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A note on gamma triangles and local gamma vectors
(with an appendix by Alin Bostan) (∗)

Frédéric Chapoton (1)

ABSTRACT. — This article introduces Gamma-triangles, which are closely related
to F-triangles and H-triangles that were used in the combinatorial study of clus-
ter complexes, and in some sense are more fundamental. We prove that Gamma-
triangles can be expressed as sums of local gamma-vectors, that were introduced by
Athanasiadis as a refinement of the Stanley’s local h-vector of simplicial subdivisions.
We compute explicitly the Gamma-triangles for cluster complexes of finite type.

RÉSUMÉ. — Cet article introduit les gamma-triangles, qui sont liés aux F-triangles
et H-triangles utilisés dans l’étude combinatoire des complexes d’amas, et dont ils
sont en quelque sorte une version plus fondamentale. On démontre que les gamma-
triangles s’expriment comme des sommes de gamma-vecteurs locaux, introduits par
Athanasiadis comme un raffinement des h-vecteurs locaux de subdivisions simpli-
ciales, dûs à Stanley. On calcule ensuite explicitement les gamma-triangles des com-
plexes d’amas de type fini.

When studying simplicial complexes, a basic invariant is the f -vector that
counts faces according to their dimensions. It is now well-known that it is
also interesting to consider the h-vector, obtained in a simple way from the
f -vector. For example, when the simplicial complex comes from a complete
toric fan, the h-vector records the dimensions of the homology groups of
the associated toric variety. Even deeper stands the γ-vector introduced by
Gal [11], which is not really well understood. It can be defined when the h-
vector is symmetric, and is conjectured to be nonnegative under some precise
hypotheses involving flagness of simplicial complexes.

Stanley has introduced in [19] a local variation on this theme, where the
starting point is no longer any simplicial complex, but rather a subdivision
of a standard simplex. This involves a local h-vector, which he proved to
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be nonnegative under some technical condition. The local analogue of the
γ-vector was introduced and studied in depth in [10]. It is also conjectured
there to be nonnegative under the appropriate hypothesis of flagness. We
refer to the survey article [1] for much more details on this beautiful theory.

The author has introduced in [5], motivated by the study of the combina-
torics of simplicial complexes attached to cluster algebras [8, 9, 17], a finer
version of the f -vector, where faces are not only counted according to their
dimension, but in a more refined way using the fact that the underlying set
is split into negative and positive parts. This gives the F -triangle, a polyno-
mial in two variables, that could be defined for any pure simplicial complex
endowed with a prefered maximal simplex.

Later, an analogue of the h-vector in this context, called the H-triangle,
has been introduced in [6]. It is related to the F -triangle by a simple bira-
tional change of variables, that extends the classical transformation from the
f -vector to the h-vector.

The main aim of the present article is to introduce the analogue in this
context of the γ-vector: we define a Γ-triangle starting from the H-triangle.
To justify that it exists, this Γ-triangle is expressed as a sum of local γ-
vectors. This implies that the Γ-triangle is a refinement of the γ-vector, that
also contains the information of the local γ-vector. Conversely, the Γ-triangle
is determined by the knowledge of all local γ-vectors of subdivisions of facets.

We then compute explicitly the Γ-triangle for all the cluster simplicial
complexes of irreducible Coxeter groups, using the information on local γ-
vectors for the related subdivisions from the article [2].

As a general reference on the relationships between the combinatorics
and homology of simplicial complexes and commutative algebra, the reader
may want to consult [20].

As a first side remark, it was observed by Athanasiadis (private commu-
nication) that a formula similar to the relation (3.2) between H-triangle and
Γ-triangle appears in [21, Conjectures 1 and 8] (see also [3, Conjecture 10.2]),
which presents a conjecture of Gessel about the distribution of descents and
inverse descents in the symmetric groups (two-sided Eulerian polynomials).

As another side remark, let us note that the article [13] by Katz and
Stapledon contains material which present some formal similarities with the
present article, including versions of h-polynomial involving two variables
(see their Lemma 5.8). Nevertheless, it seems that the two settings cannot
be made identical by any appropriate change of notation.

It may also be interesting to see if the ideas presented here could have
some impact on the study of the zero loci of general F -triangles made in [18].
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1. Simplicial complexes and subdivisions

Let C be a finite simplicial complex, which means a collection of subsets
of a fixed finite set, closed under taking subsets. The elements of C are called
faces. The dimension of a face of C is the number of elements in that face
minus 1. Faces of dimension 0 are called vertices. The dimension of C is the
maximal dimension of the faces of C. The simplicial complex C is pure if all
maximal faces have the same dimension. These faces of maximal dimension
are then called facets.

Let us recall briefly the definition of simplicial subdivisions, see [19, Sec-
tion 2] and [2, Section 2.2] for more context and details on this notion. Let
I be a finite set and 2I be the full simplex with vertex set I. A simplicial
subdivision of 2I is a simplicial complex C+ together with a map σ from C+
to 2I such that for every J ⊆ I,

• σ−1(2J) is a subcomplex C+(J) of C+ which is a simplicial ball of
dimension |J | − 1 and
• σ−1(J) consists of the interior faces of C+(J).

The simplicial subdivision (C+, σ) is called geometric if there exists a
geometric realisation of C+ (where each face is realised as an Euclidean
simplex) that subdivides geometrically a geometric realisation of 2I .

Let us now describe a correspondence between simplicial subdivisions and
some spherical complexes. This construction has already appeared (see (4-1)
there) in [10, Section 4].

Given a simplicial subdivision C+ of 2I , one can define a new simplicial
complex Sphere(C+) as follows. Let (C+)0 be the underlying set of C+. The
underlying set of Sphere(C+) is the disjoint union (C+)0 t I. The faces of
Sphere(C+) are pairs (F, J) (or rather their disjoint union) where F is a face
of C+ and J ⊆ I such that σ(F ) does not intersect J .

For a geometric simplicial subdivision C+, the simplicial complex
Sphere(C+) has a geometric realisation that subdivides a sphere, more pre-
cisely the boundary of a cross-polytope.
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Conversely, given the spherical simplicial complex Sphere(C+), one can
recover C+ from the knowledge of the distinguished subset of vertices I.
Indeed, the faces of C+ are the faces of Sphere(C+) that do not contain any
element of I.

An important class of examples of the situation just described are the
cluster complexes, as appearing in the theory of cluster algebras [8, 9]. For
every finite Weyl group W and for any choice of Coxeter element c ∈ W ,
there is an associated complete fan, called the cluster fan, whose rays are
indexed by almost-positive roots (positive roots or negative simple roots)
in the root system of W . The dual polytope of this fan is a generalized
associahedra, whose edge graph is the flip graph of cluster variables. The
simplicial complex associated to the cluster fan is naturally of the form
Sphere(C+) where C+ is the subcomplex obtained by restriction to the set
of positive roots. The set I is the set of simple roots, and the structure map
σ of the subdivision C+ is given by the support of sets of positive roots.

We will use one important property of the cluster fans, namely the prop-
erty that the subcomplexes C+(J), for J a subset of the set I of simple roots,
is isomorphic to the set C+ for the cluster fan associated to the parabolic
subgroup WI−J .

We will also use freely the extension of this theory of cluster fans to all
finite Coxeter groups as done under the name of cambrian fans by Reading
and Speyer in [17]. All the properties that we need do extend to this more
general setting.

1.1. f-vector, h-vector and γ-vector

Let us first recall the definition of the f -vector, h-vector and γ-vector
attached to a simplicial complex.

Given a pure finite simplicial complex C of dimension d− 1, its f -vector
is the sequence of integers (f−1, f0, . . . , fd−1) where fi is the number of faces
with i+ 1 vertices in C. The associated f -polynomial is defined as

fC(x) =
∑

06i6d

fi−1x
i. (1.1)

The h-polynomial of the simplicial complex C is then defined as

hC(x) = (1− x)dfC

(
x

1− x

)
=
∑

06i6d

fi−1x
i(1− x)d−i. (1.2)
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The reverse transformation is given by

fC(x) = (1 + x)dhC

(
x

1 + x

)
. (1.3)

When the h-polynomial is written as

hC(x) =
∑

06i6d

hix
i, (1.4)

the sequence of integers (h0, h1, . . . , hd) is called the h-vector of C.

When C is an homology sphere, the h-vector satisfies the symmetry prop-
erty hi = hd−i for all 0 6 i 6 d. In this case, one can always write

h(x) =
∑

06i6d/2

γix
i(1 + x)d−2i, (1.5)

for some uniquely defined integer coefficients γi. These coefficients form the
γ-vector attached to the simplicial complex C.

There is a famous conjecture of Gal about these coefficients [11]. Recall
that a simplicial complex is said to be flag if all minimal non-faces have two
elements.

Conjecture 1.1 ([11, Conjecture 2.1.7]). — The γ-vector has nonneg-
ative coordinates for every flag homology sphere.

1.2. Local f-vector, h-vector and γ-vector

Let us now recall the definition of the local f -vector, local h-vector and
local γ-vector attached to a simplicial subdivision.

Let I be a finite set of cardinality d and let C+ be a simplicial subdivision
of the simplex 2I . The local h-polynomial h`

C+
(x) is the alternating sum of

the h-polynomials of the restrictions of C+ to the faces of 2I . More precisely,

h`
C+

(x) =
∑
J⊆I

(−1)|I−J|hC+(J)(x). (1.6)

Conversely, by Möbius inversion on the boolean lattice of subsets,

hC+(x) =
∑
J⊆I

h`
C+(F )(x). (1.7)

When expanded as

h`
C+

(x) =
n∑

i=0
h`

ix
i, (1.8)
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the sequence (h`
0, . . . , h

`
d) is called the local h-vector of C+.

The local h-vector is known to be symmetric (h`
i = h`

d−i for all 0 6 i 6 d)
for any simplicial subdivision and nonnegative for every geometric simplicial
subdivision [19].

Because of this symmetry property, one can define the local γ-vector in
the same way as the γ-vector was defined from the h-vector. Namely, one
can always write

h`(x) =
∑

06i6d/2

γ`
ix

i(1 + x)d−2i, (1.9)

for some uniquely defined integer coefficients γ`
i . These coefficients form the

local γ-vector attached to the simplicial subdivision C+.

The local γ-polynomial is multiplicative for the natural join operation on
simplicial subdivisions, see [2, Lemma 2.2].

2. F -triangle, H-triangle

Let us now recall the definition of F -triangles and H-triangles, originally
introduced in [5] in the context of cluster complexes. They were later related
to a third polynomial, the M -triangle, that will not be considered here.

Let C be a pure finite spherical simplicial complex of dimension d−1, with
a distinguished facet T . The F -triangle of the pair (C, T ) is the generating
polynomial

FC,T (x, y) =
∑

06i,j6d

Fi,jx
iyj , (2.1)

where Fi,j is the number of faces of C of cardinality i+ j that are made of
i elements not in T and j elements in T . When setting y = x, this reduces
to the usual f -polynomial, that is FC,T (x, x) = fC(x).

The H-triangle is then defined as

HC,T (x, y) = (1− x)dFC,T

(
x

1− x,
xy

1− x

)
. (2.2)

The reverse conversion formula is

FC,T (x, y) = (1 + x)dHC,T

(
x

1 + x
,
y

x

)
. (2.3)

When setting y = 1 in the H-triangle, one gets back the usual h-polynomial
of the simplicial complex C, that is HC,T (x, 1) = hC(x). The conversion
formulas also extend the usual ones between f -vectors and h-vectors.
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In this article, we will only consider F -triangles and H-triangles in the
case where C = Sphere(C+) for some simplicial subdivision C+ of 2I , taking
as distinguished facet T the unique facet of Sphere(C+) with set of vertices I.

3. Γ-triangle

Let us now introduce the main novelty of the article, the Γ-triangle. It
is closely related to the F -triangle and H-triangle, and can be seen as a
condensed way to describe these polynomials, with half less coefficients.

Consider a simplicial sphere of the form Sphere(C+). Assume for the
moment that one can write its H-triangle in the following shape

H(x, y) = (1 + x)d
∑
06i

06j6d−2i

γi,j

(
x

(1 + x)2

)i(1 + xy

1 + x

)j

, (3.1)

for some integer coefficients γi,j . If this is possible, there is a unique way
to do so. The coefficients γi,j are called the Γ-triangle of Sphere(C+). Note
that the coefficients fit inside a triangle, whence the name.

We will prove in the next section that this decomposition is always pos-
sible in this context, and give an expression for the coefficients γi,j in terms
of the local γ-vectors for sub-complexes of C+.

The formula (3.1) can also be displayed as

H(x, y) =
∑
i,j

γi,jx
i(1 + xy)j(1 + x)d−2i−j . (3.2)

This reduces to the usual formula (1.5) for the γ-vector when y = 1. This
implies that a necessary condition for (3.1) to exist is the symmetry of the
h-vector. It also implies that the Γ-triangle is a refinement of the γ-vector,
in the sense that

γi =
∑

j

γi,j . (3.3)

Using the relation (2.3) between F -triangle and H-triangle, one obtains
that

F (x, y) = (1 + 2x)d
∑
i,j

γi,j

(
x(1 + x)
(1 + 2x)2

)i(1 + x+ y

1 + 2x

)j

. (3.4)
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Figure 3.1. Positive part C+ of a cluster complex of type A3.

As a simple concrete example, let us consider for n > 4 the regular n-
polygon, whose F , H and Γ-triangles (with respect to any facet) are 1

2 2
1 n− 2 n− 3

 ,

 1
2 0

1 n− 4 0

 ,

 1
0
0 n− 4

 . (3.5)

Here and after, the coefficients are displayed with the power of x (index i)
increasing from left to right and the power of y (index j) increasing from
bottom to top.

Here is another example, for the cluster complex of type A3 whose pos-
itive part C+ is depicted in figure 3.1. Here, the F , H and Γ-triangles of
Sphere(C+) are

1
3 3
3 8 5
1 6 10 5

 ,


1

3 0
3 2 0

1 3 1 0

 ,


1
0
0 2
0 1

 . (3.6)

3.1. Existence and local description of Γ-triangle

We will proceed here to a computation, ending with a formula that implies
the existence of the Γ-triangle for Sphere(C+), together with an expression
for the γi,j coefficients in terms of all the local γ-vectors for the subcomplexes
C+(J).

Let us start by the equality

FSphere(C+)(x, y) =
∑
J⊆I

∑
f∈C+(I−J)

x|f |y|J| (3.7)

holding by definition of the F -triangle and by the description of the faces of
Sphere(C+) from the faces of C+. Using f -vectors, one gets

FSphere(C+)(x, y) =
∑
J⊆I

y|J|fC+(I−J)(x). (3.8)

– 914 –
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Passing to the H-triangle by (2.2), one gets

HSphere(C+)(x, y) = (1− x)|I|
∑
J⊆I

(
xy

1− x

)|J|
fC+(I−J)

(
x

1− x

)
. (3.9)

Expressing f -vectors in terms of h-vectors by (1.2), this becomes

HSphere(C+)(x, y) = (1− x)|I|
∑
J⊆I

(
xy

1− x

)|J|
(1− x)−|I−J|hC+(I−J)(x)

(3.10)
which is just

HSphere(C+)(x, y) =
∑
J⊆I

(xy)|J|hC+(I−J)(x). (3.11)

Expressing h-vectors in terms of local h-vectors by (1.7), one gets

HSphere(C+)(x, y) =
∑
J⊆I

(xy)J
∑

K⊆I−J

h`
C+(K)(x). (3.12)

which can be rewritten

HSphere(C+)(x, y) =
∑
K⊆I

(1 + xy)|I−K|h`
C+(K)(x). (3.13)

Then passing from local h-vectors to local γ-vectors by (1.9), one gets

HSphere(C+)(x, y) =
∑
K⊆I

(1 + xy)|I−K|
∑

i

γ`
C+(K),i

(
x

(1 + x)2

)i

(1 + x)|K|.

(3.14)

By comparing carefully with the desired expression (3.1), one finds at
last the following expression for the coefficients γi,j .

Proposition 3.1. — The Γ-triangle Γ(x, y) of Sphere(C+) can be ex-
pressed as

Γ(x, y) =
∑
i,j

γi,jx
iyj =

∑
K⊆I

γ`
C+(K)(x)y|I−K|, (3.15)

where the sum is over all subsets K of the set I.

This implies that Athanasiadis’ version of the Gal’s conjecture for the
local γ-vectors ([1, Conjecture 3.6]) would imply the following version of
Gal’s conjecture for Γ-triangles.

Let Sphere(C+) be a flag spherical simplicial complex of the type defined
in Section 1.
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Conjecture 3.2. — The Γ-triangle for the pair (Sphere(C+), I) has
nonnegative coefficients.

This holds true for all cluster complexes of finite type, see the next section
and tables at the end of the article.

As an example of what happens without flagness, let us consider the case
of the triangle made of 3 edges, and its F -triangle with respect to one edge.
The H-triangle and Γ-triangle were already computed in (3.5) for n = 3, but
the Γ-triangle has a negative coefficient.

4. Explicit values for finite cluster fans

In this section, we compute the Γ-triangle for cluster fans in types A,B,D.

Using Proposition 3.1, the Γ-triangle of the cluster fan of a given Dynkin
diagram Φ, seen as a polynomial Γ(x, y), is therefore determined by

ΓΦ(x, y) =
∑
J⊂I

γ`
I−J(x)y|J|, (4.1)

where J is the set of vertices not in the subdiagram.

We will use this formula in the next sections, in the special cases of types
A, B and D, to obtain algebraic equations for the generating series of Γ-
triangles. We also give explicit expressions for coefficients of these generating
series.

Note that the coefficients γ1,i for cluster fans have an explicit description
as the numbers of non-simple roots, in the root system of W , according to
the size of their support. This follows directly from Remark 1 in [2, Section 5]
and Proposition 3.1.

4.1. Type A

Let us start by a computation in type A.

Proposition 4.1. — The coefficient of xky` in the Γ-triangle of the
associahedra of type An is

`+ 1
n− k + 1

(
n

k

)(
n− k − `− 1

k − 1

)
(4.2)

for k > 0, ` > 0 and `+ 2k 6 n.
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The proof follows.

Let gA be the following generating series∑
m>0

∑
k>0

1
k +m+ 1

(
2k +m

k

)(
k +m− 1
k − 1

)
xkt2k+m. (4.3)

This is the generating series for the known local γ-vectors for the positive
part of the cluster complex of type A, see [2, Proposition 3.1, Equation (8)].
In this generating series and later on in similar ones, the exponent of the
variable x is the index in the local γ-vector, and the exponent of the variable
t is the rank n of the Dynkin diagram An. The summation variables (m, k)
are chosen in such a way that the summation range get simplified.

Let GA be the following generating series∑
m>0

∑
k>0

∑
`>0

`+ 1
`+ k +m+ 1

(
`+ 2k +m

k

)(
k +m− 1
k − 1

)
xky`t2k+m+`. (4.4)

This is the generating series for the expected Γ-triangles for the cluster
complex of type A. Here the exponents of x and y are the indices in the
Γ-triangles.

Proposition 4.2. — We have the following relation:

GA = gA + yt gAGA. (4.5)

Proof. — Let us compute the coefficient of (xt2)k(yt)`tm in gAGA. This
is given by the finite sum∑

k1+k2=k
m1+m2=m

1
k1 +m1 + 1

(
2k1 +m1

k1

)(
k1 +m1 − 1
k1 − 1

)
`+ 1

`+ k2 +m2 + 1

(
`+ 2k2 +m2

k2

)(
k2 +m2 − 1
k2 − 1

)
with k1 > 0, k2 > 0, m1 > 0 and m2 > 0. This expression can be rewritten
as ∑

k1+k2=k
m1+m2=m

k1

(2k1 +m1 + 1)(k1 +m1)

(
2k1 +m1 + 1

k1

)(
k1 +m1

m1

)
(`+ 1)k2

(2k2 +m2 + `+ 1)(k2 +m2)

(
2k2 +m2 + `+ 1

k2

)(
k2 +m2

m2

)
By a summation formula of Carlitz [4, Theorem 6 (5.14)], this is equal to

(`+ 2)k
(2k +m+ `+ 2)(k +m)

(
2k +m+ `+ 2

k

)(
k +m

m

)
(4.6)
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which is exactly the coefficient of (xt2)k(yt)`+1tm in GA − gA. �

But the equation (4.5) is exactly the relation given by applying (4.1) in
type A, where Dynkin diagrams are line-shaped graphs. Namely, either J is
empty and the subdiagram on I − J is the full diagram, or there exists a
leftmost vertex that is in J . The first case correspond to the term gA in the
right hand side of (4.5). In the second case, one can use the multiplicativity
of local γ-vectors to separate the leftmost connected component of I − J .
This gives the second term in the right hand side of (4.5).

4.2. Type B

Let us proceed to the similar computation in type B.

Proposition 4.3. — The coefficient of xky` in the Γ-triangle of the
associahedra of type Bn is (

n

k

)(
n− k − `− 1

k − 1

)
, (4.7)

for k > 0, ` > 0 and `+ 2k 6 n.

The proof, similar to the case of type A, follows.

Let gB be the following generating series∑
m>0

∑
k>0

(
2k +m

k

)(
k +m− 1
k − 1

)
xkt2k+m. (4.8)

This is the generating series for the known local γ-vectors for type B, see [2,
Proposition 3.2, Equation (12)].

Let GB be the following generating series∑
m>0

∑
k>0

∑
`>0

(
2k + `+m

k

)(
k +m− 1
k − 1

)
xky`t2k+`+m. (4.9)

This is the generating series for the expected Γ-triangles for type B.

Proposition 4.4. — We have the following relations:

GB = gB + yt gAGB and GB = gB + yt gBGA. (4.10)

Proof. — The proof of these two equations is very similar. Let us
give some details only for the first one. One computes the coefficient of
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(xt2)k(yt)`tm in gAGB. This is given by∑
k1+k2=k

m1+m2=m

1
k1 +m1 + 1

(
2k1 +m1

k1

)(
k1 +m1 − 1
k1 − 1

)
(
`+ 2k2 +m2

k2

)(
k2 +m2 − 1
k2 − 1

)
,

which can be rewritten∑
k1+k2=k

m1+m2=m

k1

(2k1 +m1 + 1)(k1 +m1)

(
2k1 +m1 + 1

k1

)(
k1 +m1

m1

)
(

2k2 +m2 + `

k2

)(
k2 +m2 − 1

m2

)
.

By applying [4, Theorem 6 (5.15)] (with the correct right-hand side that
involves +cn), one gets that this is equal to(

2k +m+ `+ 1
k

)(
k +m− 1

m

)
, (4.11)

which is readily seen to be the coefficient of (xt2)k(yt)`+1tm in GB− gB. �

By the same proof as in type A, the equations (4.10) are exactly the
relations given by (4.1) between the local γ-vectors and the Γ-triangle in
type B.

4.3. Type D

There is an amusing and unexpected relation between the Γ-triangles of
cluster fans of type B and D.

Proposition 4.5. — For every n > 3, the Γ-triangle of type Dn is ob-
tained from the Γ-triangle of type Bn−1 by adding a bottom line, which is the
local γ-vector of type Dn.

Proof. — This follows from the statements below.

Let gD be the following generating series∑
m>0

∑
k>1

2k +m− 2
k

(
2k − 2
k − 1

)(
2k +m− 2

2k − 2

)
xkt2k+m. (4.12)

This is the generating series for the known local γ-vectors for type D see [2,
Proposition 3.3].
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Let GD be the generating series for the expected Γ-triangles for type D
for n > 2. The proposition above is equivalent to

GD = yt(GB − 1) + gD, (4.13)

which is therefore what we want to prove. �

Proposition 4.6. — We have the following relation:

GD = gD + 2yt(gA − 1) + (yt)2gA + ytgAGD. (4.14)

Proof. — This is the consequence of the general relation (4.1) from γ-
vector to Γ-triangle. If the subset J is empty, we get the first term. If the
subset J is made of one of the two vertices in the fork of the D Dynkin
diagram, we get the next term. If J is made of both, then we get the third
term. Otherwise, J has at least one element on the tail part of the Dynkin
diagram, and one can cut at the farthest one from the forking point. �

To deduce (4.13) from (4.14), it is enough to prove the following.

Lemma 4.7. —

gB − 1 = 2(gA − 1) + gAgD. (4.15)

Proof. — This follows from the algebraicity of these 3 series, and more
precisely from the equations that they satisfy, see the appendix for a detailed
proof. �

Indeed, by taking the sum of (4.14) and yt times (4.15), one gets

(GD − gD)(1− ytgA) = yt(gB − 1 + ytgA). (4.16)

But one can deduce from (4.10) that

(GB − 1)(1− ytgA) = gB − 1 + ytgA. (4.17)

Comparing these two equations implies (4.13).

For example, here are the Γ-triangles of type B5 and type D6 :


1
0
0 5
0 5
0 5 10
0 5 20

 ,



1
0
0 5
0 5
0 5 10
0 5 20
0 4 24 8


.
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5. Quadrangulations and dissections

Another large class of pure flag spherical simplicial complexes of the shape
Sphere(C+) is obtained from Stokes complexes associated to quadrangula-
tions [7] and more general dissection complexes as introduced by Garver and
McConville in [12] and further studied and extended in [15, 16]. We will only
briefly mention some interesting examples, with no proof.

Among these simplicial complexes, one can find families indexed by n
that should be the simplest possible, in the sense that the dual polytopes
are not products of simpler cases and have as few vertices as possible for a
given dimension n.

For quadrangulations and Stokes complexes, there is a family having
vertices enumerated by the Lucas numbers (OEIS A32), see [7, Section 4.1].
The Γ-triangles for this family satisfy the linear recursion

un+1 = (y2 + 2x)un − x2un−1 + xyun−1, (5.1)

with initial values 0, 1.

For general dissections, there is a family having their vertices counted
by the Pell numbers (OEIS A129). This seems to be closely related to the
objects considered in [14]. The Γ-triangles for this family satisfy the linear
recursion

un+1 = yun + xun−1, (5.2)

with initial values 0, 1. These are therefore some kind of Fibonacci polyno-
mials. Strangely, the discriminant of this recursion is the Γ-triangle for I2(6).

6. Tables of Γ-triangles

Types of rank 2 and 3 :

 1
0
0 h− 2

 ,


1
0
0 6(h−2)

h+2
0 3(h−2)2

2(h+2)

 .

For rank 2, the parameter h > 2 is the Coxeter number, corresponding to
I2(h). For rank 3, the parameter is also the Coxeter number h, with possible
values 2, 4, 6, 10 corresponding to A3

1,A3,B3 and H3.
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Types A4, B4, D4, F4 and H4:
1
0
0 3
0 2
0 1 2

 ,


1
0
0 4
0 4
0 4 6

 ,


1
0
0 3
0 3
0 2 2

 ,


1
0
0 4
0 6
0 10 9

 ,


1
0
0 5
0 9
0 42 40

 .

Types E6, E7 and E8:



1
0
0 5
0 5
0 6 11
0 7 23
0 7 35 13


,



1
0
0 6
0 6
0 7 16
0 9 36
0 12 69 28
0 16 124 112


,



1
0
0 7
0 7
0 8 22
0 10 48
0 14 94 46
0 22 192 194
0 44 484 784 120


.

Appendix

Recall that gA, gB, gD are power series in Q[x][[t]] defined by

gA := 1 +
∞∑

n=1

bn/2c∑
i=1

(
n
i

)(
n−i−1

i−1
)

n− i+ 1 xi

 tn = 1+xt2 +xt3 +
(
2x2 + x

)
t4 + · · · ,

gB := 1 +
∞∑

n=1

bn/2c∑
i=1

(
n

i

)(
n− i− 1
i− 1

)
xi

 tn = 1 + 2xt2 + 3xt3

+
(
6x2 + 4x

)
t4 + · · ·

and

gD :=
∞∑

n=0

bn/2c∑
i=1

(2 i−2
i−1
)(

n−2
2 i−2

)
(n− 2)

i
xi

 tn = xt3 +
(
2x2 + 2x

)
t4 + · · · .
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We prove here that these power series are algebraic, and that they satisfy
the following identity:

gB − 1 = 2(gA − 1) + gAgD.

To do this, we introduce an auxiliary algebraic power series in Q[x][[t]],

g =
√

(1− t)2 − 4xt2 = 1− t− 2xt2 − 2xt3 −
(
2x2 + 2x

)
t4 + · · ·

We claim that the following relations hold in Q[[x, t]]:

gA = 1 + t− g
2t (tx+ 1) , (A.1)

gB = 2 tx+ g − t+ 1
2 g (tx+ 1) , (A.2)

gD = (g − 1) (g − 1 + t)
2 g . (A.3)

Assuming these identities, it is immediate to check our claims, namely
that gA, gB, gD are algebraic, and related by

gB − 1− 2(gA − 1)− gAgD =
(1 + g)

(
g2 − (1− t)2 + 4xt2

)
4 t (tx+ 1) g = 0.

It is therefore enough to prove identities (A.1), (A.2) and (A.3).

First, let us remark that g is equal to

g = (1− t)

√
1− 4x

(
t

1− t

)2
.

Setting u = xt2/(1− t)2 in the binomial formula

√
1− 4u = 1− 2

∞∑
i=2

(2 i−2
i−1
)

i
ui

yields the expansion

g = 1− t− 2
∑
i>1

(2 i−2
i−1
)

i
xi t2i

(1− t)2i−1 .

Combining this with the classical expansion

1
(1− t)2 i−1 =

∞∑
n=0

(
n+ 2 i− 2

2 i− 2

)
tn
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proves that

g = 1− t− 2
∑
i>1

∑
n>0

(2 i−2
i−1
)(

n+2i−2
2 i−2

)
i

tn+2i

xi,

in other words:

g = 1− t− 2
∞∑

n=1

bn/2c∑
i=1

(2 i−2
i−1
)(

n−2
2 i−2

)
i

xi

 tn. (A.4)

Now the proof of identity (A.1) amounts to a direct verification, based
on the binomial identity(

n−2
i−1
)(

n−i−2
i−2

)
+
(

n−1
i

)(
n−i−2

i−1
)

n− i
=
(2 i−2

i−1
)(

n−2
2 i−2

)
i

for n> 2 and 16 i6 bn/2c.

Identity (A.3) follows from (A.4) and the definition of gD, by using the
following observation, where θt = t ∂

∂t stands for the Euler derivation:

gD = (2− θt)
(
g − 1 + t

2

)
.

Indeed, proving (A.3) amounts to checking that g satisfies the differential
equation

tg
∂g

∂t
− g2 − t+ 1 = 0,

which is obvious from the definition of g.

Finally, identity (A.2) follows from (A.1) using the following observation:

gB(x, t) = ∂ (t gA(x/t, t))
∂t

(xt, t).
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