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pp. 117-137

Integral representation of moderate cohomology (∗)

Håkan Samuelsson Kalm (1)

ABSTRACT. — We make the classical Dickenstein–Sessa canonical representation
in local moderate cohomology explicit by an integral formula. We also provide a
similar representation of the higher local moderate cohomology groups.

RÉSUMÉ. — Nous faisons la représentation canonique classique de Dickenstein–
Sessa dans la cohomologie modérée locale explicite par une formule intégrale. Nous
fournissons également une représentation similaire des groupes de cohomologie mo-
dérés locaux supérieurs.

1. Introduction

Let M be a complex N -dimensional manifold, Y ⊂M an analytic subset
of pure codimension κ, and µ a ∂̄-closed current on M with support in Y .
In general there are local obstructions to solving ∂̄τ = µ for a current τ
with support in Y . For instance, the current of integration, [Y ], along Y has
locally no ∂̄-potential with support in Y . Such local obstructions constitute
the moderate cohomology sheaf.

The following fundamental result was proved by Dickenstein and Sessa
in [17]: If Y is a locally complete intersection and µ has bidegree (p, κ), then
there is locally a unique decomposition

µ = ν + ∂̄τ, (1.1)
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where ν is a “locally residual current” with support in Y and τ is a current
with support in Y . Hence, the moderate cohomology sheaf is isomorphic to
the sheaf of locally residual currents.

That ν is a locally residual current here means that ν locally can be
written ν = ξ ∧ Rf , where ξ is a holomorphic p-form and Rf is the Coleff–
Herrera product, [15],

Rf = ∂̄(1/f1) ∧ · · · ∧ ∂̄(1/fκ),

associated with a tuple f = (f1, . . . , fκ) of holomorphic functions such that
Y = {f1 = · · · = fκ = 0}. The uniqueness of the decomposition (1.1) means
that if also µ = ν′+ ∂̄τ ′ then ν = ν′ and ∂̄τ = ∂̄τ ′. The known proofs of the
Dickenstein–Sessa decomposition are implicit and so it is a natural problem
to find ν explicitly given µ. The main objective of this paper is to find ν by
an integral formula.

Given µ the current ν is unique. However, the factorization ν = ξ ∧ Rf
is not. Any Rf as above works as long as gµ = 0 for all g in the ideal
〈f1, . . . , fκ〉. Thus, given µ and such a choice of Rf , our problem is to find ξ.

From now on J is a coherent ideal sheaf with zero set Y and Y need not
be a locally complete intersection. In this context Björk’s formalization of
locally residual currents is very useful. Following [14, Section 6.2], a (p, κ)-
current w is a Coleff–Herrera current with support in Y if it is ∂̄-closed,
satisfies J Y w = 0, where JY :=

√
J , and has the standard extension prop-

erty (SEP) with respect to Y . That w has the SEP with respect to Y means
roughly speaking that it has no mass concentrated on proper analytic sub-
sets of Y , see Section 2.1 below for details. The Coleff–Herrera currents with
support in Y and the locally residual currents as described above are the
same if Y is a locally complete intersection.

Suppose now that J µ = 0; notice that for any given current with sup-
port in Y this holds locally for some choice of J since currents have lo-
cally finite order. Then, there is a unique decomposition (1.1), where ν is
a Coleff–Herrera current with support in Y such that J ν = 0 and where
τ can be chosen so that J τ = 0; see, e.g., [6] and [14], cf. also [18]. It is
proved in [6] that any such ν can be written (in a non-unique way) locally
as ξ · Rκ. Here, and in what follows, Rκ is the part of bidegree (0, κ) of
the Andersson–Wulcan current, [9], associated to a Hermitian locally free
resolution of OM/J (cf. Section 2.2 below); Rκ takes values in a vector bun-
dle E and ξ is a holomorphic p-form with values in the dual bundle E∗. If
J = 〈f1, . . . , fκ〉 is a locally complete intersection, then the Koszul complex
of f1, . . . , fκ is a free resolution of OM/J and the associated current then
equals Rf , cf. Example 2.1.
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Theorem 1.1. — Let M ⊂ CN be a pseudoconvex domain and let M ′ b
M . There is an integral kernel P (ζ, z) with the following properties:

(i) ζ 7→ P (ζ, z) is a holomorphic p-form in M ′ with values in E∗;
(ii) z 7→ P (ζ, z) is a smooth compactly supported (N − p,N − κ)-form

in M ;
(iii) if µ is a ∂̄-closed (p, κ)-current in M with J µ = 0 then, in M ′, ν

in (1.1) is given by

ν = |Pµ := Rκ ·
∫
z

P (ζ, z) ∧ µ(z).

The integral means the action of µ on the test form z 7→ P (ζ, z). The
kernel P (ζ, z) is explicitly constructed given a free resolution of OM/J , see
Section 3 below.

One application of Theorem 1.1 is to the problem of factorizing cycles. It
is shown in [15] that if J = 〈f1, . . . , fκ〉 is a complete intersection and Z is the
corresponding fundamental cycle, i.e., Z =

∑
jmjYj where mj are certain

multiplicities and Yj are the irreducible components of Y , then [Z] = Rf ∧
dfκ ∧ · · · ∧ df1/(2πi)κ. This was globalized to locally complete intersections
by Demailly and Passare, [16], and further generalized by Andersson in [3].
Recently, Lärkäng and Wulcan, [22], proved a formula similar to [Z] = Rf ∧
dfκ ∧ · · · ∧ df1/(2πi)κ for the fundamental cycle of a quite general complex
subspace. If Z is any cycle with |Z| = Y we obtain

[Z] = Rκ ·
∫
z

P (ζ, z) ∧ [Z]. (1.2)

Indeed, by the decomposition (1.1) and Theorem 1.1, (1.2) holds modulo a
term ∂̄τ . However, [Z] already is a Coleff–Herrera current with support in
Y so the uniqueness of the decomposition (1.1) implies that ∂̄τ = 0.

The Dickenstein–Sessa result gives a canonical representation of the mod-
erate cohomology sheaf associated with Y in degree κ, which is the lowest
degree with non-vanishing cohomology. In Section 4, Theorems 4.2 and 4.3,
we give a representation of the moderate cohomology sheaf in degree q with
q > κ.
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2. Pseudomeromorphic currents and weighted integral formulas

2.1. Pseudomeromorphic currents

In one complex variable z it is elementary to see that the principal value
current 1/zm exists and can be defined, e.g., as the limit as ε → 0 in the
sense of currents of χ(|h(z)|2/ε)/zm, where h is a non-trivial holomorphic
function (or tuple) vanishing at z = 0 and χ is a smooth regularization of the
characteristic function of [1,∞) ⊂ R; for the rest of the paper χ will denote
such a function. The current 1/zm can also be defined as the value at λ = 0
of the analytic continuation of the current-valued function λ 7→ |h(z)|2λ/zm.
It follows that the residue current ∂̄(1/zm) can be computed as the limit of
∂̄χ(|h(z)|2/ε)/zm or as the value at λ = 0 of λ 7→ ∂̄|h(z)|2λ/zm. Since tensor
products of currents are well-defined we can form the current

τ = ∂̄
1
zm1

1
∧ · · · ∧ ∂̄ 1

zmrr
∧ γ(z)
z
mr+1
r+1 · · · z

md
M

(2.1)

in Cd, where m1, . . . ,mr are positive integers, mr+1, . . . ,md are nonnegative
integers, and γ is a smooth compactly supported form. Notice that τ is anti-
commuting in the residue factors ∂̄(1/zmjj ) and commuting in the principal
value factors 1/zmkk . We say that a current of the form (2.1) is an elemen-
tary pseudomeromorphic current. A current µ on a complex manifold M is
pseudomeromorphic if and only if µ is a locally finite sum of currents of the
form π∗τ , where τ is of the form (2.1) and π is a holomorphic map from a
neighborhood of supp γ to M , see [11, Theorem 2.15]. Currents on reduced
complex spaces are also defined, see [19]. A current µ on a reduced pure-
dimensional complex space X is pseudomeromorphic if and only if there is a
modification π : X ′ → X with X ′ smooth and a pseudomeromorphic current
µ′ on X ′ such that µ = π∗µ

′, [11, Theorem 2.15]. This yields the subsheaf
PMX of the sheaf of germs of currents on any reduced pure-dimensional
complex space X. Notice that, since ∂̄ maps an elementary pseudomeromor-
phic current to a sum of such currents, ∂̄ maps PM to itself. Moreover, if
X and Z are reduced pure-dimensional complex spaces and µ ∈ PM (X),
then µ⊗ 1 ∈PM (X × Z), see [8, Section 2]. Below, we will omit “⊗1” and
write, e.g., µ(x) to denote on what variables a current depends.

Dimension principle ([10, Corollary 2.4], [8, Proposition 2.3]). — Let
X be a reduced pure-dimensional complex space, let µ ∈ PM (X), and as-
sume that µ has support contained in a subvariety V ⊂ X. If h ∈ OX
vanishes on V then h̄µ = dh̄ ∧ µ = 0. Moreover, if µ has bidegree (∗, q) and
codimX V > q, then µ = 0.

– 120 –



Integral representation of moderate cohomology

Pseudomeromorphic currents can be “restricted” to analytic (or con-
structible) subsets: Let µ ∈ PM (X), let V ⊂ X be an analytic subset,
and set V c := X \ V . Then the restriction of µ to the open subset V c has
a natural pseudomeromorphic extension 1V cµ to X. In [10], 1V cµ is defined
as the value at 0 of the analytic continuation of the current-valued func-
tion λ 7→ |h|2λµ, where h is any holomorphic tuple with zero set V ; 1V cµ
can also be defined as limε→0 χ(|h|2v/ε)µ, where v is any smooth strictly
positive function, see [11, Lemma 2.6], cf. also [21, Lemma 6]. The cur-
rent 1V µ := µ − 1V cµ thus is a pseudomeromorphic current with support
contained in V , and if supp µ ⊂ V , then 1V µ = µ. Moreover, see [11, Sec-
tion 2.2], if V and W are any constructible subsets then 1V 1Wµ = 1V ∩Wµ.
A current µ ∈ PM (X) has the standard extension property (SEP) with
respect to an analytic subsets V ⊂ X if 1Wµ = 0 for all germs of analytic
subsets W ⊂ X such that codimV W ∩ V > 0.

Recall that a current on X is said to be semi-meromorphic if it is a
principal value current of the form α/f , where α is a smooth form and
f is a holomorphic function or section of a line bundle such that f does
not vanish identically on any component of X. Following [8], see also [11,
Section 4], we say that a current a on X is almost semi-meromorphic if there
is a modification π : X ′ → X and a semi-meromorphic current α/f on X ′

such that a = π∗(α/f); if f takes values in L → X ′ we need also α to take
values in L→ X ′. If a is almost semi-meromorphic on X, then the smallest
Zariski-closed set outside of which a is smooth has positive codimension and
is denoted ZSS(a), the Zariski-singular support of a, see [11, Section 4].

For proofs of the statements in this paragraph we refer to [11, Section 4],
see also [8, Section 2]. Let a be an almost semi-meromorphic current on X
and let µ ∈PM (X). Then there is a unique pseudomeromorphic current T
on X coinciding with a ∧ µ outside of ZSS(a) and such that 1ZSS(a)T = 0.
If h is a holomorphic tuple, or section of a Hermitian vector bundle, such
that {h = 0} = ZSS(a), then T = limε→0 χ(|h|2/ε)a ∧ µ; henceforth we will
write a∧µ in place of T . One defines ∂̄a∧µ so that Leibniz’ rule holds, i.e.,
∂̄a ∧ µ := ∂̄(a ∧ µ)− (−1)deg aa ∧ ∂̄µ. If µ is almost semi-meromorphic then
a ∧ µ is almost semi-meromorphic and, in fact, a ∧ µ = (−1)deg a degµµ ∧ a.

The sheaf CH p
Y of Coleff–Herrera currents on a complex manifold with

support in an analytic subset Y of pure codimension κ was introduced by
Björk in the way described in the introduction. It is proved in [5] that CH p

Y

equals the subsheaf of PM p,κ of germs of ∂̄-closed currents with support
in Y .
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2.2. Currents associated to generically exact complexes

Let M , Y , and J be as in the introduction. Suppose that we have a
complex

0 −→ Em
fm−→ · · · f1−→ E0 −→ 0

of holomorphic Hermitian vector bundles, with E0 being the trivial line bun-
dle, such that the associated sheaf complex (O(E•), f•) is a resolution of
OM/J . The bundle E :=

⊕
j Ej gets a natural superstructure by setting

E+ :=
⊕

j E2j and E− :=
⊕

j E2j+1. Following [9] we define pseudomero-
morphic currents U and R with values in End(E) associated with the Her-
mitian complex (E•, f•). Notice that End(E) gets an induced superstructure
and so spaces of forms and currents with values in E or End(E) get super-
structures as well. Let f :=

⊕
j fj and set ∇ := f − ∂̄, which then becomes

an odd mapping on spaces of forms or currents with values in E such that
∇2 = 0; notice that ∇ induces an odd mapping ∇End on End(E)-valued
forms or currents such that ∇2

End = 0. Outside of Y , (E•, f•) is pointwise
exact and we let σk : Ek−1 → Ek be the pointwise minimal inverse of fk.
Set σ := σ1 + σ2 + · · · and let u := σ + σ∂̄σ + σ(∂̄σ)2 + · · · . Notice that
u =

∑
06`<k u

`
k, where u`k := σk∂̄σk−1 · · · ∂̄σ`+1 is a smooth Hom(E`, Ek)-

valued (0, k − ` − 1)-form outside of Y . One can show that ∇Endu = IdE .
The form u can be exended as a current across Y by setting

U := lim
ε→0

χ(|F |2/ε)u, (2.2)

where F is a (non-trivial) holomorphic tuple vanishing on Y , see, e.g., [9,
Section 2]. As with u we will write U =

∑
06`<k U

k
` , where now U `k is a

Hom(E`, Ek)-valued (0, k − ` − 1)-current; in fact, U is an almost semi-
meromorphic current, cf., e.g., [11]. The current R is defined by ∇EndU =
IdE −R and hence R is supported on Y and fR− ∂̄R = ∇EndR = 0. Notice
that R is an almost semi-meromorphic current plus ∂̄ of such a current. One
can check that

R = lim
ε→0

(
1− χ(|F |2/ε)

)
IdE +∂̄χ(|F |2/ε) ∧ u. (2.3)

We write R =
∑

06`<k R
`
k, where R`k is a Hom(E`, Ek)-valued (0, k − `)-

current. Since E0 is the trivial line bundle we have Hom(E0, Ek) ' Ek and
we may identify R0

k with an Ek-valued current; sometimes we just write Rk
for R0

k.

Recall that κ = codim Y . It is proved in [9] that R = R0
κ + R0

κ+1 + · · ·
and that a holomorphic function g is in J if and only if the E-valued current
Rg vanishes.
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Example 2.1. — Suppose that J = 〈f1, · · · , fκ〉 is a complete intersec-
tion. Let E1 be the trivial bundle of rank κ with trivial metric and let
e1, . . . , eκ be an orthonormal holomorphic frame. Set Ek = ΛkE1 and let the
map Ek → Ek−1 be interior multiplication with

∑
j fje

∗
j . We get the Koszul

complex of f1, . . . , fκ; this is exact since J is a complete intersection. The
map σ is exterior multiplication by

∑
j f̄jej/|f |2. The resulting current R is

the Coleff–Herrera product Rf times e1 ∧ · · · ∧ eκ, see [2].

2.3. Weighted integral formulas

We apply Andersson’s method, [1], of generating weighted integral formu-
las in a domain D ⊂ CN . To begin with, suppose that k(ζ, z) is an integrable
(N,N − 1)-form in D × D and p(ζ, z) is a smooth (N,N)-form in D × D
such that

∂̄k(ζ, z) = [∆D]− p(ζ, z), (2.4)
where [∆D] is the current of integration along the diagonal. Applying (2.4)
to test forms of the form ψε(z) ∧ ϕ(ζ), where ψε is an approximate identity
and ϕ is a test form in D, one obtains the integral formula

ϕ(z) = ∂̄z

∫
Dζ

k(ζ, z)∧ϕ(ζ) +
∫
Dζ

k(ζ, z)∧ ∂̄ϕ(ζ) +
∫
Dζ

p(ζ, z)∧ϕ(ζ) (2.5)

for all z ∈ D by letting ε→ 0.

Following [1], to find such k and p let η = (η1, . . . , ηN ) be a holomorphic
tuple in D ×D that defines the diagonal and let Λη be the exterior algebra
spanned by Λ0,1T ∗(D × D) and the (1, 0)-forms dη1, . . . ,dηN . On forms
with values in Λη interior multiplication with 2πi

∑
ηj∂/∂ηj , denoted δη,

is defined; set ∇η = δη − ∂̄. Let s be a smooth (1, 0)-form in Λη such that
|s| . |η| and |η|2 . |δηs| and let B =

∑N
k=1 s ∧ (∂̄s)k−1/(δηs)k. It is proved

in [1] that then ∇ηB = 1 − [∆D]. Identifying terms of top degree we see
that ∂̄BN,N−1 = [∆D] and so (2.4) is satisfied with k(ζ, z) = BN,N−1 and
p(ζ, z) = 0. For instance, if we take s = ∂|ζ − z|2 and η = ζ − z, then the
resulting B is sometimes called the full Bochner–Martinelli form and the
term of top degree is the classical Bochner–Martinelli kernel.

Let D1, D2 ⊂ D. A smooth section g(ζ, z) = g0 + · · · + gN of Λη over
D1×D2 such that∇ηg = 0 in D1×D2 and g0(z, z) = 1 for z ∈ D′ := D1∩D2
is called a weight with respect to D1 × D2; gj is the sum of the terms of
g of bidegree (j, j). Notice that the exterior product of two weights again
is a weight (with respect to a suitable set). If g is a weight with respect to
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D1 × D2, then it follows that ∇η(g ∧ B) = g − g ∧ [∆D] in D1 × D2 and,
identifying terms of bidegree (N,N − 1), we get that

∂̄(g ∧B)N,N−1 = [∆D]− gN (2.6)

in D1 × D2. It follows that if ϕ is smooth with compact support in D1,
then (2.5), with k(ζ, z) = (g(ζ, z)∧B)N,N−1 and p(ζ, z) = gN (ζ, z), holds in
D2, and vice versa.

Example 2.2. — Let D b CN be pseudoconvex and let K ⊂ D be a holo-
morphically convex compact subset. Let ρ be a smooth compactly supported
function in D that is 1 in a neighborhood of K. One can find a smooth form
s̃(ζ, z) = s̃1(ζ, z)dη1 + · · ·+ s̃N (ζ, z)dηN , defined for z in a neighborhood of
supp ∂̄ρ and ζ in a neighborhood D̃ of K, such that ζ 7→ s̃(ζ, z) is holomor-
phic and δη s̃ = 1. Then

g(ζ, z) := ρ(z)− ∂̄ρ(z) ∧
N∑
k=1

s̃ ∧ (∂̄s̃)k−1,

is a weight with respect to D̃ × D that depends holomorphically on ζ and
has compact support in Dz.

If D is a ball centered at 0 and η = ζ − z one can take s̃ = (2πi)−1z̄ ·
dη/(ζ · z̄ − |z|2).

Example 2.3. — Let D b CN be pseudoconvex and assume that there is
a free resolution (O(E•), f•) of OD/J in D. Let U = U(ζ) and R = R(ζ)
be associated currents, let U ε and Rε be the regularizations given by (2.2)
and (2.3), respectively, and let U ε,`k and Rε,`k be the parts taking values in
Hom(E`, Ek). By [4, Proposition 5.3] we can, for ` 6 k, find Hefer morphisms
H`
k, which are holomorphic sections of Λη ⊗ Hom(Eζ , Ez), such that H`

k is
a holomorphic k − `-form with values in Hom(Eζk , Ez` ) and

Hk
k �∆D

= IdEk and δηH
`
k = H`

k−1fk − f`+1(z)H`+1
k , k > `,

where fk = fk(ζ). One can check that then

Gε :=
∑
k>0

H0
kR

ε,0
k + f1(z)

∑
k>1

H1
kU

ε,0
k ,

is a weight with respect to D ×D for all ε > 0; cf. [4], [8], and [9].

In the case of the Koszul complex, see Example 2.1, the Hefer morphisms
can be chosen as follows. We use the notation of Example 2.1. Let hj =
hj(ζ, z) be holomorphic (1, 0)-forms such that δηhj = fj(ζ) − fj(z) and set
h =

∑
j hj ∧ e∗j . Then interior multiplication by h∧k−`/(k − `)! define Hefer

morphisms H`
k.
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3. Integral operators associated to an ideal sheaf

LetD b CN be pseudoconvex, let J ⊂ OD be a coherent sheaf of ideals in
D with Y = Z(J ) of pure codimension κ, and let D′ b D. Let g(ζ, z) be any
weight with respect to D′×D such that z 7→ g(ζ, z) has compact support in
some D′′ b D for all ζ. In D′′ there is a free resolution (O(E•), f•) of OD/J ,
associated currents U = U(ζ) and R = R(ζ), and, moreover, in D′′×D′′ we
can find associated Hefer morphisms H`

k. Then Gε = HRε + f1(z)HU ε of
Example 2.3 is a weight with respect to D′′ ×D′′. It follows that Gε ∧ g is
a weight with respect to D′ ×D and has compact support in Dz.

Notice, in view of Example 2.2, that we may choose the weight g so that
it contains no dζ̄-differentials and ζ 7→ g(ζ, z) is holomorphic; we then say
that g is holomorphic in ζ.

Lemma 3.1. — If ϕ is a test form in D′, then for all ε > 0 and all z ∈ D

ϕ(z) = ∂̄z

∫
ζ

(HRε ∧ g ∧B)N,N−1 ∧ϕ(ζ) +
∫
ζ

(HRε ∧ g ∧B)N,N−1 ∧ ∂̄ϕ(ζ)

+
∫
ζ

(HRε ∧ g)N,N ∧ ϕ(ζ) + φψ,

where φ is a section of J and ψ is some test form in D. The integrals on
the right-hand side are test forms in D.

Proof. — Since Gε∧g = HRε∧g+f1(z)HU ε∧g is a weight with respect
to D′×D and the entries of f1 are sections of J , it follows from Section 2.3
that the claimed equality holds in D. Since z 7→ g(ζ, z) has compact support
inD, ψ as well as the integrals on the right-hand side are test forms inD. �

Let µ be an arbitrary current in D. Since z and ζ − z are independent
variables in D × D, the tensor product B ∧ µ(z) is well-defined, cf. [20,
Theorem 5.1.1]. Let π : Dζ × Dz → Dζ be the natural projection. Then,
since z 7→ g(ζ, z) has compact support,

π∗ (HRε ∧ g ∧B)N,N−1 ∧ µ(z) and π∗ (HRε ∧ g)N,N ∧ µ(z)
are well-defined current in D′ζ . For notational convenience we will often write∫
z
τ instead of π∗τ for a current τ in D ×D.
Lemma 3.2. — Let µ be a current in D such that J µ = 0. Then, for all

ε > 0,

µ(ζ) =
∫
z

(HRε ∧ g ∧B)N,N−1 ∧ ∂̄µ(z) + ∂̄ζ

∫
z

(HRε ∧ g ∧B)N,N−1 ∧µ(z)

+
∫
z

(HRε ∧ g)N,N ∧ µ(z) (3.1)

holds in D′.
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Proof. — Let ϕ be a test form in D′. The action of the current
∫
z
(HRε∧

g∧B)N,N−1∧∂̄µ(z) on ϕ(ζ) is by definition the action of (HRε∧g∧B)N,N−1∧
∂̄µ(z) on ϕ(ζ)⊗1 and this equals, by [20, Theorem 5.1.1], the action of ∂̄µ(z)
on
∫
ζ
(HRε ∧ g ∧B)N,N−1 ∧ ϕ(ζ). Hence,(∫
z

(HRε ∧ g ∧B)N,N−1 ∧ ∂̄µ(z)
)
.ϕ(ζ)

= ±µ(z).
(
∂̄z

∫
ζ

(HRε ∧ g ∧B)N,N−1 ∧ ϕ(ζ)
)
.

Similar formulas hold for the second and third term on the right-hand side
of (3.1) and the lemma thus follows from Lemma 3.1. �

Definition 3.3. — For a current µ in D we let |Pµ be the current in
D′ given by

|Pµ(ζ) =
∫
z

(HR ∧ g)N,N ∧ µ(z).

Notice, since R = R(ζ), that (HR ∧ g)N,N ∧ µ(z) is well-defined as a
tensor product in D′ ×D. Notice also that |P maps arbitrary currents in D
to pseudomeromorphic currents in D′ annihilated by J .

The operator |P of Theorem 1.1 (and Theorem 4.3 below) corresponds
to a choice of weight g such that ζ 7→ g(ζ, z) is holomorphic, but in the
definition above we do not require this.

Example 3.4. — Suppose thatD ⊂ CN is a ball and that J = 〈f1, . . . , fκ〉
is a complete intersection. Using the Koszul complex we get, see Example 2.1
and the notation there, that R = Rf ∧ e1 ∧ · · · ∧ eκ. Moreover, in view of the
paragraph after Example 2.3 we get HR = h1 ∧ · · · ∧ hκ ∧ Rf/κ!. Taking g
as in Example 2.2 with s̃ = (2πi)−1z̄ ·dη/(ζ · z̄− |z|2) and η = ζ − z we then
get

|Pµ = Rf ∧
∫
z

h1 ∧ · · · ∧ hκ
κ! ∧ ∂̄ρ(z) ∧ (z̄ · dη) ∧ (dz̄ · dη)N−κ−1

(2πi(ζ · z̄ − |z|2))N−κ ∧ µ(z).

Notice that, for degree reasons, |Pµ = 0 unless µ has degree (∗, κ).

Proposition 3.5. — Suppose that the weight g in the definition of |P

depends holomorphically on ζ. Then, for any (p, q)-current µ in D, |Pµ is
of the form ξ ·R0

q, where

ξ = Φ(µ) =
∫
z

H0
q ∧ gN−q ∧ µ(z)
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is a holomorphic p-form with values in E∗q . Moreover, if J µ = 0 then
|P ∂̄µ = ∂̄ |Pµ and Φ(∂̄µ) = f∗q+1Φ(µ), where f∗q+1 is the transpose of the
map fq+1 : Eq+1 → Eq.

For the rest of this section we will fix frames for the trivial Ej-bundles and
associated dual frames for the E∗j ’s; sections of the Ej ’s will be represented
by column vectors, sections of the E∗j ’s by row vectors, and maps between
bundles by matrices. Notice that E0 is assumed to be the trivial line bundle
so that Hom(Ej , E0) ' E∗j . Recall that fk = fk(ζ). To prove Proposition 3.5
we will need

Lemma 3.6. — Letting (·)∗ denote matrix transpose we have

f∗q+1(H0
q )∗ ∧ gN−q = ∂̄

(
(H0

q+1)∗ ∧ gN−q−1
)

+ (f1(z)H1
q+1)∗ ∧ gN−q.

Proof. — This is verified by the following computation.

f∗q+1(H0
q )∗ ∧ gN−q = (H0

q fq+1)∗ ∧ gN−q
= (δηH0

q+1 + f1(z)H1
q+1)∗ ∧ gN−q

= (δηH0
q+1 ∧ gN−q)∗ + (f1(z)H1

q+1)∗ ∧ gN−q
= (±H0

q+1 ∧ δηgN−q)∗ + (f1(z)H1
q+1)∗ ∧ gN−q

= (±H0
q+1 ∧ ∂̄gN−q−1)∗ + (f1(z)H1

q+1)∗ ∧ gN−q
= ∂̄(H0

q+1 ∧ gN−q−1)∗ + (f1(z)H1
q+1)∗ ∧ gN−q,

where the second equality follows from the properties of the Hefer morphisms
(see Example 2.3), the forth since 0 = δη(H0

q+1 ∧ gN−q) for degree reasons,
the fifth since g is a weight, and the sixth since H0

q+1 is holomorphic. �

Proof of Proposition 3.5. — Since g is holomorphic in ζ and in particular
contains no dζ̄-differentials, it follows for degree reasons that

|Pµ(ζ) =
∫
z

H0
qR

0
q ∧ gN−q ∧ µ(z) = ±(R0

q)∗
∫
z

(H0
q )∗ ∧ gN−q ∧ µ(z).

Since alsoH is holomorphic in ζ the first statement of the proposition follows.
For the rest of this proof we will write Rj instead of R0

j .
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Assume that J µ = 0. To see that |P ∂̄µ = ∂̄ |Pµ we compute:

|P ∂̄µ =
∫
z

H0
q+1Rq+1 ∧ gN−q−1 ∧ ∂̄µ(z)

= ±R∗q+1

∫
z

∂̄
(
(H0

q+1)∗ ∧ gN−q−1
)
∧ µ(z)

= ±R∗q+1

∫
z

f∗q+1(H0
q )∗ ∧ gN−q ∧ µ(z)

∓R∗q+1

∫
z

(f1(z)H1
q+1)∗ ∧ gN−q ∧ µ(z)

= ±(fq+1Rq+1)∗
∫
z

(H0
q )∗ ∧ gN−q ∧ µ(z)

= ∂̄

(
R∗q

∫
z

(H0
q )∗ ∧ gN−q ∧ µ(z)

)
= ∂̄ |Pµ,

where the second equality holds since R = R(ζ) is independent of z, the third
by Lemma 3.6, the forth since (the entries of) f1(z) annihilate µ(z), and the
fifth since ∇EndR = 0 (see Section 2.2) and H and g are holomorphic in ζ.

Moreover, in view of Lemma 3.6, we get that

Φ(∂̄µ)∗ =
∫
z

∂̄
(
(H0

q+1)∗ ∧ gN−q−1
)
∧ µ(z)

= f∗q+1

∫
z

(H0
q )∗ ∧ gN−q ∧ µ(z) +

∫
z

(
f1(z)H1

q+1
)∗ ∧ gN−q ∧ µ(z)

= f∗q+1Φ(µ)∗

since (the entries of) f1(z) annihilate µ(z). �

Let µ ∈ PM (D). Since B is almost semi-meromorphic in D × D, the
product B ∧ µ(z) is a well-defined pseudomeromorphic current in D × D,
in view of Section 2.1; by the uniqueness in [20, Theorem 5.1.1], B ∧ µ(z)
coincides with the tensor product of B and µ (z and ζ − z are independent
variables). From Section 2.2, R is an almost semi-meromorphic current plus
∂̄ of such a current. Thus, by Section 2.1, R ∧ B ∧ µ(z) is a well-defined
pseudomeromorphic current in D′×D that can be defined as limε→0R

ε∧B∧
µ(z), where Rε is the regularization of R given by (2.3). Even though R0

j = 0
for j < κ it may be the case that limε→0R

0,ε
j ∧B∧µ(z) 6= 0. Still, the support

of R ∧ B ∧ µ(z) is contained in Y × supp µ. To see this it suffices, in view
of (2.3) and Section 2.1, to see that 1Y×DB ∧ µ(z) = 0. Since B is smooth
outside of the diagonal ∆ ⊂ D×D it is clear that supp 1Y×DB ∧µ(z) ⊂ ∆.
Moreover, ZSS(B) ⊂ ∆ and so 1∆B ∧ µ(z) = 0. Hence,

1Y×DB ∧ µ(z) = 1∆1Y×DB ∧ µ(z) = 1Y×D1∆B ∧ µ(z) = 0.
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Definition 3.7. — For a pseudomeromorphic current µ in D we let
|K µ be the pseudomeromorphic current in D′ given by

|K µ(ζ) =
∫
z

(HR ∧ g ∧B)N,N−1 ∧ µ(z).

As in the definition of the |P-operators, we do not require g to be holo-
morphic in ζ, but the |K -operator of Theorem 4.3 corresponds to such a
choice.

Notice that, since supp R ∧ B ∧ µ(z) ⊂ Y × D, |K maps pseudomero-
morphic currents in D to pseudomeromorphic currents in D′ with support
contained in Y . We do not know whether or not J |K µ = 0 for a general
pseudomeromorphic µ.

The following proposition follows from Lemma 3.2 by letting ε→ 0.

Proposition 3.8. — For any µ ∈PM p,q(D) such that J µ = 0 we have
µ�D′ = ∂̄ |K µ+ |K ∂̄µ+ |Pµ.

Let CH p
J be the subsheaf of CH p

Y of currents annihilated by J .

Proposition 3.9. — Let |P be an operator associated to J and corre-
sponding to a weight g such that ζ 7→ g(ζ, z) is holomorphic. If ν ∈ CH p

J (D),
then |Pν = ν�D′ . Moreover, if µ is any ∂̄-closed (p, κ)-current such that
J µ = 0, then |Pµ ∈ CH p

J (D′) and |Pµ is the current ν in (1.1).

Proof. — By Proposition 3.8, ν�D′ = ∂̄ |K ν + |Pν. However, |K ν is a
pseudomeromorphic (p, κ−1)-current with support contained in Y and must
thus vanish in view of the Dimension principle.

For the second statement, notice that |Pµ is a pseudomeromorphic (p, κ)-
current annihilated by J (in particular with support in Y ) and, by Propo-
sition 3.5, ∂̄ |Pµ = 0. Thus, in view of Section 2.1, |Pµ is a section of CH p

J .
Now consider the decomposition (1.1) and recall that J ν = 0 and that we
may assume that J τ = 0. By the first part of the proof and Proposition 3.5

|Pµ = |Pν + |P ∂̄τ = ν + ∂̄ |Pτ.

Together with (1.1) this gives that µ−|Pµ = ∂̄(τ−|Pτ), and so by uniqueness
of (1.1), |Pµ = ν. �

Proof of Theorem 1.1. — Setting P (ζ, z) := H0
κ ∧ gN−κ, where g is a

weight depending holomorphically on ζ, Theorem 1.1 follows from Proposi-
tions 3.5 and 3.9. �
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4. Higher local moderate cohomology

Let C p,q
J be the sheaf of (p, q)-currents in M annihilated by J . Notice

that we have a complex (C p,•
J , ∂̄). The Dickenstein–Sessa decomposition (1.1)

implies that there is a canonical isomorphism H κ(C p,•
J , ∂̄) ' CH p

J , where,
as above, CH p

J is the subsheaf of CH p
Y of currents annihilated by J . The

map CH p
J → H κ(C p,•

J , ∂̄) is induced by the inclusion CH p
J ↪→ C p,κ

J and
the inverse map H κ(C p,•

J , ∂̄) → CH p
J is induced by our operator |P. It is

well-known that H q(C p,•
J , ∂̄) = 0 for q < κ, see, e.g., [13]. Our objective

now is to give a description of the higher cohomology H q(C p,•
J , ∂̄), q > κ.

Remark 4.1. — It is well-known that the cohomology sheaves H q(C p,•
J ,∂̄)

are isomorphic to Ext q(OM/J ,Ωp
M ), where Ωp

M is the sheaf of holomorphic
p-forms on M .

Theorem 4.2. — There are fine sheaves of currents Bp,q
J ⊂ C p,q

J , p > 0,
q > κ, such that ∂̄ maps Bp,q

J to Bp,q+1
J and the inclusion Bp,q

J ⊂ C p,q
J

induces an isomorphism H q
(
Bp,•
J , ∂̄

)
'H q

(
C p,•
J , ∂̄

)
. Setting Bp,q

J = 0 for
q < κ this holds for all q. Moreover,

√
JBp,q

J = d
√
J ∧Bp,q

J = 0.

The point is that Bp,q
J is much smaller and less singular than C p,q

J ; cf. Ex-
ample 4.5 below. Moreover, Bp,q

J is a concretely defined subsheaf of PM p,q
M ,

and the kernel of ∂̄ in Bp,κ
J is CH p

J .

Theorem 4.2 shows that the natural inclusion of complexes (Bp,•
J , ∂̄) ↪→

(C p,•
J , ∂̄) is a quasi-isomorphism, i.e., an isomorphism on cohomology. Our fi-

nal result provides in particular an explicit projection operator |P : (C p,•
J , ∂̄)→

(Bp,•
J , ∂̄) giving the inverse of this quasi-isomorphism. Let C p,q be the sheaf

of (p, q)-currents in M .

Theorem 4.3. — Let M ⊂ CN be pseudoconvex and let M ′ bM . There
is an integral operator |P : C p,q(M)→ Bp,q

J (M ′) giving a quasi-isomorphism
of complexes (C p,•

J , ∂̄) → (Bp,•
J , ∂̄). Moreover, there is an integral operator

|K : Bp,q
J (M)→ Bp,q−1

J (M ′) such that µ�M′ = ∂̄ |K µ+ |K ∂̄µ+ |Pµ for any
µ ∈ Bp,q

J (M).

In analogy with [8, Definition 7.1], [23, Definition 4.1], and [24, Sec-
tion 6.2] we make the following definition.

Definition 4.4. — A (p, q)-current µ on M is a section of Bp,q
J over

an open set U ⊂ M if for each x ∈ U there is a neighborhood D of x such
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that µ�D is a finite sum of currents of the form

ξm ∧ |Km(· · · ξ1 ∧ |K1(ξ0 ·R) · · · ), (4.1)

where R is a current corresponding to a Hermitian free resolution (O(E•), f•)
of O/J in D, ξ0 is a smooth form with values in

⊕
q E
∗
q , ξj is a smooth form

for j > 1, and the |Kj’s are operators as in Definition 3.7.

It is clear from the definition that BJ :=
⊕

p,q Bp,q
J is a module over

the sheaf
⊕

p,q E p,q
M of smooth forms on M and that it is closed under |K -

operators. Moreover, BJ ⊂ PM and any section of BJ has support in Y .
Hence, in view of Section 2.1, if µ ∈ Bp,κ

J is ∂̄-closed then µ ∈ CH p
Y . Notice

also, by Section 3, that a |P-operator associated with J maps an arbitrary
current to a section of BJ .

Example 4.5. — Let i : Y ↪→M , suppose that Y is smooth and that J is
the radical ideal sheaf of Y . We claim that then BN,q

J = i∗E
N−κ,q−κ
Y . Given

the claim, we see that

0 −→ BN,κ
J

∂̄−→ · · · ∂̄−→ BN,N
J −→ 0 (4.2)

is i∗ of the Dolbeault complex of smooth (dimY, •)-forms on Y . Moreover,
since, by Theorem 4.2, the kernel of ∂̄ at BN,κ

J is CH N
J it follows that

i∗ΩdimY
Y = CH N

J .

The claim may be verified locally so we assume that M is the unit ball
in CN with coordinates (z;w) such that Y = {z = 0} and J = 〈z〉. For
notational convenience we will also assume that κ = 1. Let ϕ be a smooth
(N−1, q−1)-form on Y and let ϕ̃ be any smooth extension of ϕ toM . Then
i∗ϕ = ϕ̃∧[Y ]. From the free resolution 0→ O

z·→ O of O/J we get the current
R = ∂̄(1/z) and so, by the Poincaré–Lelong formula, ϕ̃∧[Y ] = iϕ̃∧dz∧R/2π.
Hence, i∗EN−κ,q−κ

Y ⊂ BN,q
J .

For the opposite inclusion, let µ be a section of BN,q
J ; we may assume that

µ is of the form (4.1). We use induction overm in (4.1) to see that µ = ξ∧[Y ]
for some smooth ξ; notice that such a ξ exists if there is a continuous ξ′,
which is smooth along Y , such that µ = ξ′ ∧ [Y ]. If (O(E•), f•) is any free
Hermitian resolution of O/J with rankE0 = 1, then the associated residue
current is of the form α∧ ∂̄(1/z), where α is a smooth (0, ∗)-form with values
in
⊕

j Ej , see [9, Theorem 4.4]. Hence, if µ is of the form (4.1) with m = 0,
then µ = ξ0 · α ∧ ∂̄(1/z), where ξ0 is a smooth (N, ∗)-form with values in⊕

j E
∗
j . Writing ξ0 · α = ξ ∧ dz, for some scalar-valued smooth form ξ, we

get ξ0 · α ∧ ∂̄(1/z) = −2πiξ ∧ [Y ], and the induction start follows. Now, if
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|K is an integral operator as in Definition 3.7, then

|K (ξ ∧ [Y ]) =
∫
z∈Y

(HR ∧ g ∧B)N,N−1 ∧ ξ(z) = R ·
∫
z∈Y

k(ζ, z) ∧ ξ(z),

where R = R(ζ) is of the form α(ζ)∧∂̄(1/ζ) as above, and k(ζ, z) is a kernel in
M×M which is O(1/|ζ−z|2(N−1)−1). It follows that ζ 7→

∫
z∈Y k(ζ, z)∧ξ(z)

is a continuous (N, ∗)-form with values in
⊕

j E
∗
j and we write it as ψ(ζ)∧dζ.

Moreover, in view of [8, Lemma 6.2], ψ�Y is smooth. We get
|K (ξ ∧ [Y ]) = α ∧ ∂̄(1/ζ) · ψ ∧ dζ = ±2πiα · ψ ∧ [Y ],

and the induction step follows.

Remark 4.6. — For not necessarily smooth Y and any J of pure codi-
mension κ and zero set Y , Andersson and Lärkäng introduce a notion of
holomorphic top-degree forms on the possibly non-reduced complex space
YJ = (Y,OM/J ), see [7, Section 5]; see [12] for the reduced case. Via i∗
this notion precisely corresponds to CH N

J . By analogy it is reasonable to
think of (4.2) as a certain Dolbeault complex for YJ with the cohomology at
BN,κ
J being the holomorphic top-degree forms on YJ and |P as a projection

operator onto these forms.

To prove Theorem 4.2 (and 4.3) we may assume that M and M ′ are as
in Theorem 4.3. Let M ′′ b D be a suitable neighborhood of M ′ similar to
the beginning of Section 3. Let

0 −→ O(Em) fm−→ · · · f1−→ O(E0) −→ O/J −→ 0
be a Hermitian free resolution of O/J in M ′′ and let U and R be the
associated currents, see Section 2.2. Dualizing and tensoring with Ωp := Ωp

M

we get the complex

0←− O(E∗m)⊗ Ωp f∗m⊗Id←−−−− · · · f∗1⊗Id←−−−− O(E0)⊗ Ωp ←− 0. (4.3)
It is well-known that the cohomology of this complex is isomorphic to
Ext •(OM/J ,Ωp). Recall that C p,q is a stalk-wise injective OM -module by a
well-known theorem of Malgrange and consider the resolution

0 −→ Ωp −→ C p,0 ∂̄−→ · · · ∂̄−→ C p,N −→ 0
of Ωp. Applying the functor Hom (OM/J ,−) and noticing that
Hom (OM/J ,C p,q) ' C p,q

J we get the complex

0 −→ C p,0
J

∂̄−→ · · · ∂̄−→ C p,N
J −→ 0. (4.4)

By standard homological algebra, the cohomology of (4.4) is naturally iso-
morphic to the cohomology of (4.3). Following [6] this isomorphism can be
realized using the current R as follows. For convenience we will write just f∗k
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instead of f∗k ⊗ Id. If ξ is a holomorphic p-form with values in E∗q such that
f∗q+1ξ = 0, then since fR− ∂̄R = 0 (see Section 2.2)

∂̄(ξ ·Rq) = ±ξ · ∂̄Rq = ±ξ · fq+1Rq+1 = ±f∗q+1ξ ·Rq+1 = 0. (4.5)

Similarly, if ξ = f∗q ξ
′, then ξ · Rq = 0. Thus the map O(E∗p) ⊗ Ωp → C p,q

J
given by ξ 7→ ξ ·Rq induces a map on cohomology and it turns out to be the
natural isomorphism. Notice that ξ ·Rq is a section of Bp,q

J .

Proof of Theorems 4.2 and 4.3. — We have already noticed that any
|P-operator associated to J maps arbitrary currents to sections of BJ and
that any |K -operator associated to J maps sections of BJ to sections of
BJ . As BJ ⊂ PM and sections of BJ have support in Y it follows from
the Dimension principle that

√
JBJ = d

√
J ∧BJ = 0.

Let us temporarily assume that JBp,q
J = 0 and show how Theorems 4.2

and 4.3 follow. Then the kernel of ∂̄ in Bp,κ
J is CH p

J and, by Proposition 3.8,
we have µ = ∂̄ |K µ + |K ∂̄µ + |Pµ for any µ in BJ if |P and |K are con-
structed using the same R, H, and g. Assume henceforth that g depends
holomorphically on ζ.

To show that ∂̄ maps BJ to itself it suffices to show that if µ is of the
form (4.1) (with ξm = 1) then ∂̄µ is a section of BJ ; we will use induction
over m to see this. The case m = 0 follows since ∇EndR = 0. Indeed, then
µ = ξ ·R for some smooth ξ and a computation similar to (4.5) gives

∂̄(ξ ·R) = ∂̄ξ ·R± f∗ξ ·R.

If m > 0 we write µ = |Kmµ
′, where µ′ is of the form (4.1) with m replaced

by m− 1. By Proposition 3.8 we get

∂̄µ = ∂̄ |Kmµ
′ = µ′ − |Km∂̄µ

′ − |Pmµ
′,

and since ∂̄µ′ is a section of BJ by the induction hypothesis, it follows that
∂̄µ is a section of BJ .

To see that the inclusion of complexes (Bp,•
J , ∂̄) ↪→ (C p,•

J , ∂̄) is a quasi-
isomorphism, consider the diagram

H q
(
O(E∗•)⊗ Ωp, f∗•

) Ψ //

))

H q
(
Bp,•
J , ∂̄

)
��

H q
(
C p,•
J , ∂̄

)
,

(4.6)

where the diagonal map is the natural isomorphism and Ψ is the map ξ 7→
ξ · Rq; cf. [6, Section 7]. It follows that Ψ is injective and that the vertical
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map is surjective. Let µ be a ∂̄-closed section of Bp,q
J and suppose that there

is a τ ∈ C p,q−1
J such that µ = ∂̄τ . Then by Propositions 3.8 and 3.5

µ = ∂̄ |K µ+ |Pµ = ∂̄( |K µ+ |Pτ).

Since |K µ+ |Pτ is in BJ it follows that the vertical map is injective. Thus,
the horizontal map must be surjective and so all maps in (4.6) are isomor-
phisms.

Notice that ∂̄ |Pµ = |P ∂̄µ for any µ ∈ BJ by Proposition 3.5. Hence,
|P is a map of complexes (C p,•

J , ∂̄)→ (Bp,•
J , ∂̄). Showing that it induces the

inverse of the vertical map in (4.6) is similar to the proof of Proposition 3.9:
Let µ ∈ C p,q

J be ∂̄-closed; we must show that |Pµ is a ∂̄-closed section of
Bp,q
J such that µ− |Pµ ∈ ∂̄C p,q−1

J . In view of Proposition 3.5 the first part
of this is clear. The vertical map in (4.6) is an isomorphism and so there
is a ∂̄-closed ν ∈ Bp,q

J and a τ ∈ C p,q−1
J such that (1.1) holds. Then, by

Proposition 3.8, ν = |Pν + ∂̄ |K ν and so by Proposition 3.5 we get
|Pµ = |Pν + |P ∂̄τ = ν − ∂̄ |K ν + ∂̄ |Pτ

by applying |P to (1.1). Subtracting this from (1.1) we get

µ− |Pµ = ∂̄(τ − |Pτ + |K ν).

To conclude the proof of Theorems 4.2 and 4.3 it remains to show that
J µ = 0 for any section µ of Bp,q

J . We may assume that µ is of the form (4.1).
In view of Section 2.1, the product
Tm,q := Rkm(zm)∧B`m(zm, zm−1)∧· · ·∧B`1(z1, z0)∧Rq(z0), kj +`j 6 N,

is a well-defined pseudomeromorphic current in M ′′z0
× · · · ×M ′′zm ; here the

R’s are currents corresponding to Hermitian resolutions of O/J and the B’s
are Bochner–Martinelli type forms as in Section 2.3; Rkj is a component
of the part of the jth R-current of bidegree (0, kj) and B`j is the part of
the jth Bochner–Martinelli type form of bidegree (`j , `j − 1). In view of
Definition 3.7, µ is a sum of push-forwards, under maps M ′′z0

× · · ·×M ′′zm →
M ′′zm , of Tm,q-currents times smooth forms, and therefore it is sufficient to
show that J Tm,q = 0 where J = J (zm); we will do this by double induction
over m and q. Since T0,q = Rq it is clear that J T0,q = 0 for all q. Fix now
m > 0 and notice that Tm,q has bidegree (

∑m
j=1 `j ,

∑m
j=1 kj + `j −m + q)

and that
∑m
j=1 kj +`j−m+q 6 mN−m+q. From the paragraph preceding

Definition 3.7 it follows that the support of Tm,q is contained in Y × · · · ×Y
(m + 1 copies). Moreover, if zs+1 6= zs for some 0 6 s 6 m − 1, then
B`s+1(zs+1, zs) is smooth and so Tm,q is a smooth form times the tensor
product of two currents Ts,q and Tm−s−1,ks+1 . By induction over m we have
J Tm−s−1,ks+1 = 0. It follows that the support of J Tm,q is contained in
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{z0 = · · · = zm} ∩ Y × · · · × Y ' Y , which has codimension mN + κ in
M ′′z0

× · · · ×M ′′zm . Thus, by the Dimension principle, J Tm,q = 0 if mN −
m+ q < mN + κ, i.e., if q < κ+m. In particular, J Tm,κ = 0, which is the
induction start for showing J Tm,q = 0 by induction over q. Let R = R(z0) =
Rκ(z0) + Rκ+1(z0) + · · · be the R-current associated to the Hermitian free
resolution (O(E•), f•) as in Section 2.2. From (the proof of) [9, Theorem 4.4]
it follows that outside of the set Yk where fk does not have optimal rank,
there is a smooth Hom(Ek, Ek+1)-valued (0, 1)-form αk = αk(z0) such that
Rk = αkRk−1. Moreover, since (O(E•), f•) is exact, it follows from the
Buchsbaum–Eisenbud criterion that codimYk > k, k > 1. Hence, for z0 /∈
Yκ+1 we have Tm,κ+1 = ακ+1Tm,κ and so the support of J Tm,κ+1 must be
contained in the set where z0 ∈ Yκ+1. Since it also has support contained
in {z0 = · · · = zm} it must in fact have support contained in {z0 = · · · =
zm} ∩ Yκ+1 × · · · × Yκ+1 ' Yκ+1, which has codimension > mN + κ + 1 in
M ′′z0
×· · ·×M ′′zm . By the Dimension principle, then, J Tm,κ+1 = 0. Continuing

in this way we get that J Tm,q = 0 for all q. �

The proof shows that the map Ψ of (4.6) is an isomorphism. The injectiv-
ity followed since the diagonal map in (4.6) is an isomorphism which in turn
relies on Malgrange’s result that C p,q is stalk-wise injective. However, both
surjectivity and injectivity of Ψ can be showed directly using the methods
of this paper. To conclude the paper we sketch how this can be done. For
the surjectivity of Ψ, let µ be a ∂̄-closed section of Bp,q

J . Then, by Proposi-
tions 3.8 and 3.5, µ = ξ ·R0

q + ∂̄ |K µ, where f∗q+1ξ = 0, and so the germ of a
section of H q(Bp,•

J , ∂̄) defined by µ is in the image of Ψ.

For the injectivity we will use a new kind of weight in our integral formulas
to see that the map Φ, defined in Proposition 3.5, induces a left inverse of Ψ.
Notice that Φ indeed induces a map on cohomology since Φ(∂̄µ) = f∗q+1Φ(µ)
for sections µ of Bp,q

J . With the setup of Example 2.3, consider

qGεq :=
q∑
`=0

R`,εq (z)H`
q +

q−1∑
`=0

U `,εq (z)H`
q−1fq +

q∑
`=0

fq+1(z)U `,εq+1(z)H`
q

=: Rεq(z)Hq + U εq (z)Hq−1fq + fq+1(z)U εq+1(z)Hq,

which is a smooth section of Λη ⊗ Hom(Eζq , Ezq ) for any ε > 0; notice that
U ε(z) and Rε(z) here depend on z. One can check that qGεq satisfies the
properties of being a weight, with the property qGεq,0(z, z) = 1 construed
as qGεq,0(z, z) = IdEq . Let also g = g(ζ, z) be a suitable weight such that
ζ 7→ g(ζ, z) is holomorphic and z 7→ g(ζ, z) has compact support, cf. Exam-
ple 2.2. Identifying sections of the E∗j ’s with row vectors, sections of the Ej ’s
with column vectors, mappings with matrices, and letting (·)∗ denote matrix
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transpose as in Section 3, we get for any E∗q -valued holomorphic p-form ξ,
in view of Section 2.3, that

ξ∗(ζ) =
∫
z

(
qGε ∧ g

)∗
N,N
∧ ξ∗(z)

=
∫
z

(
Rεq(z)Hq ∧ g

)∗
N,N
∧ ξ∗(z) +

∫
z

(
U εq (z)Hq−1fq ∧ g

)∗
N,N
∧ ξ∗(z)

+
∫
z

(
fq+1(z)U εq+1(z)Hq ∧ g

)∗
N,N
∧ ξ∗(z).

Notice that the last integral vanishes if f∗q+1ξ
∗ = 0, and that the second last

integral is f∗q -exact. Since R = R0
κ +R0

κ+1 + · · · , it follows that Rεq(z)Hq →
R0
q(z)H0

q as ε→ 0, and so we see that if f∗q+1ξ
∗ = 0, then

ξ∗(ζ) =
∫
z

(
R0
q(z)H0

q ∧ gN−q
)∗ ∧ ξ∗(z) + f∗q ξ̃

∗ = Φ(ξR0
q)∗ + f∗q ξ̃

∗,

where ξ̃ is an E∗q−1-valued holomorphic p-form. Hence, Φ induces a left in-
verse of Ψ.
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