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Revisiting Manin’s theorem of the kernel

Daniel Bertrand (1)

À la mémoire de Hiroshi Umemura

ABSTRACT. — In the first part of the paper, we use Manin’s map to establish
a finiteness result linking rational sections of an elliptic scheme and solutions of
Painlevé VI equations. The rest of the paper concerns abelian schemes over curves,
and presents a survey of the various statements encompassed by Manin’s theorem
of the kernel.

RÉSUMÉ. — Dans la première partie de ce texte, on établit au moyen de l’appli-
cation de Manin un énoncé de finitude reliant les sections d’un schéma elliptique et
les solutions des équations de Painlevé VI. Le reste de l’article concerne le théorème
du noyau de Manin dans le cadre d’un schéma abélien sur une courbe, et passe en
revue les divers énoncés connus sous cette appellation.

1. A motivation from Painlevé VI equations

1.1. The Manin map in the elliptic case

Consider the Gauss–Legendre elliptic scheme (E) : η2 = ξ(ξ − 1)(ξ − t)
over the complex curve S = P1 \ {0, 1,∞}, and let the derivation ∂ = d/dt
of OS act on differential forms on E/S by setting ∂ξ = 0, ∂(fdξ) = ∂f

∂t · dξ
for the coordinate system (t, ξ). Then, ω = dξ

η ∈ H
0(E,Ω1

E/S) ⊂ H1
dR(E/S)

satisfies

L(ω) = 1
2d
(

η

(ξ − t)2

)
where L := t(1− t) d2

dt2 + (1− 2t) d
dt −

1
4 .

Keywords: abelian varieties, Manin maps, Gauss–Manin connections, Mumford–Tate
groups, Painlevé VI equations.

2020 Mathematics Subject Classification: 14K05, 32G20, 11G10, 12H05, 34M55.
(1) Sorbonne Université & UMR 7586 du CNRS, Institut de Mathématiques de

Jussieu-PRG, Case 247, 75 252 Paris Cédex 05, France — daniel.bertrand@imj-prg.fr

– 1301 –

mailto:daniel.bertrand@imj-prg.fr


Daniel Bertrand

So, the class of L(ω) in H1
dR(E/S) vanishes, and the periods

∫
γ
ω, γ ∈

H1,B(E/S), generate over C the space of solutions of L( · ) = 0 (note that
∂(
∫
γ
ω) =

∫
γ
∂ω).

Let now y(t) := (ξ(t), η(t)) ∈ E(S) be a section of E/S, and consider
with Manin [18] the (multivalued) elliptic logarithm of y

u(t) =
∫ y(t)

0
ω = `nE

(
y(t)

)
∈ LieE(S̃an).

Since the indeterminacies of u(t) are the periods of ω, which are killed by
L, and since u(t) has moderate growth near its singularities, L(u(t)) is a
well-defined element of the function field K = C(S), and in fact lies in OS .
We therefore obtain a Manin map:

µE : E(S) −→ OS : y 7−→ µE(y) := L(u),

which, taking into account the exact form above and fudge factors coming
from derivation of the boundary (∂ no longer commutes with

∫ y
0 : concretely,

∂(
∫ ξ(t)
∞ fdξ)−

∫ ξ(t)
∞ ∂(fdξ) = ξ′(t)f(ξ(t))), is given by

y = (ξ, η) 7−→ µE(y) = 1
2

η

(ξ − t)2 +
(
t(1− t)ξ

′

η

)′
+ t(1− t)ξ

′

η
.
η′

η
,

Since ω is an invariant form, µE is a group homomorphism. Since the target
space is uniquely divisible, its kernel contains the torsion part Etor of E, and
Manin’s theorem of the kernel asserts in this case that

Ker(µE) = Etor(S).

The formula above shows that µE extends to any differential extension
(F, ∂) of K. In the language of differential algebraic groups (see [9]), µE :
E → Ga is a differential algebraic additive character of order 2, defined
over K. Its kernel over F may strictly contain Etor(F ) : for instance, the
transcendental section y(t) defined, locally and in standard notation, by
℘(ω1(t) +

√
2ω2(t)) is killed by µE .

1.2. Link with Painlevé VI

Apart from Proposition 1.1 below, this section follows [20]. For links with
the Galois theory of Painlevé equations, see [21] (and [10] for the Picard–
Painlevé solution mentioned just above).
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The P VI equations depend on four complex parameters α, β, γ, δ, and
are given by

d2ξ

dt2 = 1
2

(
1
ξ

+ 1
ξ − 1 + 1

ξ − t

)(
dξ
dt

)2
−
(

1
t

+ 1
t− 1 + 1

ξ − t

)
dξ
dt

+ ξ(ξ − 1)(ξ − t)
t2(t− 1)2

(
α+ β

t

ξ2 + γ
t− 1

(ξ − 1)2 + δ
t(t− 1)
(ξ − t)2

)
.

Following R. Fuchs and Manin, this is rewriten in terms of points y = (ξ, η)
in E(F ) as:

t(1− t)µE(y) = αη + βt
η

ξ2 + γ(t− 1) η

(ξ − 1)2 +
(
δ − 1

2

)
t(t− 1) η

(ξ − t)2 .

Set κ = (κ0, κ1, κ2, κ3) := (α,−β, γ, 1
2 − δ), let e0 = 0E , e1 = (0, 0), e2 =

(1, 0), e3 = (t, 0) be the 2-torsion of E(S), and consider the rational function
ψκ on E given by

y 7−→ ψκ(y) = 1
t(t− 1)

3∑
i=0

κi η(y + ei).

Then, P VI finally becomes: find a local section y(t) of E/San such that

P VIκ : µE(y) = ψκ(y).

&&xx
diff’l alg., additive alg., not additive

The following result reflects the incompatibility of these properties. The
statement itself is inspired by the theme of “unlikely intersections” in dio-
phantine geometry.

Proposition 1.1. — For any finite extension K ′ of C(t), there are only
finitely many points y = (ξ, η) ∈ E(K ′) such that ξ solves some (unspecified)
P VI equation.

Proof. — We will rely on the following facts from Manin’s Mordell paper.

(i) By Mordell–Weil, the set {µE(y), y ∈ E(K ′)} lies in a finite dimen-
sional C-subspace of K ′, while the set {y ∈ E(K ′),µE(y) = 0} is
finite; indeed, by the theorem of the kernel, the latter one coincides
with Etor(K ′), which is finite.

(ii) (cf. [18, §7, Prop. 6]). Let V be a finite dimensional C-vector susb-
space ofK ′(E). Then, the set {y ∈ E(K ′),∃ fy ∈ V \{0}, fy(y) = 0}
has bounded height (and is therefore finite, since E/S is not isocon-
stant). Notice that once V is fixed, the functions fy of the statement
are allowed to depend on y.
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To prove the proposition, we may restrict to the points y ∈ E(K ′) such
that µE(y) 6= 0, since in view of the second part of (i), the other ones
form a finite set. Let then V be the finite-dimensional subspace of K ′(E)
generated over C by the 4 elements η( · + ei) of K ′(E) and by the finitely
generated subgroup Γ = t(t−1)µE(E(K ′)) of K ′. By the formula above, the
ξ-coordinate of a point y in E(K ′) satisfies some P VI equation only if there
exist µy ∈ Γ and complex numbers κy0, . . . , κ

y
3, depending on y but not all 0

by our restriction, such that κy0η(y + e0) + · · ·+ κy3η(y + e3)− µy = 0. Now,
consider the rational function fy( · ) =

∑
i=0,...,3 κ

y
i η( · + ei) − µy, which

lies in V . In view of their poles, 1 and the 4 functions η( · + ei) are linearly
independent overK ′, so the function fy is not 0, and we conclude by (ii). �

2. Manin maps

This section describes various “Manin maps” occuring in the literature.
Their kernels will all be compared in the next section, see Theorem 3.1,
which is the main statement of this survey. For questions related to their
images, see Section 3.3.

2.1. The Gauss–Manin connections

From now on, the setting is as follows: the base is a smooth irreducible
affine curve S over the complex numbers C, with function field K = C(S)
and coordinate ring OS = C[S]. The results will be insensitive to finite base
changes, which we tacitly perform when needed. We fix a non-zero vector
field over S, and denote by ∂ the associated derivation on K. We can assume
that the ring D of differential operators on S is OS [∂]. Given a locally free
OS-module V with an (integrable) connection ∇V , we write DV , or just D,
for the contraction of ∇V with ∂. This is as an additive endomorphism of V
satisfying the Leibniz rule, which naturally extends to an action of D on V :
if L =

∑
i ai∂

i, then L(v) =
∑
i ai(DV )i(v). We denote by 1 the D-module

OS , with ∇ = d.

2.1.1. Extensions of D-modules

In the category of D-modules, extensions (W,∇W )
0 −→ (V,∇V ) −→ (W,∇W ) −→ (OS , d) −→ 0
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of 1 by (V,∇V ) can be concretely described as follows. For V free of rank
n, fix a basis of V over OS , and choose w ∈ W projecting to 1 ∈ OS .
Then, DV = ∂ − B for some B ∈ gln(OS), while the matrix for ∇W is
(B c

0 0 ) ∈ gln+1(OS) for the column vector c = DW (w) ∈ (OS)n = V (S). A
fundamental matrix of solutions of DW has the same shape ( B u0 1 ), where B
is a fundamental matrix of solutions of DV , and u is a solution of the inho-
mogenous system DV (u) = c. Replacing w by w+v with v ∈ V (S) replaces c
by c+DV (v), and u by u+v. It follows that the isomorphism class of the ex-
tension W in ExtD−mod(1, V ) is given by the class of c in V (S)/DV (V (S)),
or more precisely (cf. [13, Prop. 1.1.1]) in the first cohomology group of the
complex V

DV−−→ V (in degrees 0 and 1), and we have (cf. [4, §1], at least
when K = C(P1)):

ExtD−mod(1, V ) ' H1(V DV−−→ V ) ' V (S)/DV (V (S)).

Analytically (cf. [13, Prop. 1.6.1]), this C-vector space is given by H1(S, V D)
for the local system of solutions of DV ; it has finite dimension, depending
only on n and χ(S) when ∇V is fuchsian (Deligne’s formula, cf. [4, Lem. 2]).
Anyway, the extension W splits if and only if c = DV (v) for some v in V (S),
or equivalently, if and only if u is a C-linear combination of the columns of
the matrix B, up to addition of an element of (OS)n.

Considering the connection ∇∨V on the dual of V , one deduces that
ExtD−mod(V,1) ' H1(V ∨ DV ∨−−−→ V ∨). In particular, if L ∈ D is a non
zero differential operator and V is the dual of D/DL, an extension of 1 by
V corresponds to an inhomogeneous equation L(u) = µ, for some µ ∈ OS ,
and its isomorphism class is given by the image µ̄ of µ in OS/L(OS), cf. [4,
Lem. 4]. It splits if and only if u is the sum of a solution of L( · ) = 0 and
of an element of OS . In reflection to the fact that cyclic vectors do not be-
have well under the constructions of linear algebra, the case µ = 0 should
be treated in matrix terms to justify that it represents the trivial extension.
Obviously, µ = 0 implies that µ̄ = 0̄. It is a remarkable feature that under
further (Hodge theoretic) constraints, the representative 0 of 0̄ will appear
naturally in what follows, cf. Section 2.3, and the end of Section 3.3.

2.1.2. Gauss–Manin

Let now A → S be an abelian scheme of relative dimension g, with
generic fiber AK . The results will be invariant under isogenies and finite
base extensions, which we again tacitly perform when needed. In particular,
we can assume that the fixed “part”, i.e. the K/C trace, A0/C = TrK/C(AK)
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of A is a direct summand. The group
A0(C)div = {y ∈ A(S),∃ 0 6= k ∈ Z, k.y ∈ A0(C)}

contain the torsion sections, and we call its elements the constant sections
of A/S.

Let further y∈A(S)'AK(K) be a section of A/S, and let Ay=[Z 1 7→y−−→A]
be the associated smooth S-1-motive, see [15]. This is an extension of [Z→ 0]
by [0→ A], or said more briefly of Z by A. To keep track of variances, note
that its Cartier dual A∨y is the extension of the dual abelian variety A∨ by
Gm parametrized by y ∈ A∨∨ ' A.

The Betti realizations of these 1-motives can be described as follows:
TB(A) is the kernel of the exponential morphism expA : Lie(A) → A over
San, while TB(Ay) is the inverse image under expA of Z.y. As such, they
are Z-local systems over San of ranks 2g, 2g + 1. The de Rham realiza-
tions, TdR(A), TdR(Ay) (see [15, 10.1.7], and Section 2.3 below) are OS-
modules, which, after extension toOSan , become isomorphic to TB(A)⊗OSan ,
TB(Ay)⊗OS , and so, carry connections id⊗d. As alluded to in Section 1, one
checks that these actually descend to TdR(A), TdR(Ay), which are therefore
endowed with canonical connections ∇A,∇Ay

, called (together with their
duals) the Gauss–Manin connections. By construction, their spaces of hori-
zontal sections are given by the Betti realizations, tensored with C.

We are now ready to define the Manin map, or more accurately, the two
types of Manin maps which occur in the literature. For lack of a better
phrasing, I will call them differential algebraic (they are Manin’s original
ones [18], as taken up by Buium [9], see also [8]), and cohomological (as
extracted by Coleman [13] from Manin’s construction). We will begin with
the latter ones, which are easier to describe and lead to sharper results. Note
that I call them cohomological not because of de Rham cohomologies (these
occur in both types), but because their targets are the H1’s of complexes
V

DV−−→ V .

2.2. The cohomological Manin maps

The description of the local system TB(Ay) shows that TdR(Ay) lies in
ExtD−mod(1, TdR(A)):

0 −→ TdR(A) −→ TdR(Ay) −→ (OS , d) = 1 −→ 0.
but it will be more convenient to consider the dual connections on H1

dR(A) =
(TdR(A))∨, H1

dR(Ay) = (TdR(Ay))∨. These sit in an exact sequence of D-
modules:

0 −→ 1 −→ H1
dR(Ay) π−−→ H1

dR(A) −→ 0.
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So, H1
dR(Ay) is a D-module extension of H1

dR(A) by 1. We denote byM(y)
its isomorphism class in ExtD−mod(H1

dR(A),1), and by M (or when needs
be,MA):

M : A(S) 3 y 7−→M(y) := [H1
dR(Ay)] ∈ ExtD−mod(H1

dR(A),1)
' TdR(A)(S)/D(TdR(A)(S))

the corresponding map. This cohomological Manin map is Z-linear and takes
values in a C-vector space, so the torsion sections lie in its kernel. In fact,
if y is a constant section, the D-module MA0(y) is isomorphic to a direct
sum of 1’s, and so, A0(C)div is always contained in the kernel ofMA. In this
situation, the theorem of the kernel (see [13, Thm. 1.4.3], and Theorem 3.1(i)
below) is:

Ker(M) = A0(C)div.

In [13], Coleman pointed out that the following sharper statement would
suffice to justify Manin’s proof of Mordell, cf. [19]. Let Ω =H0(A,Ω1(A/S)) ↪→
H1

dR(A) be the OS-module of relative differential forms of the 1st kind on
A/S. It is not a D-submodule (unless the Kodaira map is trivial, i.e. when
A = A0, cf. [3]), and we denote by [Ω] the D-submodule of H1

dR(A) gener-
ated by Ω. LetM|[Ω](y) ∈ ExtD−mod([Ω],1) be the isomorphism class of the
restriction to [Ω] of the extensionM(y). Then

M|[Ω] : A(S) 3 y 7−→M|[Ω](y) ∈ ExtD−mod([Ω],1)

is a less precise cohomological Manin map: its kernel clearly contains that of
M. Coleman asked and Chai [12] proved that these kernels

Ker(M|[Ω]) = Ker(M)

actually coincide (see Theorem 3.1(ii)).

More generally, let iV : V ↪→ H1
dR(A) be any D-submodule of H1

dR(A).
Then i∗V (M(y)) gives a map i∗V ◦ M : A(S) → ExtD−mod(V,1). Chai also
considered this broader situation (see [12], but also [5] and [11]), to which
we will come back in Section 3.2.

Remark 2.1. — Here is a description ofM in terms of D-groups and their
logarithmic derivatives, cf. [7]. Recall that a D-group is an algebraic group
G/K endowed with an extension of ∂ to OG respecting the group structure of
G. An abelian variety admits a D-group structure only if it is constant. On
the other hand, the universal vectorial extension Ã ∈ Extalg.gr./K(A,WA)
of A:

0 −→WA −→ Ã −→ A −→ 0,
with WA = H1(A,OA)∨ ' (Ext(A,Ga))∨ of dimension g, has a unique D-
group structure. Now, TdRA is given by the Lie algebra LÃ of Ã, and this
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allows us to describe the mapM as follows: let ∂`nÃ : Ã→ LÃ be the loga-
rithmic derivative on the D-group Ã. This induces on LÃ the Gauss–Manin
connection ∇A of TdR(A), contracted with ∂. Now, lift the section y ∈ A(S)
to ỹ ∈ Ã(S), and consider the projection of ∂`nÃ(ỹ) to LÃ(S)/DA(LÃ(S)).
This projection is independent of the choice of the lift (since ∂`nÃ induces
DA on the vectorial subgroup WA ' LWA), and by [7], it coincides with
M(y) ∈ ExtD−mod(H1

dR(A),1), which is indeed the cokernel of the connec-
tion ∇A on H1

dR(A)∨ ' TdR(A) ' LÃ.

2.3. The differential algebraic Manin maps

Contrary to the previous subsection, the variations of pure, resp. mixed,
Hodge structures that H1

dR(A), resp. H1
dR(Ay), carry will now play a role.

Indeed, the exact sequence
0 −→ 1 −→ H1

dR(Ay) π−→ H1
dR(A) −→ 0

is the de Rham realization of an exact sequence of VMHS, and the OS-
module Ω := H0(A,Ω1

A/S) is the Fil1 of the Hodge structure (of weight 1)
of H1

dR(A). Now, the Fil1 of the mixed Hodge structure (of weights 0 and 1)
carried by H1

dR(Ay) projects under π onto Fil1(H1
dR(A)), and they actually

have the same rank since the pure Hodge structure of the kernel of π has
type (0, 0). So, there is a canonical section sΩ of π over Ω, and following [13],
we will view Ω as a subspace of both H1

dR(A) and, via sΩ, of H1
dR(Ay).

Of course, sΩ will in general not extend to a D-section above the DA-
module [Ω] generated by Ω in H1

dR(A). When this does occur, we will say
that the extensionM|[Ω](y) of [Ω] by 1 admits a (D,Fil)-section. More gen-
erally, we may consider the pointed set (actually a group) ExtD,Fil([Ω],1) of
isomorphism classes of extensions of [Ω] by 1 endowed with an OS-section
above Ω, which admits a forgetful map

F : ExtD,Fil([Ω],1) −→ ExtD−mod([Ω],1).
The map M|[Ω] : A(S) → ExtD−mod([Ω],1) factors through F (thanks to
the section sΩ), and we will see in Theorem 3.1, proof of (iii) (b), that F
is injective on the image of A(S) in ExtD,Fil([Ω],1). In fact, an explicit
computation of ExtD,Fil([Ω],1) should clarify why the kernel of the Manin
map µ below contains the kernel ofM|[Ω], in the spirit of the discussion on
µ = 0 and µ̄ = 0̄ at the end of Section 2.1.1 (see also Section 3.3). But let
us come back to the construction of µ.

Via the Gauss–Manin connections, D acts on H1
dR(A), H1

dR(Ay), and this
defines two maps φ, φy of left D-modules from D⊗OS

Ω to H1
dR(A), H1

dR(Ay),
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which commute with the projection π. The image of φ is [Ω], and we denote
its kernel by PF (for Picard–Fuchs as in [18]). So, L =

∑
i Li ⊗ ωi lies in

PF if and only if φ(L) =
∑
i Li(DA)(ωi) = 0 ∈ H1

dR(A). The image of φy is
i∗[Ω]M(y). For any L in PF , φy(L) =

∑
i Li(DAy

)(ωi) ∈ H1
dR(Ay) lies in the

kernel OS of π, and we define the Manin map µL : A(S)→ OS attached to
L by:

µL : A(S) 3 y 7−→ µL(y) := φy(L) ∈ OS ,
The following commutative diagram illustrates this construction. The section
y ∈ A(S) is given, and the first vertical arrow is the map L → µL(y) induced
by φy on PF .

0 // PF

��

// D ⊗ Ω
φy��

φ // [Ω] // 0

0 // OS //M|[Ω](y)
⊂

π // [Ω]

⊂

// 0

0 // OS //M(y) π // H1
dR(A) // 0

For any L in PF , the map µL is additive in y. When L runs through
PF , their collection measures how far M|[Ω](y) is from being trivial in
ExtD,Fil([Ω],1). Since the D-module PF admits a finite number of genera-
tors, say L1, . . . ,LN , we may group all the information on PF by defining
the differential algebraic Manin map as the map

µA := µ = (µL1 , . . . , µLN
) : A(S) −→ (Ga)N (S).

Just like µE in Section 1, this a differential algebraic additive morphism,
and the initial version of Manin’s theorem of the kernel (see [18, Thm. 2],
and [13, Thm. 2.1.0]) states that

Ker(µ) = A0(C)div.
For the intermediate step Ker(µ) = Ker(M|[Ω]) towards this conclusion, see
Theorem 3.1(iii), which, combined with (ii) and (i), yields the full statement.

To compute the maps µL, one needs a concrete vizualization of the ex-
tension H1

dR(Ay). We may interpret it as the exact sequence

0 −→ OS −→ H1
dR(A/S,Zy) π−→ H1

dR(A/S) −→ 0,
where the middle term is the relative cohomology with respect to the sub-
scheme Zy of A/S formed by the union of the image of y and of the zero
section: if a relative differential ξ (regular along 0 and y) projects to 0 in
H1

dR(A/S), then ξ = df, f ∈ K(A), is represented by f(y) − f(0) ∈ OS .
Roughly speaking, H1

dR(A/S,Zy) is the space of differentials of the 2nd
kind on A, modded out by exact forms in the “narrow” sense (df with
f(0) = f(y) = 0), while one mods out by all exact forms to get H1

dR(A/S).
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For instance, suppose that L = Lω ⊗ ω, where ω ∈ Ω and Lω ∈ D is the
annihilator of ω (viewed in the D-module H1

dR(A/S), hence of order 6 2g).
Then, an analytic expression for µL(y) is given by

µLω⊗ω(y) = Lω

(∫ y

0
ω

)
.

To get an algebraic expression, we write the extension of ∂ to K(A) and
to the differential forms on AK in terms of an “admissible” set of parameters
at 0 and y, as explained in [18, p. 223]. In this case, µL(y) is just f(y)−f(0),
where Lω(DAy

)(ω) = df . In general, ∂ does not commute with
∫ y

0 , and as in
Section 1, fudge factors must be added, to take into account differentiation
of the boundary, but this suffices to show that as a function of y, µL extends
to a differential K-rational additive character of order 6 2g.

This brings us to another type of differential algebraic Manin map,
namely: instead of looking at a set of generators of PF as was done in
the definition µ, we merely consider the “cyclic” elements of the above type
Lω = Lω ⊗ ω, ω ∈ Ω. Fixing a basis ω1, . . . , ωg of Ω over OS , we set

µΩ : A(S) −→ (Ga)g(S) : y 7−→ (µLωi
(y), i = 1, . . . , g).

Clearly, the kernel of µ is contained in that of µΩ. As a consequence of the
semi-simplicity of the D-module H1

dR(A/S), we will see in Theorem 3.1(vi)
that in fact

Ker(µΩ) = Ker(µ),

although Lω1 , . . . ,Lωg
need not generate the full D-module PF .

Remark 2.2. — In the spirit of Remark 2.1, but now in the language of
differential algebraic groups, here is another presentation of the map µΩ. Let
again Ã be the universal vectorial extension of A, equipped with its unique
D-group structure, and let WA be the unipotent part of Ã. We have the
differential algebraic homomorphism ∂`nÃ : Ã → LÃ, surjective over a dif-
ferential closure of K. Here again, if ỹ ∈ Ã lifts y ∈ A, the image of ỹ under
∂`nÃ, now modulo the subgroup ∂`nÃ(WA), depends only on y. This gives
a surjective differential algebraic homomorphism µ′Ω : A→ LÃ/∂`nÃ(WA),
which is defined over K. This map has the same type of target as µ. In-
deed, as pointed out by Pillay in [8, §2.4], the quotient LÃ/∂`nÃ(WA) is
a unipotent commutative differential algebraic group, and so, by results of
Buium and Cassidy, is differential-algebraically isomorphic to some power
of Ga. Moreover, the power (Ga)g suffices, so we may view µ′Ω as a version
of our map µΩ. It is shown in [7, Cor. K.3], that at the level of K-points,
Ker(µ′Ω) = A0(C)div.
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3. Manin kernels

3.1. The theorems of the kernel

We now turn to the promised Theorem 3.1, which (except maybe for (vi),
and for the injectivity of F in the proof of (iii)) is a combination of the work
of Manin, Coleman, Chai and André.

We recall the notation of Section 2, including the notation sΩ for the
canonical section ofM(y) above Ω. In (iv), (v) and tacitly (vi), ω, resp. η, de-
note a basis {ω1, . . . , ωg} of Ω, resp. differentials of the 2nd kind {η1, . . . , ηg}
representing a complement of ω into a basis ofH1

dR(A/S), while {γ1, . . . , γ2g}
is a basis of the Betti homology TB(A).

Theorem 3.1. — Let y be a section of A/S. Then,

(i) Ker(M) = A0(C)div, i.e.M(y) is split if and only if y is a constant
section.

(ii) Ker(M|[Ω]) = Ker(M), i.e. i∗[Ω] is injective on the image ofM;
(iii) Ker(µ) = Ker(M|[Ω]).
(iv) M(y) = 0 ⇔

∫ y
0 (ω, η) is a C-linear combination of the vectors∫

γj
(ω, η), j = 1, . . . , 2g, up to addition of an element of (OS)2g.

(v) µ(y)=0⇔
∫ y

0 (ω) is a C-linear combination of the vectors
∫
γj

(ω), j=
1, . . . , 2g.

(vi) Ker(µΩ) = Ker(M|[Ω]).

So, at long last, the four “Manin kernels”
Ker(µ) ⊂ Ker(µΩ), Ker(M) ⊂ Ker(M|[Ω])

coincide: they are all equal to (A0(C))div. In particular, they are reduced to
the torsion subgroup Ator(S) when the K/C-trace of A vanishes

Notice that the first two kernels are a priori much smaller than the
last two ones. In the elliptic situation of Section 1 (where [Ω] is the full
H1

dR(E/S)), Ker(M) = Ker(M|[Ω]) consists of those y ∈ E(S) such that
µE(y) = L(f) for some element f ∈ OS , whereas Ker(µE) (here obviously
equal to Ker(µΩ)) consists of those y such that µE(y) is“physically” equal
to the zero of OS .

Notice also that when [Ω] does not fill up H1
dR(A/S), the third kernel

is a priori truly smaller than the last one. On the other hand, up to the
discrepancy just mentioned between “isomorphic to 0” and “physically 0”,
the first two ones have the same flavour as the last one: they solely concern
the restriction to [Ω] ofM(y).
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A guide to the proofs of Theorem 3.1

The statement of Theorem 3.1, and the proofs recorded or given below,
have logical overlaps, and could be described in a much smoother way. Our
aim here is to remain as close as possible to the literature, in particular
Manin’s original paper [18], Coleman’s reformulation [13], Chai’s sharpen-
ing [12] and André’s presentation [2].

Proof of (i). — This formulation of Manin’s theorem is due to Cole-
man [13, Thm. 1.4.3], who gave two proofs, one algebraic, the other analytic.
See also [7, Prop. J.2] for a proof in the setting of Remark 2.1. �

Proof of (ii). — This is due to Chai, who gives a Hodge theoretical proof
at the end of his paper [12]. See also [7, Thm. K.1] for a proof in the language
of Remark 2.1. We will discuss in Section 3.2 below Chai’s generalization of
(ii), where [Ω] is replaced by any D-submodule V of H1

dR(A/S). �

Proof of (iii). —

(a). — Let us first prove that if µ(y) = 0, then sΩ extends to a (D,Fil)-
section of M|[Ω](y) (hence to a D-section, hence M|[Ω](y) = 0). Recall the
maps φ, φy of Section 2.3, and assume that µL(y) = 0 for all L ∈ PF . For w
in [Ω], choose L ∈ D ⊗ Ω such that w = φ(L). If L′ is another choice, then
L − L′ lies in PF , and its image under φ vanishes. So, w̃ := φy(L) := s̃(w)
gives a well-defined section s̃ of π over [Ω], extending sΩ. And since φ and
φy are D-linear, so is s̃.

The converse statement is easy, and the equivalence is essentially Cole-
man’s Proposition 2.1.1 of [13]. But to finish up the proof of (iii), we must
show that if the extension M|[Ω](y) admits a D-section, not necessarily in-
ducing sΩ on Ω, then µ(y) = 0 ; and so, in the end, it does admit a (D,Fil)-
section. In other words, the forgetful map F introduced in Section 2.3 is
injective on the image of A(S) in ExtD,Fil([Ω],1).

(b). — Assuming now thatM|[Ω](y) = 0, let us show that µ(y) = 0. I do
not see a direct proof (again because of the discrepancy between physically
0 and isomorphic to 0), but we deduce from (ii) and (i) that y is a constant
section and are thereby reduced to the case where A = A0 is defined over
C, with a basis of Ω also defined over C. Then, by Abel Jacobi (cf. [3, 3.1]),
the constant vector

∫ y
0 (ω) is a linear combination over C (even, over R) of

the vectors
∫
γj

(ω), j = 1, . . . , 2g.

So, let us assume that there exist complex numbers a1, . . . , a2g such that
for all i = 1, . . . , g,

∫ y
0 ωi =

∑
j=1,...,2g aj

∫
γj
ωi, and let L =

∑
i=1,...,g Li⊗ωi

be an element of PF . Then, φy(L) is represented by an exact form df , and
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µL(y) =
∑
i Li(

∫ y
0 ωi) is equal to

µL(y) =
∑
i

∑
j

ajLi

(∫
γj

ωi

)
=
∑
j

aj

(∑
i

Li

(∫
γj

ωi

))
=
∑
j

aj

∫
γj

∑
i

Li(ωi) =
∑
j

aj

∫
γj

df = 0

(for the third equality, recall that ∂ commute with
∫
γj
). So indeed,

µ(y) = 0. �

Proof of (iv). — The collection of these vectors forms a fundamental
matrix of solutions for the differential system attached to the Gauss–Manin
connection ∇A on H1

dR(A/S). As said in Section 2.1.1, the condition on the
right expresses the fact that the extension ∇Ay of ∇A by 1 is split. Note that
this condition was incorrectly stated in [2, Thm. 1.1.(ii)], where the proviso
“up to addition of an element of (OS)2g” must be added. On the other hand,
its Condition (iii) was correctly stated, and does imply the corrected version
of (ii) when [Ω] fills up H1

dR(A/S), bearing in mind the fudge factors due to
the derivations of the boundaries of the integrals. �

Proof of (v). — (It is essentially Proposition 4 of Manin’s paper [18].) If
µ(y) = 0, the combination of (iii), (ii) and (i) implies that y is a constant
section, and we conclude by Abel–Jacobi. The converse has just been proved
in the second part of Point (iii)(b) above. �

Proof of (vi). — If M|[Ω](y) = 0, µ(y) = 0 by (iii), and in particular,
µΩ(y) = 0. Conversely, assume that µΩ(y) = 0. For any ωi in a basis of
Ω, with annihilator Lωi

∈ D, this implies that the restriction M|[ωi](y) of
M|[Ω](y) to the D-submodule [ωi] ' D/DLωi

generated by ωi in H1
dR(A/S)

is split. Now, a fundamental result of Deligne [14, Thm. 4.2.6], states that
the D-module H1

dR(A/S) is semi-simple. Consequently, one can speak of the
largest D-submodule U of H1

dR(A/S) over which the extensionM(y) is split
(see for instance [17, §1.2.1], for the dual statement). Since the [ωi]’s generate
[Ω], U contains [Ω], and the restrictionM|[Ω](y) ofM(y) to [Ω] is split. �

3.2. Chai’s theorem

In order to prove Part (ii) of Theorem 3.1, namely thatM(y) splits if (and
clearly only if) its restriction to [Ω] does, one can assume that the abelian
scheme A/S is geometrically simple. Indeed, for A isogenous to A1 × A2,
one has in obvious notation: M|[Ω] ' M|[Ω1] ×M|[Ω2], and similarly with
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MA1×A2 . So in this subsection, we will assume thatA/S is geometrically sim-
ple. In particular, either A/S is constant, or its K/C-trace A0 vanishes. Chai
then proposed in [12] the following generalization of his Theorem 3.1(ii).

Theorem 3.2. — Let A/S be a simple abelian scheme, let y ∈ A(S) be
a section, and let iV : V ↪→ H1

dR(A) be a non-zero D-submodule of H1
dR(A).

Assume that i∗V (M(y)) := M|V (y) ∈ ExtD−mod(V,1) is split. Then, M(y)
is split.

Unfortunately, the proof given in [12] relies on the assumption that if the
simple abelian scheme A/S is not constant, then the D-module H1

dR(A) is
irreducible. This is not always the case, as shown by Deligne’s counterexam-
ple in [16]. In [5] (see also [11]), I pointed out this gap, and proposed a way
to fix it. This corrected proof, reproduced in its original form, is the content
of what follows. For other presentations, see [6, Formulae (2′), (2∗) (in the
setting of Remark 1)], and André’s report [2], which incorporates a proof of
his results [1] on algebraic independence.

It will here be more convenient to return to the covariant view-point of
Section 2.1.2. So, given a D-submodule V of TdR(A) strictly contained in
TdR(A), i.e. with a non-trivial projection p := pV : TdR(A) → TdR(A)/V ,
we must show that if the D-module

p∗(TdR(Ay)) = TdR(Ay)/V ∈ ExtD−mod(1, TdR(A)/V )
is a split extension, then TdR(Ay) ∈ ExtD−mod(1, TdR(A)) is split.

Proof. — Fix a point s ∈ S, and let TA,s, TA,y,s be the fiber at s of
the local systems TB(A), TB(Ay) (tensored with Q). These fibers define an
extension

0 −→ TA,s −→ TA,y,s −→ Q −→ 0
of representations over Q of the fundamental group π1(S, s). Here, Q is the
trivial representation. Since all our differential equations are fuchsian at the
missing points of S, this extension of monodromy representations splits if
and only if TdR(Ay) splits.

Chai’s argument [12] now goes as follows. We consider the following al-
gebraic groups over Q:

• G̃ ⊂ GL(TA,y,s) is the Q-Zariski closure of the image of π1 acting
on TA,y,s; this group depends on y;

• G ⊂ GL(TA,s) is the Q-Zariski closure of the image of π1 acting on
TA,s; by [14], the (connected component G0 of the) group G is a
reductive group;

• N = kernel of the natural map G̃ → G; the construction below
shows that N is abelian, hence acted upon naturally by G̃/N = G.
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Fixing apoint λ̃ ∈ TA,y,s above 1 ∈ Q, and considering gλ̃ − λ̃, we obtain a
cocycle ξy ∈ H1(G̃, TA,s), whose restriction to N

ξ(y) : N −→ TA,s

is a G-equivariant injective morphism between vectorial groups over Q. So,
N identifies with a Q[G]-submodule of TA,s. Since G is reductive, N = 0 if
and only if the extension TA,y,s (equivalently TdR(Ay)) splits: indeed, TA,y,s
becomes a representation of G if N = 0.

By hypothesis, V is a strictD-submodule of TdR(A) such that TdR(Ay)/V
splits as a D-module extension of 1 by TdR(A)/V . Since the C-local system
T (V ) of horizontal vectors of V needs not be generated by its intersection
with the Q-structure TB(A), we extend the scalars to C, and consider the
projection of N to (TA,s ⊗ C)/(T (V )s. Since TdR(Ay)/V splits, one easily
checks that this projection vanishes. So, N ⊗ C ⊂ (T (V ))s does not fill up
TA,s ⊗ C, and N must be a strict Q[G]-submodule of TA,s.

If TA,s is an irreducible Q[G]−module (equivalently, if TdR(A) is an irre-
ducible D-module), this implies that N = 0, hence TdR(Ay) splits, as was to
be shown. But as said above, this hypothesis does not always hold, even if
the simple abelian scheme A is not constant. To fill up this gap, we will now
appeal to André’s normality theorem on the Mumford–Tate groups attached
to S-1-motives (see [1], and the Remark at the end of [2, §1.5] for a motivic
presentation).

For any s ∈ S, we denote by MTA,s ⊂ GL(TA,s) (resp. MTA,y,s ⊂
GL(TA,y,s)) the Mumford–Tate group of the Hodge structure (resp. mixed
HS) attached to A (resp. Ay). These are connected algebraic groups over Q,
which satisfy the following facts:

(1) ([1, Lem. 4]): there is a meager subset of S whose complement S0 is
pathwise connected, and such thatMTA,y,s (henceMTA,s) is locally
constant over S0.

(2) ([1, Thm. 1]) Let G̃0
s be the connected component of the (mon-

odromy) group called G̃ above. Then, for any s ∈ S0, G̃0
s is a

normal subgroup of MTA,y,s. Actually, [1] further shows that G̃0
s

is contained in the derived group of MTA,y,s, but we will not need
this sharpening.

After extension to a finite cover of S, we may assume that G, hence G̃
are already connected. We make this assumption from now on, and proceed
to finish up the proof of Theorem 3.2 (in its dual version). We fix a base
point s in S0 as in Fact (1), yielding the algebraic groups

• G̃ as above, normal in M̃T := MTA,y,s by Fact (2);
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• G as above, normal in MT := MTA,s;
• N as above, contained in the kernel

NT = {g ∈ M̃T , g(TA,y,s) ⊂W−1(TA,y,s) = TA,s}

of the natural map M̃T →MT . Fixing apoint λ̃ ∈ TA,y,s above 1 ∈
Q, and considering gλ̃− λ̃, we obtain a cocycle Ξy ∈ H1(M̃T , TA,s),
whose restriction Ξ(y) : NT → TA,s toNT shows thatNT is abelian
(and is a Q[MT ]-submodule of TA,s). Notice for later use that the
restriction of Ξy,Ξ(y), to G̃,N, coincide with the maps ξy, ξ(y), of
the previous paragraph.

As recorded, G̃ is normal in M̃T . We will now show that N too is normal
in M̃T . Extending the scalars to C, it suffices to show that NC is normal in
M̃TC. Since GC is reductive and NC is abelian, NC is the unipotent radical of
G̃C, i.e. the (unique) maximal connected unipotent normal subgroup of G̃C.
Therefore, NC is fixed under any automorphism of GC, and in particular,
under all outer automorphisms Int(g), g ∈ M̃T (C) of G̃C that the normality
of G̃ in M̃T provides. So, NC is indeed normal in M̃TC. And since the
abelian group NT acts trivially on its subgroup N , the action of M̃T on N
by conjugation induces an action of M̃T/NT = MT .

We now see that the Q-morphism

ξ(y) = (Ξy)|N : N −→ TA,s

is equivariant not only under G, but also under the full action of MT . So,
N identifies with a MT -submodule of TA,s. Now, TA,s is irreducible as a
Q[MT ]-module, since our choice of s forces EndMT (TA,s) = End(As) =
End(A/S), and we conclude that either N = 0 (implying as before that
TdR(Ay) is split), or that N = TA,s. As we already saw, the latter case
prevents the existence of any non-trivial projection p such that p∗(TdR(Ay))
splits, unless TdR(Ay) itself is split. �

3.3. Manin images

Now that the kernels of the Manin maps have been described, we will say
a few words on their images. Since their targets are C-vector spaces, it is nat-
ural to study their C-linear extensions. The following proposition, borrowed
from [8], shows how differently the differential algebraic and cohomological
Manin maps behave in this respect.
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Proposition 3.3. —

(i) There exists a simple traceless abelian scheme A/S such that the C-
linear extension µ′Ω ⊗ 1 : A(S)⊗C→ (OS)g of µ′Ω is not injective.

(ii) If A/S is a traceless abelian scheme, the C-linear extensionM⊗1 :
A(S)⊗ C→ TdR(A)(S)/DA(TdR(A)(S)) ofM is injective.

Proof. — (See [8, Prop. 2.14 and 2.15, and their proofs in §5].) The
counterexample for (i) is an abelian scheme of relative dimension 4, whose
H1

dR(A/S) strictly contains its DA-submodule [Ω]. The proofs use the set-
tings of Remarks 1 and 2.

Let me close with a tentative approach to the image of the maps µΩ, µ′Ω:
it is tempting to interpret their target (OS)g as the Lie algebra Ω∨ of A/S.
However, the map Ω→ OS deduced from our association ω 7→ Lω = Lω⊗ω,
composed with φy:

{ω ∈ Ω} −→ {Lω ∈ PF}
φy−→ {µLω (y) ∈ OS}

is seldom additive in ω ([13, Prop. 2.1.3] does provide an OS-linear map Ω→
PF

φy−→ OS , but only under the condition that the Kodaira map has maximal
rank, which implies that [Ω] = H1

dR(A/S)). In any case, ExtD,Fil([Ω],1)
should be computable in terms of [Ω]∨ (or rather, its quotient Ω∨), just like
ExtD−mod([Ω],1) is the quotient of [Ω]∨(S) byDA([Ω]∨(S)). This would give
a concrete description of the forgetful map F , and a direct link between a
differential algebraic map of the type µΩ, now with values in ExtD,Fil([Ω],1),
and the cohomological mapM|[Ω]. �
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