
Publication membre du centre
Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/

ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
PHILIPP NAUMANN
Curvature of higher direct images

Tome XXX, no 1 (2021), p. 171–201.

https://doi.org/10.5802/afst.1670

© Université Paul Sabatier, Toulouse, 2021.

L’accès aux articles de la revue « Annales de la faculté des sciences de Toulouse
Mathématiques » (http://afst.centre-mersenne.org/) implique l’accord avec les
conditions générales d’utilisation (http://afst.centre-mersenne.org/legal/). Les
articles sont publiés sous la license CC-BY 4.0.

http://www.centre-mersenne.org/
https://doi.org/10.5802/afst.1670
http://afst.centre-mersenne.org/
http://afst.centre-mersenne.org/legal/


Annales de la faculté des sciences de Toulouse Volume XXX, no 1, 2021
pp. 171-201

Curvature of higher direct images (∗)

Philipp Naumann (1)

ABSTRACT. — Given a holomorphic family f : X → S of compact complex
manifolds and a relatively ample line bundle L → X , the higher direct images
Rn−pf∗Ωp

X/S
(L) carry induced hermitian metrics. We give an explicit formula for

the curvature tensor of these direct images. This generalizes a result of Schumacher
in [11], where he computed the curvature of Rn−pf∗Ωp

X/S
(K⊗m
X/S

) for a family of
canonically polarized manifolds. For p = n, the formula coincides with a formula of
Berndtsson obtained in [3]. Thus, when L is globally ample, we reprove his result on
the Nakano positivity of f∗(KX/S ⊗ L).

RÉSUMÉ. — Étant donné une famille holomorphe f : X → S de variétés com-
plexes compactes lisses et un fibré en droites L → X relativement ample, les fais-
ceaux images directes Rn−pf∗Ωp

X/S
(L) possèdent des métriques hermitiennes in-

duites. Nous donnons une formule explicite pour le tenseur de courbure de ces images
directes. Ceci généralise un résultat de Schumacher dans [11], où il a calculé la cour-
bure de Rn−pf∗Ωp

X/S
(K⊗m
X/S

) pour une famille de variétés canoniquement polari-
sées. Dans le cas p = n, la formule coïncide avec la formule de Berndtsson obtenue
dans [3]. Donc si L est globalement ample, nous prouvons à nouveau son résultat sur
la positivité de f∗(KX/S ⊗ L) dans le sens de Nakano.

1. Introduction

For a proper holomorphic submersion f : X → S of complex manifolds
and a line bundle L → X which is positive along the fibers Xs = f−1(s),
we consider the higher direct image sheaves Rn−pf∗ΩpX/S(L) whose fibers
are canonically isomorphic to the cohomology groups Hn−p(X,ΩpX(L)) by
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Kodaira–Nakano vanishing and the cohomology and base change theorem.
The understanding of this situation has applications to moduli problems. In
his article [11] Schumacher studies the case L = KX/S where the fiberwise
Kähler–Einstein metrics are used to construct a hermitian metric on the
relative canonical bundle which turned out to be semi-positive on the total
space. A compact curvature formula is given in this case. At first glance,
the method of computation seems to be restricted to the Kähler–Einstein
situation. In the general case, there is the result [2] of Berndtsson about
the Nakano (semi-) positivity of the direct image f∗(KX/S ⊗ L) in the case
where L is (semi-) positive. His proof relies on a careful choice of representa-
tives of sections. Relying on this method of computation, Mourougane and
Takayama studied in [9] the higher direct images Rqf∗ΩnX/S(E) for a Nakano
(semi-) positive vector bundle E over X . The proof given there relies on an
embedding of the higher direct image into a zero’th direct image in order to
apply the method of computation given in [2].

In the present work we compute the curvature of the higher direct images
Rn−pf∗ΩpX/S(L) under the assumption of local freeness, where (L, h) →
X is a hermitian line bundle which is positive along the fibers. The main
motivation for this is the observation that Berndtsson’s formula given in [3,
Thm. 1.2] coincides with Schumacher’s formula [11, Thm. 6] in the case
L = KX/S . This fact suggests that Schumacher’s method of computation
can be carried over to the more general setting. By putting this into practice,
the main technique consists of taking Lie derivatives of line bundle valued
forms along horizontal lifts. We give a detailed presentation of the technical
computation, which can be useful in different curvature computations.(1)

2. Differential geometric setup and statement of results

Let f : X → S be a proper holomorphic submersion of complex manifolds
with connected fibers and L a line bundle on X with hermitian metric h.
The curvature form of the hermitian line bundle is given by

ωX := 2π · c1(L, h) = −
√
−1∂∂ log h.

We consider the case where the hermitian bundle (L, h) is relatively positive,
which means that

ωXs := ωX |Xs

are Kähler forms on the n-dimensional fibers Xs. Then one has the notion of
the horizontal lift vs of a tangent vector ∂s on the base S (see Section 4.1 for

(1) The same curvature formula was also proved in [4] using a different method of
computation.
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the precise definition) and we get a representative of the Kodaira–Spencer
class by

As := ∂(vs)|Xs
.

Furthermore, one sets
ϕ := 〈vs, vs〉ωX ,

which is called the geodesic curvature. The coherent sheaf Rn−pf∗ΩpX/S(L) is
locally free on S outside a proper subvariety. In the case n = p and L ample,
the sheaf f∗(KX/S ⊗ L) is locally free by the Ohsawa–Takegoshi extension
theorem (see [2]). We assume the local freeness of

Rn−pf∗ΩpX/S(L)

in the general case, hence the statement of the base change theorem holds
(see Section 3.2). Now Lemma 2 of [11] applies, which says that we can
represent local sections of Rn−pf∗ΩpX/S(L) by ∂-closed (0, n− p)-forms with
values in ΩpX/S(L) on the total space, whose restrictions to the fibers are
harmonic (p, n−p)-forms with values in L. Let {ψ1, . . . , ψr} be a local frame
of the direct image consisting of such sections around a fixed point s ∈ S.
We denote by {(∂/∂si) | i = 1, . . . ,dimS} a basis of the complex tangent
space TsS of S over C, where si are local holomorphic coordinates on S. Let
Aα
iβ̄

(z, s)∂αdzβ̄ = ∂(vi)|Xs
be the ∂-closed representative of the Kodaira–

Spencer class of ∂i described above. Then these, together with contraction,
define maps

Aα
iβ̄
∂αdzβ̄∪ : A0,n−p(Xs,ΩpXs

(L|Xs
))→ A0,n−p+1(Xs,Ωp−1

Xs
(L|Xs

))

Aβ̄̄α∂β̄dzα∪ : A0,n−p(Xs,ΩpXs
(L|Xs

))→ A0,n−p−1(Xs,Ωp+1
Xs

(LXs
))

where p > 0 in the first and p < n in the second case. Note that this is
a formal analogy to the derivative of the period map in the classical case
(see [7]). We will apply the above cup products to harmonic (p, n−p)-forms.
In general, the results are not harmonic.

When applying the Laplace operator to (p, q)-forms with values in L on
the fibers Xs, we have

�∂ −�∂̄ = (n− p− q) · id

due to the definition ωXs
= ωX |Xs

and the Bochner–Kodaira–Nakano iden-
tity (see also the proof of Corollary 2.5). Thus, we write � = �∂ = �∂̄ in
the case q = n−p. By considering an eigenform decomposition and using the
above identity, we obtain that all eigenvalues of � are 0 or greater than 1,
hence the operator (�− 1)−1 exists (see Lemma 4.12). We use the notation
ψl̄ := ψl for the sections ψl and write g dV = ωXs

/n!. The main result is
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Theorem 2.1. — Let f : X → S be a proper holomorphic submersion
of complex manifolds and (L, h)→ X a relatively positive line bundle. With
the objects described above, the curvature of Rn−pf∗ΩpX/S(L) is given by

Rl̄kī (s) =
∫
Xs

ϕī · (ψk · ψl̄) g dV

+
∫
Xs

(�+ 1)−1(Ai ∪ ψk) · (Ā ∪ ψl̄) g dV

+
∫
Xs

(�− 1)−1(Ai ∪ ψl̄) · (Ā ∪ ψk) g dV

If (L, h) → X is non-negative, the only contribution which may be negative
originates from the harmonic parts in the third term

−
∫
Xs

H(Ai ∪ ψl̄) ·H(Aj ∪ ψk̄) g dV .

Remark 2.2. — The same method of computation gives a formula for a
relatively negative line bundle (L, h), where we set ωX = −2π · c1(L, h) in
this case.

Corollary 2.3 (compare [2, Thm. 1.2] and [3, Thm. 1.2]). — If L →
X is a (semi-)positive line bundle, which is positive along the fibers, then
f∗(KX/S ⊗ L) is Nakano (semi-)positive.

Proof. — Because of degree reasons, the third term in Theorem 2.1 van-
ishes for p = n. The operator (�+ 1)−1 is positive. Furthermore, we have

ωn+1
X = ωnX/S

∑√
−1ϕi ̄ · dsi ∧ ds̄ =

∑√
−1ϕi ̄ · dsi ∧ ds̄ g dV

modulo higher order terms in si, s̄.

Hence, the matrix (ϕī) is positive definite if L is positive. �

Corollary 2.4 ([11, Thm. 6]). — If X → S is a family of canon-
ically polarized compact complex manifolds, then the curvature tensor of
Rn−pf∗ΩpX/S(KX/S) is given by

Rl̄kī (s) =
∫
Xs

(�+ 1)−1(Ai ·Ā) · (ψk · ψl̄) g dV

+
∫
Xs

(�+ 1)−1(Ai ∪ ψk) · (Ā ∪ ψl̄) g dV

+
∫
Xs

(�− 1)−1(Ai ∪ ψl̄) · (Ā ∪ ψk) g dV
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Proof. — The Kähler–Einstein metrics ωXs
=
√
−1gαβ̄(z, s)dzα ∧ dzβ̄

on the fibers induce a hermitian metric on the relative canonical bundle
g−1 = (det gαβ̄)−1 with curvature form ωX . The Kähler–Einstein condition
gives ωX |Xs

= ωXs
. Furthermore, we have the elliptic equation (see [10])

(�+ 1)ϕī = Ai ·Ā.
Note also that the representatives Ai are harmonic in this special case. �

Corollary 2.5. — The direct images Rn−pf∗ΩpX/S(L) are all Nakano
positive if L is positive and X → S everywhere infinitesimal trivial. In par-
ticular, we obtain positivity if the family X → S is locally trivial.

Proof. — If X → S is infinitesimal trivial, we have Ai = ∂(bi) for a differ-
entiable vector field bαi ∂α on the fiberXs, because Ai represents the Kodaira–
Spencer class and hence needs to be ∂-exact. The Bochner–Kodaira–Nakano
identity says (on the fiber Xs)

�∂̄ −�∂ =
[√
−1Θ(L),Λ

]
.

But by definition, we have ωXs
=
√
−1Θ(L)|Xs . Furthermore, it holds (see [5,

Cor. VI.5.9])
[Lω,Λω]u = (p+ q − n)u for u ∈ Ap,q(Xs, L|Xs

).
Thus, the �∂̄-harmonic (p, n − p)-form ψl is also harmonic with respect to
�∂ , in particular ∂-exact. Therefore,

Ai ∪ ψl̄ = ∂(bi) ∪ ψl̄ = ∂(bi ∪ ψl̄),

so the harmonic part of Ai ∪ ψl̄ must vanish. �

Note that for a trivial fibration X × S → S, the pullback of an ample
line bundle L̂→ X and a family of positive metrics on L which give a semi-
positive metric on the pullback, we obtain Nakano semi-positivity of the
trivial vector bundle Hn−p(X,ΩpX(L))⊗OS on S equipped with a (possibly)
non-trivial metric.

After introducing Lie derivatives of line bundle valued forms (see also
Appendix B), we can use the method of computation given in [11, 12] in the
more general setting. The point is that the computation given there carries
over verbatim if one sets m = 1 and replaces KX/S by L. One has to check
that there is no point where the ∂∗-closedness of As is used, which is a crucial
fact. Moreover, there is no elliptic equation for ϕī in general. Thus, we must
not replace ϕī by (�+ 1)−1(Ai ·Ā). Finally note that by definition

ωXs
= ι∗Xs

ωX ,

where ιXs : Xs ↪→ X is the inclusion. Then the computation works without
the Kähler–Einstein condition. We give the details of the computation in the
general setting in the rest of the article.
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3. Preparations

3.1. Fiber integrals and Lie derivatives

Given a family f : X → S of compact complex manifolds Xs of dimension
n and a C∞ differential form η of degree 2n+ r, the fiber integral∫

X/S
η

is a differential form of degree r on S (see [11, §2.1] and [6, Ch. VII] for
the general definition). In our case η will be a relative (n, n)-form on the
total space, so that the fiber integral gives just a function on the base S. If
s1, . . . , sr are local holomorphic coordinates on the base, we need to compute
the derivatives

∂

∂sk

∫
Xs

η for 1 6 i 6 r and ∂

∂sl̄

∫
Xs

η, for 1 6 l 6 r.

This can be done by using Lie derivatives:
Lemma 3.1 ([11, Lemma 1]). — For 1 6 k 6 r, let wk be a differentiable

vector field whose projection to S equals ∂/∂sk. We write ∂/∂sl̄ for ∂/∂sl
and wl̄ for wl. Then

∂

∂sk

∫
Xs

η =
∫
Xs

Lwk
(η) and ∂

∂sl̄

∫
Xs

η =
∫
Xs

Lwl̄
(η),

where Lwk
and Lwl̄

denotes the Lie derivative in the direction of wk and wl̄
respectively.

Proof. — By Cartan’s formula, we have
Lwk

= d ◦ δwk
+ δwk

◦ d,
where d means exterior derivative on X and δwk

contraction with the vector
field vk. Because d commutes with the fiber integration and

δ∂/∂sk

∫
X/S

(η) =
∫
X/S

δwk
(η),

the assertion follows and analogous for the second identity. (See [6, Ch. VII,
Prop. X] for the basic properties of fiber integrals.) �
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3.2. Direct images and differential forms

Let f : X → S be a smooth proper family of Kähler manifols Xs and
(E , h) → X a hermitian holomorphic vector bundle on X . We assume that
the direct image Rqf∗E is locally free and furthermore that for all s ∈ S
the cohomology Hq+1(Xs, E ⊗ OXs

) vanishes. Thus the base change theo-
rem holds for Rqf∗E and we can identify the fiber Rqf∗E ⊗OS

C(s) with
Hq(Xs, E ⊗OX OXs) (see [1, Cor. 3.5]). The sections of the q-th direct im-
age sheaf Rqf∗E can locally, after replacing S by a neighborhood of a given
point, be represented in terms of Dolbeault cohomology by ∂-closed (0, q)-
forms with values in E . But on the fibers Hq(Xs, Es) the Kähler forms and
the hermitian metrics on the fibers give rise to harmonic representatives of
cohomology classes. The next Lemma of Schumacher is crucial for the later
computations:

Lemma 3.2 ([11, Lem. 2]). — Let Ψ̃ ∈ Rqf∗E be a section and ψs ∈
A0,q(Xs, Es) the harmonic representatives of the cohomology classes Ψ̃|Xs

.
Then locally with respect to S there exists a ∂-closed form Ψ ∈ A0,q(X , E),
which is a Dolbeault representative of Ψ̃ and whose restrictions to the fibers
Xs are ψs.

Proof. — For the sake of completeness, we recall the simple argument
from [11]. Let Φ ∈ A0,q(X , E) be a Dolbeault representative of Ψ̃. We denote
by ΦX/S the induced relative (0, q)-form. The harmonic representatives ψs,
which depend smoothly on s by a theorem of Kodaira and Spencer, give rise
to a relative form ΨX/S . There exists a relative (0, q − 1)-form χX/S on X ,
such that the exterior derivative in fiber direction ∂X/S(χX/S) satisfies

ΨX/S = ΦX/S + ∂X/S(χX/S).

A relative form can locally be extended to a genuine form on X . Denote by
{Ui} a covering of X , which possesses a partition of unity {ρi} such that all
the restrictions χX/S |Ui

can be extended to (0, q − 1)-forms χi on Ui. Then
we set

χ :=
∑

ρi χ
i.

Because of χiX/S = χX/S |Ui
and the property of the partition of unity, we

have that the induced relative form of χ is indeed given by χX/S . Thus the
form

Ψ := Φ + ∂χ

satisfies the requirements of the lemma. �
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4. Computation of the curvature

Computing the curvature of the L2-metric on Rn−pf∗ΩpX/S(L) requires
taking derivatives in the base direction of fiber integrals, which can be re-
alized by taking Lie derivatives of the integrands. These Lie derivatives can
be split up by introducing Lie derivatives of (p, n − p)-forms with values
in L. They are computed in terms of covariant derivatives with respect to
the Chern connection on (Xs, ωs) and the hermitian holomorphic bundle
(L, h)|Xs . We use the symbol ; for covariant derivatives and , for ordinary
derivatives. Greek letters indicate the fiber direction, whereas latin indices
stand for directions on the base. Because we are dealing with alternating
(p, q)-forms, the coefficients are meant to be skew-symmetric. Thus every
such (p, q)-form carries a factor 1/p!q!, which we suppress in the notation.
These factors play a role in the process of skew-symmetrizing the coefficients
of a (p, q)-form by taking alternating sums of the (not yet skew-symmetric)
coefficients.

4.1. Setup

As above, we denote by f : X → S a proper holomorphic submersion of
complex manifolds, whose fibers Xs have dimension n. We choose coordi-
nates zα on the fibers and coordinates si on the base S, which together give
coordinates on X . We write ∂i = ∂/∂si and ∂α = ∂/∂zα. With respect to
these coordinates, the coefficients of ωX will be denoted by gαβ̄ , gᾱ, giβ̄ and
gī. The horizontal lift vi of a tangent vector ∂i is a differentiable lift of ∂i
to X which is orthogonal to the fibers with respect to the sesquilinear form
ωX :

〈vi, ∂α〉ωX = 0 for all α = 1 . . . n.
This is well defined, since the form ωX is positive when restricted to the
fibers. In terms of the coefficients of ωX , it is given by

vi = ∂i + aαi ∂α,

where
aαi = −gβ̄αgiβ̄ .

Denoting the Kodaira–Spencer map for the family f : X → S at a given
point s ∈ S by

ρs : TsS → H1(Xs, TXs
),

the corresponding ∂-closed representative of the Kodaira–Spencer class ρs(∂i)
is given by

Ai := ∂(vi)|Xs = Aα
iβ̄

(z, s)∂αdzβ̄
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with Aα
iβ̄

= aα
i;β̄ . From this and the local expression of aαi , it follows from

the closedness of ωX that these Kodaira–Spencer forms induce symmetric
tensors:

Corollary 4.1. — Let Aiβ̄ δ̄ = gαβ̄A
α
iδ̄
. Then

Aiβ̄ δ̄ = Aiδ̄ β̄ .

By polarization, it is sufficient to treat the case where dimS = 1 for the
computation of the curvature, which simplifies the notation. Therefore, we
set s = s1, vs = v1, etc. We write s, s for the indices 1, 1 so that

vs = ∂s + aαs ∂α

and
As = Aα

sβ̄
∂αdzβ̄ .

We assume local freeness of the sheaf Rn−pf∗ΩpX/S(L). According to Lem-
ma 3.2, we can represent local sections of this sheaf by ∂-closed (0, n − p)-
forms with values in ΩpX/S(L), which restrict to harmonic (p, n − p)-forms
on the fibers. We denote such a section by ψ. In local coordinates, we have

ψ|Xs
= ψα1...αpβ̄p+1...β̄n

dzα1 ∧ . . . dzαp ∧ dzβ̄p+1 ∧ . . . dzβ̄n

= ψApB̄n−p
dzAp ∧ dzB̄n−p ,

where Ap = (α1, . . . , αp) and Bn−p = (βp+1, . . . , βn). The further compo-
nent of ψ is

ψα1...αpβ̄p+1...β̄n−1s̄
dzα1 ∧ . . . ∧ dzαp ∧ dzβ̄p+1 ∧ . . . dzβ̄n−1 ∧ ds.

The ∂-closedness of ψ means

ψApβ̄p+1...β̄n−1s̄;β̄n
= ψApβ̄p+1...β̄n−1β̄n;s̄. (4.1)

4.2. Cup product

Definition 4.2. — Let s ∈ S and A = Aα
sβ̄

(z, s)∂αdzβ̄ be the Kodaira–
Spencer form on the fiber Xs. The wedge product together with the contrac-
tion define maps from the space of L-valued (p, n− p)-forms

A ∪ : Ap,n−p(Xs, L)→ Ap−1,n−p+1(Xs, L)
A ∪ : Ap,n−p(Xs, L)→ Ap+1,n−p−1(Xs, L),
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where 0 6 p 6 n, which can be described locally by(
Aγ
sδ̄
∂γdzδ̄

)
∪
(
ψα1...αpβ̄p+1...β̄n

dzα1 ∧ . . . ∧ dzαp ∧ dzβ̄p+1 ∧ . . . ∧ dzβ̄n

)
= Aγ

sβ̄p
ψγα1...αp−1β̄p+1...β̄n

dzβ̄p ∧dzα1 ∧ . . .∧dzαp−1 ∧dzβ̄p+1 ∧ . . .∧dzβ̄n ,(
Aδ̄s̄γ∂γdzδ̄

)
∪
(
ψα1...αpβ̄p+1...β̄n

dzα1 ∧ . . . ∧ dzαp ∧ dzβ̄p+1 ∧ . . . ∧ dzβ̄n

)
= Aδ̄s̄α1

ψα2...αp+1δ̄ β̄p+2...β̄n
dzα1 ∧ . . . ∧ dzαp+1 ∧ dzβ̄p+2 ∧ . . . ∧ dzβ̄n .

4.3. Lie derivatives

Now we choose a local frame {ψ1, . . . , ψr} according to Lemma 3.2. The
components of the metric tensor H l̄k for Rn−pf∗ΩpX/S(L) on the base space
S are given by (q = n− p)

H l̄k(s) := 〈ψk, ψl〉 := 〈ψk|Xs
, ψl|Xs

〉 =
∫
Xs

ψk
ApB̄q

ψl̄
CqD̄p

gD̄pApgB̄qCqh g dV ,

which are integrals of inner products of harmonic representatives of the co-
homology classes. We also write

ψk · ψl̄ = ψk
ApB̄q

ψl̄
CqD̄p

gD̄pApgB̄qCqh

for the pointwise inner product of L-valued (p, q)-forms, which is the point-
wise inner product of the harmonic L-valued (p, n − p)-forms ψk|Xs and
ψl|Xs . When we compute derivatives with respect to the base of these fiber
integrals, we apply Lie derivatives with respect to differentiable lifts of the
tangent vectors according to Lemma 3.1. Here we choose the horizontal lifts,
which are in particular canonical lifts in the sense of Siu [13]. This simpli-
fies the computation in a considerable way. In order to break up the Lie
derivative of the pointwise inner product (which is a relative (n, n)-form),
we need to introduce Lie derivatives of relative differential forms with val-
ues in a line bundle. This can be done by using the hermitian connection
∇ on A(p,q)(Xs, L|Xs

) induced by the Chern connections on (TXs
, ωXs

) and
(L, h). We define the Lie derivative of ψ with respect to the horizontal lift v
by using Cartan’s formula

Lvψ := Lv(ψX/S) :=
(
(δv ◦ ∇+∇ ◦ δv)ψX/S

)
X/S (4.2)

and similar for the Lie derivative with respect to v. It is important to note
that here we only consider the fiberwise part ψX/S = (ψ|Xs

)s∈S of the form ψ
given by Lemma 3.2, since only this component contributes to the integral.
We note that this definition extends the usual Lie derivative for ordinary
tensors, which can as well be computed by using covariant differentiation. We
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refer to Appendix B for properties of Lie derivatives and a short discussion
of this concept.

Taking Lie derivatives is not type-preserving. We have the type decom-
position for ψ = ψk or ψ = ψl and v = vs

Lvψ = Lvψ
′ + Lvψ

′′,

where Lvψ′ is of type (p, n − p) and Lvψ′′ is of type (p − 1, n − p + 1). In
local coordinates, we have

Lvψ
′ =

ψApB̄n−p;s + aαsψApB̄n−p;α +
p∑
j=1

aαs;αj
ψα1...α...αpB̄n−p

|
j


dzAp ∧ dzB̄n−p (4.3)

Lvψ
′′ =

p∑
j=1

Aα
sβ̄p

ψα1...α...αpB̄n−p
|
j

dzα1 ∧ . . . ∧ dzβ̄p ∧ . . . ∧ dzαp ∧ dzβ̄p+1 ∧ . . . ∧ dzβ̄n

|
j

(4.4)

Similarly we have a type decomposition for the Lie derivative along v = vs̄

Lv̄ψ = Lv̄ψ
′ + Lv̄ψ

′′,

where Lv̄ψ′ is of type (p, n − p) and Lv̄ψ′′ is of type (p + 1, n − p − 1). In
local coordinates, this is

Lv̄ψ
′ =

ψApB̄n−p;s̄ + aβ̄s̄ψApB̄n−p;β̄ +
n∑

j=p+1
aβ̄
s̄;β̄j

ψApβ̄p+1...β̄...β̄n
|
j


dzAp ∧ dzB̄n−p (4.5)

Lv̄ψ
′′ =

n∑
j=p+1

Aβ̄s̄αp+1
ψApβ̄p+1...β̄...β̄n

|
j

dzα1 ∧ . . . ∧ dzαp ∧ dzβ̄p+1 ∧ . . . ∧ dzαp+1 ∧ . . . ∧ dzβ̄n

|
j

(4.6)

The type decomposition can be verified using definition 4.2. (At first glance,
one would expect more terms, but there is a cancelation in the computation.
We also refer to Corollary B.3 in the appendix.) For the readers convenience
we give a proof for Lvψ:
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Proof. — First, we have

∇(ψX/S)

=
(
ψApB̄n−p;s ds+ ψApB̄n−p;α dzα + ψApB̄n−p;s̄ ds+ ψApB̄n−p;β̄ dzβ̄

)
∧ dzAp ∧ dzB̄n−p

and

δv(ψX/S) =
p∑
j=1

(−1)j+1aαsψα1...α...αpB̄n−p
|
j

dzα1 ∧ . . .

∧ d̂zαj ∧ . . . ∧ dzαp ∧ dzB̄n−p .

Moreover, we get

δv
(
∇
(
ψX/S

))
=
(
ψApB̄n−p;s + aαsψApB̄n−p;α

)
dzAp ∧ dzB̄n−p

+
p∑
j=1

(−1)jaαsψα1...α...αpB̄n−p;s
|
j

ds ∧ dzα1 ∧ . . . ∧ d̂zαj ∧ . . . ∧ dzαp ∧ dzB̄n−p

+
p∑
j=1

(−1)jaαsψα1...α...αpB̄n−p;α
|
j

dzαj ∧dzα1 ∧ . . .∧ d̂zαj ∧ . . .∧dzαp ∧dzB̄n−p

+
p∑
j=1

(−1)jaαsψα1...α...αpB̄n−p;s̄
|
j

ds ∧ dzα1 ∧ . . . ∧ d̂zαj ∧ . . . ∧ dzαp ∧ dzB̄n−p

+
p∑
j=1

(−1)jaαsψα1...α...αpB̄n−p;β̄
|
j

dzβ̄∧dzα1 ∧ . . .∧ d̂zαj ∧ . . .∧dzαp ∧dzB̄n−p ,

and
∇
(
δv
(
ψX/S

))
=

p∑
j=1

(−1)j+1(aαsψα1...α...αpB̄n−p
|
j

);s ds∧dzα1 ∧...∧ d̂zαj ∧...∧dzαp ∧dzB̄n−p

+
p∑
j=1

(−1)j+1(aαsψα1...α...αpB̄n−p
|
j

);αj
dzαj∧dzα1∧...∧d̂zαj∧...∧dzαp∧dzB̄n−p

+
p∑
j=1

(−1)j+1(aαsψα1...α...αpB̄n−p
|
j

);s̄ ds∧dzα1 ∧...∧ d̂zαj ∧...∧dzαp ∧dzB̄n−p

+
p∑
j=1

(−1)j+1(aαsψα1...α...αpB̄n−p
|
j

);β̄p
dzβ̄p∧dzα1∧...∧d̂zαj∧...∧dzαp∧dzB̄n−p .
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We now split up the covariant derivative of the product in each line of
∇(δv(ψX/S)). According to definition (4.2), we have to add the expressions
for δv(∇(ψX/S)) and ∇(δv(ψX/S)). We see that the first line of δv(∇(ψX/S))
together with the first summand in the second line of ∇(δv(ψX/S)) gives the
formula for Lvψ′, the (p, n − p)-component of Lvψ. Furthermore, the first
summand in the last line of ∇(δv(ψX/S)) gives the expression for Lvψ′′. All
the remaining terms either cancel each other or contain a ds or ds respec-
tively, hence do not contribute to the relative part. �

We need the following lemma

Lemma 4.3. — The Lie derivative of the volume element g dV = ωns /n!
along the horizontal lift v vanishes, i.e.

Lv(g dV ) = 0.

Proof. — It suffices to show that the (1, 1) component of Lv(gαβ̄) van-
ishes, which implies Lv(det(gαβ̄)) = 0. We have

Lv(gαβ̄)αβ̄ = gαβ̄,s + aγsgαβ̄;γ + aγs;αgγβ̄ = −asβ̄;α + aγs;αgγβ̄ = 0. �

4.4. Main part of the computation

We start computing the curvature by computing the first order variation.
Using Lie derivatives, the pointwise inner products can be broken up:

Proposition 4.4.
∂

∂s
〈ψk, ψl〉 = 〈Lvψk, ψl〉+ 〈ψk, Lv̄ψl〉,

where ∂/∂s denotes a tangent vector on the base S and v its horizontal lift.

Proof. — By Lemma 3.1 we have (q = n− p)

∂

∂s
〈ψk, ψl〉 =

∫
X

Lv

(
ψk
ApB̄q

ψl̄
CqD̄p

gD̄pApgB̄qCqh g dV
)
.

The integrand is now a Lie derivative of an ordinary (n, n)-form. We have

Lv

(
ψk
ApB̄q

ψl̄
CqD̄p

gD̄pApgB̄qCqh g dV
)

= Lv

(
ψk
ApB̄q

ψl̄
CqD̄p

gD̄pApgB̄qCqh
)
g dV,
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because Lv(g dV ) vanishes. Now the Lie derivative of a function is just the
ordinary derivative in the direction of v, so we get (by using Einstein’s sum-
mation convention and, for ordinary derivatives)

Lv

(
ψk
ApB̄q

ψl̄
CqD̄p

gD̄pApgB̄qCqh
)

=
(
∂s + aαs ∂α

)(
ψk
ApB̄q

ψl̄
CqD̄p

gD̄pApgB̄qCqh
)

=
(
ψApB̄q,s

+ aαsψApB̄q,α

)(
ψl̄
CqD̄p

gD̄pApgB̄qCqh
)

+ ψk
ApB̄q

(
ψl̄
CqD̄p,s

+ aαsψ
l̄
CqD̄p,α

)(
gD̄pApgB̄qCqh

)
+ ψk

ApB̄q
ψl̄
CqD̄p

(
∂s(gδ̄1α1)gδ̄2α2 . . . gβ̄nγnh+ gδ̄1α1∂s(gδ̄2α2) . . . gβ̄nγnh

+ . . .+ gδ̄1α1gδ̄2α2 . . . ∂s(gβ̄nγn)h
)

+ ψk
ApB̄q

ψl̄
CqD̄p

(
aαs ∂α(gδ̄1α1)gδ̄2α2 . . . gβ̄nγnh+gδ̄1α1aαs ∂α(gδ̄2α2) . . . gβ̄nγnh

+ . . .+ gδ̄1α1gδ̄2α2 . . . aαs ∂α(gβ̄nγn)h
)

+
(
ψk
ApB̄q

ψl̄
CqD̄p

gD̄pApgB̄qCq

)(
∂sh+ aαs ∂αh

)
Now we use the identities ∂sgβ̄γ = gβ̄σaγs;σ and ∂αg

β̄γ = −gβ̄σΓγασ (see
Lemma A.1) as well as the Christoffel symbols for the Chern connection
on (L, h) which are h−1∂sh = Γhs and h−1∂αh = Γhα. The above somewhat
lengthy expression can then be written as (now we use ; for indicating co-
variant derivatives)

(
ψk
ApB̄q,s

+ ΓhsψkApB̄q
+ aαs

(
ψk
ApB̄q,α

−
p∑
j=1

Γσααj
ψk
α1...σ...αpB̄q

|
j

+ Γhαψk
))

× ψl̄
CqD̄p

gD̄pApgB̄qCqh

+ ψk
ApB̄q

(
ψl̄
CqD̄p,s

+aαs

(
ψl̄
CqD̄p,α

−
n∑

j=p+1
Γσαγj

ψl̄
γp+1...σ...αnD̄p

|
j

))
gD̄pApgB̄qCqh

+
(

p∑
j=1

ψk
α1...α...αpB̄q

|
j

aαs;αj

)
ψl̄
CqD̄p

gD̄pApgB̄qCqh

+ ψk
ApB̄q

(
n∑

j=p+1
ψl̄
γp+1...α...γnD̄p

|
j

aαs;γj

)
gD̄pApgB̄qCqh
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=
(
ψk
ApB̄q :s + aαsψ

k
ApB̄q ;α

)
ψl̄
CqD̄p

gD̄pApgB̄qCqh

+ ψk
ApB̄q

(
ψl̄
CqD̄p;s + aαsψ

l̄
CqD̄p;α

)
gD̄pApgB̄qCqh

+
(

p∑
j=1

ψk
α1...α...αpB̄q

|
j

aαs;αj

)
ψl̄
CqD̄p

gD̄pApgB̄qCqh

+ ψk
ApB̄q

(
n∑

j=p+1
ψl̄
γp+1...α...γnD̄p

|
j

aαs;γj

)
gD̄pApgB̄qCqh

The (p, q)-components of the forms Lvψ and Lv̄ψl are given by

(Lvψk)(p,q) =
(
ψk
ApB̄q ;s + aαsψ

k
ApB̄q ;α +

p∑
j=1

aαs;αj
ψk
α1...α...αpB̄q

|
j

)
dzAp ∧ dzB̄q

and

(Lv̄ψl)(p,q) =
(
ψl
DpC̄q ;s̄+aγ̄s̄ψlDpC̄q ;γ̄+

n∑
j=p+1

aγ̄s̄;γ̄j
ψlDpγ̄p+1...γ̄...γ̄n

|
j

)
dzDp∧dzC̄q ,

thus the statement of the proposition follows. �

The above proposition is a main reason for the use of Lie derivatives. A
second justification for using Lie derivatives is given by the following lemma,
which allows us to express some components of the Lie derivatives as cup
products with the Kodaira–Spencer form or the horizontal lift respectively:

Lemma 4.5.
Lvψ

′′ = As ∪ ψ, (4.7)
Lv̄ψ

′′ = (−1)pAs̄ ∪ ψ, (4.8)
Lv̄ψ

′ = (−1)p∂(v ∪ ψ). (4.9)

We note that here and in the following the operators ∂, ∂, ∂∗ and ∂∗ mean
the fiberwise operators, because we are always dealing with relative forms.

Proof. — First, we prove (4.7): We have

Lvψ
′′

=
p∑
j=1

Aα
sβ̄p

ψα1...α...αpB̄n−p
|
j

dzα1 ∧ ...∧ dzβ̄p ∧ ...∧ dzαp ∧ dzβ̄p+1 ∧ ...∧ dzβ̄n

|
j

=
p∑
j=1

Aα
sβ̄p

ψαα1...αp−1B̄n−p
dzβ̄p ∧ dzα1 ∧ ... ∧ dzαp−1 ∧ dzβ̄p+1 ∧ ... ∧ dzβ̄n .
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Similarly, we have

Lv̄ψ
′′ =

n∑
j=p+1

Aβ̄s̄αp+1
ψα1...αpβ̄p+1...β̄...β̄n

|
j

dzα1 ∧ . . . ∧ dzαp ∧ dzβ̄p+1 ∧ . . . ∧ dzαp+1 ∧ . . . ∧ dzβ̄n

|
j

=
n∑

j=p+1
Aβ̄s̄αp+1

ψα1...αpβ̄β̄p+2...β̄n

dzα1 ∧ . . . ∧ dzαp ∧ dzαp+1 ∧ dzβ̄p+2 ∧ . . . ∧ dzβ̄n .

Finally, we prove (4.9): We have

v ∪ ψ =
(
ψAps̄ β̄p+1...β̄n−1

+ aβ̄s̄ψApβ̄ β̄p+1...β̄n−1

)
dzAp ∧ dzβ̄p+1 ∧ . . . ∧ dzβ̄n−1

= (−1)n−p−1
(
ψApβ̄p+1...β̄n−1s̄

+ aβ̄s̄ψApβ̄p+1...β̄n−1β̄

)
dzAp ∧ dzβ̄p+1 ∧ . . . ∧ dzβ̄n−1 ,

which is a relative form, and hence

∂(v ∪ ψ) = (−1)n−p−1
(
ψApβ̄p+1...β̄n−1s̄;β̄n

+
(
aβ̄s̄ψApβ̄p+1...β̄n−1β̄

)
;β̄n

)
dzβ̄n ∧ dzAp ∧ dzβ̄p+1 ∧ . . . ∧ dzβ̄n−1

= (−1)p(−1)n−p−1
(
ψApβ̄p+1...β̄n−1s̄;β̄n

+
(
aβ̄s̄ψApβ̄p+1...β̄n−1β̄

)
;β̄n

)
dzAp ∧ dzβ̄n ∧ dzβ̄p+1 ∧ . . . ∧ dzβ̄n−1

The skew-symmetrized coefficients of (aβ̄s̄ψApβ̄p+1...β̄n−1β̄
);β̄n

dzAp ∧ dzβ̄n ∧
dzβ̄p+1 ∧ . . . ∧ dzβ̄n−1 are given by[
∂(aβ̄s̄ψApβ̄p+1...β̄n−1β̄

)
]
Apβ̄p+1...β̄n

= (−1)p
n∑

j=p+1
(−1)j−p−1

(
aβ̄s̄ψApβ̄p+1...

ˆ̄βj ...β̄nβ̄

)
;β̄j

= (−1)p
n∑

j=p+1
(−1)j−p−1

(
aβ̄
s̄;β̄j

ψ
Apβ̄p+1...

ˆ̄βj ...β̄nβ̄
+ aβ̄s̄ψApβ̄p+1...

ˆ̄βj ...β̄nβ̄ ;β̄j

)
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Remember that we have

Lv̄ψ
′ =

(
ψApβ̄p+1...β̄n;s̄ + aβ̄s̄ψApβ̄p+1...β̄n;β̄ +

n∑
j=p+1

aβ̄
s̄;β̄j

ψApβ̄p+1...β̄...β̄n
|
j

)

dzAp ∧ dzB̄n−p .

Now the identity (4.9) follows from the ∂-closedness of ψ, that means equa-
tion (4.1) and the ∂-closedness of ψ|Xs

along the fibers. We note that it is
only here where we use Lemma 3.2, the fact that ψ is globally ∂-closed, in
order to cook up the relative form v ∪ ψ which fulfills (4.9). �

Now we can simplify the expression for the first order variation of the
metric tensor. Because of (4.9) and the harmonicity of ψk|Xs , we have

〈ψk, Lv̄ψl〉 = 〈ψk, Lv̄(ψl)′〉 = 〈ψk, (−1)p∂(v ∪ ψl)〉
= 〈∂∗(ψk), (−1)p(v ∪ ψl)〉 = 0

for all s ∈ S. Thus by Lemma 4.4, we have
∂

∂s
H l̄k = 〈Lvψk, ψl〉+ 〈ψk, Lv̄ψl〉

= 〈Lvψk, ψl〉
= 〈Lv(ψk)′, ψl〉.

For later computations, we need to compare Laplacians:

Lemma 4.6. — We have the following relation on the space Ap,q(Xs, L|Xs)

�∂ −�∂̄ = (n− p− q) · id (4.10)

In particular, the harmonic forms ψ ∈ Ap,n−p(Xs, L|Xs
) are also harmonic

with respect to ∂, which is the (1, 0)- part of the hermitian connection on
Ap,n−p(Xs, L|Xs

).

Proof. — The Bochner–Kodaira–Nakano identity says (on the fiber Xs)

�∂̄ −�∂ =
[√
−1Θ(L),Λ

]
.

But by definition, we have ωXs
=
√
−1Θ(L)|Xs

. Furthermore, it holds (see [5,
Cor. VI.5.9])

[Lω,Λω]u = (p+ q − n)u for u ∈ Ap,q(Xs, L|Xs
). �

Next, we start to compute the second order derivative of H l̄k and begin
with

∂

∂s
H l̄k = 〈Lvψk, ψl〉.
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Now by using Proposition B.4 from the appendix we obtain

∂s̄∂s〈ψk, ψl〉

= 〈Lv̄Lvψk, ψl〉+ 〈Lvψk, Lvψl〉
= 〈(L[v̄,v] + Θ(L)v̄v)ψk, ψl〉+ 〈LvLv̄ψk, ψl〉+ 〈Lvψk, Lvψl〉
= 〈(L[v̄,v] + Θ(L)v̄v)ψk, ψl〉+ ∂s〈Lv̄ψk, ψl〉 − 〈Lv̄ψk, Lv̄ψl〉+ 〈Lvψk, Lvψl〉.

Because of 〈Lv̄ψk, ψl〉 ≡ 0 for all s ∈ S as we just saw, we get

∂s̄∂s〈ψk, ψl〉

= 〈(L[v̄,v] + Θ(L)v̄v)ψk, ψl〉+ 〈Lvψk, Lvψl〉 − 〈Lv̄ψk, Lv̄ψl〉. (4.11)

Now we treat each term on the right hand side of (4.11) separately. For the
first summand, we have

Lemma 4.7.
L[v̄,v] + Θ(L)v̄v = [−ϕ;α∂α + ϕ;β̄∂β̄ , ]− ϕ · id, (4.12)

where the bracket [w, ] stands for a Lie derivative along the vector field w.

Proof. — We first compute the vector field [v, v]:

[v, v] = [∂s̄ + aβ̄s̄ ∂s̄, ∂s + aαs ∂α]

=
(
∂s̄(aαs ) + aβ̄s̄ a

α
a|β̄

)
∂α −

(
∂s(aβ̄s̄ ) + aαs a

β̄
s̄|α

)
∂β̄

Now we have

∂s̄(aαs ) = −∂s̄(gβ̄αgsβ̄) = gβ̄σgσs̄|τ̄g
τ̄αgsβ̄ − g

β̄αgsβ̄|s

= gβ̄σas̄σ;τ̄g
τ̄αasβ̄ − g

β̄αgss̄;β̄ .

Because of ϕ = gss̄ − gαs̄gsβ̄gβ̄α the coefficient of ∂α is gβ̄αϕ;β̄ = ϕ;α. In
the same way the get the coefficient of ∂β̄ . Next, we need to compute the
contribution of the connection on L. Because of

√
−1[∂, ∂] =

√
−1Θ(L) =

ωX , we have

Θ(L)v̄v = −Θ(L)vv̄

= −
(
gss̄ + aβ̄s̄ gsβ̄ + aαs gαs̄ + aβ̄s̄ a

α
s gαβ̄

)
= −ϕ. �

Lemma 4.8.

〈(L[v̄,v] + Θ(L)v̄v)ψk, ψl〉 = −〈ϕ · ψk, ψl〉 = −
∫
Xs

ϕ ψk · ψl̄ g dV . (4.13)
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Proof. — The ∂-closedness of ψk means that

ψk;α =
p∑
j=1

ψk
α1...α...αpB̄n−p;αj

|
j

.

Thus

[ϕ;α∂α, ψ
k
ApB̄n−p

]′ = ϕ;αψk;α +
p∑
j=1

ϕ;α
;αj
ψk
α1...α...αpB̄n−p

|
j

=
p∑
j=1

(
ϕ;αψk

α1...α...αpB̄n−p
|
j

)
;αj

= ∂
(
ϕ;α∂α ∪ ψk

)
.

This leads to

〈[ϕ;α∂α, ψ
k
ApB̄n−p

], ψl〉 = 〈[ϕ;α∂α, ψ
k
ApB̄n−p

]′, ψl〉

= 〈∂
(
ϕ;α∂α ∪ ψk

)
, ψl〉 = 〈ϕ;α∂α ∪ ψk, ∂∗ψl〉 = 0.

In the same way we get

〈[ϕ;β̄∂β̄ , ψ
k
ApB̄n−p

], ψl〉 = 0. �

The following proposition contains important identities that allow to ob-
tain an intrinsic expression for the curvature:

Proposition 4.9.

∂(Lvψk)′ = ∂(As ∪ ψk), (4.14)
∂∗(Lvψk)′ = 0, (4.15)

∂∗(As ∪ ψk) = 0, (4.16)
(−1)p∂∗(Lv̄ψk)′ = ∂∗(As̄ ∪ ψk), (4.17)

∂(Lv̄ψk)′ = 0, (4.18)
∂(As̄ ∪ ψk) = 0. (4.19)

The proof is given in Appendix A. Now we look at the second term
in (4.11) and decompose it into its two types:

〈Lvψk, Lvψl〉 = 〈(Lvψk)′, (Lvψl)′〉 − 〈(Lvψk)′′, (Lvψl)′′〉
= 〈(Lvψk)′, (Lvψl)′〉 − 〈As ∪ ψk, As ∪ ψl〉
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because of (4.7). At this point, one might wonder about the minus sign. The
reason for this is as follows: We have

∂s̄∂s〈ψk, ψl〉 = ∂s̄〈(Lvψk)′, ψl〉
= 〈Lv̄(Lvψk)′, ψl〉+ 〈(Lvψk)′, (Lvψl)′〉
= 〈Lv̄(Lvψk), ψl〉 − 〈(Lv̄(Lvψk)′′)′′, ψl〉+ 〈(Lvψk)′, (Lvψl)′〉
= 〈Lv̄(Lvψk), ψl〉+ 〈(Lvψk)′, (Lvψl)′〉 − 〈(Lvψk)′′, (Lvψl)′′〉,

where for the last line we used the following lemma

Lemma 4.10.

〈(Lv̄(Lvψk)′′)′′, ψl〉 = 〈(Lvψk)′′, (Lvψl)′′〉

Proof. — Because of (4.4) we have for the pointwise inner product of
(p− 1, n− p+ 1)-forms

(Lvψk)′′ · (Lvψl)′′ = Aα
sβ̄p

ψk
αα1...αp−1β̄p+1...β̄n

Aγ̄s̄δp
ψl̄γ̄ γ̄1...γ̄p−1δp+1...δn

gγ̄1α1 . . . gγ̄p−1αp−1gβ̄pδpgβ̄p+1δp+1 . . . gβ̄nδn

On the other hand, we get by using (4.4) and (4.6) for the pointwise inner
product of (p, n− p)-forms

(Lv̄(Lvψk)′′)′′ · ψl = (−1)p−1Aα
sβ̄
ψk
αα1...αp−1β̄p+1...β̄n

Aβ̄s̄αp
ψl̄γ̄1...γ̄pδp+1...δn

gγ̄1α1 . . . gγ̄pαpgβ̄p+1δp+1 . . . gβ̄nδn

Now we take the term Aβ̄s̄αp
ψl̄γ̄1...γ̄pδp+1...δn

gγ̄pαp and rewrite it as

Aβ̄s̄αp
ψl̄γ̄1...γ̄pδp+1...δn

gγ̄pαp = (−1)p−1Aβ̄s̄αp
ψl̄γ̄pγ̄1...γ̄p−1δp+1...δn

gγ̄pαp

= (−1)p−1Aβ̄s̄αp
ψl̄γ̄ γ̄1...γ̄p−1δp+1...δn

gγ̄αp

= (−1)p−1Aβ̄γ̄s̄ ψl̄γ̄ γ̄1...γ̄p−1δp+1...δn

= (−1)p−1Aγ̄β̄s̄ ψl̄γ̄ γ̄1...γ̄p−1δp+1...δn

= (−1)p−1Aγ̄s̄δp
ψl̄γ̄ γ̄1...γ̄p−1δp+1...δn

gβ̄δp

Thus both expressions coincide. �

Now let G∂ and G∂̄ be the Green operators on the spaces Ap,q(Xs, L|Xs)
with respect to �∂ and �∂̄ respectively. According to Lemma 4.6 they coin-
cide for p+ q = n. Now we use normal coordinates (of the second kind) at a
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given point s0 ∈ S. The condition (∂/∂s)H l̄k|s0 = 0 for all k, l means that
for s = s0 the harmonic projection

H((Lvψk)′) = 0
vanishes for all k. Thus, using the identity id = H +G∂̄�∂̄ we can write

(Lvψk)′ = G∂̄�∂̄(Lvψk)′ = G∂̄∂
∗∂(Lvψk)′ = ∂∗G∂̄∂(As ∪ ψk)

by (4.15) and (4.14). Because the form ∂(Lvψk)′ = ∂(As ∪ ψk) is of type
(p, n − p + 1), we have G∂̄ = (�∂ + 1)−1 on such forms by Lemma 4.6. We
proceed by

〈(Lvψk)′, (Lvψl)′〉 = 〈∂∗G∂̄∂(As ∪ ψk), (Lvψl)′〉
= 〈G∂̄∂(As ∪ ψk), ∂(As ∪ ψl)〉
= 〈(�∂ + 1)−1∂(As ∪ ψk), ∂(As ∪ ψl)〉
= 〈∂∗(�∂ + 1)−1∂(As ∪ ψk), As ∪ ψl〉.

Now using (4.16) gives
〈(Lvψk)′, (Lvψl)′〉 = 〈(�∂ + 1)−1�∂(As ∪ ψk), As ∪ ψl〉

= 〈(�∂ + 1)−1(�∂ + 1− 1)(As ∪ ψk), As ∪ ψl〉
= 〈As ∪ ψk, As ∪ ψl〉 − 〈(�∂ + 1)−1(As ∪ ψk), As ∪ ψl〉.

Altogether, we have

Lemma 4.11.

〈Lvψk, Lvψl〉 = −
∫
Xs

(�+ 1)−1(As ∪ ψk) · (As̄ ∪ ψl̄) g dV (4.20)

(We write � = �∂ = �∂̄ when applied to (p− 1, n− p+ 1)-forms.)

Finally, we look at the third term in (4.11) and decompose it into its two
types:

〈Lv̄ψk, Lv̄ψl〉 = 〈(Lv̄ψk)′, (Lv̄ψl)′〉 − 〈(Lv̄ψk)′′, (Lv̄ψl)′′〉
= 〈(Lv̄ψk)′, (Lv̄ψl)′〉 − 〈As̄ ∪ ψk, As̄ ∪ ψl〉,

where we used (4.8). The identity (4.9) implies that the harmonic projection
of (Lv̄ψk)′ vanish. Hence we can write

〈(Lv̄ψk)′, (Lv̄ψl)′〉 = 〈G∂̄�∂̄(Lv̄ψk)′, (Lv̄ψl)′〉
(4.18)= 〈(G∂̄∂ ∂∗Lv̄ψk)′, (Lv̄ψl)′〉

= 〈G∂̄∂
∗(Lv̄ψk)′, ∂∗(Lv̄ψl)′〉

(4.17)= 〈G∂̄∂
∗(As̄ ∪ ψk), ∂∗(As̄ ∪ ψl)〉.

Now we have

– 191 –



Philipp Naumann

Lemma 4.12. — Let
∑
ν ρν be the eigenfunction decomposition ofAs̄∪ψk.

Then all the eigenvalues λν > 1 or λ0 = 0. In particular (�− 1)−1(As̄ ∪ψk)
exists.

Proof. — We consider ∂∗(As̄∪ψk) =
∑
ν ∂
∗(ρν), which is a (p, n−p−1)-

form, for which we have �∂ = �∂̄ + id according to lemma 4.6. Hence

λν∂
∗(ρν) = �∂∂∗(ρν) = �∂̄∂∗(ρν) + ∂∗(ρν).

Form this equation we can read off that
∑
ν ∂
∗(ρν) is the eigenfunction de-

composition of ∂∗(As̄∪ψk) = ∂∗(Lv̄ψk)′ with respect to �∂̄ with eigenvalues
λν −1 > 0. But this form is orthogonal to the space of ∂-harmonic functions
so that λν − 1 = 0 does not occur. The harmonic part of As̄ ∪ ψk may be
present though. (If ∂∗ρν = 0, then also ∂ρν = 0, hence ρν is harmonic. This
is because by 4.19 we have ∂(As̄ ∪ψk) = 0, hence ∂ρν = 0 for all ν, because∑
ν ∂(ρν) is the eigenfunction decomposition of ∂(As̄ ∪ ψk).) �

Now we can proceed as follows. The form ∂∗(As̄ ∪ ψk) = ∂∗(Lv̄ψk)′ is
orthogonal to both spaces of ∂- and ∂-harmonic forms. Hence we can write

G∂̄∂
∗(As̄ ∪ ψk) = (�∂ − 1)−1∂∗(As̄ ∪ ψk),

so that we have

〈(Lv̄ψk)′, (Lv̄ψl)′〉 = 〈(�∂ − 1)−1∂∗(As̄ ∪ ψk), ∂∗(As̄ ∪ ψl)〉
= 〈(�∂ − 1)−1∂∂∗(As̄ ∪ ψk), As̄ ∪ ψl〉
= 〈(�∂ − 1)−1�∂(As̄ ∪ ψk), As̄ ∪ ψl〉
= 〈(�∂ − 1)−1(�∂ − 1 + 1)(As̄ ∪ ψk), As̄ ∪ ψl〉
= 〈As̄ ∪ ψk, As̄ ∪ ψl〉+ 〈(�∂ − 1)−1(As̄ ∪ ψk), As̄ ∪ ψl〉.

Alltogether we get for our last term

Lemma 4.13.

〈Lv̄ψk, Lv̄ψl〉 =
∫
Xs

(�− 1)−1(As̄ ∪ ψk) · (As ∪ ψl̄) g dV . (4.21)

(We write again � = �∂ = �∂̄ when applied to (p+ 1, n− p− 1)-forms.)

Now our main result Theorem 2.1 follows form (4.11), (4.13), (4.20),
(4.21) and the fact that Rl̄kī (s0) = −∂̄∂iH l̄k(s0) in normal coordinates at
the point s0 ∈ S.
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Appendix A. Proof of Proposition 4.9

Proof of Proposition 4.9. — We start with (4.14): We drop the super-
script k and note that the tensors are skew-symmetrized as coefficients of
alternating forms. We start with the identities

ψ;sβ̄n+1
= ψ;β̄n+1s

− gsβ̄n+1
ψ = asβ̄n+1

ψ, (A.1)
ψ;αβ̄n+1

= ψ;β̄n+1α
− gαβ̄n+1

ψ

−
p∑
j=1

ψα1...σ...αpB̄n−p
Rσ
αjαβ̄n+1

−
n∑

j=p+1
ψApβ̄p+1...τ̄ ...β̄n

Rτ̄
β̄jαβ̄n

aα
s;αj β̄n+1

= Aα
sβ̄n+1;αj

+ aσsR
α
σαj β̄n+1

. (A.2)

Starting from (4.3) we get using

∂Lvψ
′ =

(
ψ;sβ̄n+1

+Aα
sβ̄n+1

ψ;α + aαsψ;αβ̄n+1
+

p∑
j=1

aα
s;αj β̄n+1

ψα1...α...αp,B̄n−p

+
p∑
j=1

aαs;αj
ψα1...α...αpB̄n−p;β̄n+1

)
dzβ̄n+1 ∧ dzAp ∧ dzB̄n−p

=
(
Aα
sβ̄n+1

ψ;α+
p∑
j=1

Aα
sβ̄n+1;αj

ψα1...α...αpB̄n−p

)
dzβ̄n+1 ∧dzAp ∧dzB̄n−p .

Note that we also used the symmetries of the curvature 4-tensor and the
∂-closedness of ψ. Because of the fiberwise ∂-closedness of ψ this equals

p∑
j=1

(Aα
sβ̄n+1

ψα1...α...αpB̄n−p
);αj

dzβ̄n+1 ∧ dzAp ∧ zB̄n−p

= (−1)n
p∑
j=1

(Aα
sβ̄n+1

ψαα2...αpB̄n−p
);α1dzα1 ∧ dzAp−1 ∧ dzβ̄1 ∧ . . . ∧ dzβ̄n+1

= ∂
(

(−1)nAα
sβ̄n+1

ψαα2...αpβ̄p+1...β̄n
dzAp−1 ∧ dzB̄n+1

)
= ∂(As ∪ ψ.)

This proves (4.14). Next, we prove (4.15). For this, we need the following

Lemma A.1. — Let Γσαγ = gβ̄σ∂αgγβ̄ be the Christoffel symbol for the
metric (gαβ̄) in TX/S in fiber direction. Then we have

∂s(Γσαγ) = −aσs;αγ
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Proof. — We start with

∂sg
β̄σ = −gβ̄αgδ̄σ∂sgαδ̄ = gβ̄αaσs;α,

hence
gαβ̄∂sg

β̄σ = aσs;α.

This gives

aσs;αγ = gαβ̄(∂γ∂sgβ̄σ + Γσγδ∂sgβ̄δ)

= gαβ̄∂s∂γg
β̄σ + (−gδβ̄∂γgβ̄σ)(−∂sgαβ̄gβ̄δ̄)

= gαβ̄∂s∂γg
β̄σ + ∂γg

β̄σ∂sgαβ̄

On the other hand, we have

∂s(Γσαγ) = ∂s(Γσγα) = ∂s(−gαβ̄∂γgβ̄σ) = −∂sgαβ̄∂γgβ̄σ − gαβ̄∂s∂γgδ̄σ

This gives the statement. �

Now we have
ψ;s = ψs + Γhsψ

and

ψ;γ = ψs + Γhγψ −
p∑
j=1

Γσγαj
ψα1...σ...αpB̄n−p

This gives

ψ;sγ = (ψs + Γhsψ)γ + Γhγ(ψs + Γhsψ)−
p∑
j=1

Γσγαj
(ψs + Γhsψ)α1...σ...αpB̄n−p

and

ψ;γs =
(
ψγ + Γhγψ −

p∑
j=1

Γσγαj
ψα1...σ...αpB̄n−p

)
s

+ Γhs

(
ψγ + Γhγψ −

p∑
j=1

Γσγαj
ψα1...σ...αpB̄n−p

)
Hence, it follows

ψ;sγ − ψ;γs =
p∑
j=1

(∂sΓσγαj
)ψα1...σ...αpB̄n−p

and by the preceding lemma

ψ;γs = ψ;sγ +
p∑
j=1

aσs;αjγψα1...σ...αpB̄n−p
(A.3)
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Now by differentiating the equation gβ̄nγψ;γ = 0 in the direction of s, by
using ∂sgβ̄nγ = gβ̄nσaγs;σ as well as (A.3) it follows

gβ̄nγψ;sγ = −ψ;γg
β̄nσaγs;σ −

p∑
j=1

gβ̄nγaσs;αjγψα1...σ...αpB̄n−p
(A.4)

Next, since fiberwise ψ is ∂∗-closed,

gβ̄nγ(aαsψ;α);γ = gβ̄nγaαs;γψ;α (A.5)
and with the same argument

gβ̄nγ

(
p∑
j=1

aσs;αj
ψα1...σ...αpB̄n−p

)
;γ

= gβ̄nγ

p∑
j=1

aσs;αjγψα1...σ...αpB̄n−p
. (A.6)

Now ∂∗(Lvψ′) = 0 follows from (A.4), (A.5) and (A.6). We come to the
∂∗-closedness (4.16) of As ∪ ψ. We need to show that(

Aα
sβ̄n+1

ψαα2...αpB̄n−p

)
;δ̄
gδ̄αp

vanishes. Since ∂∗ψ = 0 fiberwise, the above equality equals

Aα
sβ̄n+1;δ̄ψαα2...αpB̄n−p

gδ̄αp .

Because of the ∂-closedness of As this equals
(Aααp

s );β̄n+1
ψαα2...αpB̄n−p

However,
Aααp
s = Aαpα

s

whereas ψ is skew-symmetric so that also this contribution vanishes.

Next, we proof (4.17). We have

Lv̄ψ
′ = ψ;s̄ + aβ̄s̄ψ;β̄ +

n∑
j=p+1

aβ̄
s̄;β̄j

ψApβ̄p+1...β̄...β̄n

Furthermore,
ψ;s̄γ = ψγs̄ + gγs̄ψ = ψ;γs̄ − as̄γψ,
ψ;β̄γ = ψγβ̄ + gγβ̄ψ

+
n∑
j=1

ψα1...σ...αpB̄n−p
Rσ
αjγβ̄

+
n∑

j=p+1
ψApβ̄p+1...τ̄ ...β̄n

Rτ̄
β̄jγβ̄

and
aβ̄
s̄;β̄jγ

= Aβ̄
s̄γ;β̄j

− aτ̄s̄R
β̄

τ̄γβ̄j
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This gives

− (−1)p(−1)n−p−1∂∗(Lv̄ψ′)

=
(
Aβ̄s̄γψ;β̄ +

n∑
j=p+1

Aβ̄
s̄γ;β̄j

ψApβ̄p+1...β̄...β̄n

)
gβ̄nγdzAp ∧ dzβ̄p+1 ∧ . . . ∧ dzβ̄n−1

Now, because of the fiberwise ∂-closedness of ψ this equals

n∑
j=p+1

(
Aβ̄s̄γψApβ̄p+1...β̄...β̄n

)
;β̄j
gβ̄nγdzAp ∧ dzβ̄p+1 ∧ . . . ∧ dzβ̄n−1

=
(
Aβ̄s̄γψApβ̄p+1...β̄n−1β̄

)
;β̄n
gβ̄nγdzAp ∧ dzβ̄p+1 ∧ . . . ∧ dzβ̄n−1

= −(−1)n−p−1∂∗(Aβ̄s̄γψApβ̄p+1...β̄n−1β̄
dzγ ∧ dzAp ∧ dzB̄n−p−1)

= −(−1)n−p−1∂∗(As̄ ∪ ψ).

Here we used that for j 6= n:(
Aβ̄s̄γψApβ̄p+1...β̄...β̄n

)
;β̄j
gβ̄nγ =

(
Aβ̄s̄γg

β̄nγψApβ̄p+1...β̄...β̄n

)
;β̄j

=
(
Aβ̄ β̄n

s̄ ψApβ̄p+1...β̄...β̄n

)
;β̄j

=
(
Aβ̄nβ̄
s̄ ψApβ̄p+1...β̄...β̄n

)
;β̄j

=
(
Aβ̄s̄γg

β̄γψApβ̄p+1...β̄...β̄n

)
;β̄j

=
(
Aβ̄n

s̄γ ψApβ̄p+1...β̄...β̄n

)
;β̄j
gβ̄γ

= −
(
Aβ̄n

s̄γ ψApβ̄p+1...β̄n...β̄

)
;β̄j
gβ̄γ

= −
(
Aβ̄s̄γψApβ̄p+1...β̄...β̄n

)
;β̄j
gβ̄nγ ,

hence only the last summand in the above sum contributes.
Equation (4.18) follows from (4.9). It remains to show (4.19): We have(
Aδ̄s̄αp+1

ψApδ̄ β̄p+2...β̄n

)
;γ = Aδ̄s̄αp+1;γψApδ̄ β̄p+2...β̄n

+Aδ̄s̄αp+1
ψApδ̄ β̄p+2...β̄n;γ

Now the ∂-closedness of As̄ ∪ ψ follows from the ∂-closedness of As̄ and
the ∂-closedness of ψ. Note that we have to consider the skew-symmetrized
coefficients of As̄ ∪ ψ. Alternatively, we can write

∂(As̄ ∪ ψ) = ∂As̄ ∪ ψ −As̄ ∪ ∂ψ = 0,

because ∂As̄ = 0 = ∂ψ. �
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Appendix B. Lie derivatives of line bundle valued forms

The most important technical ingredient for the computation is the notion
of a Lie derivative for (p, q)-forms with values in a hermitian line bundle.
Thus we take the opportunity to discuss this concept in more detail. We
consider more generally a real manifold X together with a hermitian vector
bundle (E, h) over X. Let further ∇ be a hermitian connection with respect
to h on E. We denote the contraction of a E-valued form with a vector field
V by δV .

Definition B.1. — Let V be a complex vector field on X and ψ ∈
Ak(X,E). We define the Lie derivative in the direction of V by the Cartan
formula

LV (ψ) := (δV ◦ ∇+∇ ◦ δV )(ψ)

We note that this definition extends the usual Lie derivative for tensors
of the form T b1...bs

a1...ar
, which can as well be computed by using covariant differ-

entiation on a Riemannian manifold. Because for the lack of an appropriate
reference, we collect some properties for this generalized Lie derivative:

Proposition B.2. — Given a section s ∈ A0(E) and a form α ∈
Ak(X), we have for the Lie derivative of α⊗ s ∈ Ak(E):

Lv(α⊗ s) = (Lvα)⊗ s+ α⊗ (Lvs)

Proof. — First, we have
∇(α⊗ s) = d(α)⊗ s+ (−1)kα ∧∇(s)

and
δv(α⊗ s) = δv(α)⊗ s+ (−1)kα⊗ δv(s) = δv(α)⊗ s.

This gives
Lv(α⊗ s) = (δv∇+∇δv)(α⊗ s)

= δv(d(α)⊗ s+ (−1)kα ∧∇(s)) +∇(δv(α)⊗ s)
= δv(d(α))⊗ s+ (−1)kδv(α) ∧∇(s) + (−1)k(−1)kα⊗ δv(∇(s))

+ d(δv(α))⊗ s+ (−1)k−1δv(α) ∧∇(s)
= δv(d(α))⊗ s+ α⊗ δv(∇(s)) + d(δv(α))⊗ s.

On the other hand, we have
(Lvα)⊗s+α⊗ (Lvs) = [δv(d(α)) + d(δv(α))]⊗s+α⊗ [δv(∇(s)) +∇(δv(s))]

�

This proposition allows us to give a local expression for the Lie derivative:

– 197 –



Philipp Naumann

Corollary B.3. — Let ψ = ψα1...αk
dxα1 ∧ . . . ∧ dxαk be the local ex-

pression for a form ψ ∈ Ak(F ) with respect to local coordinates x1, . . . , xn,
where (F, h) is a hermitian line bundle together with a hermitian connec-
tion ∇. Let v = vi(∂/∂xi) be a smooth vector field. Then we have in local
coordinates
Lv(ψ) =

(
vαψα1...αk;α+vα,α1

ψαα2...αk
+vα,α2

ψα1αα3...αk
+ ...+vα,αk

ψα1...αk−1α

)
dxα1 ∧ . . . ∧ dxαk ,

where the symbol ;α means ∇α and , stands for an ordinary derivative. The
ordinary derivatives can be replaced by covariant derivatives with respect to
the Levi-Cevita connection if X is a Riemannian manifold.

Note that we have Lv d = dLv for the Lie derivative of an ordinary
form α ∈ Ak(X), which follows easily from the classical Cartan formula
Lv = δvd + dδv.

Proposition B.4. — For two vector fields v, w and a k-form ψ ∈Ak(F ),
we have

LvLw(ψ)− LwLv(ψ) = L[v,w](ψ) + Ωvw · ψ,
where Ω is the curvature form of (F,∇).

Proof. — By the Ricci identity we have the expression
LvLw(s)− LwLv(s) = L[v,w](s) + Ωvw · s

for sections s ∈ A0(F ). By the properties of the ordinary Lie derivative for
k-forms α ∈ Ak(X) (see for example [8, p. 140]), we have

LvLw(α)− LwLv(α) = L[v,w](α).

Thus for tensor products α⊗ s ∈ Ak(F ), we get by using Proposition B.2
Lv(α⊗ s) = (Lvα)⊗ s+ α⊗ (Lvs),

that

Lw(Lv(α⊗ s))
= Lw(Lv(α))⊗ s+ Lv(α)⊗ Lw(s) + Lw(α)⊗ Lv(s) + α⊗ Lw(Lv(s))

and analogously

Lv(Lw(α⊗ s))
= Lv(Lw(α))⊗ s+ Lw(α)⊗ Lv(s) + Lv(α)⊗ Lw(s) + α⊗ Lv(Lw(s)).

Hence we get
(LvLw − LwLv)(α⊗ s) = (L[v,w]α)⊗ s+ (L[v,w] − α⊗ Ωvw)(s)

= L[v,w](α⊗ s)− Ωvw · α⊗ s. �
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Given two sections ϕ ∈ Ak(E) and ψ ∈ Al(E) of the form
ϕ = α⊗ s and ψ = β ⊗ t

for α ∈ Ak, β ∈ Al and differentiable sections s, t ∈ Γ(X,E), we can define
a pointwise inner product by

h(ϕ,ψ) := (α ∧ β) · h(s, t),
which is an element of Ak+l. The main point for the computation is the
following

Proposition B.5. — LV (h(ϕ,ψ)) = h(LV (ϕ), ψ) + h(ϕ,LV (ψ)).

Proof. — By writing ϕ = α ⊗ s and ψ = β ⊗ t as well as ∇(s) = α′ ⊗ s′
and ∇(t) = β′ ⊗ t′ for 1-forms α′, β′ and sections s′, t′ of E, we can check
easily

d(h(ϕ,ψ)) = h(∇(ϕ), ψ) + (−1)kh(ϕ,∇(ψ))
and

δV (h(ϕ,ψ)) = h(δV (ϕ), ψ) + (−1)kh(ϕ, δV (ψ)).
Because h(ϕ,ψ) is a genuine form on X, we have LV (h(ϕ,ψ)) = (δV ◦ d +
d + δV )h(ϕ,ψ). We compute

(δV ◦ d)h(ϕ,ψ) = δV (h(∇(ϕ), ψ) + (−1)kh(ϕ,∇(ψ)))
= h(δV∇ϕ,ψ) + (−1)k+1h(∇ϕ, δV ψ) + (−1)kh(δV ϕ,∇ψ)

+ (−1)k(−1)kh(ϕ, δV∇ψ).
and

(d ◦ δV )h(ϕ,ψ) = d(h(δV (ϕ), ψ) + (−1)kh(ϕ, δV (ψ)))
= h(∇δV ϕ,ψ) + (−1)k−1h(δV ϕ,∇ψ) + (−1)kh(∇ϕ, δV ψ)

+ (−1)k(−1)kh(ϕ,∇δV ψ).
The summation of both expressions leads to a cancelation of four summands.
The remaining sum is h(LV (ϕ), ψ) + h(ϕ,LV (ψ)) as required. �

Because we apply Lie derivatives for hermitian line bundle valued forms
on compact complex Kähler manifolds, the statements in this section need
to be adapted to the complex case. For example the type decomposition
given by (4.3)–(4.6) follows directly from Corollary B.3 by splitting off the
complex expressions into its real and imaginary parts. We end this section by
giving a few remarks, which relate this concept to curvature computations
in related contexts.

Remark B.6. — If ϕ = s and ψ = t are just sections of a vector bundle,
the Lie derivative is nothing else but the covariant derivative. This is used
in [14] in their computation of the curvature. The preceding proposition
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means that the Lie derivative of the metric h vanishes, which just means
that the covariant derivative vanishes.

Remark B.7. — We now discuss a result obtained in [13] and [10] resp.,
which says that in the context of Kähler–Einstein metrics of constant Ricci
curvature described (for the negative case) in the introduction, the Lie de-
rivative of the Kähler–Einstein metric in the direction of the horizontal lift
vanishes:

Lvi
(ωnXs

) = 0.

Following [10], the proof is briefly written down as:(
Lvi

(gαβ̄)
)
αβ̄

=
[
∂i + aγi ∂γ , gαβ̄

]
αβ̄

= ∂i(gαβ̄) + aγi gαβ̄;γ + aσi;αgσβ̄

= giβ̄;α + aiβ̄;α = 0.

Here we used the ordinary definition of Lie derivatives. The expression
∂i(gαβ̄) + aσi;αgσβ̄ can be read as a covariant derivative gαβ̄;i, because

aσi;α = −(gβ̄σgiβ̄);α = −gβ̄σgiβ̄,α = −gβ̄σgαβ̄,i = −Γσiα

is the Christoffel symbol for the connection on (KX/S , g−1). This interpre-
tation agrees with our extended concept of a Lie derivative which says that
Lvi(g) = ∇vi(g) = 0, where we read g = det(gαβ̄) as a hermitian metric on
the abstract line bundle K−1

X/S (forget about the indices).

Remark B.8. — In the computation of the curvature of the Weil–
Petersson metric for a family of Kähler–Einstein manifolds, one needs to
compute the Lie derivative of

Ai ·Ā = Aα
iβ̄
Aδ̄̄γgαδ̄g

β̄γ

By taking classical Lie derivatives, this equals

(Lvk
Ai)αβ̄ = ∂k(Aα

iβ̄
) + aσkA

α
iβ̄;σ − a

α
k;σA

σ
iβ̄

If we view the elements Aα
iβ̄
∂αdzβ̄ as (0, 1)-forms with values in the (abstract)

hermitian vector bundle (TXs
, (gαβ̄)), we obtain for the Lie derivative

(Lvk
Ai)αβ̄ = (∇vk

Ai)αβ̄ = Aα
iβ̄;k + aσkA

α
iβ̄;σ = Aα

iβ̄,k
+ ΓαkσAσiβ̄ + aσkA

α
iβ̄;σ

where Γαkσ = gδ̄α∂kgσδ̄ = −aαk;σ is the Christoffel symbol for the Chern
connection on the hermitian vector bundle (TXs , (gαβ̄)). Indeed, both ex-
pressions coincide.
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