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Grothendieck and vanishing cycles (∗)

Luc Illusie (1)

To the memory of Michel Raynaud

ABSTRACT. — This is a survey of classical results of Grothendieck on vanishing
cycles, such as the local monodromy theorem and his monodromy pairing for abelian
varieties over local fields ([22, IX]). We discuss related current developments and
questions. At the end, we include the proof of an unpublished result of Gabber
giving a refined bound for the exponent of unipotence of the local monodromy for
torsion coefficients.

RÉSUMÉ. — Le présent texte est un exposé de résultats classiques de Grothendieck
sur les cycles évanescents, tels que le théorème de monodromie locale et l’accouple-
ment de monodromie pour les variétés abéliennes sur les corps locaux ([22, IX]).
Nous présentons quelques développements récents et questions qui y sont liés. La
dernière section est consacrée à la démonstration d’un résultat inédit de Gabber
donnant une borne raffinée pour l’exposant d’unipotence de la monodromie locale
pour des coefficients de torsion.

Grothendieck’s first mention of vanishing cycles is in a letter to Serre,
dated Oct. 30, 1964 ([15, p. 214]). He considers a regular, proper, and flat
curve X over a strictly local trait S = (S, s, η), whose generic fiber is smooth
and whose reduced special fiber is a divisor with normal crossings. He analy-
ses the difference between the (étale) cohomology of the special fiber H∗(Xs)
and that of the generic geometric fiber H∗(Xη̄), the coefficients ring being
Z`, ` a prime number invertible on S. A little more precisely, assuming that
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the action of the inertia group I on H∗(Xη̄) is tame, he shows that the de-
fect of the specialization map H∗(Xs)→ H∗(Xη̄) (2) to be an isomorphism
is controlled by certain groups (the vanishing cycles groups), that he esti-
mates. He deduces that there exists an open subgroup I1 of I such that, for
all g ∈ I1, (g − 1)2 acts trivially on H∗(Xη̄), a key step in his proof of the
semistable reduction theorem for abelian varieties.

We will recall this proof in Section 3, after a quick review, in Sections 1
and 2, of the definition and basic properties of nearby and vanishing cycles,
and Grothendieck’s geometric local monodromy theorem. In Section 4 we
discuss Grothendieck’s monodromy pairing for abelian varieties over local
fields, a complement to his semistable reduction theorem. In Section 5 we
say a few words about the developments that arose from Grothendieck’s work
and questions. In Section 6 we give a quick update on some of the topics
of Sections 1–4. The last section is devoted to the proof of Theorem 2.3, a
result due to Gabber.

Additional references. Here are a few references that could help the
reader who is not familiar with the topics discussed in this report. The
formalism of nearby and vanishing cycles is presented in Deligne’s exposés
I, XIII, XIV and XV of [22]. Fundamental theorems such as constructibility
and compatibility with duality are proved in [20, Théorèmes de finitude
en cohomologie `-adique], [7], [34]. The reader could also consult Lei Fu’s
monograph [25]. Further references are provided in 6.2. For basics on abelian
schemes, including the Picard functor and duality, see [24]. Néron models are
treated in Bosch–Lütkebohmert–Raynaud’s book [14].

Acknowledgments. This is a slightly expanded version of notes of a talk
given on June 17, 2015, at the conference Grothendieck2015 at the University
of Montpellier, and on November 13, 2015, at the conference Moduli Spaces
and Arithmetic Geometry at the Lorentz Center in Leiden. I wish to thank
these institutions for their invitation

I thank Brian Conrad, Ofer Gabber, Cédric Pépin and Takeshi Saito for
helpful remarks and discussions on a first draft of these notes. I am especially
indebted to Ofer Gabber for detecting an error in my account of his proof
of Theorem 2.3 in a later version of this text, and helping me correct it. I
thank Weizhe Zheng for constructive criticism on one of the last versions.
Finally, I am very grateful to the referee for carefully reading the manuscript,
correcting a few inaccuracies, and making useful comments and suggestions.

(2) This is the composition of the inverse H∗(Xs)
∼→ H∗(X) of the proper base change

isomorphism and the restriction map H∗(X)→ H∗(Xη̄).
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1. Nearby and vanishing cycles

1.1. In [22] Grothendieck introduced and studied the functors RΨ and
RΦ, both in the context of Betti cohomology and that of étale cohomology.
He called them functors of vanishing cycles, but in the 1970’s it became
customary to call the former one the functor of nearby cycles, the name
vanishing cycles being reserved to the latter one. Let me recall their definition
in the étale setup, as described by Deligne in ([22, XIII]).

Let S = (S, s, η) be a henselian trait, with closed point s, and generic
point η. Let s be a geometric point of S over s, and η a separable closure of
the generic point η̃ of the strict henselization S̃ = S(s̄) of S at s. We have a
commutative diagram with cartesian squares

η

j̄

�� ��
s̃

ĩ //

��

S̃

��

η̃
j̃oo

��
s // S ηoo

(1.1)

where s̃, the closed point of S̃, is a separable closure of s in s. For a morphism
f : X → S, we get morphisms deduced by base change

Xs̃
ĩ−→ XS̃

j̄←− Xη̄.

Let us choose a ring of coefficients Λ = Z/`νZ, ν > 1, with ` a prime number
invertible on S. Other choices are possible, e.g., Z`, Q`, or Q` (when one
works with schemes of finite type over S (3)). We will write D( · ) for D( · ,Λ).
For K ∈ D+(Xη), the nearby cycles complex of K is

RΨf (K) := ĩ∗Rj∗(K|Xη̄). (1.2)

This is an object of D+(Xs̃), more precisely an object of the derived category
of sheaves of Λ-modules on Xs̃ equipped with a continuous action of the
Galois group Gal(η/η), compatible with that on Xs̃. For K ∈ D+(X), the
complex of vanishing cycles RΦf (K) is the cone of the natural morphism
ĩ∗K → RΨf (K|Xη), i.e., we have a distinguished triangle in the category
just mentioned,

ĩ∗K −→ RΨf (K|Xη) −→ RΦf (K) −→ . (1.3)

(3) This is to ensure that Dbc is stable under the six operations.
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If x is a geometric point of X over s, the stalk of RΨf (K) at x is

RΨf (K)x̄ = RΓ((X(x̄))η̄,K). (1.4)

The scheme (X(x̄))η̄, geometric generic fiber of the strict localization of X at
x, plays the role of a Milnor fiber of f at x. We sometimes write RΨX (resp.
RΦX) for RΨf (resp. RΦf ), and drop the subscript X when no confusion
can arise.

1.2. The main functoriality properties of these functors are the following.
Consider a commutative triangle

X

f

��

h // Y

g
~~

S

.

(a) If h is smooth, the natural map

h∗RΨY −→ RΨXh
∗ (1.5)

is an isomorphism. In particular (taking Y = S), if f is smooth,
then RΦX(Λ) = 0. So, in general, RΦX(Λ) is concentrated on the
non-smoothness locus of X/S.

(b) If h is proper, the natural map(4)

Rh∗RΨX −→ RΨYRh∗ (1.6)

is an isomorphism. In particular (taking Y = S), if f is proper, for
K ∈ D+(Xη), we have a canonical isomorphism (compatible with
the Galois actions)

RΓ(Xs̃, RΨXK) ∼−→ RΓ(Xη̄,K). (1.7)

The triangle (1.3) thus gives rise to a long exact sequence

· · · −→ Hi−1(Xs̃, RΦX(K)) −→ Hi(Xs̃,K) sp−→ Hi(Xη̄,K)
−→ Hi(Xs̃, RΦX(K)) −→ · · · , (1.8)

where sp is the specialization map, generalizing that considered in
the introduction.

It was later proved by Deligne ([20, Th. finitude]) that, forX of finite type
over S and K ∈ Db

c(Xη), RΨfK is in Db
c(Xs̃) (where Db

c( · ) means the full
subcategory of D( · ) consisting of complexes with bounded and constructible
cohomology).

(4) In (a) and (b), there are obvious abuses of notation for h∗ and h∗.
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2. The geometric local monodromy theorem

In [22] Grothendieck proved the following theorem:

Theorem 2.1. — Let S = (S, s, η) be as in 1.1, and Xη be separated
and of finite type over η. Let I = Gal(η/η̃) ⊂ Gal(η/η) be the inertia group.
Then there exists an open subgroup I1 ⊂ I such that, for all g ∈ I1 and all
i ∈ Z, g acts unipotently on Hi

c(Xη̄,Q`).

The main ingredient in his proof was his arithmetic local monodromy
theorem ([68, Appendix]):

Theorem 2.2. — Assume that no finite extension of k(s) contains all
roots of unity of order a power of `. Let ρ : Gal(η/η)→ GL(V ) be a contin-
uous representation into a finite dimensional Q`-vector space V . Then there
exists an open subgroup I1 of I such that, for all g ∈ I1, ρ(g) is unipotent.

The proof of Theorem 2.2 is an elegant, elementary exercise. Once we have
reduced to the case where the image of ρ is contained in 1 + `2Mn(Z`), the
whole inertia group I acts unipotently. Indeed, I acts through its `-primary
tame quotient t` : I → Z`(1), and Grothendieck exploits the strong action of
the arithmetic Galois group Gk = Gal(s̃/s) on Z`(1) by conjugation, given
by gσg−1 = σχ(g), where χ : Gk → Z∗` is the cyclotomic character (`2 ensures
that exponential and logarithm are defined and inverse to each other).

The deduction of Theorem 2.1 from Theorem 2.2 is more difficult. It
uses Néron’s desingularization, and a spreading out argument to reduce to
the case where the residue field is radicial over a finite type extension of
Fp, see ([22, I 1.3]). Once the finite generation of the groups Hi(Xη̄,Λ)
(for Λ = Z/`νZ) (and generic constructibility of direct images) was known
([20, Th. finitude]), the same reduction worked — hence the conclusion of
Theorem 2.1 held — for Hi(Xη̄,Q`) as well.

Grothendieck gave a conditional, alternate proof of Theorem 2.1, based
on the formalism of Section 1. It assumed the validity (in certain degrees and
dimensions) of resolution of singularities and of his absolute purity conjecture
([31, I])(5). This was the case for s of characteristic zero, or dim(Xη) 6 1, or
i 6 1. The advantage of the method is that it gave bounds on the exponent of
unipotence n(g) of g ∈ I1 acting on Hi, i.e., the smallest integer n > 0 such
that (g − 1)n+1 = 0. For example, for i = 1, one gets n(g) 6 1. Resolution
is still an open problem, but the absolute purity conjecture was proved by

(5) One form of this conjecture is that if j : U = X −D ↪→ X is the inclusion of the
complement of a regular divisor D in a regular scheme X, and if ` is invertible on X, then
Rqj∗Λ is Λ for q = 0, ΛD(−1) for q = 1, and 0 for q > 1.
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Rapoport–Zink in the situation arising from a semistable reduction [56](6),
and thanks to de Jong’s alteration theorems [45], it was possible to make
Grothendieck’s argument work in general. As Deligne observed, a by-product
of this argument was that the open subgroup I1 in Theorem 2.1 (and its
variant for Hi) can be chosen independent of ` (see Berthelot’s Bourbaki
exposé [10]). With more work, one can also get a general bound for n(g),
valid also for torsion coefficients Λ = Z/`νZ, namely, one has the following
result:

Theorem 2.3. — Let Λ = Z/`νZ. With the assumptions and notation of
Theorem 2.1 for S and Xη, there exists an open subgroup I1 ⊂ I, independent
of `, such that, for all g ∈ I1 and all i ∈ N, (g − 1)i+1 = 0 on Hi

c(Xη̄,Λ)
(resp. Hi(Xη̄,Λ)).

This result is due to Gabber. See Section 7 for the proof.

Remark 2.4. — For smooth, projective, geometrically connected Xη/η,
explicit uniform bounds for the index of I1 in I for the action of I on
Hi(Xη̄,Q`) in terms of the Betti numbers of Xη and numerical invariants as-
sociated with a very ample line bundle on Xη were obtained by Umezaki [75].

Remark 2.5. — Suppose Xη/η is proper and equidimensional of dimen-
sion d. Let IHi(Xη̄,Λ) := Hi(Xη̄, IC[−d]), where IC is the pull-back to
Xη̄ of the intersection complex ICXη := j!∗(ΛU [d]) (where j : U ↪→ Xη is
the inclusion of a dense open subscheme such that (Uη̄)red is smooth). One
can ask whether there exists an open subgroup I1 of I, independent of `,
such that, for all g ∈ I1 and all i ∈ N, (g − 1)i+1 = 0 on IHi(Xη̄,Λ). The
answer is yes for Λ = Q` or Q`. Indeed, by de Jong [45], after replacing η
by a finite extension, one can find an alteration h : Z → Xη, with Z proper
and smooth over η (and purely of dimension d). By the generalization of
the decomposition theorem of Beilinson–Bernstein–Deligne–Gabber ([7, 5.3,
5.4]) given in [70, 5.1], IC is a direct summand of Rh∗ΛZη̄ [d]. I don’t know
the answer for Λ = Z/`νZ.

2.1. The main step in Grothendieck’s geometric proof is a calculation of
the stalks of the tame nearby cycles groups RqΨX(Λ)t (for Λ = Z/`νZ), in
a situation of quasi-semistable reduction (assuming that absolute purity is
available — which is the case today). Let me recall the definition of these
groups. In (1.1), k(η̃) is the maximal unramified extension of k(η) contained
in k(η). Let k(ηt) be the maximal tame extension of k(η) contained in k(η),
i.e., k(ηt) = lim−→ k(η̃)[π1/n], where π is a uniformizing parameter of S̃, and n

(6) It was later proved by Gabber in general [26], but the semistable reduction case
sufficed.
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runs through the integers > 1 prime to the characteristic exponent p of k(s).
Then P := Gal(η/ηt) is the wild inertia subgroup of I = Gal(η/η̃), and

It = Gal(ηt/η̃) = Ẑ′(1) := lim←−
(n,p)=1

Z/n(1)

its tame quotient. Replacing the upper part of (1.1) by
ηt

jt

�� ��
s̃

ĩ // S̃ η̃
j̃oo

(2.1)

one defines, for X over η, and K ∈ D+(X), the tame nearby cycles complex

RΨf (K)t := ĩ∗Rjt∗(K|Xηt) (2.2)

As P is a pro-p-group, the functor ( · )P (invariants under P ) is exact, and
one has

RΨf (K)t
∼−→ RΨf (K)P . (2.3)

For X/S and K ∈ D+(X), one defines the tame vanishing cycles complex
RΦf (K)t similarly to RΦf (K). One has a variant of (1.4):

RΨf (K)t,x̄ = RΓ((X(x̄))ηt ,K), (2.4)

with the Milnor fiber replaced by the tame one (X(x̄))ηt .

2.2. Assume now that X is regular, flat and of finite type over S, the generic
fiber Xη is smooth, and the reduced special fiber (Xs)red is a divisor with
normal crossings. Let x be a geometric point ofX over s, let (Di)16i6r be the
branches of (Xs)red passing through x, and let ni be the multiplicity of Di,
i.e., X is locally defined near x by an equation of the form u

∏
16i6r t

ni
i = π,

where π is a uniformizing parameter of S, the ti’s are part of a system of
regular parameters at the strict localization of X at x, and u is a unit at x.
Then ([22, I 3.3]) the stalks of the groups (RqΨΛ)t at x are given by

(RqΨΛ)t,x̄ = Λ[(Z/dZ)(1)]⊗Z Λq(C(−1)), (2.5)

where
C = Ker((n1, . . . , nr) : Zr −→ Z),

and gcd(ni) = dpm, with (d, p) = 1. The inertia group I acts on them
via its permutation action on (Z/dZ)(1) through the composition I �
It � (Z/dZ)(1). The reason for this is that, because of absolute purity,
on the cohomological level the tame Milnor fiber (X(x̄))ηt (2.4) behaves
like the (prime to p) homotopy fiber of the homomorphism (S1)r → S1,
(x1, . . . , xr) 7→

∏
xnii , i.e., the wreath product Ker((S1)r → S1)o(Z/dZ)(1).

An immediate consequence is:
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Corollary 2.6. — Under the assumptions of Theorem 2.2, there ex-
ists an open subgroup I1 of I such that, for all q ∈ Z, I1 acts trivially on
(RqΨΛ)t.

At the time of SGA 7, the proof of (2.5) was conditional to the validity of
the absolute purity conjecture, which was known only in certain cases (e.g.,
in equal characteristic zero, and for q 6 1 in the notation of footnote (5)).
Nevertheless, this, together with the cases where resolution of singularities
was known, enabled Grothendieck to show that Theorem 2.3 holds if Xη

is proper and smooth and either S is the localization of a smooth curve
over C, or i 6 1. Using the formalism of 1.2 (or rather its analogue in
the complex case), he also deduced from Corollary 2.6 a positive answer to
Milnor’s question ([51, footnote p. 72])(7) on the quasi-unipotence of the
monodromy of isolated singularities (a question that had been one of the
motivations for his theory of the functors RΨ and RΦ). In fact, because
of the now known validity of the absolute purity conjecture, (2.5) holds
unconditionally, and, moreover, in the case of semistable reduction, RqΨΛ =
(RqΨΛ)t, see 6.3.

Here is a sketch of Grothendieck’s answer to Milnor’s question. As we have
an isolated critical point, by a theorem of Arnol’d–Artin–Mather–Tougeron
(see [1] for references), H̃n(Mf ) depends only on a sufficiently high order
jet of f , so, instead of the original analytic situation, we can consider an
algebraic one, namely a smooth curve S over C, with a closed point s, a
smooth scheme X/C, and a morphism f : X → S, smooth outside a closed
point x of the special fiber Xs. By Hironaka, we can find a proper map
h : X ′ → X, with X ′/C smooth, inducing an isomorphism outside Xs

and such that (X ′s)red is a divisor with normal crossings. Let f ′ = fh. By
Corollary 2.6, the action of a generator T of the local fundamental group
of S at s on RΨf ′Z is quasi-unipotent. By (the complex analytic analogue
of) (1.6), RΨfZ = Rh∗RΨf ′Z, so T acts quasi-unipotently on RΨfZ, hence
on RΦfZ, which is concentrated at x, i.e., equal to ix∗(RΦfZ)x, where ix :
{x} ↪→ Xs.

3. The semistable reduction theorem for abelian varieties

As an abelian variety over an algebraically closed field is a quotient of a
Jacobian, from n(g) 6 1 for i = 1 we get:

(7) i.e., for a holomorphic germ f : (Cn+1, 0)→ (C, 0) having an isolated critical point
at 0, the eigenvalues of the monodromy T on H̃n(Mf ) are roots of 1 (Mf the Milnor fiber
at 0, where H̃i = Coker(Hi(pt)→ Hi). Here H̃n(Mf ) = RnΦf (Z)0.
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Theorem 3.1. — With the notation of Theorem 2.1, let Aη be an abelian
variety over η. Then there exists an open subgroup I1 of I such that, for all
g ∈ I1, (g − 1)2 = 0 on H1(Aη̄).

As mentioned in the introduction, this was the crucial tool enabling
Grothendieck to prove the following theorem (semistable reduction theorem
for abelian varieties) ([22, IX 3.6]):

Theorem 3.2. — With the notation of Theorem 3.1, there exists a finite
extension η1 of η such that Aη1 has semistable reduction(8) over the normal-
ization (S1, s1, η1) of S in η1, i.e., if A1/S1 is the Néron model of Aη1 , the
connected component (A1)0

s1 of its special fiber is an extension of an abelian
variety by a torus.

The proof of Theorem 3.2 occupies over 300 pages in ([22, VII, VIII, IX]).
However, the idea is quite simple.

First of all, one rephrases Theorem 3.1 in terms of the Tate module of Aη,
T`(Aη) = lim←−Aη̄[`n],

where [`n] means the kernel of the multiplication by `n, a free Z`-module of
rank 2g, where g is the dimension of Aη, equipped with a continuous action
of Gal(η/η) (equivalently, a lisse Z`-sheaf, free of rank 2g, over η).

From now on, let us work with Λ = Z`.

By Serre–Lang,
H1(Aη̄) = T`(Aη)∨(:= Hom(T`(Aη̄),Z`))

as Galois modules. Hence, in the notation of Theorem 3.1, for all g ∈ I1,
(g − 1)2 = 0 on T`(Aη). To prove Theorem 3.2 it therefore suffices to prove
the following theorem (cohomological criterion for semistable reduction) ([22,
IX, 3.5]):

Theorem 3.3. — In the situation of Theorem 3.1, assume that for all
g ∈ I, (g − 1)2 = 0 on T`(Aη). Then Aη has semistable reduction over S.

3.1. The main ingredient in the proof of Theorem 3.3 is the so-called orhog-
onality theorem, which I will now recall. In the situation of Theorem 3.1, let
A be the Néron model of Aη over S (so that Aη is the generic fiber of A)
([14, 1.2, 1.3]). The Tate module T`(Aη) admits a Gal(η/η)-equivariant 2-
step filtration

T`(Aη)t ⊂ T`(Aη)f ⊂ T`(Aη), (3.1)

(8) Today one often prefers to say “semi-abelian reduction”, to avoid confusion with
semistable reduction as a scheme.
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where, as a Galois module, T`(Aη)f = T`(Aη)I is the fixed part under I,
which, by the universal property of the Néron model, is also canonically iso-
morphic to T`(As) = T`(A0

s), and T`(Aη)t the toric part, i.e., T`(T ), where T
is the maximal subtorus of A0

s. In ([22], IX), Grothendieck likes to write (3.1)
in the form

W ⊂ V ⊂ U.
This is a filtration by free, finitely generated Z`-modules, and the quotients
U/V , V/W are torsion-free(9). Let A′η = Ext1(Aη,Gm) be the dual abelian
variety (cf. [22, VIII 3.2])(10), A′ its Néron model, and let (W ′ ⊂ V ′ ⊂ U ′)
be the corresponding filtration of U ′ = T`(A′η). The Poincaré bi-extension
of Aη × A′η by Gm defines a perfect pairing (cf. [22, IX, 1.0.3]) (the Weil
pairing):

〈 · , · 〉 : U ⊗ U ′ −→ Z`(1). (3.2)
The orthogonality theorem is the following formula ([22, 2.4]):

W = V ∩ V ′⊥, (3.3)
where ( · )⊥ means the orthogonal for the pairing (3.2). Let g be the dimen-
sion of Aη, µ be that of the torus T , and α (resp. λ) be the abelian (resp.
unipotent) rank(11) of A0

s. By (3.3) we have rk(U/(V +V ′⊥)) = rk(W ) = µ,
and rk((V + V ′⊥)/V ′⊥) = rk(V/W ) = 2α, so, as g = α+ λ+ µ, we get

rk(V ′⊥/W ) = 2λ. (3.4)
By definition, Aη has semistable reduction over S if and only if λ = 0, which,
by (3.4) is equivalent to V ′⊥ ⊂ V .

From this it is immediate to prove Theorem 3.3. Indeed, as its action is
unipotent, I acts on U (and U ′) through its tame quotient It = Ẑ′(1) (and
even through its `-primary part Z`(1)). We have to show V ′⊥ ⊂ V , i.e., if g is
a topological generator of It, that g− 1 is zero on V ′⊥. But, by assumption,
(g − 1)2 is zero on U , hence on U ′, hence g − 1 is zero on U ′/V ′, hence on
(U ′/V ′)∨(1), but under (3.2), (U ′/V ′)∨(1) = V ′⊥.

The first appearance of (3.3) is in a paper of Igusa [32]. Igusa considers
the case where Aη is the Jacobian of Xη, for X/S a proper curve with
geometrically connected fibers and semistable reduction, smooth outside a
unique rational point x of Xs. He deduces (3.3) from what is called, in

(9) For U/V this is because UI = (U ⊗Q`)I ∩ U , for V/W because over an algebraic
closure of s, A0

s/T becomes an extension of an abelian variety by a unipotent group.
(10) The Ext1 group is calculated in the category of abelian sheaves on the fppf site of

η. This identification is classical: see [67, p. 196] for its history, and [24, XI, Th. 2.2] for
a proof of a generalization over a locally noetherian base.

(11) i.e., the dimension of the quotient abelian variety (resp. unipotent part) of A0
s/T

over an algebraic closure of s.
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today’s language, a Picard–Lefschetz formula at x for `-adic vanishing cycles.
This inspired to Grothendieck his theory of the monodromy pairing, that we
discuss in the next section. However, Grothendieck’s proof of (3.3) does not
involve any vanishing cycles. These are, somehow, replaced by the Néron
models, and Grothendieck obtains (3.3) as a consequence of a vast theory
of bi-extensions, developed in [22, VII, VIII], considerably generalizing —
and, should I say, simplifying — the notion initially introduced by Mumford
for formal groups [52]. The inclusion W ⊂ V ∩ V ′⊥ is more or less formal.
The fact that it is an equality is proved in [22, IX 2.4] as a corollary of an
ampleness criterion of Raynaud ([57, XI 1.11]).

Remarks 3.4.

(a) The converse of Theorem 3.3 holds: if Aη has semistable reduction
over S, then, for all g ∈ I, (g − 1)2 = 0 on T`(Aη). Indeed, as
V ′⊥ = (U ′/V ′)∨(1) is contained in V = U I , (g − 1)2 is zero on U ′,
hence on U .

(b) There is a variant of Theorem 3.3 (and its converse) for the case of
good reduction, namely Aη has good reduction over S (i.e., A is an
abelian scheme over S) if and only if I acts trivially on T`(Aη) ([22,
IX 2.2.9]). This is the so-called Néron–Ogg–Shafarevich criterion for
good reduction. The proof is easy. It does not use the orthogonality
relation (3.3).

(c) In [22, IX 2.6 a)] Grothendieck observes that the inclusion W ⊂
V ∩ V ′⊥ can be proved by an arithmetic argument, independent of
the theory of bi-extensions, using Weil’s theorem on the weights of
Frobenius for abelian varieties over finite fields. Pushing the argu-
ment further, Deligne was able to prove the semistable reduction
theorem 3.2, bypassing (3.3) ([22, I 6]), and, in fact, getting it as a
bonus (his argument gives ((V ∩V ′⊥)/W )⊗Q` = 0, hence (3.3), as
V/W is free over Z`, as recalled after (3.1)).

4. Grothendieck’s monodromy pairing

4.1. Let (S, s, η) and Aη be as in Theorem 3.1. We denote by A′η the dual
abelian variety, by A (resp. A′) the Néron model of Aη (resp. A′η), and by T
(resp. T ′) the maximal subtorus of A0

s (resp. A′0s ). From now on — unless
otherwise stated — we assume that Aη has semistable reduction over S, i.e.,
A0
s is extension of an abelian variety B by the torus T . It follows from the

criterion 3.3 that A′η also has semistable reduction, i.e., A′0s is extension of
an abelian variety B′ by T ′.
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As in the previous section, we consider the Tate modules U = T`(Aη),
U ′ = T`(A′η), and their 2-step filtrations (W ⊂ V ⊂ U), (W ′ ⊂ V ′ ⊂
U ′), where V = U I = T`(A0

s), W = T`(T ), and similarly V ′ = U ′I =
T`(A′0s ), W ′ = T`(T ′). Following Grothendieck’s notation, we denote by M
the character group of T ′:

M = Hom(T ′,Gm), (4.1)

so that the co-character group is M∨ = Hom(Gm, T
′) = Hom(M,Z) (these

are free finitely generated Z-modules with action of Gal(s̃/s) (in the nota-
tion (1.1)), and similarly

M ′ = Hom(T,Gm), (4.2)

with M ′∨ = Hom(Gm, T ) = Hom(M ′,Z). As T ′[`n] = Hom(Z/`n, T ′) =
Hom(µ`n , T ′)⊗ µ`n = (M∨/`nM∨)⊗ µ`n , we have

W ′ = M∨ ⊗ Z`(1), (4.3)

and similarly
W = M ′∨ ⊗ Z`(1). (4.4)

LetM` := M⊗Z`,M ′` := M ′⊗Z`. As Aη has semistable reduction, by (3.3)
and (3.4), we have

W = V ′⊥ = (U ′/V ′)∨(1), (4.5)
hence by (4.4),

U ′/V ′ = M ′`, (4.6)
and similarly

U/V = M`, (4.7)
which formulas are probably the reason for the a priori strange notation (4.1).

As I acts on U through its quotient t` : I � Z`(1), and unipotently
of exponent 6 1, there exists a unique homomorphism (the monodromy
operator)

N : U −→ U(−1) (4.8)
such that gx = x + t`(g)Nx for all x ∈ U and g ∈ I. We have N2 = 0,
and N is Gal(η/η)-equivariant. We again denote by N : U ′ → U ′(−1) the
monodromy operator corresponding to A′η. By definition, V and V ′ are the
kernels of N . As the Weil pairing (3.2) is Galois equivariant, in particular,
I-equivariant, it satisfies the formula

〈Nx, y〉+ 〈x,Ny〉 = 0. (4.9)

This implies that N(U) ⊂ V ′⊥(−1) (= W (−1) by (4.5)), and, as N(V ) = 0,
N induces a homomorphism

N : U/V −→W (−1),
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which, by (4.5) and (4.6), can be rewritten
u` : M` −→M ′∨` , (4.10)

or, equivalently, a pairing
〈 · , · 〉` : M` ⊗M ′` −→ Z`. (4.11)

This is Grothendieck’s monodromy pairing. By definition, u` is injective,
hence is an isogeny. The pairing (4.11) is symmetric, i.e., the pairing deduced
by exchanging Aη and A′η (and identifying Aη with (A′η)′ by the biduality
isomorphism) is obtained from (4.11) by 〈x, y〉 7→ 〈y, x〉. Grothendieck’s main
result is the following ([22, IX 10.4]) (discussed for the first time in a letter
to Serre, dated October 3-5, 1964, see [15, p. 207, 209]):

Theorem 4.1.

(a) There exists a unique homomorphism
u : M −→M ′∨ (4.12)

such that u⊗ Z` = u` for all `. Let
〈 · , · 〉 : M ⊗M ′ −→ Z (4.13)

denote the pairing defined by (4.12).
(b) Let ξ : Aη → A′η be a polarization, ξ∗ : M →M ′ the homomorphism

deduced by functoriality. Then the pairing
〈 · , · 〉ξ : M ⊗M −→ Z

defined by 〈x, y〉ξ = 〈x, ξ∗y〉 is symmetric, and negative definite(12).

We will sketch Grothendieck’s proof at the end of Section 4. An alternate
construction of u and proof of (Theorem 4.1(b)) was given by Raynaud,
using rigid methods ([59] and [22, IX 14]).

Remark 4.2. — The construction of u` (4.10) makes essential use of the
hypothesis ` 6= p. Let Mp := M ⊗Zp, M ′p := M ′ ⊗Zp. For S of mixed char-
acteristic, using Tate’s theorem on homomorphisms of Barsotti–Tate groups
([73, Th. 4]), Grothendieck directly constructs in ([22, IX 9]) a homomor-
phism up : Mp → M ′∨p in terms of the pro-p-groups Tp(A0), Tp(A′0), and,
by an analytic argument, shows (in [22, IX 12]) that (Theorem 4.1(a)) ex-
tends to ` = p, i.e., up = u ⊗ Zp. Now that thanks to de Jong [44] Tate’s
theorem has been established in equal characteristic, the restriction on S is
superfluous(13).

(12) In [22, IX, X 4], it is asserted to be positive definite. This discrepancy seems to
be due to a sign in the Picard–Lefschetz formula.

(13) A construction of up valid without assuming S of mixed characteristic, and using
only Tate’s theorem (but over a higher dimensional normal base, a formal moduli scheme
as in [22, IX 12.8]), has been made by B. Conrad (private communication).
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In the sequel, we assume again ` 6= p. An immediate consequence of
Theorem 4.1, actually just the fact that u` is an isogeny, is:

Corollary 4.3.

(a) Consider the filtration (W ⊂ V ⊂ U) (3.1) as an increasing filtration
(Mi)i∈Z, with Mi = U for i > 1, M0 = V , M−1 = W , Mi = 0
for i 6 −2. Then Mi ⊗ Q` is the monodromy filtration of U ⊗
Q` with respect to the nilpotent operator N , i.e., N(Mi ⊗ Q`) ⊂
Mi−2 ⊗Q`(−1), and N i : grMi (U ⊗Q`)→ grM−i(U ⊗Q`)(−i) is an
isomorphism for all i > 0.

(b) Assume that k is a finite field Fq. Then the filtration (Mi) is pure,
i.e., equals, up to a shift, the weight filtration of U⊗Q` in the sense
of Deligne ([21, 1.7.5]): grMi U is pure(14) of weight i− 1.

As H1(Aη̄) := H1(Aη̄,Z`) is dual to U = T`(Aη), the filtration, still de-
notedM• on H1(Aη̄) dual to the filtrationM• on U , is again the monodromy
filtration (for the monodromy operator N), and when k = Fq, is the weight
filtration up to shift : grMi H1(Aη̄) is pure of weight i+ 1.

As we mentioned in Remark 3.4(c), Deligne gave an alternate short proof
of this. However, weight arguments don’t work for the next corollary 4.4,
which lies deeper. We need some preliminary remarks before stating it.

4.2. For the moment, we don’t assume that Aη has semistable reduction over
S. Consider the finite commutative étale group scheme over s of connected
components of the special fiber of the Néron model A of Aη,

Φ0 := Φ0(Aη) := As/A
0
s, (4.14)

and similarly define Φ′0 := Φ0(A′η) := A′s/A
′0
s . In [22, IX], Grothendieck :

(i) defined a canonical pairing Φ0 × Φ′0 → Q/Z, which he conjectured
to be perfect;

(ii) in the semistable reduction case, constructed a canonical isomor-
phism between Φ0 and the cokernel of u : M →M ′∨ (4.12).

Let me first discuss (ii). We now assume that Aη has semistable reduc-
tion. For simplicity, assume that S is strictly local (so that S = S̃ in the
notation (1.1), and Φ0, Φ′0 are usual finite groups), and take ` 6= p. Let Φ0(`)
be the `-primary component of Φ0. The `-primary component of Coker(u) is

Coker(u)(`) = Ker(u` ⊗Q`/Z` : M` ⊗Q`/Z` →M ′∨` ⊗Q`/Z`).

(14) i.e., the eigenvalues of the geometric Frobenius F are q-Weil numbers of weight
i−1; moreover (by Weil), det(1−Ft, grMi (U⊗Q`)) has coefficients in Z and is independent
of `.

– 96 –



Grothendieck and vanishing cycles

On the other hand, as A0
s is `-divisible, we have

Φ0(`) = As(`)/A0
s(`),

where ( · )(`) = lim−→( · )[`n], hence

Φ0(`) = (U ⊗Q`/Z`)I/(V ⊗Q`/Z`), (4.15)
with the above notation U = T`(Aη), V = U I = T`(A0

s)(15). We thus have
an injection

Φ0(`) ↪→ (U/V )⊗Q`/Z`
(4.7)= M ⊗Q`/Z`. (4.16)

Now using that Aη has semistable reduction, Grothendieck extends the def-
inition of (4.16) to ` = p, and proves:

Corollary 4.4. — For Aη having semistable reduction, the homomor-
phism (4.16) induces a short exact sequence

0 −→ Φ0(`) −→M ⊗Q`/Z`
u⊗Q`/Z`−−−−−−→M ′∨ ⊗Q`/Z` −→ 0 (4.17)

for all primes `, where u is the homomorphism (4.12). In other words, the
maps (4.17) induce an isomorphism

Φ0
∼−→ Coker(u : M →M ′∨). (4.18)

The proof for ` 6= p is easy: from (4.15) a simple calculation shows that
Φ0(`) is the torsion subgroup of H1(I, U) = U/NU(1) ([22, IX (11.3.8)]),
i.e., W/NU(1), which, by (4.5) and the definition of u` is just Coker(u`).
The proof for ` = p is more delicate.

Remark 4.5. — When Aη is the Jacobian of the generic fiber of a proper,
flat curve X/S, with geometrically connected fibers and semistable reduction
(in other words, X is regular, Xη is smooth, and Xs is a (reduced) divisor
with normal crossings), i.e., Aη = Pic0

Xη/η (see e.g. [14, 9.2]) for general
properties of Jacobians), (4.18) leads (via the Picard–Lefschetz formula) to
a purely combinatorial description of Φ0, in terms of the irreducible compo-
nents and double points of the special fiber Xs. We will briefly discuss this
in 6.1 and 6.3. Similar descriptions of Φ0 under milder assumptions on X
were given independently by Raynaud [58], see also [14, 9.6], [33].

An interesting special case computed by Deligne, and discussed by Mazur–
Rapoport in [49] is when S = Spec Zp, X is the modular curve X0(p) local-
ized over S, with p > 5. Then, over an algebraic closure of Fp, Φp := Φ0(Jp)
(Jp the special fiber of the Néron model) is a cyclic group of order the numer-
ator of (p−1)/12 ([49, A1]), having as a generator the image of the Q-rational
divisor (0)− (∞). As an application, Mazur shows that, for ` 6= p, the Hecke
operator T` on Φp equals 1 + ` ([49, 9.7]). Ribet proved, more generally, that

(15) This formula does not use that Aη has semistable reduction.
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T` = 1 + ` on Φ0(Jp(X0(pN))) (for (`, pN) = 1, (p,N) = 1) ([60, (3.12)]), a
result he used to prove that the Shimura–Taniyama–Weil conjecture implies
Fermat.

4.3. Let us recall the definition of the pairing mentioned in 4.2(i). Let

wη ∈ Ext1(Aη ⊗L A′η,Gm) (4.19)

be the Poincaré bi-extension (tensor product taken over Z) (see [22, VII
2.9.5, VIII 3.2], where reference [1] is [24] of the present paper) and consider
the immersions i : s ↪→ S, j : η ↪→ S. As R1j∗Gm = 0 (Hilbert 90), the
exact sequence (of group schemes over S)

0 −→ Gm −→ j∗Gm −→ i∗Z −→ 0 (4.20)
(where the middle term is the Néron–Raynaud model of Gm, a smooth com-
mutative group scheme over S) yields an exact sequence

Ext1(A⊗LA′,Gm)−→Ext1(Aη⊗LA′η,Gm) c−→Ext1(A⊗LA′, i∗Z). (4.21)
On the other hand, a boundary map gives a canonical isomorphism

δ : Hom(Φ0 ⊗ Φ′0,Q/Z) ∼−→ Ext1(A⊗L A′, i∗Z). (4.22)
Grothendieck defines the pairing ([22, IX (1.2.1)])

w0 : Φ0 ⊗ Φ′0 −→ Q/Z (4.23)
as the image of wη (4.19) by δ−1c. This is the obstruction to extending wη
to a bi-extension w ∈ Ext1(A ⊗L A′,Gm). Grothendieck conjectured that
the pairing w0 is perfect. Here is a brief history of the question:

• In the semistable reduction case, Corollary 4.4 gives the existence of
a perfect pairing w′0 of the form (4.23) and Grothendieck conjectured
that, up to a sign that should be determined, it coincides with w0
([22, IX 11.4])(16).
• Various cases were treated by Bégueri [4], McCallum [50], Bosch [12],
Bosch–Lorenzini [13].
• Counter-examples for k not perfect were given by Bertapelle–
Bosch [9], using Weil restrictions, and by Bosch–Lorenzini [13] for
Jacobians.
• A proof in the general case (k perfect) was given by Suzuki [72] (see
also [71] for a generalization).

(16) The definition of a perfect pairing of the form w0 on the `-primary components,
` 6= p, using (4.15) is easy ([22, IX 11.3]) and doesn’t need the semi-stability assumption; its
coincidence with w0 was checked by Bertapelle [8]. In the semistable case, the verification
of the coincidence between w′0 and w0 was made by Werner [76], using the rigid geometry
of Raynaud’s extensions in [59].
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While in the works of Bertapelle, Bosch, Bosch–Lorenzini, Werner, the
main tools are those provided by the geometry of abelian varieties, Bégueri’s
approach exploits another ingredient, namely Serre’s geometric local class
field theory, the perfection of Grothendieck’s pairing appearing as a by-
product of the reciprocity isomorphism. It seems to me, however, that the
relation between these various methods is not yet fully understood. For
example, in the case of the Jacobian of a proper, smooth curve having
semistable reduction, the pairing (4.11), as described below by (4.37) via
Picard–Lefschetz, should be more directly related to Néron’s height pairing:
one would like to exhibit the vanishing cycles hidden in [13, 4.4].

4.4. We now sketch Grothendieck’s proof of Theorem 4.1. In Theorem 4.1(a)
the uniqueness of u is clear (one ` even suffices). The construction of u is
easily reduced to the case where Aη is the Jacobian of a proper smooth
and geometrically irreducible curve Xη/η ([22, IX 10.5.1-10.5.3]). At this
point, Grothendieck uses a result that was proved at about the same time
by Deligne and Mumford(17) [23] as a corollary to Theorem 3.2, the so-called
semistable reduction theorem for curves, thanks to which, after a finite ex-
tension of η, Xη admits a proper, flat model X/S with X regular, having
semistable reduction, i.e. étale locally étale over S[x, y]/(xy− t), where t is a
uniformizing parameter of S. Thus, after a further reduction, we may — and
we will in the following — assume that Xη is the generic fiber of a model
X/S as above, and also that the residue field k is separably closed. In this
situation, we have combinatorial descriptions of M and u` in terms of the
dual graph of Xs, and they suggest the definition of u.

(a) Description of M . — By the canonical polarization of Aη = Pic0
Xη/η,

we identify Aη and A′η, hence their Néron models A and A′, the maximal
tori T and T ′ in their special fibers, and their character groups M and M ′.
Thus, by (4.1), M∨ is the co-character group of T . On the other hand, by a
result of Raynaud, A0

s = Pic0
Xs/s ([22, IX (12.1.12)]). Put Y := Xs, denote

by Γ(Y ) its dual graph. A simple calculation ([22, IX 12.3], [33, 2.3]) shows
that

M = H1(Γ(Y ),Z) (4.24)

(and M∨ = H1(Γ(Y ),Z)). More explicitly, if J is the set of irreducible
components of Y , Σ the set of double points of Y , and, if for each x ∈ Σ we
choose an order on the set Jx of the two branches passing through x (points
x1, x2 of the normalization of Y sitting over x), so that we have a basis
δ′(x) = (1,−1) of the kernel Z′(x) of the sum map ZJx → Z, then we have

(17) Other proofs, independent of Theorem 3.2, were found later: Artin–Winters [3],
T. Saito [61], Temkin [74].
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an exact sequence

0 −→M −→
⊕
x∈Σ

Z′(x) −→ ZJ , (4.25)

where Jx = (x1, x2) and the second map sends δ′(x) to the difference Cx1 −
Cx2 of the components of Y corresponding to x1 and x2. Dually(18), we have
an exact sequence

ZJ −→
⊕
x∈Σ

Z(x) −→M∨ −→ 0, (4.26)

where Z(x) is the cokernel of the diagonal map Z → ZJx , with basis δ(x)
dual to δ′(x), and the first map is dual to the second map in (4.25).

(b) Description of N . — The specialization sequence (1.8) for K = Z`(1)
gives an exact sequence

0 −→ H1(Xs)(1) −→ H1(Xη̄)(1) −→ Φ1(1)
−→ H2(Xs)(1) −→ H2(Xη̄)(1) −→ 0, (4.27)

where Hi( · ) = Hi( · ,Z`), Φi := Hi(Xs, RΦ(Z`)). The vanishing cycles
groups RqΦ(Z`) were calculated by Deligne in ([22, XV 3]) (as a special
case of pencils with ordinary quadratic singularities). The complex RΦ(Z`)
is concentrated in degree 1 and on the set Σ of double points of Xs, so that

Φ1(1) =
⊕
x∈Σ

Φ1(1)x, (4.28)

and, with the choice of the ordering on Jx made above, Φ1(1)x has a distin-
guished basis δ′x, called the vanishing cycle at x:

Φ1(1)x = Z`δ′x. (4.29)

By definition (4.7), M` = T`(Aη)/T`(A0
s) = H1(Xη̄)(1)/H1(Xs)(1), hence,

by (4.27),
M` = Ker(Φ1(1)→ H2(Xs)(1)). (4.30)

Dually to (4.28) and (4.29), we have

H1
Σ(Xs, RΨ(Z`)) =

⊕
x∈Σ

H1
x(Xs, RΨ(Z`)), (4.31)

with H1
x(Xs, RΨ(Z`)) dual to Φ1

x(1) (with values in Z`), with dual basis δx:

H1
x(Xs, RΨ(Z`)) = Z`δx (4.32)

(18) The cokernel of the last map is Z, as Y is geometrically connected, hence Γ(Y )
connected.
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The monodromy operator N on U = T`(Aη̄) = H1(Xη̄) factors (by definition
of RΦ) through a sum of local variation maps

Nx : Φ1
x(1) = Z`.δ′x −→ H1

x(Xs, RΨ(Z`)) = Z`.δx, (4.33)

i.e., we have a commutative diagram

H1(Xη̄)(1)

N

��

//⊕
x∈Σ Φ1

x(1)

⊕Nx
��

H1(Xη̄)
⊕

x∈ΣH
1
x(Xs, RΨ(Z`)),oo

(4.34)

where Nx is an isomorphism, the Picard–Lefschetz isomorphism (see 6.1),
given by

Nx(δ′x) = −δx. (4.35)
Using duality and the cospecialization sequence, dual to (4.27),

H1(Xη̄)←− H1
Σ(RΨ)←− H0(X̃s)←− H0(Xη̄)←− 0, (4.36)

where X̃s is the normalization of Xs, one checks that the factorization (4.34)
is refined into the following one:

H1(Xη̄)(1)

N

��

// M ⊗ Z`

u⊗Z`
��

//⊕
x∈Σ Φ1

x(1)

⊕Nx
��

H1(Xη̄) M∨ ⊗ Z`oo ⊕
x∈ΣH

1
x(Xs, RΨ(Z`)),oo

(4.37)

in which u : M →M∨ is the map making the following square commute:

M

u

��

//⊕
x∈Σ Zδ′(x)

− Id
��

M∨
⊕

x∈Σ Zδ(x),oo

(4.38)

where the upper (resp. lower) row is the injection (4.25) (resp. surjection
(4.26)). In other words, u is induced by the negative definite quadratic form∑
−t2i on Zr =

∑
x∈Σ Z.

In the case considered by Igusa [32] — which was for Grothendieck the
starting point of the whole theory — the special fiber Xs is irreducible, and
Σ consists of a single point x. The rows of (4.38) are isomorphisms (hence u
also). If we identify δx with its image in M∨ ⊗ Z` ⊂ H1(Xs) ⊂ H1(Xη̄) by
the bottom arrow of (4.37), (4.27) yields a short exact sequence

0 −→ H1(Xs)(1) −→ H1(Xη̄)(1) N−→ Z`δx −→ 0, (4.39)
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where H1(Xs) is the fixed part, and Z`δx the toric part

M∨ ⊗ Z` = W (−1) = T`(T )(−1) = H1(Xs)(1)⊥,

where T is the maximal torus in A0
s, i.e., the 1-dimensional torus at x defined

by π∗Gm/Gm, π : X̃s → Xs being the normalization map. Elements σ
of the inertia group I act on H1(Xη̄)(1) by the symplectic transvections
a 7→ a− t`(σ)〈a, δx〉δx ([22, XV 3.4]).

More generally, under the assumptions of 4.4(b) on X/S, if Xs is irre-
ducible, then the map on H2 in (4.27) is an isomorphism, and (4.34) yields
an exact sequence similar to (4.39), with Z`δx replaced by

⊕
x∈Σ Z`δx, which

is again the toric part M∨ ⊗ Z`.

5. Grothendieck’s dreams

In [22, IX, Introduction], Grothendieck writes:

“. . . le présent exposé peut aussi être considéré comme une étude dé-
taillée des phénomènes de monodromie locale pour les H1 `-adiques
(ou mieux encore, pour les H1 « motiviques ») des variétés projectives
et lisses sur K. Dans cette optique, il semble clair que les principaux
résultats du présent exposé sont destinés à être englobés dans une
« théorie de Néron » pour des motifs de poids quelconque, i.e. pour
des Hi (`-adiques, ou de de Rham, ou de Hodge, etc.) avec i quel-
conque, qu’on ne commence qu’à entrevoir à l’heure actuelle. (Cf. à
ce sujet [P. A. Griffiths, Report on variation of Hodge structures, à
paraître](19), et plus particulièrement les conjectures de Deligne 9.8 à
9.13 du rapport cité.)”

These questions have been at the origin of several vast theories:

• mixed Hodge theory
• theory of weights in `-adic cohomology
• p-adic Hodge theory
• mixed motives.

Hodge theory came first, with Deligne’s fundamental work ([16], [17],
[19]), and subsequent developments on the analytic and algebraic theory
of variations of Hodge structures by Griffiths, Schmid, and many others.
Grothendieck’s conjectural “yoga” of weights over finite fields had inspired

(19) See [28]. See also [29], Deligne’s report [16], and Griffiths–Schmid’s survey [30],
giving the state of the art in 1975, taking into account Deligne’s work on Hodge theory.
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Deligne for his mixed Hodge theory. In turn, mixed Hodge theory gave some
guidelines in his theory of mixed `-adic sheaves in [21].

At the end of [22, IX, Introduction], Grothendieck observes that, in the
notation of Theorem 4.1, the Galois module Tp(Aη) (p the residual charac-
teristic) behaves quite differently from its `-adic analogue, ` 6= p (as indeed
Tate’s seminal article [73] had shown). He adds that Barsotti–Tate groups
over η play the role of p-adic local systems over η, those which appear in the
p-adic analysis of the H1 of projective, smooth varieties over η. He suggests
that in order to understand the higher Hi’s from a p-adic viewpoint, the
category of Barsotti–Tate groups should be suitably enlarged, using inputs
from crystalline cohomology, this new theory he had just introduced. This
can be seen as the origin of p-adic Hodge theory, which really started only
a couple of years later with Fontaine’s foundational work on Grothendieck’s
problem of the mysterious functor.

The degenerating abelian varieties studied in [22, IX] are the prototype
of mixed motives (over S, in cohomological degree 1). Grothendieck’s dream
of generalizing this theory to higher degree is far from being fulfilled today,
even in the case of a base field, despite extensive work during the past forty
years (starting with Deligne’s theory of 1-motives in [19], up to the recent
achievements accomplished by Voevodsky and many others, for which even
a rough survey would by far exceed the scope of this report).

I will limit myself to a very brief update on `-adic vanishing cycles and
monodromy.

6. Update on the `-adic side

6.1. Picard–Lefschetz. The Picard–Lefschetz formula in `-adic cohomol-
ogy proved by Deligne in [22, XV] — and used by Grothendieck in the
proof of Theorem 4.1 — was the key tool in the cohomological theory of
Lefschetz pencils, developed in [22, XVIII], which provided the basic frame-
work for Deligne’s first proof of the Weil conjecture [18]. In the odd relative
dimension n case (and already for n = 1, in which case Deligne’s calculation
in [22, XV] showed that (2.5) holds unconditionally), the proof given in [22,
XV 3.3] is of transcendental nature, using a lifting to characteristic zero, a
comparison theorem [22, XIV] between `-adic and Betti nearby cycles, and
an explicit topological calculation in the Betti case. A purely algebraic proof
was found later [36], as a by-product of Rapoport–Zink’s description of the
monodromy operator N in the semistable reduction case (see 6.3).
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6.2. Structure of RΨ. Let S and Λ be as in 1.1, and let X be of finite
type over S. Deligne proved in [20, Th. finitude] that for K ∈ Db

c(Xη), we
have RΨX(K) ∈ Db

c(Xs̄). Finer results were obtained later in relation with
the theory of perverse sheaves. It was proved in [7] that the functor RΨ is
right t-exact (see the appendix in [7] for an alternate proof). Combined with a
result of Gabber to the effect that RΨ commutes with duality, it implies that
RΨ is t-exact, and in particular transforms perverse sheaves into perverse
sheaves. Moreover, it was also proved by Gabber that, for K perverse on
X, RΦX(K)[−1] is perverse, and that RΨ commutes with external products
(see [6], [34]). It was proved by Beilinson [48] that RΦ commutes with duality
up to a twist. A new proof and generalizations over higher dimensional bases
(cf. 6.6) are given in [47].

6.3. The semistable case. Assume thatX/S has semistable reduction:X
is regular, Xη is smooth, and Xs is a reduced divisor with normal crossings
in X, i.e., étale locally at any geometric point x of Xs, X is defined by an
equation of the form

∏
16i6r ti = π, where π is a uniformizing parameter

of S and the ti’s are part of a system of regular parameters at the strict
localization of X at x. In [56], Rapoport and Zink proved that the absolute
purity assumption needed to justify the calculation (2.5) was satisfied, and,
moreover, that the action of the inertia I on the nearby cycles groups RqΨΛ
was tame, hence trivial (by (2.5)). It follows that I acts through its tame
quotient It, and if T is a topological generator of It, the action of T − 1 on
RΨΛ is nilpotent. In fact, imitating a construction of Steenbrink, they gave
an explicit description of this action, using a realization of RΨΛ as the total
complex of a certain bicomplex (the Rapoport–Zink bicomplex), at least in
the strict semistable reduction case, i.e., when the special fiber Xs is a sum
of smooth components Di, 1 6 i 6 m (see [34], [56]).

If d = dim(Xs) = dim(Xη) is the relative dimension of X/S, one has
(T −1)d+1 = 0 on RΨΛ. As ΛXη [d] is perverse, so is RΨΛ[d] by (6.2). When
d 6 1, or m 6 2 (in which cases (T − 1)2 = 0), or Λ = Q`, the monodromy
operator

N : RΨΛ(1) −→ RΨΛ (6.1)

such that σ = exp(Nt`(σ)) for all σ ∈ I is defined, and it is more convenient
to work with N , which does not depend of the choice of a generator of It, and
is Galois equivariant. Let Per(Xs̄) denote the category of perverse sheaves
on Xs̄. As N is a (twisted) nilpotent endomorphism of RΨΛ in the abelian
category Per(Xs̄)[−d], it defines a monodromy filtration

· · · ⊂Mi ⊂Mi+1 ⊂ . . . , (6.2)
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characterized by NMi(1) ⊂Mi−2, and N i : grMi
∼→ grM−i(−i) for i > 0. As a

by-product of [56], T. Saito [62] calculated the associated graded object:

grMk RΨΛ =
⊕

p−q=k,p>0,q>0
Kp,q, (6.3)

with
Kp,q := (ap+q∗Λ)[−p− q](−p),

where
an : X(n)

s :=
∐

J⊂{1,...,m},|J|=n+1

⋂
i∈J

Di → Xs

is the natural projection. The operator N : grMk → grMk−2(−1) sends Kp,q to
Kp−1,q+1(−1) by the identity(20).

Example. — If m = 2, so that Xs consists of a pair D1, D2 of smooth
divisors (of dimension d) crossing transversally, we have the following picture,
where C = D1 ∩D2:

gr1 ΛC [−1](−1)

N

��

gr0 ΛD1 ⊕ ΛD2

gr−1 ΛC [−1]

, (6.4)

where the isomorphism N : gr1
∼→ gr−1(−1) is the identity of ΛC [−1](−1).

Note that ΛD1⊕ΛD2 = ICXs [−d], where ICXs is the intersection complex of
Xs, i.e., j!∗(Λ[d]) (j : Xs−C ↪→ Xs the inclusion). The object (6.4) appears
in the Picard–Lefschetz formula in odd relative dimension (cf. [36](21)). The
simplest case is X = S[t1, t2]/(t1t2 − π). It is sometimes called the Picard–
Lefschetz oscillator (cf. [65]), as the triple (gr1, gr−1, N) uniquely extends to
the standard representation of SL2 over Λ.

6.4. The weight-monodromy conjecture. Let X/S be proper, with
strict semistable reduction. The monodromy filtration (6.2) induces a spec-
tral sequence, called the weight spectral sequence

Ei,j1 = Hi+j(Xs̄, grM−iRΨΛ) =⇒ Hi+j(Xη̄), (6.5)

(20) See also [37] for an alternate proof of the tameness of RΨΛ and an exposition of
the above calculations.

(21) There is a typo on p. 251, l. 18: |i| > −1 should be replaced by |i| > 1.
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whose initial term can be re-written

E−r,n+r
1 =

⊕
q>0,r+q>0

Hn−r−2q(X(r+1+2q)
s̄ )(−r − q) (6.6)

thanks to (6.3). The differential d1 is a sum of restriction and Gysin maps.
Note that though (E1, d1) depends only on Xs, (6.5) does depend on X(22).

The weight spectral sequence degenerates at E2. This was first proved for
k finite [56], as a consequence of Weil II(23). The general case was proved by
Nakayama [54] and Ito [43], independently.

Let M̃• be the abutment filtration of (6.5). For m ∈ Z, the monodromy
operator N on Hm(Xη̄) sends M̃i to M̃i−2(−1). A central problem in the
theory is the following conjecture, called the weight monodromy conjecture:

Conjecture 6.1. — Assume that Λ = Q`. Then, for all m ∈ Z, the
filtration M̃• on Hm(Xη̄) is the monodromy filtration M• associated with
the nilpotent operator N , i.e., for all i > 0, N i : grM̃i Hm ∼→ grM̃−iHm(−i).

By the description of N given in (6.3), N induces isomorphisms at the E1-
level. As (6.5) degenerates at E2, 6.1 is equivalent to saying that N induces
isomorphisms at the E2-level. When k is finite, it follows from Weil II that
M̃• on Hn(Xη̄) is the weight filtration, up to shift: M̃r is the piece of weight
6 r + n. Therefore, in this case, Conjecture 6.1 is equivalent to saying that
the monodromy filtrationM• is pure, i.e., the graded pieces of grM• are pure.

Here is the status of Conjecture 6.1:

• for k finite, X/S coming by localization from a proper, flat scheme
over a smooth curve over k, with semistable reduction at a closed
point, Conjecture 6.1 was proved by Deligne ([21, 1.8.5]);
• in the general equicharacteristic p case, by Ito [43];
• for k finite and dim(X/S)6 1 (resp. dim(X/S)6 2) by Grothendieck
(Corollary 4.3(b)) (resp. by Rapoport–Zink ([56, 2.13, 2.23]);
• for certain 3-folds Xη, and certain p-adically uniformized varieties
Xη ([41], [42]);
• for Xη a set-theoretic complete intersection in a projective space (or
in a smooth projective toric variety), by Scholze [66].

The general case is still open.

(22) actually only via X ⊗R/(π2), where S = SpecR, as shown by Nakayama [53].
(23) The complex analogue had been proved by Steenbrink [69], using Hodge theory.
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6.5. Euler–Poincaré characteristics of `-adic sheaves. Deep relations
between `-adic nearby cycles and global Euler–Poincaré characteristics were
discovered by Deligne in the mid 1970’s, spurring a new line of research which
has been active for the past forty years. See ([38], [40]) for (partial) surveys.
Breakthroughs were made recently by Beilinson [5] and T. Saito [63] in their
work on singular supports and characteristic cycles of `-adic sheaves.

6.6. Vanishing cycles over higher dimensional bases. Though, in
general, vanishing cycles don’t behave well in families, in the early 1980’s
Deligne proposed a theory of functors RΨ and RΦ over general bases. It was
summarized in [46], and revisited and completed in [39], [55]. This formalism
is used in [27] and [63].

7. Bounds for the exponent of unipotence (after Gabber)

This section is devoted to the proof of Theorem 2.3. This proof is due to
Gabber.

The following lemma is well known. We give it for lack of a suitable
reference.

Lemma 7.1. — Let S = (S, s, η) be a strictly local trait, Λ be as in 1.1,
(X,Z) a strict semistable pair over S in the sense of de Jong ([45, 6.3]. Let
u : X − Zf ↪→ X be the open immersion, where Zf is the horizontal part
of Z, in de Jong’s notation. Then, for all q ∈ Z, the inertia group I acts
trivially on RqΨX(Ruη∗Λ) (resp. RqΨX(uη!Λ)).

Proof. — The assertion relative to Ruη∗Λ is a particular case of [53, 3.5]
(see also [35, 8.4.4]). A direct proof can be given as follows. The conclusion
has to be checked on the stalks at geometric points x of Xs. By the local
description of strict semistable pairs ([45, 6.4]), étale locally at such a point
x, X is isomorphic to X1 ×S X2, where X1 = S[t1, . . . , tn]/(t1 . . . tn − π),
X2 = S[s1, . . . , sm], and the horizontal part Zf is X1 ×S D, where D =
S[s1, . . . , sm]/(s1 . . . sr), with 1 6 r 6 m, and π is a uniformizing parameter
of S. We may therefore assume that X = X1×SX2 and Zf = X1×SD. Then
Xη − Zη = X1 ×S (X2 − D), and u = IdX1 ×Sv, where v : X2 − D ↪→ X2
is the inclusion. As Ruη∗Λ = ΛX1η � Rvη∗Λ (smooth base change), the
commutation of RΨ with external tensor products ([34, 4.7]) implies:

RΨX(Ruη∗Λ) = RΨX1(Λ)�L RΨX2(Rvη∗Λ). (7.1)
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As X2 is smooth over S and D is a relative divisor with normal crossings in
X2, RΦX2(Rvη∗Λ) = 0(24), so that

RΨX2(Rvη∗Λ) = Rvs∗Λ, (7.2)

and in particular I acts trivially on RΨX2(Rvη∗Λ). On the other hand, I
acts trivially on RqΨX1(Λ) for all q (cf. 6.3) for all q. Moreover, by (2.5),
the stalks of RqΨX1(Λ) are finitely generated and free over Λ, and the same
is true of the RqΨX2(Rvη∗Λ) by (7.2). Therefore, by Künneth, (7.1) gives

RqΨX(Ruη∗Λ) =
⊕
i+j=q

RiΨX1(Λ)�Rjvs∗(Λ). (7.3)

As I acts trivially on both factors of each summand in the right hand side,
the conclusion follows in this case. Similarly, we have

RΨX(uη!Λ) = RΨX1(Λ)�L RΨX2(vη!Λ), (7.4)

and
RΨX2(vη!Λ) = vs!Λ, (7.5)

([22, vol. II, XIII 2.1.11, p. 105])(25). So (7.4) and (7.5) yield

RΨX(uη!Λ) = us!RΨX−Zf (Λ). (7.6)

In particular, I acts trivially on RqΨX(uη!Λ) for all q, which finishes the
proof. �

The next lemma is also more or less standard, but again we couldn’t find
a suitable reference(26). Its statement and proof are due to Gabber.

Lemma 7.2. — Let S = (S, s, η) be a strictly local complete trait. Let X
be a proper scheme over S, which is a compactification of an open subscheme
Xη of its generic fiber Xη. Let n ∈ N. Then there exists a finite extension
of traits S′ = (S′, s′, η′) → S, a proper simplicial scheme X ′• over S′, an
S′-map h• : X ′• → X ′ := X ×S S′ satisfying the following conditions:

(i) The morphism X ′• → X ′ induced by h• is a proper hypercovering;
(ii) For 0 6 r 6 n, if C is a connected component of X ′r, then either

C×X̄′X ′η′ = ∅ (where X ′η′ := Xη×ηη′), or there exists a strictly local
complete trait S′′ between S and S′, a strict semistable pair (Y,Z)
over S′′ such that C = Y ×S′′ S′ and C ×X̄′ X ′η′ = (Y −Z)×S′′ S′.

(24) As can be checked by induction on r, using relative purity, see ([64, Prop. 3.15])
for a generalization.

(25) It can also be deduced from (7.2) by duality, as RΨ commutes with duality. See
again ([64, Prop. 3.15]) for a generalization.

(26) The closest one seems to be ([11, 2.2]), but it doesn’t suffice, as the authors assume
Xη = Xη .

– 108 –



Grothendieck and vanishing cycles

Proof. — We will prove, by induction on n, the existence of S′ and h•
satisfying (i), (ii), and in addition,

(iii) The n-truncated simplicial scheme X ′6n is split, in the sense of [2,
Vbis, 5.1.1].

Assume first n = 0. Decompose the set I of reduced irreducible compo-
nents Ci (1 6 i 6 r) of X into I = I1

∐
I2, where, for i ∈ I1, Ci ∩Xη = ∅,

and for i ∈ I2, Ci ∩ Xη 6= ∅. For each i ∈ I2, apply ([45, 6.5]) to the pair
consisting of Ci and the (proper) closed subset Ci − (Ci ∩ Xη). We find a
finite extension of traits S′′i → S, a strict semistable pair (C ′′i , Zi) over S′′i ,
with geometrically irreducible generic fiber C ′′iη′′

i
, an alteration C ′′i → Ci over

S, such that C ′′i ×X̄′′
i
X ′′iη′′

i
= C ′′i − Zi. As the generic fiber of C ′′i remains

connected after any finite extension of traits, we can find a common finite
extension S1 of the S′′i such that the components C ′′i ×S′′i S1 satisfy con-
dition (ii). However, C ′′i ×S′′i S1 → Ci ×S S1 is not necessarily surjective.
To correct this, we proceed as in the proof of ([11, 2.2]). We take a finite
extension S′ of S1, normal over S with group G := Aut(S′/S) and replace
C ′′i ×S′′i S1 by the disjoint sum, for g ∈ G, of the C ′′i,g deduced from C ′′i ×S′′i S1

by base change by the composite S′ g→ S′ → S1. Denote this disjoint sum
by C ′i. Let

X ′0 :=
(∐
i∈I1

Ci ×S S′
)∐(∐

i∈I2

C ′i

)
Then the map

cosk0(X ′0/X ′) −→ X ′

satisfies conditions (i) and (ii) (and trivially (iii)) for n = 0.

Assume now that Lemma 7.2 has been proved up to n, and let us prove
it for n + 1. Take S′, h• : X ′• → X ′ := X ×S S′ satisfying conditions (i),
(ii), (iii). Let us construct a finite extension T of S′, with generic point ζ,
and v• : V• → X ×S T satisfying conditions (i), (ii), (iii) up to n + 1 for S′
replaced by T and (X ′, X ′η′) replaced by (X ×S T,Xη ×η ζ). Note that these
conditions are stable under finite extensions of traits. Let

W := (coskn(X ′6n/X ′))n+1

We proceed as before with (W,W ×X̄′ X ′η′) in place of (X,Xη). We find
a finite extension T of S′, a proper surjective morphism Wn+1 → WT :=
W ×S′ T , for which the connected components of Wn+1 satisfy (ii) (relative
to T ). Then, as in the proof of [11, 2.2], we extend the split n-truncated
simplicial scheme V6n := X ′6n ×S′ T over X ′T := X ×S T to a split (n+ 1)-
truncated simplicial scheme V6n+1 over X ′T by [2, Vbis, 5.1.3], namely, by
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putting

Vn+1 := Wn+1
∐( ∐

[n+1]�[i],i6n

N(Vi)
)

where N(Vi) is the complement of the union of the images of the degener-
acy morphisms with target Vi, and defining face and degeneracy operators
between Vn+1 and Vn as in [2]. Finally, we define

V• := coskn+1(V6n+1/X
′
T ),

and v• : V• → X ×S T to be the canonical extension of V6n+1 → X ′T =
X ×S T . The pair (V•, v•) over T satisfies conditions (i), (ii), (iii) up to
n+ 1. �

7.1. Let’s prove Theorem 2.3. We may assume S strictly local, and, fur-
thermore, complete (which doesn’t change the inertia I nor H∗(Xη̄,Λ) (resp.
H∗c (Xη̄,Λ)). We may assume Xη is nonempty. Let d be its dimension. Recall
that

Hi(Xη̄,Λ) = Hi
c(Xη̄,Λ) = 0

for i > 2d ([2, X 4.3]). Apply Lemma 7.2 for an integer n > 2d and a
compactification X of Xη over S. Let u : Xη ↪→ Xη be the open immersion.
Take a finite extension S′ of S, a proper simplicial scheme X ′• over S′, and
an S′-map h• : X ′• → X ′ = X ×S S′ satisfying conditions (i) and (ii) for n.
Consider the cartesian square

(X ′•)η̄

��

u•,η̄ // (X ′•)η̄

h•η̄

��
Xη̄

uη̄ // X η̄.

(7.7)

Let I1 = Gal(η/η′). It suffices to show that for any 0 6 m 6 2d, and g ∈ I1,
(g − 1)m+1 = 0 on Hm(Xη̄,Λ) and Hm

c (Xη̄,Λ). We have

Hm(Xη̄,Λ) = Hm(X η̄, Ru∗Λ),

Hm
c (Xη̄,Λ) = Hm(X η̄, u!Λ).

As h• is a proper hypercovering of X ′, hence h•η̄ a proper hypercovering
of X η̄ = X ′η̄, by cohomological descent and proper base change, we deduce
from (7.7)

Hm(X η̄, Ru∗Λ) = Hm(X ′•η̄, R(u•η̄)∗Λ),
Hm(X η̄, u!Λ) = Hm(X ′•η̄, (u•η̄)!Λ).

As X ′• is proper over S′, we have
Hm(X ′•η̄, R(u•η̄)∗Λ) = Hm(X ′•s̄′ , RΨR(u•η̄)∗Λ),
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where RΨ is relative toX ′• over S′ (we use here a (straightforward) extension
of the formalism of RΨ to simplicial schemes). Similarly,

Hm(X ′•η̄, (u•η̄)!Λ) = Hm(X ′•s̄′ , RΨ(u•η̄)!Λ).
Therefore, by the spectral sequences

Eij2 = Hi(X ′•s̄′ , R
jΨR(u•η̄)∗Λ) =⇒ Hi+j(X ′•s̄′ , RΨR(u•η̄)∗Λ),

Eij2 = Hi(X ′•s̄′ , R
jΨ(u•η̄)!Λ) =⇒ Hi+j(X ′•s̄′ , RΨ(u•η̄)!Λ),

it suffices to show that for all g ∈ I1, g acts trivially on Eij2 for 0 6
i, j 6 m and i + j = m. The map defined by g − 1 on Eij2 factors through
Hi(X ′•s̄′ , (g− 1)RjΨR(u•η̄)∗Λ) (resp. Hi(X ′•s̄′ , (g− 1)RjΨ(u•η̄)!Λ)). There-
fore it suffices to show
Hi(X ′•s̄′ , (g − 1)RjΨR(u•η̄)∗Λ) = Hi(X ′•s̄′ , (g − 1)RjΨ(u•η̄)!Λ) = 0 (∗)

for 0 6 i, j 6 m, i + j = m. Now, for any sheaf of Λ-modules F• on X ′•s̄′ ,
we have the descent spectral sequence

Eab1 = Hb(X ′a,s̄′ ,Fa) =⇒ Ha+b(X ′•s̄′ ,F•).

In particular, given i > 0, if for all 0 6 a 6 i, Fa = 0, then Hi(X ′•s̄′ ,F•) = 0.
Therefore, to show (∗) we need only to prove that, for 0 6 i 6 m (and any j),
we have

(g − 1)RjΨR(uiη̄)∗Λ = (g − 1)RjΨ(uiη̄)!Λ = 0 (∗∗)
(on X ′is̄′). This is checked at geometric points x of X ′is̄′ . As i 6 m 6 2d 6 n,
X ′i satisfies condition (ii) of Lemma 7.2. If x is above a point x of a connected
component C such that C ×X̄′ X ′η′ = ∅ (hence C ×X̄′ X ′η′ = ∅), then

RΨ(Rui,∗Λ)x̄ = RΨ(ui,!Λ)x̄ = 0,
and there is nothing to prove. Otherwise, x is above a point x of a component
C satisfying the conditions stated in (ii) relative to a semistable pair (Y,Z)
over S′′. Then, if I ′′ := Gal(η/η′′) (a group containing I1), by Lemma 7.1
I ′′ acts trivially on RjΨ(Rui,∗Λ)x̄ and RjΨ(ui,!Λ)x̄, hence (∗∗) is satisfied
at x. This completes the proof of Theorem 2.3.
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