈ β are continuous. Continuity of the counit is similarly tauto-
logical. �

Proposition 5.22. — Let α → β be strong. Then for any topological
B-module γ, α⊕ γ → β ⊕ γ is strong.
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Proof. — This follows from the fact that if fg and g are strong (families
of) maps, then f is strong. �

Definitions 5.23. — A topological semiring is a commutative algebra
in (ModB,t,⊕). A topological semiring α is adic if αu is stable in Bα under
addition, that is, if addition by an open element is an open map (Defini-
tion 4.5). The category of adic semirings and continuous homomorphisms
is denoted 1

2Ringt. By Proposition 5.22, it is stable in the category of all
topological semirings under tensor sum.

In the sequel, all semirings will be assumed adically topologised, and
so we will typically omit the adjectives “topological” and “adic”. A non-
Archimedean ring A (Definition 2.2), resp. homomorphism f : A → B, is
adic if and only if Bc(A;A+) is adic, resp. Bf is strong.

Example 5.24. — The semifieldsH∨ associated to totally ordered Abelian
groups (e.g. Example 5.3) are adic with respect to the topology of e.g. Ex-
ample 4.3. All our examples of adic semirings will be adic over some H∨.
The convergence condition for such semirings will therefore be that a net
Xn ∈ α converges to −∞ if and only if for each “constant” r ∈ H∨, cofinally
many Xn 6 r in α.

For instance, the semirings R∨ → CPA∗(X,R∨) (e.g. Example 4.8) are
of this form.

Any continuous semiring homomorphism H∨ → B (where B is as always
discrete) is an isomorphism. On the other hand, if H ⊆ R has rank one, then
there is always a unique homomorphism H◦∨ → B, the reduction map. One
can still define this map for general totally ordered semifields, but it is no
longer unique.

Example 5.25. — An element of definition of an adic semiring α is a
principal open I ∈ αu∩α such that α is Z◦∨-adic with respect to the induced
homomorphism

Z◦∨ → α, −1 7→ I.

The join of two elements of definition is an element of definition. If α is
Noetherian and has an element of definition, there is therefore also a largest
element of definition, and hence a canonical largest Z◦∨-algebra structure on
α. It thereby attains also a canonical reduction α = α◦⊕Z◦∨ B. Note that this
Z◦∨-algebra structure need not be unique or functorial, even for adic semiring
homomorphisms.

If X is any Noetherian formal scheme, BcOX attains a canonical Z◦∨-
algebra structure, and the reduction BcOX ∼= BcOX . Again, this is not to
say that Bc defines a functor with values in AlgZ◦∨ .
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Example 5.26. — The free and freely contracting semirings α[X], α{X}
over an adic semiring α are topologised adically over α.

Let A be a non-Archimedean ring. The convergent power series ring A{x}
may be constructed as a certain completion of A[x]; in terms of semirings,
it is the completion with respect to the topology induced by

A[x]→ BcA[X]→ BcA{X},

where the left-hand map is the unique valuation sending x to X.

Example 5.27 (Discrete valuations). — Let X be an irreducible variety
over a field k. A classic result of birational geometry states that “algebraic”
discrete valuations val : K → Z∨ on the function field K of X, integral on
OX , are in one-to-one correspondence with prime Cartier divisors on blow-
ups of X.

More specifically, let X̃ → X be a blow-up, D ⊂ X̃ a prime Cartier
divisor, and consider the formal completion i : D̂ → X̃. Then the order of
vanishing against D is a continuous discrete valuation on the sheaf i∗K of
O
D̂
-modules. Conversely, given any discrete valuation v on K, then provided

that the associated residue field is of the correct dimension over k (the al-
gebraicity condition), one can construct the generic point of a D̂ giving rise
to v in this way as the formal spectrum of the completed ring of integers.

We can couch this correspondence in terms of semiring theory as follows.
Let U := X̃ \D, and consider (ÔU ; Ô

X̃
) as a sheaf of non-Archimedean O-

algebras on the completion D̂. The reduction D corresponds to an invertible
element I ∈ Bc(ÔU ; Ô

X̃
), and induces an adic homomorphism

ν† : Z∨ ↪→ Bc(ÔU ; Ô
X̃

)

of semirings over D̂; here Z∨ denote the locally constant sheaf.

By Krull’s intersection theorem,
⋂
n∈N I

n = 0, that is, ν† preserves infima.
It therefore has a left adjoint

ν : Bc(ÔU ; Ô
X̃

)→ BZ∨ = Z∨ t {∞}, J 7→ inf{n ∈ N | J 6 nI}.

In fact, this adjoint is finite (i.e. does not achieve the value ∞), since every
section of OU becomes a section of O

X̃
after multiplication by a power of I;

moreover ν−1(−∞) = {−∞}. We have therefore defined a complete, discrete
norm

ν : ÔU → Z∨
over D̂.
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For this norm to define a valuation, the left adjoint ν must commute with
addition. In general this property is much more delicate than the existence
and finiteness of ν. In our setting, a study of the local algebra shows directly
that this happens exactly whenD is prime. In this case, if SpecA = V ⊆ X is
an affine subset meeting D, then localisation induces an extension K → Z∨
of the induced discrete valuation on A. This extension is not left adjoint
to the obvious map Z∨ → Bc(K;OX), which is typically infinite (not to
mention discontinuous).

For the converse statement, note only that discrete valuations on K,
integral on some model X = SpecA, are the same thing as homomorphisms

v : Bc(K;A)→ Z∨.

This homomorphism has a (discontinuous) right ind-adjoint v†; the alge-
braicity condition is equivalent to this ind-adjoint being the extension of an
ordinary adjoint, in which case v†(−1) is a finitely generated ideal on SpecA
which may be blown up to obtain D.

5.3.1. Projective tensor product

Let A be a non-Archimedean ring. The projective tensor productM⊗AN
of locally convex A-modules M and N is strongly topologised with respect
to the map

Bc(M ;A+)⊕ Bc(N ;A+)→ B(M ⊗A N ;A+).

We can describe this topology in terms of linear algebra alone: it is the strong
topology with respect to the maps

ey : M →M ⊗A N, x 7→ x⊗ y

for y ∈ N , and similarly ex for x ∈ M . A sequence converges to zero in
M ⊗AN if and only if it is a sum of sequences of the form xn⊗y and x⊗yn,
where xn and yn converge to zero in M and N , respectively.

With this definition, the monoidal functoriality of the free B-module
Bc spelled out in Section 5.1.1 lifts to the topological setting; for exam-
ple, Bc(M ;A+) is a topological Bc(A;A+)-module. The corresponding state-
ments for B are false unless A = A+.

Similarly, we topologise Hom(M1,M2) weakly with respect to

HomA(M1,M2)→ HomModB,t
(BcM1;BcM2), f 7→ Bcf.

A sequence of maps {fn}n∈N converges to zero if and only if for every finitely
generated submodule N ⊆ M1, every sequence xn ∈ fn(N) converges to
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zero. This “finite-open” topology is the weak topology with respect to the
evaluation maps

evx : HomA(M1,M2)→M2, f 7→ f(x)

for x ∈M1.

6. Localisation

Let C be a category with filtered colimits, M an object. In this setting,
we can define the (free) localisation ofM at an endomorphism s ∈ EndC(M)
as the sequential colimit

M [s−1] := colim
[
M

s→M
s→ · · ·

]
It is universal among objects under M for which s extends to an automor-
phism. More generally, by composing colimits the localisation with respect
to any set S of commuting endomorphisms is defined.

If C is a category of modules over some algebra A, then in particular we
can localise modules with respect to an element s ∈ A. If A is commutative,
and M carries its own A-algebra structure, then the localisation M [s−1] is
also an (M -)algebra.

The general theory specialises to the case of topological semirings; we
write α[−S] for the localisation of α at an element S.

Example 6.1. — Let A be a domain, BcA the finite ideal semiring. If
s ∈ A, then BcA[−(s)] ∼= Bc(A[s−1];A). In order to obtain the ideal semiring
of A[s−1], we need to enforce a contraction (s) 6 0.

Example 6.2. — Suppose that S ∈ α is open. Then α[−S] is an adic
α-algebra (Definition 5.23).

This corresponds to the fact that if A is an adic, linearly topologised ring,
and f ∈ A generates an open ideal, then A[f−1] is an adic A-algebra.

Definition 6.3. — A topological semiring is Tate if α◦ is adic, and α
is a free localisation of α◦ at an additive family of open elements. The full
subcategory of 1

2Ringt whose objects are Tate is denoted 1
2RingT .

In particular, any contracting semiring is Tate. A non-Archimedean ring
A is Tate (Definition 2.2) if and only if Bc(A;A+) is.

– 472 –



Skeleta in non-Archimedean and tropical geometry

6.1. Bounded localisation

In non-Archimedean geometry, localisations must be supplemented by
certain completions, which control the radii of convergence of the inverted
functions. For the geometry of skeleta to reflect analytic geometry, there
must therefore be a corresponding concept for semirings.

Definition 6.4. — Let α be an adic semiring. An element T ∈ α◦ that
is invertible in α is called an admissible bound, or simply a bound.

Invertible elements S = (+(−S))−1(0) in adic semirings (in particular,
bounds) are always open.

A localisation µ→ µ[−S] is adic if and only if S is open.

If T ∈ αu is an open ideal, then S is open as an endomorphism of the
semiring quotient

µ/(T 6 S) = µ/(T ∨ S = S),
since T 6 S forces S to be open. The bounded localisation µ → µ/(T 6
S)[−S] is therefore adic.

Definition 6.5. — Let S ∈ α◦ and T ∈ α a bound. Let µ be an α-
module. A bounded localisation of µ at S with bound T is an α-module
homomorphism

µ→ µ{T − S} = µ[−S]{T − S},
universal among those under which S becomes invertible with inverse bounded
(above) by −T .

It is called a cellular localisation if T = 0.

If T 6 S in α◦, then the bounded localisation is isomorphic to an ordinary,
or free localisation. In this case, we will often call it a subdivision. Note that
only free localisations at elements that are bounded below by an admissible
bound are allowed.

More generally, the above definition makes sense if we replace S with
an arbitrary additive subset of α◦ and T with an additive set of bounds in
bijection with S.

Lemma 6.6. — Any bounded localisation can be factored as a cellular
localisation followed by a subdivision.

Proof. — Factor α→ α{T − S} as
α→ α{T − (S ∨ T )}{−(S − (S ∨ T ))}.

In fact, this factorisation is natural in α, S, and T . �
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Example 6.7 (Intervals). — Consider the semiring CPAZ(∆,R∨) (e.g. Ex-
ample 3.3), and for simplicity, specialise to the case that ∆ = [a, b] is an
interval with a, b ∈ Z (but see also Section 8.1).

The admissible bounds of CPAZ([a, b],R∨) are the affine functionsmX+c,
m ∈ Z, c ∈ R. Since every convex function on [a, b] is bounded below by an
affine function, any element of CPAZ(∆,R∨) may be freely inverted by a
bounded localisation.

Let us invert the function X ∨ r for some r ∈ [a, b]. The resulting
semiring, which we denote CPAZ([a, r, b],R∨), now consists of integer-sloped,
piecewise-affine functions on [a, b] which are convex except possibly at r. I
would like to think of this as a ring of functions on the polyhedral complex
obtained by joining the intervals [a, r] and [r, b] at their endpoints, or alter-
natively, by subdividing [a, b] into two subintervals meeting at r. The affine
structure does not extend over the join point. This is the motivation for the
terminology “subdivision”.

More generally, the free bounded localisations of CPAZ([a, b],R∨) are
in one-to-one correspondence with finite sequences of rationals r1, . . . , rk ∈
(a, b):

CPAZ([a, b],R∨)→ CPAZ([a, r1, . . . , rk, b],R∨),

that is with subdivisions of [a, b] in the sense of rational polyhedral com-
plexes.

Now let’s compose this with the cellular localisation at S = −(0∨(X−r)).
This has the effect of imposing the relation X 6 r. In other words, the
localisation is naturally CPAZ([a, r],R∨), the semiring of functions on the
lower cell [a, r]. In particular, when r = a, the subdivision has no effect (since
in that case X ∨−a = X is already invertible), and the cellular localisation
is just the evaluation CPAZ([a, b],R∨)→ R∨ at a.

The composite of both localisations can be expressed more succinctly as
CPAZ(∆,R∨){X − r}, from which we can read that r is the upper bound
for the interval they cut out.

More generally, every cellular localisation of CPAZ([a, r1, . . . , rk, b],R∨)
is determined by the union of cells on which a defining function vanishes.

Example 6.8. — In the limiting case of the above example ∆ = R, the
only functions bounded by zero are the constants R◦∨ = CPA∗(R,R∨)◦. The
semiring CPA∗(R,R∨) therefore has no completed localisations; it is a poor
semialgebraic model for the real line.
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Example 6.9. — We have seen (e.g. Example 5.18) that the semirings
CPA are not finitely presented over R∨. It may therefore be easier to work
instead with finitely presented models of them; for example, R∨{X} instead
of CPAZ(R◦∨,R∨).

However, the free localisation theory of these semirings is much more
complicated than their cancellative counterparts, and depends on more than
just the “kink set” of the function being inverted. For example, inverting
X ∨ (−1) and nX ∨ (−n) define non-isomorphic localisations for n > 1
(though the former factors through the latter).

This could be regarded as a problem with the theory as I have set it up.
I will not make any serious attempt to address it in this paper, as it does
not directly affect the main results (but see e.g. Example 7.6).

Example 6.10. — Let K be a non-Archimedean field with uniformiser t,
K{x} the Tate algebra in one variable. It is complete with respect to the
valuation K{x} → |K|∨{X} of Example 5.26.

A completed localisation of the Tate algebra at x has the form K{x,
t−kx−1} for some k ∈ |K|. This k is a bound in the sense of Definition 6.4.
The completed localisation is a completion of K{x}[x−1] with respect to the
topology induced by its natural valuation into |K|∨{X, k −X}.

The number ek (or pk when the residue characteristic is p > 0) is con-
ventionally called the inner radius of the annulus SpaK{x, tkx−1}. In other
words, bounds in semiring theory arise intuitively as the “logarithms” of
radii of convergence in analytic geometry.

Example 6.11 (Admissible blow-ups). — Let X be a quasi-compact adic
space, T ∈ Bc(OX ;O+

X) an admissible bound. Let j : X → X+ be a formal
model on which T is defined. Then T 6 0 corresponds to a subscheme of
X+ whose pullback to X is empty. In other words, the admissible bounds of
Bc(OX ;O+

X) that are defined on X+ are exactly the centres for admissible
blow-ups of X+ (cf. Section 2.2).

The following elementary properties of bounded localisation are a conse-
quence of the universal properties.

Lemma 6.12. — Let α be a topological semiring, µ an α-module.

(1) α{T − S} is a semiring, and µ{T − S} ∼= µ ⊕α α{T − S} as an
α{T − S}-module.

(2) Localisation commutes with contraction. That is, µ{ι}[−S] ∼=
µ[−S]{ι}.

(3) Let S1, S2 ∈ α◦, T1, T2 two bounds. Then µ{T1 − S1, T2 − S2} ∼=
µ{T1 − S1}{T2 − S2}.
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It follows also from the discussion above:
Lemma 6.13. — Let α be adic. Then µ→ µ{T − S} is adic.

6.2. Cellular localisation

Let α be a contracting semiring. Then the only invertible element, and
hence only admissible bound, is 0. All localisations of a contracting semiring
are therefore cellular: α→ α/(S = 0).

Example 6.14. — Let X be a coherent topological space [8, Def. 0.2.2.1],
so that the B-module |OX | of quasi-compact open subsets of X has finite
meets that distribute over joins. Its lattice completion B|OX | is the lattice
of all open subsets of X (or the opposite to the lattice of all closed subsets
of X).

If X is quasi-compact, then it is an identity for the meet operation on
|OX |; in other words, intersection of open subsets is a contracting semiring
operation on |OX |, and X = 0. Note that this addition is idempotent. Let
us describe the localisations of |OX |.

Let S ∈ |OX |. The inclusion ι : S ↪→ X induces adjoint semiring homo-
morphisms

ι! : |OS |� |OX | : ι∗

by composition with and pullback along ι, respectively. They satisfy the
identities ι∗ι! = id and ι!ι∗ = (−) + S. The right adjoint ι∗ identifies S with
0. Moreover, any semiring homomorphism f : |OX | → α with this effect
admits a factorisation f = f + S = fι!ι

∗ through |OS |, necessarily unique
since ι∗ is surjective. In other words, |OS | is a cellular localisation of |OX |
at S.

Alternatively, and more in the spirit of what follows, one can argue this
using the right ind-adjoint

f† : |OX |{−S} → B|OX |
to the localisation f . This map is easier to describe in terms of closed subsets:
if Z ∈ |OX |{−S}, then f†Z is the smallest closed subset of X whose image
in |OX |{−S} is Z. It identifies the localised semiring with the image of the
composite f†f , which is the set of subsets K ⊆ X equal to the closure
of their intersections with S, K = K ∩ S. Closure puts |OS | in one-to-one
correspondence with this set.

The latter method of this example can be abstracted, in line with the
methods of Section 3.5.2 and Section 5.2. Let α ∈ 1

2Ringt, µ an α-module,
S ∈ α◦.
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Definitions 6.15. — An ideal ι ↪→ µ is −S-invariant if X + S ∈ ι ⇒
X ∈ ι. The −S-span of an ideal ι is⋃

n∈N
(+S)−n(ι),

that is, the smallest −S-invariant ideal containing ι.

If S is invertible, then being −S-invariant is the same as being invari-
ant under the action of −S. In particular, the set of −S-invariant ideals of
µ[−S] is the lattice B(µ[−S];α◦[−S]) of α◦[−S]-submodule ideals of µ[−S].
Moreover,

Lemma 6.16. — The right adjoint to the localisation map

Bµ f→ B(µ[−S];α◦[−S])
identifies the latter with the set of −S-invariant ideals of µ.

Proof. — Let ι ↪→ µ be −S-invariant. Every element of ι[−S] ↪→ µ[−S]
is of the form X − nS with X ∈ ι. If X − nS = f(Y ) for some Y ∈ µ, then
f(Y + nS) = X ∈ ι and hence Y ∈ ι. This proves that f†fι = ι. �

Since in the cellular localisation, −S 6 0, every ideal is automatically −S-
invariant. By Lemma 5.12, the contraction (−){−S} induces isomorphisms

B(µ[−S];α◦[−S]) ∼→ B(µ{−S};α◦{−S}) ∼= Bµ{−S}.
This identifies the cellular localisation µ{−S} with the image of µ in
B(µ[−S];α◦[−S]).

We have obtained a characterisation of cellular localisations in terms of
ideals:

Lemma 6.17. — A homomorphism f : µ→ ν of α-modules is a cellular
localisation of µ at S ∈ α◦ if and only if f† identifies Bν with the −S-
invariants of Bµ.

Note only that the “if” part of the statement follows from the fidelity
of B.

Example 6.18 (Zariski-open formula). — Let X be a quasi-compact for-
mal scheme, i : U ↪→ X a quasi-compact open subset. Let I be a finite
ideal sheaf cosupported inside X \ U . The restriction ρ : BcOX → i∗BcOU
evidently factors through BcOX{−I}.

Now suppose that U = X \Z(I) is exactly the complement of the zeroes
of I. Then ρ† identifies i∗BcOU with the sheaf of subschemes Z ↪→ X equal
to the scheme-theoretic closure of their intersection with U (cf. e.g. Exam-
ple 3.26). These subschemes are the −I-invariants of BcOX . Indeed, suppose
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that f is some local function on X such that fI vanishes on Z. Then over
U , fI = (f), that is, f vanishes on Z ∩ U and therefore on Z.

By Lemma 6.17, the natural semiring homomorphism
BcOX{−I}

∼→ i∗BcOU
is an isomorphism.

6.3. Prime spectrum

The purpose of this section is to discuss a special case of the general theory
of the following Section 7, in which constructions can be made particularly
explicit. It therefore perhaps would logically have its place after that section.
For this reason, the discussion here is relatively informal.

In algebraic geometry, the underlying space of a formal scheme can be
described in terms of open primes. A strong analogy holds in the setting of
contracting semirings.

Definition 6.19. — Let α be a semiring. A semiring ideal ι ↪→ α is an
ideal and an α-submodule. It is further a prime ideal if α \ ι is closed under
addition.

Let α be a contracting semiring, p : α → B a (continuous) semiring
homomorphism. The kernel p−1(−∞) is an open prime ideal. Conversely,
given an open prime ideal p E α, one can define a semiring homomorphism

α→ B, X 7→

{
−∞, X ∈ p

0, X /∈ p

This sets up an order-reversing, bijective correspondence between the poset
Specp α := Hom(α,B) and that of open prime ideals p / α. In other words,
every point in the prime spectrum of a contracting semiring is represented
by a B-point.

Let us write D1
B for the Sierpinski space, whose underlying set is the

Boolean semifield, but equipped with the topology is generated instead by
the open set {0} instead of the semiring topology. The Sierpinski space un-
derlies the unit disc over B.

We now topologise the prime spectrum of a contracting semiring α weakly
with respect to the evaluation maps Specp α → D1

B, defined by identifying
the underlying set of B with that of D1

B. In other words, a sub-base for the
topology is given by the open sets

UX := {f : α→ B | f(X) = 0},
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and UX∨Y = UX ∪UY . This upgrades the prime spectrum to a contravariant
functor

Specp : 1
2Ring60 → Top.

The continuous map of prime spectra induced by a homomorphism f : α→ β
can be described in terms of prime ideals as

Specp f : β . p 7→ f−1(p) / α,

just as in the case of formal schemes.

By construction the localisation morphism Specp α{−S} → Specp α in-
duces an identification

Specp α{−S} ∼= US ⊆ Specp α

as topological spaces. This allows us to define a presheaf |O| of semirings
on the site U/ Specp α of affine subsets of the prime spectrum. By Proposi-
tion 7.10, below, it is actually a sheaf.

In summary, the prime spectrum construction allows us to contravari-
antly associate to each contracting topological semiring α a topological space
Specp α equipped with a sheaf of semirings whose global sections are natu-
rally α.

Example 6.20. — First, it is of course easy to describe the spectrum of
a freely contracting semiring: by the adjoint property, Hom(B{X1, . . . , Xk},
B) = DkB :=

∏k
i=1 D1

B is the polydisc of dimension k over B. The open subset
defined by

∨k
i=1Xi = 0 is a kind of combinatorial simplex, in the sense that

its poset of irreducible closed subsets is isomorphic to that of the faces of a
k-simplex. See also Section 8.1.

Similar statements hold for free contracting H◦∨-algebras, where H∨ is a
rank one semifield. Indeed, the unique continuous homomorphism H◦∨ → B
induces a homeomorphism

Specp α⊕H◦∨ B→ Specp α

for any α over H◦∨. If α is of finite type, then in particular the set underlying
the spectrum is finite.

Example 6.21. — The prime spectrum of a Noetherian semiring is a Noe-
therian topological space. As such, it has well-behaved notions of dimension
and decomposition into irreducible components, cf. [12, §0.2]. In particular,
it is quasi-compact.(5)

(5) In fact, one can conclude from Zorn’s lemma that any prime spectrum is quasi-
compact. I omit an argument, since anyway the definitions of this section will ultimately
be superseded.
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6.4. Blow-up formula

Let X be a formal scheme, I a finite ideal sheaf. The blow-up p : X̃ → X
of X along I is constructed as ProjX RI , where RI is the Rees algebra

RI :=
⊕
n∈N

Intn ⊆ OX [t].

One associates in the usual fashion [12, §II.2.5] a quasi-coherent sheaf on
X̃ to any quasi-coherent, graded RI -module on X; in particular, if M is
quasi-coherent over OX , then p∗M is associated to M ⊗OX

RI . If we write
B(c)(M ;RI) for the set of (finitely generated) homogeneous RI -submodules
of M , the associated module functor is induces a natural transformation

B(c)(−;RI)→ B(c)(−;O
X̃

)
of functors ModRI

→ ModB,t over X.

By following the algebra through, we can obtain an explicit formula relat-
ing the subobjects of quasi-coherent sheaves on X to those of their pullbacks
to X̃.

The dependence of the associated sheaf to a graded module is only “up to”
the irrelevant ideal R+

I =
⊕

n>0 I
ntn. For example, let M be quasi-coherent

and homogeneous over RI , and let N1, N2 ↪→ M be finite, homogeneous
submodules. Then N1 = N2 as sections of Bc(M ;O

X̃
) if and only if

Ni + kR+
I 6 Nj for all i, j and k � 0

in Bc(M ;RI). It is equivalent that the high degree graded pieces (Ni)k, k � 0
agree. In other words, Bc(M ;RI)→ Bc(M ;O

X̃
) descends to an isomorphism

Bc(M ;RI)/(R+
I = 0) ∼→ Bc(M ;O

X̃
).

Now suppose that M is quasi-coherent on X. The B-module Bc(M ⊗
RI ;OX) of finite, homogeneous OX -submodules of M ⊗RI is itself graded

Bc(M ⊗RI ;OX) ∼=
∨
n∈N

Bc(M ⊗ In;OX) + nT,

where T = (t) is a formal variable to keep track of the grading. It is a module
over the graded semiring

Bc(RI ;OX) ∼=
∨
n∈N

Bc(In;OX) + nT ∼=
∨
n∈N

(BcOX)6nI + nT

in which the irrelevant ideal is written R+
I =

∨
n∈Z>0

n(I + T ).

By Proposition 5.15,
Bc(M ⊗RI ;OX){R+

I } ∼=
◦Bc(M ⊗RI ;OX) ∼→ Bc(M ⊗RI ;RI)
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in the category of Bc(RI ;OX)-modules (cf. Definition 5.10 for notation).

Composing these identifications, we therefore have for any M a factori-
sation

Bc(M ;OX)→
(∨
n∈N

Bc(M⊗In)+nT
)± ∨

n∈Z>0

n(I+T )

 ∼→ Bc
(
p∗M ;O

X̃

)
of BcOX -module homomorphisms. The isomorphism on the right is the gen-
eral blow-up formula.

In the context of adic spaces and their models, a more elegant form is
available.

Proposition 6.22 (Blow-up formula). — Let X be an adic space, j :
X → X+ a quasi-compact formal model. Let I ∈ Bcj∗O+

X be an ideal sheaf
cosupported away from X, i.e. such that j∗I = OX . Let j̃ : X → X̃+ → X+

be the blow-up of X+ along I. Then the pullback homomorphism

Bc(j∗OX ;OX+)→ Bc(j̃∗OX ;O
X̃+)

is a free localisation at I.

Proof. — First, the preimage of I on X̃+ is an invertible sheaf, and there-
fore invertible in Bc(j̃∗OX ;O

X̃+); hence this semiring homomorphism at
least factors though the localisation

ϕ : Bc(j∗OX ;OX+)[−I]→ Bc(j̃∗OX ;O
X̃+).

Moreover, ϕ is injective; if two sections Ji − niI, i = 1, 2 become identical
on X̃+, then by the general blow-up formula, Ji + kI are already equal on
X for k � 0.

Surjectivity, on the other hand, follows from this

Lemma 6.23. — If I is finite, then for any N ∈ Bcp∗M , N + kI is in
the image of p∗ for k � 0.

Suppose that N is generated in degrees less than k. Then

N ′ =
k∨
i=0

Ni + (k − i)I

is finite, and satisfies the inequalities

p∗N ′ 6 N + kI 6 p∗N ′ + kR+.

It is therefore a lift for N + kI. �
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In fact, the proof of this lemma shows more: it gives a recipe for exactly
which modules on X pull back to which modules on BlIX. Following this
recipe yields a generalisation.

First, observe that j̃∗OX is the O
X̃+ -algebra associated to the graded RI

algebra
KI := j∗OX [t] '

⊕
n�0

j∗OXtn

on X+. We therefore obtain surjective homomorphisms
Bc(j∗OX ;OX+)[T ]� Bc(KI ;RI)� Bc(j̃∗OX ;O

X̃+)

in which the left-hand arrow associates to a polynomial
∨k
i=0 iT + Ji the

RI -submodule of KI that the Jiti generate.
Definition 6.24. — Let α ⊆ Bc(j∗OX ;OX+) be a subring containing

I. The strict transform semiring α̃ of α is subring of Bc(j̃∗OX ;O
X̃+) whose

objects can be written as graded RI-submodules of KI in the form⊕
n∈N

Jnt
n ⊆ KI

with Jn ∈ α. It is the image of α[T ]→ Bc(j̃∗OX ;O
X̃+).

The strict transform semiring contains the inverse of I: it is defined by
the formula

−(p∗I) '
⊕
n�0

In−1tn.

The argument of Lemma 6.23 therefore establishes:
Corollary 6.25. — The strict transform semiring α̃ is a free localisa-

tion of α at I.

7. Skeleta

7.1. Spectrum of a semiring

Let 1
2Ring denote the category of Tate semirings (Definition 6.3; the

subscript T is held to be implicit from hereon in), Skaff its opposite. We say
that a morphism f : X → Y in Skaff is an open immersion if it is dual to a
bounded localisation

f ] : |OY | → |OY |{Ti − Si}ki=1

of the semiring |OY | dual to Y at finitely many variables Si, Ti ∈ |OY |.

Paraphrasing Lemma 6.12 above:
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Lemma 7.1. — The class of open immersions is closed under composi-
tion and base change.

Following the general principles outlined in the preliminaries Section 2.1,
and in more detail in [20], we obtain the structure of a Grothendieck site on
Skaff generated by those finite canonical covers of the form

{Ui → X}ki=1

where Ui → X is an open immersion for each i ∈ [k]. The tautological
presheaf |O| of Tate semirings on Skaff is a sheaf, by the definition of canon-
ical coverings.

Definitions 7.2. — The category Skaff , considered equipped with this
topology, is called the skeletal site. Its sheaf category is denoted Sk∼.

An affine skeleton, resp. skeleton, is a representable, resp. locally repre-
sentable sheaf on the skeletal site (cf. Definition 2.1 and [20, Def. 2.15]). If
α is a semiring, the dual affine skeleton is called its spectrum and denoted
Specα The category of skeleta is denoted Sk.

Of course, the Yoneda embedding identifies Skaff with the category of
affine skeleta.

More general arguments (cf. Section 2.1) equip each skeleton X with a
small topos X∼, equivalent to the category of sheaves on a uniquely deter-
mined sober topological space with lattice of open sets U/X . I will abuse
notation and denote this topological space also by X.

This fact allows us to alternatively interpret the Grothendieck site struc-
ture on Skaff in terms of a contravariant functor

Skaff → Top
into the category of sober, quasi-compact, and quasi-separated topological
spaces equipped with a sheaf of Tate semirings. A skeleton is then a topologi-
cal space X equipped with a sheaf |OX | of Tate semirings, locally isomorphic
to an affine skeleton. The sections of |OX | may be called convex functions
on X.

Proposition 7.3 ([20]). — An affine skeleton is qcqs and sober, and
affine open subsets form a basis for the topology.

The category of skeleta has all fibre products.

Example 7.4. — The spectrum ∆[a,b] = Spec CPAZ([a, b],R∨) of the
semiring of convex, piecewise-affine functions on an interval [a, b] ⊆ R with
rational endpoints (cf. e.g. Example 6.7) is homeomorphic to a certain
Grothendieck site structure on the poset of closed subintervals of ∆ ⊂ R.
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Indeed, we already observed in Example 6.7 that every subdivision of
∆[a,b] is determined by a subdivision of [a, b] as a rational polyhedron; mean-
while, by the cellular cover formula of the next section (Proposition 7.10), the
cellular topology of ∆[a,r1,...,rk,b] is generated by the inclusions [ri, ri+1] →
[r0, rk].

It remains to say when a collection of affine subsets Uj = {[aji, bji]}
kj

i=1
covers X.

Conjecture 7.5. — The Uj cover X if and only if [a, b] =
⋃
i,j [aji, bji]

and (a, b) =
⋃
i,j(aji, bji).

With the cellular cover fomula, the only part in question is the condition
for a family of subdivisions to cover ∆. The proposed criterion says that a
collection of subdivisions covers if and only if there are no common “kink”
points, that is, if ⋂

j

kj⋃
i=1
{aji, bji} = ∅.

Indeed, in that case, the intersection over j (in, say, the set of continuous
functions) of the semirings of piecewise-affine functions convex on Uj is ex-
actly the set of such functions convex on ∆. In other words,

CPAZ(∆,R∨)→
∏
i

|OUi
|⇒

∏
i,j

|OUi∩Uj
|

is an equaliser of semirings. I do not know how to show that this equaliser
is universal.

As was pointed out in e.g. Example 6.8, the spectrum of CPA∗(R,R∨)
consists of a single point. One can obtain a better model for the affine real
line R as the increasing union

skR :=
⋃
a→∞

[−a, a]

in Sk. Like the analytic torus over a non-Archimedean field, it is not quasi-
compact.

Example 7.6 (Dichotomy). — The skeleton constructed in the above Ex-
ample 7.4, although relatively easy to describe, is not finitely presented over
SpecR∨ (cf. Example 5.18). In the vein of Example 6.9, we can replace
CPAZ([a, b],R∨) with its finitely presented cousin

R∨{[a, b]} := R∨{X − b, a−X}.

They are related by an (infinitely presented) morphism Spec CPAZ(∆,R∨)→
SpecR∨{[a, b]}. We also saw in Example 6.9 that this morphism is not a
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homeomorphism, and that in fact the topology of the target is difficult to
describe.

It seems to be possible to modify the definition of skeleton, by introducing
another condition into our definition of semiring, so as to make this morphism
a homeomorphism. This condition is the semiring version of the algebraic
notion of relative normality (integral closure of A+ in A), which is used in
non-Archimedean geometry to define a good Spec functor. However, I wish
to defer a serious pursuit of this approach to a later paper, since this issue
does not directly affect any of the results here.

The examples in Section 8 all more closely resemble finitely presented
skeleta like SpecR∨{∆}, but I will often only describe open subsets in
a way that depends only on their pullbacks to a “geometric” counterpart
Spec CPAZ(∆,R∨).

7.2. Integral skeleta and cells

Definition 7.7. — A skeleton that admits a covering by spectra of con-
tracting semirings is said to be integral. The full subcategory of Sk whose
objects are integral is denoted Skint.

The tropical site Skaff carries a tautological sheaf |O|◦ of contracting
semirings, whose sections over Specα are α◦. Taking the spectrum defines a
functor

Spec |O|◦ : Skaff → Skint.

Moreover, any covering of an object Spec |O|◦(X) lifts, by base extension
|O|◦ → |O|, to a covering ofX, that is, Spec |O|◦ is cocontinuous. It therefore
extends to the pushforward functor of a morphism

(−)◦ : Sk∼ → (Skint)∼

of the corresponding topoi.

This functor takes a skeleton X to an integral skeleton X◦ if and only if
there exists an affine open cover X =

⋃
i Ui such that (Ui ∩ Uj)◦ ↪→ U◦i is

an open immersion, in which case U◦• provides an atlas for X◦. In algebraic
terms, we need that X admit an affine atlas each of whose structure maps
is dual to a localisation α→ α{T − S} that restricts to a localisation α◦ →
α{T − S}◦ ∼= α◦{T − S} of the semiring of integers. This occurs if and only
if the localisation is cellular, that is, if (up to isomorphism) T is invertible
in α◦ and therefore zero.
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Definitions 7.8. — An open immersion of skeleta is cellular if it is
locally dual to a cellular localisation of semirings.

A skeleton that admits a cover by affine, cellular-open subsets is said to
be a cell complex. In particular, any affine skeleton is a cell complex.

If every open subset is cellular, it is a spine. By the discussion above,
any integral skeleton is a spine.

The categories of spines, resp. cell complexes are denoted Sksp ↪→ Skcel.

There is a functor
(−)◦ : Skcel → Skint,

left adjoint to the inclusion, which associates to a cell complex X its integral
model X◦. The unit of the adjunction is a morphism j : X → X◦. The
cellular open subsets of X are those pulled back along j.

We have access to a reasonably concrete description of the “cellular
topology”.

Lemma 7.9. — Let α be a semiring, {Si}ki=1 ⊆ α◦ a finite list of con-
tracting elements. Write S =

∨k
i=1 Si. Then

α{−S} →
∏
i

α{−Si}⇒
∏
i,j

α{−Si,−Sj}

is a universal equaliser of semirings.

Proof. — The Lemma 6.17 yields an embedding of forks

α //

��

∏
i α{−Si}

//
//

��

∏
i,j α{−Si,−Sj}

��

Bα //
∏
i Bα

//
//
∏
i,j Bα

in which the ith arrow in the lower row takes an ideal to its −Si-span.

Let eq ⊆
∏
i Bα denote the equaliser of the second row, f : Bα→ eq the

natural B-module homomorphism. An element of eq is a finite list {ιi}ki=1 of
−Si-invariant ideals, such that for each i and j the −Sj-span of ιi is equal
to the −Si-span of ιj . The right adjoint f† to f sends such a list to their
intersection in α.

Since localisation commutes with base change, the fork in the statement
is a universal equaliser as soon as it is an equaliser. By Lemma 6.17, it is
equivalent to show that f† identifies eq with the set of −S-invariant ideals
of α.
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On the one hand, the elements f†(eq) are certainly −S-invariant. Indeed,
suppose X + nS ∈ ι = ∩iιi. Then X + nSi 6 X + nS ∈ ιi, and so X ∈ ιi
for each i. Furthermore, since the −Si-span of ιj contains ιi, if X ∈ ιi, then
X + nSi ∈ ιj for some n. Therefore, for n � 0, X + nSi ∈ ι, and ιi is the
−Si-span of ι.

Conversely, suppose that ι is −S-invariant. Let X ∈ f†fι ⊇ ι. Then for
n� 0, X + nSi ∈ ι for all i, and therefore X + nS ∈ ι, so X ∈ ι. Therefore,
f and f† are inverse. �

In geometric terms:

Proposition 7.10 (Cellular cover formula). — Let α be a semiring,
{Si}ki=1 ⊆ α◦ a finite list of contracting elements. Write S =

∨k
i=1 Si. Then

Specα{−S} =
k⋃
i=1

Specα{−Si}

as subsets of Specα.

Corollary 7.11. — Let U be a quasi-compact cell complex. If U can
be embedded as an open subset of an affine skeleton, then U is affine.

In fact, this result can be greatly improved.

Theorem 7.12. — Let X be a quasi-separated cell complex, j : X → X◦

its integral model. Let us confuse X◦ with its site Uqc
/X◦ of quasi-compact open

subsets. Then:

(1) B (j∗|OX |) is flabby;
(2) X is affine if and only if it is quasi-compact and j∗|OX | is flabby.

Corollary 7.13. — Any quasi-compact, integral skeleton with Noether-
ian structure sheaf is affine.

Proof. — In this case X = X◦ and |OX | = BOX |. �

Corollary 7.14. — Let H∨ be a rank one semifield. Any integral skele-
ton finitely presented over SpecH◦∨ is affine.

Proof. — Such admits a model over some finitely generated subring
of H∨. �

If we make the assumption that all H∨-algebras α satisfy α ∼= α◦⊕H◦∨H∨,
then this last corollary applies also to any cell complex finitely presented over
SpecH∨ (which is, in this case, simply the base change of its integral model).

Proof of Theorem 7.12. — Let f : U• � V be a finite, affine, cellular
hypercover of some quasi-compact V ⊆ X. By Corollary 7.11, we may in
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fact assume that U• is the nerve of an ordinary cover tifi :
∐k
i=1 Ui � X.

Let α = Γ(V, |OX |). We have an equaliser

α→
k∏
i=1

αi ⇒
k∏

i,j=1
αi{−Sij}

commuting with isomorphisms αi{−Sij} ∼= αj{−Sji}. There are unique el-
ements Sj ∈ α whose images in αi are Sij .

Since αi → αi{−Sij} is surjective, its right ind-adjoint is injective. The
compositions

αi
ρ→ αi{−Sij}

∼→ αj{−Sji}
ρ†→ Bαj

therefore together yield a section Bαi → |Bα•| of the projection. Since this
holds for any quasi-compact V , B (j∗|OX |) is flabby.

Now set V = X. For the second part, it will be enough to show that each
fi is a cellular localisation of α at Si, since in this case the equaliser will be a
covering, and hence induce an isomorphism Specα ∼→ X. We will show this
using the characterisation from Lemma 6.17.

Certainly, f†i : Bαi → Bα has image in the set of −Si-invariant ideals.
Since |OX | is flabby, f†i is also injective. We need only show that it is sur-
jective. The argument is based on two lemmata.

Lemma 7.15. — Let f : α→ β, S ∈ α◦. If f is surjective, Bf preserves
−S-invariance.

Lemma 7.16. — Let f : µ → µ{−S} be a cellular localisation of α-
modules, g : µ→ ν a surjective homomorphism. The diagram

µ

g

��

µ{−S}

g

��

f†
oo

ν ν{−S}
f†
oo

commutes.

Proof. — The right adjoints embed µ{−S}, ν{−S} into Bµ,Bν as the set
of −S-invariant ideals, which are preserved under g by Lemma 7.15. �

Let ι ↪→ α be a −Si-invariant ideal, ι• its image in α•. By Lemma 7.15,
ι• is −S•i-invariant, and hence

ι• = f†i fiι• = f†i f•ιi = f•f
†
i ιi

where the last equality follows from Lemma 7.16. Therefore
ι = |ι•| = f†i ιi. �
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Let α be a contracting semiring. The arguments of Section 6.3 show that
we have a natural continuous functor

U/ Specα → U/ Specp α

and hence a morphism of semiringed spaces Specp α→ Specα.

If Specp α is quasi-compact for all α ∈ 1
2Ring60, then this is an iso-

morphism by the unicity of canonical topologies. This is true for Noetherian
semirings by Example 6.21. The general case is implied by Zorn’s lemma.

Proposition 7.17. — Let α be a (Noetherian) contracting semiring.
Then Specp α ∼→ Specα, as semiringed spaces.

Topologising as before the set X(B) weakly with the respect to evalua-
tions X(B)→ D1

B, we obtain:

Corollary 7.18. — Let X be an integral skeleton. Then X(B)→ X is
a homeomorphism.

7.3. Universal skeleton of a formal scheme

Example 7.19. — Let us return to the quasi-compact, coherent space X
of Example 6.14 and its semiring |OX | of quasi-compact open subsets. We
saw there that the inclusion S ↪→ X of a quasi-compact subspace induces a
localisation |OX | → |OS | at S. The cellular cover formula (Proposition 7.10)
implies that if S =

⋃k
i=1 Si is a finite union of open subsets, then

Spec |OS | =
k⋃
i=1

Spec |OSi
|.

It follows that the functor
Spec |O| : Uqc

/X → U
qc
/ skX ↪→ Skaff

/ skX

preserves coverings, and hence induces a homeomorphism of X with skX :=
Spec |OX |.

As we have seen (Corollary 7.18), every point of skX is represented
uniquely by a B-point. In fact, the stalk of the structure sheaf |OX | at any
point p ∈ skX is canonically isomorphic to B, with 0 (resp. −∞) represented
by an open subset containing (resp. not containing) p.

Under the homeomorphism skX ∼→ X, |OX | can be identified with the
semiring C0(X,D1

B) of continuous maps from X to the Sierpinski space D1
B,

that is, with the set of indicator functions of open subsets.
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It follows from the functoriality of the sheaves BcOX associated on formal
schemes X, as outlined in Sections 3, 4, 5, that they assemble to a sheaf
|O| of contracting semirings on the large formal site (in fact, with the fpqc
topology). Its sections over a quasi-compact, quasi-separated formal scheme
X are the semiring of finite type ideal sheaves on X. This can be thought of
as a geometric version of the sheaf |O| of the above example, which is simply
an avatar of the correspondence between (certain) frames and locales.

Let X be any formal scheme, Uqc
/X its corresponding small site, |OX | the

restriction of |O|. The Zariski-open formula (from Example 6.18) implies that
if V ↪→ X is a quasi-compact open subset, then |OX | puts the (necessarily
cellular) bounded localisations of |OX |(V ) into one-to-one correspondence
with quasi-compact Zariski-open subsets of V . The cellular cover formula
implies that if Ii ∈ |OX |(V ) is a finite family of finite-type ideal sheaves on
X, Ui = V \ Z(Ii) the complementary quasi-compact opens, and

U = V \ Z

(
k∨
i=1

Ii

)
=

k⋃
i=1

Ui,

then

Spec |OX |(U) =
k⋃
i=1

Spec |OX |(Ui)

as subsets of Spec |OX |(V ). In other words, U 7→ Spec |OX |(U) defines a
cover-preserving equivalence of categories between U/ Spec |OX |(U) and U/X .
This proves:

Lemma 7.20. — Let X be a quasi-compact formal scheme. Then
Spec |O(X)| → X is a homeomorphism.

Theorem 7.21. — Let X be any formal scheme. Then skX := (X, |OX |)
is a skeleton.

Of course, skX is actually an integral skeleton.

7.4. Universal skeleton of an adic space

Let Adqcqs denote the quasi-compact, quasi-separated adic site. The
sheaves Bc(OX ;O+

X) on each adic space X assemble to a sheaf |O| of Tate
semirings on Adqcqs, extending the one with the same name introduced in
the previous section.

Note that, unlike the case of formal schemes, this sheaf does not restrict
to the presheaf

|O|pre = Bc : nA→ 1
2Ring
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defined in terms of the section spaces of O, since the O+-submodules it
parametrises are, on the whole, not quasi-coherent. Naturally, |O| is the
sheafification of |O|pre.

In this section, we will derive the following generalisation of Theorem 7.21:

Theorem 7.22. — Let X be any adic space. Then skX := (X, |OX |) is
a skeleton.

Definition 7.23. — The skeleton skX is called the universal skeleton
of X.

The proof rests on a limit formula, following from the fundamental
limit (2.1) of Section 2.2.

Lemma 7.24. — Let X be a qcqs adic space. Then

Bc(OX ;O+
X) ∼= colim

j∈Mdl(X)
Bc(j∗OX ; j∗O+

X)

in 1
2Ringt.

Proof. — Indeed, the limit formula states explicitly that j : X ∼→ limX+

as locales, and that O+
X = colim j∗j∗O+

X as sheaves on X. Any finitely gen-
erated ideal of O+

X is therefore pulled back from some level j∗O+
X .

Since, by +normality, the morphisms j∗j∗O+
X → OX are injective, then

any two such ideals have the same image in OX if and only if they agree on
any cover, that is, on any model on which they are both defined. �

Proof of Theorem 7.22. — Let X ∈ Adqcqs. We need to show that
the localisations of |O|(X) are in one-to-one correspondence with the quasi-
compact subsets of X.

Let S ↪→ X be a quasi-compact subset. There exists a formal model
j : X → X+ and open subset S+ ↪→ X+ such that S ∼= X ×X+ S+, and

Bc(j∗OX ; j∗O+
X)→ Bc(j∗OS ; j∗O+

S )

is a cellular localisation at some (any) finite ideal I cosupported on X+ \S+.
This remains true when we modify X+. Since S is quasi-compact, every
formal model jS : S → S+ can be extended to a model j of X, and so the
colimit formula from Lemma 7.24 implies that

|O|(X) ∼= colim
j∈Mdl(X)/X+

Bc(j∗OX ; j∗O+
X)

→ colim
j∈Mdl(X)/X+

Bc(jS∗OS ; jS∗O+
S ) ∼= |O|(S)

is a localisation at I.
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Conversely, any I ∈ |O|(X) is representable by some finite ideal sheaf
on a qcqs formal model j : X → X+ of X, whence |O|(X){−I} ∼= |O|(U),
where U ∼= X ×X+ (X+ \ Z(I)).

The cellular cover formula (Proposition 7.10) shows that this correspon-
dence preserves coverings, and hence induces a homeomorphism of X with
Spec |O|(X). �

The argument also shows:
Corollary 7.25. — The universal skeleton of an adic space is a spine

(Definition 7.8).

7.4.1. Real points of the universal skeleton

Let X be any skeleton. We can topologise the set X(R∨) of real points
of X with respect to the evaluation maps f : X(R∨) → R∨ associated to
functions f ∈ |OX |, where on the right-hand side R∨ is equipped with the
usual order topology (rather than the semiring topology). IfX is defined over
some rank one semifield H∨ ⊆ R∨, then we may rigidify by considering R∨-
points over H∨; the subset XH∨(R∨) ⊆ X(R∨) similarly acquires a topology.

The natural map X(R∨)→ X is often discontinuous with respect to this
topology.

If X is now an adic space, we can consider (following e.g. Example 5.14)
the space skX(R∨) of real points of the universal skeleton as a space of
real valuations of OX . For this to be geometrically interesting, we usually
want to consider this equipped with some H∨-structure. For instance, if X is
Noetherian, then skX carries a canonical “maximal” morphism to SpecZ∨
(e.g. Example 5.25). The corresponding valuations send irreducible topolog-
ical nilpotents to −1. Alternatively, if X is defined over a rank one non-
Archimedean field K → H∨, then skX is defined over H∨, and the real
points are valuations extending the valuation of the ground field.

Where there is no possibility of confusion, I will abbreviate skXH∨(R∨)
to X(R∨).

To the reader familiar with analytic geometry in the sense of Berkovich [3]
the following theorem will come as no surprise:

Theorem 7.26. — Let XBerk be a Hausdorff Berkovich analytic space
over a non-Archimedean field K, X the corresponding quasi-separated adic
space [3, Thm. 1.6.1]. The composition

X(R∨)→ X → XBerk

is a homeomorphism.
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Proof. — It is enough to show that the restriction of this map to every
affinoid subdomain is a homeomorphism. This follows from the definitions
and the identity

Hom(Bc(OX ;O+
X),R∨) ∼→ Hom(Bc(A;A+),R∨)

for affine X = SpaA, which holds because Bc(OX ;O+
X) is a localisation of

Bc(A;A+). �

Proposition 7.27. — Let X be integral and adic over an adic space
with a Noetherian formal model. Every function on skX is determined by
its rational values.

In classical terms this means the following: let j : X → X+ be a formal
model of X, Z1, Z2 ↪→ X+ two finitely presented subschemes; then if for
all continuous rational valuations val : OX → Q∨, val(I1) = val(I2), then
Z1 = Z2 after some further blow-up of X+.

Proof. — The statement is clear when X+ is Noetherian and the Zi are
both supported away from X; in this case, we may blow-up each Zi to ob-
tain Cartier divisors, which by the Noetherian hypothesis factorise into prime
divisors. Knowing that the Zi are Cartier divisors, they are therefore deter-
mined by the multiplicities of each prime divisor therein, that is, the values
of local functions for the Zi under the corresponding discrete valuations.

Moreover, any formal subschemes Zi are, by definition, formal inductive
limits of subschemes supported away from X, and so determined by a (pos-
sibly infinite) set of valuations.

Finally, for the general case we may assume that Zi are pulled back from
some Noetherian formal scheme X+ → Y + over which X+ is integral. Since
rational valuations admit unique extensions along integral ring maps, the
discrete valuations on OY determining the Zi extend to rational valuations
on OX . �

Corollary 7.28. — The universal skeleton of an adic space is cancella-
tive.

Corollary 7.29. — Let X be as in Proposition 7.27. Then X(R∨) sat-
isfies the conclusion of Urysohn’s lemma.

Proof. — The proposition implies that |OX | injects into the set
C0(X(R∨),R∨) of continuous, real-valued functions. By definition, two
points of X(R∨) agree only every element of |OX | takes the same value
at both points. In other words, distinct points are separated by continuous
functions. �
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This last result can be understood as a cute proof of the corresponding
property for Hausdorff Berkovich spaces, that is, that they are completely
Hausdorff.

7.5. Shells

Let X be an adic space. The universal skeleton of X is a spine, so that
any function with an admissible lower bound is invertible. If, for example,
the skeleton is adic over Z∨, then this is the same as every bounded function
being invertible. Intuitively, this means that we have not defined a good
notion of convexity for functions on skX.

We obtain a more restrictive notion of convexity by embedding skX into
a shell, that is, a skeleton B inside which skX is a subdivision (in fact,
the intersection of all subdivisions). At the level of the Berkovich spectrum
X(R∨), this is akin to choosing a kind of “pro-affine structure” (a concept
that I do not define here).

Suppose that X is qcqs, and let j : X → X+ be a formal model of X.
Write

sk(X;X+) := SpecBc(j∗OX ; j∗O+
X),

for the X+-shell of X. It is an affine skeleton whose integral model is the
universal skeleton skX+ of X+.

More generally, if X is any adic space admitting a formal model X+, then
a qcqs cover U+

• � X+ with generisation U• = X ×X+ U+
• gives rise to an

X+-shell
sk(X;X+) := |sk(U•;U+

• )|,
which is a cell complex whose integral model, again, is skX+.

The blow-up formula (Proposition 6.22) shows that the colimit (Lem-
ma 7.24), for each qcqs U ↪→ X, is in fact over all possible free localisations
of Bc(j∗OU ; j∗O+

U ). In other words,

Proposition 7.30. — Let X be an adic space, j : X → X+ a formal
model; skX ⊆ sk(X;X+) is the intersection of all subdivisions of sk(X;X+).

Any open subset of the X+-shell is induced by a blow-up X+
i → X+

followed by a Zariski-open immersion U+ ↪→ X+
i . I do not know of any easily-

checked necessary criterion to determine when a family of blow-ups {X+
i →

X+}ki=1 gives rise to a cover sk(X;X+
• ) � sk(X;X+) of the corresponding

shells; it is certainly sufficient that the blow-up centres have no common
point.

– 494 –



Skeleta in non-Archimedean and tropical geometry

Note that the formal model X+ can be recovered from the data of X
and the shell skX ↪→ sk(X;X+). Indeed, one obtains from these data the
continuous map j : X ∼→ skX → skX+ to the integral model of sk(X;X+),
X+ is the formal scheme with the same underlying space as skX+ and
structure sheaf j∗O+

X .

Finally, the fact that any two models of X are dominated by a third
means that any two shells of skX have a common open subshell; the shells
can therefore be glued together to create a universal shell skX. In abstract
terms, the functor sk is obtained by left Kan extension along the inclusion
Adaff ↪→ Ad of

Spec |O|pre : Adaff → Sk,
where |O|pre, as before, denotes the presheaf SpaA 7→ Bc(A;A+). Again,
the universal shell skX contains the spine skX as the intersection of all
subdivisions.

The universal shell is a universal way of defining a “pro-affine structure”
on X(R∨) with respect to which the valuations of sections of OX are convex.
It also supports convex potentials for semipositive metrics on X.

8. Examples & applications

I conclude this paper with some abstract constructions of skeleta which
are already well-known via combinatorial means in their respective fields.

8.1. Polytopes and fans

Let N be a lattice with dualM , and let ∆ ⊂ N⊗R be a rational polytope
with supporting half-spaces {〈−, fi〉 6 λi}ki=1, λi ∈ Q. We will allow ∆ to
be non-compact, as long as it has at least one vertex; this means that the
submonoid M∆ ⊆M of functions bounded above on ∆ separates its points.
In this case, we can compactify ∆ ⊆ ∆ in, for example, the real projective
space RP(N ⊕ Z).

The semiring of “tropical functions” on ∆ is presented
Z∨{∆} := Z∨[M∆]/(fi 6 λi)ki=1;

its elements have the form
∨d
j=1Xi + ni, with Xi ∈M∆ and ni ∈ Z.

Definition 8.1. — The semiring Z∨{∆} is the polytope semiring as-
sociated to ∆. Its spectrum sk ∆ is the corresponding polytope skeleton, or
just polytope if the skeletal structure is implied by the context.
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The construction sk is functorial for morphisms φ : M1 → M2, φ(∆1) ⊆
∆2 of polytopes. In particular, every sub-polytope ∆′ ⊆ ∆ (with N fixed)
induces an open immersion of skeleta sk ∆′ ↪→ sk ∆. The morphism induced
by a refinement N → 1

dN can be thought of as a degree d “base extension”
sk ∆→ sk d∆.

The polytope skeleton sk ∆ is a skeletal enhancement of ∆, in the sense
that there is a canonical homeomorphism

sk ∆(R∨) ' ∆

of the real points, and surjective homomorphism Z∨{∆} → CPAZ(∆,Z∨)
onto the semiring of integral, convex piecewise-affine functions on ∆ (that
is, the semiring of integral, convex piecewise-affine, and bounded above func-
tions on ∆). We can produce a continuous map sk ∆ → ∆, right inverse to
the natural inclusion, whose inverse image functor sends an open U ⊆ ∆ to
the union ⋃

σ⊆U

sk σ ↪→ sk ∆,

ranging over all polytopes σ contained in U . This map presents ∆ as a
Hausdorff quotient of sk ∆ (cf. Theorem 7.26).

Polytope semirings admit an alternate presentation, related to the theory
of toric degenerations. Let N ′ = N ⊕ Z, with dual M ′ ∼= M ⊕ Z, and take
the closed cone

σ :=
⋃
λ>0

λ∆× {λ} ⊂ N ′ ⊗ R

over the polytope placed at height one. The inclusion of the factor Z induces
a homomorphism i : N → σ∨ ∩ M ′ of monoids; we topologise N linearly
with ideal of definition 1, and the cone monoid adically with respect to i. In
other words, a fundamental system of open ideals of σ∨ ∩M ′ is given by the
subsets σ∨ ∩M ′ + i(n) for n ∈ N.

We find that
Z◦∨{∆} = B{σ∨ ∩M ′} = Bc(σ∨ ∩M ′)

(see Definitions 5.16 and 3.15 for notation) is the semiring of integers (Defi-
nition 5.10) in Z∨{∆}. Its elements are idempotent expressions

∨k
i=1Xi with

Xi ∈ σ∨ ∩M ′, subject to Xi 6 0. Note that under this notation −1 ∈ Z◦∨
corresponds, perhaps somewhat confusingly, to (0, 1) ∈M ′.

An element S =
∨k
i=1Xi ∈ Z◦∨{∆} corresponds to a finite union of

subcones σS =
⋃k
i=1(X = 0) ⊆ σ and hence of faces ∆S of ∆, and the

induced restriction
Z◦∨{∆} → Z◦∨{∆S}
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is a localisation at S. The topology of the integral model sk ∆◦ = SpecZ◦∨{∆}
of sk ∆ is therefore equal, as a partially ordered set, to the set of unions of
faces of ∆. In particular, sk ∆◦ is a finite topological space.

A refinement of the lattice N 7→ 1
kN commutes with base extension

Spec 1
kZ∨ → SpecZ∨:

1
k
Z∨{∆} := 1

k
Z∨ ⊕Z∨ Z∨{∆}

∼→ Z∨{k∆}.

The dual morphism

sk k∆◦ ∼=
1
k
Z◦∨ ×Z◦∨ sk ∆◦ → sk ∆◦

of integral skeleta is a homeomorphism.

Let k[[σ∨∩M ′]] denote the completed monoid algebra of σ∨∩M ′, and write
zm for the monomial corresponding to an element m ∈ σ∨ ∩M ′. I introduce
the special notation t := z(0,1) for the uniformiser; the completion is with
respect to the t-adic topology. The monoid inclusion σ∨ ∩M ′ ⊂ k[[σ∨ ∩M ′]]
induces a continuous embedding

Z◦∨{∆} ↪→ Bc (k[[σ∨ ∩M ′]])
into the ideal semiring of k[[σ∨ ∩M ′]], matching −1 ∈ Z◦∨ with the ideal of
definition (t).

The formal spectrum D+
k[[t]]∆ of k[[σ∨∩M ′]] is an affine toric degeneration

in the sense of Mumford. That is, it is a flat degeneration

D+
k[[t]]∆

��

Spf k[[t]]

of varieties over the formal disc arising as the formal completion of a toric
morphism of toric varieties.

Definition 8.2. — Let k be a ring. The polyhedral algebra of functions
convergent over ∆ is the finitely presented k((t))-algebra

k((t)){∆} := k[[σ∨ ∩M ′]][t−1].
Its (analytic) spectrum Dk((t))∆ is called the polyhedral domain over k((t))
associated to ∆.

For example, if ∆ is the negative orthant in Rn, then Dk((t))∆ is just the
ordinary unit polydisc Dnk((t)) over k((t)). Note that the polyhedral algebra
has relative dimension equal to the rank of N , while the polyhedral semiring
depends only on the lattice points of ∆ and not on the ambient lattice.
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A similar construction is possible in mixed characteristic.

In light of the main result Theorem 7.22, there is a commuting diagram

Dk((t))∆ //

µ∆

��

D+
k[[t]]∆

��

sk ∆ // sk ∆◦

in which the top and bottom horizontal arrows are morphisms of adic spaces
and of skeleta, respectively, and the vertical arrows are continuous maps.
If ∆ spans M , then I would like to call the leftmost arrow µ∆ a standard
non-Archimedean torus fibration over ∆.

This construction can be globalised to obtain torus fibrations on toric
varieties and on certain possibly non-compact analytic subsets, in analogy
with (and, more precisely, mirror to) the symplectic theory. Let Σ be a fan
in a lattice N , and let X = XΣ be the associated toric variety over a non-
Archimedean field K, considered as an analytic space. Each cone ∆ of Σ
corresponds to a Zariski-affine subset U∆ ⊆ X. Considering the cone as a
polytope

∆ =
k⋂
i=1
{〈−, fi〉 6 λi}ki=1,

embed it in a filtered family of expansions

∆r =
k⋂
i=1
{〈−, fi〉 6 λi + ri}ki=1

for r = (ri) ∈ Rk>0; the analytic version of the subset U∆ fits into the
increasing union

Dk((t))∆r //

��

Uσ

��

sk ∆r //
⋃

r→∞ sk ∆r

of standard non-Archimedean torus fibrations. Note that it is not quasi-
compact unless N = 0. By glueing, we obtain a skeleton sk Σ and torus
fibration

XΣ

µΣ

��

sk Σ
which is covered by the standard fibrations over affine polyhedral domains
sk ∆r ⊆ sk Σ, where ∆r ranges over all expansions of cones of Σ.
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8.2. Dual intersection skeleta

Let X+ be a reduced, Noetherian formal scheme, and let X be the ana-
lytic space obtained by puncturing X+ along its reduction X+

0 .

Definitions 8.3. — The dual intersection or Clemens semiring of X+

is the subring
Cl(X;X+) ↪→ Bc(j∗OX ; j∗O+

X)
generated by the additive units of Bc(j∗OX , j∗O+

X), that is, the invertible
fractional ideals of j∗O+

X in j∗OX . It is a sheaf of semirings on X+, and it
is functorial in both X and X+. The elements of the semiring of integers
Cl(X;X+)◦ correspond to monomial subschemes of X+.

The dual intersection or Clemens skeleton of X+ is
sk ∆(X,X+) := Spec Γ(X+; Cl(X;X+)).

It comes equipped with a collapse map X → skX → sk ∆(X;X+).

It is possible, where confusion cannot occur, to drop X and/or sk from
the notation. I also write Cl◦(X;X+) and sk ∆◦(X;X+) for the semiring of
integers and integral model, respectively.

The flattening stratification decomposesX+=
∐
i∈I Ei into locally closed,

irreducible subsets such that the restriction of the normalisation ν : X̃+
0 →

X+
0 to each Ei is flat. In particular, the set underlying each monomial sub-

scheme appears in this stratification.

Lemma 8.4. — If E ↪→ X+ is a monomial subscheme with complement
V +, then ClX+ → ClV + is a cellular localisation at E.

Proof. — For this we may repeat the argument of Example 6.18 with
“ideal” replaced by “monomial ideal” throughout. �

Example 8.5. — If X+ is an affine toric degeneration associated to some
polytope ∆, with general fibre X = DOK

∆, then the Clemens skeleton is
sk ∆(X,X+) = sk ∆ and the collapse map µ is a standard torus fibration
µ∆. Its real points sk ∆(R∨) are the dual intersection complex of X+ in the
classical sense: its n-dimensional faces correspond to codimension n toric
strata of X+.

The commuting diagram

D+
OK

∆′ //

��

D+
OK

∆

��

∆′ // ∆
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coming from the open inclusion of a face ∆′ of ∆ can be seen as an instance
of Lemma 8.4.

Definition 8.6. — A normal formal scheme X+ over a field k is said
to have toroidal crossings if it admits a cover {fi : U+

i → X+}ki=1 by open
strata such that each U+

i is isomorphic to an open subset of some affine toric
degeneration D+

k[[t]]∆i.

One can choose whether to consider étale or Zariski-open subsets for
the covering, with the former being the usual choice. Zariski-local toroidal
crossings is a very restrictive notion. For instance, it forces the irreducible
components of X+

0 to be rational. For simplicity, I will nonetheless work with
this latter notion in this section, though the arguments may be generalised
with some additional work.

Let X+ be a formal scheme with Zariski-local toroidal crossings, and se-
lect model data as in the definition. Write Ui = U+

i ×X+X. Assume, without
loss of generality, that the given inclusions U+

i ↪→ D+
k[[t]]∆i induce a bijection

on the sets of strata, and hence isomorphisms Z∨{∆i}
∼→ Γ(U+

i ; Cl(Ui;U+
i )).

They identify ∆i with the dual intersection complex of U+
i . By Lemma 8.4,

the inclusion of the open substratum U+
ij := U+

i ∩ U
+
j identifies its dual

intersection complex with a face ∆ij common to ∆i and ∆j .

It follows from this and the cellular cover formula (Proposition 7.10) that
{∆(Ui;U+

i )→ ∆(X;X+)}ki=1 is a (cellular) open cover.

X

µ

��

∐k
i=1 Ui

oooo � � //

��

∐k
i=1 Di∆i

µ∆i

��

∆(X;X+)
∐k
i=1 ∆(Ui;U+

i )oooo
∐k
i=1 ∆i

Intuitively, ∆(X;X+) is constructed by glueing together the dual intersec-
tion polytopes ∆i of the affine pieces U+

i along their faces ∆ij corresponding
to the intersections U+

ij .

Proposition 8.7. — Let X+ be a locally toric formal scheme. Then
k∐

i,j=1
∆ij ⇒

k∐
i=1

∆i → ∆(X;X+)

is a cellular-open cover. In particular, ∆(X;X+) is a cell complex (Defini-
tion 7.8).

The collapse map µ is affine in the sense that ∆X+ admits an open cover
that pulls back to an affine open cover of X+. It follows that X = Spaµ∗OX
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and X+ = Spf µ◦∗O+
X , where µ◦ : X+ → ∆◦X+ is the integral model of µ. It

is locally isomorphic to standard torus fibrations µ∆i
.

Suppose that X+ = D+∆ is an affine toric degeneration, and let p :
X̃+ → X+ be a toric blow-up with monomial centre Z ⊆ X+

0 . The toric
affine open cover of X̃+ induces a decomposition

k∐
i,j=1

∆ij ⇒
k∐
i=1
→ ∆(X; X̃+)

of the dual intersection skeleton of X̃+ into polyhedral cells. The map
∆(X; X̃+)→ ∆(X;X+)

induced by the blow-up is a subdivision at the function Z ∈ Cl(X;X+).

More geometrically, the Clemens semiring of a monomial blow-up is the
strict transform semiring of the Clemens semiring of X+ (cf. Corollary 6.25).
It follows that monomial blow-ups induce subdivisions of the dual intersec-
tion skeleta.

8.3. Tropicalisation

Let X be a toric variety, so that following Section 8.1 it comes with a
canonical “tropicalisation” X → sk Σ. Let f : C ↪→ X be a closed subspace
of X. We would like to complete the composite skC ↪→ skX → sk Σ to a
commuting square

C //

trop
��

X

��

Trop(C/X/Σ) �
�

// sk Σ
and to call C → Trop(C/X/Σ) the amoeba or tropicalisation of C in sk Σ,
after (in chronological order) [7] and [19].

Let us begin in the affine setting: let X = DK∆ be a polyhedral domain,
and let IC be the ideal defining C in OX . There is an associated toric degen-
eration j : X → X+ over OK , and we may close the subspace C to obtain
an integral model C+ with ideal IC ∩ j∗O+

X . Let us set α∆ to be the image
in Bc(j∗OC ; j∗O+

C ) of Z∨{∆}, so that

Bc(j∗OC ; j∗O+
C ) Bc(j∗OX ; j∗O+

X)oo

α∆

OO

Z∨{∆}oo

OO
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commutes (here we confuse the sheaves Bc(O;O+) with their global sec-
tions). The elements of α◦∆ are subschemes of C+ monomial in the sense that
they are defined by monomials from OX . We set Trop(C/X/∆) := Specα∆.

Example 8.8 (Plane tropical curves). — Let ∆ be the lower quadrant

{r = (r1, r2) ∈ R2|r1, r2 6 λ}

with 0 � λ ∈ Z. The polyhedral domain DK∆ = SpaK{tr1x, tr2y} is an
arbitrarily large polydisc in the affine plane X = A2

K . Let X+ be the corre-
sponding formal model (which is isomorphic to A2

OK
).

Let f =
∑
i,j,k cijkt

kxiyj ∈ K{tr1x, tr2y} be some series, where (cijk) is
a matrix of constants in k. The “tropicalisation” F of the function f in the
polytope semiring Z∨{∆} = Z∨{X − r1, Y − r2} is

ι†(f) =
∨
i,j,k

iX + jY − k

where ι : Z∨{∆} → Bc(j∗OX ; j∗O+
X) is the inclusion. Note that ι† is a norm,

but not a valuation.

Suppose that C ↪→ DK∆ is a plane curve. Let J be a monomial ideal of
C+, {tkxiyj} a finite list of generators. A generator tkxiyj may be removed
from the list if and only if it is expressible in terms of the other generators,
which occurs exactly when the coefficient cijk of that monomial in some
f ∈ IC is non-zero. In other words, the relations of the quotient Z∨{∆} → α∆
are generated by those of the form

F = ι†(f) =
∨

(i,j,k) 6=(i0,j0,k0)

iX + jY − k

where F is the tropicalisation of f and ci0j0k0 6= 0. There are in general
infinitely many such relations. The image of Trop(C/X/∆) in the Hausdorff
quotient sk ∆ → ∆ ⊂ R2 is the non-differentiability locus of the convex
piecewise-affine function on ∆ defined by F .

These relations were also obtained by different means in [9].

In order to globalise this procedure, we need to check the functoriality of
the amoeba under inclusion ∆′ ⊆ ∆ of lattice polytopes. The corresponding
open immersion sk ∆′ ↪→ sk ∆ may be factored into a subdivision at some
element Z ∈ Z◦∨{∆} followed by a cell inclusion. This is the combinatorial
shadow of the operation of taking the toric blow-up X̃+ → X+ along Z, and
then restricting to an affine subset.
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Lemma 8.9. — Let C ↪→ X be a closed embedding of adic spaces, j :
X → X+ a formal model of X, C+ ⊆ X+ the closure of C in X+. Let
X̃+ → X+ be an admissible blow-up with ideal J . Then the closure C̃+ of C
in X̃+ is the blow-up of C+ along OC+J .

Proof. — The definitions directly imply the following identity

RJ
IC ∩RJ

∼=
⊕

n∈N J
ntn⊕

n∈N IC ∩ Jntn
∼=
⊕
n∈N

Jn

IC ∩ Jn
tn ∼= ROC+J

of the Rees algebras on C+. �

As we observed in the previous section, the Clemens semiring Cl(X; X̃+)
is the strict transform semiring of Z∨{∆} under the monomial blow-up
X̃+ → X+ (Definition 6.24). Furthermore, the formation of the strict trans-
form semiring commutes with the tropicalisation of ideals on C:

j∗O+
C

⊕
n∈N

Jnt
n ∼=

⊕
n∈N

Jn
IC ∩ Jn

tn ∼=
⊕
n∈N

j∗O+
CJn.

By Corollary 6.25, the image of Bc(j∗OC ; j∗O+
C ) in Cl(X; X̃+) is a free lo-

calisation of α∆.

Now writing X ′ = DK∆′ and C ′ = C ×X X ′, we obtain a natural mor-
phism of skeleta Trop(C ′/X ′/∆′) → Trop(C/X/∆). The above arguments,
together with Lemma 8.4 show:

Proposition 8.10. — Trop(C ′/X ′/∆′) → Trop(C/X/∆) is an open
immersion.

We can therefore glue tropicalisations as we glue polytopes. In particular,
we can construct the amoeba

Trop(C/X/Σ) =
⋃
σr⊂Σ

Trop (C ×X Dkσr/DKσr/σr)

of any subscheme of a toric variety, as promised above.

8.4. Circle

Returning to the situation of Section 8.2, let us specialise to the case of an
elliptic curve. Let K be a DVF with residue field k, E/K an elliptic curve;
write E/K for the base change to the algebraic closure. Let Ω = Ω1,0 ∈
Γ(E;ωE/K) \ {0} be a holomorphic volume form.
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Definition 8.11. — A formal model E+ of E is crepant if it is Q-
Gorenstein and one of the following equivalent conditions are true:

(1) there exists a log resolution f : (E+)′ → E+ on which (E+)′+f∗Ω =
tk as Q-divisors on (E+)′, where k ∈ Z and (E+)′ denotes the
reduction of (E+)′;

(2) The log canonical threshold is equal to a constant k on E+ (in equal
characteristic zero);

(3) The canonical bundle ω
E

+
/O

K

over the algebraic closure is trivial.

A formal model of E is crepant if it is finitely presented with trivial canonical
bundle over OK , or equivalently, it is obtained by flat base extension from a
crepant formal model over some finite extension of OK .

A simple normal crossings model E+ of E is crepant if and only if its
reduction is a cycle of projective lines. The multiplicity of a line in the cen-
tral fibre E+

0 := k×OK
E+ is one more than its multiplicity in the canonical

divisor. One can make the multiplicities all one, and hence trivialise the
canonical bundle, by effecting a finite base change followed by a normalisa-
tion. In particular, E+ is semistable if and only if ωE+/OK

is trivial, that is,
if and only if it is a minimal model.

On the other hand, a formal model of E is locally toric if and only if it has
at worst monomial cyclic quotient singularities and the components of its
central fibre are smooth rational curves. It is automatically Q-Gorenstein.
Such a model exists only if E has bad, but semistable reduction; let us
assume this.

Let Mdlclt(E) denote the category of crepant, locally toric models of E.
Let E+ be an object of this category. Its singularities occur at the intersec-
tions of components, and they have the form

D+
k[[t]]∆→ ∆◦

where ∆ = [a, b] is an interval with rational endpoints. They may be resolved
explicitly, and crepantly, by subdividing the interval at all its integer points.

Since, by assumption, a crepant resolution of E+ exists, (E+)′ must be
a crepant model. Its reduction is therefore a cycle of P1

ks. Since ∆(E+)′ →
∆E+ is a subdivision, it follows that both are cycles of intervals; ∆E+(R∨)
has the topology of a circle.

The Clemens functor

∆ : Mdlclt(E)→ Skaff
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is defined, and its image is a diagram of subdivisions. It may therefore be
glued to obtain the Kontsevich–Soibelman (or KS) skeleton sk(E; Ω) :=
colim ∆. It is a shell of any crepant Clemens skeleton, and hence comes
with a collapse map

µ : E → sk(E; Ω),
which is a torus fibration: every point of sk(E; Ω) has an overconvergent
neighbourhood over which µ is isomorphic over Z∨ to a standard torus fi-
bration on an interval. In the introduction we introduced an explicit “atlas”
for sk(E; Ω) under the assumption (which may be lifted) that the minimal
model of E consist of at least three reduced lines.(6)

If, more generally, E has only bad reduction, we can still define sk(E; Ω)
as the colimit of the Clemens functor on Mdlclt(E). If L ⊇ K is a finite
extension over which EL := L×K E has semistable reduction, then

sk(E; Ω) ∼= Q∨ ×Z∨ sk(EL; Ω)
by the base change property for polytopes. In particular, the collapse map
E → sk(E; Ω) is again a torus fibration. The KS skeleton is of finite presen-
tation over Q∨.

There is a continuous projection π : sk(E; Ω) → B := sk(E; Ω)(R∨) '
S1. The local models for µ induce a canonical smooth structure on B with
respect to which the affine functions, that is, invertible sections AffZ(B,Q)
of CPAZ(B,Q∨) := π∗|O|canc, are smooth. It therefore attains an affine
structure in the sense of [15, §2.1] defined by the exact sequence

0 −→ Q −→ AffZ(B,Q) −→ Λ∨ −→ 0
of Abelian sheaves on B and the induced embedding Λ∨ ↪→ T∨B.

Let E+
L be a semistable minimal model of EL. By writing Ω locally in

the form λd log x for some monomial x ∈ O×E and λ ∈ L×, we can think of Ω
as a non-zero section of L⊗Z Λ∨. It induces a K-orientation of B that does
not depend on the choice of L or x.
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