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Discrete Hamiltonians of discrete Painlevé equations

Takafumi Mase (1), Akane Nakamura (2) and Hidetaka Sakai (3)

ABSTRACT. — We express discrete Painlevé equations as discrete Hamiltonian
systems. The discrete Hamiltonian systems here mean the canonical transformations
defined by generating functions. Our construction relies on the classification of the
discrete Painlevé equations based on the surface-type. The discrete Hamiltonians we
obtain are written in the logarithm and dilogarithm functions.

RÉSUMÉ. — Nous exprimons des équations de Painlevé discrètes sous forme de
systèmes hamiltoniens discrets. Les systèmes hamiltoniens discrets désignent ici les
transformations canoniques définies par la génération de fonctions. Notre construc-
tion est basée sur la classification d’équations discrètes de Painlevé basées sur le type
de surface. Les hamiltoniens discrets que nous obtenons sont écrits dans les fonctions
logarithme et dilogarithme.

1. Introduction

At the beginning of the 20th century, P. Painlevé and B. Gambier classi-
fied second order ordinary differential equations of normal form that possess
the so-called Painlevé property [1, 6]. They discovered six new transcenden-
tal equations, which are known today as the Painlevé equations. About 80
years later, singularity confinement has been proposed as a discrete analogue
of the Painlevé property [3] and, with the help of this test, discrete analogues
of the Painlevé equations have been discovered [8]. Today, a large number
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of discrete Painlevé equations are known, but most of them have been con-
structed by deautonomizing QRT mappings [2, 5]. Since QRT mappings can
be solved by elliptic functions [7], this deautonomization procedure is paral-
lel to that in the continuous case, where the (continuous) Painlevé equations
can be thought of as deautonomized systems of ordinary differential equa-
tions of elliptic functions. Using a specific type of rational surfaces, one
of the present authors classified (and in a sense, defined) discrete Painlevé
equations [9]. According to this classification, the discrete Painlevé equations
consist of 19 classes depending on the surface type, which we will see later.
The surface associated to an equation is called the space of initial conditions
and, through the theory of spaces of initial conditions, both discrete and
continuous Painlevé equations, including their relations, are well-studied.
See a concise review paper [4] for more information on the discrete Painlevé
equations.

These days, research on discrete Painlevé equations is performed almost
in parallel with research on the continuous Painlevé equations, such as the
reduction to the compatibility conditions of linear equations (Lax pair), the
calculation of special solutions, and so on. One of the biggest differences is
that, while the Painlevé differential equations are all expressed as Hamil-
tonian systems, such a description in the discrete case was not yet known.
Let us take a look at the Hamiltonian functions of the Painlevé differential
equations:

HVI

(
a1, a2
a3, a4

; t; q, p
)

= q(q − 1)(q − s)p2

+
{

(a1+2a2)q(q−1)+a3(s−1)q+a4s(q−1)
}
p

+ a2(a1+a2)q, ds
dt = s(s− 1),

HV

(
a1, a2
a3

; t; q, p
)

= p(p+1)q(q+ et) + a1q(p+1) + a3pq − a2e
tp,

HIII(D6)(a1, b1; t; q, p) = p(p+ 1)q2 − a1p(q − 1)− b1pq − etq,

HIII(D7)(a1; t; q, p) = p2q2 + a1qp+ etp+ q,

HIII(D8)(t; q, p) = p2q2 + qp− q − et

q
,

HIV (a1, a2; t; q, p) = pq(p− q − t)− a2p− a1q,

HII (a1; t; q, p) = p(p− q2 − t)− a1q,

HI (t; q, p) = p2 − q3 − tq. (1.1)
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Expressing an equation as a Hamiltonian system has many advantages.
One of the most important benefit is that the Hamiltonian function auto-
matically becomes a conserved quantity if it is autonomous. In the case of
the Painlevé equations, however, this does not hold since the systems are
non-autonomous. Another important advantage is that using a Hamiltonian
system we can write an equation concisely. For example, this can be of help
when one considers the problem of identifying equations. Since the time evo-
lution is determined by a single function, one can compare the Hamiltonian
functions instead of the time evolution equations themselves.

Roughly speaking, when a discrete dynamical system is “easily” expressed
by a single function W on some phase space, we call W a “discrete Hamil-
tonian” of the system. As an example of such a function, we already know
what is called the generating function of a canonical transformation.

A canonical transformation on a phase space with a symplectic structure
is defined as a transformation of the Hamiltonian system that preserves
the symplectic form. It is known that each canonical transformation can be
written with a function W = W (q, p) as

pk = ∂W

∂qk
, qk = ∂W

∂pk
, k = 1, . . . , n, (1.2)

where W is called the generating function. In the case of discrete Painlevé
equations, however, it is usually more important to write a system as a
birational mapping than to write in canonical variables. Therefore, in this
paper, we sometimes give priority to choosing good variables over writing
discrete Hamiltonians or equations in canonical variables

Remark 1.1. — Let us take a look at a relation with the Lagrangian
form of discrete dynamical systems by Veselov [10]. Given a Lagrange func-
tion Lk(r, s) : X × X → C, the variation of the formal sum S(λ) =∑

k∈Z Lk(λk, λk+1)

δS(λ) =
∑
k∈Z

δLk(λk, λk+1)

=
∑
k∈Z
{Lk(λk + δλk, λk+1 + δλk+1)− Lk(λk, λk+1)}

=
∑
k∈Z

{
∂Lk

∂r
(λk, λk+1)δλk + ∂Lk

∂s
(λk, λk+1)δλk+1

}
=
∑
k∈Z

{
∂Lk

∂r
(λk, λk+1) + ∂Lk−1

∂s
(λk−1, λk)

}
δλk = 0
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gives the discrete Euler–Lagrange equation
∂Lk

∂r
(λk, λk+1) + ∂Lk−1

∂s
(λk−1, λk) = 0. (1.3)

This equation is a second-order single equation. Let us rewrite it into a
simultaneous form. Putting µk = ∂Lk

∂r (λk, λk+1) = −∂Lk−1
∂s (λk−1, λk) and

W (λ, µ) = λµ+ L(λ, λ), we can write the equation as

λ = ∂W

∂µ
, µ = ∂W

∂λ
, (1.4)

which is an expression as a canonical transformation by the generating func-
tionW . In fact, the symplectic form dµ∧dλ is preserved under this transfor-
mation. However, in order to calculate W as a function in λ and µ, we need
to solve an implicit function. A similar problem occurs when one computes
L(λ, λ) from W (λ, µ).

In this paper, we do not consider the Lagrangian form but focus on gen-
erating functions of canonical transformations.

It is known that each discrete Painlevé equation can be formulated as
a discrete dynamical system determined by a Cremona isometry of infinite
order on a generalized Halphen surface [9]. Generalized Halphen surfaces are
classified according to the type of the anti-canonical divisor. The list of the
surfaces is as in Table 1.1.

Table 1.1. List of generalized Halphen surfaces

elliptic multiplicative additive
A

(1)
0 A

(1)∗
0 , A(1)

1 , A(1)
2 , A

(1)∗∗
0 , A(1)∗

1 , A(1)∗
2 ,

A
(1)
3 , . . . , A

(1)
6 , A(1)

7 , A(1)′
7 , A(1)

8 D
(1)
4 , D(1)

5 , D(1)
6 , D(1)

7 , D(1)
8 ,

E
(1)
6 , E(1)

7 , E(1)
8

The surfaces of type A(1)
8 , D(1)

8 , and E
(1)
8 have no Cremona isometries

of infinite order. That is, there are no discrete Painlevé equations in these
cases. In addition, all the surfaces other than of type E(1)

8 have a blowing-
down to P1 × P1. In most cases, the image of the anti-canonical divisor can
be taken as f0

2g0
2 = 0, f0f1g0g1 = 0, or f0f1g0

2 = 0 on P1 × P1, where
(f0 : f1), (g0 : g1) are a bi-homogeneous coordinate. The exceptions are of
type A(1)∗

2 , A(1)
2 , A(1)∗

1 , A(1)
1 , A(1)∗∗

0 , A(1)∗
0 , and A(1)

0 .

In Sections 2–4, we consider the three regular cases, respectively. We first
look at concrete forms of discrete systems and then we write them as discrete
Hamiltonian systems. In Section 5, we consider the exceptional cases. We will
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only look at a specific calculation of type A(1)
2 . It should be noted, however,

that the discrete Painlevé equations we will see here are nothing but well-
known representatives for each surface and that each surface can have an
infinite number of different discrete equations.

2. The case: f0
2g0

2 = 0

These are cases where the image of the anti-canonical divisor can be cho-
sen as f0

2g0
2 = 0. The surfaces of type D(1)

5 , D(1)
6 , D(1)

7 , E(1)
6 , and E(1)

7 fall
into this category. In addition to discrete equations, the differential Painlevé
equations arise from these surfaces. Using the inhomogeneous coordinate
f = f1/f0 and g = g1/g0, the Hamiltonians of these differential Painlevé
equations are expressible in biquadratic forms:

df
dt = ∂H

∂g
,

dg
dt = −∂H

∂f
,

H = (g2, g, 1)

m22 m21 m20
m12 m11 m10
m02 m01 m00

f2

f
1

 ,

(2.1)

where the matrix M = (mij)i,j=2,1,0 can be chosen as follows:

M=MD5 =

1 s 0
1 s+a1+a3 −a2s
0 a1 0

, MD6 =

1 0 0
1 −a1−b1 −s
0 −a1 0

,
MD7 =

1 0 0
0 a1 s
0 1 0

, ME6 =

 0 1 0
−1 −s −a2
0 −a1 0

, ME7 =

 0 0 1
−1 0 −s
0 −a1 0

.
(2.2)

Discrete Painlevé systems can be expressed in terms of these matrices M =
(mij)i,j=2,1,0 as

g = −g − m̂12f
2 + m̂11f + m̂10

m̂22f2 + m̂21f + m̂20
, f = −f − m21g

2 +m11g +m01

m22g
2 +m12g +m02

, (2.3)

where m̂ij denotes an intermediate parameter between mij and mij and the
time evolution of the parameters is given by
D5 : a1 = a1−1, a2 = a2+1, a3 = a3−1, (â1 =a1−1, â2 =a2, â3 =a3)

D6 : a1 = a1 − 1, b1 = b1 − 1, (â1 = a1 − 1, b̂1 = b1)
D7 : a1 = a1 − 2, (â1 = a1 − 1)
E6 : a1 = a1 − 1, a2 = a2 + 1, (â1 = a1, â2 = a2)
E7 : a1 = a1 + 1, (â1 = a1).
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Remark 2.1. — The parameters {m̂ij} in the first equation of (2.3) are
slightly different from {mij}. The authors would like to thank an anonymous
referee for pointing it out.

Defining the generating function W by

W = W (f, g) = −fg −
∫
m̂12f

2 + m̂11f + m̂10

m̂22f2 + m̂21f + m̂20
df

−
∫
m21g

2 +m11g +m01

m22g
2 +m12g +m02

dg, (2.4)

the discrete system (2.3) is expressed as

g = ∂W

∂f
, f = ∂W

∂g
. (2.5)

The explicit forms of these discrete Hamiltonians for each type are
W = WD5 = −fg − gs− f − a3 log(g + 1)− a1 log g + a2 log f

− (a1 + a2 + a3 − 1) log(f + s), (2.6)

WD6 = −fg−f− s

f
+(a1 +b1−1) log f+a1 log g+b1 log(g+1), (2.7)

WD7 = −fg + s

f
+ 1
g
− (a1 − 1) log f − a1 log g, (2.8)

WE6 = −fg + f2

2 + sf + g2

2 − sg + a2 log f − a1 log g, (2.9)

WE7 = −fg + sf + f3

3 − a1 log g. (2.10)

For instance, when the surface is of type E(1)
7 , the discrete Hamiltonian WE7

gives the system

g = ∂WE7

∂f
= −g + s+ f2,

f = ∂WE7

∂g
= −f − a1

g
,

which is in fact a discrete Painlevé system of type E(1)
7 .

3. The case: f0f1g0g1 = 0

These are cases when the image of the anti-canonical curve can be chosen
as f0f1g0g1 = 0. The surfaces of type A(1)

3 , A(1)
4 , A(1)

5 , A(1)
6 , A(1)

7 , A(1)′
7

and A(1)
8 fall into this category. There are no differential Painlevé equations
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attached to these surfaces and there are no discrete Painlevé systems of
type A(1)

8 . Discrete Painlevé systems are expressed with a 3 by 3 matrix
M = (mij)i,j=2,1,0 as

g = m̂02f
2 + m̂01f + m̂00

g(m̂22f2 + m̂21f + m̂20) , f = m20g
2 +m10g +m00

f(m22g
2 +m12g +m02)

. (3.1)

The symplectic form is ω = dg∧df
fg = d log g ∧ d log f . Using G = log g and

F = log f , the system can be expressed as

G=−G+ log
(
m̂02e

2F + m̂01e
F + m̂00

)
− log

(
m̂22e

2F + m̂21e
F + m̂20

)
,

F =−F + log
(
m20e

2Ḡ +m10e
Ḡ +m00

)
− log

(
m22e

2Ḡ +m12e
Ḡ +m02

)
.
(3.2)

Defining the generating function W̃ by

W̃ = W̃ (F,G) = −FG+
∫

log
(
m̂02e

2F + m̂01e
F + m̂00

)
dF

−
∫

log
(
m̂22e

2F + m̂21e
F + m̂20

)
dF

+
∫

log
(
m20e

2Ḡ +m10e
Ḡ +m00

)
dG

−
∫

log
(
m22e

2Ḡ +m12e
Ḡ +m02

)
dG, (3.3)

the discrete system (2.3) is written as

G = ∂W̃

∂F
, F = ∂W̃

∂G
. (3.4)

In order to write the system in f and g, we introduceW(f,g)=W̃(log f, log g):

W (f, g) = − log f log g +
∫

log
(
m̂02f

2 + m̂01f + m̂00
) df
f

−
∫

log
(
m̂22f

2 + m̂21f + m̂20
) df
f

+
∫

log
(
m20g

2 +m10g +m00
) dg
g

−
∫

log
(
m22g

2 +m12g +m02
) dg
g
, (3.5)

with which the discrete system (3.1) is expressed as

g = exp
(
f
∂W

∂f

)
, f = exp

(
g
∂W

∂g

)
. (3.6)
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For each type of surface, the matrices M can be chosen as

MA3 =

 a0a5 −1/(a1a2
2a3)− a0a3a5 1/(a1a2

2)
−(1+a0)a5 0 −(1+a1)/a1a2

a5 −1−a5 1

,
MA4 =

 0 1 −1
a0/a2 0 1+(1/a4)
−a0a3/a2 a0a3+(1/a2a4) −1/a4

,
MA5 =

 0 b1/a2 0
a0 0 −b1/a2

1/a1 −1−(1/a1) 1

, MA6 =

0 1/b 0
1 0 −1/b
0 −a1 a1

,
MA′7

=

1 −a0 0
0 0 0
0 −1 1

, MA7 =

0 −a0 0
1 0 0
0 −1 1

.

(3.7)

The time evolution of the parameters is given by

A3 : a0 = a0, a1 = a1, a2 = qa2, a3 = a3/q,

(â0 = a0/q, â1 = a1, â2 = a2, â3 = a3, â5 = a5)

A4 : a0 = a0, a2 = a2/q, a3 = qa3, a4 = a4,

(â0 = a0, â2 = a2/q, â3 = a3, â4 = a4)

A5 : a0 = a0, a1 = a1, a2 = a2, b1 = qb1,

(â0 = a0, â1 = a1, â2 = a2, b̂1 = qb1)

A6 : a1 = a1, b = qb, (â1 = a1, b̂ = qb)

A′7, A7 : a0 = a0/q, (â0 = a0/q).

The corresponding discrete Hamiltonians can be explicitly written as

W = WA3 = − log f log g + Li2(g) + Li2(a0g)− Li2
(
g

a2

)
− Li2

(
g

a1a2

)
− Li2 f + Li2

(
f

a3

)
− Li2(a5f) + Li2

(
a0a1a

2
2a3a5f

q

)
− log a5 log g + log(a1a2

2) log f, (3.8)

WA4 = − log f log g + Li2(f)− Li2
(
qf

a2

)
− Li2(a0a3a4f)

− Li2(g)− Li2(a4g) + Li2
(
g

a3

)
− log a4 log f

+
(

log a2

a0a3a4

)
log g, (3.9)

– 1258 –



Discrete Hamiltonians of discrete Painlevé equations

WA5 = − log f log g − Li2(f)− Li2
(
f

a1

)
− Li2

(
b1g

a2

)
+ Li2(−a0a1g)− 1

2

(
log qb1f

a1

)2
+ log a1 log g, (3.10)

WA6 = − log f log g − Li2(f)− Li2
(

g

a1b

)
− 1

2

(
log f

qb

)2

− 1
2(log g)2 + log a1 log f + log a1 log g, (3.11)

WA′7
= − log f log g − Li2(f) + Li2

(
qf

a0

)
− 1

2 (log f)2 − (log g)2 − log −a0

q
log f, (3.12)

WA7 = − log f log g − Li2(f)− 1
2

(
log −a0f

q

)2
− 1

2(log g)2, (3.13)

where Li2(x) is the dilogarithm function

Li2(x) = −
∫ log(1− x)

x
dx =

∞∑
k=1

xk

k2 .

For instance, the discrete Hamiltonian WA′7
gives rise to

g = exp
(
f
∂WA′7

∂f

)
= exp

(
− log g − log f + log(1− f)− log

(
1− qf

a0

)
− log −a0

q

)
= 1− f
gf
(
f − a0

q

) ,
f = exp

(
g
∂WA′7

∂g

)
= exp

(
− log f − 2 log g

)
= 1
fg2 ,

which is in fact a discrete Painlevé system of type A(1)′
7 .

4. The case: f0f1g0
2 = 0

These are cases when the image of the anti-canonical curve can be chosen
as f0f1g0

2 = 0. The surfaces of type D(1)
4 , D(1)

5 , D(1)
6 , D(1)

7 , and D(1)
8 fall into

this category. There are no discrete Painlevé system of type D(1)
8 . Discrete
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Painlevé systems are expressed with a 3 by 3 matrix M = (mij)i,j=2,1,0 as

g = −g − m̂12f
2 + m̂11f + m̂10

m̂22f2 + m̂21f + m̂20
, f = m20g

2 +m10g +m00

f(m22g
2 +m12g +m02)

. (4.1)

Defining the generating function W by

W = W (f, g) = −g log f −
∫
m̂12f

2 + m̂11f + m̂10

m̂22f2 + m̂21f + m̂20

df
f

+
∫

log
(
m20g

2 +m10g +m00
)

dg

−
∫

log
(
m22g

2 +m12g +m02
)

dg, (4.2)

the discrete system (4.1) is expressed as

g = f
∂W

∂f
, f = exp

(
∂W

∂g

)
. (4.3)

We have already treated the cases D(1)
5 , D(1)

6 , and D(1)
7 in the previous

section. Therefore, let us consider the remaining case: type of D(1)
4 . The

matrix M can be chosen as follows:

MD4 =

 1 −1− s s
a1 + 2a2 −a1 − 2a2 + (s− 1)a3 + sa4 −sa4
a2(a1 + a2) 0 0

 . (4.4)

Note that although the D(1)
4 -type surface also possesses a differential equa-

tion, the Hamiltonian (1.1) is not completely the same as the biquadratic
one defined by MD4 since the canonical variables are not g and log f but
p = g/f and q = f . The Hamiltonian in the continuous case is given by
HVI = 1

q (q2p2, qp, 1)MD4

(
q2

q
1

)
.

In the case of D(1)
4 , the time evolution of parameters is given by

a0 = a0 + 1, a1 = a1, a2 = a2 − 1, a3 = a3 + 1, a4 = a4,

(â0 = a0 + 1, â1 = a1 − 1, â2 = a2, â3 = a3, â4 = a4)

and the discrete Hamiltonian is given by

WD4 = −g log f + a4 log f+a3 log(1− f)
− (a1 + 2a2 + a3 + a4−1) log(1− f/s) + g(log g + log s)
− (g + a1 + a2) log(g + a1 + a2)− (g + a2) log(g + a2)

+ (g − a4) log(g − a4). (4.5)
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The discrete system determined by WD4 is

g = f
∂WD4

∂f
= −g + a4−

a3f

1− f + (a1 + 2a2 + a3 + a4−1)f
s− f

= −g+1− a1 − 2a2−
a3

1− f + a1 + 2a2 + a3 + a4−1
1− f/s

f = exp
(
∂WD4

∂g

)
= exp

(
− log f+log g+log(g−a4)+log s− log(g+a1+a2)− log(g+a2)

)
= sg(g − a4)
f(g + a1 + a2)(g + a2) ,

which is in fact a discrete Painlevé system of type D(1)
4 .

5. The other cases

The surfaces of type A(1)∗
2 , A(1)

2 , A(1)∗
1 , A(1)

1 , A(1)∗∗
0 , A(1)∗

0 , and A(1)
0 fall

into this category. Elliptic difference systems arise for the A(1)
0 -type surface

but, at this moment, a discrete Hamiltonian is difficult to write down for
some technical reasons. Therefore, we do not consider the case A(1)

0 .

In the other cases, we can take F = F (f, g), G = G(f, g) so that the sym-
plectic form can be expressed as ω = d logG∧d logF or dG∧d logF . Discrete
Painlevé systems are expressed by a generating function W = W (F,G) as

G = F
∂W

∂F
, F = exp

(
∂W

∂G

)
(5.1)

or

G = exp
(
F
∂W

∂F

)
, F = exp

(
G
∂W

∂G

)
. (5.2)

Such a W is an algebraic function in F and G but does not have concise
expression since it is not single valued.

However, if the system has the form g = ϕ(f, g), f = ψ(f, g), W̃ has a con-
cise expression in f , g. Here, we use the notation W̃ (f, g) = W (F (f, ψ(f, g)),
G(ϕ(f, g), g)). Nevertheless, even with W̃ (f, g), the expressions are not as
simple as we want.

While the additive type surfaces A(1)∗
2 , A(1)∗

1 , and A
(1)∗∗
0 correspond

to (5.1), the multiplicative type surfaces A(1)
2 , A(1)

1 , and A
(1)∗
0 correspond
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to (5.2). Let us consider the function W̃ for the multiplicative surface of
type A(1)

2 . One of the discrete systems of type A(1)
2 is

q-P (A2) :
(
b1 b2 b3 b4
b5 b6 b7 b8

; f, g
)
7→
(
b1 b2 b3 b4
qb5 qb6 qb7 qb8

; f, g
)
,

(fg − 1)(fg − 1)
qb7b8

= (f − b1)(f − b2)(f − b3)(f − b4)
(f − b5)(f − b6) ,

(fg−1)(fg−1)
qb5b6

= (g−1/b1)(g−1/b2)(g−1/b3)(g−1/b4)
(g − qb7)(g − qb8) ,(

q = b5b6
b1b2b3b4b7b8

)
.

(5.3)

The symplectic form is ω = d logG ∧ d logF , where F = fg − 1, G = g.
Putting

ϕ(f, g) = 1
f

(
1 + qb7b8

(f − b1)(f − b2)(f − b3)(f − b4)
(fg − 1)(f − b5)(f − b6)

)
,

ψ(f, g) = 1
g

(
1 + qb5b6

(g − 1/b1)(g − 1/b2)(g − 1/b3)(g − 1/b4)
(fg − 1)(g − qb7)(g − qb8)

)
,

W̃ (f, g) = W (fϕ(f, g)− 1, g) satisfies

∂W̃

∂f
= ∂W

∂F

∂F

∂f
=
(
ϕ+ f

∂ϕ

∂f

)
∂W

∂F
,

∂W̃

∂g
= ∂W

∂F

∂F

∂g
+ ∂W

∂G
= f

∂ϕ

∂g

∂W

∂F
+ ∂W

∂G
.

Therefore, we have

ϕ = exp
(
F
∂W

∂F

)
= exp

(
fϕ− 1
ϕ+ f ∂ϕ

∂f

∂W̃

∂f

)
,

ψ =
1 + exp

(
G∂W

∂Ḡ

)
G

= 1
g

(
1 + exp

(
g
∂W̃

∂g
−

fg ∂ϕ
∂ḡ

ϕ+ f ∂ϕ
∂f

∂W̃

∂f

))
.

By integrating

∂W̃

∂f
=
ϕ+ f ∂ϕ

∂f

fϕ− 1 logϕ, ∂W̃

∂g
= 1

g
log (gψ − 1) +

f ∂ϕ
∂ḡ

fϕ− 1 logϕ,
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we obtain W̃ = W̃A2 as

W̃A2 = Li2(fg) + Li2
(

(1− f/b1)(1− f/b2)(1− f/b3)(1− f/b4)
(1− fg)(1− f/b5)(1− f/b6)

)
+ log f log(1− fg) +

4∑
k=1

Li2
(

1− f

bk

)
−
∑

l=5,6
Li2
(

1− f

bl

)

+
4∑

k=1
log bk log

(
1− f

bk

)
−
∑

l=5,6
log bl log

(
1− f

bl

)

−
4∑

k=1
Li2(bkg) +

∑
l=7,8

Li2
(
g

qbl

)
+ π
√
−1 log g. (5.4)

Using W̃ , the discrete system (5.3) is expressed as

g = exp

−
 4∑

k=1

1/bk

1− f/bk
−
∑

l=5,6

1/bl

1− f/bl
− g

1− fg

−1
∂W̃

∂f

, (5.5)

f = 1
g

(
1 + exp

(
g
∂W̃

∂g
− fg

1− fg
∂W̃

∂f

))
, (5.6)

which is, however, probably not a satisfactory answer one hopes.

For the other cases, let us merely write coordinates F and G. In the cases
of type A(1)∗

2 , A(1)∗
1 , and A(1)∗∗

0 , the coordinates

A
(1)∗
2 : (F,G) = (f + g, g), A

(1)∗
1 : (F,G) =

(
1− 2r

f + g
, g

)
,

A
(1)∗∗
0 : (F,G) =

(
(f − g)2 − 8r2(f + g) + 16r4, f − g

) (5.7)

give the symplectic form dG ∧ d logF . For the surfaces of type A(1)
2 , A(1)

1 ,
and A(1)∗

0 , the coordinates

A
(1)
2 : (F,G) = (fg − 1, g), A

(1)
1 : (F,G) =

(
1− r2 − 1

fg − 1 , g
)
,

A
(1)∗
0 : (F,G) =

(
(f + g)2 −

(
r2 + 1

r2

)
fg + r2 − 1

r2 ,−
f

r
+ rg

) (5.8)

give the symplectic form d logG ∧ d logF .
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