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Special polynomials associated
with the Painlevé equations I

Hiroshi Umemura (1)

ABSTRACT. — The Painlevé equations have rational or algebraic solutions on spe-
cial parameters. We can find rational or algebraic solutions of the Painlevé equations
as fixed points of the Bäcklund transformations. The τ function of the rational or
algebraic solution can be written as the product of a special polynomial and an
exponential factor. Since a series of τ functions satisfies the Toda equation, we ob-
tain a recursive relation of the special polynomials. The coefficients of the special
polynomials for the sixth Painlevé equation are described by the Young diagram.

(The original manuscript by the author was submitted to the proceeding of the
Montreal conference in 1996, which were not published. The abstract was not part
of the original manuscript and has not been written by the author.)

RÉSUMÉ. — Pour certaines valeurs spéciales des paramètres, les équations de Pain-
levé ont des solutions algébriques ou rationnelles. Elles sont associées aux points fixes
des transformations de Bäcklund. La fonction τ de la solution rationnelle ou algé-
brique peut alors être écrite comme un produit de polynômes spéciaux et d’un fac-
teur exponentiel. Puisque une série de fonctions τ satisfait l’équation de Toda, nous
obtenons une relation de récurrence pour les polynômes spéciaux. Pour la sixième
équation de Painlevé les coefficients des polynômes spéciaux sont décrits à l’aide de
diagrammes de Young.

(Le manuscrit original a été soumis aux comptes-rendus de la conférence de
Montréal en 1996, qui n’ont pas été publiés. Le résumé ne faisait pas partie du
manuscrit original et il n’a pas été rédigé par l’auteur.)

1. Introduction

We have systems of classical orthogonal polynomials such as the Jacobi
polynomials, the Laguerre polynomials, the Hermite polynomials, etc. They
are solutions of linear differential equations of the second order: Namely the
hypergeometric differential equations or their confluents.

(1) Graduate School of Polymathematics, Nagoya University
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Example 1.1. — The Hermite polynomials. Let us set

Hn(t) := (−1)net2/2 dne−t2/2

dtn
for every non-negative integer n. Then Hn(t) is a polynomial of degree n,
the Hermite polynomial and is a solution of the Hermite equation

y′′ − ty′ + ny = 0.
The Hermite polynomials are orthogonal each other, i.e.∫ ∞

−∞
Hm(t)Hn(t)e−t2/2 dt = δmnn!

√
2π.

We have a recurrence formula
Hn+1(t) = Hn(t)t− nHn−1(t). (1.1)

As is well-known, we have the following diagram of confluence of the
linear differential equations

Hermite

��Hypergeometric // Confluent hypergeometric

DD

��

Airy

Bessel

DD

(cf.[12]).

The diagram above is compatible with the degenerations of the Painlevé
equations

P4

  
P6 // P5

>>

  

P2 // P1

P3

>>

Namely the hypergeometric equation is a part of the sixth Painlevé equation,
the confluent hypergeometric the fifth and so on. Since the Jacobi polyno-
mials and the Legendre polynomials satisfy hypergeometric equations, they
are contained in the sixth Painlevé equation. Similarly the Laguerre poly-
nomials that satisfy a confluent hypergeometric equation, and the Hermite
polynomials are respectively included in the fifth and the fourth Painlevé
equations.

The Painlevé equations, however, involve also non-classical polynomials.
Yablonskii [13] and Vorob′ev [11] discovered such polynomials in P2 and the
Okamoto in P4. So the following natural question arises.
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Question 1.2. — Are there non-classical special polynomials related with
the other Painlevé equations?

In fact, we can generate many special polynomials using the Painlevé
equations. We present in this note some of them. The other polynomials and
the details will appear in [8]. Things go miraculously well. Is it because the
Painlevé functions (=the solutions of the Painlevé equations) deserve special
functions? The most interesting series of polynomials arises with algebraic
solutions of degree 2 of the sixth equation P6, which seem new (cf. Section 6).
In Section 7 we observe that our polynomials are related with the Young
diagrams.

2. Yablonskii–Vorob′ev polynomials (review)

The second Painlevé equation

P2(α) y′′ = 2y3 + ty + α

is equivalent to the system

S2(b)

q′ = p− q2 − t

2 ,
p′ = 2pq + b,

where α and b are related by b = α+ 1
2 (cf. [3]). The system S2(b) is a Hamil-

tonian system parameterized by b ∈ C. Namely let H = 1
2p

2−
(
q2 + 1

2 t
)
p−b.

Then S2(b) is written as {
dq/dt = ∂H/∂p,

dp/dt = −∂H/∂q.
(2.1)

We denote by Sol2(b) the set of solutions of S2(b). We have a transformation

T (b, b− 1) : Sol2(b)→ Sol2(b− 1)

defined by

T (b, b− 1)(q, p) =
(
−q + (b− 1)/

(
p− 2q2 − t

)
,−p+ 2q2 + t

)
and a transformation

I(b,−b) : Sol2(b)→ Sol2(−b)

given by I(b,−b)(q, p) = (q + b/p, p) for (q, p) ∈ Sol2(b).
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Theorem 2.1.
(1) P2(α) has a 1-parameter family of classical solutions for α ∈ 1

2 +Z.
(2) P2(α) has a unique rational solution for α ∈ Z.
(3) Except for those solutions in (1) and (2), other solutions are not

classical.

This theorem is the irreducibility of the second Painlevé equation. For
the definition of classical functions, see [8, 9] and for a proof of the theorem
see [10]. Let us illustrate the theorem by examples.

Example 2.2.
(1). — If α = − 1

2 or equivalently b = 0, then S2(0) reduces to

S2(0)

q′ = p− q2 − t

2 ,
p′ = 2pq.

So if q is a solution of a Riccati equation q′ = −q2 − t/2, then (q, 0) is a
solution of S2(0). The solutions of this type form a 1-parameter family of
classical solutions of S2(0). We notice that by setting y′/y = q, we linearize
the Riccati equation to get the Airy equation

y′′ + 1
2 ty = 0.

(2). — If α = 0 so that b = 1
2 , we have

S2

(1
2

) q′ = p− q2 − t

2 ,
p′ = 2pq + 1

2 .

Hence (q, p) = (0, t/2) is the unique rational solution of S( 1
2 ). It is natural

to ask how we can calculate the unique rational solution of P2(n) for n ∈ Z.
The first idea that comes to our mind is to start from the rational solution
(0, t/2) of S( 1

2 ) and use the transformations T (b, b− 1) and I(b,−b). There
is a very elegant method due to Yabloskii and Vorob′ev.

Let us define rational functions Tm(t) for m ∈ N recursively by

Tm(t) =
tT 2

m−1(t)− 4
(
T ′′m−1(t)Tm−1(t)− T ′2m−1(t)

)
Tm−2(t) , (2.2)

with T0(t) = T1(t) = 1. We can show that for every m ∈ N, Tm(t) is a monic
polynomial with integral coefficients of degree m(m−1)/2, which we call the
Yablonskii–Vorob′ev polynomials (see 8.1, [11] and [13]). We can show that
qm = T ′m+1/Tm+1−T ′m/Tm is the unique rational slution of P2(−m− 1) for
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m ∈ N. We want to generalize the Yablonskii–Vorob′ev polynomials. To this
end, we must clarify the following points.

(1) How to find rational or more generally algebraic solutions of the
Painlevé equations?

(2) Where does the recurrence formula (2.2) come from?
(3) How to prove that the Tm(t)’s are in fact polynomials?

3. How to find rational or algebraic solutions

To this end let us review how the transformations T (b, b − 1), I(b,−b)
are introduced ([3]). As we explained above S2(b) is the Hamiltonian sys-
tem (2.1) with the Hamiltonian H(b, t, q, p) = 1

2p
2 −

(
q2 + 1

2 t
)
− bq. Let us

set h(b, q(t), p(t)) = H(b, t, q(t), p(t)) for a solution (q(t), p(t)) of S2(b). Then
h(b, q, p), which is a function of t, satisfies

E2(b)
(

d2h

dt2

)2

+ 4
(

dh
dt

)3
+ 2dh

dt

(
t
dh
dt − h

)
− 1

4b
2 = 0.

The following lemmas are due to Okamoto [3].
Lemma 3.1. — Let (q, p) be a generic solution of S2(b). Namely we have

tr.d. [Q(b, t)(q, p) : Q(b, t)] = 2.
Then h(b, q, p) is a generic solution of E(b), i.e. we have

tr.d.[Q(b, t)〈h(b, q, p)〉 : Q(b, t)] = 2.
Here we denote by Q(b, t)〈h(b, q, p)〉 the differential field generated by
h(b, q, p) over Q(b, t).

Lemma 3.2. — If (q(t), p(t)) be a generic solution of S2(b), then
Q(b, t)(q(t), p(t)) coincides with Q(b, t)〈h(t, q(t), p(t)〉. In fact we have

q(t) =
2 d2h(b,q(t),p(t))

dt2 + b

4 dh(b,q(t),p(t))
dt

,

p(t) = −2dh(b, q(t), p(t))
dt

(3.1)

(cf. [3, Formula (1.1), p. 227]).

Let now h be a generic solution of E(b). Then it follows from Lemma 3.1
that (q, p) being a generic solution of S2(b), we have a differential Q(b, t)-
isomorphism Q(b, t)〈h〉 → Q(b, t)〈h(b, q, p)〉, h 7→ h(b, q, p). So if we set{

q(b, h) = (2d2h/dt2 + b)/(4dh/dt),
p(b, h) = −2dh/dt,

(3.2)
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then (q(h), p(h)) is a generic solution of S2(b) and we have
h = h(b, q(b, h), p(b, h)) (3.3)

so that
Q(b, t)〈h〉 = Q(b, t)(q(b, h), p(b, h)). (3.4)

Let (q, p) be a generic solution of S2(b). Then by Lemma 3.1 h(b, q, p) is a
generic solution of E(b) and hence is a generic solution of E(−b). Therefore
we have by Lemma 3.2 and (3.4).

Q(b, t)(q, p) = Q(b, t)〈h(b, q, p)〉 = Q(b, t)(q(−b, h), p(−b, h)), (3.5)
where h on the right should be read h(b, q, p)). A calculation using (3.1)
shows {

q(−b, h(b, q, p)) = q + b/p,

p(−b, h(b, q, p)) = p,
(3.6)

This is the transformation I(b,−b).

Remark 3.3. — The transformation I(b,−b)(q, p) is defined for a generic
solution (q, p) of S2(b) but we can show I(b,−b)(q, p) is well-defined for every
solution (q, p) of S2(b).

When b = −b or b = 0, I(0, 0) is an automorphism of Q(t)(q, p). It follows
from (3.5) that I(0, 0) is the identity automorphism.

Lemma 3.4. — I(0, 0) is identity automorphsim of Q(t)(q, p).

Now we analyze the transformation T (b, b− 1) : Sol2(b)→ Sol2(b− 1).

Proposition 3.5 (Okamoto). — If (q, p) is a generic solution of S2,
then h1(b, q, p) := h(b, q, p) + q is a generic solution of E(b− 1). The differ-
ential subfield

Q(b, t)〈h1(b, q, p)〉
coincides with Q(b, t)(q, p). Namely we have

Q(b, t)〈h1(b, q, p)〉 = Q(b, t)(q, p). (3.7)

In fact, we have 
q =

2 d2h1(b,q,p)
dt2 − b+ 1
4 dh1(b,q,p)

dt

,

p = 2dh1(b, q, p)
dt + 2q2 + t

(3.8)

(cf. [3, Formula (2.5), p. 235]). Now it follows from Proposition 3.5 and (3.4)
Q(b, t)(q, p) = Q(b, t)〈h1(b, q, p)〉 = Q(b, t)(q(b− 1, h1), p(b− 1, h1)), (3.9)
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where h1 should be read h1(b, q, p). A calculation using (3.2), (3.8) showsq (b− 1, h1) = −q + b− 1
p− 2q2 − t

p (b− 1, h1) = −p+ 2q2 + t.
(3.10)

This is the transformation T (b, b − 1) : Sol2(b) → Sol2(b − 1). The value
T (b, b − 1)(q, p) is defined for a generic solution (q, p) of S2(b) but we can
show that it is well-defined for every solution (q, p) of S2(b). Let us now
consider the composite of the translation b 7→ b − 1 and the reflection at 0
of C : b 7→ b − 1 7→ −(b − 1) = 1 − b. So 1

2 is its fixed point. This affine
transformation b 7→ 1− b of C lifts to the transformation
I(b− 1, 1− b) ◦ T (b, b− 1) : Q(b, t)(q(t), p(t))→ Q(t, b)(q(1− b), p(1− b)).
It follows from the definition of the transformations that I(b − 1, 1 − b) ◦
T (b, b− 1) comes from
Q(b, t)(q(b), p(b)) = Q(b, t)〈h1(b, q, p)〉 = Q(b, t) (q (1− b, h1) , p (1− b, h1)) .
At the fixed point b = 1

2 , we get an automorphism I(b − 1, 1 − b) ◦
T (b, b − 1) = I(− 1

2 ,
1
2 ) ◦ T ( 1

2 ,−
1
2 ) : Sol2( 1

2 ) → Sol2( 1
2 ). Let us look for a

solution (
q
(1

2 , t
)
, p
(1

2 , t
))

=
(
q
(1

2

)
, p
(1

2

))
fixed by this automorphism.

Lemma 3.6. — The following conditions for a solution (q( 1
2 , t),

p( 1
2 , t)) of S2( 1

2 ) are equivalent.

(1) I(− 1
2 ,

1
2 ) ◦ T ( 1

2 ,−
1
2 )(q( 1

2 , t), p(
1
2 , t)) = (q( 1

2 , t), p(
1
2 , t)).

(2) h1( 1
2 , q, p) = h( 1

2 , q, p).
(3) q( 1

2 , t) = 0.
(4) (q( 1

2 , t), p(
1
2 , t)) = (0, t/2).

Proof. — It follows form (3.2) that we have
Q(b, t)〈h(b, q, p)〉 = Q(b, t)(q, p) (3.11)

if dh/dt 6= 0. We notice dh/dt = 0 implies b = 0 by E(b). So if b 6= 0, we
have (3.10). Similarly, it follows form (3.8) that if b 6= 1, we have

Q(b, t)〈h1(b, q, p)〉 = Q(b, t)(q, p). (3.12)
Now since b = 1

2 , we have both (3.11) and (3.12). So I(b − 1, 1 − b) ◦
T (b, b− 1)(q, p) is defined for every (q, p) ∈ Sol2( 1

2 ) by the equalities (3.11)
and (3.12) as for a generic solution: We have Q(t)(q, p) = Q(t)〈h1( 1

2 , q, p)〉 =
Q(t)(q( 1

2 , h1), p( 1
2 , h1)) and I(− 1

2 ,
1
2 ) ◦ T ( 1

2 ,−
1
2 )(q, p) = (q( 1

2 , h1), p( 1
2 , h1)).

So since h1( 1
2 , q, p) = h( 1

2 , q(
1
2 , h1), p( 1

2 , h1)), if q( 1
2 , h1) = q( 1

2 , t) and
p( 1

2 , h1) = p( 1
2 , t), then we have h1( 1

2 , q(
1
2 ), p( 1

2 )) = h( 1
2 , q(

1
2 ), p( 1

2 )). This
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shows the conditions (1) and (2) are equivalent. It follows from the defini-
tion that the second condition is equivalent to the third. By the first equation
of S2( 1

2 ), q( 1
2 ) = 0 if and only if p( 1

2 ) = t/2. �

Remarks 3.7.
(1). — We have seen that the rational solution (q, p) = (0, t/2) of S2( 1

2 )
is the unique fixed solution of the automorphism

I
(
−1

2 ,
1
2

)
◦ T
(1

2 ,−
1
2

)
: Q(t)

(
q
(1

2

)
, p
(1

2

))
→ Q(t)

(
q
(1

2

)
, p
(1

2

))
.

As Theorem 2.1 shows, (q, p) = (0, t/2) is the unique rational solution and
hence (0, t/2) is fixed by the birational automorphism I(− 1

2 ,
1
2 ) ◦ T ( 1

2 ,−
1
2 ).

(2). — Now we fix the parameter b ∈ C. Let

X = ∂

∂t
+ ∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
,

which is a vector field on X = C3 with coordinate (t, q, p). We denote by
p : X = C3 → C the first projection. A section (t, q(t), p(t)) of the pro-
jection p is tangent to the vector field X if and only if (q(t), p(t)) sat-
isfies dq(t)/dt = ∂H/∂p,dp(t)/dt = −∂H/∂q, i.e. (q(t), p(t)) is a solu-
tion of S2(b). We consider the pair (X,X ) and a birational automorphism
f : (X,X ) → (X,X ) that commutes with the vector field X and with the
projection p. Let S ⊂ X be the set of fixed points of the automorphism f .
Then we can show that if a solution of S2(b) has initial conditions in S,
then it remains in S or equivalently S is X -invariant. So if the restriction
p | s : S → C is finite algebraic over a Zariski open set of C, then S gives
an algebraic solution of S2(b). In our example, f = I(− 1

2 ,
1
2 ) ◦ T ( 1

2 ,−
1
2 ) and

S = {(t, 0, t/2) ∈ X = C3 | t ∈ C} so that p | s : S → C is biregular and we
find the rational solution (q(t), p(t)) = (0, t/2).

Geometrically, regarding now b ∈ C as a parameter, we consider the affine
space Z = C4 of dimension 4 with coordinate (b, t; q, p) so that X is a vector
field on Z. The transformation T (b, b−1) induces a birational automorphism
T (−1) : (Z,X ) → (Z,X ), (b, t; q, p) 7→ (b − 1, t;T (b, b − 1)(q, p)) lifting the
translation t(−1) : C → C, b 7→ b − 1 of the parameter space so that the
diagram

(Z,X )
T (−1) //

p1

��

(Z,X )

p1

��
C

t(−1) // C
is commutative, where the vertical arrow p1 is the first projection.
Similarly the transformation I(b,−b) defines a birational automorphism
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I : (Z,X ) → (Z,X ), (b, t; q, p) 7→ (−b, t; I(b,−b)(q, p)) that lifts the re-
flection i : C→ C, b 7→ −b at the origine so that the diagram

(Z,X ) I //

p1

��

(Z,X )

p1

��
C i // C

is commutative. Let G be the subgroup of affine transformations of C gener-
ated by the translation t(−1) and the reflection i at the origine of C. So the
subgroup 〈t(−1)〉 ' Z generated by t(−1) is the group of translations by in-
tegers and G = 〈t(−1), i〉 is the semi-direct product 〈t(−1)〉o 〈i〉 ' ZoS2.
Let G̃ be the subgroup of X -birational automorphism of Z generated by
T (−1) and I. Hence we have a canonical morphism f : G̃ → G such that
f(T (−1)) = t(−1) and f(I) = i. Namely the projection p1 : Z → C is equi-
variant: For every g ∈ G̃, we have p1(g · (b, t; q, p)) = f(g) · (p1(b, t; q, p)) for
all (b, t; q, p) ∈ C4. Here the dots mean the operations of G̃ and G respec-
tively on Z and C. It follows from the definition I2 = Id. A calculation shows
(I ◦ T (−1))2 = Id and hence G̃ = 〈T (−1)〉 o 〈I〉. Therefore the canonical
morphism f : G̃ = 〈T (−1)〉o 〈I〉 → G = 〈t(−1)〉o 〈i〉 is an isomorphism. In
other words, G operates birationally on (Z,X ).

Now we introduce a new parameter space V :={(v1, v2) ∈ C2 | v1+v2 = 0}
so that {(1,−1), (−1, 1)} is the root system of type A1. The root lattice
is a subgroup Z(1,−1) of V generated by the roots (1,−1), (−1, 1). The
affine Weyl group is the group of affine transformations of the affine line V
generated by the reflections with respect to the points (n,−n) ∈ V, n ∈ Z.
We know that the affine Weyl group of type A1 is the subgroup of affine
transformations of V generated by (i) the translations by the elements of the
root lattice Z(1,−1) and (ii) the reflection at the origin (0, 0). The weight
lattice is the subgroup of V generated by 1

2 (1,−1), 1
2 (−1, 1). The extended

affine Weyl group is the subgroup of affine transformations of V generated
by (i) the translation by the weight lattice and the reflection at the origin
(0, 0). As Okamoto did it, customarily we identify the parameter space C
of the Painlevé equation P2(α) or of the system S2(b) with V by setting
v1 = −v2 = b = α+ 1

2 (cf. [3, 4, 5, 6, 7, 10]). So the subgroup G of the affine
transformations of the parameter space C of the system S2(b) generated by
the translation b 7→ b+1 and the reflection at the origin is identified with the
affine Weyl group of type A1. We had better, however, identify the subgroup
G of affine transformations with the extended affine Weyl group. Namely in
this paper we set 2v1 = −2v2 = b = α+ 1

2 .

In real picture, {(v,−v) ∈ R2 | 0 6 v 6 1
2} is an alcove or a fundamental

domain of the operation of the affine Weyl group on VR = {(v1, v2) ∈ R2 |
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v1 + v2 = 0}. So with the above identification {b ∈ R | 0 6 b 6 1} is an
alcove. Hence {b | b ∈ Z} is the set of walls of the affine Weyl group. So the
affine Weyl group is generated by the reflections at n ∈ Z of R. Similarly
{b ∈ R | 0 6 b 6 1

2} is a fundamental domain of the operation of the extended
affine Weyl group on R = {b ∈ R}. Thus the extended affine Weyl group
is generated by the reflections at the point of 1

2 + Z. Now we can rephrase
theorem as follows.

Theorem 3.8.
(1) S2(b) has a 1-parameter family of classical solutions if b ∈ C is a

wall of the affine Weyl group of type A1.
(2) S2(b) has the unique rational solution if b ∈ C is a wall of the

extended affine Weyl group but b is not a wall of the affine Weyl
group.

(3) Except for those solutions in (1) and (2), no solutions of S2(b) are
classical.

The above observation is summarized as follows. The point b = 1
2 of the

parameter space C is the fixed point of the operation of g = i ◦ t(−1) ∈ G.
So g induces an automorphism of the fiber p−1

1 ( 1
2 ) of the first projection

p1 : Z → C and consequently the automorphism I(− 1
2 ,

1
2 ) ◦ T ( 1

2 ,−
1
2 ) :

Sol2( 1
2 ) → Sol2( 1

2 ). The rational solution (q, p) = (0, t/2) is the solution of
S2( 1

2 ) invariant by the automorphism I(− 1
2 ,

1
2 ) ◦ T ( 1

2 ,−
1
2 ). So the principle

is that first we look for an element g of the extended affine Weyl group that
has a fixed point b = 1

2 on the parameter space C so that g induces an
automorphism of S2( 1

2 ). Then we look for a solution of S2( 1
2 ) fixed by the

operation of g.

4. Recurrence formula

We need theory of τ -function. Let us introduce a τ function of a solution
(q(t), p(t)) of S2(b) by

τ ′(t)/τ(t) = H(b, q(t), p(t)),
where H = 1

2p
2 −

(
q2 + 1

2 t
)
p − b is the Hamiltonian. Let us now fix the

parameter b and the solution (q(b, t), p(b, t)) of S2(b). We set τ0 = τ0(t)
a τ -function of q(b, t), p(b, t). By iteration of the operations T (b, b − 1),
T (b−1, b−2), . . . , we get from the given solution (q(b), p(b)) = (q(b, t), p(b, t))
of S2(b) a solution (q(b −m), p(b −m)) of S2(b −m). Let τm = τm(t) be a
τ -function of (q(b−m), p(b−m)) so that

τ ′m/τm = H(b−m, q(b−m), p(b−m)), (4.1)
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Theorem 4.1 (Okamoto [3]). — The τm’s satisfy the Toda equation
d2 log τm/dt2 = c(m)τm−1τm+1/τ

2
m−1, (4.2)

where c(m) is a non-zero constant.

Example 4.2. — We have a rational solution(q( 1
2 ), p( 1

2 )) = (0, t/2) of
S2( 1

2 ) so that H( 1
2 , t, q(

1
2 ), p( 1

2 )) = − 1
8 t

2. So since τ0 is a solution of τ ′0 =(
−t2/8

)
τ0, τ0 = exp

(
−
∫
t2/8dt

)
= exp

(
−t3/24

)
. Now let us set

τm = exp
(
−t3/24

)
Tm(t). (4.3)

It follows from the Toda equation (4.3) with c(m) =1 that{
Tm+1(t) =

(
Tm(t)2t− 4

(
T ′′m(t)Tm(t)− T ′m(t)2)) /Tm−1(t)

T0(t) = T1(t) = 1.
(4.4)

We find here the Yablonskii–Vorob′ev polynomials. It follows immediately
from (4.3) that the Tm(t)’s are rational functions. In Section 5, we will discuss
proofs that the Tm(t)’s are in fact polynomials. It follows from the definition
of q(b− 1), p(b− 1) we have

H(b− 1, t, q(b− 1), p(b− 1)) = H(b, t, q(b), p(b)) + q(b). (4.5)
Therefore by (4.1), (4.3) and (4.5) we get

τ ′m+1/τm+1 − τ ′m/τm = q
(
−1

2 −m
)
. (4.6)

So (4.6) shows that the Yablonskii–Vorob′ev polynomials give an effective
method of calculating the rational solution q(− 1

2−m) of the second Painlevé
equation P2(−m− 1) : q′′ = 2q3 + tq − (m+ 1) for m ∈ Z.

The conclusion is that the recurrence relation (2.2) comes form the Toda
equation satisfied by the τ -functions.

5. Proof that the Tm(t)’s are polynomials

The quickest way of proving that the Tm(t)’s are polynomials is to use
the following fundamental

Theorem 5.1. — For the second Painlevé equation, a τ -function τ(t) is
holomorphic over C.

If we admit the Theorem, since τm = Tm(t) exp
(
−t3/24

)
, the rational

function Tm(t) is holomorphic over C and hence Tm(t) is a polynomial. The-
orem 5.1 is a deep and transcendental result, which we would like to avoid for
the following reason. When we want to generalize the Yablonskii–Vorob′ev
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polynomials to the other Painlevé equations, the analogous theorems for the
other Painlevé equations do not allows us to prove that the rational functions
in question are polynomials but they show only that the rational functions
are regular over C\{0, 1} for example if we deal with the P6. The best way
of showing that the Tm(t)’s are polynomials is as follows. As we noticed
above, the Tm(t)’s are rational functions by the recurrence relation (4.4).
So τm = Tm exp

(
−t3/24

)
is meromorphic over C. Consequently τ ′m/τm =

H(− 1
2 −m, t, q(−

1
2 −m), p(− 1

2 −m)) = h(− 1
2 −m, q(−

1
2 −m), p(− 1

2 −m))
is meromorphic over C and satisfy the differential equation E(− 1

2 −m). We
can easily show

Lemma 5.2. — If a solution h of E(− 1
2 −m) is meromorphic at a point

a ∈ C, then t = a is at most a pole of order 1. Moreover if the point a is a
pole of order 1 of h, then the residue is equal to 1.

Now Lemma 5.2 shows that τm is regular over C so that Tm(T ) is a
polynomial.

6. Special polynomials

We apply the method of the previous sections to the Painlevé equations
Pj (3 6 j 6 6). As we illustrated in Section 3 taking the second equation as
an example, the Painlevé equation Pj has a Hamiltonian representation

Sj(v)
{

dq/dt = ∂Hj/∂p,

dp/dt = −∂Hj/∂q,

where Hj = Hj(v, t, q, p) is a polynomial of q, p and v with coefficients
in Q(t). Namely Sj(v) is a Hamiltonian system parametrized by v which
belongs to a complex vector space Vj . An appropriate extended Weyl group
Gj operates not only on the parameter space Vj but also on the set of
solutions of the system Sj(v).

Remark 6.1. — Precisely speaking, we must enlarge Gj to G̃j or we must
consider an extension G̃j of the group Gj so that G̃j operates on the set of
solutions of Sj(v). Namely we can find a group G̃j such that Gj is a quotient
group of Gj and such that Gj operates on the set of solutions of the system
Sj(v) as well as on the parameter space Vj . We know, however, G̃j = Gj for
j = 2, 4.
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6.1. The fourth Painlevé equation. The fourth equation

P4(α, β) y′′ = y′2

2y + 3y3

2 + 4ty2 + 2
(
t2 − α

)
y + β

y

is equivalent to the Hamiltonian system

S4 (v1, v2, v3)
{

dq/dt = 4pq − q2 − 2tq + 2(v1 − v2),
dp/dt = −2p2 + 2q + 2t+ (v1 − v3),

with Hamiltonian H4 = 2qp2 − (q2 + 2tq − 2(v1 − v2))p− (v1 − v3)q, where
(v1, v2, v3) ∈ C3 belongs to the paprameter space V4 = {(v1, v2, v3) ∈ C3 |
v1 + v2 + v3 = 0} (cf. [3, 7]). Here the parameters v1, v2, v3 are related
with the usual parameters α, β of the Painlevé equation P4(α, β) by α =
3v3 + 1, β = −2(v1 − v2)2. The extended affine Weyl group of type A2 oper-
ates on both the parameter space V4 and the set of solutions of the system
S4(v1, v2, v3). We consider a translation v 7→ v+ 1

3 (−1,−1, 2) and a permuta-
tion (v1, v2, v3) 7→ (v3, v1, v2), which are affine transformations of the param-
eter space and belong to the extended affine Weyl group. Their composite is
the affine transformation (v1, v2, v3)→ (v3 + 2/3, v1 − 1/3, v2 − 1/3) so that
1
3 (1, 0,−1) is the fixed point. Let (q(t), p(t)) be a solution of S4(1/3, 0,−1/3).
Let h = H4((1/3, 0,−1/3), t, q(t), p(t)). Then the argument of Lemma 3.16
shows (q(t), p(t)) is fixed by the transformation v 7→ v + n

3 (−1,−1, 2) if and
only if h + q + 2t/3 = h or equivalently q = −2t/3. If q = −2t/3, then p =
t/3 + 1/(2t) by the first equation of S4(1/3, 0,−1/3). We discover the fixed
solution (q(t), p(t)) = (−2t/3, t/3 + 1/(2t)) at v = 1

3 (1, 0,−1). Substituting
the solution into the Hamiltonian, we get H4(1/3(1, 0,−1), t, q(t), p(t)) =
4t3/27+2t/3 and the τ -function τ0(t) satisfies τ ′0(t)/τ0(t) = 4t3/27+2t/3 so
that τ0 = const. exp(

∫
(4t3/27+2t/3)dt) = const. exp(t4/27+t2/3). We con-

sider the solutions translated by the above translations v 7→ v+ n
3 (−1,−1, 2)

with n ∈ Z as well as their τ -functions τn(t). It follows from the Toda equa-
tion ([3, Formula (3.18), p. 242])

d2 log τn/dt2 + 2(n− 2/3) = c(n)τn−1τn+1/τ
2
n

with c(n) = 1 that we have

Tn+1(t) =
(
T ′′n (t)Tn(t)− T ′n(t)2 +

(
4t2/9 + 2(2n− 1)/3

)
Tn(t)2) /Tn−1(t)

with T0(t) = T1(t) = 1. If we set x =
√

3/2t and Tn(t) = Sn(x) with
c(m) = 2/3, we get

Sn+1(x) =
(
S′′n(x)Sn(x)− S′n(x)2 +

(
x2 + (2n− 1)

)
Sn(x)2) /Sn−1(x),

with S0(x) = S1(x) = 1. Sn(x) is a polynomial of degree n(n− 1), which is
called the Okamoto polynomial (cf. 8.2). The Okamoto polynomials appear
at the barycenters 1

3 (1 − k,−k, 2k − 1), k ∈ N of the alcoves, whereas the
Hermite functions are on the wall v1 − v3 = 0. In particular the Hermite
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polynomial appear at the points k
3 (−1, 2,−1), k = 0, 1, 2, . . .. We notice here

that the reflection with respect to a wall induces the identity transformation
of the solutions on the wall as for P2.

6.2. The third Painlevé equation. The third equation

P3(α, β, γ, δ) y′′ = y′2

y
− y′

t
+ αy2 + β

t
+ γy3 + δ

y

is equivalent to the Hamiltonian system

S3 (v1, v2)
{
tdq/dt = 2q2p− q2 − v1q + t

tdp/dt = −2qp2 + 2qp+ v1p− (v1 + v2) /2

with HamiltonianH3(v, t, q, p) =
(
q2p2 −

(
q2 + v1q − t

)
p+ 1

2 (v1 + v2) q
)
/t,

where (v1, v2) belongs to the parameter space C2 (cf. [6, 7]). In this case
the equivalence is exceptional. Namely we replace t in the third equation
P3(α, β, γ, δ) by t1 and introduce t by t21 = t. Then S3(v) is equivalent to
P3(α, β, γ, δ). Namely after the field extension Q(t)→ Q (t1), S3(v) is equiv-
alent to P3(α, β, γ, δ). Here we normalized γ = 4, δ = −4 and v1, v2 and α, β
are related by α = −4v2, β = 4 (v1 + 1). The corresponding Lie algebra is
B2. We consider a translation (v1, v2) 7→ (v1 + 1, v2 + 1) and the reflection
with respect to a line v1 + v2 = 0. So their composite is the reflection with
respect to a line v1 + v2 + 1 = 0. Let (q(t), p(t)) be a solution of S4 (v1, v2)
with v1 + v2 + 1 = 0. We set h = tH3 (v1, v2, t, q(t), p(t)) + v2

1/4 − t/2.
Then the argument of Lemma 3.6 shows that the solution (q(t), p(t)) is fixed
by the reflection with respect to the line v1 + v2 + 1 = 0 if and only if
h+ (2v1 + 1) /4− q(t)(p(t)− 1) = h or equivalently

q(t)(p(t)− 1) = 2v1 + 1
4 . (6.2.1)

Differentiating (6.3.1) and eliminating q′, p′(t) by using S3 (v1, v2), we get

q + 2q2 − 2pq2 − 2t+ 2pt+ 2qv1 = 0. (6.2.2)

Eliminating p from (6.2.1) and (6.2.2), we get

(1 + 2v1)
(
q2 + t

)
= 0

We have either v1 = − 1
2 or q2 = −1. In the first case, it follows from

(6.2.2) that we have q(t) = 0 or p(t) = 1. Since q = 0 contradicts the
first equation of system S (v1, v2), we conclude p(t) = 1. Then it follows
from the first equation of system S (v1, v2) tdq/dt = 2q2 − q2 − v1q + t so
that we find a classical solution (q, p) = (q, 1), where q satisfies tdq/dt =
2q2 − q2 − v1q + t. Since we are looking for a fixed algebraic solution,
let us study the second case q2 = −t. Then it follows from (6.2.1) p =
1 + (2v1 + 1) /(4q). In other words, we find the fixed solution (q(t), p(t)) =
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(s, 1 + (1 + 2v1) /(4s)), which is algebraic, on the line v1 + v2 + 1 = 0, where
s2 = −t. So we assume from now on v1 + v2 + 1 = 0. Substituting the solu-
tion into the Hamiltonian, we get H3 (v1, v2, t, q(t), p(t)) = 1−(v1+ 1

2 )st−1 +
((1 + 2v1) (1− 2v1) /16) t−1. We consider the translations by n(1, 1)(n ∈ N)
of the fixed solution on the line v1+v2+1 = 0 and their τ -functions τn(t). We
set τ(t) = Tn(t) exp

(∫ (
H3 (v1, v2, t, q(t), p(t))− n

4 (2v1 + 1) t−1)dt
)
. Then

it follows from the Toda equation ([6, Formula (3.12), p. 328])
d
dt t

d
dt log τn = c(n)τn−1τn+1

τ2
n

with c(n) = 1 that we get

Tn+1(s) =
−
(

dTn(s)
ds + sd2Tn(s)

ds2

)
Tn(s) + sdTn(s)2

ds + (4s+ 2v1 + 1)Tn(s)2

4sTn−1(s)
with T0(s) = T1(t) = 1. The polynomials Tn(s)’s contain the parameter
v1 so that we may denote Tn(s) by Tn (v1, s). If we set u = 1/(4s) and
Sn(a, u) = Tn (v1, s) and a = 2v1 + 1, we get

Sn+1(a, u)

=
−
(

4u3 ∂Sn(a,u)
∂u +4u4 ∂2Sn(a,u)

∂u2

)
Sn(a, u)+4u4 ∂Sn(a,u)2

∂u +(1+au)Sn(a, u)2

Sn−1(a, u) .

The general theory of the τ -function tells us that τn(t) is regular over the
universal covering space of C\{0} so that Sn(u) is a Laurent polynomial of
u. We can show, however, that Sn(a, u) is a polynomial of a and u such that
degu Sn(a, u) = n(n− 1)/2 (cf. (8.3)).

6.3. The fifth Painlevé equation. The fifth equation

P5(α, β, γ, δ) y′′=
(

1
2y+ 1

y−1

)
y′2−y

′

t
+(y−1)2

t2

(
αy+ β

y

)
+γy

t
+δ y(y+1)

y−1
is equivalent to the Hamiltonian system

S5(v)


tdq/dt = 2q(q−1)2p+ (v1−v2)(q − 1)2 + 2(v1 +v2)q(q−1)− tq,
tdp/dt = −(3q2 − 4q + 1)p2 − ((6v1 + 2v2)q − 4v1 − t)p

− (v1 − v3)(v1 − v4),

the Hamitonian H5 being

q(q − 1)2p2 +
(
(v1 − v2) (q − 1)2 + 2 (v1 + v2) q(q − 1)− tq

)
p

t

+ (v1 − v3) (v1 − v4) (q − 1)
t

,
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where (v1, v2, v3, v4) belongs to the parameter space {v = (v1, v2, v3, v4)∈C4 |
v1 + v2 + v3 + v4 = 0}. Here we normalize δ = − 1

2 , and the parameters
vi’s and α, β, γ are related by α = (v3 − v4)2/2, β = −(v1 − v2)2/2, γ =
2(v1 + v2 + 1). The corresponding Lie algebra is A3. So the extended affine
Weyl group of type A3 operates on the parameter space. We consider the
translation v 7→ v+1/4(1,−3, 1, 1) and a permutation (1432) that naturally
operates on the parameter space. These are operations of elements of the
extended affine Weyl group. Their composite f sends v = (v1, v2, v3, v4) to
(v2 − 3/4, v3 + 1/4, v4 + 1/4, v1 + 1/4). The transformation f is of order 4
and 1/8(−3, 3, 1,−1) is the fixed point. The fixed solution at the fixed point
and its translations by n/4(1,−3, 1, 1), n ∈ N give special polynomials but
f2 yields more general and interesting polynomials involving a parameter.
Namely the set of fixed points of f2 is a line {(v, 1

2−v, v−
1
2 ,−v)∈C3 | v ∈ C}

of the parameter space. The fixed solution of the Hamiltonian system on this
line is (q(t), p(t)) = (−1, t/8+v) which contains a parameter v. Substituting
(p(t), q(t)) in the Hamiltonian, we get H5(v, 1

2 − v, v −
1
2 ,−v; t, q(t), p(t)) =

t/16 + v + 2v(2v − 1)/t so that τ0 = exp(
∫

(t/16 + v + 2v(2v − 1)/t)dt) =
2v(2v − 1) exp(t2/32 + vt). Let τm be a τ -function of the solution obtained
from the solution(q(t), p(t)) of S5(v, 1

2 − v, v − 1
2 ,−v) by the translation

v 7→ v + n/4(1,−3, 1, 1).

We set τn(t) = Tn(t) exp(
∫

(t/16 + v+ 2v(2v− 1)t−n(t/4− 2v− 1)/t)dt.
Then it follows from the Toda equation

d
dt t

d
dt log τn + v4 − v1 + n = c(n)τn−1τn+1

τ2
n

([5, p. 68, Formula (2.9)])

Tn+1 =
(
(t/8− v + 3n/4)T 2

n + T ′nTn + tT ′′nTn − tT ′2n

)
/Tn−1

with T0 = T1 = 1. The general theory of the τ -functions shows that Tn(v, t)
is a Laurent polynomial of t. We can, however, prove that Tn(v, t) is a poly-
nomial in t and v of degree n(n− 1)/2 (cf. 8.4).

6.4. The sixth Painlevé equation. The sixth equation

q′′ = 1
2

(
1
q

+ 1
q − 1 + 1

q − t

)
q′2 −

(
1
t

+ 1
t− 1 + 1

q − t

)
q′

+ q(q − 1)(q − t)
t2(t− 1)2

(
α+ β

t

q2 + γ
t− 1

(q − 1)2 + δ
t(t− 1)
(q − t)2

)
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is equivalent to the Hamiltonian system

S6(b)


tdq
dt = ∂H6

∂p

tdp
dt = −∂H6

∂q

with Hamiltonian H6(b, t, q, p) = [q(q−1)(q− t)p2−{(b1 +b2)(q−1)(q− t)+
(b1 − b2)q(q − t) + (b3 + b4)q(q − 1)}p+ (b1 + b3)(b1 + b4)]/(t(t− 1)), where
(b1, b2, b3, b4) belongs to the parameter space C4. The parameters are related
by α = (b3− b4)2/2, β = −(v1 + b2)2/2, γ = (b1− b2)2/2, δ = −(b3 + b4)2/2.
The corresponding Lie algebra is D4. We consider a translation v 7→ v +
(0, 0, 1, 0) and a linear map (b1, b2, b3, b4) 7→ (b1, b2,−b3,−b4), which are
operations of elements of the extended Weyl group of the Lie algebra of
type D4. Their composite is (b1, b2, b3, b4) 7→ (b1, b2,−b3− 1,−b4) and hence
(b1, b2,− 1

2 , 0) is the fixed point. We look for fixed solutions for (b1, b2,− 1
2 , 0).

To this end, let us set according to [4] h(b, t) = H6(b, t, q(t), p(t)) +σ′2[b]t−
σ2[b] for a solution (q(t), p(t)) of S6(v), where σ′2 is the second symmetric
polynomial of b1, b3, b4 and σ2[b] is the second symmetric polynomial of
b1, b2, b3, b4. We denote h(b, t)− q(t)(q(t)− 1)p(t) + (b1 + b4)q(t)− (b1 + b2 +
b4)/2 by h+(b, t). Then it follows from [4, Formula (1.13), p. 352] a solution
(q(t), p(t)) of S6(b1, b2,− 1

2 , 0) is fixed by the above transformation if and
only if h+(b1, b2,− 1

2 , 0) = h(b1, b2,− 1
2 , 0) or equivalently

− q(t)(q(t)− 1)p(t) + b1q(t)−
1
2 (b1 + b2) = 0 (6.4.1)

by definition. Differentiating (6.4.1) and eliminating q′(t), p′(t) by using the
system S6

(
b1, b2,− 1

2 , 0
)
, we get

− p2q3 + p2q4 − p2qt+ 3p2q2t− 2p2q3t+ pq2b1 − 2pq3b1 + ptb1

− 4pqtb1 + 4pq2tb1 + q2b2
1 + tb2

1 − 2qtb2
1 + pq2b2 + ptb2

− 2pqtb2 − qb1b2 + tb1b2 = 0. (6.4.2)

It follows from (6.4.1)

p(t) = 1
q(t)(q(t)− 1)

(
b1q(t)−

1
2 (b1 + b2)

)
. (6.4.3)

Substituting (6.4.3) into (6.4.2), we get

(−b2
1 + 2b1b2 − b2

2 − 4tb1b2)q2 + 2t(b1 + b2)2q − t (b1 + b2)2 = 0.

So we have

q(t) =
t (b1 + b2)2 + (b1 + b2) (b1 − b2)

√
t(t− 1)

(b1 − b2)2 + 4tb1b2
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and consequently

p(t) =
b1q − 1

2 (b1 + b2)
q(q − 1)

by (6.4.3). Substituting (q(t), p(t)) into the Hamiltonian H6, we get

H6

(
b1, b2,−

1
2 , 0; t, q(t), p(t)

)
= −b1 + 2tb1 + b2

1 − 2tb2
1 + 2

√
t(t− 1)b2

1

− b2 + 2b1b2 + b2
2 − 2tb2

2 −
2
√
t(t− 1)b2

2
4t(t− 1) ,

which we denote by H0. So we have τ0 = exp(
∫
H0dt). Let τn be a τ -function

of the solution of S6
(
b1, b2,− 1

2 + n, 0
)
obtained from the solution (q(t), p(t))

by the translation v 7→ v + n(0, 0, 1, 0). We set

τn(t) = Tn(t) exp
(∫ (

H0 −
n
(
b1t− 1

2 (b1 + b2)
)

t(t− 1)

)
dt
)
.

Then it follows from the Toda equation
d
dt t(t− 1) d

dt log τn + (b1 + b3 + n) (b3 + b4 + n) = c(n)τn−1τn+1

τ2
n

with c(n) = 1 (cf. [4, Formula (4.4), p. 368]),

Tn+1 =

{
1
4

(
−2b2

1 − 2b2
2 + (b2

1 − b2
2) 2t−1√

t(t−1)

)
+
(
n− 1

2
)2
}
T 2

n

Tn−1

+
(2t− 1)T ′nTn + t(t− 1)

(
T ′′nTn − T ′2n

)
Tn−1

. (6.5)

Now we introduce a new variable v by v =
√
t/(t− 1) +

√
(t− 1)/t. Then

the recurrence formula (6.5) is translated into

Tn+1 =

{
1
4
(
−2b2

1 − 2b2
2 + (b2

1 − b2
2)v
)

+
(
n− 1

2
)2
}
T 2

n

Tn−1

+
1
4 (v2 − 4)

{(
v2 − 4

) d2Tn

dv2 + v dTn

dv

}
Tn −

( 1
2
(
v2 − 4

) dTn

dv

)2

Tn−1
.

Since Tn(v) contains parameters b1, b2, we denote it by T (b1, b2, v). We can
show that Tn (b1, b2, v) is a polynomial in b1, b2, v and degv Tn = n(n− 1)/2
(see 8.5).
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7. Special polynomials and Young diagrams

We do not know any significance of our polynomials. Attending at our
talk at Montreal, a weekend is enough for Noumi and Okamoto to reveal a
hidden structure of our polynomials for P6.

7.1. Polynomials in (6.4) for P6. We already need several pages to
print the polynomial T5 (b1, b2, v) of Section 6 for P6. Let z = (2 − v)/4,
w = (2 + v)/4, d = −4b2

1, c = −4b2
2 and

dn :=
(
d+ 12) z · (d+ 32) z · · · (d+ (2n− 1)2) z,

cn :=
(
c+ 12)w · (c+ 32)w · · · (c+ (2n− 1)2)w

for n ∈ N. Denoting 2n(n−1)Tn (b1, b2, u) by Un(w, z), they observed U2 =
d1 + c1, U3 = d1d2 + 3c1d2 + 3c2d1 + c1c2, U4 = d1d2d3 + 6c1d2d3 +
15c2d1d3 + 10c1c2d3 + 10c3d1d2+ 15c1c3d2 + 6c2c3d1 + c1c2c3. Here it is
convenient to attach a pair of Young diagrams

(∅, )

for d1,
( , ∅)

for c1,
(∅, )

for d1d2, . . . , etc. so that for example the corresponding pair for c1d2d3 is

( , ).

So

U4 = (∅, ) + 6( , ) + 15( , ) + 10( , )

+ 10( , ) + 15( , ) + 6( , ) + ( , ∅).

Here two monomials with coefficients 10 give the coefficients of w3z3. The
question is whether the Un’s have such expressions for every n ∈ N and
if so how the coefficients are determined. For example, in U4 the binomial
coefficients (1, 6, 15, 20, 15, 6,1) appear. Why 20 is divided into 10 for

( , )

and 10 for
( , )?
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In this case, 20 = 10 + 10 is reasonable because two diagrams are dual and
because the polynomial is symmetric for the permutation of (d,w) and (c, z)
but we have a non-trivial decomposition say in U5: 120 is divided into 50 for

( , )

and 70 for
( , ).

A thorough investigation on this decomposition will be done in [2].

Noumi noticed further the constant terms of the Okamoto polynomials
have simple factorizations. Let Sn(x) be the Okamoto polynomials in 6.1.
Then we have S0(0) = S1(0) = S2(0) = 1, S3(0) = 5, S4(0) = 52.7,
S5(0) = 537211, S6(0) = 547311213, S7(0) = 5574113132.17, S8(0) =
567511413317219, . . . . So looking at the exponents, we have a feeling that
they are related to the Young diagram too. The constant terms of the
Yablonskii–Vorob′ev polynomials have similar factorizations. Namely let
Tn(t) be the Yablonskii–Vorob′ev polynomial. We have T2(0) = 22, T3(0) =
−245, T4(0) = 0, T5(0) = −2105372, T6(0) = −214547311, T7(0) = 0,
T8(0) = −2245675113132, T9(0) = 230577611413317, . . . .

7.2. Our polynomials for P3 and P5 resemble and they look also related
with the Young diagrams. To illustrate this, let us take our polynomials
Tn(v, t) of (6.3) for P5. It is convenient to introduce l(i) := (i− 4v)/4. Their
constant terms Tn(v, 0) are 1, 1, l(3), l(3)l(4)l(5), l(3)l(4)l(5)2l(6)l(7),
l(3)l(4)l(5)2l(6)2l(7)2l(8)l(9), . . . . Moreover if we set z = t/8, we can in-
terpret a first few of them as T0(v, t) = T1(v, t) = 1, T2(v, t) = z + l(3),
T3(v, t) = z3 + 3l(4)z2 + 3l(3)l(5)z + l(3)l(4)l(5), T4(v, t) = z6 + 6l(5)z5 +
15l(4)l(6)z4 + 20

( 1
2 l(4)l(5)l(6) + 1

2 l(3)l(5)l(7)
)
z3 + 15l(3)l(5)2l(7)z2

+ 6l(3)l(4)l(5)l(6)l(7)z + l(3)l(4)l(5)2l(6)l(7). It is easy to attach a Young
diagram to a monomial l(i)l(j) . . . zk as we did for P6 but we do not under-
stand how their coefficients are determined.

8. Table

We give a first few terms of the polynomials in Section 6.

8.1. The second Painlevé equation.

The recurrence formula for the Yablonskii–Vorob′ev polynomials:

Tn(t) =
tT 2

n−1(t)− 4
(
T ′′n−1(t)Tn−1(t)− T ′2n−1(t)

)
Tn−2

,
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T0(t) = T1(t) = 1,

T2(t) = 4 + t3,

T3(t) = −80 + 20t3 + t6,

T4(t) = t
(
11200 + 60t6 + t9

)
,

T5(t) = −6272000− 3136000t3 + 78400t6 + 2800t9 + 140t12 + t15,

T6(t) = −38635520000 + 19317760000t3 + 1448832000t6 − 17248000t9

+ 627200t12 + 18480t15 + 280t18 + t21,

T7(t) = −3093932441600000t− 49723914240000t7 − 828731904000t10

+ 13039488000t13 + 62092800t16 + 5174400t19

+ 75600t22 + 504t25 + t28,

T8(t) = −991048439693312000000− 74328632976998400000t3

+ 37164316488499200000t6 + 1769729356595200000t9

+ 126696533483520000t12 + 407736096768000t15

− 6629855232000t18 + 124309785600t21 + 2018016000t24

+ 32771200t27 + 240240t30 + 840t33 + t36,

T9(t) = 5396694815443548897280000000−404752111158261672960000000t3

− 404752111158266167296000000t6+9636955027577765888000000t9

− 55850538189165977600000t12 − 18430315465453731840000t15

− 318108851847987200000t18 + 483515342069760000t21

+ 8403341506560000t24 + 46132742656000t27 + 1876485811200t30

+ 21525504000t33 + 160160000t36 + 646800t39 + 1320t42 + t45,

T10(t) = −558360178500369459236883660800000000t
− 17947291451797589761185546240000000t7

− 299121524196626496019759104000000t10

+ 11766143871370797483294720000000t13

+ 56029256530337130872832000000t16

+ 9157516514955772035072000000t19

+ 136012478911949832192000000t22

+ 716670308138534830080000t25 − 2587344319342182400000t28

+ 4351638078627840000t31 + 182934280488960000t34

+ 2227039406592000t37 + 24080581324800t40 + 155387232000t43

+ 639038400t46 + 1544400t49 + 1980t52 + t55.
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8.2. The fourth equation. The recurrence formula of the Okamoto
polynomials:

Sn(x) =
(
S′′n−1(x)Sn−1(x)− S′n−1(x)2 +

(
x2 + 2n− 3

)
Sn(x)2) /Sn−2(x),

S0(x) = S1(x) = 1,

S2(x) = x,

S3(x) = 1 + x2,

S4(x) = 5 + 5x2 + 5x4 + x6,

S5(x) = 175 + 350x2 + 175x4 + 140x6 + 65x8 + 14x10 + x12,

S6(x) = 67375 + 134750x2 + 202125x4 + 107800x6 + 42350x8 + 20020x10

+ 8050x12 + 2200x14 + 355x16 + 30x18 + x20,

S7(x) = 337211875 + 1011635625x2 + 1011635625x4 + 1146520375x6

+ 838212375x8 + 371896525x10 + 118243125x12 + 36295875x14

+ 11836825x16 + 3570875x18 + 854315x20 + 147525x22

+ 17325x24 + 1295x26 + 55x28 + x30,

S8(x) = 28691672384375 + 86075017153125x2 + 172150034306250x4

+ 149196696398750x6 + 100830734379375x8 + 69023966136125x10

+ 40183246103000x12 + 17590898325000x14 + 5725722752750x16

+ 1496006762250x18 + 356797140700x20 + 86586199700x22

+ 21345073750x24 +4874150050x26 +939138200x28 +143826760x30

+ 16851835x32 + 1461425x34 + 90090x36 + 3710x38 + 91x40 + x42,

S9(x) = 46383387951666390625 + 185533551806665562500x2

+ 278300327709998343750x4 + 408173813974664237500x6

+ 404198095007378546875x8 + 265047931152379375000x10

+ 134451586893661537500x12 + 63494998891449125000x14

+ 29435148214202355625x16 + 12470663251834287500x18

+ 4461474719087636250x20 + 1306669436585012500x22

+ 317280487275626875x24 + 66794754468442000x26

+ 13050553160645000x28 + 2532929501102000x30

+ 500062887198875x32 + 96562055089500x34 + 17076096487450x36

+ 2618834718500x38 + 336055329225x40 + 35218183000x42

+ 2954107100x44 + 194128200x46 + 9725275x48

+ 357140x50 + 9030x52 + 140x54 + x56.
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8.3. The third equation. The recurrence formula:

Sn(a, u) =
−4u3

(
∂Sn−1

∂u + u∂2Sn−1
∂u2

)
Sn−1 + 4u4

(
∂Sn−1

∂u

)2
+ (1 + au)S2

n−1

Sn−2
,

S0(a, u) = S1(a, u) = 1,

S2(a, u) = 1 + au,

S3(a, u) = 1 + 3au+ 3a2u2 + (−2 + a)a(2 + a)u3,

S4(a, u) = 1 + 6au+ 15a2u2 + 20(−1 + a)a(1 + a)u3

+ 15(−2 + a)a2(2 + a)u4 + 6(−2 + a)a(2 + a)(−6 + a2)u5

+ (−4 + a)(−2 + a)a2(2 + a)(4 + a)u6,

S5(a, u) = 1 + 10au+ 45a2u2 + 60a(−1 + 2a2)u3 + 210a2(−2 + a2)u4

+ 252(−2 + a)(−1 + a)a(1 + a)(2 + a)u5

+ 210(−2 + a)a2(2 + a)(−6 + a2)u6

+ 60(−2 + a)a(2 + a)(60− 27a2 + 2a4)u7

+ 45(−4 + a)(−2 + a)a2(2 + a)(4 + a)(−8 + a2)u8

+ 10(−4 + a)(−2 + a)a3(2 + a)(4 + a)(−22 + a2)u9

+ (−6 + a)(−4 + a)(−2 + a)2a2(2 + a)2(4 + a)(6 + a)u10,

S6(a, u) = 1+15au+105a2u2+35a(−4+13a2)u3+105a2(−16+13a2)u4

+21a(192−440a2+143a4)u5+385(−2+a)a2(2+a)(−28+13a2)u6

+45(−2+a)a(2+a)(720−968a2+143a4)u7

+45(−2+a)a2(2+a)(5424−1892a2+143a4)u8

+35(−2+a)a(2+a)(−20160+18416a2−3124a4+143a6)u9

+21(−4+a)(−2+a)a2(2+a)(4+a)(7632−2420a2+143a4)u10

+105(−4+a)(−2+a)a3(2+a)(4+a)(2592−400a2+13a4)u11

+35(−4+a)(−2+a)a2(2+a)(4+a)(−5760+7312a2−620a4+13a6)u12

+105(−6+a)(−4+a)(−2+a)2a3(2+a)2(4+a)(6+a)(−28+a2)u13

+15(−6+a)(−4+a)(−2+a)2a2(2+a)2(4+a)(6+a)(240−52a2+a4)u14

+(−8+a)(−6+a)(−4+a)2(−2+a)2a3(2+a)2(4+a)2(6+a)(8+a)u15.

8.4. The fifth equation. The recurrence formula:

Tn(v, t) =

(
t
8−v+ 3(n−1)

4

)
T 2

n−1 + ∂Tn−1
∂t Tn−1 + t

∂T 2
n−1

∂t2 Tn−1− t
(

∂Tn−1
∂t

)2

Tn−2
,

T0 = T1 = 1,
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23T2(v, t) = 6− 8v + t,

29T3(v, t) = 32(1− v)(−5 + 4v)(−3 + 4v)
+ 12(−5 + 4v)(−3 + 4v)t+ 24(1− v)t2 + t3,

218T4(v, t) = 512(−1 + v)(−3 + 2v)(−7 + 4v)(−5 + 4v)2(−3 + 4v)
+ 1536(1− v)(−3 + 2v)(−7 + 4v)(−5 + 4v)(−3 + 4v)t
+ 240(−7 + 4v)(−5 + 4v)2(−3 + 4v)t2

+ 80(−5 + 4v)(−45 + 80v − 32v2)t3

+ 480(−1 + v)(−3 + 2v)t4 + 12(5− 4v)t5 + t6,

230T5(v, t)
= 65536(−2+v)(−1+v)(−3+2v)2(−9+4v)(−7+4v)2(−5+4v)2(−3+4v)
+163840(1−v)(−2+v)(−3+2v)(−9+4v)(−7+4v)2(−5+4v)2(−3+4v)t
+737280(−2+v)(−1+v)(−3+2v)2(−9+4v)(−7+4v)(−5+4v)(−3+4v)t2

+7680(15−8v)(−3+2v)(−9+4v)(−7+4v)(−5+4v)(−3+4v)(−9+8v)t3

+6720(−7+4v)(−5+4v)(1959−6048v+6624v2−3072v3+512v4)t4

+8064(−3+2v)(−7+4v)(−5+4v)(−59+96v−32v2)t5

+1680(2235−6432v+6752v2−3072v3+512v4)t6

+480(−3+2v)(−133+192v−64v2)t7

+180(−7+4v)(−5+4v)t8+40(3−2v)t9+t10,

245T6(v, t)
= 16777216(1−v)(−2+v)2(−5+2v)(−3+2v)2(−11+4v)

×(−9+4v)2(−7+4v)3(−5+4v)2(−3+4v)
+125829120(−2+v)2(−1+v)(−5+2v)(−3+2v)2(−11+4v)

×(−9+4v)2(−7+4v)2(−5+4v)2(−3+4v)t
+55050240(1−v)(−2+v)(−5+2v)(−3+2v)(−11+4v)

×(−9+4v)2(−7+4v)3(−5+4v)2(−3+4v)t2
+9175040(−2+v)(−1+v)(−5+2v)(−3+2v)(−11+4v)

×(−9+4v)(−7+4v)2(−5+4v)(−3+4v)(609−728v+208v2)t3
+1720320(−2+v)(−3+2v)(−11+4v)(−9+4v)(−7+4v)(−5+4v)

×(−3+4v)(−25815+65072v−59360v2+23296v3−3328v4)t4

+172032(−2+v)(−3+2v)(−9+4v)(−7+4v)2(−5+4v)
(205725−612304v+623392v2−256256v3+36608v4)t5

+17920(−9+4v)(−7+4v)(−5+4v)(−10739205+43244712v−69722480v2

+57894144v3−26208512v4+6150144v5−585728v6)t6

+11520(−9+4v)(−7+4v)2(−5+4v)
×(239805−661584v+637472v2−256256v3+36608v4)t7
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+92160(−2+v)(−3+2v)(−7+4v)
×(−123135+333872v−319616v2+128128v3−18304v4)t8

+17920(1613115− 6065682v+9304924v2

−7465920v3+3308800v4−768768v5+73216v6)t9

+1344(−7+4v)(−142695+358512v−326656v2+128128v3−18304v4)t10

+3360(13905−33712v+30016v2−11648v3+1664v4)t11

+2240(−7+4v)(−75+91v − 26v2)t12

+3360(−2+v)(−3+2v)t13+30(7−4v)t14+t15.

8.5. The sixth equation

The recurrence formula:

Tn(b1, b2, v) =

{
1
4
(
−2b2

1−2b2
2+(b2

1−b2
2)
)
v+
(
n− 1

2
)2
}
T 2

n−1

Tn−2

+
1
4 (v2−4)

{(
v2−4

)∂2Tn−1
∂v2 +v ∂Tn−1

∂v

}
Tn−1−

(
1
2 (v2−4) ∂Tn−1

∂v

)2

Tn−2
,

T0(b1, b2, v) = T1(b1, b2, v) = 1,

4T2(b1, b2, v) = 1− 2b2
1 − 2b2

2 + b2
1v − b2

2v,

64T3(b1, b2, v) = 9−38b2
1+28b4

1−8b6
1−38b2

2+120b2
1b

2
2−24b4

1b
2
2+28b4

2
−24b2

1b
4
2−8b6

2+15b2
1v−36b4

1v+12b6
1v−15b2

2v+12b4
1b

2
2v

+36b4
2v−12b2

1b
4
2v−12b6

2v+15b4
1v

2−6b6
1v

2−30b2
1b

2
2v

2

+6b4
1b

2
2v

2+15b4
2v

2+6b2
1b

4
2v

2−6b6
2v

2+b2
1v

3−2b4
1v

3

+b6
1v

3−b2
2v

3−3b4
1b

2
2v

3+2b4
2v

3+3b2
1b

4
2v

3−b6
2v

3,

4096T4(b1, b2, v) = 2025−13212b2
1+24364b4

1−14656b6
1+4272b8

1−832b10
1

+64b12
1 −13212b2

2+74648b2
1b

2
2−105280b4

1b
2
2+47552b6

1b
2
2 −6720b8

1b
2
2

+384b10
1 b

2
2+24364b4

2−105280b2
1b

4
2+66080b4

1b
4
2−16000b6

1b
4
2+960b8

1b
4
2

−14656b6
2+47552b2

1b
6
2−16000b4

1b
6
2+1280b6

1b
6
2+4272b8

2−6720b2
1b

8
2

+960b4
1b

8
2−832b10

2 +384b2
1b

10
2 +64b12

2 +5130b2
1v−24252b4

1v+23520b6
1v

−10656b8
1v+2400b10

1 v−192b12
1 v−5130b2

2v+74400b4
1b

2
2v−51264b6

1b
2
2v

+11040b8
1b

2
2v−768b10

1 b
2
2v+24252b4

2v−74400vb2
1b

4
2v

+8640b6
1b

4
2v−960b8

1b
4
2v−23520b6

2v+51264b2
1b

6
2v−8640b4

1b
6
2v

+10656b8
2v−11040b2

1b
8
2v+960b4

1b
8
2v−2400b10

2 v+768b2
1b

10
2 v+192b12

2 v

+5175b4
1v

2−15720b6
1v

2+11160b8
1v

2−2880b10
1 v

2+240b12
1 v

2

−10350b2
1b

2
2v

2+15720b4
1b

2
2v

2+4800b6
1b

2
2v

2−4800b8
1b

2
2v

2+480b10
1 b

2
2v

2

– 1087 –



Hiroshi Umemura

+5175b4
2v

2+15720b2
1b

4
2v

2−31920b4
1b

4
2v

2+7680b6
1b

4
2v

2−240b8
1b

4
2v

2

−15720b6
2v

2+4800b2
1b

6
2v

2+7680b4
1b

6
2v

2−960b6
1b

6
2v

2+11160b8
2v

2

−4800b2
1b

8
2v

2−240b4
1b

8
2v

2−2880b10
2 v

2+480b2
1b

10
2 v

2+240b12
2 v

2

+45b2
1v

3−280b4
1v

3+6940b6
1v

3−6360b8
1v

3+1840b10
1 v

3−160b12
1 v

3

−45b2
2v

3−18420b4
1b

2
2v

3+10800b6
1b

2
2v

3−1200b8
1b

2
2v

3+280b4
2v

3

+18420b2
1b

4
2v

3−4320b6
1b

4
2v

3+480b8
1b

4
2v

3−6940b6
2v

3−10800b2
1b

6
2v

3

+4320b4
1b

6
2v

3+6360b8
2v

3+1200b2
1b

8
2v

3−480b4
1b

8
2v

3−1840b10
2 v

3

+160b12
2 v

3+975b4
1v

4−2490b6
1v

4+2115b8
1v

4−660b10
1 v

4+60b12
1 v

4

−1950b2
1b

2
2v

4+2490b4
1b

2
2v

4−3900b6
1b

2
2v

4+1500b8
1b

2
2v

4−120b10
1 b

2
2v

4

+975b4
2v

4+2490b2
1b

4
2v

4+3570b4
1b

4
2v

4−840b6
1b

4
2v

4−60b8
1b

4
2v

4

−2490b6
2v

4−3900b2
1b

6
2v

4−840b4
1b

6
2v

4+240b6
1b

6
2v

4+2115b8
2v

4

+1500b2
1b

8
2v

4−60b4
1b

8
2v

4−660b10
2 v

4−120b2
1b

10
2 v

4+60b12
2 v

4+81b2
1v

5

−342b4
1v

5+543b6
1v

5−396b8
1v

5+126b10
1 v

5−12b12
1 v

5−81b2
2v

5

−45b4
1b

2
2v

5+504b6
1b

2
2v

5−390b8
1b

2
2v

5+48b10
1 b

2
2v

5+342b4
2v

5+45b2
1b

4
2v

5

+540b6
1b

4
2v

5−60b8
1b

4
2v

5−543b6
2v

5−504b2
1b

6
2v

5−540b4
1b

6
2v

5+396b8
2v

5

+390b2
1b

8
2v

5+60b4
1b

8
2v

5−126b10
2 v

5−48b2
1b

10
2 v

5+12b12
2 v

5+16b4
1v

6

−40b6
1v

6+33b8
1v

6−10b10
1 v

6+b12
1 v

6−32b2
1b

2
2v

6+40b4
1b

2
2v

6−68b6
1b

2
2v

6

+30b8
1b

2
2v

6−6b10
1 b

2
2v

6+16b4
2v

6+40b2
1b

4
2v

6+70b4
1b

4
2v

6−20b6
1b

4
2v

6

+15b8
1b

4
2v

6−40b6
2v

6−68b2
1b

6
2v

6−20b4
1b

6
2v

6−20b6
1b

6
2v

6+33b8
2v

6

+30b2
1b

8
2v

6+15b4
1b

8
2v

6−10b10
2 v

6−6b2
1b

10
2 v

6+b12
2 v

6,

Remark. — [2, 8] was published as [1]
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