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Cyclic covers of Stable curves and their moduli
spaces (∗)

Binru Li (1)

ABSTRACT. — We study the deformation of G-marked stable curves in the case
where G is a cyclic group, and construct a parameterizing space for G-marked stable
curves of a given numerical type.

This is then used in order to study the components of the locus of stable curves
admitting the action of a cyclic group of non prime order d, extending the work of
F. Catanese in the case where d is prime.

RÉSUMÉ. — Nous étudions la déformation des courbes stables marquées de G dans
le cas où G est un groupe cyclique et construisons un espace de paramétrage pour
les courbes stables marquées par G d’un type numérique donné.

Ceci est ensuite utilisé afin d’étudier les composantes de l’ensemble des courbes
stables en admettant l’action d’un groupe cyclique de non-premier ordre d, extension
du travail de F. Catanese dans le cas où d est premier.

Introduction

The purpose of this article is to study the structure of the locus (Mg −
Mg)(G) of (non-smooth) stable curves of genus g inside the compactified
moduli space Mg admitting an effective action by a cyclic group G.

In [4] and [5] M. Cornalba determined the irreducible components of
Sing(Mg), the singular locus of the moduli scheme of smooth projective
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curves of genus g > 2. The result was obtained by showing that Mg(Z/p),
the locus inside Sing(Mg) of curves admitting an effective action by a cyclic
group of prime order p, is irreducible and maximal (i.e. being not contained in
another locus) except for finitely many cases. The main ingredient Cornalba
used is that the locus corresponding to cyclic covers of prime order of smooth
curves with a fixed combinatorial datum, called the numerical type (see
Definition 2.1), is an irreducible Zariski closed subset of the moduli space
Mg. Catanese in [1] extended this result to the case of cyclic groups of any
order (cf. Theorem 2.3).

The studies of such loci can be continued in two directions:

In one direction more finite groups G are considered. For instance the
case where G = Dn, the dihedral group of order 2n, was investigated in a
series of papers by F. Catanese, M. Lönne and F. Perroni (cf. [2, 3]) and
later by B. Li and S. Weigl (cf. [7]). The main difficulty there is that for
general groups a numerical type might correspond to a reducible subset of
the moduli space. In [3] the authors introduced a new homological invariant
which enables them to distinguish the irreducible components asymptotically
(i.e., when the genus of the quotient curve � 0).

The other direction is to consider the boundary of the compactified mod-
uli space Mg. In [1], Catanese determined the irreducible components of
Sing(Mg −Mg) by studying the loci (Mg −Mg)(Z/p) and obtained analo-
gous results as in the smooth case. In this case, the locus of stable curves
with a given numerical type is not necessarily Zariski closed: if a stable curve
C1 is smoothable to another stable curve C2, then the corresponding locus of
C1 is contained in the closure of that of C2, hence one should look at the non-
smoothable stable curves. Hence in the boundary case the notion of maximal
means that the Zariski closure of the locus is maximal (cf. Definition 2.13).

In this article we go into both directions, studying the loci (Mg−Mg)(Z/d)
of non-prime order d and generalize several results in [1].

This article is organized as follows.

In Section 1 we give the definition of a G-marked stable curve (i.e., a
stable curve C admitting an effective action by a finite group G, cf. Defini-
tion 1.1) and associated notions.

In Section 2 we study the G-equivariant deformation (cf. Definition 2.4) of
G-marked stable curves, and determine when a G-marked stable curve is G-
equivariantly smoothable. Then we define the associated numerical type for
G-marked stable curves and prove the main result of this section that, for G-
marked stable curves with a given numerical type, there is a parameterizing
space (cf. Theorem 2.11):
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Theorem A. — Given a G-marked stable curve (C,G, ρ), there exists a
connected complex manifold T[D(C,G,ρ)] parameterizing all G-marked stable
curves with numerical type [D(C,G, ρ)].

If moreover (C,G, ρ) is G-equivariantly non-smoothable, denoting by
M[D(C,G,ρ)] the image of the natural morphism T[D(C,G,ρ)] → Mg − Mg,
then each point inside M[D(C,G,ρ)] has finite inverse image in T[D(C,G,ρ)],
and the closure M[D(C,G,ρ)] consists of G-marked stable curves which can be
G-equivariantly deformed into a curve with numerical type [D(C,G, ρ)].

In Section 3 we study the irreducible components of (Mg−Mg)(G) for the
case G = Z/d, the idea is to determine when a G-stratum (i.e., the image
inside (Mg −Mg)(Z/d) of the parameterizing space of a given numerical
type, cf. Definition 2.13) is maximal. For this we need to compare all the
order d cyclic subgroups of the stratum (cf. Definition 3.2).

Due to some phenomena arising from the smooth case (cf. Proposi-
tion 3.5), the automorphism group of a stratum might become very com-
plicated, making it impossible to give a brief and explicit description for
maximal strata. Hence we make some technical assumptions.

Assumption (cf. Assumption 3.6).

(0) (C =
∑
i∈I Ci, G, ρ) is G-equivariantly non-smoothable.

(1) For a general stable curve (C,G, ρ) in the stratum we have Hi =
Aut(C̃i) and g(C̃i) > 2 for all i.

(2) For any i ∈ I, the parameterizing space Thi,ri has dimension> 0.

With the above assumptions we prove the main result of this article (cf.
Theorem 3.17):

Theorem B. — Under the conditions of Assumption 3.6, we have the
following:

(1) For a G-equvariantly non-smoothable G-marked stable curve (C =∑
i∈I Ci, G, ρ), the induced stratum MC′ , where C ′ = C/G, is max-

imal iff for a general stable curve (by abuse of notation we denote
still by) (C,G, ρ) in the stratum:
(a) The cases in Lemma 3.10 do not occur.
(b) For any β ∈ Aut(C) (of order d) and any node p where

Case (II-i) happens (cf. page 58), the following holds:

ζ
b(p,1)c(β,p,1)
p,1 ζ

b(p,2)c(β,p,2)
p,2 6= 1.

(c) For any β ∈ Aut(C) (of order d), there is no node p of type E
with respect to β (see Definition 3.16).
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(2) The Zariski closure of each maximal stratum in (1) is an irreducible
component of (Mg −Mg)(G).

1. Notation

Let C be a (non-smooth) stable curve (i.e., C has at most nodes as
singularities and Aut(C), the automorphism group of C, is finite),

C =
∑
i∈I

Ci.

We define I to be the graph whose set of vertices is the set I, and whose
set of edges is the set N of the nodes P ∈ C.

We let Ni := N ∩Ci, i.e., these are the edges of the graph containing the
vertex i.

Note that if P ∈ N , P ∈ Ci ∩Cj , i 6= j, then P yields an edge connecting
two distinct vertices, else, if P ∈ Ci and P /∈ Cj , ∀ j 6= i, P yields a loop
based at i. Hence we have

Ni = N (1)
i ∪N (2)

i ,

where N (1)
i corresponds to edges connecting two distinct vertices (one of the

vertex is i) and N (2)
i corresponds to loops based at i.

Set further C − Ci = C \ Ci.

Definition 1.1.

(1) Let G be a finite group. A G-marked stable curve is a triple (C,G, ρ),
where C is a stable curve, ρ : G ↪→ Aut(C) is an injective homo-
morphism, i.e., G acts effectively on the stable curve C. When ρ is
clear, for instance if G is a subgroup of Aut(C), we write for short
(C,G) instead of (C,G, ρ).

(2) We call (C,G, ρ) a smooth (resp. irreducible) G-marked curve if C
is smooth (resp. irreducible).

Remark 1.2. — In the case where ρ is clear from the context, we identify
G with its image ρ(G) and write G ⊂ Aut(C).

Given a G-marked curve (C,G, ρ), then G acts naturally on the graph I,
and on the set I.
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Definition 1.3.

(i) Let Kv be the kernel of the action on I, and let instead Gi be the
stabilizer of i ∈ I; in other words,

Gi := {g | g(Ci) = Ci}
and Kv =

⋂
i∈I Gi.

(ii) Let K be the kernel of the action on the graph I, and let, for P ∈ N ,
GP be the stabilizer of P ; hence K = Kv ∩ (

⋂
P∈N GP ). We let

moreover G′i be the subgroup of Gi which fixes the nodes in Ni, the
nodes of C belonging to Ci, and we let G′′i be the subgroup which
acts trivially on Ci. Hence K =

⋂
i∈I G

′
i. We denote by ni the order

of G/Gi.
(iii) In the case G is an abelian group, let Hi be the quotient group

Gi/G
′′
i , respectively H ′i := G′i/G

′′
i . Necessarily H ′i is a cyclic sub-

group if Ni 6= ∅. We denote by di (resp. d′i) the order of Hi (resp.
H ′i).

(iv) Setting where I0 = {i∈ I |G=G′′i }, I1 = {i∈ I |G=Gi and G 6=G′′i }
and I2 = {i ∈ I |G 6= Gi}, then the set I has a natural partion
I = I0 ∪ I1 ∪ I2.

In the rest of this article G shall denote a cyclic group Z/d with generator
γ and ζd := exp

( 2π
√
−1
d

)
. We work over the field of complex numbers C.

2. Parametrizing space of cyclic coverings

In this section we will construct parameterizing spaces for G-marked sta-
ble curves, first we review the case of smooth G-marked curves.

Let (C,G) be a smooth irreducible G-marked curve. The action of G on
C induces a (ramified) covering map C → C ′ := C/G. For any 1 6 i 6 d−1,
we define a divisor Di as the sub-divisor of the branch locus D ⊂ C ′ where
the local monodromy is ζid (cf. [1, p. 4, l. 20]).

Definition 2.1 ([1, Definition 2.2]). — Let C be a smooth irreducible
projective curve of genus g on which G = Z/d acts faithfully, and set C ′ =
C/G, h := genus(C ′).

Denote by ki = deg(Di) for i = 1, . . . , d − 1, and by (k1, . . . , kd−1) the
branching sequence of γ. A change of generator of Z/d corresponds to a
(Z/d)∗-action on the set of sequences, we denote the resulting equivalence
class by [(k1, . . . , kd−1)], and call it the numerical type of the cyclic cover
C → C ′.
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Definition 2.2 ([1, Definition 2.3]). — Given a branching datum cor-
responding to a sequence [(k1, . . . , kd−1)], set

h := 1 + 2(g − 1)
2d − 1

2

d−1∑
i=1

ki

(
1− gcd(i, d)

d

)
.

The branching datum is said to be admissible for d and g if the following
two conditions are satisfied:

(1)
∑d−1
i=1 kii ≡ 0 (mod d),

(2) h is an positive integer; h = 0, gcd{d, gcd{i | ki 6= 0}} = 1.

Note that the branching datum of a cyclic cover C → C ′ is admissible.

The main result for the parameterizing space of smooth G-marked curves
is the following:

Theorem 2.3 ([1, Theorem 2.4]). — The pairs (C,G), where C is a
complex projective curve of genus g > 2, and G is a finite cyclic group of
order d acting faithfully on C with a given branching datum [(k1, . . . , kd−1)]
are parametrized by a connected complex manifold Tg,d;[(k1,...,kd−1)] of dimen-
sion 3(h− 1) + k, where k :=

∑
i ki.

The image Mg,d;[(k1,...,kd−1)] of Tg,d;[(k1,...,kd−1)] inside the moduli space
Mg is a closed subset of the same dimension 3(h− 1) + k.

We will give an analogous result for G-marked stable curves.

Definition 2.4. — Let (C,G, ρ) be a G-marked stable curve: a G-equiv-
ariant deformation of (C,G, ρ) is a triple (p : C→ B,G, η) such that

(1) p : C→ B is a deformation of C over an irreducible base B with all
fibres stable curves and the central fibre CO ' C (O ∈ B).

(2) η : G→ Aut(C) is an injective homomorphism inducing an effective
action on C such that p is G-invariant (where the action of G on B
is trivial) and η|CO ' ρ.

Definition 2.5. — We say that a G-marked stable curve (C,G, ρ) is
G-equivariantly non-smoothable (or has no G-equivariant smoothing) if
(C,G, ρ) can not be G-equivariantly deformed to (C ′, G, ρ′) such that C ′ has
less nodes than C.

We have the following criterion which tells when a G-marked stable
curves is G-equivariantly non-smoothable, and generalizes the prime case
in [1, Lemma 4.3]:
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Proposition 2.6. — Let P ∈ C =
∑
i Ci be a node, set GP := Stab(P )

the stabilizer group of P in G, then the following are equivalent:

(1) All points in G(P )(:= the orbit of P ) can by simultaneously G-
equivariantly smoothed.

(2) The induced group homomorphism GP → GL(Ext1(ΩC ,OC)P ) '
C∗ is trivial.

Proof. — Recall the local to global spectral sequence:

0 −→
⊕
i

H1

(
ΘCi

(
−
∑
j 6=i

(Ci ∩ Cj)
))
−→ Ext1(Ω1

C ,OC)

−→
⊕
P∈N

Ext1(Ω1
C ,OC)P −→ 0, (∗)

where Ω1
C is the sheaf of differentials of C and ΘCi denotes the tangent sheaf

of Ci.

Here I shall explain why the first term of (∗) has this form, since in the
original sequence the first term should be H1(Hom(ΩC ,OC)). Denote by
ιi : Ci → C the natural embedding. As C has only nodes as singularities, a
local computation yields the following exact sequence:

0 −→ ΩC −→
⊕
i∈I

ιi∗(ι∗iΩC) −→ Q −→ 0

and
ι∗iΩC ' ΩCi ⊕Qi,

where Q(resp. Qi) is supported on the nodes of C (resp.
∑
j 6=i Cj ∩Ci). Now

Applying the dual functor Hom(−,OC), since Q and Qi are supported on
0-dimensional sets, we have

0 −→ Hom
(⊕
i∈I

ιi∗ΩCi ,OC

)
ι−→ Hom(ΩC ,OC).

After some local computation (again note that C has only nodes as singu-
larities), we get the following:

(1) ι is in fact an isomorphism.
(2) Hom(ιi∗ΩCi ,OC) ' ιi∗(Θi(−

∑
j 6=i Cj ∩ Ci)).

As H1(Ci,Θi(−
∑
j 6=i Cj ∩Ci)) ' H1(C, ιi∗(Θi(−

∑
j 6=i Cj ∩Ci))), we com-

plete the explanation of the first term of (∗).
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The exact sequence (∗) remains exact after taking the subspaces of G-
invariant vectors. Hence we have a surjection:

Ext1(ΩC ,OC)G −�
(⊕
P∈N

Ext1(Ω1
C ,OC)P

)G
. (∗∗)

Since GP is a subgroup of G = Z/d, we have GP ' Z/m for some m|d,
define r := m/d. Denoting by γ̄ the image of γ in G/GP , clearly γ̄ is a
generator of G/GP . Up to a change of index, we can assume that G(P ) =
{P1 = P, . . . , Pr}, such that γ̄(Pi) = Pi+1. The surjection (∗∗) means that
all combinations of possible local G-equivariant deformation can be realized
by global ones, hence we only need to consider the local deformation at each
node P . On the other hand if a G-equivariant deformation smooths a node P ,
it must smooth all the points in G(P ) simultaneously. Therefore we see that
all points in G(P ) can be simultaneously smoothed ⇔ ∃ v = (v1, . . . , vr) ∈
(
⊕

Pi∈G(P ) Ext1(ΩC ,OC)Pi)G, such that v 6= 0 (since v is G-invariant, v 6= 0
is equivalent to vi 6= 0 for all i).

Assume γ(v1, . . . vr) = (λrvr, λ1v1, . . . λr−1vr−1) for some λi ∈ C∗. It is
easy to see that γv = v ⇔

∏r
i=1 λi = 1.

If there exists 0 6= v ∈ (
⊕

Pi∈G(P ) Ext1(ΩC ,OC)Pi)G, then we have γv =
v. Noting that γr is a generator of GP , the induced homomorphism GP → C∗
is then given by γr 7→

∏
λi = 1, hence trivial. Conversely, if GP → C∗ is

trivial, let v = (v1, λ1v1, . . . , (
∏r−1
i=1 λi)v1) with v1 6= 0, it is clear that γv = v,

since
∏
λi = 1. �

Remark 2.7. — From the proof of Proposition 2.6 we see that a G-marked
curve C isG-equivariantly non-smoothable iff (

⊕
P∈N Ext1(Ω1

C ,OC)P )G = 0.

Definition 2.8. — A G-marked stable curve (C,G, ρ) has the following
associated combinatorial datum D(C,G, ρ):

(1) A G-marked graph (I, G, ρ̃), i.e., the graph I with induced G-action
ρ̃ from the action ρ : G→ Aut(C).

(2) For any i ∈ I, recall that Hi = Gi/G
′′
i and di = Ord(Hi). The

image of an element β ∈ Gi in Hi is denoted as β̄. We get a Hi-
marked curve (Ci, Hi, ρi), denote by C̃i the normalization of Ci and
set gi = genus(C̃i), hi = genus of C̃ ′i := C̃i/Hi. The element γni
generates Hi (recall that ni = Ord(G/Gi)), it induces an action ρ̃i
of Hi on C̃i, and hence a branching sequence (k1(i), . . . , kdi−1(i))
on C̃i.

(3) Note that the ramification points of C̃i consists of three parts:
(a) points which are not from nodes of C, (b) points which are
inverse images of intersection points of two distinct Ci, Cj, and
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(c) points which are inverse images of nodes of some Ci. Hence
we record the following data:
(a) For each i ∈ I1 ∪ I2, we record the branching sequence

(k′1(i), . . . , k′di−1(i)) corresponding to the ramification points of
ρ̃i on C̃i which are not coming from nodes of C.

(b) For each node p which is the intersection of two different com-
ponents Ci and Cj, we record the monodromy m(p, i) (resp.
m(p, j)) induced by γni (resp. γnj ) at p.

(c) For each node p which is a node of some Ci, we record the
monodromy n1(p, i) and n2(p, i) (an unordered pair) induced
by γni at p.

The automorphism group Aut(G) = (Z/d)∗ acts naturally on the set of data
{D(C,G, ρ)}, we call the resulting equivalence class, [D(C,G, ρ)] the numer-
ical type of (C,G, ρ).

Remark 2.9.

(1) As in the smooth case, we can determine an “admissible condition”
for the above combinatorial data (for the case G has a prime order,
see [1, Definition 4.8]), which we will not use in later discussion.

(2) For the Hi-marked curve (C̃i, Hi, ρi), it is important to consider the
branching sequence (k1(i), . . . , kdi−1(i)) (induced by γni) instead of
the equivalent Hi-class [(k1(i), . . . , kdi−1(i))]. Later we will see the
differences.

(3) For a non-smoothable G-marked curve, using Proposition 2.6, we
see that ∀ i ∈ I0, the component Ci is smooth (i.e. N (2)

i = ∅).

Now we come to the main result of this section, which is a partial gener-
alization of [1, Theorem 4.10].

We denote by Orb the set of G-orbits in I, for any o ∈ Orb, we define a
subcurve of C consisting of all components in the orbit o,

C(o) :=
⋃
i∈o

Ci.

We have an induced Go := G/G′′i -marked (nodal)-curve (C(o), Go, ρo) (note
that C(o) might be disconnected). The following lemma shows that we have
a “canonical form” for (C(o), Go, ρo).

Lemma 2.10. — The Go-marked curve (C(o), Go, ρo) is Go-equivariantly
isomorphic to the canonical form (∪noj=1C

(j)
o , Go, ρ̃o), where no = #|o|(= ni),

C
(j)
o are no copies of an irreducible component Ci in C(o), and ∪noj=1C

(j)
o is a
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quotient of
⊔no
j=1 C

(j)
o by identifying a finite set of (unordered) pair of points

Po and ρ̃o is determined by the following morphisms:

id : C(j)
o −→ C(j+1)

o ∀ 1 6 j 6 no − 1; γno : C(no)
o −→ C(1)

o .

Proof. — It is clear that the morphisms given in the lemma define an
action of Go on

⊔no
j=1 C

(j)
o . It is easy to check that the morphisms γj−1|Ci :

C
(j)
o (= Ci) → γj−1(Ci) induce a surjective Go-equivariant morphism⊔no
j=1 C

(j)
o → C(o). Denoting by Po the set of inverse images of nodes in

C(o) which do not have two branches on the same irreducible curve, we ob-
tain a quotient curve ∪noj=1C

(j)
o by identifying the pairs of points lying in

the same inverse image in Po, then we have a Go-equivariant isomorphism
φo : ∪noj=1C

(j)
o → C(o), since C(o) is a subset of a stable curve and no three

components can meet in a point. �

Theorem 2.11. — Given a G-marked stable curve (C,G, ρ), there exists
a connected complex manifold T[D(C,G,ρ)] parameterizing all G-marked stable
curves with numerical type [D(C,G, ρ)], i.e., there is a family of G-marked
curves over T[D(C,G,ρ)], such that

(i) each fiber of this family is a G-marked stable curves with numerical
type [D(C,G, ρ)],

(ii) every G-marked stable curves with numerical type [D(C,G, ρ)] is
G-equivariantly isomorphic to a fiber of this family.

Denoting by M[D(C,G,ρ)] the image set of the natural morphism T[D(C,G,ρ)] →
Mg −Mg, then each point inside M[D(C,G,ρ)] has finite inverse image in
T[D(C,G,ρ)], and the closure M[D(C,G,ρ)] consists of curves with a faithful ac-
tion of G which can be G-equivariantly deformed into a curve with numerical
type [D(C,G, ρ)].

If moreover (C,G, ρ) is G-equivariantly non-smoothable, then T[D(C,G,ρ)]
has the same dimension as the Kuranishi space Ext1(Ω1

C ,OC)G.

Proof. — T[D(C,G,ρ)] is a product of three products of Teichmüller spaces,
corresponding to the partition I = I0 ∪ I1 ∪ I2:

T0 :=
∏
i∈I0

Thi,ri ,

where ri = #|N (1)
i |+2#|N (2)

i |, and Thi,ri is a parametrizing space of smooth
irreducible curves of genus hi with ri marked points. Over each Thi,ri we have
a family of curves of genus hi = gi with ri marked points.

T1 :=
∏
i∈I1

Thi,ri ,
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where ri =
∑di−1
l=1 kl(i) is the number of ramification points of the covering

C̃i → C̃i/Hi. Here Thi,ri coincides with the parametrizing space for smooth
Hi-marked curves of type D(C̃i, Hi, ρ̃i) constructed in [1, Theorem 2.4], and
in the proof of [1, Theorem 2.4] Catanese has also shown the existence of
the family of Hi-covers with numerical type D(C̃i, Hi, ρ̃i) over Thi,ri . Hence
over each Thi,ri we have a family of Hi-marked curves of genus gi with the
branching sequence (k1(i), . . . , kdi−1(i)) with respect to a fixed generator
γi := γ̄ of Hi (See [1, Theorem 2.4]).

T2 :=
∏

[i]∈Ī2

Thi,ri ,

where Ī2 is the set of orbits in I2, ri =
∑di−1
l=1 kl(i). In each orbit [i] we

pick one Thi,ri , over which we construct a family of ni disjoint copies of
Hi-marked curves of genus gi with the branching datum (k1(i), . . . , kdi−1(i))
with respect to a fixed generator γi := γni of Hi.

Define
T[D(C,G,ρ)] := T0 × T1 × T2.

Now we can glue the pull back of the families over each factor, by identifying
the sections according to the numerical type [D(C,G, ρ)], to get a family
C[D(C,G,ρ)] over T[D(C,G,ρ)].

Each fibre of C[D(C,G,ρ)] is a stable curve, on which we will define an action
of G, making it a G-marked stable curve with numerical type [D(C,G, ρ)].

We pick a fibre C =
∑
i∈I Ci, first we use part (3) of the numerical type

[D(C,G, ρ)] to define the action on each orbit of the curves:

If i ∈ I0, γ acts trivially.

If i ∈ I1, we have a natural action of Hi on Ci which is induced by the
branching datum (k1(i), . . . , kdi−1(i)) with respect to γi, the chosen genera-
tor of Hi (by abuse of notation, the corresponding automorphism is also de-
noted as γi). Then the action of G is defined by the homomorphism G→ Hi

which sends γ to γi.

If i ∈ I2, we have to define the action of G on C([i]). First we have the ac-
tion of Hi on Ci which is determined by the branching datum
(k1(i), . . . , kdi−1(i)) with respect to γi. The action of G, equivalently the
automorphism corresponding to γ, is defined as follows:

γ : Cγl−1(i) −→ Cγl(i), x 7−→ x if 1 6 l 6 n[i] − 1,
γ : C

γ
n[i]−1(i) −→ Ci, x 7−→ γix.

By Lemma 2.10, this should be the expected action.
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Then we use conditions (1) and (3) of the numerical type [D(C,G, ρ)] to
glue the action on each orbits and obtain an action of G on C.

For two G-marked stable curves (C,G, ρ) and (D,G, ρ′) with the same
numerical type, C and D are isomorphic iff for each i ∈ I, (C̃i, Hi, ρ̃i) and
(D̃i, Hi, ρ̃

′
i) are isomorphic. In the smooth case, by [1, Theorem 2.4], Thi,ri

parametrizes all the Hi-marked curves with numerical type [D(C̃i, Hi, ρ̃i)],
hence the same holds for T[D(C,G,ρ)].

The finiteness of the morphism T[D(C,G,ρ)] → M[D(C,G,ρ)] follows from
the stability of curves and the fact that the automorphism group of a stable
curve is finite.

If (C,G, ρ) is G-equivariantly non-smoothable, our parameterizing space
has the expected maximal dimension. By Remark 2.7 we have that(⊕

p∈N
Ext1(Ω1

C ,OC)p

)G
= 0.

Taking the G-invariant subspaces of (∗), we get(⊕
i

H1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

)))G
' Ext1(Ω1

C ,OC)G.

It is easy to see that(⊕
i

H1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

)))G

=
⊕
o∈Orb

(⊕
i∈o

H1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

)))G
.

For each i ∈ I0, it is clear that

H1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

))G
= H1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

))
,

hence has dimension equal to dimC Tgi,ri .

∀ i ∈ I1, we have the following:

dim
(
H1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

))G)
= dimH1

(
Θ
C̃′
i

(−Bi)
)

= dim Thi,ri ,
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where Bi is the branching locus of the covering C̃i → C̃ ′i. The second equality
follows easily from the Riemann–Rock formula, while the first one needs some
explanation.

First note that

H1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

))G
= H1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

))Hi
.

Let σi : C̃i → Ci be the normalization map, since Ci as only nodes, we have

(σi)∗ΘC̃i

(
−
∑

p∈N (2)
i

σ−1
i (p)

)
= ΘCi ,

here recall that N (2)
i is the set of nodes which are nodes of Ci. Using the

projection formula we get

(σi)∗

(
Θ
C̃i

(
−
∑

p∈N (2)
i

σ−1
i (p)−

∑
j 6=i

Ci ∩ Cj

))
= ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

)
.

Since the action of Hi on C̃i is induced by the one on Ci, we have

dimH1

(
Θ
C̃i

(
−
∑

p∈N (2)
i

σ−1
i (p)−

∑
j 6=i

Ci ∩ Cj

))Hi

= dimH1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

))Hi
.

Therefore the first equality is equivalent to showing

dimH1

(
Θ
C̃i

(
−
∑

p∈N (2)
i

σ−1
i (p)−

∑
j 6=i

Ci ∩ Cj

))Hi
= dimH1

(
Θ
C̃′
i

(−Bi)
)
,

which follows from the following lemma:

Lemma 2.12. — Let π : C → C/G =: C ′ be a cyclic cover of order d be-
tween smooth projective curves. Denote by R (resp. B) the ramification divi-
sor (resp. the branching divisor) and R = Supp(R) (resp. B = Supp(B)) the
ramification locus (resp. the branching locus). Let D ⊂ R be a G-invariant
effective divisor, then we have

H1(C,ΘC(−D))G ' H1(C ′,ΘC′(−B)).
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Proof of the lemma. — For any G-invariant line bundle L on C, we have
a decomposition

π∗(L) =
d−1⊕
i=0

L(i),

where we fix a generator γ of G, L(i) is the γi-eigen-subsheaf of π∗(L) (spe-
cially, we have π∗(L)G = L(0)). Moreover, in this case all L(i) are line bundles
on C ′. Using this decomposition, we have

H1(π∗(L))G = H1

(
d−1⊕
i=0

L(i)

)G
=
(
d−1⊕
i=0

H1(L(i))
)G

= H1(L(0)). (?)

Recall (dual version of) the Riemann–Hurwitz formula:
ΘC = π∗(ΘC′)−R

where, setting eP to be the ramification index at a point P ∈ B (to be
precise, the ramification index should refer to a point Q ∈ π−1(P ), but in
the case of cyclic covers, for all Q ∈ π−1(P ), eQ remain the same, here we
write eP instead.),

R =
∑
P∈B

∑
Q∈π−1(P )

(eP − 1)Q.

Since by assumption D is a reduced divisor, we have∑
P∈B

∑
Q∈π−1(P )

(eP − 1)Q = R 6 R+D 6
∑
P∈B

∑
Q∈π−1(P )

ePQ = π∗(B),

therefore
π∗(ΘC′)− π∗(B) 6 ΘC −D 6 ΘC = π∗(ΘC′)−R.

Using the fact

(π∗(π∗(ΘC′)− π∗(B)))G = ΘC′(−B)⊗ (π∗OC)G

= ΘC′(−B)⊗OC′ = ΘC′(−B),
the statement is then reduced to the case of D = 0.

We do local computation to show that (π∗(ΘC))G = ΘC′(−B). Let P ∈ B
and π−1{P} = {Q1, Q2, . . . Qs} for some s|d and set e = d/s. Let z (resp.
z1, . . . , zs) be a local coordinate at the point P (resp. Q1, . . . , Qs), in local
coordinates π is expressed as z = zei for 1 6 i 6 s. Up to a change of indices
and coordinates (see the proof of Lemma 2.10), we may assume the action of
γ sends (z1, . . . , zs) to (ζsdzs, z1, . . . , zs−1). We compute when a vector field
is G-invariant, consider η =

∑
i fi(zi)

∂
∂zi

, then

γ(η) =
s−1∑
i=1

fi(zi+1) ∂

∂zi+1
+ fs(ζsdz1)

ζsd

∂

∂z1
.
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If η is G-invariant, we have f1(u) = f2(u) = · · · = fs(u) and f1(u) =
f1(ζsdu)/ζsd . This implies fi(u) = ug(ue) for all i, noting that zi ∂

∂zi
= ez ∂

∂z ,
we can rewrite η as η = (e

∑s
i=1 g(zei ))z ∂

∂z and this finishes the proof of the
lemma. �

Now we continue the proof of Theorem 2.11.

For each i ∈ I2, consider the map

H1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

))
−→

⊕
j∈[i]

H1

(
ΘCj

(
−
∑
l 6=j

Cj ∩ Cl

))
v 7−→ (v, γ(v), . . . , γn[i]−1(v)).

It is easy to see that this induces an isomorphism between the subspaces

H1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

))Hi
'

(⊕
j∈[i]

H1

(
ΘCj

(
−
∑
l 6=j

Cj ∩ Cl

)))G
.

Therefore we obtain that

dim
(⊕
j∈[i]

H1

(
ΘCj

(
−
∑
l 6=j

Cj ∩ Cl

)))G

= dimH1

(
ΘCi

(
−
∑
j 6=i

Ci ∩ Cj

))Hi
= dim Thi,ri .

We see that the family T[D(C,G,ρ)] has the same dimension as the Kuran-
ishi space Ext1(Ω1

C ,OC)G. �

Definition 2.13.

(1) We call the image of the natural map T[D(C,G,ρ)] → Mg − Mg

a stratum with numerical type [D(C,G, ρ)], which we denote by
M[D(C,G,ρ)].

(2) A stratum M[D(C,G,ρ)] is called maximal, if it is not contained
in the Zariski closure of another stratum M[D(C′,G,ρ′)], such that
dimM[D(C,G,ρ)] < dimM[D(C′,G,ρ′)].

It is clear that (Mg −Mg)(G) is a union of all the strata (with group
G). By Theorem 2.11 we see that the closure of any stratum is an irre-
ducible Zariski closed subset of (Mg−Mg)(G). Therefore to understand the
components of (Mg −Mg)(G), is equivalent to understanding the maximal
strata.
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Remark 2.14. — Note that when we say a “stratum” we remember the
numerical type, the possibility of two strata of different numerical types
having the same support is not excluded.

3. The maximal strata

In the previous section we have interpreted the problem of determining
irreducible components of (Mg −Mg)(G) into determining the maximal G-
strata.

In this section we first discuss in general when a stratum is maximal.
Then with certain additional conditions we give an explicit description via
the associated combinatoric data.

Remark 3.1. — If a stable curve (C,G, ρ) can bee smoothed to another
stable curve (C ′, G, ρ′), then inside the moduli space, [C] /∈M[D(C′,G,ρ′)] and
[C] ∈M[D(C′,G,ρ′)], in fact we have a stronger result that

M[D(C,G,ρ)] ⊂M[D(C′,G,ρ′)] −M[D(C′,G,ρ′)].

Hence we have dimM[D(C,G,ρ)] < dimM[D(C′,G,ρ′)].

The fact that M[D(C,G,ρ)] ∩M[D(C′,G,ρ′)] = ∅ is clear since the number of
nodes of C ′ is strictly less than that of C, we only need to showM[D(C,G,ρ)] ⊂
M[D(C′,G,ρ′)]. Note that this is enough to show that general (in fact, every)
[C1] ∈ M[D(C,G,ρ)], with [D(C1, G, ρ1)] = [D(C,G, ρ)], can be deformed G-
equivalently to a curve (C2, G, ρ2) such that [D(C2, G, ρ2)] = [D(C ′, G, ρ′)].
Recall that part (3) of the numerical type remembers the local monodromy
at each node P , hence by Proposition 2.6, whether a node is smoothable
only depends on the numerical type [D(C,G, ρ)].

For our purpose, it suffices to consider the case where C ′ is obtained by
smoothing a single orbit G(P ) of some node P . We will see that [D(C ′, G, ρ′)]
is then uniquely determined by [D(C,G, ρ)].

• Let I ′ be the dual graph of C ′, then I ′ is obtained by contracting
the edges in I which correspond to nodes in G(P ), the action of G
on I ′ is then naturally induced from the one on I.
• We denote by Con : I → I ′ the contraction map. For each vertex
i′ ∈ I ′, the arithmetic genus associated to i′ (here for i′ we remember
the loops based at i′, i.e., the set of nodesN (2)

i′ ) is just the arithmetic
genus of Con−1(i′). Gi′ is the subgroup which leaves the sub-graph
Con−1(i′) invariant and G′′i′ is the subgroup which acts trivially on
Con−1(i′), thus we obtain Hi′ .
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Let G(P ) = {P = P1, . . . , Ps}, we choose a small GP -invariant
analytic open neighborhood U of P , such that U (here we mean
the analytic closure) do not contain any other nodes of C nor fixed
points of someHi on Ci. Possibly after shrinking U , we require more-
over G(U) is a disjoint union of connected U1, . . . , Us, each Uj is a
connected GPj -invariant neighborhood of Pj . Then (C−G(U), G, ρ)
is G-equivalently isomorphic to a G-invariant open subset V of
(C ′, G, ρ′), therefore, the fixed points in V with their monodromies,
and the monodromy at each node in V are inherited from those on
C −G(U), which is determined by D(C,G, ρ). Note that C ′ − V is
smooth (since it is the local smoothing of G(P ) in G(U)), we only
need to determine the fixed points in C ′−V and their monodromies.
Locally the deformation is given by xy = t, where C corresponds to
{t = 0}, P = (0, 0) and C ′ is given by xy = t0 for some t0 6= 0, fix
a generator γP of GP . There are two cases:
– GP dose not exchange the two branches, the action on the

family is given by

γP : (x, y; t) 7−→ (αx, α−1y; t), for some α 6= 1.

Then it is clear on C ′, there is no new fixed points, we are done
in this case.

– GP exchanges the two branches (this also implies 2||GP |), the
action on the family is given by

γP : (x, y; t) 7−→ (αy, α−1x, t).

We find two new fixed points on C ′: Q1 = (αy0, y0) and Q2 =
(−αy0,−y0), where y0 satisfies αy2

0 = t0. Then u = y − y0 is a
local parameter near Q1, the action of γ sends

u 7−→ t0
α(y0 + u) − y0 = −u

(
1− u

y0
+ u2

y2
0
− · · ·

)
.

We see the monodromy of γP at Q1 is −1, a similar computa-
tion shows this holds also for Q2.

Combining the above arguments, we see that [D(C ′, G, ρ′)] is com-
pletely determined by [D(C,G, ρ)].

Hence we only need to consider the strata of G-equivariantly non-smooth-
able curves. In the rest of the article, we do only consider strata whose general
curve is G-equivariantly non-smoothable.

We first recall some results on Teichmüllar space of smooth curves. Given
a smooth H-marked curve (C,H, ρ), there is an induced map ρ̃ : H →
Mapg(cf. [3, Section 2]), which induces an H-action on Tg. Fix(H) is an
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irreducible analytic subset of Tg, whose image inside Mg equals Mg,H,ρ.
(cf. [3, Appendix B]).

Set G(H) =
⋂
C∈Fix(H) StabC , (Aut(C) ' StabC ⊂ Mapg), a general

curve in Fix(H) has automorphism group G(H) (cf. [3], Appendix B). Since
both Tg,H,ρ and Fix(H) maps finitely onto Mg,H,ρ, a general curve in Tg,H,ρ
has the same property as the one in Fix(H). Therefore, given a subgroup H ′
of a general curve C in Tg,H,ρ, which induces anH ′-marked curve (C,H ′, ρ′′),
H ′ can be considered as a subgroup of general curves in Tg,H,ρ, which induce
the same numerical type as (C,H ′, ρ′′), this implies that Mg,H,ρ ⊂Mg,H′,ρ′′ .

Given a G-marked stable curve (C,G, ρ), write

C =
∑
i

Ci =
∑
λ∈Λ

sλ∑
t=1

Cλ,t,

where Λ is the index set of isomorphism classes of the irreducible compo-
nents with marked points (Ci,N (1)

i ,N (2)
i ) and sλ is the number of curves

(Ci,N (1)
i ,N (2)

i ) belonging to the isomorphism class λ.

Clearly Aut(C) is a subgroup of
∏
λ∈Λ((

∏sλ
t=1 Aut(Cλ,t))oSsλ) consisting

of elements preserving the nodes of C, where for each class λ we fix an
identification of Aut(Cλ,t) for all curves Cλ,t and the semi-direct product is
determined by the following group homomorphism:

Ssλ−→ Aut
(
sλ∏
t=1

Aut(Cλ,t)
)
, σ 7−→ φσ : (g1, . . . , gsλ) 7−→ (gσ(1), . . . , gσ(sλ)).

Now assume C is a general curve of a stratum, and D is another curve inside
the same stratum. Applying the previous mentioned results on smooth curves
to the components of C and D, we may identify

∏
λ∈Λ((

∏sλ
t=1 Aut(Cλ,t)) o

Ssλ) with
∏
λ∈Λ((

∏sλ
t=1 Aut(Dλ,t)) oSsλ) and consider Aut(C), Aut(D) as

subgroups. For an element (gλ,t, σλ) ∈ Aut(C), each gλ,t corresponds to a
g′λ,t ∈ Aut(Di), such that the numerical type induced by g′λ,t is the same as
that of gλ,t, hence {g′λ,t} satisfy the compatibility condition and yields an
element (g′λ,t, σλ) ∈ Aut(D), moreover, the numerical type of (gλ,t, σλ) and
(g′λ,t, σλ) are the same.

In fact, we have deduced the following proposition:

Proposition 3.2.

(1) Given a stratum, the automorphism groups of general curves in the
stratum remain the same, hence we define the automorphism group
of a stratum to be the automorphism group of a general curve inside
the stratum.
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(2) Let G′ be the automorphism group of a stratum M[D(C,G,ρ)], for any
cyclic subgroup H of G′, the induced H-numerical types on general
curves are identical, say [D(C ′, H, ρ′)], this means there is an open
subset U of M[D(C,G,ρ)] with U ⊂M[D(C′,H,ρ′)].

Definition 3.3. — Given a stratum, we say that (the action of) G is
maximal if for any general curve (C,G, ρ) inside the stratum, there is no
subgroup G′ ⊂ Aut(C) isomorphic to G (including G itself) such that the
induced G′-marked stable curve (C,G′) is G′-equivariantly smoothable or
the dimension of the stratum corresponding to (C,G′) is larger than the
dimension of the given one.

Remark 3.4. — Let M[D(C,G,ρ)] and M[D(C′,G,ρ′)] be two strata whose
general curves are G-equivariantly non-smoothable. If M[D(C,G,ρ)] ⊂
M[D(C′,G,ρ′)], we have two cases:

(1) If there is a general curve [C] ∈ M[D(C,G,ρ)] such that [C] ∈
MD(C′,G,ρ′), then this means there is a subgroup G′ of Aut(C) iso-
morphic to G, such that the induced G′-numerical type is exactly
[D(C,G, ρ)], by Proposition 3.2(2), there is an open subset U of
M[D(C,G,ρ)] such that U ⊂M[D(C′,G,ρ′)].

(2) If no general curve in M[D(C,G,ρ)] is contained in M[D(C′,G,ρ′)], since
(C,G, ρ) is G-equivariantly non-smoothable, the only possibility is
that there is a subgroup G′ of Aut(C) isomorphic to G, such
that the induced G′-marked curve (C,G′ ' G, ρ′′) can be G-equivar-
iantly deformed to a G-marked stable curve with numerical type
[D(C ′, G, ρ′)].

Hence we see that the notion of maximal G-action is enough to determine
the maximal strata (although a maximal stratum may correspond to more
than one numerical type).

Once we know the automorphism group of the stratum, we can find the
subgroups which are isomorphic to G and hence determine whether the stra-
tum is maximal.

Now for fixed genus g and group G, we can determine the irreducible
components (equivalently, the maximal strata) of (Mg −Mg)(G) since the
possible configurations are finite. However if we do not fix the genus g, due
to the following phenomena, it is not so easy to obtain a brief description of
the irreducible components even for cyclic groups.

Recall that in the smooth case a stratum with group G is called full if the
automorphism group of the stratum equals G. Now for a G-marked stable
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curve (C =
∑
i Ci, G, ρ), if for some i, the group Hi is not full for the induced

action of Hi on C̃i, the complicity of Aut(C) increases.

We give an example for the automorphism group of a non-full stratum
of smooth curves. By [8, Lemma 4.1] we know that for a general smooth
curve C inside a non-full stratum, G is a normal subgroup of Aut(C) and
Aut(C)/G is isomorphic to Z/2Z, (Z/2Z)2, etc. In the case of G being
cyclic and Aut(C)/G ' (Z/2Z)2, by [8, Lemma 4.1] there are three ele-
ments b1, b2, b3 ∈ Aut(C) − G, such that bi has order 2 and the product
b1b2b3 is contained in G. The following proposition tells us in this case all
the possibilities for Aut(G): ([6, Lemma 5.7])

Proposition 3.5. — Let G(H) be a group containing a normal cyclic
subgroup H of order d such that G(H)/H ' (Z/2)2. Assume in addition that
there exist three elements b1, b2, b3 ∈ G(H)−H such that bi has order 2 and
the product b1b2b3 is contained in H. Then G(H) has the presentation:

{α, β1, β2 |αd = 1, β2
1 = β2

2 = 1, β1α= αl1β1, β2α= αl2β2, β1β2 = β2β1α
e1,2}

such that 0 6 l1, l2, e1,2 < d, gcd(li, d) = 1, l2i ≡ 1 mod d, d|(li + 1)e1,2, for
i = 1, 2 and gcd(d, l1l2 + 1)|e1,2.

Moreover, γ := ᾱ is a generator of H; bi = β̄i, biγbi = γli for i = 1, 2
and b2b1b2 = b1γ

e1,2 ; b3 = b1b2γ
f , where f is an integer such that 0 6 f < d

and d|((l1l2 + 1)f + e1,2).

In the smooth case, in order to determine if a stratum is maximal, we
only need to compute the subgroups of G(H) which are isomorphic to H.
However, for stable curves, we have to compute all the cyclic subgroups of
Aut(C̃i) and solve a combinatoric problem concerning the dual graph and
all the cyclic subgroups of Aut(C̃i) for each Ci.

In order to have a more detailed discussion, for the rest of the article we
make the following assumptions:

Assumption 3.6.

(0) (C =
∑
i∈I Ci, G, ρ) is G-equivariantly non-smoothable.(1)

(1) For a general stable curve (C,G, ρ) in the stratum we have Hi =
Aut(C̃i) and g(C̃i) > 2 for all i.

(2) For any i ∈ I, the parameterizing space Thi,ri has dimension> 0.

(1) Of course, this is a necessary condition for having a maximal stratum by Re-
mark 3.1.
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Remark 3.7.

(1) By assumption (2), for a general curve (C,G, ρ) in the stratum,
two irreducible components coming from different G-orbits must be
non-isomorphic, hence we have Orb = Λ. Therefore any β ∈ Aut(C)
fixes the G-orbits and induces βo := β|C(o) ∈ Aut(C(o)), conversely
(βo)o∈Orb determines β.

(2) Given β = (βo) ∈ Aut(C), the order of β is lcm{Ord(βo)}. Using
the isomorphism in Lemma 2.10 and regarding βo as an element in
(
∏no
j=1 Aut(C(j)

o )) o Sno , we can write βo = ((βo,1, . . . , βo,no), βo).
What is the order of βo? Assume that βo has µo(β) orbits in o with
lengths l1, . . . , lµo(β), then we have

βo = (i1, . . . , il1)(il1+1, . . . , il1+l2) . . . (ino−lµo(β)+1, . . . , ino)
and

Ord(βo) = lcm
(

Ord(βo,i1 . . . βo,il1 )l1, . . . ,

Ord
(
βo,(ino−lµo(β) +1) . . . βo,ino

)
lµo(β)

)
.

We want to understand when the stratum is maximal. For this purpose
we study first quotient curves of type C/〈β〉, where β ∈ Aut(C) − G is an
element of order d.

Lemma 3.8. — For any β ∈ Aut(C), the quotient map π : C → C ′ :=
C/G factors through the quotient map C → C/〈β〉.

Proof. — Note that we have the following decomposition of C ′ into irre-
ducible components: C ′ =

∑
o∈Orb C

′
o.(2)

For the lemma, it suffices to show that for any P ∈ C, π(P ) = π(β(P )).
By assumption (2) we have that β(C(o)) = C(o), therefore it suffices to
consider the map π|C(o) : C(o) → C ′o and βo := β|C(o). Using Lemma 2.10
we see this is equivalent to considering the map πo :

⊔no
j=1 C

(j)
o → C ′o, where

πo is the composition of π|C(o) with the natural map
⊔no
j=1 C

(j)
o → C(o).

We determine first the fibre of πo: noting that γ acts transitively on
the vertices inside o, hence any fibre of πo must contain at least a point
in C

(1)
o , say x(1) ∈ C

(1)
o . Here we only discuss in detail the case where

x(1) does not lie in the inverse image of a node of C(o), the other case is
similar. Then using the isomorphism of Lemma 2.10 we see that
π−1
o (πo(x(1))) = {x(1), γno(x(1)), . . . , γn′′o−no(x(1)); x(2), . . . , γn

′′
o−no(x(2));

. . . ;x(no), . . . , γn
′′
o−no(x(no))}, where n′′o := d/|G′′i | for any i ∈ o and x(j)

(2) For any i ∈ o, C̃′
i = normalization of C′

o
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denotes the point on C(j)
o which equals to x(1) via the identification C(j)

o =
C

(1)
o . Now since βo = ((βo,1, . . . , βo,no), βo) and ∀ x(j) ∈ C

(j)
o , βo(x(j)) =

βo,βo(j)x
(βo(j)), by assumption (1) we have that βo,βo(j) ∈ 〈γ

no〉 and hence
βo(x(j)) ∈ π−1

o (πo(x(1))). �

Remark 3.9. — For simplicity we denote byMC′ the stratum correspond-
ing to C → C ′ and by Mβ the stratum corresponding to C → C/〈β〉 (sim-
ilarly for TC′ and Tβ), Lemma 3.8 says that an open subset U of MC′ is
contained in Mβ (not just in Mβ !). If MC′ is not maximal, by Remark 3.4
there are two cases:

(1) there exists a β ∈ Aut(C) of order d, such that dimMβ > dimMC′ ;
(2) there exists a β ∈ Aut(C) of order d, such that dimMβ = dimMC′

and (C, β) is G-equivariantly smoothable.

Recall that TC′ is the product of the parameterizing spaces of all the
coverings C(o) → C ′o, which is isomorphic to the parameterizing space TC′o
of the covering C(1)

o → C ′o (strictly speaking, of the covering C̃(1)
o → C̃ ′o).

Denoting by (C/〈β〉)(o) the inverse image of C ′o in C/〈β〉, the number of
irreducible components of (C/〈β〉)(o) is µo(β). Hence the parameterizing
space of C(o) → (C/β)(o) is a product of µo(β) parameterizing spaces of
the irreducible components of (C/β)(o), all of which have dimension greater
than or equal to dim TC′o . Now we can characterize case (1) of Remark 3.9:

Lemma 3.10. — Case (1) of Remark 3.9 happens if and only if ∃ o ∈
Orb, such that one of the following cases occurs:

(a) µo(β) > 1;
(b) µo(β) = 1 and 3 Ord(βnoo ) 6 Ord(Hi) for any i ∈ o;
(c) µo(β) = 1, 2 Ord(βnoo ) = Ord(Hi) for any i ∈ o and we are not in

the exceptional cases of Proposition 3.13.

Proof. — First note that Ord(Hi) does not depend on the choice of i ∈ o.
By assumption (2) dim TC′o > 1, hence (a) follows from the preceding dis-
cussion. If µo(β) = 1 for all o, we have that C/〈β〉(o) is an irreducible curve,
in case (b) by Proposition 3.13 we always have dim TC/〈β〉(o) > dim TC′o ; if
2 Ord(βnoo ) = Ord(Hi) then dim T(C/〈β〉)(o) > dim TC′o except for the cases
in Proposition 3.13. �

Now we discuss briefly the exceptional cases mentioned in 3.10, since the
technique we use here is independent of the other part of this paper, we
only sketch the proof and for reader who are interested in details we refer
to [2, 8, 7]. First we introduce a few settings (cf. [8, Section 2]).
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Definition 3.11. — Let C → C/G =: C ′ be a cyclic cover and B =
{P1, . . . , Pr} ⊂ C ′ the branching locus, then topologically this is determined
by a surjective group homomorphism

f : π1(C ′ −B) −→ G.

Fix a set of small circles {γj}16j6r with each γj around the point Pj, denote
by cj the order of f(γj) in G. We call the (unordered) sequence (c1, . . . , cr)
the signature of the G-marked curve C (or equivalently, of the G-cover
C → C ′).

Remark 3.12. — Under the condition of Definition 3.11, assume that d =
|G| and Pj ∈ Dij . Since f(γj) = [ij ] (possibly after replacing some [γj ] by
[γj ]−1), we have cj gcd(d, ij) = d.

Proposition 3.13. — Given an admissible branching sequence
[(k1, . . . , kd−1)] for g > 2, assume that dim Tg;d,[(k1,...,kd−1)] > 1 and for any
general curve C ∈ Tg;d,[(k1,...,kd−1)], G = Aut(C). For any proper subgroup G′
of G, we have an induced cyclic cover of degree d′ := order(G′): C → C/G′

and hence an admissible sequence [(k′1, k′2, . . . , k′d′−1)] for d′ and g. Then
dimC Tg;d,[(k1,...,kd−1)] > dimC Tg;d′,[(k′1,...,k′d′−1)] except for three cases:

(1) d = 2d′ > 4, 2 | d′, C/G ' P1, [(k1, . . . , kd−1)] = [(1, 0, . . . , 0, kd′ =
2, 0, ..., 0, 1)] and [(k′1, ..., k′d′−1)] = [(1, 0, ..., 0, kd′/2 = 2, 0, ..., 0, 1)];

(2) d= 2d′ > 6, 2 - d′, C/G ' P1, [(k1, . . . , kd−1)] = [(0, 1, 0, . . . , 0, kd′ =
2, 0, . . . , 0, 1, 0)] and [(k′1, . . . , k′d′−1)] = [(1, 0, . . . , 0, 1)].

(3) d = 2, g(C) = 2, C/G ' P1, [(k1)] = [(6)].

Proof. — If dimC Tg;d,[(k1,...,kd−1)] = dimC Tg;d′,[(k′1,...,k′d′−1)], then we have
that Tg;d,[(k1,...,kd−1)] = Tg;d′,[(k′1,...,k′d′−1)]. Now since the condition of [8,
Lemma 4.1], is satisfied, we see that the pair (C,G′) must be one of the
cases there.

By assumption dimC Tg;d′,[(k′1,...,k′d′−1)] > 1, hence only the cases I, II, III
in [8, Lemma 4.1] may happen. Note that in [8, Lemma 4.1], indices of
signatures satisfy cj 6 cj+1.

Case III -c is excluded since here Aut(C) is a cyclic group, which can not
have a quotient group isomorphic to (Z/2)2.

For the remaining cases, we have d = 2d′ and C/Aut(C) ' P1. We now
treat the cases separately, for a branching point Pj ∈ P1, denote by ij the
index satisfying Pj ∈ Dij .

Case I. — The covering map has 6 branching points P1, . . . , P6 with
signature (2, 2, 2, 2, 2, 2). By Remark 3.12 we get ij = d′ for all 1 6 j 6 6,
Definition 2.2(1) is automatically satisfied, and 2.2(2) implies d′ = 1, i.e.,
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G ' Z/2Z. Then by Riemann–Hurwitz formula we see that g = 2 and the
branching sequence is (6).

Case II. — The covering map has 5 branching points P1, . . . , P5 with
signature (2, 2, 2, 2, c5) (c5 > 2). This implies ij = d′ for 1 6 j 6 4, by 2.2(1)
we must have d|i5, which is impossible, since by definition we have 1 6 i5 6
d− 1.

Cases III-a. — C → C/G has 4 branching points (P1, P2, P3, P4) with
signature (2, 2, 2, c4) (c4 > 3 since we assume g > 2), this implies i1 = i2 =
i3 = d′ and (i4, d) = d/c4. Now if Definition 2.2(1) is satisfied, we must have
i4 = d′, then Definition 2.2(2) implies d′ = 1 and d = 2, which contradicts
the fact d > c4 > 3.

Case III-b. — C → C/Aut(C) has four branching points P1, P2, P3, P4
with signature (2, 2, c3, c4) such that 2 < c3 6 c4 (since we assume g > 2).
Using Remark 3.12, we get i1 = i2 = d′, c3 = d/ gcd(d, i3) and c4 =
d/ gcd(d, i4), since 2 < c3 6 c4, we have i3, i4 6= d′ and d > c3 > 2. Moreover
Definition 2.2(1) says that d|(d′+d′+ i3 + i4), which implies that d|(i3 + i4);
2.2(2) says that gcd(d, d′, i3, i4) = 1, which is equivalent to gcd(d′, i3) = 1.
Therefore we have gcd(d, i3) = 1 or 2, where the = 2 case happens only if
2 - d′. Since we are interested in the equivalent class of branching sequences,
after possibly a change of generator of G, the above numerical restriction on
{i3, i4} yields two possibilities:

{i3, i4} = {1, d− 1} and [(k1, . . . , kd−1)] = [(1, 0, . . . , 0, kd′ = 2, 0, . . . , 0, 1)]

or

2 - d′, {i3, i4} = {2, d− 2},
[(k1, . . . , kd−1)] = [(0, 1, 0, . . . , 0, kd′ = 2, 0, . . . , 0, 1, 0)].

Noting that there is one more restriction in case III -b that C/G′ → P1 is a
double cover branched in two points on P1, we see that if

[(k1, . . . , kd−1)] = [(1, 0, . . . , 0, kd′ = 2, 0, . . . , 0, 1)],

then we must have 2|d′, otherwise C/G′ → P1 is branched on four points on
P1; in this case

[(k′1, . . . , k′d′−1)] = [(1, 0, . . . , 0, kd′/2 = 2, 0, . . . , 0, 1)].

For the other case where 2 - d′ and

[(k1, . . . , kd−1)] = [(0, 1, 0, . . . , 0, kd′ = 2, 0, . . . , 0, 1, 0)],

we get [(k′1, . . . , k′d′−1)] = [(1, 0, . . . , 0, 1)]. �
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Remark 3.14. — Let us look at the case when dim Tβ = dim TC′ : first
µo(β) = 1 for all o ∈ Orb, which means that βo acts transitively on the
vertices in o.

For the subcurve C/(β)(o), if we are not in the exceptional cases, then we
have (C/〈β〉)(o) ' C ′o and βnoo |C(1)

o
=
∏no
k=1 βo,k is a generator of Aut(C(1)

o ).
Otherwise C ′o is rational and C/〈β〉(o)→C ′o is a double cover and 〈

∏no
k=1 βo,k〉

is the (unique) index 2 subgroup of Aut(C(1)
o ) which arises from the excep-

tional cases in Proposition 3.13.

We assume to be in one of the above cases, that is under the condi-
tion dim Tβ = dim TC′ , and determine when (C, β) is G-equivariantly non-
smoothable. Here we apply Proposition 2.6 to a node p ∈ Ni1 ∩Ni2 . We have
two cases: i1 = i2 =: i, p ∈ N (2)

i and i1 6= i2, p ∈ N (1)
i1
∩N (1)

i2
, which we treat

separately.

Case (I). — If p ∈ N (2)
i , we must have Gp ⊂ Gi. Denoting by {p1, p2}

the inverse image of p of the normalization map C̃i → Ci, we have the
following easy lemma:

Lemma 3.15. — For any g ∈ Hi, (regarding g also as an automorphism
of C̃i,) there are three possibilities:

(a) g(pi) = pi for i = 1, 2.
(b) g(p1) = p2 and g(p2) = p1.
(c) g(p1) = p′1 and g(p2) = p′2, where {p′1, p′2} is the inverse image of

g(p)( 6= p).

Proof. — Obvious. �

We apply Proposition 2.6 to (Ci, Hi = 〈γni |Ci〉) and (Ci, 〈βni |Ci〉). If
〈βni |Ci〉 = Hi, then by assumption (0) it is clear that p is non-smoothable
for (Ci, 〈βni |Ci〉) and hence non-smoothable for (C, 〈β〉).

Assume we are in the exceptional cases of Proposition 3.13. First we
consider exceptional case (1), recall that πi : C̃i → C̃i/Hi is branched on
four points P1, . . . , P4 with signature (2, 2, di, di) with di > 4. Note that p1
or p2 does not belong to either π−1

i (P1) or π−1
i (P2):

Case (a) in Lemma 3.15 does not occur since #π−1
i (P1) = #π−1

i (P2) =
di/2 > 2.

For the same reason, if di > 6, then Case (b) does not occur; if di = 4,
Case (b) does not occur, either, otherwise p is Hi-equivariantly smoothable.
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Case (c) does not occur, otherwise p is Hi-equivariantly smoothable.

Hence we may assume p1 = π−1
i (P3) and p2 = π−1

i (P4). Let zj be a local
coordinate near pj , j=1,2, the action of Hi near p is

γnii : z1 7−→ ζdiz1, z2 7−→ ζ−1
di
z2.

This implies that p is Hi-equivariantly smoothable, a contradiction. There-
fore we see that exceptional case (1) does not occur.

Using a similar argument we see that exceptional cases (2) and (3) do
not occur, either.

Case (II): i1 6= i2, p ∈ N (1)
i1
∩N (1)

i2
. — We have two subcases:

(i) Gp fixes i1 and i2 respectively.
(ii) Gp exchanges i1 with i2.

Subcase (i). — Let x (resp. y) be a local parameter on Ci1 (resp. on Ci2)
near p. Denoting by al the smallest positive integer such that γnilal(p) = p
for l = 1, 2 (note that we necessarily have ni1a1 = ni2a2), then locally
the action of γnilal around p is given by (x, y) 7→ (ζb1

p,1x, ζ
b2
p,2y) for some

natural numbers b1, b2, where ζp,l is a primitive n′′il/(nilal)-th root of unity
and n′′il := d/|G′′il | (we require that b1, b2 6 n′′il/(nilal)). The condition that
(C,G, ρ) is non-smoothable implies that ζb1

p,1ζ
b2
p,2 6= 1.

By our assumption (1) we have βnil |Cil ∈ Aut(Cil) = 〈γnil |Cil 〉, hence we
get that βnil |Cil = (γnil )cl for some 0 6 cl < Ord(Hil). By Proposition 3.13
we have two possibilities:

• 〈βnil |Cil 〉 = Aut(Cil), which is equivalent to gcd(cl,Ord(Hil)) = 1.
• We are in the exceptional cases where 〈βnil |Cil 〉 is the index 2 sub-
group of Aut(Cil), and cl = 2c′l for some 0 6 c′l < Ord(Hil)/2 with
gcd(c′l,Ord(Hil)) = 1.

The action of βnilal is given by (x, y)→ (ζb1c1
p,1 x, ζb2c2

p,2 y). We see easily that
p is non-smoothable for (Ci, 〈βni |Ci〉) iff ζb1c1

p,1 ζb2c2
p,2 6= 1.

Subcase (ii). — Observe that i1 and i2 lie in the same orbit, hence we
have di1 = di2 and we may identify Hi1 with Hi2 . For any element in Hi1

fixing the node p, the induced monodromies on two branches of p are the
same.

First we deduce a restriction on lp,i1 , the length of the Gi1-orbit of p.
Assume Gp = 〈γa〉 for some a|d and consider the group Kp,i1 := Gp ∩Gi1 =
〈γb〉 for some b|d, which is the subgroup of G simultaneously fixing p and
leaving Ci1 invariant. Regarding Kp,i1 as a subgroup of Gp, we should have
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b = 2a; on the other hand regarding Kp,i1 as a subgroup of Gi1 , we have
b = ni1 lp,i1 . Hence we have 2a = ni1 lp,i1 . if 2|lp,i1 , we see that ni1 |a, which is
absurd since in subcase (ii) Gp is not contained in Gi1 , therefore lp,i1 must
be an odd number.

If 〈βni1 |Ci1 〉 = Hi1 , then the same holds for Ci2 and for Gp. For the same
reason as in case (I), p is non-smoothable for (C, 〈β〉).

Now we consider the exceptional cases, where 〈βni1 |Ci1 〉 ⊂ Hi1 is the
unique index 2 subgroup of Hi1 (the same for Ci2), let x (resp. y) be a local
parameter on Ci1 (resp. on Ci2) near p.

We discuss according to the monodromy of Hi1 at the node p, there are
two cases:

(a) The monodromy order is greater than or equal to 3, including the
ramification points over P3, P4 in the exceptional cases (1) (the case
of ramification points over P3, P4 in the exceptional cases (2) dose
not occur because there P3 or P4 has inverse images of even length),
locally the action of Gp = 〈γa〉 is γa : (x, y) 7→ (ζdi1 y, x), the ac-
tion corresponding to 〈βni〉 is then (x, y) 7→ (ζ2

di1
y, x). Since in the

exceptional case (1) di1 > 4, we see that p is non-smoothable.
(b) The monodromy order equals 2, and the length of the Hi1-orbit of

p is an odd number. This includes the following:
• exceptional case (2), p is a ramification point over P1 or P2.
(note that in exceptional case (1), d′ is even, hence the case
that p is a ramification point over P1, P2 of exceptional case
(1) does not occur.)
• exceptional case (3), p is a ramification point.

With a similar argument as in (a), we see that p is smoothable.

Definition 3.16. — We say a node p is of type E with respect to β ∈
Aut(C), if it is in the case of (b) above.

Now we fix the local parameters for each nodes where subcase (II -i)
happens, then we obtain an unordered pair (ζb(p,1)

p,1 , ζ
b(p,2)
p.2 ) at each node p

which is determined by γ. For any β ∈ Aut(C) with degree d such that
dim Tβ = dim TC′ , we get a pair of integers (c(β, p, 1), c(β, p, 2)) at each
node.

Combining with the previous argument, we obtain our main theorem:
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Theorem 3.17. — Under the conditions of Assumption 3.6, we have the
following:

(1) For a G-equvariantly non-smoothable G-marked stable curve (C =∑
i∈I Ci, G, ρ), the induced stratum MC′ , where C ′ = C/G, is max-

imal iff for a general stable curve (by abuse of notation we denote
still by) (C,G, ρ) in the stratum:
(a) The cases in Lemma 3.10 do not occur.
(b) For any β ∈ Aut(C) (of order d) and any node p where Case

(II-i) happens, the following holds:

ζ
b(p,1)c(β,p,1)
p,1 ζ

b(p,2)c(β,p,2)
p,2 6= 1.

(c) For any β ∈ Aut(C) (of order d), there is no node p of type E
with respect to β.

(2) The Zariski closure of each maximal stratum in (1) is an irreducible
component of (Mg −Mg)(G).

Remark 3.18. — The above argument also shows that, unlike in the
smooth case (cf. [4, Theorem 1] and [1, Theorem 3.4]), for stable curves,
usually a component corresponds to more than one numerical types.
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