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Curvature of higher direct images (*)
PHILIPP NAUMANN ()
ABSTRACT. — Given a holomorphic family f : X — S of compact complex

manifolds and a relatively ample line bundle L — X, the higher direct images
R Pf, QZ))(/S(L) carry induced hermitian metrics. We give an explicit formula for
the curvature tensor of these direct images. This generalizes a result of Schumacher
in [11], where he computed the curvature of R”*pf*QZ{/S(K?é%) for a family of
canonically polarized manifolds. For p = n, the formula coincides with a formula of
Berndtsson obtained in [3]. Thus, when L is globally ample, we reprove his result on
the Nakano positivity of fu(Kx /s ® L).

RESUME. — Etant donné une famille holomorphe f : X — S de variétés com-
plexes compactes lisses et un fibré en droites L — X relativement ample, les fais-
ceaux images directes R™" P f*Q‘g{ / S(L) possedent des métriques hermitiennes in-
duites. Nous donnons une formule explicite pour le tenseur de courbure de ces images
directes. Ceci généralise un résultat de Schumacher dans [11], ou il a calculé la cour-
bure de R"_pf*Qi/S(K?é;ns) pour une famille de variétés canoniquement polari-
sées. Dans le cas p = n, la formule coincide avec la formule de Berndtsson obtenue
dans [3]. Donc si L est globalement ample, nous prouvons & nouveau son résultat sur
la positivité de f.(Kx,s ® L) dans le sens de Nakano.

1. Introduction

For a proper holomorphic submersion f : X — S of complex manifolds
and a line bundle L — X which is positive along the fibers X, = f~1(s),
we consider the higher direct image sheaves R"~7 f, Q" / s(L) whose fibers

are canonically isomorphic to the cohomology groups H" 7 (X, Q% (L)) by
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Kodaira—Nakano vanishing and the cohomology and base change theorem.
The understanding of this situation has applications to moduli problems. In
his article [11] Schumacher studies the case L = Ky, g where the fiberwise
Kahler-Einstein metrics are used to construct a hermitian metric on the
relative canonical bundle which turned out to be semi-positive on the total
space. A compact curvature formula is given in this case. At first glance,
the method of computation seems to be restricted to the Kdhler—Einstein
situation. In the general case, there is the result [2] of Berndtsson about
the Nakano (semi-) positivity of the direct image f.(Kx,s ® L) in the case
where L is (semi-) positive. His proof relies on a careful choice of representa-
tives of sections. Relying on this method of computation, Mourougane and
Takayama studied in [9] the higher direct images RY f,Q%, / g(E) for a Nakano
(semi-) positive vector bundle F over X. The proof given there relies on an
embedding of the higher direct image into a zero’th direct image in order to
apply the method of computation given in [2].

In the present work we compute the curvature of the higher direct images
R Pf.QF /S(L) under the assumption of local freeness, where (L,h) —
X is a hermitian line bundle which is positive along the fibers. The main
motivation for this is the observation that Berndtsson’s formula given in [3,
Thm. 1.2] coincides with Schumacher’s formula [11, Thm. 6] in the case
L = Kys. This fact suggests that Schumacher’s method of computation
can be carried over to the more general setting. By putting this into practice,
the main technique consists of taking Lie derivatives of line bundle valued
forms along horizontal lifts. We give a detailed presentation of the technical
computation, which can be useful in different curvature computations.®)

2. Differential geometric setup and statement of results

Let f : X — S be a proper holomorphic submersion of complex manifolds
with connected fibers and L a line bundle on X with hermitian metric h.
The curvature form of the hermitian line bundle is given by

wx =21 - c1 (L, h) = —/—190log h.
We consider the case where the hermitian bundle (L, h) is relatively positive,
which means that
Wx, ‘= Wx |Xs
are Kéhler forms on the n-dimensional fibers X ;. Then one has the notion of
the horizontal lift vs of a tangent vector 95 on the base S (see Section 4.1 for

(1) The same curvature formula was also proved in [4] using a different method of
computation.
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the precise definition) and we get a representative of the Kodaira—Spencer
class by

Ag = 0(vs)|x.-
Furthermore, one sets

@ = (Vs, Vs)wx
which is called the geodesic curvature. The coherent sheaf R"~7 f,QF, / s(L)is
locally free on S outside a proper subvariety. In the case n = p and L ample,

the sheaf f,(Kxy,g ® L) is locally free by the Ohsawa-Takegoshi extension
theorem (see [2]). We assume the local freeness of

R £,98, (L)

in the general case, hence the statement of the base change theorem holds
(see Section 3.2). Now Lemma 2 of [11] applies, which says that we can
represent local sections of R"™P f, Q’;{/S(L) by 0-closed (0, n — p)-forms with
values in QF, /S(L) on the total space, whose restrictions to the fibers are
harmonic (p, n — p)-forms with values in L. Let {1, ..., %"} be a local frame
of the direct image consisting of such sections around a fixed point s € S.
We denote by {(0/0s;) |i = 1,...,dim S} a basis of the complex tangent
space TS of S over C, where s; are local holomorphic coordinates on S. Let
A?B(z7s)8adzﬁ = d(v;)|x. be the d-closed representative of the Kodaira—
Spencer class of 9; described above. Then these, together with contraction,
define maps

A% 0,270 s A P(X, O (L]x,)) — A% P (X, Q5N (L

x.))
A?aagdzau : Ao’n_p(XS,Qg(s (L|x,)) — AO’"_p_l(XS, Q’;ZI(LXS))

where p > 0 in the first and p < n in the second case. Note that this is
a formal analogy to the derivative of the period map in the classical case
(see [7]). We will apply the above cup products to harmonic (p, n — p)-forms.
In general, the results are not harmonic.

When applying the Laplace operator to (p, ¢)-forms with values in L on
the fibers X, we have

Op—-0O5=(Mn—-p—gq)-id

due to the definition wy, = wx|x, and the Bochner-Kodaira-Nakano iden-
tity (see also the proof of Corollary 2.5). Thus, we write 0 = Oy = Oy in
the case ¢ = n—p. By considering an eigenform decomposition and using the
above identity, we obtain that all eigenvalues of [0 are 0 or greater than 1,
hence the operator (O — 1)1 exists (see Lemma 4.12). We use the notation
Yl := 9l for the sections ¢! and write gdV = wx_/n!. The main result is
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THEOREM 2.1. — Let f : X — S be a proper holomorphic submersion
of complex manifolds and (L, h) — X a relatively positive line bundle. With
the objects described above, the curvature of R”*pf*Q’;(/S(L) is given by

R (s) = / i (- 0l) gav

s

+/ @O+ 1) (4 Ugh) - (4 Ul gdV
X

s

+/ (@O 1) (4 ) - (4; U k) gdV
X

s

If (L,h) — X is non-negative, the only contribution which may be negative
originates from the harmonic parts in the third term

- [ H@L- H U gav.
Xs

Remark 2.2. — The same method of computation gives a formula for a
relatively negative line bundle (L, h), where we set wy = —27 - ¢;(L, h) in
this case.

COROLLARY 2.3 (compare [2, Thm. 1.2] and [3, Thm. 1.2)). — If L —
X is a (semi-)positive line bundle, which is positive along the fibers, then
J«(Kx;s ® L) is Nakano (semi-)positive.

Proof. — Because of degree reasons, the third term in Theorem 2.1 van-
ishes for p = n. The operator ((J+ 1)~! is positive. Furthermore, we have

Wit = wy /s Z V—1p;;-ds" Ads? = Z V—1p;;-ds" Ads? gdV
modulo higher order terms in s’, s7.

Hence, the matrix (y;;) is positive definite if L is positive. O

COROLLARY 2.4 ([11, Thm. 6]). — If X — S is a family of canon-
ically polarized compact complex manifolds, then the curvature tensor of
R"_pf*Q’;(/S(KX/S) is given by

Rk (s) = / O+ 1) (A Ay) - @ - ) gV

s

+/ @O+ 1) (A Ugh) - (4 Uy gdV
X

s

+/ (O - 1) (4 Ul) - (4, U k) gdV
X

s
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Proof. — The Kéhler-Einstein metrics wx, = v/—1g,5(2,5)dz* A dz?
on the fibers induce a hermitian metric on the relative canonical bundle
g ' = (det gaB)*1 with curvature form wy. The Kéhler-Einstein condition
gives wy|x, = wx,. Furthermore, we have the elliptic equation (see [10])

(D =+ 1)()017 = Ai . A]-.
Note also that the representatives A; are harmonic in this special case. [J

COROLLARY 2.5. — The direct images R”*pf*Q’;(/S(L) are all Nakano
positive if L is positive and X — S everywhere infinitesimal trivial. In par-
ticular, we obtain positivity if the family X — S is locally trivial.

Proof. — If X — S is infinitesimal trivial, we have A; = d(b;) for a differ-
entiable vector field b0, on the fiber X, because A; represents the Kodaira—

Spencer class and hence needs to be d-exact. The Bochner-Kodaira—Nakano
identity says (on the fiber Xj)

Oy — O = [V=1O(L),A] .
But by definition, we have wx_, = +/—10(L)|x,. Furthermore, it holds (see [5,
Cor. VL5.9])
[LysAuJu=(p+q—n)u for ue AP(X;, L|x,).

Thus, the Oz-harmonic (p,n — p)-form ! is also harmonic with respect to
[y, in particular 0-exact. Therefore,

AUt =8(b) Uy = B(b U YY),
so the harmonic part of A; U wi must vanish. O

Note that for a trivial fibration X x S — S, the pullback of an ample
line bundle L — X and a family of positive metrics on L which give a semi-
positive metric on the pullback, we obtain Nakano semi-positivity of the
trivial vector bundle H"?(X, Q% (L)) ® Og on S equipped with a (possibly)
non-trivial metric.

After introducing Lie derivatives of line bundle valued forms (see also
Appendix B), we can use the method of computation given in [11, 12] in the
more general setting. The point is that the computation given there carries
over verbatim if one sets m = 1 and replaces Kx,s by L. One has to check
that there is no point where the 0*-closedness of A is used, which is a crucial
fact. Moreover, there is no elliptic equation for ¢;; in general. Thus, we must
not replace ¢;; by (04 1)7!(4; - A;). Finally note that by definition

wx, = Uy Wx,
where ¢x, : X — & is the inclusion. Then the computation works without

the Kéhler—FEinstein condition. We give the details of the computation in the
general setting in the rest of the article.
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3. Preparations
3.1. Fiber integrals and Lie derivatives

Given a family f : X — S of compact complex manifolds X of dimension
n and a C*° differential form 7 of degree 2n + r, the fiber integral

|
X/

is a differential form of degree r on S (see [11, §2.1] and [6, Ch. VII] for
the general definition). In our case n will be a relative (n,n)-form on the
total space, so that the fiber integral gives just a function on the base S. If
s', ..., s" are local holomorphic coordinates on the base, we need to compute
the derivatives

%/ n forl<i<r and %/ n, for1<<I<r.
X st Jx,

This can be done by using Lie derivatives:
LEMMA 3.1 ([11, Lemma 1]). — For 1 < k < r, let wy, be a differentiable

vector field whose projection to S equals 0/0s*. We write 8/35Z for 8/357
and wy for w;. Then

B B
w/}(sn—/)(stk(n) and asl/XSn—/Xst,(n%

where Ly, and wa denotes the Lie derivative in the direction of wy and wy
respectively.

s

Proof. — By Cartan’s formula, we have
Ly, =dody, + 0w, od,

where d means exterior derivative on & and 4,,, contraction with the vector
field vg. Because d commutes with the fiber integration and

68/85"‘/ (77) :/ 61.Uk(77)7
x/S x/S

the assertion follows and analogous for the second identity. (See [6, Ch. VII,
Prop. X] for the basic properties of fiber integrals.) O
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3.2. Direct images and differential forms

Let f : X — S be a smooth proper family of Kéhler manifols X, and
(€,h) — X a hermitian holomorphic vector bundle on X. We assume that
the direct image RYf.E is locally free and furthermore that for all s € S
the cohomology HY"1(X,, & ® Ox,) vanishes. Thus the base change theo-
rem holds for RYf.E and we can identify the fiber R7f.£ ®o, C(s) with
HY(X;,€E ®0, Ox.) (see [1, Cor. 3.5]). The sections of the g-th direct im-
age sheaf R?f.E can locally, after replacing S by a neighborhood of a given
point, be represented in terms of Dolbeault cohomology by d-closed (0, q)-
forms with values in £. But on the fibers H4(X,, &) the Kéhler forms and
the hermitian metrics on the fibers give rise to harmonic representatives of
cohomology classes. The next Lemma of Schumacher is crucial for the later
computations:

LEMMA 3.2 ([11, Lem. 2]). — Let U € RIf,E be a section and 1, €
A%4( X, &) the harmonic representatives of the cohomology classes \TJ|XS.
Then locally with respect to S there ewists a O-closed form ¥ € A%4(X,E),
which is a Dolbeault representative of\T/ and whose restrictions to the fibers

X are ;.

Proof. — For the sake of completeness, we recall the simple argument
from [11]. Let ® € A%I(X,€) be a Dolbeault representative of ¥. We denote
by ®x,s the induced relative (0, q)-form. The harmonic representatives 1,
which depend smoothly on s by a theorem of Kodaira and Spencer, give rise
to a relative form Wy, g. There exists a relative (0,q — 1)-form yx,g on X,
such that the exterior derivative in fiber direction 0 /s(Xx/s) satisfies

Vs = Prss+0x/s(Xays)

A relative form can locally be extended to a genuine form on X. Denote by
{Ui} a covering of X', which possesses a partition of unity {p;} such that all
the restrictions xx/s|v, can be extended to (0,q — 1)-forms x* on U;. Then

we set
Xi=y pix'

v, and the property of the partition of unity, we

Because of Xiv/s = Xx/s
have that the induced relative form of x is indeed given by xx,s. Thus the
form

U =&+ Oy

satisfies the requirements of the lemma. (|
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4. Computation of the curvature

Computing the curvature of the L?-metric on R"? [, / s(L) requires
taking derivatives in the base direction of fiber integrals, which can be re-
alized by taking Lie derivatives of the integrands. These Lie derivatives can
be split up by introducing Lie derivatives of (p,n — p)-forms with values
in L. They are computed in terms of covariant derivatives with respect to
the Chern connection on (X,,ws) and the hermitian holomorphic bundle
(L,h)|x.. We use the symbol ; for covariant derivatives and , for ordinary
derivatives. Greek letters indicate the fiber direction, whereas latin indices
stand for directions on the base. Because we are dealing with alternating
(p, q)-forms, the coefficients are meant to be skew-symmetric. Thus every
such (p, g)-form carries a factor 1/plq!, which we suppress in the notation.
These factors play a role in the process of skew-symmetrizing the coefficients
of a (p, ¢)-form by taking alternating sums of the (not yet skew-symmetric)
coefficients.

4.1. Setup

As above, we denote by f : X — S a proper holomorphic submersion of
complex manifolds, whose fibers X have dimension n. We choose coordi-
nates z* on the fibers and coordinates s* on the base S, which together give
coordinates on X. We write 9; = 9/0s* and 9, = 0/92“. With respect to
these coordinates, the coefficients of wx will be denoted by g,3, gaj, 9;5 and
¢i7- The horizontal lift v; of a tangent vector 0; is a differentiable lift of 0;
to X which is orthogonal to the fibers with respect to the sesquilinear form
Wy

(03,00)wy =0 foralla=1...n.
This is well defined, since the form wx is positive when restricted to the
fibers. In terms of the coefficients of wy, it is given by

v; = 0; + a?(“)a,
where ~
aj = —gﬁ"‘gi -
Denoting the Kodaira—Spencer map for the family f : X — S at a given

point s € S by
ps : TsS — Hl(stTXs)7

the corresponding 0-closed representative of the Kodaira—Spencer class p,(9;)
is given by .
Ai = 5(?]1)|X5 = A?B(z, s)@adzﬁ
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with AO‘ = a? 5. From this and the local expression of af, it follows from

the closedness of wy that these Kodaira—Spencer forms induce symmetric
tensors:

COROLLARY 4.1. — Let A;55 = g,5A%5- Then

By polarization, it is sufficient to treat the case where dim S =1 for the
computation of the curvature, which simplifies the notation. Therefore, we
set s = s!, v, = v1, etc. We write s, 5 for the indices 1,1 so that

Vs = 05 + a5 0y
and
Ay = A250,d2°.
We assume local freeness of the sheaf R" P f,QF, /s (L). According to Lem-

ma 3.2, we can represent local sections of this sheaf by d-closed (0,n — p)-
forms with values in Q% / 5(L), which restrict to harmonic (p,n — p)-forms
on the fibers. We denote such a section by . In local coordinates, we have

Yl = Yoy oy iyr. 5, 427 A A2 AP AL d2Pr
=, g, dztr APy

where A, = (a1,...,p) and Bn—p = (Bpt1,---,8n). The further compo-
nent of v is

Yorr oy fir o rs027 A Az Ad2Pret AL d2Pr A ds.

The O-closedness of ¢ means

wApo-%—l---Bn—lg;Bn = wApo+1--»Bn—1Bn;§' (41)

4.2. Cup product

DEFINITION 4.2. — Let s € S and A = A%; (z $)0adz? be the Kodaira—

Spencer form on the fiber Xs. The wedge pmduct together with the contrac-
tion define maps from the space of L-valued (p,n — p)-forms

AU_: APmP(X, L) — AP~ LnoPHl(X, L)
U_: AP"P(X,, L) — APTEn—P=1(X | L),
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where 0 < p < n, which can be described locally by
(A3587d23> U <¢a1...ap[§p+1‘..ﬁ" Az AL A2 AdPr A LA dzB")

= AL Vs 27 AZT AL A2 A AL A
P

(Egvavdzﬁ) U (wal...apéw..,én dz®U AL A AP A LA dzB")

= A Vs oy r8 forn i Q2O A A2 A d2Pr AL A AP

50{1
4.3. Lie derivatives

Now we choose a local frame {¢', ..., 9"} according to Lemma 3.2. The
components of the metric tensor H'* for R" P ¥, Qr / 5(L) on the base space
S are given by (¢ =n —p)

H¥(s) 1= (4%, 01) == (0" |x,, ¥ |x,) = /X vk 5 Uk p, g g e gav,

which are integrals of inner products of harmonic representatives of the co-
homology classes. We also write
WF -l = wipéq¢équgDpAprchh

for the pointwise inner product of L-valued (p, ¢)-forms, which is the point-
wise inner product of the harmonic L-valued (p,n — p)-forms ¥*|x, and
Y!|x.. When we compute derivatives with respect to the base of these fiber
integrals, we apply Lie derivatives with respect to differentiable lifts of the
tangent vectors according to Lemma 3.1. Here we choose the horizontal lifts,
which are in particular canonical lifts in the sense of Siu [13]. This simpli-
fies the computation in a considerable way. In order to break up the Lie
derivative of the pointwise inner product (which is a relative (n,n)-form),
we need to introduce Lie derivatives of relative differential forms with val-
ues in a line bundle. This can be done by using the hermitian connection
V on AP (X, L)x,) induced by the Chern connections on (T’x,,wx,) and
(L, h). We define the Lie derivative of ¢ with respect to the horizontal lift v
by using Cartan’s formula

Ly = Lv(¢X/S) = ((5UOV+VO5U)¢X/S)X/S (4.2)

and similar for the Lie derivative with respect to ©. It is important to note
that here we only consider the fiberwise part ¢ /5 = (¥|x,)ses of the form 1)
given by Lemma 3.2, since only this component contributes to the integral.
We note that this definition extends the usual Lie derivative for ordinary
tensors, which can as well be computed by using covariant differentiation. We
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refer to Appendix B for properties of Lie derivatives and a short discussion
of this concept.

Taking Lie derivatives is not type-preserving. We have the type decom-
position for 1) = ¥ or ¢ = ¢! and v = v,

va = va/ + L,

where L, is of type (p,n — p) and L,v¢" is of type (p —1,n —p+1). In
local coordinates, we have

P

/
va = wAan—;ﬁS + a?/(bAPszfp?O‘ + Z a?;ajwal..‘a...apén,p

=1 \
! i

dz?? A dzBrer (4.3)

vaﬂ ZA ¢a1 (x (ypB —p

Az AL AP AL Adz AdZPre AL AdZP (4.4)
|

J
Similarly we have a type decomposition for the Lie derivative along v = v;
Ly = Ly)' + Ly

where Lzt is of type (p,n — p) and Lz9" is of type (p+ 1,n —p—1). In
local coordinates, this is

n
r_ _ B _ B _ _
L’Dw - 1p*Aan—p%g + agwAanfp;:B + Z ag;ijAPBP‘Fl “““ Brn
Jj=p+1

dze A dzBrer (4.5)

n

" o__ B _ o
Lyy™ = Z Asey VA, Bps. B
j=p+1 !
Az AL Az AdZPret AL Az AL AdZPr (4.6)

|
J

The type decomposition can be verified using definition 4.2. (At first glance,

one would expect more terms, but there is a cancelation in the computation.

We also refer to Corollary B.3 in the appendix.) For the readers convenience

we give a proof for L,:
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Proof. — First, we have

V(Yx,s)

= (wAan,p;s ds + VA, By pia dz® + by o B pis

and
p

(-

j=1

0u(Yxys)

Moreover, we get

J+1a?w

ai..a...apBy g

sds+dy g, 5dz )

AdzA P/\dz n=p

dz“" AL

Adzo7 AL

Adz® A dzBrer,

v (V (VI;ZJX/S)) = (wAanfp;S + ag¢Aan7p;a) dZAp A dZB'"*P

p
+ Z (_1)Jagwal..‘a...apénﬂj;a

(_1>ja?’(/}a1.“o¢..‘ozpé
I
J

w0

5 ds Adz® A

caapBa s
|
J

5 )isdsAdz® A AdZ% AL

capBn_p

By s ds A2 A

dz% ANdzY AL

3 dzP Adz AL L.
o

’nip);g dsAdz* AL AdzY AL

AdZ AL
AdZY AL
AdZY AL

Adz% A ...

ey B )iy AN ADZOA.

Adz® AdzBr-»

Adz® AdzBrr

Adz® AdzBr-»

Adz AdzBr-»

Az AdzBr-»

AdzoPAdzBr-r

Adz AdzBr-»

dzﬁ”/\ Az A, AdZYA. . Adz% Ad2Bn
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We now split up the covariant derivative of the product in each line of
V(0u(¥x/s))- According to definition (4.2), we have to add the expressions
for 6,(V(vx/s)) and V(6,(¢x/s)). We see that the first line of 6,(V(¢x/s))
together with the first summand in the second line of V(d,(¥x/g5)) gives the
formula for L,¢’, the (p,n — p)-component of L,1. Furthermore, the first
summand in the last line of V(0,(¢x/5)) gives the expression for L,"”. All
the remaining terms either cancel each other or contain a ds or ds respec-
tively, hence do not contribute to the relative part. O

We need the following lemma

LEMMA 4.3. — The Lie derivative of the volume element gdV = w7 /n!
along the horizontal lift v vanishes, i.e.

L,(gdV)=0.

Proof. — Tt suffices to show that the (1,1) component of L,(g,3) van-
ishes, which implies L,(det(g,5)) = 0. We have

Lo(9ap)ap = ap.s T 03903y T 080975 = —Ospia + 309,35 =0. O

4.4. Main part of the computation

We start computing the curvature by computing the first order variation.
Using Lie derivatives, the pointwise inner products can be broken up:

PROPOSITION 4.4.
0
&W’kﬂ/)” = <Lv¢ka 1z[}l> + <wk7 Lﬁwl>7
where 0/0s denotes a tangent vector on the base S and v its horizontal lift.

Proof. — By Lemma 3.1 we have (¢ =n — p)
O 1k by — kol DpAy ByC
S0y = [ L (05, 5,08, 5,00 O g V).
The integrand is now a Lie derivative of an ordinary (n,n)-form. We have
L, (wfipgqlblcq 5,97 g% %h g dV) =L, (¢Zp§q¢lcq p, 9" gl h)g dv,
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because L, (gdV') vanishes. Now the Lie derivative of a function is just the
ordinary derivative in the direction of v, so we get (by using Einstein’s sum-
mation convention and, for ordinary derivatives)

Lo (W, 5,06, 5,977 g% h)
= (20 +a20.) (v4,5,4,p,97 7™ h)
= (wA Bys T 050 Bq,a) (WCQD,,QD”A”QBQCW)
a D,A, B,C,
‘H/’AB< CqDpys T %s wCDma (9 g h)
+wA ( 51041)952042 B gﬁanh+ 51018 ( 52042) B gﬂn’Ynh
Fo . ghghaz as(gﬂn%)h)
+ wzpéqdjéqbp(a?aa (951a1)952a2 - .gﬁywylh_,_g&alagaa (gszaz) - .anVnh
+...+ 951a1982a2 . a?@a(gB"W")h)
) o s
Now we use the identities 9,977 = gfé"a};(7 and 0,977 = —gPoTY (sce
Lemma A.1) as well as the Christoffel symbols for the Chern connection
on (L, h) which are h™19,h = I'" and h=19,h = T'. The above somewhat

lengthy expression can then be written as (now we use ; for indicating co-
variant derivatives)

k h,k o k k h, .k
<wAPBmS * stAqu T (wAPqu ZF wal'-ﬁ-napéq tlay >>
J

I pAp B Cq
n
k U af 0 Z l D,A, ,B,C
+q/)Aqu<wC'qu,s+aS(quDp,a Q’Y;w'yp+1...o...anDp>>g rergTe “h
Jj=p+1 J'

(Zwal...a...aqu CHet )wc D,[7 Doy B “a 1h

k D,A, B,C
+wAqu< Z ¢7p+1...o¢...’yn a,’Yj)g P pg a qh

Jj=p+1
]
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= (wljxp +“aT/’A B, a)wC D, gD v B “Cah

k o DyA, B Cy
+wA B, (77[10 Dy;s +a; quDP;a)g “h

(Z ,(/) a ap q j) wlchbpgDpAprchh
k pAp B C
+ wAqu ( Z ¢yp+1...o¢...vn aS;Vj) g “h

Jj=p+1

.7

The (p, q)-components of the forms L, and Lyt! are given by

(Lvlﬁk)(nq) = <wflqu;s + a(slq/’f\p + Z a’S HeZ] djil.“a.“a B )dZ PA dqu

j=1 |
J
and
n —
l aXt ¥ l D c
(L") (p.g) = (wp az¥p 5T Z as;»yﬁprpr......%)dZ PAdz™,
Jj=p+1 !
thus the statement of the proposition follows. O

The above proposition is a main reason for the use of Lie derivatives. A
second justification for using Lie derivatives is given by the following lemma,
which allows us to express some components of the Lie derivatives as cup
products with the Kodaira—Spencer form or the horizontal lift respectively:

LEMMA 4.5.
L' = A, U, (4.7)
Lyy” = (-1)PA; U, 4
Lot = (~1)P8(TU ). (4.9)

We note that here and in the following the operators 9, 9, 9* and 0* mean
the fiberwise operators, because we are always dealing with relative forms.

Proof. — First, we prove (4.7): We have
¢//

S‘ﬁ O(] o aB dZ /\ /\dz]/\ /\dzl/\dzl /\ /\dZ

7 j

NgER M'@

A% Voanoay 1oy 4277 A2 AL A2 AP AL A dP

.‘.ap,an

<
Il
—
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Similarly, we have

n
" o_ B _ o
L{ﬂl) - Z AEap+1wal...apﬁp+1...ﬁ,..ﬁn
j=p+1 !
dzo AL A2 AP AL A2 AL LA d2BPn
\
J
n —
_ B __ _
- Z Agap+1¢a1~~ap55p+2mﬁn
Jj=p+1

dzo AL Ad2% Adzot Ad2Prre AL A dePr

Finally, we prove (4.9): We have

= _ _ _ By _ A B B
U 1/} - (quApgﬁerlnﬁn—l + a§¢ADﬂﬂp+l---Bn—l) dzfr AdzPrt AL A dz '

_1\n—p—1 _ _ B _ _ _
( 1) <¢Apﬂp+lu'ﬁn71§ + ag wApo«#ln‘ﬁnle)
Az A dPeri AL A dzé"*l,

which is a relative form, and hence

(= _ —p—1 _ _ _ B o
a(v U w) - (—l)n P (ll’[}Apoi»l“-anlg?Bn + (ag wApo«#l-nﬂnle) Bn>
dzPn A der AdePrir AL AP

—p—1 _ _ _ B _ L
(_1)p(_1)n P (’(/}Apﬁp+1~-ﬁn71§;ﬁn + (agwApﬁerlmﬂnflﬁ).B”)
dz4% A d2Pr Ad2Prii AL A dzPn—1

)

The skew-symmetrized coefficients of (agwApoHmB"ilB) BndZAp A dzPn A

dzPre1 AL A 2Pt are given by

APy, = - }
{ (@5Ya,5, 1. B0 1p) P

n
— (_1)P _1)i—p-1 (8 _ PO ,)
D D CE i C N R 5
Jj=p+1
n _ _
_(_1\p _1)i—p=1 (.8 _ B . B _ . 777)
( 1) ‘ZJ,»l ( 1) <a§§ﬁj{¢)Apo+1u~5j~~ﬁn6 + as wApoﬁ»LwﬁﬁuBnﬁ?Bj
Jj=p
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Remember that we have

n
Y — _ _ By o B _ o
LU¢ - (wApﬂp+1~~ﬁn?§+a§w‘4pﬂp+1-~ﬂn§ﬂ + Z ag;__71/)APBP+1 """ ﬂn)
j=p+1

Now the identity (4.9) follows from the J-closedness of 9, that means equa-
tion (4.1) and the O-closedness of 9|x, along the fibers. We note that it is
only here where we use Lemma 3.2, the fact that v is globally O-closed, in
order to cook up the relative form v U which fulfills (4.9). O

Now we can simplify the expression for the first order variation of the
metric tensor. Because of (4.9) and the harmonicity of ¥*|x_, we have

(W", Lo') = (9%, Lo(¢")') = (", (-1)Pa(m U ")
= (0" ("), (1)U ") =0
for all s € S. Thus by Lemma 4.4, we have

D H = (L, 90) + (6, Lo

= (L")
= (Lo (¥"), 9.
For later computations, we need to compare Laplacians:
LEMMA 4.6. — We have the following relation on the space AP9(X, L|x,)
Op—0O5=(Mn—-p—gq)-id (4.10)

In particular, the harmonic forms ¢ € AP"P(X,, L|x,) are also harmonic
with respect to 0, which is the (1,0)- part of the hermitian connection on
AP P(X Llx,).

Proof. — The Bochner-Kodaira—Nakano identity says (on the fiber X)
O — 0o = [V=16(L), A] .

But by definition, we have wx_, = /—10(L)|x,. Furthermore, it holds (see [5,
Cor. VL5.9])

[Ly,AvJu=(p+qg—n)u forue APY(X,, L

X.)- |

Next, we start to compute the second order derivative of H Ik and begin
with

8 —

5 B = (Lov®,vh).
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Now by using Proposition B.4 from the appendix we obtain

950 (V" ¢')

= (LoLot®, v") + (Lot®, L")

= (Liz,o) + OL)so)¥" 1) + (Lo Lot®, 9") + (Lot)*, Lut')

= ((Lip,0] + O(L)o)¥", ') + 85 (Lotp*, ') = (Lo®, L") + (Lotp*, L),

Because of (LyF,¢!) =0 for all s € S as we just saw, we get
050, (4", ¢')
= (Liz,o) + OL)so)¥" 01 + (Lotp™, Loy') — (Loy)®, Lyy').  (4.11)

Now we treat each term on the right hand side of (4.11) separately. For the
first summand, we have

LEMMA 4.7.
L) + O(L)gy = [—¢%0a + ¢P05, ] — ¢ -id, (4.12)
where the bracket [w, ] stands for a Lie derivative along the vector field w.

Proof. — We first compute the vector field [, v]:
[0, 0] = [05 + ag0s, 0 + a3 0]
= (85(@?) + agaglﬁ) O — (85(665) + a‘(:a?\a) aB
Now we have
0s(a2) = ~05(97"9.5) = 97 9osir9™ 9.5 — 9795
s\ Qg s\9" Y5 9 90579 Y9sp — 9 gsﬁ\s
= 9% a50:797" a5 — 9°%9s5,5-

Because of ¢ = gs5 — gaggsggga the coefficient of 9, is gBagp;[; = ¢ In
the same way the get the coefficient of 9z. Next, we need to compute the

contribution of the connection on L. Because of v/—1[9,9] = /—10(L) =
wx, we have

LEMMA 4.8.

wﬁﬂ+@@nmww5=—w4www=—/’WW*ngK (4.13)

s
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Proof. — The O-closedness of 1)* means that

2 :wal...a...ap By _piaj’

J

Thus
[ 0s ¥ 5. 1 = @0, +Zso K-S
j=1 J'

p

_ s,k

- Z(Sﬁ wabna'napénfp) a
j=1 ! Y

=0 (¢ *9a UYP)

This leads to
([p°0a: 04,5, ) ¥ = (#0005, 1 0)
= (0 (9 0a Up®) 9') = (¢*0a Uy, 0%Y!) = 0
In the same way we get
<[@;68§7w2p3n7p]a¢l> =0. U
The following proposition contains important identities that allow to ob-
tain an intrinsic expression for the curvature:

PROPOSITION 4.9.

A(Ly™) = d(As uyh), (4.14)
F*(Lyy*) =0, (4.15)

" (As Uyh) =0, (4.16)
(=1)PO* (Lyy*) = 0" (As Ub), (4.17)
I(Lzy*) =0, (4.18)
d(AsUYF) =0 (4.19)

The proof is given in Appendix A. Now we look at the second term
in (4.11) and decompose it into its two types:

(Lotp®, Ly') = (Lot™), (Lo')) — ((Lot®)", (Lo)")”)
<(Lv¢k)l> (val)/> - <As U ¢k7 As U wl>
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because of (4.7). At this point, one might wonder about the minus sign. The
reason for this is as follows: We have

B505 (", 9"y = Bs((Luy™) ')
= (Lo(Lot®), 90') + (Lo®)', (Lo0'))
= (Lo(Lot*), 9 = (La(Lo*)")", ") + (L"), (Lot")')
= (Lo(Lutp™), ") + {(Lot®), (Loth")') = (Loth™)" (Lutp")"),
where for the last line we used the following lemma

LEMMA 4.10.

<(L6(Lv¢k)ﬂ)”7wl> — <(L’ka)l/7 (val)//>
Proof. — Because of (4.4) we have for the pointwise inner product of

(p—1,n—p+ 1)-forms

k k
(quzb ) ( v’(/) ) gﬁp/li[}(yal Qp_ 1ﬁp+1 Bn 56 w’y’h Ap—10p41---0n
g”hal o gvpflapflgﬁp pg/Bp+15p+1 . .g/éntsn

On the other hand, we get by using (4.4) and (4.6) for the pointwise inner
product of (p,n — p)-forms

~ A/ p—1 ~ Y U
(LU(LN/} ) ) 7/) *( ) AY gwaal ap_lgp+1___gnA§ap Y1 ApOpt1---On
g'?lal . g'ﬁ’papggp«#lépﬁ»l . gETL‘SH
B U Vpo s s
Now we take the term Ag, Ay Gysn.0, 9777 and rewrite it as
B I Apap _ (_1\p—1 B ! Yp
Asa,, Y1 ApSpg1---On gwer _( ) Asap%—,p:h.4.%,15,&14..5" grer
_ p—1 4B l Fa
= (-1 Asap 1 Ap—10pp16n I

p—1 ’7,3
w'Y'Yl Ap—16p+1---6n

(=1
= (=" 1Amw~w1 Ap—10p41...0n
(=1
(=1

p—1 4%
As6 ’Y"/l Ap—10p41---0n g
Thus both expressions coincide. O

Now let Go and G5 be the Green operators on the spaces A”9(X,, L|x,)
with respect to Ly and Oy respectively. According to Lemma 4.6 they coin-
cide for p+ ¢ = n. Now we use normal coordinates (of the second kind) at a
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given point sg € S. The condition (8/83)[1ﬂk|3(J = 0 for all k,! means that
for s = so the harmonic projection

H((Ly*)') =0
vanishes for all k. Thus, using the identity id = H 4+ G505 we can write
(Lo*) = GO5(Lot") = G50" (L") = 9" G0(As U ")
by (4.15) and (4.14). Because the form 9(L,1*)" = 9(A, U¢*) is of type

(p,n —p+ 1), we have G5 = (s + 1)~! on such forms by Lemma 4.6. We
proceed by

(Lot®), (Lo¥')")

(0°G50(As UYF), (L))
= (G, (A U ), (A Uyh))
(Oa +1)710(A UYY), 0(As U YY)
= (0"(Oa + 1)'O(A U ), A Ugh).

Now using (4.16) gives
(Low®), (Loy')') = (B + 1)~ 'Da(As U9*), A, U ')
— (D + 1)1 (T + 1 — 1)(A, Ug*), A, U )
= (As UP, Ay uhy — (@ +1)7H(As UF), A, Ugh).
Altogether, we have
LEMMA 4.11.

Lot Loy == [ O+ DAL Asuhgdv @20
Xs
(We write O = Oy = Oz when applied to (p —1,n — p + 1)-forms.)

Finally, we look at the third term in (4.11) and decompose it into its two
types:

((Lawh)'s (L)) = (Latp®)", (Lay')")

= {(Let")', (Lav)) = (As U ", A5 U ),
where we used (4.8). The identity (4.9) implies that the harmonic projection
of (Lyy*)" vanish. Hence we can write

<(L73¢k)'7(L131/)l)/> = (GgOs(Lsy®), (L")
7 (G500 Lot (Low'))
= (G50 (Low), 5" (Lot
“ ”)< Gy0" (A5 UDF), 07 (A U D).

(Lo¥®, Loy')

Now we have
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LEMMA 4.12. — Let Y, p, be the eigenfunction decomposition of A5 U*.
Then all the eigenvalues A\, > 1 or \g = 0. In particular (O —1)"(As Uy*)
exists.

Proof. — We consider 0*(A; Uyk) =3 9*(p,), whichis a (p,n—p—1)-
form, for which we have Oy = Uz + id according to lemma 4.6. Hence

A0 (py) = a0 (pv) = 050" (py) + 0% (pu)-

Form this equation we can read off that )" 0*(p,) is the eigenfunction de-
composition of 9*(AzU*) = 0* (Lyy*) with respect to O with eigenvalues
A, — 1 > 0. But this form is orthogonal to the space of O-harmonic functions
so that A\, — 1 = 0 does not occur. The harmonic part of A5 U * may be
present though. (If 9*p, = 0, then also dp, = 0, hence p, is harmonic. This
is because by 4.19 we have 9(Az U4*) = 0, hence dp, = 0 for all v, because
>, 0(py) is the eigenfunction decomposition of d(As U *).) O

Now we can proceed as follows. The form 0*(As U %) = 9*(Ly*)’ is
orthogonal to both spaces of - and d-harmonic forms. Hence we can write
G50" (As UY") = (o — 1)710" (As U ),

so that we have
(( )TrOM(As Ub), 0" (As Uh))
(@ = 1)7109" (A5 U W), As U
= (( )" Do (As U k), A5 U YY)
(( )M (0o — 1+ 1)(As Up™), A5 U ')
= (As UY", A5 U ') + (0o — 1)1 (A5 U ), A U '),

Alltogether we get for our last term

LEMMA 4.13.

(Lo®, Do) = / (O 1) (AU - (A Ugl) gdV.  (4.21)

XS

(We write again O = Oy = Oz when applied to (p +1,n — p — 1)-forms.)

Now our main result Theorem 2.1 follows form (4.11), (4.13), (4.20),

(4.21) and the fact that sz(so) = —8561-Hik(so) in normal coordinates at
the point sg € S.
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Appendix A. Proof of Proposition 4.9

Proof of Proposition 4.9. — We start with (4.14): We drop the super-
script k and note that the tensors are skew-symmetrized as coefficients of
alternating forms. We start with the identities

1/J§3Bn+1 = whén+15 - gan+1w = asﬁn+1w’ (Al)
wﬂlgnﬂ = w;Bn+1a - gOéBnHw

p
_ g _
§ :wal...U...apB,,L,pRajaﬁnJrl
J

1
n
_ T
- Z wApﬁerl»--‘f--» Rﬁjaﬁn
Jj=p+1
«a Y- o po
a5§ajﬁ_7L+1 - ASBn+1§a]‘ +a, Raaj5n+1' (A2)

Starting from (4.3) we get using

p
_ ;L ) ) )
ava - <w;sﬁn+1 + A?gn“?b;a + agw;aﬁn+1 + E a(;;aj/@nJrlwal...a...ap,Bn,p

=1

+ Z a?;aj wal...a...apB"p;ﬁ,”“) dzPn+1 A dze A deBr-r

j=1

p
B, A Bp_
— (Agﬁmw;ﬁzAjﬂm;ajwm“_am%Bnp)dzﬁ +1 AdzAr AdzBr-v,
j=1

Note that we also used the symmetries of the curvature 4-tensor and the
0-closedness of 1. Because of the fiberwise 0-closedness of ¥ this equals

_ Bni1 A B, _
E sﬁn+1 al.“oz..‘ozan,p)ﬂlde Adz?P N zPn-e
Jj=1

P
Ap— 3 Bn
n"> (A% YaaseapBo_y a0z Azt Ad2PE AL A D
1

j=
(( DA% Yoos.apyer. 5, 42 Ad2E) = (A, UG
This proves (4.14). Next, we prove (4.15). For this, we need the following

LEMMA Al — Let Tg, = gB"ﬁag%é be the Christoffel symbol for the
metric (ga[;) in Tx g in fiber direction. Then we have

0,(I7.) = —a

s;oy
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Proof. — We start with
859%7 = — g7 4° 09,5 = 97*aZ..,
hence )
903059"" =l
This gives
ag;a'y = ga,@(a’}’asgﬁa + Faéa g )
= 9a30s09° + (—9530,9°7) (~0sg,59™°)
= 0030s09"7 + 0,97 09,5
On the other hand, we have
05(T%,) = 05(T7) = 0s(—9050+9"7) = —059,50,9"" — 9.5050,9°7
This gives the statement.

Now we have

Vs = s + T
and
j=1
This gives

Yisy = (s + D), + T2 (b, + Tep) Z | RN RTINS S

and

Piys = (wwrhw ZFW] B)
j=1 s
+F’L<¢7 + Tl — ZF% al...a...aanp>

j=1

Hence, it follows

P
1/}35’7 - /¢§"/S = Z (a Fga] )wal...a...apgn,p
j=1
and by the preceding lemma
P
w;‘YS = ’L/)§S’Y + Z ag;aj'ywalu.a...apén,p (A3)
j=1
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Now by differentiating the equation 95"”1/) = 0 in the direction of s, by
using O 95"7 = gﬁ" aj., as well as (A.3) it follows

gﬁn’y’l/};S'y = _prgﬁng Zg ’L’y ga/y al..‘a.“apén,p (A4)

Next, since fiberwise 1) is 5*-closed,

9P (0Ss0) iy = 97 a% i (A.5)

and with the same argument

_ P »
gﬁn’Y(Zafg;ajwoel...a...apB ) Z SOzJ'y 01.0eectp By (A.6)
v j=1

j=1
Now 9*(L,¥'") = 0 follows from (A.4), (A.5) and (A.6). We come to the
0*-closedness (4.16) of A5 U 1. We need to show that

5
(Agﬁn+1¢aa2...apf§n,_p> _Sg op
vanishes. Since 9*1 = 0 fiberwise, the above equality equals

e}

_ _ - 50‘1)
Sﬁn+1;5w0‘a2~-0‘anfpg :

Because of the 0-closedness of A, this equals
(A?ap)ﬁwrlwaazmapén

—-P
However,
o, _ apQ
Agor = A%
whereas 1 is skew-symmetric so that also this contribution vanishes.

Next, we proof (4.17). We have

Ly’ =1, +GB¢5+ Z ¢Apﬁp+1“ﬂ..ﬂn

j=p+1
Furthermore,
1#;@ = ¢7§ + 97571) = w;'yé - aE’yd}v
Vigy = wvﬁ + 9751/1
+Zwa1...a...ap pRa fy/@’
_ _ pT
+ Z wA;DBIH»l"J_—“'BnREj’YB
Jj=p+1
and 3 E 3
— —ar _
Yaipiy T Cevip; R?%Bj
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This gives
(DT (L)

B, A 3 B
<A37¢ﬂ + E ‘Wﬁ wAPﬂerl-"B'uBn)gﬁ YdzA A d2Brtt AL A dRPrt
Jj=p+1

Now, because of the fiberwise d-closedness of ¢ this equals

/B’V'L /6 B’!L*
Z ( wApo+1»--ﬁ---ﬁn) B ’de P A dzPett ... ANdz 1

p— B — — — /BVL A /B B’”*
= (AgﬁywApﬁp+1 B 1ﬁ)5 g7 dzr Ad2PPrt AL A d2Pt

= ()P (AL,
= —(=1)"P7L9* (A5 U ).

B 1deﬂ/\dz » A deBror- )

Here we used that for j # n:

(A§7¢Ap/§p+l-*ﬁ“ﬁ")5Ejg

pﬁp+1~~-5~--6n);ﬁj

»Yg wApﬁerlmﬂ--Bn)ﬂj

(
(
= (4 f ﬁwApo+1~.ﬂmﬁn) .3
_ 4
= ( By

B
A ¢Ap5p+1~~-r8~--/3n),ﬁjg

( wAp5p+1 /Bn B) ngB’Y

B
(As'ywApo+1...ﬁ...ﬁ,L) ng '77
hence only the last summand in the above sum contributes.

Equation (4.18) follows from (4.9). It remains to show (4.19): We have

5 __ _ _AS o _ 5 o _
(A§Qp+1 wAp5 ﬁp+2--~5n,) v Agap-Fl;'Y/(/)Apa Bpt2---Bn + A§O‘p+1 z/}Ap(S Bpt2--Briy

Now the O-closedness of Az U 1) follows from the J-closedness of Az and
the O-closedness of 1. Note that we have to consider the skew-symmetrized
coefficients of Az U . Alternatively, we can write

because 0Az = 0 = 0. O
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Appendix B. Lie derivatives of line bundle valued forms

The most important technical ingredient for the computation is the notion
of a Lie derivative for (p,q)-forms with values in a hermitian line bundle.
Thus we take the opportunity to discuss this concept in more detail. We
consider more generally a real manifold X together with a hermitian vector
bundle (E, h) over X. Let further V be a hermitian connection with respect
to h on E. We denote the contraction of a E-valued form with a vector field
\%4 by 6\/.

DEFINITION B.1. — Let V be a complex vector field on X and o €
A¥(X,E). We define the Lie derivative in the direction of V by the Cartan
formula

Ly () == (6y oV +Vody)(®)

We note that this definition extends the usual Lie derivative for tensors

of the form T}!:2: | which can as well be computed by using covariant differ-

entiation on a Riemannian manifold. Because for the lack of an appropriate
reference, we collect some properties for this generalized Lie derivative:

PROPOSITION B.2. — Given a section s € A°(E) and a form a €
Ak (X)), we have for the Lie derivative of a ® s € AF(E):

Ly(a®s)=(Lya) @s+a® (Lys)
Proof. — First, we have
V(ia®s) =d(a)®s+ (-1)*a A V(s)
and
Sp(a®s) =6,(a) @5+ (—1)*a ® §,(s) = 6,(a) @ s.
This gives
Ly(a®s)=(0,V+V,)(a®s)
=5,(d(a) ® s+ (=1)*a AV(s)) + V(0,(a) ® 5)
= 6,(d(@) ® s+ (—1)" 3, (@) A V(s) + (-1)F(=1)*a ® 6,(V(s))
+d(du(@) @ s+ (=1)*16,(a) A V(s)
= 0y(d(a)) ® s+ a® 6,(V(s)) + d(dy(a)) ® s.
On the other hand, we have
(Lya)®@s+a®(Lys) = [0,(d(a)) +d(d,()] @ s+ a®[6,(V(s)) + V(d,(5))]
O

This proposition allows us to give a local expression for the Lie derivative:
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COROLLARY B.3. — Let ¥ = Yq,...a dz® A ... Adz®* be the local ex-

pression for a form ¢ € A¥(F) with respect to local coordinates x*,...,z",

where (F,h) is a hermitian line bundle together with a hermitian connec-
tion V. Let v = v'(0/0z") be a smooth vector field. Then we have in local
coordinates

L’U(dj) = (vawal.“ak;a+U,aal’¢}aa2...ak +U%¢2walaa3...ak + e +vff1k¢a1..‘ock_1a)
dx® A oA da®,

where the symbol ; &« means V,, and , stands for an ordinary derivative. The
ordinary derivatives can be replaced by covariant derivatives with respect to
the Levi-Cevita connection if X is a Riemannian manifold.

Note that we have L,d = dL, for the Lie derivative of an ordinary
form o € A*(X), which follows easily from the classical Cartan formula
L, =6,d+dd,.

PROPOSITION B.4. — For two vector fields v, w and a k-form 1 € A*(F),
we have

Lva(q;[}) - L'wL'u(w) = L[v,w] (¢) + Quw - 9,
where Q is the curvature form of (F, V).
Proof. — By the Ricci identity we have the expression
Ly Ly (8) = LuwLy(8) = Ly ) (8) + Qo - 5

for sections s € A°(F). By the properties of the ordinary Lie derivative for
k-forms a € A*(X) (see for example [8, p. 140]), we have

LyLy(a) — Ly Ly(a) = Liy ) ().
Thus for tensor products a ® s € A*(F), we get by using Proposition B.2
L,(a®s)=(Ly,a) ® s+ a® (L,s),
that
Ly(Ly(a® s))
= Lyy(Ly() ® 8+ Ly() @ Lyy(8) + Ly () @ Ly(8) + @ @ Ly (Ly(s))
and analogously
Ly(Ly(a® s))
— Ly(La(@) © 5 + Lun(@) @ Lo(s) + Lo(@) ® Luy(5) + @ ® Ly (Lu(s)).
Hence we get
(LyLy — Ly Ly) (@ ® 5) = (Ljy,w) ) @ 5 + (Ljyw) — @ @ Quw)(5)
= Lipu)(@®5) = Quy - a® s. O
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Given two sections ¢ € A¥(E) and ¢ € AY(E) of the form
p=aR@sand Y =Rt
for a € A¥, 3 € Al and differentiable sections s,t € T'(X, F), we can define
a pointwise inner product by
h(p,¥) == (a A B) - h(s,t),
which is an element of A**!. The main point for the computation is the

following

PROPOSITION B.5. — Ly (h(p,1)) = h(Ly (), %) + h(p, Lv ().

Proof. — By writing p =a® sand v = &t as well as V(s) = o’ ® ¢
and V(t) = g/ @ t' for 1-forms o/, 5" and sections s',¢ of E, we can check
easily

d(h(p, ) = h(V (@), %) + (=1)*h(p, V(1))
and
Sv (A, 1)) = h(0v (), ) + (=1)*h(p, 6v (¥)).
Because h(p,1)) is a genuine form on X, we have Ly (h(p,v)) = (dy od +
d + dv)h(p, ). We compute
(6v 0 (1) = v (H(T (), ) + (~1)*hl, V(1)
= h(ov Vi, ) + (=1 h(V, dvip) + (=1)*h(dve, V)
+ (=D (=1 h(p, 6 V).
and
(d o dv)h(p, ¥) = d(h(Sv (), %) + (=1)*h(p, v (1))
= W(Véve, ¥) + (=1 Th(dv e, Vi) + (=1)*h(Ve, by )
+ (=D)M(=1) h(p, Vv ).

The summation of both expressions leads to a cancelation of four summands.
The remaining sum is h(Lv (¢), ) + h(yp, Ly (¢)) as required. O

Because we apply Lie derivatives for hermitian line bundle valued forms
on compact complex Kéahler manifolds, the statements in this section need
to be adapted to the complex case. For example the type decomposition
given by (4.3)—(4.6) follows directly from Corollary B.3 by splitting off the
complex expressions into its real and imaginary parts. We end this section by
giving a few remarks, which relate this concept to curvature computations
in related contexts.

Remark B.6. — If ¢ = s and ¥ =t are just sections of a vector bundle,
the Lie derivative is nothing else but the covariant derivative. This is used
in [14] in their computation of the curvature. The preceding proposition
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means that the Lie derivative of the metric i vanishes, which just means
that the covariant derivative vanishes.

Remark B.7. — We now discuss a result obtained in [13] and [10] resp.,
which says that in the context of Kahler—Einstein metrics of constant Ricci
curvature described (for the negative case) in the introduction, the Lie de-
rivative of the Ké&hler—Einstein metric in the direction of the horizontal lift
vanishes:

Ly, (wk,) = 0.

Following [10], the proof is briefly written down as:

(Lvi (QO‘B))QB = I:al + a’za'}/?galé} aB = al(gaB) + a’iygag;’y + G’Zago'B
= Yifia T 2igja =0

Here we used the ordinary definition of Lie derivatives. The expression
0i(9ap) + 49,5 can be read as a covariant derivative g,z.;, because

ajo = —(95091‘6);04 = —gﬂagiﬁ,a = _gﬁagaﬁ,i =—T%

is the Christoffel symbol for the connection on (Kx/g, g~ 1). This interpre-
tation agrees with our extended concept of a Lie derivative which says that
Ly, (9) = Vau,(g) = 0, where we read g = det(g,5) as a hermitian metric on

the abstract line bundle K, (forget about the indices).

x/s

Remark B.8. — In the computation of the curvature of the Weil-
Petersson metric for a family of Kéhler-Einstein manifolds, one needs to
compute the Lie derivative of

Ai- Az = AT, A],ygaég
By taking classical Lie derivatives, this equals
(Lo A3 = O(AZy) + af A% — af, AT,

a
B 0778

If we view the elements A%@adza as (0, 1)-forms with values in the (abstract)
hermitian vector bundle (Tx,, (9,3)), we obtain for the Lie derivative

(kaAi)% = (Vvai)% = Azﬁ pTa (I;A(zxﬁ o Alag k AU + aZA?ﬁ o
where I'}, = ggaakgm; = —ay, is the Christoffel symbol for the Chern

connection on the hermitian vector bundle (T'x_,(g,3)). Indeed, both ex-
pressions coincide.
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