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Toward quantization of Galois theory

Akira Masuoka (1), Katsunori Saito (2) and Hiroshi Umemura (3)

ABSTRACT. — This article was born from our mathematical experiments, the first
explorations of the unknown continent of quantized Galois theory. Known is classical
Galois theory for linear differential equations, called Picard–Vessiot theory. Refor-
mulating Picard–Vessiot theory in the language of Hopf algebras, we find a new way
to a generalization, in which the commutative ring C[d/dx] of differential operators
with constant coefficients is replaced by an arbitrary Hopf algebra of operators that
may be non-commutative [1]. The Hopf algebras in this generalized theory are, how-
ever, basically assumed to be co-commutative since the theory is interested only in
commutative rings with operators. Consequently their Galois groups are linear alge-
braic groups and the Galois theory is not quantized. Heiderich [1] combined the Hopf
Galois theory [7] for linear equations with Umemura’s general Galois theory [22] for
non-linear differential equations.

In Parts I and II we use Heiderich’s idea to investigate concrete examples of
linear or non-linear difference-differential (or qsi) equations. In Part I we show
through some examples that quantization of the Galois groups is indeed realized.
The quantized Galois groups are Hopf algebras that are neither commutative nor
co-commutative. In fact, quantization occurs even for linear equations. In Part II
we investigate a special example of linear qsi equations to prove unique existence
of the non-commutative Picard–Vessiot rings. These investigations of examples lead
successfully to general results obtained in Part III, in which the examples are gen-
eralized to Hopf linear equations over a constant field C. The results are formulated
in terms of arbitrary C-Hopf algebras H and left H-modules of finite C-dimension,
and they involve non-commutative Tannaka categories.

RÉSUMÉ. — Cet article est né de nos expériences mathématiques, les premières ex-
plorations dans le continent inconnu de la théorie de Galois quantifiée. Nous connais-
sons la théorie de Galois classique des équations différentielles linéaires, appelée
théorie de Picard–Vessiot. Quand la théorie de Picard–Vessiot est formulée dans
le langage des algèbres de Hopf, elle ouvre une nouvelle voie vers la généralisation.
Nous pourrions remplacer l’algèbre commutative C[d/dx] des opérateurs différentiels
à coefficients constants par une algébre de Hopf d’opérateurs quelconque comme cela
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est fait dans [1]. Ces travaux s’intéressent uniquement aux anneaux commutatifs à
opérateurs, les algèbres de Hopf dans cette théorie sont essentiellement supposées co-
commutatives. Par conséquent, leurs groupes de Galois sont des groupes algébriques
linéaires et la théorie de Galois n’est pas quantifiée.

Heiderich [7] a découvert que l’on peut réunir la théorie de Picard–Vessiot géné-
ralisée [1] et notre théorie de Galois [22] des équations différentielles non-linéaires.
Nous appliquons son idée à certains exemples concrets et montrons, dans la première
partie, que la théorie de Galois est bien quantifiée c’est-à-dire, le groupe de Galois
qui est une algèbre de Hopf, n’est ni commutative, ni co-commutative, même pour
les équations linéaires.

Dans la deuxième partie, nous analysons une équation différentielle et aux diffé-
rences linéaire particulière. Nous montrons l’existence et l’unicité de l’extention de
Picard–Vessiot non-commutative de l’équation.

L’analyse détaillée nous permet d’établir dans la troisième partie, pour une al-
gèbre de Hopf quelconque d’opérateurs, la théorie de Galois quantique des équations
linéaires à coefficients constants. Nous démontrons aussi l’équivalence des catégories
tannakiennes non-commutatives. Ainsi donc, pour toute algèbre de Hopf H sur un
corps C et tout H-module à gauche M qui soit un espace C-vectoriel de dimension
finie, nous avons la théorie de Galois exprimée en terme d’algèbres de Hopf.

1. Introduction

1.1. Quantization of Galois theory

The pursuit of q-analogue of hypergeometric series goes back to Heine [8],
1846. However, the Galois group of q-hypergeometric series is not a quantum
group but it is a linear algebraic group. This shows that so far as we consider
the q-analogue of the hypergeometric equation according to Heine, Galois
theory is not quantized. In fact, generally we know that the Galois group
of a linear difference equation is a linear algebraic group. So we may as
well consider that Heine’s q-hypergeometric series would be unsatisfactory
as a quantization. To be more precise, the following question comes into our
mind.

Question 1.1. — Does there exist a thorough quantization of hypergeo-
metric series in such a way that Galois groups of quantized series are general
quantum groups?

More generally, we wonder if there would be a quantized Galois theory.

We owe Question 1.1 to Y. André [2] who first studied linear difference-
differential equations in the framework of non-commutative geometry. He
encountered only linear algebraic groups. Later, Hardouin [5] also studied
Picard–Vessiot theory of q-skew iterative σ-differential field extensions but
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also in this theory, the Galois group is a linear algebraic group. We clarified
the situation in [26]. Namely, so far as we study linear difference-differential
equations, however twisted or non-commutative the ring of difference and
differential operators might be, Galois group, according to general Hopf Ga-
lois theory, is a linear algebraic group.

All the attempts of answering affirmatively Question 1.1 had been so far
failed. Our results settle the Question 1.1 for linear equations with constant
coefficients. See Part III. Question 1.1 is vague and we have to start by
clarifying the nature of Question 1.1.

1.2. What is q?

In alphabet we have 26 letters. That is surely a small set if we compare
it with the huge set of Chinese characters. It would be certainly by chance
that the letter q appears often in mathematics in different contexts.

(1) q represents the q-analogue studied by L. Euler [4] and E. Heine [8]
and many mathematicians since the last century.

(2) q represents the number q = pn of elements of the finite field Fq =
Fpn , where p is a prime number.

(3) q represents the variable q = e2πiτ in which modular functions are
expanded as Laurent series; τ ranges over the upper-half plane.

(4) q represents quantum physics, that is, non-commutative geometry.

These subjects were not a priori logically supposed to be related. However,
there are surprising mathematical relations. For example, Euler [4] proved
the pentagonal identity in 1740 which belongs to (1) and Jacobi [9] showed
Euler’s identity is a consequence of the triple product formula, revealing
an unexpected relation between (1) and (3). So it is important to discover
surprising relations among the subjects. Question 1 asks if there exist a
Galois theoretic relations between (1) and (4).

1.3. Our solution to Question 1

In Part II, we explain our method of quantization of Picard–Vessiot ex-
tension by one of the simplest examples, which we generalize in Part III. Let
q 6= 0 be a complex number with qn 6= 1 for every positive integer n. Let
t be a variable over C. We consider a difference-differential field or in our
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terminology a qsi field (C(t), σ±1, θ) so that σ±1 : C(t)→ C(t), t 7→ q±1t are
field automorphisms over C and θ : C(t)→ C(t) sends f(t) ∈ C(t) to

f(qt)− f(t)
(q − 1)t .

We wonder, what is the Galois group of the qsi field extension
(C(t), σ±1, θ)/C.

However, the extension is not, a Galois extension in any traditional sense.
So we can not naively speak of its Galois group. (A qsi field is an abbreviation
for a q-skew iterative σ-differential field. See Definition 3.5.)

Given a differential field extension L/K, the general Galois theory of
Umemura [22, 23] and its generalization by Heiderich [7] construct a normal-
ization L/K of L/K. The construction, applied to the difference-differential
field extension (C(t), σ±1, θ)/C under some appropriate modification, pro-
duces a normalization of the qsi field extension (C(t), σ±1, θ)/C.

We have an inclusion M := C.1 + C.t ⊂ C(t) of difference-differential
modules and the sub-field of C(t) generated by the qsi module M coincides
with the field C(t). So we could imagine from the analogous differential
inclusion morphism (C.1 + C.t,d/dt)→ (C(t),d/dt)/C, the Galois group of
the qsi extension coincides with the Galois group of the qsi module M .

The latter is a quantized Picard–Vessiot group. So we have to determine
the Picard–Vessiot group of the qsi module M . We can show there exists
a non-commutative Picard–Vessiot ring R/C of the difference-differential
module M :

(1) The difference-differential ring R trivializes the difference-differ-
ential module M .

(2) The difference-differential ring R is simple, i.e., there is no non-
trivial bilateral invariant ideal of R.

(3) There exists a Hopf algebra H such that the rigid tensor category
of right H-co-modules of finite type is equivalent to the rigid ten-
sor category {{M}} generated by the difference-differential module
M . These properties characterize the Hopf algebra H and the non-
commutative Picard–Vessiot extension R/C. So the Hopf algebra H
that is neither commutative nor co-commutative, is the quantum
Galois group of the difference-differential module M .

By the same idea we get generalized Picard–Vessiot extensions for qsi linear
equations.

Alternatively, it is possible, given an M as above, first to construct the
Hopf algebra H which has the property (3) above, and then to show that
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this H itself acts as a non-commutative Picard–Vessiot ring, satisfying (1)
and (2) above. A main idea is to present difference-differential modules as
modules over an appropriate Hopf algebra, Hq. This will be accomplished in
Part III for an arbitrary Hopf algebra instead of the special Hq.

1.4. The composition of the paper

The paper consists of Introduction, Parts I, II and III. Part I is a prospec-
tive part; we first review a general Galois theory for differential equations,
difference equations and Hopf Galois theory, and then consider through ex-
amples what the Galois group of a qsi extension field should be. In fact we
will describe explicitly the formal completions of such Galois groups for the
following three examples of qsi extension fields with the constant field C:

(i) C(t)/C in Section 4.
(ii) C(t, tα)/C in Section 5.
(iii) C(t, log t)/C in Section 6.

The first example reduces to the simplest linear qsi equation explained in
the beginning of 1.3. It is a conjecture that the other two are not reducible
to a linear qsi equation and have a huge Galois groups. In Part II, we study
qsi equations and we give examples of quantized Picard–Vessiot extensions.
In Part III we give Hopf-algebraic interpretations to some of the results
obtained so far. The results will be proved for any finite-type module M
over an arbitrary Hopf algebra. The main idea is to construct for a given
M , the Hopf algebra H which has the property (3) above, and then to show
that this H and some generalized objects as well satisfy (1) and (2) above.

Throughout we work over a constant field C. In Parts I and II the char-
acteristic of C is assumed to be zero, for simplicity; also, the assumption is
natural when we refer therein to the classical situation for differential equa-
tions. The assumption turns out, however, to be inessential in Part III, in
which the characteristic is assumed to be arbitrary. We consider C-algebras.
Except for Lie algebras, all the rings or algebras are associative C-algebras
and contain the identity element. So the field C is in the center of the alge-
bras. Morphisms between them are unitary C-morphisms. For a commutative
algebra A, we denote by (Alg /A) the category of commutative A-algebras,
which we sometimes denote by (CAlg /A) to emphasize that we are dealing
with commutative A-algebras. In fact, to study quantum groups, we have to
also consider non-commutative A-algebras. We denote by (NCAlg /A) the
category of not necessarily commutative A-algebras B such that A (or to be
more precise, the image of A in B) is contained in the center of B.
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Part I. Quantization of q-skew iterative σ-differential equations

2. Foundation of a general Galois theory [22, 24, 25]

2.1. Notation

Let us recall basic notation. Let (R, δ) be a differential ring so that δ :
R → R is a derivation of a commutative ring R of characteristic 0. When
there is no danger of confusion we simply say that R is a differential ring,
without referring to the derivation δ. We often have to talk, however, about
the abstract ring R that we denote by R\. For a commutative ring S of
characteristic 0, the power series ring S[[X]] with derivation d/dX gives us
an example of differential ring.

2.2. General Galois theory of differential field extensions

Let us start by recalling our general Galois theory of differential field
extensions.

2.2.1. Universal Taylor morphism

Let (R, δ) be a differential algebra so that R is a commutative C-algebra
and δ : R→ R is a C-derivation:

(1) δ : R→ R is a C-linear map.
(2) δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ R.

For the differential algebra (R, δ) and a commutative C-algebra S, a Taylor
morphism is a differential morphism

(R, δ) −→ (S[[X]],d/dX). (2.1)
Given a differential ring (R, δ), among the Taylor morphisms (2.1), there
exists the universal one. In fact, for an element a ∈ R, we define the power
series

ι(a) =
∞∑
n=0

1
n!δ

n(a)Xn ∈ R\[[X]].

Then the map
ι : (R, δ) −→ (R\[[X]],d/dX) (2.2)

is the universal Taylor morphism.
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2.2.2. Galois hull L/K for a differential field extension L/k

Let (L, δ)/(k, δ) be a differential field extension such that the abstract
field L\ is finitely generated over the abstract base field k\. We constructed
the Galois hull L/K in the following manner.

We take a mutually commutative basis
{D1, D2, . . . , Dd}

of the L\-vector space Der(L\/k\) of k\-derivations of the abstract field L\.
So we have

[Di, Dj ] = DiDj −DjDi = 0 for 1 6 i, j 6 d.

Now we introduce a partial differential structure on the abstract field L\
using the derivations {D1, D2, . . . , Dd}. Namely we set

L] := (L\, {D1, D2, . . . , Dd})
that is a partial differential field. Similarly we define a differential structure
on the power series ring L\[[X]] with coefficients in L\ by considering the
derivations

{D1, D2, . . . , Dd}
that operate on the coefficients of the power series. In other words, we work
with the differential ring L][[X]]. So the power series ring L\[[X]] has differ-
ential structure

{d/dX,D1, D2, . . . , Dd}
that consists of the differentiation d/dX with respect to the variable X and
the derivations given before. Since there is no danger of confusion of the
choice of the differential operator d/dX, we denote this differential ring by

L][[X]].

We have the universal Taylor morphism
ι : L −→ L\[[X]] (2.3)

that is a differential morphism. We added further the {D1, D2, . . . , Dd}-
differential structure on L\[[X]] or we replace the target space L\[[X]] of the
universal Taylor morphism (2.3) by L][[X]] so that we have

ι : L −→ L][[X]].

In Definition 2.1 below, we work in the differential ring L][[X]] with
differential operators d/dX and {D1, D2, . . . , Dd}. We identify the differen-
tial field L] with the set of power series consisting only of constant terms.
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Namely,

L] =
{ ∞∑
n=0

anX
n ∈ L][[X]]

∣∣∣∣∣The coefficients an = 0 for every n > 1
}
.

Therefore L] is a differential sub-field of the differential ring L][[X]]. The
differential operator d/dX kills L]. Similarly, we set

k] :=
{ ∞∑
n=0

anX
n ∈ L][[X]]

∣∣∣∣∣The coefficients a0 ∈ k
and an = 0 for every n > 1

}
.

So all the differential operators d/dX,D1, D2, . . . , Dd act trivially on k] and
so k] is a differential sub-field of L] and hence of the differential algebra
L][[X]].

Definition 2.1. — The Galois hull L/K is the differential sub-algebra
of L][[X]], where L is the differential sub-algebra generated by the image
ι(L) and L] and K is the sub-algebra generated by the image ι(k) and L]. So
L/K is a differential algebra extension with differential operators d/dX and
{D1, D2, . . . , Dd}.

2.2.3. Universal Taylor morphism for a partial differential ring

The universal Taylor morphism has a generalization for partial differential
ring. Let

(R, {∂1, ∂2, . . . , ∂d})
be a partial differential ring. So R is a commutative ring of characteristic
0 and ∂i : R → R are mutually commutative derivations. For a ring S, the
power series ring(

S[[X1, X2, . . . , Xd]],
{

∂

∂X1
,
∂

∂X2
, . . . ,

∂

∂Xd

})
gives us an example of partial differential ring.

A Taylor morphism is a differential morphism

(R, {∂1, ∂2, . . . , ∂d})

−→
(
S[[X1, X2, . . . , Xd]],

{
∂

∂X1
,
∂

∂X2
, . . . ,

∂

∂Xd

})
. (2.4)

For a differential algebra (R,{∂1, ∂2, . . . , ∂d}), among Taylor morphisms (2.4),
there exists the universal one ιR given below.
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Definition 2.2. — The universal Taylor morphism is a differential
morphism

ιR : (R, {∂1, ∂2, . . . , ∂d})

−→
(
R\[[X1, X2, . . . , Xd]],

{
∂

∂X1
,
∂

∂X2
, . . . ,

∂

∂Xd

})
(2.5)

defined by the formal power series expansion

ιR(a) =
∑
n∈Nd

1
n!∂

n(a)Xn

for an element a ∈ R, where we use the standard notation for multi-index.

Namely, for n = (n1, n2, . . . , nd) ∈ Nd,

|n| =
d∑
i=1

ni, ∂n = ∂n1
1 ∂n2

2 . . . ∂ndd n! = n1!n2! . . . nd!

and
Xn = Xn1

1 Xn2
2 . . . Xnd

d .

See [22, Proposition (1.4)].

2.2.4. The functor FL/k of infinitesimal deformations for a differ-
ential field extension

For the partial differential field L], we have the universal Taylor morphism

ιL] : L] −→ L\[[W1,W2, . . . ,Wd]] = L\[[W ]], (2.6)

where we replaced the variables X’s in (2.5) by the variables W ’s for a
notational reason. The universal Taylor morphism (2.6) gives a differential
morphism

L][[X]] −→ L\[[W1,W2, . . . ,Wd]][[X]]. (2.7)
Restricting the morphism (2.7) to the differential sub-algebra L of L][[X]],
we get a differential morphism L → L\[[W1,W2, . . . ,Wd]][[X]] that we denote
by ι. So we have the differential morphism

ι : L −→ L\[[W1,W2, . . . ,Wd]][[X]]. (2.8)

Similarly for every commutative L\-algebra A, thanks to the differential
morphism

L\[[W ]] −→ A[[W ]]
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arising from the structural morphism L\ → A, we have the canonical differ-
ential morphism

ι : L −→ A[[W1,W2, . . . ,Wd]][[X]]. (2.9)
We define the functor

FL/k : (Alg/L\) −→ (Set)

from the category (Alg /L\) of commutative L\-algebras to the category (Set)
of sets, by associating to an L\-algebra A, the set of infinitesimal deforma-
tions of the canonical morphism (2.8). So
FL/k(A)

=

f : L→A[[W1,W2, . . . ,Wd]][[X]]

∣∣∣∣∣∣∣
f is a differential morphism congruent
to the canonical morphism ι modulo
nilpotent elements such that f = ι

when restricted on the sub-algebra K

.

2.2.5. Group functor Inf-Gal(L/k) of infinitesimal automorphisms
for a differential field extension

The Galois group in our Galois theory is the group functor
Inf-Gal(L/k) : (Alg /L\) −→ (Grp)

defined by
Inf-Gal(L/k)(A)

=

f : L⊗̂L]A[[W ]]→L⊗̂L]A[[W ]]

∣∣∣∣∣∣∣
f is a differential K⊗̂L]A[[W ]]-automorphism
continuous with respect to the W -adic
topology and congruent to the identity
modulo nilpotent elements


for a commutative L\-algebra A. Here the completion is taken with respect
to the W -adic topology. See [16, Definition 2.19].

Then the group functor Inf-Gal(L/k) operates on the functor FL/k in
such a way that the operation (Inf-Gal(L/k),FL/k) is a torsor [22, Theo-
rem (5.11)].

2.2.6. Origin of the group structure

For the differential equations, the Galois group is a group functor. We
are going to generalize differential Galois theory in such a way that the
Galois group is a quantum group. Quantum group is a generalization of
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affine algebraic group. We can not, however, regard a quantum group as
a group functor. Therefore, we have to understand the origin of the group
functor Inf-Gal. We illustrate it by an example.

Example 2.3. — Let us consider a differential field extension
L/k := (C(y), δ)/C

such that y is transcendental over the field C and
δ(y) = y and δ(C) = 0. (2.10)

Thus k = C is the field of constants of L.

The universal Taylor morphism
ι : L −→ L\[[X]]

maps y ∈ L to
Y := y expX ∈ L\[[X]].

Since the L\-vector space Der(L\/k\) is one-dimensional with basis d/dy, we
have L] = (L\,d/dy). Since we have the relations

∂Y

∂X
= Y, y

∂Y

∂y
= Y (2.11)

in the power series ring L][[X]], the Galois hull L/K is given by

L = K.C(expX), K = L] ⊂ L][[X]]. (2.12)
Now let us look at the infinitesimal deformation functor FL/k. To this end,
we Taylor-expand the coefficients of the power series in L][[X]] to get

ι : L −→ L][[X]] −→ L\[[W ]][[X]] = L\[[W,X]]
so that

ι(y) = (y +W ) expX ∈ L\[[W,X]].
We identify L][[X]] with its image in L\[[W ]][[X]] = L\[[W,X]]. In partic-
ular we identify Y = y expX ∈ L][[X]] with Y (W,X) = (y + W ) expX ∈
L\[[W,X]]. Equalities (2.11) become in L\[[W,X]]

∂Y (W,X)
∂X

= Y (W,X), (y +W )∂Y (W,X)
∂W

= Y (2.13)

It follows from (2.13) that for a commutative L\-algebra A, an infinitesimal
deformation ϕ ∈ FL/k(A) is determined by the image

ϕ(Y (W,X)) = cY (W,X) ∈ A[[W,X]], (2.14)
where c ∈ A. Conversely any invertible element c ∈ A infinitesimally close
to 1 defines an infinitesimal deformation so that we conclude

FL/k(A) = {c ∈ A | c− 1 is nilpotent}. (2.15)
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Where does the group structure come from?

There are two ways of answering to this question, which are closely re-
lated.

(I) Algebraic answer. — By (2.14), we have
ϕ(y) = c(y +W ) expX ∈ A[[W,X]],

where c− 1 ∈ A is a nilpotent element. Consequently we have
ϕ(y) = Y ((c− 1)y + cW,X). (2.16)

In other words, ϕ(y) coincides with
Y (W,X)|W=(c−1)y+cW .

Equivalently ϕ(y) is obtained by substituting (c−1)y+cW forW in Y (W,X).
This is quite natural in view of differential equations (2.13). We have only
to look at the initial condition at X = 0 of the two solutions

Y (W,X), ϕ(y) = c(y +W )Y (W,X)
of the differential equation ∂Y/∂X = Y. The transformation

W 7−→ (c− 1)y + cW where c ∈ A and c− 1 is nilpotent, (2.17)
is an infinitesimal coordinate transformation of the initial condition and
the multiplicative structure of c is nothing but the composite of coordinate
transformations (2.17).

(II) Geometric answer. — For this let us look at the dynamical system
defined by the differential equation (2.10); it is the dynamical system on the
line C described by

y 7→ Y = y expX.
Observing the dynamical system through algebraic differential equations is
equivalent to considering the deformations of the Galois hull. So the (infini-
tesimal) deformation functor measures the ambiguity of the observation. In
other words, the result due to our method is (2.15). In terms of the initial
condition, it looks as

y 7→ cY |X=0 = cy expX|X=0 = cy.

Namely,
y 7→ cy. (2.18)

If we have two transformations (2.18)
y 7→ cy, y 7→ c′y

the composite transformation corresponds to the product
y 7→ cc′y.

Our generalization depends on the first answer (I). See Section 7.
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2.3. Difference Galois theory

If we replace the universal Taylor morphism by the universal Euler
morphism, we can construct a general Galois theory of difference equations
[16, 17].

2.3.1. Universal Euler morphism

Let (R, σ) be a C-difference algebra so that σ : R → R is a C-algebra
automorphism of a commutative C-algebra R. See Remark 3.7. When there
is no danger of confusion we simply say that R is a difference ring, without
referring to the automorphism σ. We often have to talk however about the
abstract ring R that we denote by R\. For a commutative ring S, we denote
by F (Z, S) the ring of functions on the set of integers Z taking values in
the ring S. For a function f ∈ F (Z, S), we define the shifted function Σf ∈
F (Z, S) by

(Σf)(n) = f(n+ 1) for every n ∈ Z.
Hence the shift operator

Σ : F (Z, S) −→ F (Z, S)

is an automorphism of the ring F (Z, S) so that (F (Z, S),Σ) is a difference
ring.

Remark 2.4. — In this Paragraph 2.3.1 and the next 2.3.2, in particu-
lar for the existence of the universal Euler morphism, we do not need the
commutativity assumption of the underlying ring.

Let (R, σ) be a difference ring and S a ring. An Euler morphism is a
difference morphism

(R, σ) −→ (F (Z, S),Σ). (2.19)
Given a difference ring (R, σ), among the Euler morphisms (2.19), there
exists the universal one. In fact, for an element a ∈ R, we define the function
u[a] ∈ F (Z, R\) by

u[a](n) = σn(a) for n ∈ Z.
Then the map

ι : (R, σ) −→ (F (Z, R\),Σ) a 7−→ u[a] (2.20)

is the universal Euler morphism [16, Proposition 2.5].
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2.3.2. Galois hull L/K for a difference field extension L/k

Let (L, σ)/(k, σ) be a difference field extension such that the abstract
field L\ is finitely generated over the abstract base field k\. We constructed
the Galois hull L/K as in the differential case. Namely, we take a mutually
commutative basis

{D1, D2, . . . , Dd}
of the L\-vector space Der(L\/k\) of k\-derivations of the abstract field L\.

We introduce the partial differential field
L] := (L\, {D1, D2, . . . , Dd}).

Similarly we define a differential structure on the ring F (Z, L\) of functions
taking values in L\ by considering the derivations

{D1, D2, . . . , Dd}.
In other words, we work with the differential ring F (Z, L]). So the ring
F (Z, L\) has the difference-differential structure

{Σ, D1, . . . , Dd}
that consists of the shift operator Σ and the derivations given before. Since
there is no danger of confusion of the choice of the difference operator Σ, we
denote this difference-differential ring by

F (Z, L]).

We have the universal Euler morphism
ι : L −→ F (Z, L\) (2.21)

that is a difference morphism. We added further the {D1, D2, . . . , Dd}-differ-
ential structure on F (Z, L\) or we replace the target space F (Z, L\) of the
universal Euler morphism (2.21) by F (Z, L]) so that we have

ι : L −→ F (Z, L]).

In Definition 2.5 below, we work in the difference-differential ring F (Z, L])
with difference operator Σ and differential operators {D1, D2, . . . , Dd}. We
identify with L] the set of constant functions on Z. Namely,

L] = {f ∈ F (Z, L]) | f(0) = f(±1) = f(±2) = · · · ∈ L]}.
Therefore L] is a difference-differential sub-field of the difference-differential
ring F (Z, L]). The action of the shift operator on L] being trivial, the nota-
tion is adequate. Similarly, we set

k] := {f ∈ F (Z, L]) | f(0) = f(±1) = f(±2) = · · · ∈ k ⊂ L]}.
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So both the shift operator and the derivations act trivially on k] and so k] is
a difference-differential sub-field of L] and hence of the difference-differential
algebra F (Z, L]).

Definition 2.5. — The Galois hull L/K is a difference-differential sub-
algebra extension of F (Z, L]), where L is the difference-differential sub-
algebra generated by the image ι(L) and L] and K is the sub-algebra gen-
erated by the image ι(k) and L]. So L/K is a difference-differential algebra
extension with difference operator Σ and derivations {D1, D2, . . . , Dd}.

2.3.3. The functor FL/k of infinitesimal deformations for a differ-
ence field extension

For the partial differential field L], we have the universal Taylor morphism

ιL] : L] −→ L\[[W1,W2, . . . ,Wd]] = L\[[W ]]. (2.22)

The universal Taylor morphism (2.22) gives a difference-differential mor-
phism

F (Z, L]) −→ F (Z, L\[[W1,W2, . . . ,Wd]]). (2.23)

Restricting the morphism (2.23) to the difference-differential sub-algebra L
of F (Z, L]), we get a difference-differential morphism L → F (Z, L\[[W1,
W2, . . . ,Wd]]) that we denote by ι. So we have the difference-differential
morphism

ι : L −→ F (Z, L\[[W1,W2, . . . ,Wd]]). (2.24)

For every commutative L\-algebra A, the structure morphism L\ → A gives
rise to the differential morphism

L\[[W ]] −→ A[[W ]],

and it induces the canonical difference-differential morphism

ι : L −→ F (Z, A[[W1, . . . ,Wd]])

which is analogous to (and generalizes, in fact) the one in (2.24).

We define the functor

FL/k : (Alg /L\) −→ (Set)

from the category (Alg /L\) of commutative L\-algebras to the category (Set)
of sets, by associating to a commutative L\-algebra A, the set of infinitesimal
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deformations of the canonical morphism (2.24). So

FL/k(A)

=

f : L →F (Z, A[[W1,W2, . . . ,Wd]])

∣∣∣∣∣∣∣
f is a difference-differential morphism
congruent to the canonical morphism ι

modulo nilpotent elements such that
f= ι when restricted on the sub-algebra K

.
See [16, Definition 2.13] for a rigorous definition.

2.3.4. Group functor Inf-Gal(L/k) of infinitesimal automorphisms
for a difference field extension

The Galois group in our Galois theory is the group functor

Inf-Gal(L/k) : (Alg /L\) −→ (Grp)

defined by

Inf-Gal(L/k)(A)

=

f : L⊗̂L]A[[W ]]
→ L⊗̂L]A[[W ]]

∣∣∣∣∣∣
f is a difference-differential K⊗̂L]A[[W ]]-automorphism
continuous with respect to the W -adic topology and
congruent to the identity modulo nilpotent elements


for a commutative L\-algebra A. Here the completion is taken with respect
to the W -adic topology. See [16, Definition 2.19].

Then the group functor Inf-Gal(L/k) operates on the functor FL/k in such
a way that the operation (Inf-Gal(L/k),FL/k) is a torsor [16, Theorem 2.20].

The group functor Inf-Gal(L/k) arises from the same origin as in the
differential case, namely from automorphisms of the initial conditions as we
explained in 2.2.6. The principle is the same in the quantum case as well, in
which case the Galois hulls will turn, however, to be non-commutative. We
are going to show by examples that the principle works well to produce quan-
tum groups as Galois groups. The examples are three, given in Sections 4–6
below, each.

2.4. Introduction of more precise notations

So far, we explained general differential Galois theory and general dif-
ference Galois theory. To go further, we have to make our notations more
precise.
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For example, we defined the Galois hull for a differential field extension
in Definition 2.1 and the Galois hull for a difference field extension in Defi-
nition 2.5. Since they are defined by the same principle, we denoted both of
them by L/K. We have to, however, distinguish them.

Definition 2.6. — We denote the Galois hull for a differential field
extension by Lδ/Kδ and we use the symbol Lσ/Kσ for the Galois hull of a
difference field extension.

We also have to distinguish the functors FL/k and Inf-Gal(L/k) in the
differential case and in the difference case: we add the suffix δ for the differ-
ential case and the suffix σ for the difference case:

(1) We use FδL/k and Inf-Galδ(L/k), when we deal with differential
algebras.

(2) We use FσL/k and Inf-Galσ(L/k) for difference algebras.

3. Hopf Galois theory

Picard–Vessiot theory is a Galois theory of linear differential or difference
equations. The idea of introducing Hopf algebra in Picard–Vessiot theory is
traced back to Sweedler [20]. Specialists in Hopf algebra succeeded in uni-
fying Picard–Vessiot theories for differential equations and difference equa-
tions [1]. They further succeeded in generalizing the Picard–Vessiot theory
for difference-differential equations, where the operators are not necessarily
commutative. Heiderich [7] combined the idea of Picard–Vessiot theory via
Hopf algebra with our general Galois theory for non-linear equations [16, 22].
This is a wonderful idea. By our examples it will become, however, apparent
that his results require a certain modification in the non-co-commutative
case. His general theory includes a wide class of difference and differential
algebras.

3.1. The idea of Heiderich’s theory

There are two major advantages in Heiderich’s theory.

(1) Unified study of differential equations and difference equations in
non-linear case.

(2) Generalization of universal Euler morphism and Taylor morphism.
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For vector spaces M,N over the field C, we denote by CM(M,N) the
C-vector space of C-linear maps from M to N . Let H be a C-Hopf algebra
or more generally, a C-bi-algebra, and let A be a commutative C-algebra.
Suppose

Ψ ∈C M(A⊗C H, A) =C M(A,C M(H, A)).

Thus, Ψ defines two C-linear maps

(1) Ψ1 : A⊗C H → A,
(2) Ψ2 : A→ CM(H, A).

Definition 3.1. — We say that (A,Ψ) is an H-module algebra if the
following equivalent conditions (see [20, p. 153]) are satisfied.

(1) The C-linear map Ψ1 : A⊗C H → A makes A into a left H-module
in such a way that we have in the algebra A,

h(ab) =
∑

(h(1)a)(h(2)b) ∈ A,

for every element h ∈ H and a, b ∈ A, where we use the sigma
notation so that

∆(h) =
∑

h(1) ⊗ h(2),

∆ : H → H⊗H being the co-multiplication of the Hopf algebra H.
(2) The C-linear map

Ψ2 : A −→ CM(H, A)

is a C-algebra morphism, where CM(H, A) forms a C-algebra with
respect to the convolution product [20, p. 70].

Example 3.2. — To recognize Heiderich’s idea for the example of differ-
ential algebra, suppose that H is the C-Hopf algebra C[GaC ] = C[t] of the
coordinate ring of the additive group scheme GaC over the field C. Then
the dual algebra CM(H, A) is the formal power series ring A[[X]]. It is a
comfortable exercise to examine that (A,Ψ) is an H-module algebra if and
only if A is a differential algebra with derivation δ such that δ(C) = 0, when
we define δ by Ψ(a ⊗ t) = δ(a) for every a ∈ A. Notice that the C-algebra
morphism

Ψ2 : A −→ CM(H, A) = A[[X]]
is precisely the universal Taylor morphism. Indeed, one sees

Ψ2(a) =
∞∑
n=0

1
n!δ

n(a)Xn ∈ A[[X]]

for every a ∈ A. See Heiderich [7, 2.3.4].
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If we alternatively take as H, the Hopf algebra C[GmC ] of the coordinate
ring of the multiplicative group GmC for H, then we get difference structure
and the universal Euler morphism. See [7, 2.3.1]. Indeed, Heiderich takes as
H any co-commutative Hopf algebra to get an algebra A with operation of
the algebra H and a morphism

Ψ2 : A −→ CM(H, A)

generalizing the universal Taylor morphism and Euler morphism. He then
defined the Galois hull L/K and developed a general Galois theory for a
field extension L/k with operation of the algebra H. As a point the co-
commutativity assumption on H makes the dual algebra CM(H, A) into a
commutative algebra, and the Galois hull L/K is realized as sub-algebras in
the commutative algebra CM(H, A). We remark that the Galois hull may be
regarded as an algebraic counterpart of the geometric object, algebraic Lie
groupoid. See Malgrange [11]. Therefore, the most fascinating question is

Question 3.3. — Let us consider a non-co-commutative bi-algebra H
and assume that the Galois hull L/K that is a sub-algebra of the dual algebra
CM(H, A), is not a commutative algebra. Does the Galois hull L/K quantize
the algebraic Lie groupoid?

We are going to answer affirmatively the question by analyzing examples
of q-skew iterative σ-differential field extensions.

Remark 3.4. — In view of Hardouin [5] and Masuoka and Yanagawa [14],
one may think that even if the Hopf algebra H is non-co-commutative, the
Galois hull L would be a commutative sub-algebra of the non-commutative
algebra CM(H, A) and the Galois group would be a linear algebraic group,
so far as one works only with linear difference-differential equations; see
also [26]. However, our examples will show that quantization of Galois theory
does occur not only for non-linear equation but also for linear ones; First
Example of ours in Section 4 is indeed the first example showing such an
unexpected phenomenon.

3.2. q-skew iterative σ-differential algebra [5, 6]

The first non-trivial example of a Hopf Galois theory dependent on a
non-co-commutative Hopf algebra is Galois theory of q-skew iterative σ-
differential field extensions; they are abbreviated as q-SI σ-differential field
extensions. Furthermore we simply call them qsi field extensions. See Defi-
nition 3.5.

– 1337 –



Akira Masuoka, Katsunori Saito and Hiroshi Umemura

3.2.1. Definition of qsi algebra

Let q 6= 0 be an element of the field C. We use a standard notation of
q-binomial coefficients. To this end, let Q be a variable over the field C.

We set [n]Q =
∑n−1
i=0 Q

i ∈ C[Q] for positive integer n. We need also
q-factorial

[n]Q! :=
n∏
i=1

[i]Q for a positive integer n and [0]Q! := 1.

So [n]Q ∈ C[Q]. The Q-binomial coefficient is defined for m,n ∈ N by(
m

n

)
Q

=
{ [m]Q!

[m−n]Q![n]Q! if m > n,
0 if m < n.

Then we can show that the rational function(
m

n

)
Q

∈ C(Q)

is in fact a polynomial or (
m

n

)
Q

∈ C[Q].

We have a ring morphism
C[Q] −→ C, Q 7−→ q (3.1)

over C and we denote the image of the polynomial(
m

n

)
Q

under morphism (3.1) by (
m

n

)
q

.

Definition 3.5. — A q-skew iterative σ-differential algebra (A, σ,
σ−1, θ∗) = (A, σ, {θ(i)}i∈N), a qsi algebra or a qsi algebra for short, consists
of a C-algebra A that is eventually non-commutative, a C-automorphism
σ : A→ A of the C-algebra A and a family

θ(i) : A −→ A for i ∈ N
of C-linear maps, called derivations, satisfying the following conditions.

(1) θ(0) = IdA,
(2) θ(i)σ = qiσθ(i) for every i ∈ N,
(3) θ(i)(ab) =

∑
l+m=i,l,m>0 σ

m(θ(l)(a))θ(m)(b) for every i ∈ N and
a, b ∈ A,
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(4) θ(i) ◦ θ(j) =
(
i+j
i

)
q
θ(i+j) for every i, j ∈ N.

We say that an element a of the qsi algebra A is a constant if σ(a) = a and
θ(i)(a) = 0 for every i > 1.

A morphism of qsi C-algebras is a C-algebra morphism compatible with
the automorphisms σ and the derivations θ∗.

Both differential algebras and difference algebras are qsi algebras as we
see below.

Remark 3.6. — There is also a weaker version of qsi algebra, for which
we only require σ to be an endomorphism, not necessarily an automorphism.

3.2.2. Difference algebra and a qsi algebra

Let A be a commutative C-algebra and σ : A→ A be a C-automorphism
of the ring A. So (A, σ) is a difference algebra. If we set θ(0) = IdA and

θ(i)(a) = 0 for every element a ∈ A and for i = 1, 2, 3, . . . .
Then (A, σ, σ−1, θ∗) is a qsi algebra.

Namely we have a functor from the category of C-difference algebras to
the category of qsi algebras over C:
(Category of Difference Algebras/C ) −→ (Category of qsi Algebras/C ).

Let t be a variable over the field C and let us now assume
qn 6= 1 for every positive integer n. (3.2)

We denote by σ : C(t) → C(t) the C-automorphism of the rational func-
tion field C(t) sending the variable t to qt. We consider a difference algebra
extension (A, σ)/(C(t), σ). If we set

θ(1)(a) = σ(a)− a
(q − 1)t for every element a ∈ A

and
θ(i) = 1

[i]q!
{θ(1)}i for i = 2, 3, . . . .

Then (A, σ, σ−1, θ∗) is a qsi algebra. Therefore if q ∈ C satisfies (3.2), then
we have a functor

(Category of Difference Algebras/(C(t), σ))
−→ (Category of qsi Algebras/(C(t), σ, σ−1, θ∗)). (3.3)
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Remark 3.7. — In coherence with Remark 3.6, when we speak of differ-
ence C-algebra (A, σ), we assume that σ : A → A is a C-linear automor-
phism.

3.2.3. Differential algebra and qsi algebra

Let (A, θ) be a C-differential algebra such that the derivation θ : A→ A
is C-linear. We set

θ(0) = IdA, θ(i) = 1
i!θ

i for i = 1, 2, 3, . . . .

Then (A, IdA, θ∗) is a qsi algebra for q = 1. In other words, we have a functor
(Category of Difference Algebras/C ) −→ (Category of qsi Algebras/C )

of the category of (commutative) differential C-algebras to the category of qsi
algebras over C. We have shown that both difference algebras and differential
algebras are particular instances of qsi algebra.

3.2.4. Example of qsi algebra [7]

We are going to see that qsi algebras live on the border between commuta-
tive algebras and non-commutative algebras. The examples below would sug-
gest that it is natural to seek qsi algebras in the category of non-commutative
algebras.

An example of qsi algebra arises from a commutative C-difference algebra
(S, σ). We need, however, a non-commutative ring, the twisted power series
ring (S, σ)[[X]] over the difference ring (S, σ) that has a natural qsi algebra
structure.

Namely, let (S, σ) be the C-difference ring so that σ : S → S is a C-
algebra automorphism of the commutative ring S. We introduce the following
twisted formal power series ring (S, σ)[[X]] with coefficients in S that is
the formal power series ring S[[X]] as an additive group with the following
commutation relation

aX = Xσ(a) and Xa = σ−1(a)X for every a ∈ S.
So more generally

aXn = Xnσn(a) and Xna = σ−n(a)Xn (3.4)
for every n ∈ N. The multiplication of two formal power series is defined by
extending (3.4) by linearity. Therefore the twisted formal power series ring

– 1340 –



Toward quantization of Galois theory

(S, σ)[[X]] is non-commutative in general. By commutation relation (3.4),
we can identify

(S, σ)[[X]] =
{ ∞∑
i=0

Xiai

∣∣∣∣∣ ai ∈ S for every i ∈ N

}
as additive groups.

We are going to see that the twisted formal power series ring has a natural
qsi structure. We define first a ring automorphism

Σ̂ : (S, σ)[[X]] −→ (S, σ)[[X]]

by setting

Σ̂
( ∞∑
i=0

Xiai

)
=
∞∑
i=0

Xiqiσ(ai) for every i ∈ N, (3.5)

for every element
∞∑
i=0

Xiai ∈ (S, σ)[[X]].

As we assume that σ : A→ A is an isomorphism, the C-linear map,

Σ̂ : (A, σ)[[X]] −→ (A, σ)[[X]]

is an automorphism of the C-linear space. The operators Θ∗ = {Θ(l)}l∈N are
defined by

Θ(l)

( ∞∑
i=0

Xiai

)
=
∞∑
i=0

Xi

(
i+ l

l

)
q

ai+l for every l ∈ N. (3.6)

Hence the twisted formal power series ring ((S, σ)[[X]], Σ̂,Θ∗) is a non-
commutative qsi ring. We denote this qsi ring simply by (S, σ)[[X]].
See [7, 2.3].

In particular, if we take as the coefficient difference ring S the difference
ring

(F (Z, A),Σ)
of functions on Z taking values in a ring A defined in 2.3.1, where

Σ : F (Z, A) −→ F (Z, A)

is the shift operator, we obtain the qsi ring(
(F (Z, A),Σ)[[X]], Σ̂,Θ∗

)
. (3.7)

This qsi ring will be denoted simply by (F (Z, A),Σ)[[X]], or even by
F (Z, A)[[X]].
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Remark 3.8. — We assumed that the coefficient difference ring (S, σ) is
commutative. The commutativity assumption on the ring S is not necessary.
Therefore, we may suppose that the ring A in (3.7) is non-commutative.

3.2.5. Hopf algebra for qsi structures

As we explained for differential algebras in Definition 3.1, a qsi structure
is nothing but an Hq-module algebra structure for a Hopf algebra Hq.

Definition 3.9. — Let q 6= 0 be an element of the field C. Let Hq be
the C-algebra which is generated by s, s−1 and ti, i ∈ N, and is defined by
the relations

t0 = 1, ss−1 = s−1s = 1, tis = qisti,

qitis
−1 = s−1ti, titj =

(
i+ j

i

)
q

ti+j

for every i, j ∈ N. We define a co-algebra structure ∆ : Hq → Hq ⊗C Hq by

∆(s) = s⊗ s, ∆(s−1) = s−1 ⊗ s−1, ∆(tl) =
l∑
i=0

sitl−i ⊗ ti

for every l ∈ N. In fact Hq is a Hopf algebra with co-unit ε : Hq → C
defined by

ε(s) = ε(s−1) = 1, ε(ti) = 0
for every i ∈ N. Antipode is an anti-automorphism S : Hq → Hq of the
C-algebra Hq given by

S(s) = s−1, S(s−1) = s, S(ti) = (−1)iqi(i+1)/2tis
−i

for every i ∈ N.

Proposition 3.10. — For a not necessarily commutative C-algebra A,
there exists a 1 : 1 correspondence between the elements of the following two
sets.

(1) The set of qsi algebra structures on the C-algebra A.
(2) The set of Hq-module algebra structures on the C-algebra A.

This result is well-known. See Heiderich [7]. We recall for a qsi algebra
A, the corresponding left Hq-module structure is given by

s 7−→ σ, s−1 7−→ σ−1, ti 7−→ θ(i) for every i ∈ N.
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3.2.6. Universal Hopf morphism for a qsi algebra

We introduced in 2.3.1 the difference ring of functions (F (Z, A),Σ) on
the set Z taking values in a ring A. It is useful to denote the function f by
a matrix [

. . . −2 −1 0 1 2 . . .

. . . f(−2) f(−1) f(0) f(1) f(2) . . .

]
.

For an element b of a difference algebra (R, σ) or a qsi algebra (R, σ, θ∗),
we denote by u[b] a function on Z taking values in the abstract ring R\ such
that

u[b](n) = σn(b) for every n ∈ Z
so that

u[b] =
[
. . . −2 −1 0 1 2 . . .
. . . σ−2(b) σ−1(b) b σ1(b) σ2(b) . . .

]
.

Therefore u[b] ∈ F (Z, R\).
Proposition 3.11 (Heiderich [7, Proposition 2.3.17]). — For a qsi al-

gebra (R, σ, σ−1, θ∗), there exists a canonical morphism, which we call the
universal Hopf morphism

ι : (R, σ, σ−1, θ∗) −→
(
(F (Z, R\),Σ)[[X]], Σ̂, Θ̂∗

)
,

a 7−→
∞∑
i=0

Xiu[θ(i)(a)]
(3.8)

of qsi algebras.

We can also characterize the universal Hopf morphism as the solution of
a universal mapping property.

When q = 1 and σ = IdR and R is commutative so that the qsi ring
(R, IdR, θ∗) is simply a differential algebra as we have seen in 3.2.3 and the
universal Hopf morphism (3.8) is the universal Taylor morphism in (2.2).
Similarly a commutative difference ring is a qsi algebra with trivial deriva-
tions as we noticed in 3.2.2. In this case the universal Hopf morphism (3.8)
is nothing but the universal Euler morphism (2.20). Therefore the univer-
sal Hopf morphism unifies the universal Taylor morphism and the universal
Euler morphism.

Let us recall the following fact.
Lemma 3.12. — Let (R, σ, σ−1, θ∗) be a qsi domain. If the endomor-

phism σ : R→ R is an automorphism, then the field Q(R) of fractions of R
has the unique structure of qsi field extending that of R.
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Proof. — See for example, [6, Proposition 2.5.]. �

We can interpret the example in 3.2.4 from another viewpoint. We con-
structed there from a difference ring (S, σ) a qsi algebra ((S, σ)[[X]], Σ̂, Θ̂∗).
We notice that this procedure is a particular case of Proposition 3.11. In fact,
given a difference ring (S, σ), as in 3.2.2, by adding the trivial derivations,
we get the qsi algebra (S, σ, σ−1, θ∗), where

θ(0) = IdS ,

θ(i) = 0 for i > 1.
Therefore we have the universal Hopf morphism

(S, σ, σ−1, θ∗) −→
(
F (Z, S\)[[X]], Σ̂, Θ̂∗

)
by Proposition 3.11. So we obtained the qsi algebra

(
F (Z, S\)[[X]], Σ̂, Θ̂∗

)
as a result of composite of two functors. Namely,

(1) The functor : (Category of Difference Algebras) → (Category of qsi
Algebras) of adding trivial derivations

(2) The functor : (Category of qsi Algebras) → (Category of qsi Alge-
bras), A 7→ B if there exists the universal Hopf morphism A→ B.

3.2.7. Galois hull L/K for a qsi field extension

We can develop a general Galois theory for qsi field extensions analogous
to our theories in [23], [24] and [25] thanks to the universal Hopf morphism.
Let L/k be an extension of qsi fields such that the abstract field L\ is finitely
generated over the abstract field k\. Let us assume that we are in character-
istic 0. General theory in [7] works, however, also in characteristic p > 0.

We have by Proposition 3.11 the universal Hopf morphism

ι : (L, σ, σ−1, θ∗) −→
(

(F (Z, L\),Σ)[[X]], Σ̂, Θ̂∗
)

(3.9)

so that the image ι(L) is a copy of the qsi field L. We have another copy of
L\. The set{

f =
∞∑
i=0

Xiai ∈ F (Z, L\)[[X]]

∣∣∣∣∣ ai = 0 for every i > 1 and Σ(a0) = a0

}
=
{
f ∈ F (Z, L\)[[X]]

∣∣∣ Σ̂(f) = f, Θ̂(i)(f) = 0 for every i > 1
}

(3.10)

forms the sub-ring of constants in the qsi algebra of the twisted power series(
(F (Z, L\),Σ)[[X]], Σ̂, Θ̂∗

)
.
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We identify L\ with the ring of constants through the following morphism.
For an element a ∈ L\, we denote the constant function fa on Z taking the
value a ∈ L\ so that

L\ −→
(

(F (Z, L\),Σ)[[X]], Σ̂, Θ̂∗
)
, a 7−→ fa (3.11)

is an injective ring morphism. We may denote the sub-ring in (3.10) by L\.
In fact, as an abstract ring it is isomorphic to the abstract field L\ and the
endomorphism Σ̂ and the derivations Θ̂(i), (i > 1) operate trivially on the
sub-ring.

We are now exactly in the same situation as in 2.2.2 of the differential
case and in 2.3.2 of the difference case.

We choose a mutually commutative basis {D1, D2, . . . , Dd} of the L\-
vector space Der(L\/k\) of k\-derivations. So L] := (L\, {D1, D2, . . . , Dd})
is a differential field.

So we introduce derivations D1, D2, . . . , Dd operating on the coefficient
ring F (Z, L\). In other words, we replace the target space F (Z, L\)[[X]]
by F (Z, L])[[X]]. Hence the universal Hopf morphism in Proposition 3.11
becomes

ι : L −→ F (Z, L])[[X]].
In the twisted formal power series ring (F (Z, L])[[X]], Σ̂, Θ̂∗), we add differ-
ential operators

D1, D2, . . . , Dd.

So we have a set D of the following operators on the ring (F (Z, L]),Σ)[[X]].

(1) The endomorphism Σ̂.

Σ̂
( ∞∑
i=0

Xiai

)
=
∞∑
i=0

Xiqi(Σ(ai)),

Σ : F (Z, L]) → F (Z, L]) being the shift operator of the ring of
functions on Z.

(2) The q-skew Σ̂-derivations Θ̂(i)’s in (3.6).

Θ̂(l)

( ∞∑
i=0

Xiai

)
=
∞∑
i=0

Xi

(
l + i

l

)
q

ai+l for every l ∈ N.

(3) The derivations D1, D2, . . . , Dd operating through the coefficient
ring F (Z, L]) as in (3.8).

Hence we may write (F (Z, L]),D), where

D = {Σ̂, D1, D2, . . . , Dd, Θ̂∗} and Θ̂∗ = {Θ̂(i)}i∈N.
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We identify using inclusion (3.11)

L] −→ F (Z, L])[[X]].

We sometimes denote the image fa of an element a ∈ L] by a].

We are ready to define Galois hull as in Definition 2.1.

Definition 3.13. — The Galois hull L/K is a D-invariant sub-algebra
of F (Z, L])[[X]], where L is the D-invariant sub-algebra generated by the
image ι(L) and L] and K is the D-invariant sub-algebra generated by the
image ι(k) and L]. So L/K is a D-algebra extension.

As in 2.4, if we have to emphasize that we deal with qsi algebras, we
denote the Galois hull by Lσθ/Kσθ.

We notice that we are now in a totally new situation. In the differential
case, the universal Taylor morphism maps the given fields to the commu-
tative algebra of the formal power series ring so that the Galois hull is an
extension of commutative algebras. The situation is similar for the universal
Euler morphism of difference rings. The commutativity of the Galois hull
comes from the fact in the differential and difference cases, the theory de-
pends on the co-commutative Hopf algebras. When we treat the qsi algebras,
the Hopf algebra Hq is not co-commutative so that the Galois hull L/K is
included in the non-commutative algebra of twisted formal power series al-
gebra, the dual algebra of Hq. So even if we start from a (commutative) field
extension L/k, the Galois hull can be non-commutative. See the examples
in Sections 4, 5 and 6. We also notice that when L/k is a Picard–Vessiot
extension of qsi algebras, the Galois hull is commutative [26].

As the Galois hull is non-commutative, if we limit ourselves to the
category of commutative L\-algebras (Alg /L\), we can not detect non-com-
mutative nature of the qsi field extension. So it is quite natural to extend
the functors onto the category of not necessarily commutative algebras.

3.2.8. Infinitesimal deformation functor FL/k for a qsi field exten-
sion

We pass to the task of defining the infinitesimal deformation functor FL/k
and the Galois group functor. The latter is a subtle object and we postpone
discussing it until Section 7.

Instead we define naively the infinitesimal automorphism functor
Inf-Gal(L/k), which does not seem useful in general.
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We have the universal Taylor morphism

ιL] : L] −→
(
L\[[W1,W2, . . . ,Wd]],

{
∂

∂W1
,
∂

∂W2
, . . . ,

∂

∂Wd

})
(3.12)

as in (2.6). So by (3.12), we have the canonical morphism
(F (Z, L])[[X]],D) −→ (F (Z, L\[[W ]])[[X]],D), (3.13)

where in the target space

D =
{

Σ̂, ∂

∂W1
,
∂

∂W2
, . . . ,

∂

∂Wd
, Θ̂∗

}
by abuse of notation.

For an L\-algebra A, the structure morphism L\ → A induces the canon-
ical morphism

(F (Z, L\[[W ]])[[X]],D) −→ (F (Z, A[[W ]])[[X]],D). (3.14)
The composite of the D-morphisms (3.13) and (3.14) gives us the canonical
morphism

(F (Z, L])[[X]],D) −→ (F (Z, A[[W ]])[[X]],D). (3.15)
The restriction of the morphism (3.15) to the D-invariant sub-algebra L gives
us the canonical morphism

ι : (L,D) −→ (F (Z, A[[W ]])[[X]],D). (3.16)
We can define the functor exactly as in Paragraphs 2.2.4 for the differential
case and 2.3.3 for the difference case.

Definition 3.14 (Introductory definition). — We define the functor
FL/k : (Alg /L\) −→ (Set)

from the category (Alg /L\) of commutative L\-algebras to the category (Set)
of sets, by associating to an L\-algebra A, the set of infinitesimal deforma-
tions of the canonical morphism (3.15).

Hence
FL/k(A)

=


f : (L,D)
→(F (Z,A[[W1,W2, . . . ,Wd]])[[X]],D)

∣∣∣∣∣∣∣∣∣
f is an algebra morphism compatible
with D, congruent to the canonical
morphism ι modulo nilpotent elements
such that f = ι when restricted to the
sub-algebra K

.
The introductory definition 3.14 is exact, analogous to Definitions in 2.2.4

and 2.3.3 and easy to understand. As we explained in 3.2.7, we, however, have
to consider also deformations over non-commutative algebras.
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We have to treat both the category of commutative L\-algebras and that
of not necessarily commutative L\-algebras.

Definition 3.15. — All the associative algebras that we consider are
unitary and the morphisms between them are assumed to be unitary. For a
commutative algebra R, we denote by (CAlg /R) the category of associative
commutative R-algebras. We consider also the category (NCAlg /R) of not
necessarily commutative R-algebras A such that (the image in A of) R is
in the center of A. When there is no danger of confusion the category of
commutative algebras is denoted simply by (Alg /R).

Let us come back to the qsi field extension L/k. We can now give the
infinitesimal deformation functors in an appropriate language.

Definition 3.16. — The functor FL/k defined in 3.14 will be denoted
by CFL/k. So we have

CFL/k : (CAlg /L\) −→ (Set).

We extend formally the functor CFL/k in 3.14 from the category (CAlg /L\)
to the category (NCAlg /L\). Namely, we define the functor

NCFL/k : (NCAlg /L\) −→ (Set)
by setting
FL/k(A)

=

f : (L,D)
→(F (Z, A[[W1,W2, . . . ,Wd]])[[X]],D)

∣∣∣∣∣∣∣
f is an algebra morphism compatible with
D, congruent to the canonical morphism ι

modulo nilpotent elements such that f = ι

when restricted to the sub-algebra K


for A ∈ ob(NCAlgL/k).

In the examples, we consider qsi structure, differential structure and dif-
ference structure of a given field extension L/k and we study Galois groups
with respect to the structures. So we have to clarify which structure is in
question. For this reason, when we treat qsi structure, we sometimes add
suffix σθ∗ to indicate that we treat the qsi structure as in 2.4. For example
NCFσθ∗L/k.

3.2.9. Definition of commutative Galois group functor CInf-Gal(L/k)

Similarly to the Galois group functor Inf-Gal(L/k) in the differential
and the difference cases, we may introduce the group functor CInf-Gal(L/k)
called commutative Galois group functor, on the category (CAlg /L\).
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Definition 3.17. — In the differential case and in the difference case,
the Galois group in our Galois theory is the group functor

CInf-Gal(L/k) : (CAlg /L\) −→ (Grp)

defined by

CInf-Gal(L/k)(A)

=


f : L⊗̂L]A[[W ]]
→ L⊗̂L]A[[W ]]

∣∣∣∣∣∣∣∣
f is a K ⊗L] A[[W ]]-automorphism compatible
with D, continuous with respect to the W-adic
topology and congruent to the identity modulo
nilpotent elements


for a commutative L\-algebra A. See [16, Definition 2.19.].

Then the group functor CInf-Gal(L/k) would operate on the functor
CFL/k in such a way that the operation (CInf-Gal(L/k),FL/k) is a torsor.

Remark 3.18. — For a qsi field extension L/k, the Galois hull L/K is, in
general, a non-commutative algebra extension so that the commutative Ga-
lois group functor CInf-Gal(L/k) on the category (CAlg /L\) is not adequate
for the following two reasons.

(1) If we measure the extension L/K over the category (CAlg /L\)
by the commutative Galois group functor CInf-Gal(L/k), the non-
commutative data of the extension L/K are lost.

(2) We hope to get a quantum group as a Galois group. A quantum
group is, however, in any sense not a group functor on the category
(NCAlg /L\) of non-commutative L\-algebras.

In the three coming sections, we settle these points for three concrete
examples. Looking at these examples, we are led to a general definition in
Section 7. The idea is to look at the coordinate transformations of initial
conditions. As it is easier to understand it with examples, we explain the
definition there. See Questions 7.1.

4. The First Example, the qsi field extension
L/k = (C(t), σ, σ−1, θ∗)/C

From now on, we assume C = C. The arguments below work for an
algebraically closed field C of characteristic 0. So q is a non-zero complex
number.
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4.1. Analysis of the example

Let t be a variable over C. The field C(t) of rational functions has various
structures: the differential field structure, the q-difference field structure and
the qsi field structure that we are going to define. We are interested in the
Galois group of the field extension C(t)/C with respect to these structures.
Let σ : C(t) → C(t) be the C-automorphism of the rational function field
C(t) sending t to qt. So (C(t), σ) is a difference field. We assume qn 6= 1 for
every positive integer n. We define a C-linear map θ(1) : C(t)→ C(t) by

θ(1)(f(t)) := σ(f)− f
σ(t)− t = f(qt)− f(t)

(q − 1)t for f(t) ∈ C(t).

For an integer n > 2, we set

θ(n) := 1
[n]q!

(
θ(1)
)n

.

It is convenient to define
θ(0) = IdC(t) .

It is well-known and easy to check that (C(t), σ, σ−1, θ∗) = (C(t), σ, σ−1,
{θ(i)}i∈N) is a qsi algebra.

We have to clarify a notation. For an algebra R, a sub-algebra S of R
and a sub-set T of R, we denote by S〈T 〉alg the sub-algebra of R generated
over S by T .

Lemma 4.1. — The difference field extension (C(t), σ)/(C, IdC) is a
Picard–Vessiot extension. Its Galois group is the multiplicative group GmC.

Proof. — Since t satisfies the linear difference equation σ(t) = qt over C
and the field CC(t) of constant of C(t) is C, the extension (C(t), σ)/(C, IdC) is
a difference Picard–Vessiot extension. The result follows from the definition
of the Galois group. �

When q → 1, the limit of the qsi ring (C(t), σ, σ−1, θ∗) is the differen-
tial algebra (C(t),d/dt). We denote by AF1k, the algebraic group of affine
transformations of the affine line so that

AF1C =
{[
a b
0 1

]∣∣∣∣ a, b ∈ C, a 6= 0
}
.

Then
AF1C ' GmC n GaC,
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where

GmC '
{[
a 0
0 1

]
∈ AF1C

∣∣∣∣ a ∈ C∗
}
,

GaC '
{[

1 b
0 1

]
∈ AF1C

∣∣∣∣ b ∈ C
}
.

Lemma 4.2. — The Galois group of differential Picard–Vessiot extension
(C(t),d/dt)/C is GaC.

Proof. — We consider the linear differential equation

Y ′ =
[
0 1
0 0

]
Y, (4.1)

where Y is a 2× 2-matrix with entries in a differential extension field of C.
Then C(t)/C is the Picard–Vessiot extension for (4.1),

Y =
[
1 t
0 1

]
being a fundamental solution of (4.1). The result is well-known and follows
from, the definition of Galois group. �

The qsi field extension (C(t), σ, σ−1, θ∗)/C is not a Picard–Vessiot exten-
sion in the sense of Hardouin [5] and Masuoka and Yanagawa [14] so that we
can not treat it in the framework of Picard–Vessiot theory. We can apply,
however, Hopf Galois theory of Heiderich [7].

Proposition 4.3. — The commutative Galois group CInf-Gal((C(t), σ,
σ−1, θ∗)/C) of the extension (C(t), σ, σ−1, θ∗)/C is isomorphic to the formal
completion ĜmC of the multiplicative group GmC.

Proof. — Before we start the proof the Proposition, we observe the be-
haviors of the Galois group under specializations. Theories of Umemura [22]
and Heiderich [7] single out only the Lie algebra. Proposition 4.3 should be
understood in the following manner. We have two specializations of the qsi
field extension (C(t), σ, σ−1, θ∗)/C.

(i) Forgetting θ∗, or equivalently specializing

θ(i) −→ 0 for i > 1,

we get the difference field extension (C(t), σ)/C. See 3.2.2.
(ii) The specialization q → 1 gives the differential field extension

(C(t),d/dt)/C. See 2.2.2.

We can summarize the behavior of the Galois group under the specializa-
tions.
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(1) Proposition 4.3 says that the commutative Galois group
C Inf-Galσ,σ−1,θ∗(L/k)

of (C(t), σ, σ−1, θ∗)/C is the formal completion ĜmC of the multi-
plicative group GmC.

(2) By Lemma 4.1, the Galois group of the specialization (ii) is the
formal completion ĜaC of the additive group GaC.

(3) The Galois group of the specialization (ii) is the formal completion
ĜaC of the additive group GaC by Lemma 4.2.

Now let us come back to the proof of the Proposition. Let us set L =
(C(t), σ, σ−1, θ∗) and k = (C, σ, σ−1, θ∗). By definition of the universal Hopf
morphism (3.8),

ι : (L, σ, σ−1, θ∗) −→
(
F (Z, L\)[[X]], Σ̂, Θ̂∗

)
,

t 7−→ tQ+X ∈ F (Z, L\)[[X]],

where Q ∈ F (Z, L\) is the function on Z with values in C ⊂ L\ defined by
Q(n) = qn for n ∈ Z.

We denote the function Q by the matrix

Q =
[
. . . −2 −1 0 1 2 . . .
. . . q−2 q−1 1 q q2 . . .

]
according to the convention. We take the derivation ∂/∂t ∈ Der(L\/k\) as
a basis of the 1-dimensional L\-vector space Der(L\/k\) of k\-derivations of
L\. So (∂/∂t)(ι(t)) = Q is an element of the Galois hull L. Therefore

L ⊃ Lo := L]〈X,Q〉alg,

which is the L]-sub-algebra of F (Z, L])[[X]] generated by X and Q. So the
algebra Lo is invariant under Σ̂, Θ̂∗ and ∂/∂t. Since QX = qXQ, the Ga-
lois hull L is a non-commutative L\-algebra. Now we consider the universal
Taylor expansion

(L\, ∂/∂t) −→ L\[[W ]]
and consequently we get the canonical morphism

ι : L −→ F (Z, L])[[X]] −→ F (Z, L\[[W ]])[[X]]. (4.2)
We study infinitesimal deformations of ι in (4.2) over the category (CAlg /L\)
of commutative L\-algebras. Let A be a commutative L\-algebra and

ϕ : L −→ F (Z, A[[W ]])[[X]]
be an infinitesimal deformation of the canonical morphism

ι : L −→ F (Z, A[[W ]])[[X]].
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Sub-lemma 4.4. — We keep the notation above.

(1) There exists a nilpotent element n ∈ A such that ϕ(Q) = (1 + n)Q
and ϕ(X) = X.

(2) The commutative infinitesimal deformation ϕ is determined by the
nilpotent element n such that ϕ(Q) = (1 + n)Q.

(3) Conversely, for every nilpotent element n ∈ A, there exists a unique
commutative infinitesimal deformation ϕe ∈ FL/k(A) such that
ϕe(Q) = eQ, where we set e = 1 + n.

Sublemma proves Proposition 4.3. �

Proof of Sublemma. The elementsX,Q ∈ L satisfy the following equation.
∂X

∂W
= ∂Q

∂W
= 0,

Σ̂(X) = qX, Σ̂(Q) = qQ,

Θ̂(1)(X) = 1, Θ̂(i)(X) = 0 for i > 2,

Θ̂(i)(Q) = 0 for i > 1.
So ϕ(X), ϕ(Q) satisfy the same equations as above, which shows

ϕ(X) = X + fQ ∈ F (Z, A[[W ]])[[X]],
ϕ(Q) = eQ ∈ F (Z, A[[W ]])[[X]],

where f, e ∈ A. Since ϕ is an infinitesimal deformation of ι, f and e− 1 are
nilpotent elements in A. We show the first f = 0. In fact, it follows from the
equation

QX = qXQ

that
ϕ(Q)ϕ(X) = qϕ(X)ϕ(Q)

or
eQ(X + fQ) = q(X + fQ)eQ.

So we have
eQfQ = qfQeQ

and so
efQ2 = qfeQ2.

Therefore
ef = qfe.

Since e is a unit, e− 1 being nilpotent in A,
f − qf = 0,

so that
(1− q)f = 0.
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As 1 − q is a non-zero complex number, f = 0. So we proved (1). In
other words, we determined the restriction of ϕ to the sub-algebra Lo =
L]〈X,Q〉alg ⊂ L. To prove (2), we have to show that ϕ is determined by
its restriction on Lo. To this end, we take two commutative infinitesimal
deformations ϕ,ψ ∈ FL/k(A) such that

ϕ(Q) = eQ and ψ(Q) = eQ,

where n is a nilpotent element in A and we set e = 1 + n. Since

L = L].ι(C(t))〈X,Q〉alg = L]〈X,Q, ι((t+ c)−1)〉c∈C alg,

and since ϕ is a K = L]-morphism, it is sufficient to show that

ϕ((t+ c)−1) = ψ((t+ c)−1)

for every complex number c ∈ C. Since ι(t+ c) ∈ Lo, ϕ(t+ c) = ψ(t+ c) and
so

ϕ((t+ c)−1) = ϕ(t+ c)−1 = ψ(t+ c)−1 = ψ((t+ c)−1).
This is what we had to show.

Now we prove (3). We introduce another sub-algebra by

L̃ :=
{ ∞∑
n=0

Xnan ∈ F (Z, L])[[X]]

∣∣∣∣∣ an ∈ L](Q) for every n ∈ N

}
.

By commutation relation (3.4), this L̃ is indeed a sub-algebra ofF (Z,L])[[X]],
and is invariant under Σ̂, Θ̂∗ and the derivation ∂/∂t. We show L ⊂ L̃. Since
the sub-algebra L is generated by ι(L) and L] along with operators Σ̂, Θ̂∗
and ∂/∂t. So it is sufficient to prove L] and ι(L) are sub-algebras of L̃. The
first inclusion L] ⊂ L̃ being trivial, it remains to show the second inclusion:

ι(L) = ι(C(t)) ⊂ L̃.

We have to show that (i) ι(t) ∈ L̃, and (ii) ι(t+ c)−1 ∈ L̃ for every complex
number c ∈ C. The first assertion (i) follows from the equality ι(t) = tQ+X.
As for the assertion (ii), we notice

ι((t+ c)−1) = ι(t+ c)−1

= (tQ+X + c)−1

= (tQ+ c)−1(1 + (tQ+ c)−1X)−1

= (tQ+ c)−1(1−A)−1

= (tQ+ c)−1
∞∑
n=0

An, (4.3)
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where we set A = −(tQ + c)−1X. Upon writing a(Q) := −(tQ + c)−1, we
have

A = Xa(qQ), A2 = X2a(qQ)a(q2Q), . . . , An = Xn
n∏
i=1

a(qiQ), . . .

by commutation relation (3.4). Hence, by (4.3), ι(t + c)−1 ∈ L̃. Thus we
proved the inclusion Lo ⊂ L̃.

To complete the proof of (3), a nilpotent element n of the algebra A being
given, we set e = 1 + n. As we have qXeQ = eQX, by the commutation
relation (3.4), there exists an infinitesimal deformation

ψe : L̃ −→ F (Z, A[[W ]])[[X]]

such that ψe(X) = X and ψe(Q) = eQ and continuous with respect to the
X-adic topology. Therefore to be more concrete ψe maps an element

∞∑
n=0

Xnan(Q) with an(Q) ∈ L](Q) for every n ∈ N

of the algebra L̃ to an element
∞∑
n=0

Xnan(eQ) ∈ F (Z, A[[W ]])[[X]].

If we denote the restriction ψe|L to L by ϕe, then ϕe satisfies all the required
conditions except for the uniqueness. The uniqueness follows from (2) that
we have already proved above. �

We have shown that the functor

FL/k : (Alg /L\)→ (Set)

is a torsor of the group functor ĜmC. For origin of the group structure, see
Paragraph 2.2.6 as well as Paragraph 4.3.1 below.

In the course of the proof of Proposition 4.3, we have proved the following

Proposition 4.5. — The Galois hull L coincides with the sub-algebra

L]〈X,Q, (c+ tQ+X)−1〉c∈C alg

of F (Z, L])[[X]] generated by L], X,Q and the set {(c+ tQ+X)−1 | c ∈ C}.
The commutation relation of X and Q is

QX = qXQ.

In particular, if q 6= 1, then the Galois hull is non-commutative.
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4.2. Non-commutative deformation functor NCFL/k for L/k =
(C(t), σ, σ−1, θ∗)/C

We are ready to describe the non-commutative deformations. Let A ∈
ob(NCAlg /L\).

Lemma 4.6. — If q 6= 1, we have

NCFL/k(A) =
{

(e, f) ∈ A2 | qfe = ef and e− 1, f are nilpotent
}

for every A ∈ ob(NCAlg /L\).

Proof. — Since q 6= 1, it follows from the argument of the proof of Sub-
lemma 4.4 that if we take

ϕ ∈ NCFL/k(A) for A ∈ ob (NCAlg /L\),

then ϕ(X) = X + fQ and ϕ(Q) = eQ for f, e ∈ A.

Since ϕ is an infinitesimal deformation of ι, f and e− 1 are nilpotent.

It follows from QX = qXQ that

eQ(X + fQ) = q(X + fQ)eQ

so ef = qfe.

Suppose conversely that elements e, f ∈ A such that e − 1, f are nilpo-
tent and such that ef = qfe are given. Then the argument of the proof of
Sublemma 4.4 allows us to show the unique existence of the infinitesimal
deformation ϕ ∈ NCFL/k(A) such that

ϕ(X) = X + fQ,ϕ(Q) = eQ.

�

We are going to see in 4.3.1 that theoretically, we can identify

NCFL/k(A)=
{[
e f
0 1

]∣∣∣∣ e, f ∈A, qfe= ef and e−1, f are nilpotent
}
. (4.4)

Corollary 4.7 (Corollary to the proof of Lemma 4.6). — When q =
1 that is the case excluded in our general study, we consider the qsi field
extension

(C(t), Id, θ∗)/C
as in 3.2.3. So θ∗ is the iterative derivation;

θ(0) = Id, θ(i) = 1
i!
di

dti
for i > 1.
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Then we have
LId,θ∗ ' Ld/dt, (4.5)
NCF (C(t),Id,θ∗)/C(A) = {f ∈ A | f is a nilpotent element } (4.6)

for A ∈ ob (NCAlg /L\).

Proof. — In fact, if q = 1, then

Q =
[
. . . −2 −1 0 1 2 . . .
. . . 1 1 1 1 1 . . .

]
= 1 ∈ C.

So LId,θ∗ is generated by X over K. Therefore LId,θ∗ ' Ld/dt. Since Q = 1 ∈
K, ϕ(Q) = Q for an infinitesimal deformation

ϕ ∈ NCF (C(t),Id,θ∗)/C(A)
and we get (4.6). �

4.2.1. Quantum group enters

To understand Lemma 4.6, it is convenient to introduce a quantum group.

Definition 4.8. — Let A ∈ ob(NCAlg /C). We say that two sub-sets
S, T of A are element-wisely commutative if for every s ∈ S, t ∈ T , we have
[s, t] = st− ts = 0.

For A ∈ ob (NCAlg /L\), we set

Hq(A) =
{[
e f
0 1

] ∣∣∣∣ e, f ∈ A, e is invertible in A, ef = qfe

}
.

Lemma 4.9. — Given two matrices

Z1 =
[
e1 f1
0 1

]
, Z2 =

[
e2 f2
0 1

]
∈ Hq(A),

suppose that {e1, f1} and {e2, f2} are element-wisely commutative. Then we
have

Z1Z2 ∈ Hq(A).

Proof. — Since

Z1Z2 =
[
e1e2 e1f2 + f1

0 1

]
,

we have to prove
e1e2(e1f2 + f1) = q(e1f2 + f1)e1e2.

This follows from the element-wise commutativity of {e1, f1} and {e2, f2},
and from the conditions e1f1 = qf1e1, e2f2 = qf2e2. �
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Lemma 4.10. — Given a matrix

Z =
[
e f
0 1

]
∈ Hq(A),

set
Z̃ =

[
e−1 −e−1f
0 1

]
∈M2.

Then we have
Z̃ ∈ Hq−1(A) and Z̃Z = ZZ̃ = I2.

Proof. — We can check it by a simple calculation. See also Remark 4.11,
where the first assertion is proved. �

Remark 4.11. — If q2 6= 1, for f 6= 0, Z̃ 6∈ Hq(A). In fact, let us set

Z̃ =
[
ẽ f̃
0 1

]
so that, ẽ = e−1, f̃ = −e−1f . Then ẽf̃ = e−1(−e−1f) = −e−2f and f̃ ẽ =
−e−1fe−1 = −qe−2f . So

ẽf̃ = −e−2f = q−1f̃ ẽ (4.7)
showing

Z̃ ∈ Hq−1(A).
Now we assume to the contrary that Z̃ ∈ Hq(A). We show that it would
lead us to a contradiction. The assumption would imply that we have

ẽf̃ = qf̃ ẽ. (4.8)
It follows from (4.7) and (4.8)

qf̃ ẽ = q−1f̃ ẽ. (4.9)
so that we would have

q2f̃ ẽ = f̃ ẽ. (4.10)
Since ẽ = e−1 is invertible in A,

(q2 − 1)f̃ = 0.

As the algebra A is a C-vector space and f̃ 6= 0, the complex number q2−1 =
0 which is a contradiction.

Lemma 4.12. — Let u and v be symbols over C. We have shown that we
find a C-Hopf algebra

Hq = C〈u, u−1, v〉alg/(uv − qvu) (4.11)
as an algebra so that

uu−1 = u−1u = 1, u−1v = q−1vu−1.
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Definition of the algebra Hq determines the multiplication

m : Hq ⊗C Hq −→ Hq,

the unit
η : C −→ Hq

that is the composition of natural morphisms

C −→ C〈u, u−1, v〉alg

and
C〈u, u−1, v〉alg −→ C〈u, u−1, v〉alg/(uv − qvu) = Hq.

The product of matrices gives the co-multiplication

∆: Hq −→ Hq ⊗C Hq,

which is a C-algebra morphism defined by

∆(u) = u⊗ u, ∆(u−1) = u−1 ⊗ u−1, ∆(v) = u⊗ v + v ⊗ 1,

for the generators u, u−1, v of the algebra Hq, the co-unit is a C-algebra
morphism

ε : Hq −→ C, ε(u) = ε(u−1) = 1, ε(v) = 0
for the generators u, u−1, v of the algebra Hq. The antipode

S : Hq −→ Hq

is a C-anti-algebra morphism given by

S(u) = u−1, S(u−1) = u, S(v) = −u−1v.

Let us set
HqL\ := Hq ⊗C L

\

so that HqL\ is an L\-Hopf algebra. We notice that for an L\-algebra A,
Hq(A) = HomL\-algebra(HqL\ , A)

=
{[
e f
0 1

] ∣∣∣∣ e, f ∈ A, ef = qfe, e is invertible
}
.

Remark 4.13. — We know by general theory that the antipode S : H →
H that is a linear map making a few diagrams commutative, is necessarily
an anti-endomorphism of the algebra H so that

S(ab) = S(b)S(a) for all elements a, b ∈ H and S(1) = 1.

See Manin [12, Section 1, 2].

The Hopf algebra Hq is a q-deformation of the affine algebraic group AF1C
of affine transformations of the affine line.
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Anyhow, we notice that the quantum group appears in this very simple
example showing that quantum groups are indispensable for a Galois theory
of qsi field extensions.

4.3. Observations on the Galois structures of the field extension
C(t)/C

4.3.1. Where does quantum group structure come from?

Let us now examine that the group structure in 2.2.6 arising from the
variation of initial conditions coincides with the quantum group structure
defined in 4.2.1.

To see this, we have to clearly understand the initial condition of a formal
series

f(W,X) =
∞∑
i=0

Xiai(W ) ∈ F (Z, A[[W ]])[[X]]

so that the coefficients ai’s, which are elements of F (Z, A[[W ]]), are functions
on Z taking values in the formal power series ring A[[W ]]. The initial condi-
tion of f(W,X) is the value of the function f(W, 0) = a0(W ) ∈ F (Z, A[[W ]])
at n = 0 which we may denote by

f(W, 0)|n=0 ∈ A[[W ]].

As in Example 2.3, we set

T (W,X) := ι(t) = (t+W )Q+X ∈ F (Z, L\[[W ]])[[X]].

ForA∈ ob(NCAlg/L\), we take an infinitesimal deformation ϕ∈NCFL/k(A)
so that the morphism ϕ : L → F (Z, A[[W ]])[[X]] is determined by the image

T̃ (W,X) := ϕ(t) ∈ F (Z, A[[W ]])[[X]]

of t ∈ L ⊂ L, the qsi field L being a sub-algebra of L by the universal Hopf
morphism. It follows from Lemma 4.6 that there exist e, f ∈ A such that
ef = qfe, the elements e− 1, f are nilpotent and such that

ϕ(t) = (e(t+W ) + f)Q+X. (4.12)

Therefore,
T̃ (W,X) = T ((t(e− 1) + f) + eW,X).

Since T (W,X) and T̃ (W,X) satisfy

Σ̂(T) = qT and Θ̂(1)(T) = 1,
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their difference is measured at the initial conditions. The initial condition of
T (W,X) is t+W and that of T̃ (W,X) is et+f+W . Namely, the infinitesimal
deformation ϕ arises from the coordinate transformation

t+W 7−→ et+ f + eW

or equivalently
W 7−→ t(e− 1) + f + eW.

We answer the question above in Observation 9.2.

4.3.2. Quantum Galois group NC Inf-Gal((C(t), σ, σ−1, θ∗)/C)

The Hopf algebra Hq in 4.2.1 defines a functor

ĤqL\ : (NCAlg /L\) −→ (Set)
such that

ĤqL\(A) =
{
ψ : Hq ⊗C L

\ −→ A

∣∣∣∣∣ψ is a L\-algebra morphism such that
ψ(u)− 1, ψ(v) are nilpotent

}
for every A ∈ ob(NCAlg /L\). In other words, ĤqL\ is the formal completion
of the quantum group Hq ⊗C L

\ = HqL\ . We can summarize our results in
the following form.

Theorem 4.14. — The quantum formal group ĤqL\ operates on the
functor NCFL/k in such a way that there exists a functorial isomorphisms

NCFL/k ' ĤqL\ . (4.13)

The restriction of the functor NCFL/k on the sub-category (CAlg /L\) gives
the functorial isomorphism

NCFL/k|(CAlg /L\) ' ĜmL\ .

Or equivalently,

(1) We have not only isomorphism (4.13) of functors on the category
(NCAlg /L\) taking values in the category (Set) of sets, but also
we can identify, by this isomorphism, the co-product of the quan-
tum formal group ĤqL\ arising from the multiplication of triangular
matrices in 4.2.1 with composition of coordinate transformations of
the initial condition in 4.3.1. For these two reasons, we say that
the quantum infinitesimal Galois group of the qsi field extension
(C(t), σ, σ−1, θ∗)/C is the quantum formal group ĤqL\ . Namely,

NCinf-Gal((C(t), σ, σ−1, θ∗)/C) ' ĤqL\ .
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(2) The commutative infinitesimal Galois group functor CInf-Gal(L/k)
of the qsi extension (C(t), σ, σ−1, θ∗)/C on the category (Alg /L\) of
commutative L\-algebras is isomorphic to the formal group Ĝm.

The operation of quantum formal group requires a precision.

Remark 4.15. — We should be careful about the operation of quantum
formal group. To be more precise, for ϕ ∈ NCFL/k(A) and ψ ∈ ĤqL\(A) so
that we have

ϕ(t) = (e(t+W ) + f)Q+X ∈ F (Z, A[[W ]])[[X]]
with e, f ∈ A and we imagine the matrix[

ψ(u) ψ(v)
0 1

]
∈M2(A)

corresponding to ψ. If the sub-sets of the algebra A, {ψ(u), ψ(v)} and {e, f}
are element-wisely commutative, the product

ψ · ϕ = $ ∈ NCFL/k(A)
is defined to be

$(t) = (ψ(u)e(t+W ) + (ψ(u)f + ψ(v))Q+X ∈ F (Z, A[[W ]])[[X]].

4.3.3. Non-commutative Picard–Vessiot ring

So far we analyzed the First Example, which is a non-linear qsi equation,
according to general principle of Hopf Galois theory. We finally arrived at
Theorem 4.14 that shows a quantum formal group appears as a Galois group.
Our experiences of dealing Picard–Vessiot theory in our general framework
done in our previous works [22, 26], teach us that we discovered here a new
phenomenon, a non-commutative Picard–Vessiot extension.

We work in the qsi ring (F (Z,C(t))[[X]], Σ̂, Σ̂−1, Θ̂∗). We are delighted
to assert that a non-commutative qsi ring extension

(C〈Q,Q−1, X〉alg, Σ̂, Σ̂−1, Θ̂∗)/C) (4.14)
is a non-commutative Picard Vessiot ring with quantum Galois group Hq.
We consider the fundamental system

Y :=
[
Q X
0 1

]
∈M2(C〈Q,Q−1, X〉alg)

so that the homogeneous linear qsi equations are

Σ̂(Y ) =
[
q 0
0 1

]
Y, Θ̂(1)(Y ) =

[
0 1
0 0

]
Y. (4.15)
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In fact, we can check the first equation in (4.15):

Σ̂(Y ) =
[

Σ̂(Q) Σ̂(X)
Σ̂(0) Σ̂(1)

]
=
[
qQ qX
0 1

]
=
[
q 0
0 1

] [
Q X
0 1

]
=
[
q 0
0 1

]
Y.

The second equality of (4.15) is also checked easily.

Leaving heuristic reasoning totally aside, we study the Picard–Vessiot
extension (4.14) in detail in Sections 9 and 10.

5. The Second Example, the qsi field extension
L/k = (C(t, tα), σ, σ−1, θ∗)/C

5.1. Commutative deformations

As in the previous Section, let t be a variable over C and we assume
that the complex number q is not a root of unity if we do not mention
other assumptions on q. Sometimes we write the condition that q is not a
root of unity, simply to recall it. We work under the condition that α is an
irrational complex number so that t and tα are algebraically independent
over C. Therefore, the field C(t, tα) is isomorphic to the rational function
field of two variables over C. Let qα = exp(α log q), choosing arbitrarily
a branch of the logarithm. Let σ denote the C-automorphism of the field
C(t, tα) such that

σ(t) = qt and σ(tα) = qαtα.

Let us set θ(0) := IdC(t,tα), the map

θ(1) :=
σ − IdC(t,tα)

(q − 1)t : C(t, tα) −→ C(t, tα)

and
θ(n) = 1

[n]q!

(
θ(1)
)n

for n = 2, 3, . . . .

So the θ(i)’s are C-linear operators on C(t, tα) and

L : = (C(t, tα), σ, σ−1, θ∗)

is a qsi field. The restriction of σ and θ∗ to the subfield C are trivial. We
denote the qsi field extension L/C by L/k. We denote tα by y so that as we
mentioned above, the abstract field C(t, tα) = C(t, y) is isomorphic to the
rational function field of two variables over C. We take the derivations ∂/∂t
and ∂/∂y as a basis of the L\-vector space Der(L\/k\) of k\-derivations of
L\. Hence L] = (L\, {∂/∂t, ∂/∂y}) as in [26].
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Let us list the fundamental equations.
σ(t) = qt, σ(y) = qαy, (5.1)

θ(1)(t) = 1, θ(1)(y) = [α]q
y

t
. (5.2)

We explain below the notation [α]q. We are going to determine the Galois
group

NC Inf-Gal(L/k).
Before we start, we notice that by Proposition 4.5, the Galois hull of
the extension (C(t), σ, σ−1, θ∗)/C is not a commutative algebra and since
C(t) is a sub-field of C(t, tα), the Galois hull of the qsi field extension
(C(t, tα), σ, σ−1, θ∗)/C is not a commutative algebra either. Consequently
the qsi field extension (C(t, tα), σ, σ−1, θ∗)/C is not a Picard–Vessiot ex-
tension. See [5], [14] and [26]. So we have to go beyond the general the-
ory of Heiderich [7], Umemura [26] for the definition of the Galois group
NC Inf-Gal(L/k).

It follows from general definition that the universal Hopf morphism
ι : L→ F (Z, L\)[[X]]

is given by

ι(a) =
∞∑
n=0

Xnu[θ(n)(a)] ∈ F (Z, L\)[[X]]

for a ∈ L. Here for b ∈ L, we denote by u[b] the element

u[b] =
[
. . . −2 −1 0 1 2 . . .
. . . σ−2(b) σ−1(b) b σ(b) σ2(b) . . .

]
∈ F (Z, L\).

It follows from the definition above of the universal Hopf morphism ι,

ι(y) =
∞∑
n=0

Xn

(
α

n

)
q

t−nQα−ny,

where we use the following notations. For a complex number β ∈ α+ Z,

[β]q = qβ − 1
q − 1

and (
α

n

)
q

= [α]q[α− 1]q . . . [α− n+ 1]q
[n]q!

.

Q =
[
. . . −2 −1 0 1 2 . . .
. . . q−2 q−1 1 q q2 . . .

]
and Qα =

[
. . . −2 −1 0 1 2 . . .
. . . q−2α q−α 1 qα q2α . . .

]
.

– 1364 –



Toward quantization of Galois theory

We set

Y0 :=
∞∑
n=0

Xn

(
α

n

)
q

t−nQα−n

so that
ι(y) = Y0y in F (Z, L\)[[X]]. (5.3)

Considering k\-derivations ∂/∂t, ∂/∂y in L\ and therefore in F (Z, L\) or in
F (Z, L\)[[X]], we generate the Galois hull L by ι(L) and L\ so that L ⊂
F (Z, L\)[[X]] is invariant under Σ̂, the Θ̂(i)’s and {∂/∂t, ∂/∂y}. We may
thus consider

L ↪−→ F (Z, L])[[X]].
By the universal Taylor morphism

L] = (L\, {∂/∂t, ∂/∂y}) −→ L][[W1,W2]],
we identify L by the canonical morphism

ι : L −→ F (Z, L])[[X]] −→ F (Z, L\[[W1,W2]])[[X]].
We study first the infinitesimal deformations CFL/k of ι on the category
(CAlg/L\) of commutative L\-algebras and then generalize the argument to
the category (NCAlg /L\) of not necessarily commutative L\-algebras.

For a commutative L\-algebra A, let ϕ : L → F (Z, A[[W1,W2]])[[X]]
be an infinitesimal deformation of the canonical morphism ι : L →
F (Z, L\[[W1,W2]])[[X]] so that both ι and ϕ are compatible with operators
{Σ̂, Θ̂∗, ∂/∂W1, ∂/∂W2}.

Lemma 5.1. — The infinitesimal deformation ϕ is determined by the
images ϕ(Y0), ϕ(Q) and ϕ(X).

Proof. — The Galois hull L/K is generated over K = L] by ι(t) = tQ+X
and ι(y) = Y0y with operators Θ̂∗, Σ̂ and ∂/∂t, ∂/∂y along with localizations.
This proves the Lemma. �

Let us set Z0 := ϕ(Y0) ∈ F (Z, A[[W1,W2]])[[X]] and expand it into a
formal power series in X:

Z0 =
∞∑
n=0

Xnan, with an ∈ F (Z, A[[W1,W2]]) for every n ∈ N.

It follows from (5.1) and (5.3)

Σ̂(Z0) = qαZ0

so that
∞∑
n=0

XnqnΣ̂(an) = qα
∞∑
n=0

Xnan. (5.4)
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Comparing the coefficient of the Xn’s in (5.4) we get

Σ̂(an) = qα−nan for n ∈ N.

So an = bnQ
α−n with bn ∈ A[[W1,W2]] for n ∈ N. Namely we have

Z0 =
∞∑
n=0

XnbnQ
α−n with bn ∈ A[[W1,W2]]. (5.5)

It follows from (5.2),

σ(y)− y = θ(1)(y)(q − 1)t

and so by (5.1)
(qα − 1)y = θ(1)(y)(q − 1)t.

Applying the canonical morphism ι and the deformation ϕ, we get

(qα − 1)Y0 = Θ̂(1)(Y0)(q − 1)(tQ+X) (5.6)

as well as by the argument of First Example,

(qα − 1)Z0 = Θ̂(1)(Z0)(q − 1)(teQ+X) (5.7)

where e ∈ A is an invertible element congruent to 1 modulo nilpotent ele-
ments.

Substituting (5.5) into (5.7), we get a recurrence relation among the bm’s;

bm+1 = [α−m]q
[m+ 1]q(e(t+W1))bm.

Hence
bm =

(
α

m

)
q

(e(t+W1))−mb0 for every m ∈ N, (5.8)

where b0 ∈ A[[W1,W2]] and every coefficient of the power series b0 − 1 are
nilpotent.
Since

∂Y0

∂y
= ∂

∂W2

( ∞∑
n=0

Xn

(
α

n

)
q

(t+W1)−nQα−n
)

= 0,

we must have
0 = ϕ

(
∂Y0

∂y

)
= ∂ϕ(Y0)

∂W2
= ∂Z0

∂W2

and consequently
∂b0

∂W2
= 0

so that
b0 ∈ A[[W1]].
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by (5.5). Therefore, we have determined the image

Z0 = ϕ(Y0) =
∞∑
n=0

Xn

(
α

n

)
q

(e(t+W1))−nQα−nb0 (5.9)

by (5.8), where all the coefficients of the power series b0(W1)−1 are nilpotent.

5.2. Commutative deformation functor CFL/k for C(t, tα)/C

In the Second Example, when we deal with the qsi field extension L/k,
the Galois hull L/K is a non-commutative algebra extension. So we have
to consider the functor NCFL/k on the category (NCAlg /L\) of not nec-
essarily commutative L\-algebras. It is, however, easier to understand first
the commutative deformation functor CFL/k that is the restriction on the
sub-category (CAlg /L\) of the functor NCFL/k. We using the notation of
Lemma 5.1, it follows from (5.9) the following Proposition.

Proposition 5.2. — We set

Y1(W1,W2;X) := (t+W1)Q+X, (5.10)

Y2(W1,W2;X) :=
∞∑
n=0

Xn

(
α

n

)
q

(t+W1)−nQα−n(y +W2). (5.11)

Then we have

ι(t) = Y1(W1,W2;X), (5.12)
ι(y) = Y2(W1,W2;X) (5.13)

and

ϕ(Y1(W1,W2;X)) :=Y1((e−1)t+eW1, [b0(W1)−1]y+b0(W1)W2;X), (5.14)
ϕ(Y2(W1,W2;X)) :=Y2((e−1)t+eW1, [b0(W1)−1]y+b0(W1)W2;X). (5.15)

In other words, the infinitesimal deformation ϕ is given by the coordinate
transformation of the initial conditions

(W1,W2) 7−→ (ϕ1(W1,W2), ϕ2(W1,W2)),

where

ϕ1(W1,W2) = (e− 1)t+ eW1, (5.16)
ϕ2(W1,W2) = [b0(W1)− 1]y + b0(W1)W2. (5.17)

The set of transformations in the form of (5.16), (5.17) forms a group.
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Lemma 5.3. — For a commutative L\-algebra A, we set

ĜII (A)

:=
{

((e−1)t+eW1, [b(W1)−1]y+b(W1)W2)
∈ A[[W1,W2]]×A[[W1.W2]]

∣∣∣∣∣ e ∈ A, b(W1) ∈ A[[W1]],
all the coefficients of b(W1)−1
and e− 1 are nilpotent

}
. (5.18)

Then the set ĜII (A) is a group, the group law being the composition of co-
ordinate transformations.

Proof. — We have shown in Umemura [22] that the set of coordinate
transformations of n-variables with coefficients in a commutative ring that
are congruent to the identity modulo nilpotent elements forms a group under
the composite of transformations. So it is sufficient to show:

(1) The set ĜII (A) is closed under the composition.
(2) The identity is in ĜII (A).
(3) The inverse of every element in ĜII (A) is in ĜII (A).

In fact, let
((e− 1)t+ eW1, [b(W1)− 1]y + b(W1)W2),
((f − 1)t+ fW1, [c(W1)− 1]y + c(W1)W2)

be two elements of ĜII (A). We mean by their composite

((ef − 1)t+ efW1,

[b((f − 1)t+ fW1)c(W1)− 1]y + b((f − 1)t+ fW1)c(W1)W2) (5.19)

that is an element of ĜII (A). Certainly the identity (W1,W2) is expressed
for e = 1 and b(W1) = 1. As for the inverse

((e− 1)t+ eW1, [b(W1)− 1]y + b(W1)W2)−1

= ((e−1 − 1)t+ e−1W1, [c(W1)− 1]y + c(W1)W2),
where

c(W1) = 1
b((e−1 − 1)t+ e−1W1) . �

We can summarize what we have proved as follows.

Proposition 5.4. — There exists a functorial inclusion on the category
(CAlg /L\) of commutative L\-algebras

CFL/k(A) := NCFL/k|(CAlg /L\) (A) ↪→ ĜII (A)
that sends infinitesimal deformation ϕ to

((e− 1)t+ eW1, [b0(W1)− 1]y + b0(W1)W2) ∈ ĜII (A)
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for every commutative L\-algebra A.

In the Definition of the group functor ĜII in Lemma 5.3, we can eliminate
the variable W2.

Lemma 5.5. — We introduce a group functor

Ĝ2 : (CAlg /L\) −→ (Grp),

setting

Ĝ2(A) =
{

(e, b(W1)) ∈ A×A[[W1]]
∣∣∣∣All the coefficients of b(W1)− 1
and e− 1 are nilpotent

}
for every A ∈ ob(CAlg /L\). The group law, the identity and the inverse are
given as below.

For two elements (e, b(W1)), (f, c(W1)), their product is by definition

(ef, b((f − 1)t+ fW1)c(W1)) . (5.20)

The identity is (1, 1) and the inverse

(e, b(W1))−1 =
(

1
e
,

1
b((e−1 − 1)t+ e−1W1)

)
.

Then there exists an isomorphism of group functors.

ĜII ' Ĝ2.

Proof. — In fact, for a every commutative algebra A ∈ ob(CAlg /L\), the
map

ĜII (A) −→ Ĝ2(A), (5.21)
((e− 1)t+ eW1, (b(W1)− 1)y + b(W1)W2) 7−→ (e, b(W1)) (5.22)

gives an isomorphism of group functors. �

Remark 5.6. — In the composition laws for ĜII (5.19) and for Ĝ2 (5.20),
we substitute in the variable W1 the linear polynomial (e− 1)t+W1 in the
power series c(W1) to get c((e − 1)t + eW1). Since c(W1) is a power series,
in order that the substitution has sense, we can not avoid the condition that
e − 1 is nilpotent. We can neither define the global group functors GII nor
G2 whose completions are ĜII , Ĝ2 respectively.

It is natural to wonder what is the image of the inclusion map in Propo-
sition 5.4.

Conjecture 5.7. — If q is not a root of unity, the inclusion in Propo-
sition 5.4 is the equality.
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Proposition 5.8. — Origin of the group structure teaches us that if the
Conjecture 5.7 is true, then the group functor

ĜII : (CAlg /L\) −→ (Grp)

operates on the functor

CFL/k : (CAlg /L\) −→ (Set)

through the transformations of the initial conditions (W1,W2), in such a way
that

(ĜII , CFL/k)

is a torsor. So we may say that the Galois group functor

CInf-Gal((C(t, tα)σ, σ−1, θ∗)/C) ' ĜII .

Remark 5.9. — We explain a background of Conjecture 5.7.

Lemma 5.10. — The Galois hull L is a localization of the following ring

L]
〈
Q,X,

1
tQ+X

〉
alg

〈
∂l

∂tl
Y0

〉
alg,l∈N

.

Proof. — Since ι(t) = tQ+X, as we have seen in the First Example,

L]〈Q,X〉alg

〈
∂l

∂tl
Y0

〉
alg,l∈N

⊂ L.

We show that the ring

L]〈Q,X〉alg

〈
∂l

∂tl
Y0

〉
alg,l∈N

is closed under the operations Σ̂, Θ̂(i), ∂/∂t and ∂/∂y of F (Z, L])[[X]]. Ev-
idently the ring is closed under the last two operators. Since the opera-
tors Σ̂ and ∂n/∂tn operating on F (Z, L])[[X]] mutually commute, it follows
from (5.1)

Σ̂
(
∂nY0

∂tn

)
= ∂n

∂tn
Σ̂(Y0) = ∂n

∂tn
(qαY0) = qα

∂nY0

∂tn
.
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So the ring is closed under Σ̂. Similarly since the operators Θ̂(1) and ∂n/∂tn
mutually commute on F (Z, L])[[X]],

Θ̂(1)
(
∂nY0

∂tn

)
= ∂n

∂tn
Θ̂(1)(Y0)

= 1
y

∂n

∂tn
Θ̂(1)(Y0y)

= 1
y

∂n

∂tn
Θ̂(1)(ι(y))

= 1
y

∂n

∂tn
ι(θ(1)(y))

= 1
y

∂n

∂tn
ι

(
σ(y)− y
(q − 1)t

)
= 1
y

∂n

∂tn

(
qαY0y − Y0y

(q − 1)(tQ+X)

)
= 1
y

∂n

∂tn

(
qαY0 − Y0

(q − 1)(tQ+X)

)
,

which is an element of the ring. �

Conjecture 5.7 arises from experience that if q is not a root of unity, we
could not find any non-trivial algebraic relations among the partial deriva-
tives

∂nY0

∂tn
for n ∈ N

over L] so that we could guess that there would be none.

In fact, assume that we could prove our guess. Let ϕ : L → F (Z,
A[[W1,W2]])[[X]] be an infinitesimal deformation of ι. So as we have seen

Z0 = ϕ(Y0) =
∞∑
n=0

Xn

(
α

n

)
q

(e(t+W1))−nQα−nb(W1)

with b(W1) ∈ A[[W1]]. There would be no constraints among the partial
derivatives ∂nb(W1)/∂Wn

1 , n ∈ N and hence we could choose any power series
b(W1) ∈ A[[W1]] such that every coefficient of the power series b(W1)− 1 is
nilpotent.

5.3. Non-commutative deformation functor NCFL/k for C(t, tα)/C

We study the functor NCFL/k(A) of non-commutative deformations

NCFL/k : (NCAlg /L\) −→ (Set).
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For a not necessarily commutative L\-algebra A ∈ ob(NCAlg /L\), let

ϕ : L −→ F (Z, A[[W1,W2]])[[X]] (5.23)

be an infinitesimal deformation of the canonical morphism

ι : L −→ F (Z, A[[W1,W2]])[[X]].

Both t and y are elements of the field C(t, tα) = C(t, y) so that [t, y] =
ty − yt = 0. So for the deformation ϕ ∈ NCFL/k(A) we must have

[ϕ(t), ϕ(y)] = ϕ(t)ϕ(y)− ϕ(y)ϕ(t) = 0. (5.24)

When we consider the non-commutative deformations, the commutativity
(5.24) gives a constraint for the deformation. To see this, we need a Lemma.

Lemma 5.11. — For every l ∈ N, we have

ql
(
α

l

)
q

+
(

α

l − 1

)
q

=
(
α

l

)
q

+ qα−l+1
(

α

l − 1

)
q

.

Proof. — This follows from the definition of q-binomial coefficient. �

Lemma 5.12. — Let A be a not necessarily commutative L\-algebra in
ob(NCAlg /L\). Let e, f ∈ A such that e− 1 and f are nilpotent. We set

A := (e(t+W1) + f)Q+X

and for a power series b(W1) ∈ A[[W1]], we also set

Z :=
∞∑
n=0

Xn

(
α

n

)
q

(e(t+W1) + f)−nQα−nb(W1)

so that A and Z are elements of F (Z, A[[W1]])[[X]]. The following conditions
are equivalent.

(1) [A,Z] := AZ −ZA = 0.
(2) [e(t+W1) + f, b(W1)] = 0.

Proof. — We formulate condition (1) in terms of coefficients of the power
series in X. Assume condition (1) holds so that we have

((e(t+W1) + f)Q+X)
( ∞∑
n=0

Xn

(
α

n

)
q

(e(f +W1) + f)−nQα−nb(W1)
)

=
( ∞∑
n=0

Xn

(
α

n

)
q

(e(f+W1)+f)−nQα−nb(W1)
)

((e(t+W1)+f)Q+X).

(5.25)
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Comparing degree l terms in X of (5.25), we find that condition (1) is equiv-
alent to

ql
(
α

l

)
q

(e(t+W1) + f)−l+1Qα−l+1b(W1)

+
(

α

l − 1

)
q

(e(t+W1) + f)−l+1Qα−l+1b(W1)

=
(
α

l

)
q

(e(t+W1) + f)−lb(W1)(e(t+W1) + f)Qα−l+1

+
(

α

l − 1

)
q

qα−l+1(e(t+W1) + f)−l+1Qα−l+1b(W1). (5.26)

So the condition (1) is equivalent to

ql
(
α

l

)
q

(e(t+W1) + f)b(W1) +
(

α

l − 1

)
q

(e(t+W1) + f)b(W1)

=
(
α

l

)
q

b(W1)(e(t+W1)+f)+
(

α

l − 1

)
q

qα−l+1(e(t+W1)+f)b(W1) (5.27)

for every l ∈ N. Condition (5.27) for l = 0 is condition (2). Hence condi-
tion (1) implies condition (2). Conversely condition (1) follows from (2) in
view of (5.27) and Lemma 5.11. �

Now let us come back to the infinitesimal deformation (5.23) of the canon-
ical morphism ι. The argument in Section 4 allows us to determine the re-
striction ϕ on the sub-algebra generated by ι(t) = tQ+X over L] invariant
under the Θ̂(i)’s, Σ̂ and {∂/∂t, ∂/∂y} in F (Z, L])[[X]]. So there exist e, f ∈ A
such that ef = qfe, e− 1, f are nilpotent and such that

ϕ(Q) = eQ and ϕ(X) = X + fQ,

that are equations in F (Z, A[[W1,W2]])[[X]]. In particular

ϕ(t) = ϕ(tQ+X) = (et+ f)Q+X = (e(t+W1) + f)Q+X,

where we naturally identify rings

F (Z, L])[[X]]→ F (Z, L\[[W1,W2]])[[X]]→ F (Z, A[[W1,W2]])[[X]]

through the canonical maps.

Then the argument in the commutative case allows us to show that there
exists a power series b0(W1) ∈ A[[W1]] such that

ϕ(Y0) =
∞∑
n=0

Xn

(
α

n

)
q

(e(t+W1) + f)−nQα−nb0(W1).
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such that all the coefficients of the power series b0(W1) − 1 are nilpotent.
As we deal with the not necessarily commutative algebra A, the commuta-
tion relation in L gives a constraint. Namely since ι(y) = yY0 and ty = yt
in L so that ι(t)ι(y) = ι(y)ι(t), we get ι(t)(yY0) = (yY0)ι(t) in L and
ϕ(tQ+X)ϕ(Y0) = ϕ(Y0)ϕ(tQ+X). So we consequently have

AZ0 = Z0A in F (Z, A[[W1,W2]])[[X]], (5.28)

setting

A := (e(t+W1)+f)Q+X, Z0 :=
∞∑
n=0

Xn

(
α

n

)
q

(e(t+W1)+f)−nQα−nb0(W1).

Lemma 5.13. — We have

[e(t+W1) + f, b0(W1)] = 0.

Proof. — This follows from (5.28) and Lemma 5.12. �

Definition 5.14. — We define a functor

QG2q : (NCAlg /L\) −→ (Set)

by putting

QG2q(A) =


([
e f
0 1

]
, b(W1)

)
∈M2(A)×A[[W1]]

∣∣∣∣∣∣
e, f ∈ A, ef = qfe,

e is invertible in A, b(W1) ∈ A[[W1]],
[e(t+W1) + f, b(W1)] = 0


for A ∈ ob(NCAlg /l\).

The functor QG2q is almost a quantum group in usual sense of the word.
See Remark 5.6. We also need the formal completion Q̂G2q of the quantum
group functor QG2q so that

Q̂G2q : (NCAlg /L\) −→ (Set)

is given by

Q̂G2q(A) =


([
e f
0 1

]
, b(W1)

)
∈ QG2q(A)

∣∣∣∣∣∣ e− 1, f and all the coefficients of
b(W1)− 1 are nilpotent


for A ∈ ob(NCAlg /L\).

Studying commutative deformations of the Galois hull L/K of
(C(t, tα), σ, σ−1, θ∗)/C, we introduced in Lemma 5.3 the functor ĜII and
in Lemma 5.5 the functor Ĝ2. They are isomorphic. The former involves the
variable W2 but the latter does not. The functor Q̂G2q does not involve the
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variable W2. As you imagine, we also have another functor Q̂GIIq equivalent
to the functor Q̂G2q and involving the variable W2.

Using Definition 5.14, we can express what we have shown.

Proposition 5.15. — There exists a functorial inclusion

NCFL/k(A) ↪→ Q̂G2q(A)

sending ϕ ∈ NCFL/k(A) to([
e f
0 1

]
, b0(W1)

)
∈ Q̂G2q(A).

We show that Q̂G2q is a quantum formal group over L\. In fact, we take
two elements

(G, ξ(W1)) =
([
e f
0 1

]
, ξ(W1)

)
, (H, η(W1)) =

([
g h
0 1

]
, η(W1)

)
of Q̂G2q(A) so that e, f, g, h ∈ A satisfying

ef = qfe, gh = qhg,

the elements e− 1, g − 1 and f, h are nilpotent and such that
[e(t+W1) + f, ξ(W1)] = 0, [g(t+W1) + h, η(W1)] = 0. (5.29)

When the following two sub-sets of the ring A

{e, f} ∪
( the sub-set consisting of all the coefficients

of the power series ξ(W1)

)
, (5.30)

{g, h} ∪
( the sub-set consisting of all the coefficients

of the power series η(W1)

)
, (5.31)

are element-wisely commutative, we define the product of (G, ξ(W1)) and
(H, η(W1)) by

(G, ξ(W1)) ∗ (H, η(W1)) := (GH, ξ((g − 1)t+ h+ gW1)η(W1)).

Lemma 5.16. — The product (GH, ξ((g−1)t+h+gW1)η(W1)) is indeed
an element of Q̂G2q(A).

Proof. — First of all, we notice that the constant term (g−1)t+h of the
linear polynomial in W1

(g − 1)t+ h+ gW1 (5.32)
is nilpotent so that we can substitute (5.32) into the power series ξ(W1).
Therefore

ξ((g − 1)t+ h+ gW1)η(W1)
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is a well-determined element of the power series ring A[[W1]]. We have seen
in Section 4 that if {e, f} and {g, h} are element-wisely commutative, then
the product GH of matrices G,H ∈ HqL\(A) is in HqL\(A). Since

GH =
[
eg eh+ f
0 1

]
,

it remains to show
[eg(t+W1) + eh+ f, ξ((g − 1)t+ h+ gW1)η(W1)] = 0. (5.33)

The proof of (5.33) is done in several steps.

First we show
[ξ((g − 1)t+ h+ gW1), η(W1)] = 0. (5.34)

This follows, in fact, from the element-wise commutativity of the sub-sets
(5.30) and (5.31) above, and the second equation of (5.29).

Second, we show
[eg(t+W1) + eh+ f, ξ((g − 1)t+ h+ gW1)] = 0. (5.35)

To this end, we notice
eg(t+W1) + eh+ f = e((g − 1)t+ h+ gW1) + et+ f. (5.36)

So we have to show
[e((g − 1)t+ h+ gW1) + et+ f, ξ((g − 1)t+ h+ gW1)] = 0. (5.37)

This follows from the first equation of (5.29) and the element-wise commu-
tativity of the sub-sets (5.30) and (5.31).

We prove third
[eg(t+W1) + eh+ f, η(W1)] = 0. (5.38)

In fact, by element-wise commutativity of sub-sets (5.30) and (5.31),
[e(t+ gW1) + eh+ f, η(W1)] = [e(t+ gW1) + eh, η(W1)]

= [e(t+ gW1 + h), η(W1)],
which is equal to 0 thanks to element-wise commutativity of the sub-sets
(5.30) and (5.31) and the second equality of (5.29). �

One can check associativity for the multiplication by a direct calculation.
The unit element is given by

(I2, 1) ∈ Q̂G2q(L\).
The inverse is given by the formula below. For an element

(G, b(W1)) =
([
e f
0 1

]
, b(W1)

)
∈ Q̂G2q(A),
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we set

(G, b(W1))−1 :=
([
e−1 −e−1f
0 1

]
, b(e−1W1) + (e−1t− e−1f)−1

)
∈ Q̂G2q−1(A),

then we have
(G, b(W1))−1 ∗ (G, b(W1)) = (G, b(W1)) ∗ (G, b(W1))−1 = (I2, 1).

Conjecture 5.17. — If q is not a root of unity, the injection in Propo-
sition 5.15 is bijective for every A ∈ ob(NCAlg /L\).

Proposition 5.18. — Conjecture 5.17 implies Conjecture 5.7.

Proof. — Let us assume Conjecture 5.17. Take an element (e, ξ(W1)) ∈
Ĝ2(A) for A ∈ ob(Alg /L\). Since A is commutative, the commutation rela-
tion in Lemma 5.13 imposes no condition on ξ(W1),

(e, ξ(W1)) =
([
e 0
0 1

]
, ξ(W1)

)
∈ Q̂G2q(A).

Conjecture 5.17 says that if q is not a root of unity, (e, ξ(W1)) arise from an
infinitesimal deformation

ι : L → F (Z, A[[W1,W2]])[[X]]. �

Conjecture 5.17 says that we can identify the functor NCFL/k with the
quantum formal group Q̂G2q. To be more precise, the argument in the First
Example studied in 4 allows us to define a formal C-Hopf algebra Îq and
hence

ÎqL\ := Îq⊗̂CL
\,

which is a functor on the category (NCAlg /L\) so that we have a functorial
isomorphism

ÎqL\(A) ' Q̂G2q(A) for every L\-algebra A ∈ ob(NCAlg /L\).

Definition 5.19. — We define a functor

Q̂GIIq : (NCAlg /L\) −→ (Set)
by setting

Q̂GIIq(A)

:=


((e− 1)t+ f + eW1,

(b(W1)− 1)y + b(W1)W2)
∈A[[W1,W2]]×A[[W1,W2]]

∣∣∣∣∣∣∣
e, f ∈ A and b(W1) ∈ A[[W1]],
[(e−1)t+f+eW1, (b(W1)−1)y+b(W1)W2]= 0,
e− 1, f and all the coefficients of the power
series b(W1)− 1 are nilpotent


for every A ∈ ob(NCAlg /L\).
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Lemma 5.20. — The functor Q̂GIIq is a quantum formal group. Namely,
for two elements

u := (u1, u2) := ((e− 1)t+ f + eW1,(b(W1)− 1)y + b(W1)W2),
v := (v1, v2) := ((g − 1)t+ h+ gW1,(c(W1)− 1)y + c(W1)W2)

of Q̂GIIq(A), we consider the following two sub-sets of the ring A :

(1) The sub-set Su of the coefficients of the two power series u1, u2 of
u and

(2) the sub-set Sv of the coefficients of the two power series v1, v2 in v.

If the sets S1 and S2 are element-wisely commutative, we define their product
u ∗ v by

((eg − 1)t+ eh+ f + egW1, (b((g − 1)t+ h+ gW1)c(W1)− 1)y
+ b((g − 1)t+ h+ gW1)c(W1)W2).

that is the composite of coordinate transformations

(W1,W2) 7−→ ((e− 1)t+ f + eW1, (b(W1)− 1)y + b(W1)W2)
and (W1,W2) 7−→ ((g − 1)t+ h+ gW1, (c(W1)− 1)y + c(W1)W2),

then the product u ∗ v is an element of Q̂GIIq. The co-unit is given by the
identity transformation of (W1,W2).

The quantum formal group Q̂GIIq arises as symmetry of the initial con-
ditions of qsi equations.

σ(t) = qt, σ(tα) = qαtα,

θ(1)(t) = 1, θ(1)(tα) = [α]qtα.

Proposition 5.21. — For every algebra A ∈ ob(NCAlg /L\), we have
a functorial isomorphism of quantum formal group

Q̂G2q(A) −→ Q̂GIIq(A)

sending an element([
e f
0 1

]
, b(W1)

)
∈ Q̂G2q(A)

to ((e− 1)t+ f + eW1, b(W1)W2 + (b(W1)− 1)y) ∈ Q̂GII ,q(A).

Thanks to Propositions 5.15, 5.21 and Conjecture 5.17, we are in the
similar situation as in the commutative deformations in 5.2.
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Theorem 5.22. — We have an inclusion

NCFL/k ↪→ Q̂GIIq

of functors on the category (NCAlg /L\) taking values in the category of sets,
where

L/k = (C(t, tα), σ, σ−1, θ∗)/C. (5.39)
Let us assume Conjecture 5.17. Then the inclusion (5.39) is bijection so that
we can identify the functors

NCFL/k ' Q̂GIIq.

The quantum formal group Q̂GIIq operates on the functor NCFL/k in an ap-
propriate sense, through the initial conditions. (cf. The commutativity condi-
tion in Lemma 5.20.) So we may say that the quantum formal Galois group

NC Inf-Gal(L/k) ' Q̂GIIq.

5.4. Summary on the Galois structures of the field extension
C(t, tα)/C

Let us summarize our results on the field extension (C(t, tα)/C).

(1) Difference field extension (C(t, tα), σ)/C. This is a Picard–Vessiot
extension with Galois group GmC ×GmC.

(2) Differential field extension (C(t, tα),d/dt)/C. This is not a Picard–
Vessiot extension. The Galois group

Inf-Gal(L/k) : (CAlg /L\) −→ (Grp)

is isomorphic to ĜmL\ ×L\ ĜaL\ , where ĜmL\ and ĜaL\ are formal
completion of the multiplicative group and the additive group. So
as a group functor on the category (CAlg /L\), we have

ĜmL\(A) = {b ∈ A | b− 1 is nilpotent},

the group law being the multiplication and

ĜaL\(A) = {b ∈ A | b is nilpotent}

is the additive group for a commutative L\-algebra A.
(3) Commutative deformation of qsi extension (C(t, tα), σ, σ−1, θ∗)/C.

If q is not a root of unity, Inf-Gal(L/k) is an infinite-dimensional
formal group such that we have

0 −→ \A[[W1]]∗ −→ Inf-Gal(L/k)(A) −→ Ĝm(A) −→ 0,
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where \A[[W1]]∗ denotes the multiplicative group

{a ∈ A[[W1]] | all the coefficients of power series a− 1 are nilpotent}

modulo Conjecture 5.17.
(4) Non-commutative Galois group. If q is not a root of unity, the Galois

group NC Inf-Gal(L/k) is isomorphic to the quantum formal group
Q̂GIIq:

NC Inf-Gal(L/k) ' Q̂GIIq

modulo Conjecture 5.17.
We should be careful about the group law. Quantum formal

group structure in Q̂GIIq coincides with the group structure defined
from the initial conditions as in Remark 4.15.

(5) Let us assume q is not a root of unity. If we have a q-difference field
extension (L, σ)/(k, σ) such that t ∈ L with σ(t) = qt, then we can
define the operator θ(1) : L→ L by setting

θ(1)(a) := σ(a)− a
qt− t

.

We also assume the field k is θ(1) invariant. Defining the operator
θ(n) : L→ L by

θ(0) = Id (5.40)

θ(n) = 1
[n]q!

(θ(1))n (5.41)

for every positive integer n so that we have a qsi field extension
(L, σ, σ−1, θ∗)/(k, σ, σ−1, θ∗).

Here arises a natural question of comparing the Galois groups
of the difference field extension (L, σ)/(k, σ) and qsi field extension
(L, σ, σ−1, θ∗)/(k, σ, σ−1, θ∗).

As the qsi field extension is constructed from the difference field
extension in a more or less trivial way, one might imagine that they
coincide or they are not much different.

This contradicts Conjecture 5.17. Let us take our example
C(t, tα)/C. Assume Conjecture 5.17 is true. Then the Galois group
for the qsi extension is Q̂GIIqL\ that is infinite-dimensional, whereas
the Galois group is of the difference field extension is of dimension 2.
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6. The Third Example, the qsi field extension
L/k = (C(t, log t), σ, σ−1, θ∗)/C

We assume that q is a complex number not equal to 0. Let us study the
field extension L/k := C(t, log t)/C from various viewpoints as in Sections 4
and 5.

6.1. q-difference field extension C(t, log t)/C

We consider q-difference operator σ : L → L such that σ is the C-auto-
morphism of the field L satisfying

σ(t) = qt and σ(log t) = log t+ log q. (6.1)

It follows from (6.1) that if q is not a root of unity, then the field of con-
stants of the difference field (C(t, log t), σ) is C and hence (C(t, log t), σ)/C
is a Picard–Vessiot extension with Galois group GmC ×C GaC.

6.2. Differential field extension (C(t, log t),d/dt)/C

As we have
dt
dt = 1 and d log t

dt = 1
t
,

both differential field extensions C(t, log t)/C(t) and C(t)/C are Picard–
Vessiot extensions with Galois group GaC. The differential extension
C(t, log t)/C is not, however, a Picard–Vessiot extension. Therefore, we need
general differential Galois theory [22] to speak of the Galois group of the
differential field extension C(t, log t)/C. The universal Taylor morphism

ι : L→ L\[[X]]
sends

ι(t) = t+X, (6.2)

ι(log t) = log t+
∞∑
n=0

(−1)n+1 1
n

(
X

t

)n
∈ L\[[X]]. (6.3)

Writing log t by y, we take ∂/∂t, ∂/∂y as a basis of L\ = C(t, y)\-vector space
Der(L\/k\) of k\-derivations of L\. It follows from (6.2), (6.3) that

L = a localization of the algebra L]
[
t+X,

∞∑
n=1

(−1)n+1 1
n

(
X

t

)n]
⊂L][[X]].
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We argue as in 4.3.1 and Section 5. For a commutative algebra A ∈
ob(CAlg /L\) and ϕ ∈ FL/k(A), there exist nilpotent elements a, b ∈ A
such that

ϕ(t+X) = t+W1 +X + a,

ϕ

( ∞∑
n=1

(−1)n+1 1
n

(
X

t+W1

)n)
=
∞∑
n=1

(−1)n+1 1
n

(
X

t+W1 + a

)n
+ b.

Therefore we arrived at the dynamical system{
t,

y,
7−→

{
φ(t) = t+X +W1 + a,

φ(y) = y +
∑∞
n=1(−1)n+1 1

n

(
X

t+W1+a

)n
+ b.

(6.4)

In terms of initial conditions, dynamical system (6.4) reads(
t
y

)
7→
(
t+ a
y + b

)
,

where a, b are nilpotent elements of A. So we conclude
Inf-Gal(L/k)(A) = Ĝa(A)× Ĝa(A)

for every commutative L\-algebra A. Consequently we get
Inf-Gal(L/k) ' (ĜaC × ĜaC)⊗C L

\.

6.3. qsi field extension (C(t, log t), σ, σ−1, θ∗)/C

For the automorphism σ : C(t, log t)→ C(t, log t) in Subsection 6.1 we set

θ(0) = IdC(t,log t) and θ(1) =
σ − IdC(t,log t)

(q − 1)t
so that θ(1) : C(t, log t)→ C(t, log t) is a C-linear map. We further introduce

θ(i) := 1
[i]q!

(θ(1))i : C(t, log t) −→ C(t, log t)

that is a C-linear map for i = 1, 2, 3, . . . . Hence if we denote the set {θ(i)}i∈N
by θ∗, then (C(t, log t), σ, σ−1, θ∗) is a qsi ring.

The universal Hopf morphism
ι : C(t, log t)→ F (Z, L])[[X]]

sends, by Proposition 3.11, t and y respectively to
ι(t) = tQ+X,

ι(y) = y + (log q)Z + log q
q − 1

∞∑
n=1

Xn(−1)n+1 1
[n]qqn(n−1)/2 (tQ)−n
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that we identify with

y +W2 + (log q)Z + log q
q − 1

∞∑
n=1

Xn(−1)n+1 1
[n]qqn(n−1)/2 (t+W1)−nQ−n

that is an element of F (Z, L\ [[W1,W2]])[[X]], where we set

Z :=
[
. . . −1 0 1 2 . . .
. . . −1 0 1 2 . . .

]
∈ F (Z,Z).

In particular we have
∂ι(y)
∂W2

= 1. (6.5)

We identify further t ∈ L] with t+W1 ∈ L\[[W1,W2]] and hence
∞∑
n=1

Xn(−1)n+1 1
[n]qqn(n−1)/2 (tQ)−n ∈ F (Z, L

]

)[[X]]

with
∞∑
n=1

Xn(−1)n+1 1
[n]qqn(n−1)/2 (t+W1)−nQ−n ∈ F (Z, L\[[W1,W2]])[[X]].

6.3.1. Commutative deformations CFL/k for (C(t, log t), σ, σ−1, θ∗)/C

Now the argument of Section 5 allows us to describe infinitesimal de-
formations on the category of commutative L\-algebras (CAlg /L\). Let
ϕ : L → F (Z, A[[W1,W2]])[[X]] be an infinitesimal deformation of the canon-
ical morphism ι : L → F (Z, A[[W1,W2]])[[X]] for A ∈ ob(CAlg /L\). Then
there exist e ∈ A such that e− 1 is nilpotent and such that

ϕ ((t+W1)Q+X) = e(t+W1)Q+X,

as we learned in the First Example. To determine the image Z := ϕ(y), we
argue as in the Second Example. We have

σ(y) = y + log q, (6.6)

θ(1)(y) = log q
(q − 1)t . (6.7)

Since the deformation ϕ is qsi morphism, the two equations above give us
relations

Σ̂(Z) = Z + log q, (6.8)

Θ̂(1)(Z) = log q
(q − 1)((t+W1)eQ+X) . (6.9)
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We determine the expansion of the element Z:

Z =
∞∑
n=0

Xnan ∈ F (Z, A[[W1,W2]])[[X]]

so that
an ∈ F (Z, A[[W1,W2]]) for every n ∈ N.

It follows from (6.5) and (6.8)

a0 = y +W2 + b(W1) + (log q)N ∈ F (Z, A[[W1,W2]]),

where b(W1) is an element of A[[W1]] such that all the coefficients of the
power series b(W1) are nilpotent. On the other hand (6.9) tells us

a1 = log q
q − 1

1
(t+W1)eQ, (6.10)

an+1 = − [n]q
[n+ 1]q

1
(t+W1)eQqn an for n > 1. (6.11)

Hence

an = (−1)n+1
(

log q
q − 1

)
1

[n]qqn(n−1)/2 (t+W1)−n(eQ)−n for n > 1. (6.12)

So we get

Z = y +W2 + b(W1) + (log q)N

+ log q
q − 1

∞∑
n=1

Xn(−1)n+1 1
[n]qqn(n−1)/2 (t+W1)−n(eQ)−n, (6.13)

which is an element of F (Z, A[[W1,W2]])[[X]].

Proposition 6.1. —For every commutativeL\-algebraA∈ob(CAlg/L\),
We have a functorial injection

CFL/k(A) −→ Ĝ3(A) :=
{

(e, b(W1))
∈ A×A[[W1]]

∣∣∣∣∣ e− 1 and all the coefficients
of b(W1) are nilpotent

}
sending an element

ϕ ∈ CFL/k(A) to (e, b(W1)) ∈ Ĝ3(A).

Conjecture 6.2. — If q is not a root of unity, then the injection in
Proposition 6.1 is a bijection.

Ĝ3 is a group functor on (CAlg /L\). In fact, for A ∈ ob(Alg /L\), we
define the product of two elements

(e, b(W1)), (g, c(W1)) ∈ Ĝ3(A)
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by
(e, b(W1)) ∗ (g, c(W1)) := (eg, b((g − 1)t+ gW1) + c(W1)).

Then, the product is, in fact, an element of Ĝ3(A), the product is associa-
tive, the unit element of the group law is (I2, 0) ∈ Ĝ3(A) and the inverse
(e, b(W1))−1 = (e−1,−b(e−1W1 + (e−1 − 1)t)).

So if Conjecture 6.2 is true, we have a splitting exact sequence
0 −→ A[[W1]]+ −→ Inf-Gal(L/k)(A) −→ ĜmL\(A) −→ 1,

where A[[W1]]+ denote the additive group of the power series in A[[W1]]
whose coefficients are nilpotent element.

6.3.2. Non-commutative deformations NCFL/k for
(C(t, log t), σ, σ−1, θ∗)/C

The arguments in Section 5 allows us to prove analogous results on
the non-commutative deformations for the qsi field extension (C(t, log t), σ,
σ−1, θ∗)/C. We write assertions without giving detailed proofs. For, since
the proofs are same, it is easy to find complete proofs.

As in the Second Example, doing calculations (6.10), . . . , (6.13) in the
non-commutative case, we can determine the setNCF (C(t,log t),σ,σ−1,θ∗)/C(A).

Proposition 6.3. — For a not necessarily commutative L\-algebra A ∈
ob(NCAlg/L\), we can describe an infinitesimal deformation

ϕ ∈ NCF (C(t,log t),σ,σ−1,θ∗)/C(A).
Namely putting y := log t, we have

ϕ(t) = (e(t+W1) + f)Q+X,

ϕ(y) = y +W2 + b(W1) + (log q)Z

+ log q
q − 1

∞∑
n=1

Xn(−1)n+1 1
[n]qqn(n−1)/2 [e(t+W1) + f ]−nQ−n

that are elements of F (Z, A[[W1,W2]])[[X]], where e, f ∈ A and b(W1) ∈
A[[W1]] satisfying the following conditions.

(1) ef =qfe.
(2) e− 1 and f are nilpotent elements of A.
(3) All the coefficients of the power series b(W1) are nilpotent.
(4) [e(t+W1) + f, b(W1)] = 0.

The commutativity condition (4) comes from the commutativity relation
between the elements t and y = log t in the field L.
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Definition 6.4. — We introduce a functor

Q̂G3q : (NCAlg /L\)→ (Set)

by setting

Q̂G3q(A)

:=


(G, ξ(W1))∈HqL\(A)×A[[W1]]

∣∣∣∣∣∣∣∣∣∣∣∣

(1)G =
[
e f
0 1
]
∈ Ĥq(A) so that

ef=qfe, e−1, f ∈A are nilpotent.
(2)All the coefficients of ξ(W1)

are nilpotent.
(3) [e(t+W1) + f, ξ(W1)] = 0.


Q̂G3q is a quantum formal group. Namely, for

(G, ξ(W1)), (H, η(W1)) ∈ Q̂G3q(A)

such that the two sub-sets

{all the entries of matrix G, all the coefficients of the power series ξ(W1)},
{all the entries of matrix H, all the coefficients of the power series η(W1)}

of A are element-wisely commutative, we define their product by

(G, ξ(W1)) ∗ (H, η(W1)) := (GH, ξ((g − 1)t+ h+ gW1) + η(W1)),

where

H =
[
g h
0 1

]
.

Then, the argument of Lemma 5.16 shows that the product of two elements
is, in fact, an element in the set Q̂G3q(A) and the product is associative.
The unit element is (I2, 0) ∈ Q̂G3q(A). The inverse

(G, ξ(W1))−1 = (G−1,−ξ((e−1 − 1)t− e−1f + e−1W1) ∈ Q̂G3q−1(A),

where

G =
[
e f
0 1

]
.

Proposition 6.5. — We have a functorial injection

NCFL/k(A) −→ Q̂G3q(A)
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that sends ϕ ∈ NCFL/k(A) to (
[
e f
0 1
]
, b(W1)). Here

ϕ((t+W1)Q+X) = (e(t+W1) + f)Q+X, (6.14)
ϕ(ι(y)) = ϕ(y +W2 + log qN

+ log q
q − 1

∞∑
n=1

Xn(−1)n+1 1
[n]qqn(n−1)/2 ((t+W1)−nQ−n)) (6.15)

= y +W2 + b(W1) + log qN

+ log q
q−1

∞∑
n=1

Xn(−1)n+1 1
[n]qqn(n−1)/2 (e(t+W1)+f)−nQ−n. (6.16)

We also have a Conjecture.

Conjecture 6.6. — If q is not a root of unity, then the injection in
Proposition 6.5 is a bijection. So

NCFL/k ' Q̂G3q.

Remark 6.7. — The argument in 5.3 allows us to prove that Conjec-
ture 6.6 implies Conjecture 6.2.

We can also define the quantum formal group Q̂GIIIq in terms of non-
commutative coordinate transformations as in the Second Example.

Definition 6.8. — We define a functor

Q̂GIIIq : (NCAlg /L\) −→ (Set)
by setting

Q̂GIIIq(A)

:=


((e−1)t+f+eW1,W2 +b(W1))
∈ A[[W1,W2]]×A[[W1,W2]]

∣∣∣∣∣∣∣∣
e− 1, f, and all the coefficients
of the power series b(W1) are
nilpotent satisfying ef = qfe,

[(e−1)t+f+eW1,W2 +b(W1)] = 0

.
We regard an element

ϕ = (ϕ1(W1,W2), ϕ2(W1,W2)) ∈ Q̂GIIIq(A)
as an infinitesimal coordinate transformation Φ

(W1,W2) 7→ (ϕ1(W1,W2), ϕ2(W1,W2))
with non-commutative coefficients. The product in the quantum formal group
Q̂GIIIq is the composition of coordinate transformations if they satisfy a
commutation relation so that the product is defined. To be more concrete, let
((e− 1)t+ f + eW1,W2 + b(W1)) and ((g − 1)t+ h+ gW1,W2 + c(W1))
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be two elements of Q̂GIIIq(A) such that the following two sub-sets of the ring
A is element-wisely commutative:

(1) {e, f} ∪ (the set of coefficients of the power series b(W1)),
(2) {g, h} ∪ (the set of coefficients of the power series c(W1)),

then the product is

((e− 1)t+ f + eW1,W2 + b(W1)) ∗ ((g − 1)t+ h+ gW1,W2 + c(W1))
= ((eg − 1)t+ eh+ f + egW1,W2 + b((g − 1)t+ h+ gW1) + c(W1))

which is certainly an element of Q̂GIIIq(A).

Though we reversed the procedure, the quantum formal group Q̂G3q

arises from Q̂GIIIq and we arrived at the last object as a natural exten-
sion of Lie–Ritt functor in [22] of coordinate transformations in the space of
initial conditions.

Proposition 6.9. — For every algebra A ∈ ob(NCAlg /L\), we have a
functorial isomorphism of quantum formal groups

Q̂G3q(A) −→ Q̂GIIIq(A)
sending an element([
e f
0 1

]
, b(W1)

)
∈ Q̂G3q(A) to ((e−1)t+f+eW1,W2+b(W1))∈ Q̂GIIIq(A).

Looking at Propositions 6.5, 6.9 and Conjecture 6.6, we find that we are
in the same situation as in 5.3, where we studied non-commutative deforma-
tions of the Second Example.

Theorem 6.10. — We have an inclusion
NCFL/k ↪→ Q̂GIIIq

of functors on the category (NCAlg /L\) taking values in the category of sets,
where

L/k = (C(t, log t), σ, σ−1, θ∗)/C. (6.17)
If we assume Conjecture 6.6, then the inclusion (6.17) is bijection so that
we can identify the functors

NCFL/k ' Q̂GIIIq.

The quantum formal group Q̂GIIIq operates on the functor NCFL/k in an
appropriate sense, through the initial conditions. (cf. The commutativity con-
dition in Definition 6.8.) So we may say that the quantum formal Galois
group

NC Inf-Gal(L/k) ' Q̂GIIIq.
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6.4. Summary on the Galois structures of the field extension
C(t, log t)/C

Let us summarize our results on the field extension C(t, log t)/C.

(1) Difference field extension (C(t, log t), σ)/C. This is a Picard–Vessiot
extension with Galois group GaC ×GaC.

(2) Differential field extension (C(t, log t),d/dt)/C. This is not a Picard–
Vessiot extension. The Galois group

Inf-Gal(L/k) : (CAlg /L\) −→ (Grp)

is isomorphic to ĜaL\ ×L\ ĜaL\ , where ĜaL\ is the formal comple-
tion of the additive group. So as a group functor on the category
(CAlg /L\), we have

ĜaL\(A) = {b ∈ A | b is nilpotent},

the group law being the addition and hence

Inf-Gal(L/k)(A) = {(a, b) | a, b are nilpotent elements of A}

for a commutative L\-algebra A.
(3) Commutative deformations of qsi extension (C(t, log t),σ,σ−1,θ∗)/C.

If q is not a root of unity, Inf-Gal(L/k) is an infinite-dimensional
formal group such that we have a splitting sequence

0 −→ A[[W1]]+ −→ Inf-Gal(L/k)(A) −→ Ĝm(A) −→ 0,

where A[[W1]]+ denotes the additive group

{a ∈ A[[W1]] | all the coefficients of power series a are nilpotent}

modulo Conjecture 6.6.
(4) Non-commutative Galois group. If q is not a root of unity, the Quan-

tum Galois group NC Inf-Gal(L/k) is isomorphic to a quantum for-
mal group Q̂GIIIq:

NC Inf-Gal(L/k) ' Q̂GIIIq.

modulo Conjecture 6.6.
We should be careful about the group law. Quantum formal

group structure in Q̂GIIIq coincides with the group structure de-
fined from the initial conditions as in Proposition 6.9.
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7. General scope of quantized Galois theory for qsi field
extensions

After we worked with three examples of qsi field extensions
C(t)/C, C(t, tα)/C and C(t, log t)/C,

there arises naturally, in our mind, the idea of formulating general quantized
Galois theory for qsi field extensions. The simplest differential Example 2.3
is also very inspiring. We are going to give evidence that a general theory
should exist.

7.1. Outline of the theory

Let L/k be a qsi field extension such that the abstract field extension
L\/k\ is of finite type. Galois theory for qsi filed extensions is a particular
case of Hopf Galois theory in Section 3. So as we learned in 3.2.6, we have
the universal Hopf morphism

ι : L −→ F (Z, L\)[[X]].
We choose a basis

{D1, D2, . . . , Dd}
of mutually commutative derivations of the L\-vector space Der(L\/k\) of
k\-derivations of L\. We constructed the Galois hull L/K in Definition 3.13.
So we have the canonical morphism

ι : L −→ F (Z, L\[[W1,W2, . . . ,Wd]])[[X]]. (7.1)
The rings L and K are invariant under the set of operators

D :=
{

Σ̂, Θ̂
∗
,
∂

∂Wi
(1 6 i 6 d)

}
(7.2)

on F (Z, L\[[W ]])[[X]].

In general, the Galois hull L/K is not commutative. So we measure it
by infinitesimal deformations of the canonical morphism (7.1) over the cat-
egory (NCAlg /L\) of not necessarily commutative L\-algebras. We set in
Definition 3.15
NCFL/k(A)

=

ϕ : L → F (Z, A[[W ]])[[X]]

∣∣∣∣∣∣
ϕ is an infinitesimal deformation over K
compatible with D of canonical
morphism (7.1)
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so that we get the functor
NCFL/k : (NCAlg /L\) −→ (Set).

Now we compare the differential case and qsi case to understand their simi-
larity and difference.

(1) Differential case
(a) The Galois hull L/K is an extension of commutative algebras.
(b) It is sufficient to consider commutative deformation functor
FL/k of the Galois hull L/K over the category (CAlg /L\) of
commutative L\-algebras.

(c) The Galois group Inf-Gal(L/k) is a kind of generalization of
algebraic group. In fact, it is at least a group functor on the
category (CAlg /L\).

(d) Indeed the group functor Inf-Gal(L/k) is given as the functor
of automorphisms of the Galois hull L/K.

(2) qsi case
(a) Galois hull L/K is not always an extension of commutative

algebras.
(b) We have to consider the non-commutative deformation func-

tor NCFL/k over the category (NCAlg /L\) of not necessarily
commutative L\-algebras.

(c) The Galois group should be a quantum group that we can not
interpret in terms of group functor.

The comparison above shows that we have to find a counterpart of (d) in
the qsi case. The three examples suggest the following solution.

Solution that we propose

Let y1, y2, . . . , yd be a transcendence basis of the abstract field extension
L\/k\. We set by

ι(yi) = Yi(W1,W2, . . . ,Wd;X) ∈ F (Z, L\[[W ]])[[X]] for 1 6 i 6 d.

Questions 7.1. —

(1) For an L\-algebra A ∈ ob(NCAlg /L\), let
f : L −→ F (Z, A[[W ]])[[X]]

be an infinitesimal deformation of the canonical morphism ι. Then
there exist an infinitesimal coordinate transformation
Φ = (ϕ1(W ), ϕ2(W ), . . . , ϕd(W )) ∈ A[[W1,W2, . . . ,Wd]]d
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with coefficients in the not necessarily commutative algebra A such
that

f(Yi) = Yi(Φ(W );X) for every 1 6 i 6 d.
(2) Assume that Question (1) is affirmatively answered. Then we have

a functorial morphism

NCFL/k(A) −→
{

Φ ∈ A[[W ]]d
∣∣∣∣W 7→ Φ(W ) is an infinitesimal
coordinate transformation

}
(7.3)

sending f to Φ using the notation of (1). We set
Q Inf-Gal(L/k)(A) := the image of map (7.3)

so that
Q Inf-Gal(L/k) : (NCAlg /L\) −→ (Set)

is a functor. Our second question is if the functor Q Inf-Gal(L/k) is
a quantum formal group.

(3) Assume that Question (1) has an affirmative answer. Since the iden-
tity transformation is in Q Inf-Gal(L/k), Question (2) reduces to the
following concrete question. Let f, g be elements of NCFL/k(A) and
let Φ and Ψ be the corresponding coordinate transformations to f
and g respectively. If the set of the coefficients of Φ and the set of the
coefficients of Ψ is element-wisely commutative, then does the com-
posite coordinate transformation Φ ◦ Ψ arise from an infinitesimal
deformation h ∈ NCFL/k(A)?

In view of Corollary 9.9, the universal deformation or the universal coac-
tion seems to solve the Questions. It seems that we are very close to the
solutions.

Part II. Quantization of Picard–Vessiot theory

Keeping the notation of the Part I, we denote by C a field of character-
istic 0.

We believed for a long time that it was impossible to quantize Picard–
Vessiot theory, Galois theory for linear difference or differential equations.
Namely, there was no Galois theory for linear difference-differential equa-
tions, of which the Galois group is a quantum group that is, in general,
neither commutative nor co-commutative. Our mistake came from a mis-
understanding of preceding works, Hardouin [5] and Masuoka and Yana-
gawa [14]. They studied linear qsi equations, qsi equations for short, under
two assumptions on qsi base field K and qsi module M :

(1) The base field K contains C(t).
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(2) On the K[σ, σ−1, θ∗]-module M the equality

θ(1) = 1
(q − 1)t (σ − IdM ).

holds. Under these conditions, their Picard–Vessiot extension is realized in
the category of commutative qsi algebras. The second assumption seems
too restrictive as clearly explained in [14]. If we drop one of these conditions,
there are many linear qsi equations whose Picard–Vessiot ring is not commu-
tative and the Galois group is a quantum group that is neither commutative
nor co-commutative.

We first analyze in detail, one favorite example (8.6) over the base field C,
which is equivalent to the non-linear equation in Section 4. We then quickly
study three more example in Section 12. Looking at these examples, the
reader’s imagination would go far away, as Cartier [3] did it for every qsi
linear equation with constant coefficients.

In the favorite example, we have a Picard–Vessiot ring R that is non-
commutative, simple qsi ring (Observation 9.3 and Lemma 9.4). The Picard–
Vessiot ring R is a torsor of a quantum group (Observation 9.6). As for
equivalence of rigid tensor categories, we note Expectation 11.2 and prove
a modified version in Part III. We have a partial Galois correspondence
(Observation 11.3). We prove the uniqueness of the Picard–Vessiot ring for
certain examples in Section 10. Picard–Vessiot ring is, however, not unique
in general as we see in Section 17.

8. Field extension C(t)/C from classical and quantum viewpoints

In Section 4, we studied a non-linear qsi equation, which we call qsi
equation for short,

θ(1)(y) = 1, σ(y) = qy, σ−1(y) = q−1y, (8.1)
where q is an element of the field C not equal to 0 nor 1. Let t be a variable
over the constant base field C. We assume to simplify the situation that q is
not a root of unity. We denote by σ : C(t) → C(t) the C-automorphism of
the field C(t) of rational functions sending t to qt. We introduce the C-linear
operator θ(1) : C(t)→ C(t) by

θ(1) (f(t)) := f(qt)− f(t)
(q − 1)t for every f(t) ∈ C(t).

We set

θ(m) :=
{

IdC(t) for m = 0
1

[m]q !
(
θ(1))m for m = 1, 2, . . . .
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As we assume that q is not a root of unity, the number [m]q in the formula is
not equal to 0 and hence the formula determines the family θ∗ = {θ(i) | i ∈ N}
of operators. So (C(t), σ, σ−1, θ∗) is a qsi field. See Section 4 and y = t is a
solution for system (8.1).

The system (8.1) is non-linear in the sense that for two solutions y1, y2
of (8.1), a C-linear combination c1y1 + c2y2(c1, c2 ∈ C) is not a solution of
the system in general.

However, the system is very close to a linear system. To illustrate this,
let us look at the differential field extension (C(t), ∂t)/(C, ∂t), where we
denote the derivation d/dt by ∂t The variable t ∈ C(t) satisfies a non-linear
differential equation

∂tt− 1 = 0. (8.2)
The differential field extension (C(t), ∂t)/(C, ∂t) is, however, the Picard–
Vessiot extension for the linear differential equation

∂2
t t = 0. (8.3)

To understand the relation between (8.2) and (8.3), we introduce the 2-
dimensional C-vector space

E := Ct⊕ C ⊂ C[t].
The vector space E is closed under the action of the derivation ∂t so that
E is a C[∂t]-module. Solving the differential equation associated with the
C[∂t]-module E is to find a differential algebra (L, ∂t)/C and a C[∂t]-module
morphism

ϕ : E → L.

Writing ϕ(t) = f1, ϕ(1) = f2 that are elements of L, we have[
∂tf1
∂tf2

]
=
[
0 1
0 0

] [
f1
f2

]
.

Since ∂tt = 1, ∂t1 = 0, in the differential field (C(t), ∂t)/C, we find two
solutions t(t, 1) and t(1, 0) that are two column vectors in C(t)2 satisfying

∂t

[
t 1
1 0

]
=
[
0 1
0 0

] [
t 1
1 0

]
(8.4)

and ∣∣∣∣t 1
1 0

∣∣∣∣ 6= 0.

Namely, C(t)/C is the Picard–Vessiot extension for linear differential equa-
tion (8.4).

We can argue similarly for the qsi field extension (C(t), σ, σ−1, θ∗)/C.
You will find a subtle difference between the differential case and the qsi
case. Quantization of Galois group arises from here.
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Let us set
M = Ct⊕ C ⊂ C[t]

that is a C[σ, σ−1, θ∗]-module. To avoid the confusion that you might have
in Remark 8.3 below, writing m1 = t and m2 = 1, we had better formally
write

M = Cm1 ⊕ Cm2 (8.5)

as a C-vector space on which σ and θ(1) operate by[
σ(m1)
σ(m2)

]
=
[
q 0
0 1

] [
m1
m2

]
,

[
σ−1(m1)
σ−1(m2)

]
=
[
q−1 0
0 1

] [
m1
m2

]
,[

θ(1)(m1)
θ(1)(m2)

]
=
[
0 1
0 0

] [
m1
m2

]
.

(8.6)

Since in (8.6) the first equation is equivalent to the second, we only consider
the first and third equations. Solving C[σ, σ−1, θ∗]-module M is equivalent
to find elements f1, f2 in a qsi algebra (A, σ, σ−1, θ∗) satisfying the system
of linear difference-differential equation[

σ(f1)
σ(f2)

]
=
[
q 0
0 1

] [
f1
f2

]
,

[
θ(1)(f1)
θ(1)(f2)

]
=
[
0 1
0 0

] [
f1
f2

]
(8.7)

in the qsi algebra A.

Lemma 8.1. — Let (L, σ, σ−1, θ∗)/C be a qsi field extension. If a 2× 2
matrix Y = (yij)∈M2(L) satisfies a system of difference-differential equations

σY =
[
q 0
0 1

]
Y and θ(1)Y =

[
0 1
0 0

]
Y, (8.8)

then detY = 0.

Proof. — It follows from (8.8)
σ(y11) = qy11, σ(y12) = qy12, σ(y21) = y21, σ(y22) = y22 (8.9)

and
θ(1)(y11) = y21, θ(1)(y12) = y22, θ(1)(y21) = 0, θ(1)(y22) = 0. (8.10)

It follows from (8.9) and (8.10)

θ(1)(y11y12) = θ(1)(y11)y12 + σ(y11)θ(1)(y12) = y21y12 + qy11y22 (8.11)
and similarly

θ(1)(y12y11) = y22y11 + qy12y21. (8.12)
As y11y12 = y12y11, equating (8.11) and (8.12), we get

(q − 1)(y11y22 − y12y21) = 0
so that detY = 0. �
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Corollary 8.2. — Let (K,σ, σ−1, θ∗) be a qsi field over C. Then the
qsi linear equation

σY =
[
q 0
0 1

]
Y and θ(1)Y =

[
0 1
0 0

]
Y (8.13)

admits no qsi extension L over K with the following properties, which would
deserve to call it a qsi Picard–Vessiot extension or simply a Picard–Vessiot
extension:

(1) L is generated over K by the entries of some solution matrix Y ∈
GL2(L) to (8.13), and

(2) the fields of constants in L and in K coincide.

Proof. — This is a consequence of Lemma 8.1. �

Remark 8.3. — We note that Corollary 8.2 is compatible with Hardouin
[5, Remark 4.4 and Theorem 4.7]. See also Masuoka and Yanagawa [14].
They assure the existence of Picard–Vessiot extension of those qsi fields K
for those K[σ, σ−1, θ∗]-modules N , which satisfy

(1) The qsi base field K contains (C(t), σ, σ−1, θ∗),
(2) The operation of σ and θ(1) on the module N as well as on the base

field K, satisfy the relation

θ(1) = 1
(q − 1)t (σ − IdN ).

Note that the C[σ, σ−1, θ∗]-module M given in (8.5), even after the base
extension to any K that satisfies (1) and (2), does not satisfy (2). Indeed,
we see that in K ⊗C M ,

θ(1)(1⊗m1) = 1⊗m2 6=
1
t
⊗m1 = 1

(q − 1)t (σ(1⊗m1)− 1⊗m1) .

9. Quantum Picard–Vessiot ring of qsi module M of (8.5)

To determine the quantum Galois structure of the qsi field extension
L/C := C(t)/C, we analyzed the quantum normalization or the Galois hull of
L/C in Part I. We introduced the qsi moduleM := C1⊕Ct. The description
of the Picard–Vessiot ring of the qsi module M offers us another solution
to the determination of the Galois group of the qsi field extension L/C.
We recall that the universal Hopf morphism ι : L = C(t)→ F (Z, C(t))[[X]]
maps the element t ∈ L to ι(t) = tQ+X so that Q,X are in the Galois hull
L. Looking at Lemma 8.1, we are tempted to set

R := C〈Q,Q−1, X〉alg ⊂ S := C[[Q,X]][Q−1, X−1],

– 1396 –



Toward quantization of Galois theory

where we may consider Q,X independent and non-commutative variables
satisfying commutation relations

QQ−1 = Q−1Q = 1, XX−1 = X−1X = 1, QX = qXQ,

qX−1Q−1 = qQ−1X−1, X−1Q = qQX−1.
(9.1)

The ring S is the set of formal Laurent series in X and Q with coefficients
in C so that we can add them as formal Laurent series. The product of two
series in S is well determined by the commutation relations (9.1). We must
use 〈 · , · 〉alg instead of [[ · , · ]]. But we use the latter because it is simpler.
The operator σ, σ−1, θ(1) operate on C[[Q,X]][Q−1, X−1] by

σ±1(X) = q±1X, σ±1(Q) = q±1Q, θ(0)(X) = 1, θ(0)(Q) = 0.

The rings R and S are qsi algebras.

We are going to show below, step by step, R = C〈Q,Q−1, X〉 is the
Picard–Vessiot ring of the qsi moduleM . The definition and characterization
of Picard–Vessiot ring is given during the explanation below.

Observation 9.1. — The left C[σ, σ−1, θ(1)]-module M has two solu-
tions in the qsi ring R linearly independent over C. In fact, setting

Y :=
[
Q X
0 1

]
∈M2(R), (9.2)

we have
σY =

[
q 0
0 1

]
Y and θ(1)Y =

[
0 1
0 0

]
Y. (9.3)

So the column vectors t(Q, 0),t (X, 1) ∈ R2 are C-linearly independent solu-
tion of the system of equations (8.6).

The matrix Y is an invertible element in the matrix algebra M2(R). We
have [

Q X
0 1

]−1
=
[
Q−1 −Q−1X

0 1

]
∈ M2(R).

Observation 9.2. — The ring R = C〈X,Q,Q−1〉alg has no zero-div-
isors. We can consider the ring K of total fractions of R = C〈X,Q,Q−1〉alg.

Proof. — Every non-zero element is invertible. In other words, the ring
S is a skew field. So we can consider the smallest skew field containing the
image of R in S. �

Observation 9.3. — Let K be the ring of total fractions of R. The
ring of qsi constants CK coincides with C. The ring of θ∗ constants of
C[X,Q]][X−1, Q−1] is C(Q). Moreover as we assume that q is not a root
of unity, the ring of σ-constants of C(Q) is equal to C.
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Lemma 9.4. — The non-commutative qsi algebra R is simple, that is,
there is no qsi bilateral ideal of R except for the zero-ideal and R.

Proof. — Let I be a non-zero qsi bilateral ideal of R. We take an element

0 6= f := a0 +Xa1 + · · ·+Xnan ∈ I,

where ai ∈ C[Q,Q−1] for 0 6 i 6 n. We may assume an 6= 0. Applying
θ(n) to the element f , we conclude that 0 6= an ∈ C[Q,Q−1] is in the
ideal I. Multiplying a monomial bQl with b ∈ C, we find a polynomial
h = 1 + b1Q + · · · + bsQ

s ∈ C[Q] with bs 6= 0 in the ideal I. We show that
1 is in I by induction on s. If s = 0, then there is nothing to prove. Assume
that the assertion is proved for s 6 m. We have to show the assertion for
s = m+1. Then, since Qi is an eigenvector of the operator σ with eigenvalue
qi for i ∈ N,

1
qm+1 − 1(qm+1h− σ(h)) = 1 + c1Q+ · · ·+ cmQ

m ∈ C[Q]

is an element of I and by induction hypothesis 1 is in the ideal I. �

Observation 9.5. — The extension R/C trivializes the C[σ, σ−1, θ∗]-
module M . Namely, there exist qsi constants c1, c2 ∈ R ⊗C M such that
there exists a left R-qsi module isomorphism

R⊗C M ' Rc1 ⊕Rc2.

Proof. — In fact, it is sufficient to set

c1 := Q−1m1 −Q−1Xm2, c2 := m2.

Then
σ(c1) = c1, σ(c2) = c2, θ(1)(c2) = 0

and

θ(1)(c1) = q−1Q−1θ(1)(m1)− q−1Q−1m2 = q−1Q−1m2 − q−1Q−1m2 = 0.

So we have an (R, σ, σ−1, θ∗)-module isomorphism R⊗CM ' Rc1⊕Rc2. �

Observation 9.6. — The Hopf algebra Hq = C〈u, u−1, v〉 with uv =
qvu co-acts from right on the non-commutative algebra R. Namely, we have
an algebra morphism

R −→ R⊗C Hq (9.4)
sending

X 7−→ X ⊗ 1 +Q⊗ v, Q 7−→ Q⊗ u, Q−1 7−→ Q−1 ⊗ u−1.

Morphism (9.4) is compatible with C[σ, σ−1, θ(1)]-module structures, where
σ, σ−1 and θ(1) operate on the Hopf algebra Hq trivially.
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We can prove the assertion of Observation 9.6 by a simple direct calcu-
lation, which is very much unsatisfactory. For, we are eager to know where
the Hopf algebra Hq comes from. We answer this question in two steps:

(1) Characterization of the non-commutative algebra Hq.
(2) Origin of the co-multiplication structure on the Hopf algebra Hq.

We answer question (1) in Corollary 9.9, and question (2) in Observation 9.12.
To this end, we admit the algebra structure of Hq and characterize it.

Let us first fix some notations. For a not necessarily commutative C-qsi
algebra T and for a morphism ϕ : R→ T of qsi algebras over C, we set

ϕ(Y ) =
[
ϕ(Q) ϕ(t)

0 1

]
.

Then ϕ(Y ) is an invertible element in the matrix ring M2(T ), with inverse
being given by

ϕ(Y )−1 =
[
ϕ(Q)−1 −ϕ(Q)−1ϕ(t)

0 1

]
.

We have seen above the following Lemma.

Lemma 9.7. — For a not necessarily commutative C-qsi algebra T and
for elements a, b ∈ T , there exists a C-qsi algebra morphism ϕ : R→ T such
that ϕ(Q) = a and ϕ(t) = b if and only if the following three conditions are
satisfied:

(1) We have a commutation relation
ab = qba,

(2) the elements a, b satisfies difference differential equations

σ(a) = qa, θ(1)(a) = 0, σ(b) = qb, θ(1)(b) = 1,
(3) the element a is invertible in the ring T or equivalently the matrix[

a b
0 1

]
is invertible in the ring M2(T ).

Corollary 9.8. — Let ϕ : R → T be a qsi algebra morphism over C.
Using the notation above, let

H ′ =
[
u′ v′

0 1

]
∈M2(CT )

be an invertible element in the matrix ring M2(CT ) satisfying the following
two conditions.
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(1) u′v′ = qv′u′ and the element u′ is invertible in the ring CT of con-
stants of T .

(2) The set {u′, v′} and the set of entries of the matrix ϕ(Y ) are element-
wisely commutative.

Then, there exists a qsi algebra morphism ψ ∈ HomC-qsi(R, T ) over C such
that

ψ(Y ) = ϕ(Y )H ′.

Proof. — By Lemma 9.7, the matrix

ϕ(Y ) =
[
a b
0 1

]
satisfies conditions of Lemma 9.7. This, together with the assumption (1)
and (2) in this Corollary, implies that the matrix

ϕ(Y )H ′

satisfies the conditions of Lemma 9.7. Now the assertion follows from Lem-
ma 9.7. �

In particular if we take T = R⊗C Hq and

H ′ =
[
u v
0 1

]
∈ M2(Hq)

and
ϕ0(Y ) = Y =

[
Q t
0 1

]
=
[
Q⊗ 1 t⊗ 1

0 1

]
,

then the conditions of Corollary are satisfied and we get the morphism R→
R⊗C Hq in the Observation 9.6.

It also characterizes the algebra Hq. We notice that an S ∈ ob(NCAlg /C)
has a trivial qsi-algebra structure over C, if we set σ = IdS , θ(0) = IdS and
θ(i) = 0 for i > 1. Namely, if we consider a functor

F : (NCAlg /C) −→ (Set)

on the category of not necessarily commutative C-algebras defined by

F (S) = HomC-qsi(R,R⊗C S) for S ∈ ob(NCAlg /C),

then the functor F is representable by the algebra Hq.

Corollary 9.9. — For an object S of the category (NCAlg /C), we
have

HomC-qsi(R,R⊗C S) ' HomC-alg(Hq, S), (9.5)
where the left-hand side denotes the set of qsi algebra morphisms over C and
the right-hand side is the set of C-algebra morphisms.
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Proof. — If we notice CR⊗CS = S and take as ϕ : R → R ⊗C S the
canonical inclusion

ϕ0 : R −→ R⊗C S, a 7−→ a⊗ 1,

it follows from Corollary 9.8 that we have a map

HomC-alg(Hq, S) −→ HomC-qsi(R,R⊗C S).

that sends π ∈ HomC-alg(Hq, S) to ψ ∈ HomC-qsi(R,R⊗C S) such that

ψ(Y ) = ϕ0(Y )
[
π(u) π(v)

0 1

]
.

To get the mapping of the other direction, let ψ : R→ R⊗C S be a qsi mor-
phism over C. Note that S = CR⊗C S. Then using the morphism ϕ0 above,
since both ϕ0(Y ) and ψ(Y ) are solutions to the linear qsi equations (8.6),
an easy calculation shows that the entries of the matrix

H ′ := ϕ(Y )−1ψ(Y ) ∈M2(R⊗C S)

has entries in S, and is of the form

H ′ =
[
u′ v′

0 1

]
.

We single out a Sub-lemma because we later use the same argument.

Sub-lemma 9.10. — We have the commutation relation

u′v′ = qv′u′.

Proof of Sub-lemma. — Let us set

ϕ0(Y ) =
[
a b
0 1

]
, and ψ(Y ) =

[
a′ b′

0 1

]
.

So we have

ab = qba a′b′ = qb′a′ (9.6)
a′ = au′ b′ = av′ + b. (9.7)

Since the set {u′, v′} ⊂ S and {a, b} ⊂ R are element-wisely commutative in
R ⊗C S, substituting equations (9.7) into the second equation of (9.6) and
then using the first equation of (9.6), Sublemma follows. �

By Sub-lemma, we get a morphism πψ : Hq → S sending u to u′ and v
to v′. So ψ 7→ πψ gives the mapping of the other direction. �

Remark 9.11. — For two qsi morphisms ϕ,ψ : R→ T over C, let us set

ϕ(Y ) =
[
a b
0 1

]
, ψ(Y ) =

[
c d
0 1

]
.
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It follows from difference differential equations

σ

([
a b
0 1

])
=
[
q 0
0 1

] [
a b
0 1

]
, θ(1)

([
a b
0 1

])
=
[
0 1
0 0

] [
a b
0 1

]
,

σ

([
c d
0 1

])
=
[
q 0
0 1

] [
c d
0 1

]
, θ(1)

([
c d
0 1

])
=
[
0 1
0 0

] [
c d
0 1

]
that the entries of the matrix[

u′ v′

0 1

]
:= ϕ(Y )−1ψ(Y ) =

[
a b
0 1

]−1 [
c d
0 1

]
=
[
a−1c a−1d− a−1b

0 1

]
are constants. Namely, [

u′ v′

0 1

]
∈M2(CT ).

So equivalently

ψ(Y ) = ϕ(Y )
[
u′ v′

0 1

]
.

The entries of the matrix do not necessarily satisfy the commutation relation
u′v′ = qu′v′.

For algebras A,S ∈ ob(NCAlg /C), we set
A(S) := HomC-alg(A,S)

that is the set of C-algebra morphisms.

Observation 9.12 (Origin of co-multiplication of the Hopf algebra Hq).
The co-multiplication ∆ : Hq → Hq ⊗C Hq comes from the multiplications
of matrices. More precisely, to construct an algebra morphism ∆ : Hq →
Hq ⊗C Hq, it is sufficient to give a functorial morphism

Hq ⊗C Hq(S) −→ Hq(S) for S ∈ ob(NCAlg /C). (9.8)
An element of Hq ⊗C Hq(S) being given, it determines a pair (π1, π2) of
morphisms π1, π2 : Hq → S such that the images π1(Hq) and π2(Hq) are
element-wisely commutative. This condition is equivalent to element-wisely
commutativity of the set of the entries {u′1, v′1} and {u′2, v′2} of the matrices

H ′1 :=
[
u′1 v′1
0 1

]
:=
[
π1(u) π1(v)

0 1

]
, H ′2 :=

[
u′2 v′2
0 1

]
:=
[
π2(u) π2(v)

0 1

]
.

We show that there exists a morphism π3 : Hq → S such that

H ′1H
′
2 =

[
π3(u) π3(v)

0 1

]
.

In fact, by Corollary 9.8, there exists a morphism ψ1 : R → R ⊗C S such
that

ψ1(Y ) = ϕ0(Y )H ′1.
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Then since the entries of H ′2 and the union

(the entries of ϕ0(Y )) ∪ (the entries of H ′1)

are element-wisely commutative and consequently the entries of H ′2 and the
entries of the product ϕ0(Y )H ′1 are element-wisely commutative, by Corol-
lary 9.8, there exists a morphism ψ2 : R→ R⊗C S such that

ψ2(Y ) = (ϕ0(Y )H ′1)H ′2 = ϕ0(Y )(H ′1H ′2).

So if we note that the entries of H ′1H ′2 and the entries of the matrix ϕ0(Y )
are element-wisely commutative, writing

H ′1H
′
2 =

[
u′3 v′3
0 1

]
,

the argument of the proof of Sub-lemma 9.10 shows us that, we have u′3v′3 =
qv′3u

′
3. Hence there exists a morphism π3 : Hq → S sending u to u′3 and v to

v′3. Now the mapping (π1, π2) 7→ π3 defines the morphism (9.8).

Proposition 9.13. — The right co-action

ρ : R −→ R⊗C Hq

is an Hq torsor in the following sense. The C-algebra morphism ρ defines a
C-linear map

ϕ : R⊗C R −→ R⊗C Hq (9.9)

such that ϕ(ab) = (a ⊗ 1)ρ(b) for a, b ∈ R. The C-linear map ϕ is an
isomorphism of the C-vector spaces.

Proof. — The C-linear morphism ϕ is, in fact, a left R = (R⊗C1)-module
morphism. The C-linear algebra morphism ρ : R→ R⊗C Hq sends C-linear
basis {QmXn}m∈Z,n∈N of R to

ρ(QmXn) = ϕ(1⊗QmXn)
= (Q⊗ u)m(X ⊗ 1 +Q⊗ v)n

= (Qm+n ⊗ 1)(1⊗ um)
×(1⊗vn + an R-linear combination of 1⊗vi for 06 i6n−1).

Since Q is an invertible element of R, the last elements above form an R =
(R⊗C 1)-linear basis of R⊗CHq, to which the R = (R⊗C 1) linear basis {1⊗
QmXn}m∈Z,n∈N is sent by the R-linear map ϕ : R⊗C R→ R⊗C Hq. So the
R = (R⊗1)-module morphism ϕ : R⊗CR→ R⊗CHq is an isomorphism. �
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10. On the uniqueness of the Picard–Vessiot ring

We show that our Picard–Vessiot ring R/C is unique.

Given a not necessarily commutative algebra R and a positive integer n,
we let Rn (resp., tRn) denote the right or left R-module of column (resp.,
row) vectors with n entries in R.

Lemma 10.1. — Suppose that an n × n-matrix Y ∈ Mn(R) consists of
n column vectors y1, . . . ,yn and of n row vectors tw1, . . . ,

twn, so that
Y =

(
y1, . . . ,yn

)
= t
(
w1, . . . ,wn

)
.

Then the following are equivalent:

(1) Y is invertible Mn(R);
(2) y1, . . . ,yn form a frees basis of the right R-module Rn;
(3) tw1, . . . ,

twn form a frees basis of the left R-module tRn.

Proof. — The equivalence (1) ⇔ (2) (resp., (1) ⇔ (3)) follows from
the canonical algebra-isomorphism from Mn(R) to the algebra of endomor-
phisms of the right R-module Rn (resp., the left R-module tRn). �

Let M be a left C[σ, σ−1, θ∗]-module that is of finite dimension n as
a C-vector space. Let {m1,m2, . . . ,mn} be a basis of the C-vector space
M . Setting m = t(m1,m2, . . . ,mn), there exist matrices A ∈ GLn(C), B ∈
Mn(C) satisfying

σ(m) = Am, θ(1)(m) = Bm. (10.1)
As we have seen in Section 9, the left C[σ, σ−1, θ∗]-module M defines a
system of qsi equation

σ(y) = Ay, θ(1)(y) = By (10.2)
where y is an unknown column vector with n entries. We are interested in
solutions y ∈ Rn for a qsi algebra R over C.

Definition 10.2. — For qsi algebra R over C, we say that a set
{y1,y2, . . . ,yn} of solutions to (10.2) so that yi ∈ Rn for 1 6 i 6 n, is a fun-
damental system of solutions to (10.2) if the matrix Y = (y1,y2, . . . ,yn) ∈
Mn(R) satisfies the equivalent conditions (1), (2) of Lemma 10.1.

The dual to a fundamental system is a trivializing matrix of the qsi
module M .

Definition 10.3. — We assume that the qsi module R⊗CM is trivial-
ized over a C-qsi ring R. Namely, there exist elements

c1, c2, . . . , cn ∈ R⊗C M
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such that
σ(ci) = ci, θ(1)(ci) = 0 for every 1 6 i 6 n

and such that we have R-module decomposition

R⊗C M =
n⊕
i=1
Rci.

So writing the elements ci’s as a left R-linear combination of the basis
{m1,m2, . . . ,mn},

we get a matrix Z ∈Mn(R) such that
t(c1, c2, . . . , cn) = Zt(m1,m2, . . . ,mn).

We call the matrix Z ∈Mn(R) a trivializing matrix of qsi moduleM over R.

Lemma 10.4. — A trivializing matrix over R is invertible in the matrix
ring Mn(R).

Proof. — This follows by the same argument of proving Lemma 10.1. �

Now we make clear the relation between fundamental system and trivi-
alizing matrix.

Proposition 10.5. — The following four conditions on an invertible
matrix Y ∈Mn(R) are equivalent. We denote Y −1 by Z or Y = Z−1.

(1) The matrix Y satisfies qsi equations

σ(Y ) = AY, θ(1)(Y ) = BY, (10.3)
with A,B being the matrices in (10.1).

(2) The matrix Y is a fundamental system of solutions of M .
(3) The matrix Z satisfies qsi equations

σ(Z) = ZA−1, θ(1)(Z) = −ZA−1B (10.4)
(4) The matrix Z is a trivializing matrix for M over R.

Proof. — The equivalence of conditions (1) and (2) follows from Lem-
ma 10.1 and Definition 10.2. To prove the equivalence of (3) and (4), we set

t(c1, c2, . . . , cn) := Zt(m1,m2, . . . ,mn),
where the mi’s are the basis of M chosen above, so that

ci =
n∑
l=1

zilml for every 1 6 i 6 n.

It is convenient to introduce
c := t(c1, c2, . . . , cn), and m := t(m1,m2, . . . ,mn).
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So we have
c = Zm. (10.5)

Now we assume Condition (3) and show Condition (4). To this end, we prove
that the ci’s that are elements of R⊗CM , are constants. In fact, if we apply
σ to (10.5), it follows from the first equation in (10.3),

σ(c) = σ(Z)σ(m)
= (ZA−1)(Am)
= Zm
= c.

Namely σ(c) = c. Now we apply θ(1) to (10.5) to get
θ(1)(c) = θ(1)(Z)m + σ(Z)θ(1)(m)

= (−ZA−1B)m + (ZA−1)Bm
= 0.

So θ(1)(c) = 0 and c is a constant. Hence Z is a trivializing matrix by
Definition 10.3 and the argument of proving Lemma 10.1. Conversely, we
start from Condition (4). If we recall

c := Zm, (10.6)
then, as we assume Condition (4), c is a constant. Applying σ and θ(1)

to (10.6), we get Condition (3).

It remains to show the equivalence of (1) and (3). Let us assume (1) and
show (3). If we apply the automorphism σ to the equality ZY = In, the first
equality in (10.3) implies the first equality of (10.4). On the other hand,
applying θ(1) to the equality ZY = In, we get

θ(1)(Z)Y + σ(Z)θ(1)(Y ) = 0.
It follows from equation (10.3)

θ(1)(Z)Y + ZA−1BY = 0. (10.7)
Since the matrix Y is invertible, we conclude

θ(1)Z = −ZA−1B.

So the matrix Z satisfies Condition (3). The proof of the converse that
Condition (3) implies (1) is similar. Applying first σ and then θ(1) to ZY =
In, we immediately get Condition (1). �

We are ready to characterize the Picard–Vessiot ring R/C. Besides the
properties we mentioned above, we have a C-morphism or a C-valued point
of the abstract ring R\

R\ −→ C sending Q±1 7−→ 1, X 7−→ 0. (10.8)
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We sometimes call it a C-rational point.

Lemma 10.6. — Let R be a simple qsi algebra over C. If the abstract
algebra R\ has a C-valued point, then the ring of constants of R coincides
with C.

Proof. — Assume to the contrary that there is a constant f in R\C. Let

ϕ : R −→ C

be a C-valued point. We set c := ϕ(f) that is an element of C. So the
element f − c 6= 0 is a constant of qsi algebra R. Therefore the bilateral
ideal I generated by f − c is a qsi bilateral ideal of R because the ideal I
is generated by the constant f − c. As the ideal I contains f − c 6= 0, the
simplicity of R implies I = R. So there would be a positive integer n and
elements ai, bi ∈ R for 0 6 i 6 n such that

n∑
i=1

ai(f − c)bi = 1. (10.9)

Applying the morphism ϕ, we would have 0 = 1 in C by (10.9) that is a
contradiction. �

So far in this Section, we studied general C[σ, σ−1, θ∗]-module M . From
now on, we come back to the C[σ, σ−1, θ∗]-module M in Section 9 so that
writing m = t(m1,m2),

M = Cm1 ⊕ Cm2, (10.10)

σ(m) = Am, θ(1)(m) = Bm, (10.11)

where

A =
[
q 0
0 1

]
and B =

[
0 1
0 0

]
.

Theorem 10.7. — Using the notation above, we can characterize the
Picard–Vessiot ring R/C for M constructed in Section 9, in the following
way.

Let R/C be a qsi extension satisfying the following conditions.

(1) There exists a fundamental system of solutions Y ∈ M2(R) for M
such that

R = C〈Y,Y−1〉alg.

(2) The qsi algebra R is simple.
(3) There exists a C-rational point of the abstract C-algebra R\.

Then the qsi algebra R is C-isomorphic to the Picard–Vessiot ring R.
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Proof. — Let us express Y in the matrix form:

Y =
[
a b
c d

]
∈M2(R).

Hence by (10.11), the matrix Y satisfies[
σ(a) σ(b)
σ(c) σ(d)

]
=
[
q 0
0 1

] [
a b
c d

]
,

[
θ(1)(a) θ(1)(b)
θ(1)(c) θ(1)(d)

]
=
[
0 1
0 0

] [
a b
c d

]
.

or to be more concrete
σ(a) = qa, θ(1)(a) = c, σ(c) = c, θ(1)(c) = 0, (10.12)

σ(b) = qb, θ(1)(b) = d, σ(d) = d, θ(1)(d) = 0. (10.13)

It follows from (10.12) and (10.13) that c, d are constants of R. By Lem-
ma 10.6 and assumption (2) on R, the ring CR of constants of R coincides
with C. So c, d are complex numbers and hence by replacing the column vec-
tors of the matrix Y by their appropriate C-linear combinations if necessary,
we may assume that c = 0 and d = 1 so that

Y =
[
a b
0 1

]
.

Consequently the set of equations (10.12) and (10.13) reduces to

σ(a) = qa, θ(1)(a) = 0, σ(b) = qb, θ(1)(b) = 1. (10.14)
Since the matrix Y is invertible, a is an invertible element of the ring R.
We show that f := qa−1b− ba−1 ∈ R is a constant. In fact, since q is in the
center of R, it follows from (10.14) that

σ(f) = qσ(a−1)σ(b)− σ(b)σ(a−1)
= qa−1q−1qb− qba−1q−1

= qa−1b− ba−1

= f

and
θ(1)(f) = qσ(a−1)θ(1)(b)− θ(1)(b)a−1

= qa−1q−11− 1a−1

= 0.
Therefore f is a constant. Now we denote by g the constant

f

1− q .

and set
b′ := b+ ga.
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Then
Y′ :=

[
a b′

0 1

]
is a fundamental system of solutions so that

σ(a) = qa, σ(a−1) = q−1a−1, σ(b′) = qb′, θ(1)(b′) = 1. (10.15)
Moreover, we have

R = C〈Y,Y−1〉alg = C〈Y′,Y′−1〉alg = C〈a, b′, a−1〉alg (10.16)
and

ab′ = qb′a. (10.17)
We have seen in Section 9 that R = 〈Q,Q−1, X〉alg and the relations among
the generators Q,Q−1, t are reduced to
QQ−1 = Q−1Q = 1, qXQ−QX = 0, C commutes with Q,Q−1 and t.
Thus, there exists a C-morphism ϕ :R→R of abstract C-algebras by (10.17).
It follows from (10.15) and difference-differential equations forQ,X, the mor-
phism ϕ is qsi morphism. By (10.16), the morphism ϕ is surjective. Since R
is simple qsi algebra, the kernel of the qsi morphism ϕ is 0 and the morphism
is injective. Therefore the qsi morphism ϕ is an isomorphism. �

11. Generalized Tannaka equivalence of categories

Let us review classical Picard–Vessiot theory formulated by Tannaka
equivalence of two rigid tensor categories. Let k be a differential field of char-
acteristic 0 and we assume the field C = Ck of constants of k is algebraically
closed. We denote by D = k[∂] the ring of linear differential operators. We
denote by (D-mod) the category of leftD-modules that are finite-dimensional
k-vector spaces. We know (D-mod) is a rigid tensor category. Namely, for
two objects M1,M2 ∈ ob(D-mod), the tensor product M1 ⊗k M2 and the
internal homomorphism Homk(M1,M2) exist in (D-mod). Let G be a com-
mutative Hopf algebra. Then similarly the category of right G-co-modules
that are finite-dimensional as C-vector spaces form a rigid tensor category.
Let H be an object of the category (D-mod). Let G be the Galois group of
Picard–Vessiot ring of the system of linear differential equations determined
by H. So G is an affine group scheme over C. Hence the coordinate ring
C[G] is a Hopf algebra.

Theorem 11.1 (van der Put and Singer [19, Theorem 2.33 in 2.4]). —
The rigid tensor sub-category {{H}} of the rigid tensor category (D-mod)
generated by H is equivalent to the rigid tensor category (comod-C[G]) of
right C[G]-co-modules that are finite-dimensional C-vector spaces.
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The result of preceding Sections suggest that we might as well expect a
similar result for the Hopf algebra C[σ, σ−1, θ∗]. To be more precise in the
classical differential case, we take the Hopf algebra C[Ga] that is commu-
tative and co-commutative, and the base field k. In the qsi case, the Hopf
algebra C[σ, σ−1, θ∗] is neither commutative nor co-commutative, and the
base field k coincides with C. We studied a concrete example of qsi mod-
ule M in Section 9. We let (C[σ, σ−1, θ∗]-mod) denote the category of left
C[σ, σ−1, θ∗]-modules of finite C-dimension. Since C[σ, σ−1, θ∗] is a Hopf
algebra, this is naturally a rigid tensor category. Let (M1, σ1, σ

−1
1 , θ∗1) and

(M2, σ2, σ
−1
2 , θ∗2) be two objects of the category. ThenM1⊗CM2 is an object

on which the Hopf algebra acts through the co-multiplication. Note that we
do not haveM1⊗CM2 'M2⊗CM1, in general, since the Hopf algebra is not
co-commutative. The Hom space (Hom(M1,M2), σh, σ−1

h , θ∗h) is an internal
hom object with respect to

σh(f) = σ2 ◦ f ◦ σ−1
1 , θ

(1)
h (f) = −σ2 ◦ f ◦ θ(1)

1 + θ
(1)
2 ◦ f,

where f ∈ Hom(M1,M2). Since q is not a root of unity, θ(m)
h is given by

θ
(m)
h (f) =

f for m = 0,
1

[m]q!
(θ(1)
h )m(f) for m > 0.

We consider the rigid tensor category (comod-Hq) of right Hq-co-modules
that are finite-dimensional C-vector spaces. The results of Sections 9 and 10
would imply the following

Expectation 11.2. — We denote by {{M}} the rigid tensor sub-category
of (C[σ, σ−1, θ∗]-mod) generated by the left qsi-module M . Then the rigid
tensor category {{M}} is equivalent to the rigid tensor category (comod-Hq)
of right Hq-co-modules that are finite-dimensional C-vector spaces.

The Expectation is too naive. It is false but it is not so absurd. Since the
Hopf algebra C[σ, σ−1, θ∗] is neither commutative nor co-commutative, the
arguments for the commutative and co-commutative Hopf algebra C[Ga] re-
quire subtle modifications. We prove a corrected version of Expectation 11.2
in Sections 15 and 16 of Part III.

Observation 11.3. — We have a partial Galois correspondence between
the elements of the two sets.

(1) The set of quotient C-Hopf algebras of Hq:
Hq,Hq/I, C

with the sequences of the quotient morphisms inclusions
Hq −→ Hq/I −→ C, (11.1)
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where I is the bilateral ideal of the Hopf algebra Hq generated by v.
(2) The sub-set of intermediate qsi division rings of K/C:

C,C(X),K

with inclusions
C ⊂ C(X) ⊂ K. (11.2)

The intermediate qsi division rings C(Q) is not written as the ring
of invariants of a Hopf ideal so that our Galois correspondence is
partial.

The extensions K/C and K/C(X) are qsi Picard–Vessiot extensions with
respective Galois groups Hq and C[GaC ].

12. Further examples and generalizations

Looking at the analysis of the qsi moduleM = C1⊕Ct, Pierre Cartier [3]
discovered that one can generalize the results to every qsi linear equations
over C. Let us see other examples to understand better what happens. Let
us consider two 3× 3 matrices

A =

q 1 0
0 q 0
0 0 1

 , B =

0 0 1
0 0 0
0 0 0

 .
so that AB = qBA.

As in the in Section 9, we consider

σY = AY and θ(1)Y = BY (12.1)

over C, where Y is a 3 × 3 unknown matrix. The linear qsi equation is
equivalent to considering a 3-dimensional vector space V equipped with qsi-
module structure defined by the C-algebra morphism

C[σ, σ−1, θ∗] −→M3(C) = End(V ), σ±1 7−→ tA±1, θ(1) 7−→ tB.

The first task is to solve linear qsi equation (12.1) in the qsi algebra
F (Z, C)[[t]]. To this end, we set

Y :=
∞∑
i=0

XiAi ∈M3(F (Z, C)[[X]]) = M3(F (Z, C))[[X]] (12.2)

so that Ai ∈M3(F (Z, C)) for every i ∈ N. We may also identify

M3(F (Z, C)) = F (Z,M3(C)).

– 1411 –



Akira Masuoka, Katsunori Saito and Hiroshi Umemura

Therefore Ai is a function on the set Z taking values in the set M3(C) of
matrices. So

Ai =
[
. . . −2 −1 0 1 2 . . .

. . . a
(i)
−2 a

(i)
−1 a

(i)
0 a

(i)
1 a

(i)
2 . . .

]
with a(i)

j ∈M3(C) for every i ∈ N, j ∈ Z. Substituting (12.2) into (12.1) and
comparing coefficients of ti, we get recurrence relations among the Ai’s

σ(Ai) = q−iAAi θ(1)(Ai+1) = 1
[i+ 1]q

BAi (12.3)

If we solve recurrence relations (12.3) with the initial condition a
(0)
0 = I3,

since B2 = 0, Ai = 0 for i > 2 and

A0 =
[
. . . −2 −1 0 1 2 . . .
. . . A−2 A−1 I3 A A2 . . .

]
=

Q q−1ZQ 0
0 Q 0
0 0 1

 ,
A1 = BA0 =

0 0 1
0 0 0
0 0 0

 .
So

Y = A0 +XBA0 =

Q q−1ZQ X
0 Q 0
0 0 1

 ,
where Z is an element of the ring of functions F (Z, C) taking the value n at
n ∈ N so that

Z =
[
. . . −2 −1 0 1 2 . . .
. . . −2 −1 0 1 2 . . .

]
The solution Y is an invertible element in the matrix ring M3(F (Z, C)[[t]]).
We introduce a qsi C-algebra R generated by the entries of the matrices Y
and Y −1 in the qsi C-algebra F (Z, C)[[t]]. To be more concrete we let

R := C〈Q,Q−1, Z,X〉alg.

The commutation relations among the generators are

QQ−1 = Q−1Q = 1, qXQ = QX, X(Z+1) = ZX, ZQ−QZ. (12.4)

and the operators act as

σ(X) = qX, θ(1)(X) = 1, (12.5)

σ(Q) = qQ, θ(1)(Q) = 0, (12.6)

σ(Q−1) = q−1Q−1, θ(1)(Q−1) = 0, (12.7)

σ(Z) = Z + 1, θ(1)(Z) = 0. (12.8)
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Then the arguments in the previous example show that the ring R trivializes
the qsi module defined by the matrices A and B, the qsi ring R is simple
and that the ring of constants CR = C. The abstract C-algebra R\ has a
C-algebra morphism R\ → C. So we may call it the Picard–Vessiot ring of
the qsi module. Of course we can prove the uniqueness.

Now we are going to speak of the Galois group of qsi equation (12.1).
The argument of the previous Section, (12.4) and the actions of the opera-
tors (12.5), (12.6), (12.7) and (12.8) allow us to prove the following result.

Lemma 12.1. — The following conditions for a C-algebra T and four
elements e, e′, f, g ∈ T are equivalent.

(1) There exists a C-qsi morphism

ϕ : R −→ R⊗C T

such that

ϕ(Q) = eQ, ϕ(Q−1) = e′Q−1, ϕ(Z) = Z + f, ϕ(t) = t+ gQ.

(2) The four elements satisfy the following relations.

ee′ = e′e = 1, eg = qfg, ef = fe, fg − gf = g. (12.9)

Lemma 12.1 tells us the universal co-action. To see the co-algebra struc-
ture, let ϕ1 : R → R ⊗C T be the C-qsi morphism determined by four
elements e1, e

′
1, f1, g1 ∈ T satisfying relations (12.9). We take another C-qsi

algebra morphism ϕ2 : R→ R⊗C T defied by four elements e2, e
′
2, f2, g2 ∈ T

satisfying relations (12.9). We assume that the subsets {e1, e
′
1, f1, g1} and

{e2, e
′
2, f2, g2} of T are element-wisely commutative. Let us compose ϕ1 and

ϕ2.
Q 7→ e1Q 7→ e2(e1Q) = (e1e2)Q,

Q−1 7→ e−1
1 Q−1 7→ e−1

2 (e−1
1 Q−1) = (e−1

1 e−1
2 )Q,

Z 7→ Z + f1 7→ (Z + f1) + f2 = Z + (f1 + f2),
t 7→ t+ g1Q 7→ (t+ g1Q) + g2e1Q = t+ (e1g2 + g1)Q.

Let us now set
H := C〈e, e′, f, g〉alg,

where we assume that the elements e, e′, f, g satisfy only relations (12.9) so
that we have an isomorphism

R\ ' H, Q 7−→ e,Q−1 7−→ e′, Z 7−→ f, t 7−→ g

as abstract C-algebras. It follows from the result above of the composition
of ϕ1 and ϕ2 that

∆ : H −→ H⊗C H
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with
∆(e) = e⊗e, ∆(e′) = e′⊗e′, ∆(f) = f⊗1+1⊗f, ∆(g) = g⊗1+e⊗g
defines a C-algebra morphism and together with a C-algebra morphism

ε : H −→ C, with ε(e) = ε(e′) = 1, ε(f) = ε(g) = 0
makes H a Hopf algebra over C.

The Galois group of the rank 3 qsi module is the Hopf algebra H.

We add another example.

Example 12.2. — We consider matrices

A =
[
lq 0
0 l

]
, B =

[
0 1
0 0

]
∈M2(C),

where l is an element of the field C. Since AB = qBA, the C-algebra mor-
phism

C[σ, σ−1, θ∗] −→M2(C), σ±1 7−→ tA±1, θ(1) 7−→ tB

defines a 2-dimensional qsi module. We assume that q and l are linearly
independent over Q.

We do not give details here as it is useless to repeat the arguments.

(1) The solution matrix in M2(F (Z, C)[[t]]) is[
LQ t
0 L

]
,

where

L =
[
. . . −1 0 1 2 . . .
. . . l−1 1 l l2 . . .

]
∈ F (Z, C).

(2) The Picard–Vessiot ring is
C〈Q,Q−1, L, L−1, t〉alg

with commutation relations
QQ−1 = Q−1Q = 1, LL−1 = L−1L = 1, QL = LQ,

QX = qXQ, LX = lXL.

Actions of operators:
σQ = qQ, σ(Q−1) = q−1Q−1, σL = lL,

σ(L−1) = l−1L−1, σ(X) = qX

θ(1)Q = 0, θ(1)(Q−1) = 0, θ(1)(L) = 0,
θ(1)(L−1) = 0, θ(1)(X) = 1.
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(3) The Galois group is the Hopf algebra

H := C〈e, e−1, g, h, h−1〉alg,

satisfying commutation relations

ee−1 = e−1e = 1, hh−1 = h−1h = 1, eg = qge, hg = lgh.

Co-algebra structure ∆ : H→ H⊗C H:

∆(e±1) = e±1 ⊗ e±1,∆(h±1) = h±1 ⊗ h±1,∆(g) = g ⊗ 1 + e⊗ g.

The co-unit ε : H→ C is given by

ε(e) = ε(e−1) = ε(h) = ε(h−1) = 1, ε(g) = 0.

The last example is inspired of work of Masatoshi Noumi [18] on the quanti-
zation of hypergeometric functions. His idea is that q-hypergeometric func-
tions should live on the quantized Grassmannians. Namely, he quantizes the
framework of Gelfand of defining general hypergeometric functions.

Example 12.3. — Let V be the natural 2-dimensional representation of
Uq(sl2) over C. Hence V is a left Uq(sl2)-module. So we can speak of the
Picard–Vessiot extension R/C attached to the left Uq(sl2)-module V . The
argument in the examples so far studied allows us to guess that R is given by

R := C〈a, b, c, d〉alg.

with relations
ab = qba, bd = qdb, ac = qca, cd = qdc, bc = cb,

ad− da = (q + q−1)bc, ad− qbc = 1.

Imagine a matrix [
a b
c d

]
and on the space of matrices, the quantum group or Hopf algebra Uq(sl2)
operates from right.

Let us recall the definitions. The Hopf algebra Uq(sl2) = C〈q±H2 , X, Y 〉
is generated by four elements

1, q
H
2 , q−

H
2 , X, Y

over C satisfying the commutation relations

q
H
2 q−

H
2 = q−

H
2 q

H
2 = 1, q

H
2 Xq−

H
2 = q2X,

q
H
2 Y q−

H
2 = q−2Y, [X,Y ] = qH − q−H

q − q−1 .
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The co-algebra structure ∆ : Uq(sl2)→ Uq(sl2)⊗C Uq(sl2) is given by

∆(q±H2 ) = q±
H
2 ⊗q±H2 , ∆(X) = X⊗1+qH2 ⊗X, ∆(Y ) = Y ⊗q−H2 +1⊗Y.

We define the co-unit ε : Uq(sl2)→ C by

ε(q±H2 ) = 1, ε(X) = ε(Y ) = 0.
See S. Majid [10, 3.2] for example.

The C-algebra R is a Uq(sl2)-module algebra by the action of Uq(sl2) on
R defined by

q±
H
2

[
a b
c d

]
=
[
q±

1
2 a q∓

1
2 b

q±
1
2 q∓

1
2 d

]
, X

[
a b
c d

]
=
[
0 a
0 c

]
, Y

[
a b
c d

]
=
[
b 0
d 0

]
.

We had not exactly examined but we believed

(1) The algebra extension R/C is the Picard–Vessiot extension for the
Uq(sl2)-module V .

(2) The Galois group is the Hopf algebra on the abstract C-algebra R
with adjunction of the co-algebra structure defined by

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d,
∆(c) = c⊗ a+ d⊗ b, ∆(d) = c⊗ b+ d⊗ d

and the co-unit ε : R→ C with
ε(a) = ε(d) = 1, ε(b) = ε(c) = 0.

Indeed, the exact consequence that follows from a general theory. See Re-
mark 16.3.

Part III. Hopf-algebraic interpretations

This part is devoted to giving Hopf-algebraic interpretations to some
of those results on linear equations with constant coefficients which have
been obtained so far. The restriction “constant coefficients” makes the sit-
uation quite simple, since differential modules are then quantized simply to
modules over a Hopf algebra, say H. It is shown in Section 13 that given
a finite-dimensional H-module M , the left rigid, abelian tensor category
{{M}} generated by M is isomorphic, by a standard duality, to the cat-
egory (comod-H◦π) of finite-dimensional co-modules over what we call the
co-representation Hopf algebra H◦π, where π indicates the matrix represen-
tation of H associated with M . Therefore, this Hopf algebra H◦π plays the
role of the Picard–Vessiot quantum group ofM . In Section 14 we discuss the
qualification for Picard–Vessiot rings: which properties should an H-module
algebra have, to be called a Picard–Vessiot ring for a given M? We will see
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that this question (for general H) is subtle, and such a ring is not necessarily
unique in contrast to the classical, commutative situation. It looks that H◦π
may be called a Picard–Vessiot ring for M . We prove that H◦π has some
of the properties which would be required for such a ring, and in addition,
that some objects that generalize H◦π, as well, have them; the latter already
implies the non-uniqueness above. Indeed, it does happen that an H-module
algebra which even has all reasonably required properties is not unique, as
will be shown by explicit examples in the last Section 17. Another contrast to
the classical theory arises for the tensor-equivalence {{M}} ≈ (comod-H◦π)
mentioned above. Since H◦π is the trivial H◦π-torsor one might expect that
the tensor-equivalence can be realized by the torsor as in the classical theory.
But this is not the case in general, as will be explained in Section 15; the
result modifies correctly Expectation 11.2. The remaining Section 16 reviews
some examples from Part II, refining the results using the arguments in the
present part.

Throughout in this Part III we work over a fixed, arbitrary field C. Vec-
tor spaces, (co-)algebras and Hopf algebras are supposed to be those over
C. Given a vector space V , we let V ∗ denote the dual vector space. The
unadorned ⊗ denotes the tensor product over C.

13. The co-representation Hopf algebra H◦π

Let H be a Hopf algebra. Let H◦ denote the dual Hopf algebra [20,
Section 6.2]. Thus, H◦ is the filtered union of the finite-dimensional co-
algebras (H/I)∗ in H∗,

H◦ =
⋃
I

(H/I)∗,

where I runs over the set of all co-finite ideals of H; note that (H/I)∗ is the
co-algebra dual to the finite-dimensional quotient algebra H/I of H.

For a representation-theoretic interpretation of H◦, note that each I co-
incides with the kernel of some matrix representation, π : H → Mn(C), of
H. Then one will recall that (H/I)∗ coincides with the image

cf(π) = Im(π∗)
of the dual π∗ : Mn(C)∗ → H∗ of π. Let {e∗ij} denote the dual basis of the
basis {eij} ofMn(C) consisting of the matrix units eij , and set cij = π∗(e∗ij).
Then cf(π) is a co-algebra spanned by cij ; it may be called the coefficient
co-algebra of π, whose structure is determined by

∆(cij) =
n∑
k=1

cik ⊗ ckj , ε(cij) = δij . (13.1)
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We present as

Yπ =
[
cij
]

16i,j6n
=

c11 c12 . . .
c21 c22 . . .
...

...
. . .

 , (13.2)

and call this the co-representation matrix of π. One sees that cf(π) = cf(π′),
if matrix representations π and π′ are equivalent. We have

H◦ =
⋃
π

cf(π),

where π runs over the set of all equivalence classes of matrix representations
of H. Given a matrix representation π, the image S(cf(π)) of cf(π) by the
antipode S equals the coefficient co-algebra cf(πt) of the transpose πt of π.
Given another matrix representation π′, we have cf(π) ⊂ cf(π′) if and only
if π is a sub-quotient of the direct sum π′ ⊕ · · · ⊕ π′ of some copies of π′.

Let (H-mod) (resp., (comod-H◦)) denote the category of left H-modules
(resp., right H◦-co-modules) of finite dimension. These two categories are
C-linear abelian tensor categories. They are both left rigid. Indeed, given an
object M , the dual M∗ is naturally a right H-module (resp., a left H◦-co-
module). This, with the side switched through the antipode, gives the left
dual of M . We have a C-linear tensor-isomorphism

(H-mod) ' (comod-H◦), (13.3)

which is given by the following one-to-one correspondence between the struc-
tures defined on a fixed vector space M of finite dimension. Given an H◦-
co-module structure ρ : M →M ⊗H◦, we present it as

ρ(m) =
∑
(m)

m(0) ⊗m(1), (13.4)

following the notation of [20, Section 2.0]. Then the corresponding H-module
structure is defined by

hm =
∑
(m)

m(0)〈m(1), h〉, m ∈M, h ∈ H.

Here and in what follows, 〈 · , · 〉 denotes the canonical pairing with values
in C. Conversely, given an H-module structure on M , or a matrix represen-
tation π : H → Mn(C) with respect to some basis {mi}16i6n of M , the
corresponding H◦-co-module structure is defined by

ρ(mj) =
n∑
i=1

mi ⊗ cij , 1 6 j 6 n, (13.5)
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where
[
cij
]

16i,j6n
is the co-representation matrix of π. See [20, Section 2.1].

Let m
Yπ(h) =

[
〈cij , h〉

]
16i,j6n

, h ∈ H.

Then we see from (13.1) and (13.5) that for every h ∈ H,[
hm1 hm2 . . . hmn

]
=
[
m1 m2 . . . mn

]
Yπ(h);

hYπ = YπYπ(h),
or

[
hci1 hci2 . . . hcin

]
=
[
ci1 ci2 . . . cin

]
Yπ(h), 1 6 i 6 n.

In view of Definition 10.2, we say that an n × n matrix Y with entries
in a left H-module algebra R is a matrix of fundamental system of solutions
for M (or for π), if

(1) hY = YYπ(h) for all h ∈ H, and
(2) Y has an inverse Y−1 in Mn(R).

For example, the co-representation matrix Yπ of π is such a matrix.
In fact, the preceding argument ensures (1), while Remark 14.2 below en-
sures (2). The matrix Y depends on the choice of a C-basis of M . But by
basis change, the matrix changes only by conjugation by some invertible
matrix in Mn(C).

LetM ∈ ob(H-mod). Let {{M}} denote the left rigid, abelian tensor sub-
category of (H-mod) generated by M . It is a full sub-category consisting of
those objects which are sub-quotients of some direct sum L1⊕· · ·⊕Ls, s > 0,
of tensor products Li = Xi1⊗· · ·⊗Xi,ti , ti > 0, where Xij is either M , M∗,
M∗∗ or some further iterated left-dual M∗∗···∗ of M .

Choose a matrix representation π associated with M , and define H◦π to
be the smallest Hopf sub-algebra of H◦ that includes cf(π). If

[
cij
]

16i,j6n
is

the co-representation matrix of π, then H◦π is the sub-algebra of H◦ which
is generated by the images

Sk(cij), k > 0, 1 6 i, j 6 n

of all cij by iterated antipode. We call H◦π the co-representation Hopf algebra
of π, or of M . The category (comod-H◦π) of finite-dimensional right H◦π-co-
modules is regarded as a full sub-category of (comod-H◦).

We now reach the following standard result, which is easy to see.

Proposition 13.1. — The isomorphism (13.3) restricts to the C-linear
tensor-isomorphism

{{M}} ' (comod-H◦π). (13.6)
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14. Qualification for non-commutative Picard–Vessiot rings

Let M ∈ ob(H-mod), and keep the notation as above. In view of Propo-
sition 13.1 we see

(I) H◦π plays the role of the Picard–Vessiot quantum group of M .

Note that the isomorphism (13.3) extends to a C-linear tensor-isomorphism
between the category of locally finite left H-modules and the category
(comod-H◦) of right H◦-co-modules of possibly infinite dimension. Since
H◦π is naturally in (comod-H◦), it is a left H-module, and is indeed a left
H-module algebra. The H-module structure is explicitly given by

hx =
∑
(x)

x(1)〈x(2), h〉, h ∈ H, x ∈ H◦π. (14.1)

We say thatM is trivialized by a leftH-module algebraR (orR trivializes
M), if theH-moduleM⊗R of tensor product is isomorphic to the direct sum
of some copies of R. The same term was used in Observation 9.5, replacing
the M ⊗R here with R⊗M with conversely ordered tensor factors; it will
be shown in Remark 14.5(3) that the order does not matter under some
assumption that is satisfied by our examples.

Proposition 14.1. — We have the following.

(II) The H-module M is trivialized by H◦π.
(III) The H-module algebra H◦π is simple in the sense that it includes

no non-trivial H-stable ideals. Moreover, it includes no non-trivial
H-stable right ideals.

Proof. —

(II). — Let (M)⊗H◦π(= (H◦π)dimM ) denote the left H-module for which
H acts on the single factor H◦π. Then a desired isomorphism

M ⊗H◦π
'−→ (M)⊗H◦π (14.2)

is given, with the notation (13.4), bym⊗x 7→
∑

(m) m(0)⊗m(1)x; the inverse
is given by m⊗ x 7→

∑
(m) m(0) ⊗ S(m(1))x.

(III). — In general, every Hopf sub-algebra H ofH◦ is regarded naturally
as a leftH-module algebra, and is simple. Indeed, H is an H-Hopf module [20,
Section 4.1], whence by [20, Theorem 4.0.5], it includes no non-trivial H-
stable right ideals. �
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Remark 14.2. — In view of Properties (II) and (III) above one would call
H◦π a Picard–Vessiot ring for M . But let us see that the algebra is generated
by the entries of all

Y0 = Yπ =
[
cij
]
, Y1 =

[
S(cij)

]
, Y2 =

[
S2(cij)

]
, . . . .

Note that if k is even, Yk and Yk+1 are inverse to each other, while if k
is odd, the transposes Yt

k and Yt
k+1 are inverse to each other. Thus the

circumstance is naturally different from the commutative situation in which
the Picard–Vessiot ring is generated by the entries of Y and Y−1, where Y
is a matrix of fundamental system of solutions. Indeed, in our situation as
well, Yπ is a matrix of fundamental system of solutions, and the subalgebra
R of H◦π generated by the entries of Y0 = Yπ and Y1 = Y−1

π is a left H-
module algebra which trivializes M . But it may loose the property probably
required for Picard–Vessiot rings that it should be an H◦π-torsor; see the
second paragraph following Proposition 14.3 below. Even if H◦π happens to
coincide with theR above, it may not be the unique “Picard–Vessiot ring” for
M , as will be shown by explicit examples in Section 17. We are now going to
prove that Properties (II) and (III) are possessed by someH-module algebras
that generalize the Hopf algebra H◦π; those generalized objects are used as
well to present the examples referred to above.

Proposition 14.1 is generalized by the following.

Proposition 14.3. — Let H be an arbitrary Hopf sub-algebra of H◦
including H◦π. Let R be a non-zero right H-co-module algebra, which is nat-
urally regarded as a left H-module algebra.

(II′) If R is cleft, then the H-module M is trivialized by R.
(III′) If R is an H-torsor, then it includes no non-trivial H-stable right

ideals.

To prove the Proposition in a generalized situation, suppose that H is an
arbitrary Hopf algebra, and let R be a non–zero right H-co-module algebra.

First, as for (III′), we say that R is an H-torsor (or an H-Galois exten-
sion [15, Definition 8.1.1] over C), if the map R ⊗ R → R ⊗ H given by
x ⊗ y 7→

∑
(y) xy(0) ⊗ y(1), with the same notation as in (13.4), is bijective.

Note that H itself is naturally an H-torsor, whence (III′) generalizes (III) of
Proposition 14.1. This (III′) follows since we see from [15, Theorem 8.5.6]
that every H-torsor includes no non-trivial H-stable right ideals.

Next, as for (II′), recall from [15, Definition 7.2.1] that R is said to be
cleft, if there exists an H-co-module map φ : H → R that is invertible with
respect to the convolution-product [15, Definition 1.2.1]; the inverse φ−1 is
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then characterized by∑
(x)

φ(x(1))φ−1(x(2)) = ε(x)1 =
∑
(x)

φ−1(x(1))φ(x(2)), x ∈ H.

Note that H itself is cleft with respect to φ = Id, the identity, and φ−1 = S,
the antipode. Hence (II′) generalizes (II) of Proposition 14.1; note that M
is regarded naturally as a right H-co-module since H ⊃ H◦π by assumption.
We see that (II′) follows from the next Lemma.

Lemma 14.4. — Suppose that R is cleft. Given a right H-co-module N ,
an H-co-module isomorphism

N ⊗R '−→ (N)⊗R (14.3)
(analogous to (14.2)) is given by n⊗x 7→

∑
(n) n(0)⊗φ(n(1))x, where N ⊗R

denotes the H-co-module of tensor product, and (N) ⊗R denotes the H-co-
module for which H co-acts on the single factor R.

Proof. — The inverse is given by n⊗ x 7→
∑

(n) n(0) ⊗ φ−1(n(1))x. �

It is known (see [15, Theorem 8.2.4]) that the cleft H-torsors coincide with
each of the following two classes of non-zero right H-co-module algebras:

• Those H-torsors which are isomorphic to H as H-co-module;
• The cleft right H-co-module algebras R = (R, ρ) such that RcoH =
C, where RcoH = {x ∈ R | ρ(x) = x⊗ 1} denotes the sub-algebra of
R consisting of all H-co-invariants.

We remark that given an H-torsor R, an H-co-module map H→ R is an
isomorphism if and only if it is invertible with respect to the convolution-
product; see the proof of [15, Theorem 8.2.4].

One sees easily that if H is finite-dimensional, then every H-torsor is
necessarily cleft.

Remark 14.5. —
(1). — Let H be a Hopf algebra in general. Assume that the antipode S

of H is bijective. Then the inverse S of S is the unique linear endomorphism
of H such that∑

(x)

x(2)S(x(1)) = ε(x)1 =
∑
(x)

S(x(2))x(1), x ∈ H.

The assumption is satisfied if H is finite-dimensional, commutative, co-comm-
utative or pointed [20, Section 8.0].

(2). — Given an algebra R, let Rop denote the opposite algebra. Then
Hop, given the original co-algebra structure on H, is a bi-algebra. This Hop
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is a Hopf algebra if and only if S is bijective. Suppose that this is the case.
Then S is the antipode of Hop. Through R ↔ Rop, the (cleft) H-torsors and
the (cleft) Hop-torsors are in one-to-one correspondence. Let R be a cleft
H-torsor, and suppose that φ : H → R is an H-co-module map which is
invertible with respect to the convolution-product. Regarded as an Hop-co-
module map Hop → Rop, φ remains invertible (see the second last paragraph
preceding this Remark 14.5), whence there uniquely exists a linear map
φ : H→ R such that∑

(x)

φ(x(2))φ(x(1)) = ε(x)1 =
∑
(x)

φ(x(2))φ(x(1)), x ∈ H.

Note that if R = H and φ = Id, then φ coincides with the S above.
(3). — Suppose that we are in the situation of Proposition 14.3 and

Lemma 14.4. Assume that the antipode of H is bijective, and let R be a
cleft H-torsor with φ, φ as above. Given a right H-co-module N , we have an
H-co-module isomorphism analogous to (14.3),

R⊗N '−→ (N)⊗R, x⊗ n 7−→
∑
(n)

n(0) ⊗ xφ(n(1)),

whose inverse is given by n ⊗ x 7−→
∑

(n) xφ(n(1)) ⊗ n(0). In particular, in
the situation of Proposition 14.1, if the antipode of H◦π is bijective, then we
have an H-module isomorphism analogous to (14.2),

H◦π ⊗M
'−→ (M)⊗H◦π, x⊗m 7−→

∑
(m)

m(0) ⊗ xm(1).

In the examples which we will treat in Sections 16 and 17, the Hopf algebras
H◦π are pointed, so that we have the last isomorphism for those.

15. Tensor-equivalence expected from the classical one

Let M ∈ ob(H-mod), and keep the notation as above. Let us return to
Property (I). Recall that in the classical theory, Picard–Vessiot rings give
the tensor-equivalences as found in [1, Theorem 8.11], for example; for this,
essential is that those rings are torsors. From (I) one may expect an analogous
tensor-equivalence {{M}} ≈ (comod-H◦π), since H◦π is indeed a (trivial) H◦π-
torsor. We will see that under some mild assumption, there exists such a
tensor-equivalence, for which, however,H◦π does not act as a torsor any more.
The result gives the “corrected version of Expectation 11.2” as referred to
just after the Expectation.
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Let us write R for the trivial H◦π-torsor H◦π, to make its role clearer.
Recall that R has the natural left H-module structure as given by (14.1).
Define a right H◦π-co-module structure % : R → R⊗H◦π on R by

%(x) =
∑
(x)

x(2) ⊗ S(x(1)), x ∈ R,

where S denotes the antipode ofH◦π. Note that (R, %) is not anH◦π-torsor nor
even a rightH◦π-co-module algebra in general. Given N ∈ ob(H-mod), endow
the left H-module R⊗N with the right H◦π-co-module structure induced by
%. Since the H-module structure on R commutes with %, the H-invariants
(R⊗N)H in R⊗N , consisting of those elements on which H-acts trivially
through the co-unit, form an H◦π-sub-co-module.

Lemma 15.1. — Assume that the antipode of H◦π is bijective. Then N 7→
(R⊗N)H gives a tensor-equivalence {{M}} ≈ (comod-H◦π).

Proof. — Let S denote the inverse of the antipode S of H◦π. Let N ∈
{{M}}, and regard it as an object also in (comod-H◦π) through (13.3). Using
the notation (13.4), we see that

αN : N −→ (R⊗N)H, αN (n) =
∑
(n)

S(n(1))⊗ n(0).

is an isomorphism in (comod-H◦π). Indeed, the last sum is H-invariant since
it is seen to be H◦π-co-invariant. The inverse α−1

N associates
∑
i ε(xi)ni to

an element
∑
i xi ⊗ ni ∈ (R ⊗ N)H. The isomorphism αN is natural in

N . It translates the tensor-isomorphism (13.3) into the tensor-equivalence
F : N 7→ (R⊗N)H, whose tensor structure is given by αC and

F (N)⊗ F (N ′) −→ F (N ⊗N ′),(∑
i

xi ⊗ ni
)
⊗
(∑

j

yj ⊗ n′j
)
7−→

∑
i,j

yjxi ⊗ (ni ⊗ n′j)

for N,N ′ ∈ {{M}}. Note that the last map, composed with αN ⊗ α′N ,
coincides with αN⊗N ′ , and is, therefore, an isomorphism. �

Assume that H is co-commutative, and so that H◦π = R is commutative.
Their antipodes are then involutions. Therefore, R is a Picard–Vessiot ring,
being generated by the entries of Y±1

π . Through the antipode of H◦π transfer
the structures of R onto its copy, which we denote by R′. Then R′ has the
original, natural right H◦π-co-module structure, under which it is the trivial
H◦π-torsor. The left H-module structure on R′ is given by

hx =
∑
(x)

〈x(1), S(h)〉x(2), h ∈ H, x ∈ R′,
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where S denotes the antipode of H. The co-commutativity assumption en-
sures that R′ is a left H-module algebra, and it remains a Picard–Vessiot
ring for M . The tensor-equivalence above now reads N 7→ (R′⊗N)H, which
is, given by the torsor R′, of the same form as the classical ones as found
in [1, Theorem 8.11].

16. Reviewing some examples

To review two examples from Part II, let H = Hq be the Hopf algebra
defined by Definition 3.9. Assume that the element 0 6= q ∈ C is not a root
of 1, unless otherwise stated. We write t for the element t1 given in the
Definition. Then

(Hq =)H = C[s, s−1]⊗ C[t].

This means that H includes the Laurent polynomial algebra C[s, s−1] and
the polynomial algebra C[t] so that the product map C[s, s−1]⊗C[t]→ H is
bijective. The algebra structure on H is determined by the relation ts = qst.
Obviously, H has

vm,n = sm
tn

[n]q!
, m ∈ Z, n ∈ N

as a basis. The co-algebra structure is given by

∆(vm,n) =
∑
i+j=n

vm+j,i ⊗ vm,j , ε(vm,n) = δn,0. (16.1)

In particular, s and s−1 are grouplikes, and t is (s, 1)-primitive, or ∆(t) =
s ⊗ t + t ⊗ 1. Generated by those elements, H is a pointed Hopf algebra,
whose antipode is necessarily bijective. We remark that s and t are denoted
in Section 9 by σ and θ(1), respectively.

Define elements e, f, g ∈ H∗ by

〈e, vm,n〉 = qmδn,0, 〈f, vm,n〉 = mδn,0, 〈g, vm,n〉 = δn,1.

Then we see that
H = C[e, e−1, f ]⊗ C[g] (16.2)

is included in H◦; this means, just as before, that the two commutative
algebras are included inH◦ so that the product map C[e, e−1, f ]⊗C[g]→ H◦
is injective. By using (16.1) we obtain

eg = qge, fg − gf = g.
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These relations show that H is a sub-algebra of H◦, determining its algebra
structure. Since e (resp., f) is in fact a C-valued algebra map (resp., deriva-
tion) defined on the quotient Hopf algebra H/(t) = C[s, s−1] of H, it follows
that

∆(e) = e⊗ e, ε(e) = 1, ∆(f) = 1⊗ f + f ⊗ 1, ε(f) = 0. (16.3)

(As an additional remark, gn, n > 0, can be grasped as follows: the quotient
co-algebra Q of H divided by the right ideal generated by s − 1 is spanned
by the ∞-divided power sequence 1, t, t2/[2]q!, . . . . The gn are the elements
of Q∗ given by 〈gn, t`/[`]q!〉 = δn,`.) Since one computes

〈g, vm,nvk,`〉 =


1 if n = 0, ` = 1,
qk if n = 1, ` = 0,
0 otherwise,

it follows that
∆(g) = 1⊗ g + g ⊗ e, ε(g) = 0. (16.4)

By (16.3) and (16.4), H is a sub-bi-algebra of H◦. Indeed, it is a Hopf sub-
algebra, having the antipode determined by

S(e) = e−1, S(f) = −f, S(g) = −ge−1.

From this explicit form of the antipode we will see that for the following
two examples of matrix representations π of H, the co-representation Hopf
algebra H◦π is generated by the entries of the co-representation matrix Yπ

and e−1 = S(e); indeed, since e is an entry of Yπ, H◦π is generated by the
entries of Y±1

π . Note also that the Hopf algebra H and those H◦π which will
be obtained as its Hopf sub-algebras are all pointed.

Example 16.1. — Recall from Section 9 the matrix representation π of H
determined by

π(s) =
[
q 0
0 1

]
, π(t) =

[
0 0
1 0

]
. (16.5)

These matrices are the transposes of those in Section 9, since the basis of
the corresponding H-module is supposed here to be in a row vector, whereas
in Section 9 it is supposed to be in a column vector. Since one computes

π(vm,n) =



[
qm 0
0 1

]
n = 0,[

0 0
1 0

]
n = 1,

O n > 2,
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it follows that

Yπ =
[
e 0
g 1

]
. (16.6)

We conclude that H◦π = C〈e±1, g〉, the Hopf sub-algebra of H generated by
e±1 and g.

Direct computations show that the natural left H-module structure on
this C〈e±1, g〉 is given by

s
[
e±1 g

]
=
[
q±1e±1 qg

]
, t

[
e±1 g

]
=
[
0 1

]
.

One then sees that e±1 7→ Q±1, g 7→ t give an isomorphism from C〈e±1, g〉
to the H-module algebra R = C〈t, Q,Q−1〉alg given in Observation 9.2.
As was shown by Proposition 9.13, the Hopf algebra Hq constructed in
Lemma 4.12 co-acts on this last R from the right, so that R is an Hq-
torsor, and the Hq-co-action commutes with the H-action. Note that the
Hopf algebra H◦π = C〈e±1, g〉 here obtained differs from the Hq only in that
their co-multiplications are opposite to each other. The reason of this dif-
ference has been seen in the preceding section: in the quantized situation,
the Picard–Vessiot quantum group H◦π does not act as a torsor which was
expected to give the tensor equivalence (13.6). In other words, Hq is not the
Picard–Vessiot quantum group, so that we do not have {{M}} ≈ (comod-Hq)
analogous to (13.6). Indeed, Proposition 9.13 does not assert such a tensor
equivalence.

Theorem 10.7 has proved that H◦π is the unique (up to isomorphism)
Picard–Vessiot ring for π. The definition of Picard–Vessiot rings adopted
by the theorem will be reproduced in the following section, in which the
proved uniqueness will be seen not to hold under some milder (seemingly
reasonable) restriction.

Example 16.2. — Recall from Example 12.1 the matrix representation π
of H determined by

π(s) =

q 0 0
1 q 0
0 0 1

 , π(t) =

0 0 0
0 0 0
1 0 0

 .
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Since one computes

π(vm,n) =



 qm 0 0
mqm−1 qm 0

0 0 1

 n = 0,

0 0 0
0 0 0
1 0 0

 n = 1,

O n > 2,
it follows that

Yπ =

 e 0 0
1
q ef e 0
g 0 1

 .
We conclude that H◦π = H, the Hopf algebra given above by (16.2).

One sees that this H is isomorphic, as an H-module algebra, to the R =
C〈Q,Q−1, Z, t〉alg obtained in Example 12.1 via e±1 7→ Q±1, f 7→ Z, g 7→ t.
As Hopf algebras, H and the A = C〈e, e′, f, g〉alg resulting from Lemma 12.1
coincide except in that their co-multiplications are opposite to each other,
again; see the second last paragraph of the preceding example.

Remark 16.3. — Suppose that characteristic charC of C is not 2, and
that 0 6= q ∈ C is not a root of 1. Let H = Uq(sl2) be the quantized envelop-
ing algebra of sl2 as given in Example 12.3. This example is essentially the
attempt to determine the Hopf algebra H◦π for the fundamental representa-
tion π of H. It is known that H◦π is the coordinate Hopf algebra Oq(SL2) of
the quantized SL2, in which the elements a, b, c, d given in the example are
the standard generators; the antipode of this Oq(SL2) is bijective. See [21],
for example.

17. Non-uniqueness of “Picard–Vessiot rings”

To see the non-uniqueness mentioned at the last paragraph of Exam-
ple 16.1 we start with reproducing the definition of Picard–Vessiot rings
adopted by Theorem 10.7, in a generalized situation. Let H be a Hopf al-
gebra, and let M be a finite-dimensional left H-module. We say that a left
H-module algebraR is a Picard–Vessiot ring forM (or for the corresponding
matrix representation), if

(1) R is generated by the entries of Y±1, where Y is a matrix of fun-
damental system of solutions for M ,
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(2) R is simple as an H-module algebra, and
(3) there exists a C-algebra map R → C.

One sees that Condition (1) does not depend on the choice of a C-basis
of M , since the matrix Y is not affected (up to conjugacy) by basis change.
In the classical, commutative situation, Condition (3) is ensured by (1),
if we assume, as usual, that C is algebraically closed. But in the present,
quantized situation, it seems reasonable to remove Condition (3), since the
condition possibly exclude many non-commutative rings. We will see that
the uniqueness does not hold any more if we remove the condition.

Let (Hq =)H = C[s, s−1] ⊗ C[t] be the Hopf algebra which was defined
by Definition 3.9 and reproduced in the preceding section. Note that the
Hopf algebra H◦π = C〈e±1, g〉 obtained in Example 16.1 is isomorphic to H;
in fact, s 7→ e−1 and t 7→ e−1g define an isomorphism

H '−→ H◦π. (17.1)

Since this H is pointed, every H-torsor is necessarily cleft. It is known and
easy to see that every H-torsor is isomorphic to the trivial H.

Assume that q is a primitive N -th root of 1, where N > 1. Then the ideal
I = (sN − 1, tN ) of H is a Hopf ideal. The quotient Hopf algebra T = H/I
is called Taft’s Hopf algebra; it is finite-dimensional and pointed. We denote
the natural images of s, t in T by the same symbols.

Example 17.1. — Given an element λ ∈ C, let Rλ denote the algebra
generated by two elements s′, t′, and defined by the relations

t′s′ = qs′t′, s′N = 1, t′N = λ.

One sees that
ρ(s′) = s′ ⊗ s, ρ(t′) = s′ ⊗ t+ t′ ⊗ 1

defines an algebra map ρ : Rλ → Rλ ⊗ T , by which Rλ is a right T -co-
module algebra; it coincides with T if λ = 0. It is essentially proved in [13]
that Rλ is a (necessarily, cleft) T -torsor, and Rλ ' Rλ′ if and only if λ = λ′.
Moreover, if C× = (C×)N , every T -torsor is isomorphic to Rλ for some λ.

The same formulas as in (16.5) define a matrix representation π of T .
Recall that T is a quotient Hopf algebra of H. By the same argument as
in Example 16.1, we see that T ◦π is the quotient Hopf algebra of H◦π by the
Hopf ideal (eN−1, gN ), and the isomorphism (17.1) induces an isomorphism
T ' T ◦π . Moreover, the isomorphism (17.1) induces such an isomorphism
that sends Rλ onto the quotient R′λ of H◦π by the ideal (eN − 1, gN − λ);
this R′λ is thus a T ◦π -torsor. Let us identify Rλ with R′λ through the induced
isomorphism. Then Rλ turns into a left T -module algebra which is simple
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by Proposition 14.3. Let e′, g′ denote the natural images of the elements e,
g of H◦π in Rλ. In view of (16.6), we see that[

e′ 0
g′ 1

]
is a matrix of fundamental system of solutions for π. Apparently, the entries
already generate Rλ.

To summarize, Rλ, λ ∈ C, are mutually non-isomorphic T -module alge-
bras satisfying Conditions (1) and (2) above. Note that Rλ satisfies Condi-
tion (3) if and only if λ = 0.
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