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On the quasisymmetric Hölder-equivalence problem for
Carnot groups (∗)

Pierre Pansu (1)

ABSTRACT. — A variant of Gromov’s Hölder-equivalence problem, motivated by
a pinching problem in Riemannian geometry, is discussed. A partial result is given.
The main tool is a general coarea inequality satisfied by packing energies of maps.

RÉSUMÉ. — On introduit une variante, invariante par homéomorphisme quasisy-
métrique, du problème d’équivalence höldérienne de Gromov. On obtient un résultat
partiel, qui a une conséquence en géométrie riemannienne. Il repose sur une forme
générale de l’inégalité de la coaire pour les p-énergies des fonctions.

1. The problem

1.1. The Hölder equivalence problem

In [1], M. Gromov conjectured that if there exists a Cα homeomorphism
from an open set in Euclidean space R3 to Heisenberg group equipped its
Carnot–Carathéodory metric, then α 6 1

2 . This is still open. Gromov proved
the upper bound α 6 2

3 , which has not been improved since, in spite of many
efforts, [2, 9, 10].

More generally, let X be a metric space which is a topological manifold.
Let α(X) be the supremum of α such that there exists a Cα homeomorphism
from an open set in Euclidean space Rdim(X) to X.
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The case of Carnot groups equipped with Carnot–Carathéodory met-
rics is especially interesting, since they are prototypes of isometry-transiti-
ve and self-similar geodesic metric spaces. Let g be a Carnot Lie algebra,
i.e. a graded Lie algebra g = g1 ⊕ · · · ⊕ gr with [gi, gj ] ⊂ gi+j , and such
that g1 generates g. Let G denote the corresponding simply connected Lie
group. A choice of Euclidean norm on g1 determines a left-invariant Carnot–
Carathéodory metric on G, of Hausdorff dimension

Q =
r∑
i=1

i dim(gi).

Any two such metrics are bi-Lipschitz equivalent, therefore the following
exponent is well-defined: let α(G) be the supremum of α such that there
exists a Cα homeomorphism from an open set in Euclidean space Rdim(G)

to G. The exponential map is 1
r -Hölder continuous, showing that α(G) > 1

r .

Gromov has developed numerous tools to get lower bounds on α, and has
obtained the following results, among others.

Theorem (Gromov 1996). — Let X be a metric space which is a topolog-
ical manifold of dimension n and Hausdorff dimension Q. Then α(X) 6 n

Q .

Let G be a Carnot group of topological dimension n and Hausdorff di-
mension Q. Then α(G) 6 n−1

Q−1 .

Let G = HeismC be the m-th Heisenberg group, of dimension 2m+1. Then
α(HeismC ) 6 m+1

m+2 .

1.2. The quasisymmetric Hölder equivalence problem

We address a variant of the Hölder equivalence problem motivated by
Riemannian geometry.

Let M be a Riemannian manifold. Let −1 6 δ < 0. Say M is δ-pinched if
sectional curvature ranges between −a and δa for some a > 0. Define the op-
timal pinching δ(M) ofM as the least δ > −1 such thatM is quasiisometric
to a δ-pinched complete simply connected Riemannian manifold.

There are a few homogeneous Riemannian manifolds whose optimal
pinching is known. [8] deals with semi-direct products RnRn where R acts
on Rn by matrices with only two distinct eigenvalues.

Optimal pinching is not known for the oldest examples, rank one sym-
metric spaces of noncompact type. These are hyperbolic spaces over the reals
Hn

R , the complex numbers Hm
C , the quaternions Hm

H , and the octonions H2
O.

Real hyperbolic spaces have sectional curvature −1, and therefore optimal
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pinching −1. All other rank one symmetric spaces are − 1
4 -pinched. The opti-

mal pinching of Hm
C , Hm

H or Hm
O is conjectured to be − 1

4 , but still unknown.
[5] suggests a different, yet nonconclusive, approach in the case of H2

C.

Negatively curved manifolds M come with an ideal boundary ∂M ,
equipped with a family of (pairwise equivalent) visual metrics. If curvature is
6 −1, visual metrics are true distances, i.e. satisfy triangle inequality. Polar
coordinates are defined globally, extending into a homeomorphism from the
round sphere to the ideal boundary, exp : S → ∂M . Rauch’s comparison the-
orem shows that the behaviour of visual metrics in such coordinates reflects
the distribution of sectional curvature: if M is δ-pinched, exp is distance
increasing and Cα-Hölder continuous with α =

√
−δ.

A quasiisometry between negatively curved manifoldsM andM ′ extends
to a quasisymmetric homeomorphism between ideal boundaries ∂M → ∂M ′.

For instance, ideal boundaries of rank one symmetric spaces are
round spheres or subRiemannian manifolds quasisymmetrically equivalent
to Heisenberg groups Heism−1

C , Heism−1
H , Heis1

O.

Piling things up, a quasiisometry of a rank one symmetric space M with
a δ-pinched manifold M ′ provides us with a metric space X ′ = ∂M ′ which
is quasisymmetrically equivalent to a sub-Riemannian manifold and a C

√
−δ

homeomorphism from the round sphere exp : S → X ′. Furthermore, exp−1

is Lipschitz.

Definition 1.1. — Let X be a metric space which is a topological man-
ifold. Let αqs(X) be the supremum of α such that there exists a metric space
X ′ quasisymmetric to an open subset of X and a homeomorphism of an open
subset of Euclidean space to X ′ which is Cα Hölder continuous, and whose
inverse is Lipschitz.

Question 1.2 (Quasisymmetric Hölder-Lipschitz equivalence problem).
Let G be a nonabelian Carnot group. Prove that αqs(G) 6 1

2 .

The fact that Carnot groups of Haudorff dimension Q have conformal
dimension Q (see [6]) implies that αqs(G) 6 n

Q . We make one step further.

Theorem 1.3. — Let G be a Carnot group of topological dimension n
and Hausdorff dimension Q. Then αqs(G) 6 n−1

Q−1 .

This has an unsharp consequence for the pinching problem: if a rank one
symmetric space X is quasiisometric to a δ-pinched Riemannian manifold,
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then

δ >


−( 2m−2

2m−1 )2 if X = Hm
C , m > 2,

−( 4m−2
4m+1 )2 if X = Hm

H , m > 2,
− 4

9 if X = H2
O.

Although they can also be deduced from the range of vanishing of degree 1
Lp cohomology, these numerical bounds constitute the present state of the
art on the pinching problem for symmetric spaces.

2. The method

Following Gromov, [1], we manage to produce a smooth hypersurface
in Rn whose image in the unknown space X ′ has Hausdorff dimension at
least Q− 1. If X ′ is a Carnot group, one knows, thanks to the isoperimetric
inequality, that every hypersurface has Hausdorff dimension at least Q− 1.
The isoperimetric inequality or the Hausdorff dimension of subsets are not
quasisymmetry invariants, so a different argument is needed.

Ours is based on a consequence of the coarea formula. If X is a connected
open subset of a Carnot group of Hausdorff dimension Q, and u : X → R is
a Lipschitz function, then (see [4]),∫

X

|∇u|Q 6
∫
R

(∫
u−1(t)

|∇u|Q−1

)
dt 6 const.

∫
R
HQ−1(u−1(t)) dt. (2.1)

Here, ∇u denotes the horizontal gradient. Since, for nonconstant u,∫
X
|∇u|Q > 0, this shows that there exists t ∈ R such that HQ−1(u−1(t)) >

0, and therefore u−1(t) has Hausdorff dimension at least Q− 1.

On the unknown metric space X ′, we define, mimicking Tricot’s con-
struction of packing measures, quasisymmetry invariant analogues of the
conformally invariant integrals

∫
X
|∇u|Q and

∫
u−1(t) |∇u|

Q−1. The sequence
of inequalities (2.1) persists (packing measures instead of covering measures
are required in order to have the inequality in the appropriate direction).
The main point is nonvanishing of the packing analogue of

∫
X
|∇u|Q. This is

proved by a coarse analogue of the length area method (the covering version
of which dates back to the 1980’s, [6]).

There is some hope to improve exponents and reach the sharp exponent
1
2 , at least for the simpler Hölder-Lipschitz equivalence problem, see the last
section.
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3. Packings

3.1. Bounded multiplicity packings

Let X be a metric space. A ball B in X is the data of a point x ∈ X and
a radius r > 0. For brevity, we also denote the closed ball B(x, r) by B. If
λ > 0, λB denotes B(x, λr).

Definition 3.1. — Let N be an integer, let ` > 1. Let X be a metric
space. An `-packing is a countable collection of balls {Bj} such that concen-
tric balls `Bj are pairwise disjoint. An (N, `)-packing is a collection of balls
{Bj} which is the union of at most N `-packings.

Remark 3.2. — In the sequel, we shall sometimes restrict to (N, `)-
packings which coverX. This is not that restrictive. For instance, ifX is dou-
bling at small scales, fine covering (N, `)-packings exist with N depending
only on `.

Indeed, pick a maximal packing by disjoint ε
2 balls. Then the doubled

balls cover. If two ` times larger balls B(x, `ε) and B(x′, `ε) overlap, then
B(x′, ε2 ) ⊂ B(x, (2` + 1)ε). The number of such balls is bounded above by
the number of disjoint ε

2 -balls in a (2`+1)ε-ball, which, in a doubling metric
space, is bounded above in terms of ` only. Of course, we need this doubling
property only for ε small.

3.2. Covering and packing measures

Definition 3.3. — Let φ be a positive function on the set of balls in X.
Two types of (pre-)measures can be obtained from it as follows. Let A be a
subset of X, ε > 0 and p > 0.

(1) Covering measure

KΦp;εN,`(A) = inf
{∑

i

φ(Bi)p ;
{Bi} (N, `)-packing of X that covers A,
Bi of diameter 6 ε

}
,

KΦpN,`(A) = lim
ε→0

KΦp;εN,`(A).

(2) Packing measure

PΦp;εN,`(A) = sup
{∑

i

φ(Bi)p ;
{Bi} (N, `)-packing of X that covers A,
Bi centered on A, of diameter 6 ε,

}
,

PΦpN,`(A) = lim
ε→0

PΦp;εN,`(A).
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Remark 3.4. — KΦpN,` is a measure. PΦpN,` is merely a pre-measure. To
turn it into a measure, it suffices to force σ-additivity by declaring

P̃ΦpN,`(A) = inf

∑
j∈N

PΦpN,`(Aj) ; A ⊂
⋃
j∈N

Aj

 .

We shall ignore this point, we do not need PΦpN,` to be a measure.

Example 3.5. — Take
φ(B) = δ(B) = radius(B).

The resulting covering measureK∆p
N,` is a minor variant of Hausdorff spheri-

cal measure. The packing pre-measure P∆p
N,` is called here the p-dimensional

packing pre-measure with parameters (N, `).

Definition 3.6. — Let N ∈ N, ` > 1. Let X be a metric space. The
packing dimension of a subset A ⊂ X is

dimN,`(A) = sup{p ; P∆p
N,`(A) > 0}.

Example 3.7. — Let X be Euclidean space or a Carnot group. Let A be
a horizontal line segment of length L. For all N > 1 and ` > 1, P∆p;ε

N,`(A) ∼
Lεp−1. It follows that dimN,`(A) = 1.

Indeed, for any (N, `)-packing centered on A,
∑

radius(Bi) 6 1
2NL, so,

if balls have radii 6 ε, ∑
radius(Bi)p 6

1
2NLε

p−1.

Conversely, there is an (N, 1)-packing by ε-balls which achieves this bound.

Example 3.8. — Let X be Heisenberg group. Let A be a vertical line
segment of height h. For all N > 1 and ` > 1, P∆p;ε

N,`(A) ∼ hεp−2. It follows
that dimN,`(A) = 2.

Indeed, for any (N, `)-packing centered on A,
∑

radius(Bi)2 6 cNh,
where c is the constant such that the height of an r-ball equals

√
r
c , so, if

balls have radii 6 ε, ∑
radius(Bi)p 6 cNhεp−2.

Conversely, there is an (N, 1)-packing by ε-balls which achieves this bound.

Example 3.9. — Let X and X ′ be open subsets of Carnot groups G and
G′ of Hausdorff dimensions Q and Q′. Let u : G → G′ be a surjective
homogeneous homomorphism, with kernel V . Let L denote the Lebesgue
measure on V . Let A be a bounded open subset of V . Assume that the
relative boundary ∂A of A in V has vanishing Lebesgue measure L(∂A) = 0.
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For all ` > 1 and large enough N , P∆p;ε
N,`(A) ∼ L(A)εp−Q+Q′ . It follows that

dimN,`(A) = Q−Q′.

Indeed, by translation and dilation invariance, if B is an r-ball centered
on A, the Lebesgue measure L(A ∩ B) = 1

c r
Q−Q′ for some constant c > 0.

For any (N, `)-packing by balls centered on A, of radius 6 ε,∑
radius(Bi)Q−Q

′
6 cNL(A+ ε),

where A+ ε denotes the ε-neighborhood of A in V . Thus∑
radius(Bi)p 6 cNL(A+ ε)εp−Q+Q′ .

Conversely, for large enough N , there is an (N, 1)-packing by ε-balls which
achieves asymptotically this bound.

3.3. Quasisymmetric invariance

Proposition 3.10. — Let X, X ′ be metric spaces. Let f : X → X ′ be a
quasisymmetric homeomorphism. Given a function ψ on balls of X ′, define a
function φ on balls of X as follows. Given a ball B of X centered at x, let B′
be the smallest ball centered at f(x) containing f(B), and let φ(B) = ψ(B′).
Then, for all `′ > 1, there exists ` > 1 such that for all N ∈ N, all p > 0,
and all subsets A ⊂ X,

KΨp
N,`′(f(A)) 6 KΦpN,`(A),
PΦpN,`(A) 6 PΨp

N,`′(f(A)).

Symmetric statements also hold since f−1 is quasisymmetric as well.

Proof. — Let η : (0,+∞)→ (0,+∞) be the homeomorphism measuring
the quasisymmetry of f , i.e. for every triple x, y, z of distinct points of X,

d(f(x), f(y))
d(f(x), f(z)) 6 η(d(x, y)

d(x, z) ).

Fix `′ > 1 and N ∈ N. Let B be a ball of X. The procedure above defines a
corresponding B′ of radius ρ′. Let y ∈ B be such that d(f(x), f(y)) = ρ′. If
z ∈ f−1(`′B′), d(f(x), f(z)) 6 `′ρ′, so

d(f(x), f(y))
d(f(x), f(z)) >

ρ′

`′ρ′
= 1
`′
.

By quasi-symmetry, this implies that η(d(x,y)
d(x,z) ) > 1

`′ , and thus

d(x, z) 6 1
η−1( 1

`′ )
d(x, y).
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In other words, z ∈ `B with ` = 1
η−1( 1

`′ )
. We conclude that, for every `′ > 1,

there exist ` > 1 such that f(B) ⊂ B′ and f−1(`′B′) ⊂ `B.

This implies that if `B1 ∩ `B2 = ∅, then `′B′1 ∩ `′B′2 = ∅. In other words,
`-packings are mapped to `′-packings. It follows that (N, `)-packings of X
are mapped to (N, `′)-packings of X ′ for every N . Also (N, `)-packings that
cover (resp. centered on) a subset A of X are mapped to (N, `′)-packings
that cover (resp. centered on) f(A). Whence the inequalities satisfied by
covering and packing measures. �

3.4. Hölder covariance

Proposition 3.11. — Let X, Y be metric spaces. Let 0 < α 6 1. Let
N ∈ N and ` > 1. Let f : X → Y be Cα-Hölder continuous. Then, for every
subset A ⊂ X,

P∆αp
N,`(A) > const. P∆p

N,`(f(A)).
It follows that dimN,`(A) > α dimN,`(f(A)).

Proof. — Let {B′i} be an (N, `)-packing of Y by balls of radii 6 ε centered
on f(A). By assumption, for all x, x′ ∈ X,

d(f(x), f(x′)) 6 C d(x, x′)α.
If B′i = B(x′i, r′i), pick an inverse image xi ∈ f−1(x′i) ∩A and set

Bi = B

(
xi,

1
`

(
`r′i
C

)1/α
)
.

Then Bi are balls centered on A, of radii 6 ε′ := 1
` ( `εC )1/α. Furthermore, the

collection of sets
f(`Bi) ⊂ `B′i

has multiplicity < N , so the collection of balls {Bi} is an (N, `)-packing of
X. By definition,

P∆αp;ε′
N,` (A) >

∑
i

radius(Bi)αp =
∑
i

(
1
`

(
`r′i
C

)1/α
)αp

= `p(1−α)C−p
∑
i

r′
p
i .

Taking the supremum over (N, `)-packings yields

P∆αp;ε′
N,` (A) > `p(1−α)C−pP∆p;ε

N,`(f(A)).
Letting ε tend to 0, one concludes

P∆αp
N,`(A) > `p(1−α)C−pP∆p

N,`(f(A)). �
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4. The coarea inequality

4.1. Energy

Definition 4.1. — Let X be a metric space. Let u : X → M be a map
to an auxiliary measure space (M,µ). Let

eu(B) = µ(u(B)).

The total mass PEpu,N,`(X) of the resulting packing pre-measure is the p-
energy of u with parameters (N, `).

This is again a quasisymmetry invariant. If f : X → X ′ is a qua-
sisymmetric homeomorphism, a map u : X → M gives rise to a map
u′ = u ◦ f−1 : X ′ → M . As in Subsection 3.3, given a ball B of X cen-
tered at x, let B′ be the smallest ball centered at f(x) containing f(B).
Then B ⊂ f−1(B′), eu′(B′) = µ(u(f−1(B′))) > µ(u(B)) = eu(B), so we can
assert that, for all `′ > 1, there exists ` > 1 such that for all N ∈ N, all
p > 0 and all subsets A ⊂ X,

PEp
u,N,`(A) 6 PEp

u′,N,`′(f(A)).

Conversely, for all ` > 1, there exists `′ > 1 such that for all N ∈ N, all p > 0
and all subsets A ⊂ X,

PEp
u′,N,`′(f(A)) 6 PEp

u,N,`(A).

4.2. Coarea inequality

Proposition 4.2. — Let X be a metric space. Let u : X →M be a map
to a measure space (M,µ). Let p > 1. Let N ∈ N and ` > 1. Then

PEp
u,N,2`(X) 6

∫
M

PEp−1
u,N,`(u

−1(m)) dµ(m).

Proof. — Let {Bi} be an (N, 2`)-packing of X that covers X, consisting
of balls with radius 6 ε. Write

µ(u(Bi)) =
∫
M

1u(Bi)(m) dm.

Furthermore, when m ∈ u(Bi), pick a point xi ∈ Bi ∩ u−1(m) and let Bi,m
be the smallest ball centered at xi which contains Bi. Note that Bi,m ⊂ 2Bi,
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so that, for each m ∈ M , the collection {Bi,m} is an (N, `)-packing of X
consisting of balls with radius 6 2ε centered on u−1(m), that covers u−1(m).∑

i

µ(u(Bi))p =
∑
i

(∫
M

1u(Bi)(m) dµ(m)
)
µ(u(Bi))p−1

=
∫
M

(∑
i

1u(Bi)(m)µ(u(Bi))p−1

)
dµ(m)

=
∫
M

( ∑
{i ;m∈u(Bi)}

µ(u(Bi))p−1

)
dµ(m)

6
∫
M

( ∑
{i ;m∈u(Bi)}

µ(u(Bi,m))p−1

)
dµ(m)

6
∫
M

PEp−1;2ε
u,N,` (u−1(m)) dµ(m).

Taking the supremum over (N, 2`)-packings yields

PEp;ε
u,N,2`(X) 6

∫
M

PEp−1;2ε
u,N,` (u−1(m)) dµ(m).

Letting ε tend to 0, one concludes that

PEp
u,N,2`(X) 6

∫
M

PEp−1
u,N,`(u

−1(m)) dµ(m). �

Remark 4.3. — Covering measures satisfy the opposite inequality

KEp
u,N,`(X) >

∫
M

KEp−1
u,N,`(u

−1(m)) dµ(m).

5. Lower bounds on energy

5.1. Modulus estimate

This is a packing version of a classical coarse modulus estimate for cov-
ering measures.

Proposition 5.1. — Let X be a metric space. Assume that for every `,
there exists N(`) such that for every ε > 0, there exists an (N, `)-packing
of X by balls of radius 6 ε that covers X. Let Γ be a family of subsets of
X, equipped with a measure dγ. For each γ ∈ Γ, a probability measure mγ
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is given on γ. Let p > 1, ` > 1 and N > N(`). Assume that there exists a
constant τ such that for every small enough ball B of X,∫

{γ∈Γ ; γ∩B 6=∅}
mγ(γ ∩ `B)1−p dγ 6 τ.

Then, for every function φ on the set of balls of X,

PΦpN,`(X) > 1
Np−1τ

∫
Γ
KΦ1

N,`(γ)p dγ.

Proof. — Pick N > N(`). Let {Bi} be an (N, `)-packing of X by balls of
radius 6 ε that covers X. Let 1i be the function defined on Γ by

1i(γ) =
{

1 if γ ∩Bi 6= ∅,
0 otherwise.

For each set γ, the balls such that 1i(γ) = 1 cover γ, thus

KΦ1;ε
N,`(γ) 6

∑
i

1i(γ)φ(Bi)

=
∑
i

1i(γ)φ(Bi)mγ(γ ∩ `Bi)
1−p

p mγ(γ ∩ `Bi)
p−1

p .

Hölder’s inequality gives

KΦ1;ε
N,`(γ)p 6

(∑
i

1i(γ)φ(Bi)pmγ(γ ∩ `Bi)1−p

)(∑
i

mγ(γ ∩ `Bi)
)p−1

.

Since the covering {`Bi} has multiplicity < N and mγ is a probability mea-
sure, the rightmost factor is < Np−1. Integrating over Γ gives∫

Γ
KΦ1;ε

N,`(γ)p dγ 6 Np−1
∑
i

φ(Bi)p
(∫

Γ
1i(γ)mγ(γ ∩ `Bi)1−p dγ

)
6 Np−1τ

∑
i

φ(Bi)p

6 Np−1τPΦp;εN,`(X). �

Example 5.2. — Let X be a Carnot group of Hausdorff dimension Q. Let
Γ be a family of parallel horizontal unit line segments. Then, for all ` > 1 and
suitable N , the assumptions of Proposition 5.1 are satisfied with p = Q, mγ

the length measure, dγ the Lebesgue measure on a codimension 1 subgroup.

Indeed, apply translation and dilation invariance. The multiplicity N >
N(`) must be large enough so that there exist arbitrarily fine (N, `)-packings
that cover X, see Remark 3.2.
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Definition 5.3. — Let Γ be a family of subsets of X. Say a function φ
on the set of balls of X is Γ-admissible if for every γ ∈ Γ,

KΦ1
N,`(γ) > 1.

The (p,N, `)-modulus of the family Γ, denoted by Mp
N,`(Γ), is the infimum

of PΦpN,`(X) over all Γ-admissible functions φ.

Thus Proposition 5.1 states a sufficient condition for a family of subsets
to have positive p-modulus. p-modulus is quasisymmetry invariant in the
following sense. Let f : X → X ′ be a quasisymmetric homeomorphism.
Then for all `′ > 1, there exists ` > 1 such that

Mp
N,`(Γ) 6Mp

N,`′(f(Γ)),

and for all ` > 1, there exists `′ > 1 such that
Mp
N,`(f(Γ)) 6Mp

N,`′(Γ).

Example 5.4. — Let X be a Carnot group of Hausdorff dimension Q. For
every ` > 1, there exists N(`) ∈ N such that families of parallel horizontal
unit line segments have positive (Q,N, `)-modulus for all N > N(`).

5.2. Quasiconformal submersions

In this section, we obtain lower bounds on energies of real valued functions
on Carnot groups. It would be desirable to get similar lower bounds for maps
to higher dimensional spaces. This requires a geometric assumption on maps.
Although it will not be used in the proof of the main result, this assumption
is briefly discussed here.

Definition 5.5. — Let X and Y be metric spaces. Say a continuous map
u : X → Y is a quasiconformal submersion if there exists a homeomorphism
η : (0,+∞) → (0,+∞) such that for every ball B of X, there exists a ball
B′ of Y such that for all λ > 1,

B′ ⊂ u(B) ⊂ u(λB) ⊂ η(λ)B′.

This notion is quasisymmetry invariant, both on the domain and on
the range.

Example 5.6. — Let X = G and Y = G′ be Carnot groups. Then any
surjective homogeneous homomorphism u : G → G′ is a quasiconformal
submersion. More generally, any contact map between open sets of Carnot
groups whose differential is continuous and surjective is locally a quasisym-
metric submersion.
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Corollary 5.7. — Let X be a connected open subset of a Carnot group
of Hausdorff dimension Q.

(1) Let u : X → R be a nonconstant continuous function. Then

PEQ
u,N,`(X) > 0.

(2) Let M be a metric measure space. Assume that there exist constants
d and ν such that for all small enough balls in M ,

µ(B(m, r)) > ν rd.

Let u : X →M be a nonconstant quasiconformal submersion. Then
for every ` > 1, there exists N(`) such that for N > N(`),

PEQ/d
u,N,`(X) > 0.

Proof. — Let us prove the second assertion first. Let φ = e
1/d
u . Let η be

the function measuring the quasiconformality of u. For every ball B in X,
u(B) contains a ball of radius > diameter(u(B))

η(1) , thus

φ(B) = µ(u(B))1/d >
ν1/d

2η(1) diameter(u(B)).

Let Γ ⊂ X be a family of parallel horizontal line segments of equal lengths.
If a collection {Bi} of balls covers one such segment γ,

diameter(u(γ)) 6
∑
i

diameter(u(γ ∩Bi)) 6
η(1)
ν1/d

∑
i

φ(Bi). (5.1)

This shows that∫
Γ
KΦ1

N,`(γ)p dγ > ν1/d

η(1)

∫
Γ

diameter(u(γ))p dγ.

Assume by contradiction that PEQ/d
u,N,`(X) = PΦQN,`(X) = 0. Proposition 5.1

and Example 5.2 imply that u is constant on every segment γ ∈ Γ. This
proves that u is constant on every horizontal segment, hence on every polyg-
onal curve made of horizontal segments. Since such curves allow to travel
from any point to any other point of X, u is constant, contradiction.

In case M = R equipped with Lebesgue measure µ, since u(γ) is an
interval, diameter(u(γ)) = µ(u(γ)), hence estimate (5.1) can be replaced
with

diameter(u(γ)) 6
∑
i

µ(u(γ ∩Bi)) =
∑
i

φ(Bi).

The sequel of the argument is unchanged. �

– 963 –



Pierre Pansu

6. On the quasi-symmetric Hölder-Lipschitz problem

6.1. Energy dimension

Definition 6.1. — Let X be a metric space. Define its energy dimension
as the infimum of exponents p such that there exist nonconstant continuous
functions u : X → R with finite p-energy PEp

u,N,`(X) for ` = 1 and all large
enough N .

Note that if ` > 1, PEp
u,N,`(X) 6 PEp

u,N,1(X), so again parameter ` does
not matter much.

Energy dimension is a quasisymmetry invariant. By definition, this is less
than packing dimension. Think of it as an avatar of conformal dimension (a
generic term for the infimum of all dimensions of metric spaces quasisym-
metrically equivalent to X, see [3, 6]).

Example 6.2. — The energy dimension of an open subset of a Carnot
group is equal to its Hausdorff dimension Q.

Indeed, Corollary 5.7 provides the lower bound. The upper bound is pro-
vided by nonzero homomorphisms G→ R, whose Q-energy is finite.

One could define relative energy dimensions using quasiconformal sub-
mersions to Ahlfors regular spaces. The following Lemma, which will not be
used in the sequel, expresses that these relative energy dimensions are not
less that the absolute one.

Lemma 6.3. — Let X be a metric space of energy dimension Q. Let M
be a d-Ahlfors regular metric space (at small scales). If u : X → M is a
quasiconformal submersion, then for all p < Q, PEp/du,N,`(X) > 0.

Proof. — d-Ahlfors regular at small scales means that for all small enough
balls in M ,

ν rd 6 µ(B(m, r)) 6 1
ν
rd.

Under this assumption, there exists a constant c such that for all small
enough balls B of X,

diameter(u(B)) 6 c eu(B)1/d.

Let p < Q. We prove by contradiction that PEp/d
u,N,`(X) > 0. Pick a point

m0 ∈M . Define a real valued function v on X by

v(x) = d(m0, u(x)).
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For all small enough balls B in X,

diameter(v(B)) 6 diameter(u(B)) 6 c eu(B)1/d,

thus
PEp

v,N,`(X) 6 cp PEp/d
u,N,`(X) = 0.

By definition of energy dimension, this implies that v is constant. Since this
holds for every m0 ∈ M , one finds that u is constant, contradiction. One
concludes that PEp/d

u,N,`(X) > 0 for all p < Q. �

6.2. Proof of the main theorem

Lemma 6.4. — Let X ⊂ G and M ⊂ G′′ be open subsets of Carnot
groups of Hausdorff dimensions Q and Q′′. Let X ′ be a metric space. Let
f : X → X ′ be a Cα-Hölder continuous homeomorphism. Assume that
f−1 : X ′ → X is Lipschitz. Let u : G → G′′ be a surjective homomor-
phism mapping X to M . Let u′ = u ◦ f−1 : X ′ → M . Assume that for all
p < Q′

Q′′ , all ` > 1 and N large enough, PEp
u′,N,2`(X ′) > 0. Then

α 6
Q−Q′′

Q′ −Q′′
.

Proof. — Fix `>1 and chooseN according to Example 3.2. For allm∈M ,
dimN,`(u−1(m)) = Q−Q′′ (Example 3.9). By assumption, for all p < Q′/Q′′,
PEp

u′,N,2`(X ′) > 0. Proposition 4.2 implies that there exists mp ∈ M such
that PEp−1

u′,N,`(u′−1(mp)) > 0.

If f−1 is Lipschitz, so is u′, thus eu′(B)6const. radius(B)Q′′, so PEp−1
u′,N,`6

const. P∆Q′′(p−1)
N,` . It follows that P∆Q′′(p−1)

N,` (u′−1(mp)) > 0, and

dimN,`(u′−1(mp)) > Q′′(p− 1).

Since u′−1(mp) = f(u−1(mp)), Hölder covariance (Proposition 3.11) implies
that Q − Q′′ > αQ′′(p − 1). Since this holds for all p < Q′/Q′′, Q − Q′′ >
α(Q′ −Q′′). �

Theorem 6.5. — Let X ⊂ G be a connected open subset of a Carnot
group of Hausdorff dimension Q. Let X ′ be a metric space of energy dimen-
sion Q′. Assume that X ′ is quasisymmetric to a metric space whose balls
are connected. Let f : X → X ′ be a Cα-Hölder continuous homeomorphism.
Assume that f−1 : X ′ → X is Lipschitz. Then

α 6
Q− 1
Q′ − 1 .
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Proof. — Let u : X → R be the restriction to X of a nonconstant group
homomorphism G→ R. Since u′ = u◦f−1 : X ′ → R is continuous, according
to Corollary 5.7, for all p < Q′, PEp

u′,N,2`(X ′) > 0. Lemma 6.4 implies that
Q− 1 > α(Q′ − 1). �

Theorem 1.3 is the special case where G = Rn and X ′ is quasisymmetri-
cally equivalent to an open subset of a Carnot group of Hausdorff dimension
Q. By quasisymmetry invariance and Example 6.2, X ′ has energy dimension
> Q, so all assumptions of Theorem 6.5 are satisfied.

7. Speculation

7.1. Energies and homeomorphisms

Lemma 6.4 applies successfully with G′′ = R, since we have some infor-
mation on energy dimensions of Carnot groups. To get closer to the conjec-
tured estimate αqs(HeismC ) 6 1

2 , one needs understand the energies of maps
of Carnot groups G′ to G′′ = R2m. 2m+2

2m -energy is especially relevant, since
nonvanishing of p-energy for all p < 2m+2

2m would lead to the sharp bound 1
2 .

Let us define the “Rk-dimension” of a metric space as the infimum of
exponents p such that there exist nonconstant continuous open maps u :
X → Rk with finite p-energy. The “R2m-dimension” of Heisenberg group
HeismC is 6 2m+2

2m+1 , thus smaller than 2m+2
2m . Indeed, the projection HeismC →

R2m, (x1, . . . , xm, y1, . . . , ym, z) 7→ (x2, . . . , xm, y1, . . . , ym, z), whose fibers
are horizontal line segments, has finite 2m+2

2m+1 -energy.

Hence one must better exploit the special characters of maps involved.

Question 7.1. — Let g : HeismC → R2m+1 be a (local) homeomorphism.
Does there exist a nonzero linear map u : R2m+1 → R2m such that u ◦ g :
HeismC → R2m has positive p-energy for all p < 2m+2

2m ?

Proposition 7.2. — Let X ′ be an open subset of Heisenberg group
HeismC . Let g : X ′ → R2m+1 be almost everywhere differentiable. Assume
that

for all linear maps u : R2m+1 → R2m, PE (2m+2)/2m
u◦g,N,` (X ′) = 0.

Then the differential Dg ∈ Hom(HeismC ,R2m+1) has rank 6 2m − 1 almost
everywhere.
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This suggests the following strategy:

(1) Let X be a metric space. Prove that the composition g of a qua-
sisymmetric homeomorphism HeismC → X and a Lipschitz map
X → R2m+1 is almost everywhere differentiable and absolutely con-
tinuous on lines.

(2) Prove that if Dg has rank 6 2m − 1 almost everywhere, then g
cannot be a homeomorphism.

We have not been able to implement it yet.

The end of this section is devoted to the proof of Proposition 7.2.

7.2. Energy versus Jacobian

Lemma 7.3. — Let X ⊂ G, X ′ ⊂ G′ be open subsets of Carnot groups
of Hausdorff dimensions Q and Q′. Let β denotes the unit ball in G′. If
h : G′ → G is a homogeneous homomorphism, define

J(h) = vol(h(β))
vol(β)Q/Q′

,

if h is surjective, J(h) = 0 otherwise. Let g : X ′ → X be a map which is
almost everywhere differentiable. Then, for all N and ` > 1,

PEQ′/Q
g,N,2`(X

′) > C(N, `)
∫
X′
J(Dyg)Q

′/Q dy.

Proof. — Let us first prove that at points y ∈ X ′ where g is differentiable,

lim
r→0

vol(g(B(y, r)))
vol(B(y, r))Q/Q′

= J(Dyg).

Up to translating, one can assume that y is the identity element. Then
B(y, r) = δr(β),

vol(g(B(y, r)))
vol(B(y, r))Q/Q′

=
vol(δ1/rgδr(β))

vol(β)Q/Q′
.

By definition of differentiability ([7]), δ1/rgδr converge uniformly to Dyg,
hence the indicatrix 1δ1/rgδr(β) converges pointwise to 1Dyg(β) away from the
null-set Dyg(∂β), dominated convergence applies, and volumes converge.

Let βj denote the 1/j-ball in G′. Let Y ⊂ X ′ be an open subset compactly
contained in X ′. For j large enough, define a measurable function ηj on Y
as follows.

ηj(y) = j sup
z∈βj

d(Dyg(z), g(y)−1g(yz)).
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This function measures the speed at which g is approximated by its differ-
ential. By assumption, as j tends to ∞, ηj tends to 0 almost everywhere.
According to Lusin’s theorem, the convergence is uniform on a compact set
Z whose complement has arbitrarily small measure.

It follows that, at points y ∈ Z,
vol(g(yβj))

vol(yβj)Q/Q′
→ J(Dyg)

uniformly. Therefore

vol(g(yβj))Q
′/Q ∼ J(Dyg)Q

′/Q vol(yβj) as j →∞
uniformly as y varies in Z. Up to replacing balls containing points of Z with
twice larger balls centered at points of Z, one gets the same conclusion, with
a loss of a power of 2, for balls containing a point of Z. Pick an (N, `)-
packing of X ′ of mesh 6 ε, covering a subset of almost full measure of X ′,
and therefore a large part Z ′ of Z. Discard balls which do not intersect Z.
For the remaining balls,

J(Dyg)Q
′/Q vol(B) . vol(g(B))Q

′/Q,

therefore∫
Z′
Jε(y)Q

′/Q dy . N
∑
B

vol(g(B))Q
′/Q 6 N PEQ′/Q

N,` (X ′),

where
Jε(z) = inf

B(z,ε)
J(Dg).

As ε decreases to 0, Jε increases and converges almost everywhere to J(Dg),
so, by monotone convergence,∫

Z′
J(Dyg)Q

′/Q dy 6 C(N, `)PEQ′/Q
N,` (X ′).

Finally, the measure of X ′ \ Z ′ is arbitrarily small, thus Z ′ can be replaced
with X ′. �

7.3. Proof of Proposition 7.2

Let g be a map from an open subset of Heisenberg group to R2m+1 which
is differentiable almost everywhere. Assume that Dg has rank 2m on a set
Y of positive measure. At each point of Y , one of the linear projections
u : R2m+1 → R2m composed with Dg is surjective. Thus, for one of them, u,
this holds for a subset of positive measure. At such points, J(D(u ◦ g)) > 0,
thus PE (2m+2)/2m

u◦g,N,` (Y ) > 0.
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