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On the conductor of cohomological transforms (∗)

Étienne Fouvry (1),
Emmanuel Kowalski (2) and Philippe Michel (3)

ABSTRACT. — In the analytic study of trace functions of `-adic sheaves over finite
fields, a crucial issue is to control the conductor of sheaves constructed in various
ways. We consider cohomological transforms on the affine line over a finite field
which have trace functions given by linear operators with an additive character of
a rational function in two variables as a kernel. We prove that the conductor of
such transforms is bounded in terms of the complexity of the input sheaf and of the
rational function defining the kernel, and discuss applications of this result, including
motivating examples arising from the Polymath8 project.

RÉSUMÉ. — Dans l’étude analytique des fonctions traces de faisceaux `–adiques
sur les corps finis, un problème crucial est de contrôler la taille du conducteur de
faisceaux construits de façons variées. Nous considérons les transformées cohomolo-
giques sur la droite affine sur un corps fini dont les fonctions traces sont données
par des opérateurs linéaires dont la matrice est un caractère additif évalué sur une
fonction rationnelle en deux variables. Nous prouvons que le conducteur de telles
transformées est borné en fonction du conducteur du faisceau de départ et de la
fraction rationnelle définissant le noyau. Enfin nous présentons des applications et
des exemples, en particulier des exemples provenant du projet Polymath8.
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1. Introduction

This paper considers a problem which appeared in special cases in [4, 5, 6]
in our study of analytic applications of trace functions over finite fields. We
are given a constructible `-adic sheaf K on A1 × A1 (or, potentially, on
another algebraic surface) over a finite field Fq, and we use it to define a
“cohomological transform” with “kernel” K, that maps a constructible `-adic
sheaf F on A1

Fq to

TK(F) = R1p1,!(p∗2F ⊗K)(1/2),

where p1, p2 are the two projections pi : A1 ×A1 → A1. The problem is
then to estimate the conductor of TK(F), as defined in [5], in terms of that
of F .

The arithmetic interpretation of this problem, and our motivation, is
that for suitable input sheaves F (as described later in more detail), the
trace function tTK(F) of is related to the trace functions tK and tF by

tTK(F)(x) = − 1
√
q

∑
y∈Fq

tF (y)tK(x, y),

for all x ∈ Fq. In other words, for all F , we have tTK(F) = TK(tF ), where

K(x, y) = tK(x, y)

and TK is the (normalized) linear map defined on the space C(Fq) of
complex-valued functions on Fq by the kernel K, i.e.,

TK(ϕ)(x) = − 1
√
q

∑
y∈Fq

K(x, y)ϕ(y). (1.1)

The most important example of such transforms arises for K(x, y) =
ψ(xy), where ψ is a non-trivial additive character, which corresponds to
K = Lψ(XY ) (whereX, Y are the coordinates on A1×A1): the corresponding
linear operator TK on trace functions is (minus the) normalized Fourier
transform (which we denote also FTψ) on C(Fq), namely

FTψ(ϕ)(x) = − 1
√
p

∑
y∈Fp

ϕ(y)ψ(xy). (1.2)

The sheaf-theoretic construction, in that case, is due to Deligne, and it
was extensively studied by Laumon [17].

This special case is crucial in [5] (and the following papers). In particular,
it is essential for our applications that we have an estimate for the conductor
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of the Fourier transform G in terms only of the conductor of F , which follows
from the estimate

c(G) 6 10 c(F)2, (1.3)
proved in [5, Prop. 8.2]. In order to establish this result, which we view as
a form of “continuity” of the sheaf-theoretic Fourier transform, we used the
deep theory of the local Fourier transform of Laumon [10, 17].

The general case of these transforms is a natural approach to estimates for
two-variable character sums (and more complicated algebraic sums) based
on Deligne’s work, and an estimate for the conductor leads for instance easily
to strong statements of “control of the diagonal” (see Proposition 5.7 for a
precise statement).

It is not at all clear if a local theory like Laumon’s applies to the general
transforms we consider (the same applies to the theory of “affine cohomolog-
ical transforms” of Katz [11], which has diophantine applications to stratifi-
cation results for sums of trace functions). Thus, our present goal is to prove
estimates for more general cohomological transforms. These will be weaker
than (1.3), but more accessible. We will be able to do so when the kernel K
is a rather general Artin–Schreier sheaf, or in other words (in the case when
q = p is prime) when

K(x, y) = e

(
f(x, y)
p

)
for some rational function f ∈ Fp(X,Y ).

The precise statement is given in Theorem 2.3 in the next section. In
the case of the Fourier transform, this gives a form of the important prop-
erty (1.3) which is more accessible than Laumon’s theory. Section 14 treats
this case fully, in order to motivate and clarify the algebraic tools used in the
general case. In Section 5, we discuss some first applications of these bounds;
for instance, we show how the ideas lead to an account of the character sums
considered by Conrey and Iwaniec in [1]. This section can, to a large extent,
be read independently of the part of the paper where the main results are
proved.

Remark 1.1.

(1) W. Sawin has developed a much more general and powerful theory
of complexity for (complexes of) `-adic sheaves on quasi-projective
schemes, including all so-called 6 operations on the derived cate-
gory. His work (see [22]) subsumes ours entirely, but involves much
deeper algebraic geometry. The present paper may still be helpful
for readers with a more analytic background as an illustration of
fairly simple manipulations of the formalism of étale cohomology.
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(2) In recent work, I. Petrow and M. Young [19] generalized the estimate
of Conrey and Iwaniec to more general characters. They need to
estimate slightly different sums than those in [1], and the first draft
of their preprint refered to this paper for this purpose. W. Sawin
has also observed that their sums (as those of Conrey and Iwaniec)
and special cases of hypergeometric sums, can be directly estimated
by a simple appeal to Katz’s book [10].

(3) A slightly different definition of the conductor suggested by W.
Sawin leads to better estimates (e.g., a linear bound for the con-
ductor of the Fourier transform instead of (1.3)). Since our work is
in any case very restricted (see Remark (1)), and the most impor-
tant qualitative feature is not affected for applications, we have not
incorporated all the changes required by this adjustment.

Acknowledgments

Part of the original motivation for this paper in 2013/2104 arose in online
discussions related to the Polymath8 project.

We thank the referee for a detailed reading of the paper which led to
significant simplications in several parts of the argument, and pointed out a
mistake in one of our applications.

Notation

By “sheaf”, or “`-adic sheaf”, we will always mean “constructible Q`-
sheaf”, where ` will be a prime number different from the characteristic of
the base field.

For a power q 6= 1 of a prime p and any integer w ∈ Z, a q-Weil number
of weight w is an algebraic number α ∈ C such that all Galois-conjugates β
of α satisfy |β| = qw/2.

An algebraic variety over a field k is a finite type, separated, reduced
scheme over k. If X/k is an algebraic variety over a field k, and k is an
algebraic closure of k, we denote by X or Xk̄ the base change X × k.

For an algebraic variety X over Fq and an `-adic sheaf F on X, we denote

χc(U,F) =
2 dim(X)∑
i=0

(−1)i dimHi
c(U × Fq,F).

– 206 –



On the conductor of cohomological transforms

If X is the affine line, we will abbreviate χ(F) = χc(A1,F), and we write
h1(F) = dimH1

c (A1
F̄q ,F). (1.4)

If Xk is an algebraic variety over a field k and x ∈ X(k), we denote by x
a geometric point above x. If k is algebraically closed, we take x = x. If F
is an étale sheaf on X, then Fx̄ denotes the stalk of F at x.

Whenever a prime ` is given, we assume fixed an isomorphism ι : Q` →
C, and we use it as an implicit identification.

For any `-adic sheaf F on an algebraic variety XFq , we write tF (x) for
the value at x of the trace function of F , i.e., we have

tF (x) = ι((trF)(Fq, x)), (1.5)
the trace of the Frobenius of Fq acting on the stalk of F at x.

If k/Fq is a finite extension, we write
tF (x, |k|) = tF (x, k) = ι((trF)(k, x)).

2. Statement of the main result

We first recall the definition of the conductor of a constructible `-adic
sheaf F on the affine line over a finite field Fq. Indeed, since in this work it
will be important to work with general constructible sheaves, and not only
the middle-extension sheaves considered in our previous works, we need to
adapt the definition slightly.

Let F be a constructible `-adic sheaf over A1
Fq . Let U ⊂ P1 be the

maximal dense open subset where F is lisse. Let j : U ↪→ P1 be the cor-
responding open immersion. Recall that there is a canonical (adjunction)
map

F −→ j∗j
∗F ,

and that F is said to be a middle-extension sheaf if this is an isomorphism.
In general, if we let

F0 = j∗j
∗F ,

then one shows that F0 is a middle-extension sheaf on P1
Fq , which is isomor-

phic to F when restricted to U . We define the conductor c(F) of the sheaf
F by the formula

c(F) = rank(F0) +
∑
x

Swanx(F0) + n(F) + pct(F),

where:
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• n(F) = |(P1−U)(Fq)| is the number of singularities of F in P1(Fq);
• the sum is over P1(Fq), with all but finitely many terms vanishing;
• we define

pct(F) = dimH0
c (A1 × Fq,F).

Remark 2.1.

(1) If F is a middle-extension sheaf on A1
Fq , we have F = F0 (on A1)

and
c(F) = rank(F) +

∑
x

Swanx(F) + n(F),

as in our previous works.
(2) Let P be the kernel of the map

F −→ j∗j
∗F .

Then P has finite support; if this support is S ⊂ A1(Fq), then

|S| 6 pct(F) 6
∑
s∈S

dimFs̄

(see [8, §4.4, 4.5] for a discussion).
(3) Note that n(F) takes into account the fact that a general con-

structible sheaf might have “artificial” singularities, which are not
singularities of the associated middle-extension sheaf. These may
also be seen as the contribution to the conductor of the cokernel F
of the map

F −→ j∗j
∗F ,

which is also a sheaf with finite support.
For instance, let U = P1 −A1(Fp) over Fp, and let

j : U −→ P1

be the open immersion. Consider

F = j!Q`,

the extension by zero to P1 of the trivial sheaf on U . Then F0
is the trivial sheaf on P1, with n(F0) = 0, and c(F0) = 1, while
c(F) = 1 + n(F) = 1 + |A1(Fp)| = p + 1 because of the artificial
singularities created at the points in A1(Fp). It is necessary here to
have a big conductor if we want some basic qualitative features of
the Riemann Hypothesis to hold.

We note the following useful property:

c(F1 ⊕F2) 6 c(F1) + c(F2) (2.1)
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for two constructible sheaves on A1 (more generally, if

0 −→ F1 −→ F3 −→ F2 −→ 0

is a short exact sequence of constructible sheaves on A1, then we have

c(F3) 6 c(F1) + c(F2)

as one can check).

We also recall the definition of the drop of a constructible sheaf F on
A1

F̄q
at a point x ∈ A1(Fq): we have

dropx(F) = rank(F0)− dimFx, (2.2)

where Fx is the stalk of F at x. Note that the rank of F0 is also the “generic”
rank of F , i.e., the dimension of the fiber at a geometric generic point.

As mentioned in the introduction, we consider in this paper a kernel
K which is an Artin–Schreier sheaf, with trace function given by additive
characters of rational function. We give a formal definition to avoid any
ambiguity concerning the behavior at the poles or points of indeterminacy
of a rational function in two variables.

Definition 2.2 (Artin–Schreier sheaf on An). — Let Fq be a finite field
of characteristic p, and let ` 6= p be a prime number, and ψ a non-trivial
additive `-adic character of Fq. Let Lψ denote the associated Artin–Schreier
sheaf on A1

Fq (see [2, Sommes Trig.] for the precise definition).

Let f ∈ Fq(X1, . . . , Xn) be a rational function for some n > 1. Write
f = f1/f2 where fi ∈ Fq[X1, . . . , Xn] and where f1 is coprime with f2. Let
U ⊂ An be the open set where f2 is invertible, j : U ↪→ An the corresponding
open immersion, and let

fU : U −→ A1

be the morphism associated to the restriction of f to U .

The Artin–Schreier sheaf on An associated to f is the constructible `-adic
sheaf on An

Fq given by
Lψ(f) = j!f

∗
ULψ.

We also write Lψ(f(X1,...,Xn)) for this sheaf. We define its conductor to be

c(Lψ(f)) = 1 + deg(f1) + deg(f2),

and we will also sometimes just speak of the conductor c(f) of f .

We will find a satisfactory generalization of (1.3) for transforms associ-
ated to a kernel which is an Artin–Schreier sheaf.
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Theorem 2.3 (Conductor of Artin–Schreier transforms). — Let Fq be
a finite field of order q and characteristic p, ` a prime distinct from p. Let
K be an `-adic sheaf on A1 ×A1 over Fq of the form

K = Lψ(f(X,Y )),

where ψ is a non-trivial additive `-adic character and f ∈ Fq(X,Y ) is a
rational function with conductor < p.

For constructible sheaves F on A1
Fq , and 0 6 i 6 2, let

T iK(F) = Rip1,!(p∗2F ⊗K).

Then T iK(F) is constructible and there exists an integer A > 1 such that
for any middle-extension sheaf F on A1

Fq , and 0 6 i 6 2, we have

c(T iK(F)) 6 (2 c(K) c(F))A.

In particular, if f is obtained by reduction modulo p of a fixed non-
constant rational function f1/f2, where fi ∈ Z[X,Y ], and if we have some
integer M > 1 and, for each p, we consider a sheaf Fp modulo p with
conductor 6M , then we have

c(T 1
KFp)� 1

for all primes. This allows us to apply all our estimates for trace functions
to the trace functions of these sheaves; we give some examples in Section 5.

Remark 2.4.

(1) The fact that the sheaf T iK(F) is constructible for any constructible
sheaf F and all i follows from [2, Arcata, IV, Thm. 6.2] (see also [7,
Thm. 7.8.1]).

(2) Note that we omitted the Tate twist in this statement, since it con-
cerns purely geometric facts.

We need to consider all the transforms T iK, and not only T 1
K because this

will turn out to be useful in the proof, which is interleaved with the proof of
the following other useful fact:

Theorem 2.5 (Bounds for Betti numbers). — Let Fq be a finite field of
order q and characteristic p, ` a prime distinct from p. Let K be an `-adic
sheaf on A1 ×A1 over Fq of the form

K = Lψ(f(X,Y )),

where ψ is a non-trivial additive `-adic character and f ∈ Fq(X,Y ) is a
rational function with conductor < p.
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There exists an integer B > 1 such that for any middle-extension sheaf
F on A1

Fq and for 0 6 i 6 4, we have

dimHi
c(A2 × Fq, p∗2F ⊗K) 6 (2 c(f) c(F))B .

Roughly speaking, we will proceed as follows:

(1) we prove Theorem 2.3 for F the trivial sheaf, and observe that
Theorem 2.5 is a known fact in that case, from bounds on Betti
numbers due to Bombieri, Adolphson–Sperber and Katz [14];

(2) using Theorem 2.3 for the trivial sheaf, we first prove Theorem 2.5
for all input sheaves F and i = 2;

(3) finally, we prove Theorem 2.3 in general and deduce Theorem 2.5
for all i.

3. Diophantine motivation of the proof

The arguments of the proof of Theorem 2.3 are purely algebraic and
geometric, and exercise much of the basic formalism of étale cohomology,
as well as a simple use of spectral sequences. However, there is a concrete
analytic motivation from (expected) properties of sums of trace functions,
and we will first present it. This is based on the Riemann Hypothesis over
finite fields, and is similar in principle to the discussion [13, Lecture IV,
Interlude] by Katz that motivates the crucial step in his paper.

The first ingredient is a lemma that, essentially, allows one to estimate,
in terms of accessible global invariants, the conductor of a middle-extension
sheaf, satisfying some conditions, assuming one already knows estimates for
the rank and the number of singularities. In other words, it provides a bound
for the sum of Swan conductors in global terms, assuming that the rank and
number of singularities are under control.

To be slightly more precise, assume that F is a middle-extension sheaf
on A1

Fq which is pointwise pure of weight 0, and assume in addition the
following conditions:

(1) F has no geometrically trivial Jordan–Hölder factor;
(2) the Frobenius action on H1

c (U,F) is pure of weight 1, for the max-
imal dense open set U on which F is lisse.

We then define the invariant

σ̃(F) = lim sup
ν→+∞

|Sν(F)|
qν/2

,
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where
Sν(F) =

∑
x∈U(Fqν )

tF (x, qν),

for ν > 1 (in other words, these are the sums of trace functions over extension
fields). Then we have

c(F) 6 3 rank(F) + n(F) + σ̃(F).

Indeed, using (1) and the notation Fr for the frobenius, the Lefschetz
trace formula applied to U over Fqν gives

Sν(F) = − tr(Frν |H1
c (U,F)),

so that the purity assumption implies
σ̃(F) = dimH1

c (U,F)
and then the stated bound follows from Lemma 4.11 below (which is an
elementary application of the Euler–Poincaré formula).

We now consider the situation of Theorem 2.3. We will assume (and this is
where the argument is not easy to make rigorous in a decent generality) that
the sheaves G = TK(F) whose conductor we wish to control always satisfy the
conditions above (i.e., that they are middle-extensions, pointwise of weight 0,
and (1), (2) hold). We first assume that we can find suitable estimates of the
rank, of the number of singularities, and of the punctual part of G (intuitively,
this is possible because these amounts to fiber-by-fiber considerations, which
boil down to properties of one-variable sheaves, which are relatively well-
understood; the case of the trivial sheaf F is quite elementary, but the details
will turn out to be a bit involved in the general case). We then need to
estimate σ̃(G). For this purpose, we proceed in two steps.

In Step 1, we consider only the trivial input sheaf F = Q`. We then have

Sν(G)
qν/2

= − 1
qν

∑
x∈Fqν

( ∑
y∈Fqν

ψν(f(x, y))
)

= − 1
qν

∑
(x,y)∈Fqν×Fqν

ψν(f(x, y)) (3.1)

(where ψν = ψ ◦ TrFqν /Fq ) and the two-variable character sum (under As-
sumption (2) for G) has square-root cancellation, so that the bounds on Betti
numbers of [14] (or often their predecessors, due to Bombieri and Adolphson–
Sperber) give

lim sup
ν→+∞

|Sν(G)|
qν/2

6 C

where C > 1 depends only on the conductor of f .
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In Step 2, we handle the case of a general sheaf F . We then have
Sν(G)
qν/2

= − 1
qν

∑
x∈Fqν

∑
y∈Fqν

tF (y, qν)ψν(f(x, y))

= − 1
qν

∑
y∈Fqν

tF (y, qν)
∑
x∈Fqν

ψν(f(x, y)). (3.2)

The basic point is that this is the inner-product of the trace functions
of the dual sheaf of F and of the sheaf R1p2,!Lψ(f(X,Y )). This last sheaf, by
the first step (applied to Lψ(f(Y,X))), has conductor bounded by a constant
depending only on the conductor of f . By assumption again, we have square-
root cancellation in this sum as ν → +∞, and by the quasi-orthogonality for-
mulation of Deligne’s proof of the Riemann Hypothesis over finite fields [3],
we obtain

σ̃(G) = lim sup
ν→+∞

|Sν(G)|
qν/2

6 C ′,

where C ′ depends only on the conductors of F and of f .

Remark 3.1. — In terms of linear operators and of the standard (unnor-
malized) inner-product on functions on Fq, we exploit the obvious identity∑

x∈Fq

(TK ϕ)(x) = 〈TK ϕ, 1〉 = 〈ϕ,T∗K 1〉,

where the adjoint operator T∗K has kernel K∗(x, y) = K(y, x); the first step
in our sketch amounts to bounding (the complexity of) T∗K 1, and the second
applies standard inequalities to deduce a bound for the sum over x.

In contrast with this sketch, the proof of Theorem 2.3 below is entirely
algebraic and does not require the Riemann Hypothesis over finite fields. It
also applies in greater generality, so that the assumptions (1) and (2) are
not needed. Roughly speaking, instead of sums of trace functions, we control
directly the dimension σ̃(G) of H1

c (U,G) for the transformed sheaf G. The
“combination of sums” in (3.1) and the “exchange of order of summation”
in (3.2) are replaced by arguments based on spectral sequences (compare
again with [13, Lecture IV, Interlude], and the dictionary [2, Sommes Trig.,
§2]). The proof is however complicated by the fact that we must also control
the possible punctual part of the transformed sheaf.

Before giving the proof, we will present some algebraic preliminaries and
then discuss first the motivating applications in Section 5 (Section 4 may be
skipped in a first reading, since Section 5 will only refer to it incidentally).
We then set up the proof in Section 6, and follow by presenting an (almost)
self-contained account of the Fourier transform and of the special case which
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is relevant to the Polymath8 project as it appears in [20] (see Section 14).
Finally, we give the full proof of Theorems 2.3 and 2.5.

4. Preliminaries

We begin by some preliminary inequalities between the dimensions of the
cohomology groups and the conductor of sheaves on the affine line.

4.1. General results from étale cohomology

We first state formally some properties of étale cohomology that we will
often use.

Proposition 4.1.

(1) Let f : Yk → Xk be a morphism of algebraic varieties over an
algebraically closed field k, with fibers of dimension 6 n. Let F be
a constructible `-adic sheaf on Y . We have Rif!F = 0 for i < 0 and
for i > 2n. In particular, if F is a sheaf on X and X has dimension
6 n, we have Hi

c(X,F) = 0 for i < 0 and for i > 2n.
(2) Let Xk be an algebraic variety over an algebraically closed field k,

let U ⊂ X be an open subset and C = X − U its complement. Let
F be a constructible `-adic sheaf on X. We have a long sequence

· · · −→ Hi
c(U,F) −→ Hi

c(X,F) −→ Hi
c(C,F) −→ Hi+1

c (U,F) −→ · · · ,
(4.1)

and in particular, for all i > 0, we have

dimHi
c(X,F) 6 dimHi

c(U,F) + dimHi
c(C,F) (4.2)

dimHi
c(U,F) 6 dimHi

c(X,F) + dimHi−1
c (C,F). (4.3)

(3) Let Xk be a smooth affine algebraic variety over an algebraically
closed field k, pure of dimension n > 0, and let F be a lisse `-adic
sheaf on X. We have

Hi
c(X,F) = 0 (4.4)

for 0 6 i < n.
(4) Let f : Xk → Yk be a morphism of algebraic varieties over an

algebraically closed field k, and let F be an `-adic constructible sheaf
on X. Then, for y ∈ Y and i > 0, the stalk of Rif!F at y is naturally
isomorphic to Hi

c(f−1X,F).
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Proof. — (1) is the cohomological dimension property; the vanishing of
Rif!F for i < 0 is immediate by definition, while the vanishing for i > 2n
can be found, e.g., in [2, Arcata, IV, Thm. 6.1] or [7, Thm. 7.4.5]; the case
of Hi

c follows by considering f : X → Spec(k), the structure morphism.

(2) is the so-called “excision” long-exact sequence, see for instance [2,
Sommes Trig., (2.5.1)*]); the inequality (4.2) for a given i > 0 is an imme-
diate consequence of the fragment

Hi
c(U,F) −→ Hi

c(X,F) −→ Hi
c(C,F),

and (4.3) is a consequence of

Hi−1
c (C,F) −→ Hi

c(U,F) −→ Hi
c(X,F).

(3) is the property of affine cohomological dimension for lisse sheaves; it
follows for instance from the Poincaré duality

Hi
c(X,F) ' Hn−i(X,F∗)

where F∗ is the dual of F (see for instance [2, Sommes Trig., Remarque
1.18(c)]; note that the right-hand side is a cohomology group with no re-
striction of compact support) and the vanishing property

Hi(X,F) = 0

for an affine scheme X and i < dim(X) (see, e.g., [2, Arcata, IV, Thm. 6.4]).

(4) is a special case of the proper base change theorem, (see, e.g., [2,
Arcata, IV, Thm. 5.4] or [7, Thm. 7.4.4(i)]). �

The following lemma will also be used frequently:

Lemma 4.2. — Let F and G be middle-extension `-adic sheaves on A1
Fq .

Then we have
H0
c (A1 × Fq,F ⊗ G) = 0,

i.e., the tensor product has no punctual part.

Proof. — In general, for a constructible sheaf H lisse on a dense open set
U ⊂ A1, the condition

H0
c (A1 × Fq,H) = 0

amounts to saying that, for all x ∈ (A1 − U)(Fq), the specialization map

Hx −→ HIxη̄
is injective (see [8, §4.4] for instance), where Ix̄ is the inertia group at x. We
now have

(F ⊗ G)x = Fx ⊗ Gx ↪→ FIxη̄ ⊗ G
Ix
η̄ ⊂ (Fη̄ ⊗ Gη̄)Ix = (F ⊗ G)Ixη̄ . �
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4.2. Basic bounds on the dimension of cohomology groups

Another frequently-used fact, which is implicit in our previous work in
the case of middle-extension sheaves, is the control of Betti numbers of con-
structible sheaves on A1 in terms of the conductor:

Lemma 4.3. — Let Fq be a finite field of characteristic p, let ` 6= p be
a prime number and F an `-adic constructible sheaf on A1

Fq . For i = 0, 2,
we have

dimHi
c(A1 × Fq,F) 6 c(F)

and dimH1
c (A1 × Fq,F) 6 2 c(F) + c(F)2.

Proof. — For i = 0, this is obvious from the definition of pct(F) 6 c(F).
For i = 2, we use the fact that if F is lisse on a dense open subset U ⊂ A1,
we have

H2
c (A1 × Fq,F) = H2

c (U,F) ' (Fη̄)π1(Ū,η̄),

the coinvariant space for the action of the geometric fundamental group on
the geometric generic fiber (see, e.g., [2, Sommes Trig., Rem. 1.18(d)]; the
first equality is also a consequence of excision) and hence

dimH2
c (A1 × Fq,F) 6 rank(F) 6 c(F).

For i = 1, we use the Euler–Poincaré formula (see [9, 8.5.2, 8.5.3]) to get

dimH1
c (A1 × Fq,F)
= − rank(F) + dimH0

c (A1 × Fq,F) + dimH2
c (A1 × Fq,F)

+
∑
x

(
dropx(F) + Swanx(F)

)
+ Swan∞(F) (4.5)

where the sum is over x ∈ A1(Fq), and all but finitely many terms are zero,
and the result follows from the definition of the conductor since dropx(F) =
rank(F)− dimFx 6 rank(F). �

The following was also proved for middle-extensions in our previous works.

Lemma 4.4. — Let Fq be a finite field of characteristic p, let ` 6= p
be a prime number and F1 and F2 be `-adic constructible sheaves on A1

Fq .
We have

c(F1 ⊗F2) 6 8 c(F1)2 c(F2)2

Proof. — One checks easily (as in [5, Prop. 8.2(2)]) that for the middle-
extension part (F1 ⊗F2)0 we have

c((F1 ⊗F2)0) 6 6 c(F1)2 c(F2)2,
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and as for the punctual part, we have

pct(F1 ⊗F2) 6 (n1 + n2)m1m2

where ni is the number of points where there are punctual sections of Fi,
while mi is the maximal dimension of the space of sections supported at a
single point. Since

(n1 + n2)m1m2 6 (c(F1) + c(F2))m1m2

6 2 c(F1) c(F2)m1m2

6 2 c(F1)2 c(F2)2,

we get the result. �

4.3. Number of singularities

We will also use a criterion to bound the number of singularities in terms
of estimates for the punctual part.

Lemma 4.5. — Let Fq be a finite field of characteristic p, ` 6= p a prime
number and F an `-adic constructible sheaf on A1

Fq . Let U ⊂ A1 be a dense
open set such that the dimension of the stalks Fx is constant, equal to some
integer d > 0, for all x ∈ U(Fq). We then have

n(F) 6 |(P1 − U)(Fq)|+ pct(F).

Proof. — Since U contains the generic point η of A1, we have

rank(F) = dimFη̄ = d.

Let U1 ⊂ U be the open dense subset where F is lisse, and let x ∈
(U − U1)(Fq), i.e., a point of U where F is not lisse. Let ϕ : Fx → FIxη̄
be the canonical map. The image has dimension < d (since otherwise, for
dimension reasons, Ix would act trivially on the geometric generic fiber Fη̄,
and F would be lisse at x), and since dimFx = d, it follows that

dim kerϕ > 1,

which means that x is in the support of the punctual part of F . Thus the
number of such x is at most the size of this support, which is bounded by
pct(F). Adding the points of (P1 − U)(Fq) leads to the result. �
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4.4. Application to Artin–Schreier sheaves

Given g ∈ Fq(X) a non-constant rational function in one variable let
L = Lψ(g(X)) its associated Artin–Schreier sheaf. The next lemma recalls
the crucial link between the Swan conductor of L at a given point and its
order as a pole of g.

Lemma 4.6. — Let Fq be a finite field of order q and characteristic p, ` 6=
p a prime number. Let g ∈ Fq(X) be a non-constant rational function and
L its associated Artin–Schreier sheaf. For x ∈ P1(Fq), the Swan conductor
of L at x is at most equal to the order of the pole of g at x, and there is
equality if the numerator and denominator of g have degree < p.

Proof. — This is a standard property (see, for instance, [2, Sommes Trig.,
(3.5.4)]). �

We next discuss relations between two-variable Artin–Schreier sheaves
and specializations of one variable. We need first some notation.

Definition 4.7 (Specializations). — Let Fq be a finite field of order
q and characteristic p, ` a prime distinct from p. Let f ∈ Fq(X,Y ) be a
non-constant rational function and let

K := Lψ(f(X,Y ))

be the Artin–Schreier sheaf on A2
Fq associated to f . We introduce the further

notations:

(1) If x ∈ Fq is such that X − x does not divide the denominator of f ,
we denote by fx ∈ Fq(Y ) the specialization f(x, Y ) of f .

(2) For every finite extension k/Fq and every x ∈ k, the specialization
of K at x is the `-adic constructible sheaf on A1

k given by
Kx = j∗xK, (4.6)

where jx : {x} ×A1 ↪→ A2 is the closed immersion.

These two definitions are related as follows:

Lemma 4.8. — Let Fq be a finite field of order q and characteristic p,
` 6= p a prime number. Let K = Lψ(f(X,Y )) be an `-adic Artin–Schreier sheaf
on A2 over Fq, where f ∈ Fq(X,Y ) is a non-constant rational function.

(1) For any finite extension k/Fq and x ∈ k, we have
Kx = 0

if X − x divides the denominator of f , and otherwise
Kx = j!Lψ(fx)
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where j : Ux → {x}×A1 is the open immersion of the open subset
of {x} ×A1 which is the intersection of {x} ×A1 and the open set
of A2 where the denominator of f is invertible.

If {x}×A1 does not intersect the zero set of the numerator of f ,
then Kx is isomorphic to the Artin–Schreier sheaf Lψ(fx) associated
to fx.

(2) For every finite extension k/Fq and all x ∈ k, we have

c(Kx) 6 2 c(f).

Proof.

(1). — If X − x divides the denominator of f , then by definition the
sheaf K is zero on {x} ×A1, and hence Kx = 0.

If X−x does not divide the denominator of f , then there are only finitely
many points where {x}×A1 intersects the open set U where the denominator
is invertible. The sheaf Kx has zero stalk at these points, and is isomorphic
to the one-variable sheaf Lψ(f(x,Y )) on the complementary open set, which
is the result we claim.

If {x} ×A1 does not intersect the zero set of the numerator of f , then
the points in {x}×A1 where Kx has zero stalk are precisely the poles of fx,
which means that j!Lψ(fx) = Lψ(fx) as Artin–Schreier sheaf on A1

Fq .

(2). — If Kx = 0, then the conductor bound is trivial, and otherwise we
obtain from (1) the bound

c(Kx) 6 1 + degY f(x, Y ) +
∑

y∈P1(F̄q)

ordy(f(x, Y ))

6 1 + 2 degY f(x, Y ) 6 2 c(f),

as claimed. �

Remark 4.9. — Note that Kx is not always isomorphic to the Artin–
Schreier sheaf Lψ(fx) on A1: for instance, if f = X/Y and x = 0, we have
Lψ(f(x,Y )) = Q`, but K0 = j!Q`, where j : A1 − {0} ↪→ A1 is the open
immersion. Thus Kx has zero stalk at 0. However, this subtlety will not be
a problem for us, in particular because the set of x for which this behavior
happens (and the set of y such that the stalk of Kx at y is not the same as
that of Lψ(f(x,Y ))) is finite and (since these points must be common zeros
of the numerator f1 and the denominator f2 of f) has size bounded by
deg(f1) deg(f2), e.g. by Bézout’s theorem.

In particular, we get the following corollary from the previous four lem-
mas. The statement uses the notation (4.6).
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Corollary 4.10. — Let Fq be a finite field of order q and characteristic
p, ` a prime distinct from p. Let L = Lψ(f(X,Y )) be an `-adic Artin–Schreier
sheaf on A2 over Fq, where f ∈ Fq(X,Y ) is a non-constant rational func-
tion. Let F be a middle-extension `-adic sheaf on A1 over Fq.

For every x ∈ A1(Fq), we have

dimH1
c (A1 × Fq,F ⊗ Lx) 6 3 · 210 c(f)4 c(F)4.

Proof. — Combine Lemma 4.3, Lemma 4.4 and Lemma 4.8. �

4.5. A global bound for the conductor

We now come to the lemma which contains the first idea in the proof
of Theorem 2.3: it allows us to replace the sum of Swan conductors, in
the definition of the conductor of a sheaf, by a global invariant (the Euler–
Poincaré characteristic) that is more accessible to algebraic manipulations.

Lemma 4.11 (Global conductor bound). — Let F be a sheaf on A1
Fq

without punctual sections. We have
c(F) 6 3 rank(F)− χ(F) 6 3 rank(F) + h1(F).

Proof. — Let U be the maximal open set on which F is lisse; it is dense.
Since F has no punctual sections, we have

c(F) = rank(F) +
∑

x∈(P1−U)(F̄q)

(1 + Swanx(F)).

By the Euler–Poincaré formula (see, e.g., [9, 2.3.1]), we have

−χc(U,F) = − rank(F)χc(U,Q`) +
∑

x∈(P1−U)(F̄q)

Swanx(F).

We have χc(U,Q`) = 2− |(P1 − U)(Fq)| = 2− n(F), and therefore∑
x

Swanx(F) = −χc(U,F) + (2− n(F)) rank(F).

By excision we have

−χc(U,F) = −χ(F) +
∑

x∈(A1−U)(F̄q)

dimFx 6 −χ(F) +
∑

x∈(P1−U)(F̄q)

dimFx

and we obtain the upper bound

c(F) 6 3 rank(F)− χ(F) +
∑

x∈(P1−U)(F̄q)

(1 + dimFx − rank(F))
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Finally, since F is a middle extension sheaf, we have
dimFx 6 rank(F)− 1,

for any x ∈ (P1 − U)(Fq), because F is not lisse at x. The first inequality
follows, and also the second since

−χ(F) 6 dimH1
c (A1

F̄q ,F). �

5. Examples and applications

5.1. Preliminaries on trace functions

The simplest applications of our results consist in plugging the trace
functions of transform sheaves TK(F) in any general result involving trace
functions.

One must be slightly careful since many results are stated for irreducible
middle-extension sheaves which are pointwise pure of some weight and the
sheaf TK(F) may not have these properties (in particular it may not be
irreducible even if F is).

There is a potential notational subtlety (which did not arise in our pre-
vious works) involving the definition of weights. For an integer n ∈ Z, recall
(see [3, Def. 1.2.2]) that an `-adic sheaf F on XFq is pointwise pure of weight
n if, for all finite extensions k/Fq and for all x ∈ X(k), the eigenvalues of
Frobenius acting on Fx̄ are |k|-Weil numbers of some weight w = n. A sheaf
F on X is mixed of weights 6 n if it has a finite filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F
where the successive quotients Fi/Fi−1 are pointwise pure with weight ni6n.

On the other hand (see [10, (7.3.7)]), a middle-extension sheaf F on a
curve XFq is pure of weight n if, for some (equivalently any) dense open set
U ⊂ X where F is lisse, for all k/Fq and all x ∈ U(k), the eigenvalues of
Frobenius on Fx̄ are |k|-Weil numbers of weight n. It follows from results of
Deligne (in particular [3, Lemme 1.8.1], and the Riemann Hypothesis) that
such a sheaf is also mixed of weights 6 n, i.e., the eigenvalues of Frobenius at
the “missing points” X−U are also Weil numbers with weight 6 n. However,
these weights may be < n. In other words, a middle-extension sheaf may be
pure of weight n without being pointwise pure of weight n.

The following lemma encapsulates a reduction of trace functions of con-
structible sheaves to middle-extension sheaves:
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Lemma 5.1 (Trace function of constructible sheaf). — Let Fq be a fi-
nite field of characteristic p, let ` 6= p be a prime and let F be an `-adic
constructible sheaf on A1

Fq which is mixed of weights 6 0.

There exists a decomposition of the trace function tF of F of the form
tF = tFmid + t1 + t2,

where Fmid is a middle-extension sheaf on A1
Fq which is pure of weight 0,

and where:

(1) The function t1 is zero except for a set of values of x ∈ Fq of size
at most 2 c(F), and it satisfies

|t1(x)| 6 2 c(F)
for all x ∈ Fq.

(2) The function t2 satisfies

|t2(x)| 6 c(F)q−1/2

for all x ∈ Fq.

Proof. — This is a classical “dévissage”. We begin by observing that
|tF (x)| 6 c(F)

for all x ∈ Fq: indeed, by assumption, all eigenvalues of Frobenius on the
stalk Fx̄ are of modulus at most 1, and the maximal dimension of a stalk is
bounded by the conductor (including where there is a punctual part of the
sheaf).

Let F0 be the direct sum of quotients which are pointwise pure of weight 0
in a filtration of F with successive quotients which are pointwise pure of some
weight 6 0, and let F1 be the direct sum of the remaining quotients. We
have

tF (x) = tF0(x) + tF1(x),
and trivially

|tF1(x)| 6 p−1/2 c(F)
for all x ∈ Fq. We put t2 = tF1 .

Next, let
0 −→ Fpct −→ F0 −→ Fnpct −→ 0

be the short exact sequence associated to the inclusion of the punctual part
Fpct of F0. We have

tF0(x) = tFpct(x) + tFnpct(x),
and tFpct is zero except for 6 c(F) values of x for which we have

|tFpct(x)| 6 dimH0
c (A1 × Fp,F0) 6 c(F).
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Finally, let j : U ↪→ A1 be the open immersion of the maximal dense
open subset where Fnpct is lisse, and let

Fmid = j∗j
∗Fnpct.

This is a middle-extension sheaf, pointwise pure of weight 0, with trace
function equal to that of F for x ∈ U(Fq). Thus the difference

tF − tFmid

is zero except for at most c(F) values of x ∈ Fq, and has modulus 6 2 c(F)
for all x. We obtain the desired decomposition by taking

t1 = tFpct + tF − tFmid . �

We will apply the previous lemma to the trace functions of the trans-
form sheaves T 1

K(F) considered in this paper. We introduce a definition for
convenience.

Definition 5.2 (f -disjoint sheaf). — Let Fq be a finite field of charac-
teristic p, let ` 6= p be a prime. Let f ∈ Fq(X,Y ) be a rational function and
let K = Lψ(f) be the Artin–Schreier sheaf on A2

Fq associated to f .

A middle-extension sheaf F on A1
Fq is called f -disjoint or K-disjoint if

for all x ∈ A1(Fq), one has

H2
c (A1 × Fq,F ⊗Kx) = 0.

Corollary 5.3 (Artin–Schreier transforms as trace functions). — Let
Fq be a finite field of characteristic p, let ` 6= p be a prime. Let f ∈ Fq(X,Y )
be a rational function given by f = f1/f2 with fi ∈ Fq[X,Y ] coprime poly-
nomials, and assume that c(f) < p.

Let F be a middle-extension sheaf on A1
Fq which is pointwise pure of

weight 0 and f -disjoint.

There exists an absolute constant A > 1, independent of f and F , such
that for all x ∈ A1(Fq), we have

1
√
q

∑
y∈Fq

f2(x,y)6=0

tF (y)ψ(f(x, y)) = −t0(x) + t1(x) + t2(x),

where

• t0 is the trace function of a middle-extension sheaf Gmid of weight
0 on A1

Fq with

c(Gmid) 6 (2 c(f) c(F))A,
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• the function t1 is zero for a set of values of x ∈ Fq of size at most
(2 c(f) c(F))A, and it satisfies

|t1(x)| 6 (2 c(f) c(F))A,
for all x ∈ Fq,
• The function t2 satisfies

|t2(x)| 6 (2 c(f) c(F))Aq−1/2

for all x ∈ Fq.
Proof. — Let

Gi = T iK(F)(1/2) for 0 6 i 6 2 and G = G1 = T 1
K(F)(1/2).

By the Riemann Hypothesis [3] (taking into account the Tate twist) the
sheaves Gi are mixed of weight 6 i−1 and in particular G is mixed of weight
6 0. By the proper base change theorem (see Proposition 4.1(4)) and the
Grothendieck–Lefschetz trace formula, the trace function of G is

tG(x) = − 1
√
q

∑
y∈Fq

tF (y)tK(x, y) + tG0(x) + tG2(x)

for x ∈ Fq.

The stalk of G0 over x is (by Lemma 4.2)
H0
c (A1 × Fq,F ⊗ Lx) = 0

and that of G2 is (since F is f -disjoint)
H2
c (A1 × Fq,F ⊗ Lx) = 0.

Hence we obtain, for all x ∈ Fq,

tG(x) = − 1
√
q

∑
y∈Fq

tF (y)tK(x, y)

By Definition 2.2, we have

tK(x, y) =
{
ψ(f(x, y)) if f2(x, y) 6= 0
0 otherwise,

and by Theorem 2.3, there exists A > 1 such that the constructible sheaf G
satisfies

c(G) 6 (2 c(f) c(F))A.

Thus the result follows by applying Lemma 5.1 to G. �

Definition 5.4. — The middle extension sheaf
Gmid = T 1

K(F)mid(1/2) (5.1)
obtained by applying Lemma 5.1 to G will be called the weight 0 part of G.
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Remark 5.5. — For K as in this corollary, the condition that F is f -
disjoint is valid in many cases. We list some of them for convenience.

The assumption of Corollary 5.3 holds:

(1) If F is irreducible of rank at least 2 (e.g., Kloosterman sheaves in
one or more variables), or more generally if F is irreducible and not
isomorphic to an Artin–Schreier sheaf.

(2) If F is tamely ramified and there is no specialization fx of f which
is constant as an element in Fq(Y ) (e.g., any Kummer sheaf with
trace function χ(g(x)) for a multiplicative character χ, provided no
fx is constant); in particular, if F is the trivial sheaf with constant
trace function 1, it is enough that no specialization fx be constant.

(3) If F is an Artin–Schreier sheaf Lψ(g) with trace function ψ(g(x))
and there is no x ∈ Fq such that g + fx is constant.

5.2. Application to automorphic twists

We begin by explaining one setting where the application of our result is
very easy:

Proposition 5.6. — Let f be a Hecke cusp form of level N > 1 with
Fourier coefficients %f (n) at ∞. Let g1, g2 ∈ Z[X,Y ] be two non-constant
coprime polynomials, and let g = g1/g2 ∈ Q(X,Y ).

Let V be a smooth function on ]0,+∞[ with compact support. Let p be a
prime number, let K be an irreducible trace function modulo p associated to
a middle-extension sheaf F which is (g (mod p))-disjoint. For ε > 0, we have

∑
n>1

%f (n) 1
√
p

( ∑
x∈Fp

g2(n,x) 6=0 (mod p)

K(x)e
(
g1(n, x)g2(n, x)

p

))
V (n/p)� p1−1/8+ε

where the implied constant depends on (f, V, ε, c(F), c(g)).

Proof. — The main result of [5] shows that∑
n>1

%f (n)K(n)V (n/p)� p1−1/8+ε

if K is the trace function of a geometrically isotypic middle-extension sheaf
which is pointwise pure of weight 0. We will show how to deduce the result
from this.

– 225 –



Étienne Fouvry, Emmanuel Kowalski and Philippe Michel

By Corollary 5.3 (applied with ψ chosen so that tLψ (x) = e(x/p) for
x ∈ Fp), we have a decomposition

1
√
p

( ∑
x∈Fp

g2(n,x)6=0

K(x)e
(
g1(n, x)g2(n, x)

p

))
= −t0(n) + t1(n) + t2(n)

where −t0 is the trace function of a middle-extension sheaf which is pure of
weight 0 and has conductor 6 C = (2 c(f) c(F))A, while t1 is zero except for
6 C values of x ∈ Fp, where it has modulus at most C, while |t2| 6 Cp−1/2.
We have then ∑

n>1
%f (n)ti(n)V (n/p)� p1−1/8+ε

for i = 1, 2, and we are reduced to the case of t0. Decomposing t0 in trace
functions of its geometrically isotypic components, we conclude by apply-
ing [5]. �

5.3. Two-variable sums and the example of Conrey–Iwaniec

A basic application of bounds on conductors like those of Theorem 2.3
concerns two-variable exponential sums of quite general type. We present
the very general principle before giving a concrete example.

Given a trace function K(x, y) in two variables, e.g.
K(x, y) = χ(f1(x, y))e(f2(x, y)/p)

for rational functions f1 and f2 ∈ Fp(X,Y ) and for a multiplicative character
χmodulo p, one wishes to obtain square-root cancellation (when possible) for∑

x,y

K(x, y).

This may be written as ∑
x

∑
y

K(x, y),

i.e., as the inner product of the constant function 1 (i.e., the trace function
of the trivial sheaf) and (essentially) the trace function of

T 1
K(Q`)

where K is the sheaf with trace function K. It may happen that K is given
naturally as a product

K(x, y) = K1(x)K2(y)K3(x, y)
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for trace functions K1 and K2 modulo p and another trace function K3 in
two variables; in such a case, it may be better to write the sum as∑

x

K1(x)
∑
y

K2(y)K3(x, y),

which is the inner-product of K1 with the trace function of T 1
K3

(K2), with
obvious notation.

From a direct application of the Riemann Hypothesis, we obtain the
following qualitative information concerning these types of sums:

Proposition 5.7 (Small diagonal principle). — Let Fq be a finite field
of characteristic p, let ` 6= p be a prime number. Let K be a constructible
`-adic sheaf mixed of weight 6 0 on A2

Fq .

Let F2 be a middle-extension sheaf on A1
Fq , pointwise pure of weight 0

such that T 2
K(F2) is generically 0.

There exists a finite set X(K,F2) of geometrically irreducible middle-
extension sheaves which are pointwise pure of weight 0, of cardinality bounded
in terms of the conductor of T 1

K(F2), such that if F1 is a middle-extension
sheaf of weight 0, geometrically irreducible, and not geometrically isomorphic
to any of the sheaves in X(K,F2), then∑

x,y∈Fq

tF1(x)tF2(y)tK(x, y)� q,

where the implied constant depends only on the conductor of F1 and of
T 1
K(F2).

Proof. — Let X(K,F2) be the set of geometric isomorphism classes of ge-
ometrically irreducible components of the weight 0 part of G = T 1

K(F2)(1/2).
This is a finite set of cardinality bounded by the rank of T 1

K(F2), hence
bounded in terms of the conductor of F2.

Under the assumptions of the proposition, for F1 geometrically irre-
ducible and not in X(K,F2), we have

1
q1/2

∑
x,y∈Fq

tF1(x)tF2(y)tK(x, y) =
∑
x∈Fq

tF1(x) 1
q1/2

∑
y∈Fq

tF2(y)tK(x, y)

= − tr(Fr |H1
c (A1 × Fq,F1 ⊗ G))

(since the cohomology spaces H0
c and H2

c vanishing here). The first coho-
mology space is mixed of weights 6 1 by Deligne’s Riemann Hypothesis,
and hence we obtain the result using the conductor bounds (Lemmas 4.3
and 4.4). �
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Although this proposition does not, by itself, give square-root cancellation
in any individual case, it implies for instance that∑

x

e

(
ax2

p

)∑
y

tF2(y)tK(x, y)� p

(working over Fp) for all a ∈ Fp except for a number of exceptions bounded
in terms of the conductors of F2 and K only. In quite a few applications,
this type of qualitative “control of the diagonal” is sufficient (for instance,
similar ideas are crucial in [5]). However, this is not always the case, and one
needs to attempt some further analysis if a more precise result is needed.

We now present a concrete example, taken from the important work of
Conrey and Iwaniec on the third moment of special values of automorphic
L-functions [1]. Given a prime p and two multiplicative characters χ1 and
χ2 modulo p, Conrey and Iwaniec consider the sum

S(χ1, χ2) =
∑

x,y∈Fp

χ1(xy(x+ 1)(y + 1))χ2(xy − 1)

=
∑
x∈Fp

χ1(x(x+ 1))
∑

x,y∈Fp

χ1(y(y + 1))χ2(xy − 1).

They prove:
Theorem 5.8 (Conrey–Iwaniec). — Let χ1 be a non-trivial multiplica-

tive character modulo p, and let χ2 be any multiplicative character modulo
p. Then

S(χ1, χ2)� p

where the implied constant is absolute.

This is [1, Lemma 13.1], slightly generalized, since we do not assume that
χ1 is a real character. Conrey and Iwaniec remark [1, Remarks, p. 1208] that
their main result concerning L-functions would be considerably weakened if
(for χ1 a real character modulo p, for many primes p) there existed a single
character χ2 for which the size of the sum would be p3/2.

Remark 5.9. — Some natural generalizations of these sums have ap-
peared recently in the work of Petrow and Young [19] on the Weyl bound
for Dirichlet L-functions. They prove the analogue of the theorem of Conrey
and Iwaniec using some of the ideas in this paper.

We will explain how to prove Theorem 5.8 using the ideas of cohomo-
logical transforms. The sums p−1/2S(χ1, χ2) are naturally presented in the
form discussed above, namely as the inner product of the trace function of
the dual of the Kummer sheaf

F1 = Lχ1(X(X+1)) (5.2)
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with that of the transform sheaf
G = T 1

K(F1)(1/2) = T 1
K(Lχ1(Y (Y+1)))(1/2) where K = Lχ2(XY−1) (5.3)

(the latter is defined as the extension by 0 of the Kummer sheaf Lχ2(XY−1)
on the open set complement of the curve XY − 1, see below for the general
definition).

More precisely, the trace function of G is

tG(x) = − 1
p1/2

∑
y∈Fp

χ1(y(y + 1))χ2(xy − 1)

for all x ∈ Fp, provided χ1 6= 1: indeed, by the trace formula and the
proper base change theorem, it is enough to show that T 0

K(Lχ1(Y (Y+1))) =
T 2
K(Lχ1(Y (Y+1))) = 0 in that case. The former is true by Lemma 4.2, and

the latter because the fiber above x ∈ Fp is
H2
c (A1 × Fp,Lχ1(Y (Y+1)) ⊗ Lχ2(xY−1)) = 0

(since χ1 6= 1, this can only be non-zero if the second tensor factor is ramified
at 0 and −1, but it is in fact always unramified at 0).

The kernel K is not of the type considered in Theorem 2.3. However, it is
easy to adapt the proof of this result to derive an analogue for multiplicative
characters. These we define in general in analogy with Definition 2.2:

Definition 5.10. — Given a non-trivial multiplicative `-adic character
of F×q , we denote by Lχ the associated Kummer sheaf on Gm,Fq (see [2,
Sommes Trig.]). Let f ∈ Fq(X,Y ) be a rational function, U the open set
where the numerator and denominator are both non-zero, with j : U ↪→ A2

the open immersion; let fU : U → Gm be the associated morphism, then
the Kummer sheaf associated to f is the constructible `-adic sheaf on A2

Fq
defined as

Lχ(f) = j!f
∗
ULχ.

Theorem 5.11 (Conductor of Kummer transforms). — Let Fq be a fi-
nite field of order q and characteristic p, ` a prime distinct from p. Let K be
an `-adic sheaf on A1 ×A1 over Fq of the form K = Lχ(f).

For constructible sheaves F on A1
Fq , and 0 6 i 6 2, let

T iK(F) = Rip1,!(p∗2F ⊗K).

The sheaves T iK(F) are constructible and there exists an absolute constant
A > 1 such that

c(T iK(F)) 6 (2 c(K) c(F))A

and moreover
dimHi

c(A2 × Fq, p∗2F ⊗K) 6 (2 c(f) c(F))A.
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Sketch of proof. — One can follow line by line the proof of Theorems 2.3
and 2.5. The only differences are:

(1) we deal separately with the case

f(X,Y ) = f1(X)f2(Y )

(instead of f(X,Y ) = f1(X) + f2(Y ) in the case of an additive
character);

(2) to bound the Betti numbers

dimHi
c(A2 × Fq,K)

(i.e., when the input sheaf is trivial), one uses the results of
Adolphson–Sperber or Katz [14, Thm. 12] instead of those of
Bombieri (which are only proved for additive characters); an al-
ternative is to lift the tame sheaves to characteristic 0. �

In particular, in our case, G = T 1
K(Lχ1(Y (Y+1)))(1/2) has conductor abso-

lutely bounded as χ1, χ2 and p vary. By the Riemann Hypothesis, the sheaf
G is also mixed of weights 6 0, and therefore the principle above shows that,
for all primes p, and for all characters χ2, we have

S(χ1, χ2)� p

with an absolute implied constant, for all but a bounded number of multi-
plicative characters χ1 modulo p (since Lχ1(X(X+1)) ' Lχ′1(X(X+1)) if and
only if χ1 = χ′1).

In order to go deeper and show that, in fact, these exceptions do not
exist, we must look more carefully at G.

Proposition 5.12. — Let χ1 and χ2 be non-trivial characters of F×q ,
and let F1, K and G be the constructible sheaves defined in (5.2) and (5.3)
and let G0 be the weight 0 part of G.

(1) The sheaves G and G0 have generic rank 2.
(2) The sheaf G0 is lisse on W = A1 − {0,−1} and geometrically irre-

ducible.

If we grant this proposition let us show how to conclude the proof of
Theorem 5.8. By Lemma 5.1, we have

p−1/2S(χ1, χ2) =
∑
x∈Fp

tF1(x)tG(x) =
∑
x∈Fp

tF1(x)tG0(x) +O(p1/2)

where the implicit constant is absolute. Since G0 is geometrically irreducible
of rank 2 on W and F1 has rank 1, the sheaf G0 cannot not be geometrically
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isomorphic to the dual of F1, and hence

p−1/2S(χ1, χ2) = O(p1/2)

where the implied constant is absolute, by the Riemann Hypothesis and the
conductor bound c(G0)� 1. This finishes the proof of Theorem 5.8.

For the proof of (2), we recall a very useful diophantine criterion for
irreducibility of Katz (see [12, Lemma 7.0.3]).

Lemma 5.13 (Irreducibility criterion). — Let Fq be a finite field of char-
acteristic p, let ` 6= p be a prime number and let F be an `-adic constructible
sheaf on A1

Fp which is mixed of weights 6 0. Then we have

1
qν

∑
x∈Fqν

|tF (x, qν)|2 = 1 +O(q−ν/2) (5.4)

for ν > 1, if and only if the middle-extension part of weight 0 of F is geo-
metrically irreducible, i.e., if and only if, for any dense open subset U where
F is lisse, the restriction of the weight 0 part of F to U ×Fq corresponds to
an irreducible representation of the geometric fundamental group of U .

Proof. — For ν > 1 fixed, let

tF (x, qν) = tFmid(x, qν) + t1(x) + t2(x)

for x ∈ Fqν be the decomposition of Lemma 5.1 (applied to Fqν ). We wish
to prove that Fmid is geometrically irreducible. From the properties of t1
and t2, we see that

1
qν

∑
x∈Fqν

|tF (x, qν)|2 = 1
qν

∑
x∈Fqν

|tFmid(x, qν)|2 +O(q−ν)

for ν > 1. Now let U be a dense open subset of A1 where Fmid is lisse. Then
we have

1
qν

∑
x∈U(Fqν )

|tFmid(x, qν)|2 = 1
qν

∑
x∈Fqν

|tFmid(x, qν)|2 +O(q−ν),

for ν > 1, since the complement is finite. Therefore, we have (5.4) if and
only if

1
qν

∑
x∈U(Fqν )

|tFmid(x, qν)|2 = 1 +O(q−ν/2)

for ν > 1. But by [12, Lemma 7.0.3] applied to the lisse sheaf Fmid on U ,
which is pure of weight 0, this last condition holds if and only if Fmid is
geometrically irreducible on U . �
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Proof of Proposition 5.12. — We begin by checking the generic rank
of G. The fiber of G over x ∈ Fq is

H1
c (A1 × Fq,Lχ1(Y (Y+1)) ⊗ Lχ2(xY−1))(1/2).

By the Euler–Poincaré formula (see (4.5)), its dimension is

dimH1
c (A1 × Fq,Lχ1(Y (Y+1)) ⊗ Lχ2(xY−1)) = −1 + 3 = 2

if x 6= −1 (so that the sheaf is ramified at the three points y = 0, −1 and
1/x). Hence the generic rank of G is 2.

We next apply the irreducibility criterion to G, which is mixed of weights
6 0, to prove that the part of weight 0 is geometrically irreducible on any
dense open set where it is lisse.

For ν > 1 and i = 1, 2, we denote by χi,ν the extension χi ◦NFqν /Fq of
χi to Fqν , we have

1
qν

∑
x∈Fqν

|tG(x, qν)|2 = 1
q2ν

∑
x∈Fqν

∣∣∣∣∣ ∑
y∈Fqν

tF1(x, qν)χ2,ν(xy − 1)

∣∣∣∣∣
2

= 1
q2ν

∑
y1,y2∈Fqν

tF1(y1, q
ν)tF1(y2, qν)

×
∑
x∈Fqν

χ2,ν(xy1 − 1)χ2,ν(xy2 − 1).

The contribution of the diagonal terms y1 = y2 to this sum is
qν − 1
q2ν

∑
y∈Fqν

|tF1(y, qν)|2 = 1
qν

∑
y∈Fqν

|tF1(y, qν)|2 +O(q−ν)

= 1 +O(q−ν) (5.5)

since tF1(y, qν) = χ1,ν(y(y + 1)).

If y1 6= y2, the map

x 7−→ xy1 − 1
xy2 − 1

is a bijection on P1(Fqν ). Hence, in that case, we have∑
x∈Fqν

χ2,ν(xy1 − 1)χ2,ν(xy2 − 1) = −χ2,ν(y1)χ2,ν(y2)

(we write it in this way to incorporate the case y2 = 0, in which case the
map is a bijection of Fqν , while otherwise the sum over x ∈ Fqν misses the
point y1/y2).
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Thus we get an off-diagonal contribution equal to

− 1
q2ν

∑
y1,y2∈Fqν
y1 6=y2

tF1(y1, q
ν)tF1(y2, qν)χ2,ν(y1)χ2,ν(y2).

Inserting the diagonal in this sum, we find that it is equal to

− 1
q2ν

(∣∣∣∣∣ ∑
y∈Fqν

tF1(y, qν)χ2,ν(y)

∣∣∣∣∣
2

−
∑
y∈F×

qν

|tF1(y, qν)|2
)
.

Since F1 is geometrically irreducible but not geometrically isomorphic to
Lχ2 (indeed F1 is ramified at −1 while Lχ2 is lisse there), by the Riemann
Hypothesis (in that case, due to A.Weil), we have∣∣∣∣∣ ∑

y∈Fqν
tF1(y, qν)χ2,ν(y)

∣∣∣∣∣
2

= O(qν), (5.6)

while the bound ∑
y∈F×

qν

|tF1(y, qν)|2 = O(qν)

is immediate. Hence the off-diagonal contribution is O(q−ν), and the irre-
ducibility criterion does apply.

Thus G0 is geometrically irreducible on any open set where it is lisse. We
will now prove that G is lisse and pure of weight 0 on W . It then follows
that G = G0 on W , which will conclude the proof of the proposition.

We begin by checking that G is lisse onW = A1−{0,−1} using Deligne’s
semicontinuity theorem ([16, Cor. 2.1.2]). We denote by p1 and p2 the pro-
jections (x, y) 7→ x and (x, y) 7→ y from A2 to A1. We also denote by
p̃1 : A1 × P1 → A1 the first projection. This is a smooth and proper mor-
phism of relative dimension 1. Let H = Lχ2(XY−1) ⊗ p∗2Lχ1(Y (Y+1)) so
that G = R1p1,!H(1/2). Note that H is lisse on U = A2 − D where D
is the divisor

D = {XY = 1} ∪ (A1 × {0}) ∪ (A1 × {−1}).

We denote by H̃ the sheaf on A1 × P1 which is the extension by zero
of H̃ from A1 ×A1 to A1 ×P1. By definition, we have G = R1p̃1,∗H̃(1/2).

Let D̃ be the complement in A1×P1 of the open set U . This is the union
of D and of the line A1 × {∞}.

Let X = p̃−1
1 (W ). By restriction, the morphism p̃1 defines a proper

smooth morphism X → W of relative dimension 1. The intersection D̃ ∩X
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is a divisor in X that is flat and finite (of degree 4) over W . The sheaf H̃ is
lisse on the complement of D̃ ∩X in A1 ×P1.

Let x ∈ W . The fiber Cx of p̃1 over x is identified with P1, and the
restriction of H̃ to Cx is identified with a lisse sheaf on the dense open set

Ux = A1 − {0,−1, 1/x,∞} ⊂ P1.

The restriction of the sheaf H̃ to Cx is (at most) tamely ramified everywhere,
hence the function ϕ of [16, Thm. 2.1.1] is constant equal to 0 on points ofW .
Corollary 2.1.2 of loc. cit. then implies that G is lisse on W , as claimed.

We finally prove that G is pure of weight 1 on W . We apply [15, Lem-
ma 4.22(b)] to the morphism p̃1 : X → W and to the sheaf H̃ on X. For
any x ∈ P1, the sheaf H̃x, after pullback to Cx = {x} × P1, has neither
punctual section nor trivial subrepresentation (as lisse sheaf on Ux). Thus
the assumptions of loc. cit. are satisfied. It follows that for any x ∈ W , the
part of weight < 1 of the stalk at x of Gmid is isomorphic to⊕

y∈Cx−Ux

(H̃x)Iyη̄ /(H̃x)ȳ.

But already (H̃x)Iyη̄ = 0 at all singular points y ∈ {0,−1, 1/x,∞}, so this
direct sum vanishes. �

Remark 5.14. — The irreducibility criterion applies more generally to
show that TK(F)mid is geometrically irreducible as long as F is a geomet-
rically irreducible middle-extension sheaf, pure of weight 0, which is not
geometrically isomorphic to Lχ2 . Indeed, under these assumptions, the irre-
ducibility criterion shows that (5.5) holds with F1 replaced by F , while (5.6)
follows from the Riemann Hypothesis of Deligne.

6. Setting up the proof

To clarify the proof of Theorems 2.3 and 2.5, and in view of further
generalizations, we introduce the following definition:

Definition 6.1 (Continuity).

(1) Let
i : (f,F) 7−→ i(f,F)

be any real-valued map taking a pair (f,F) as input, where f is a
non-constant rational function in Fq(X,Y ) for some finite field Fq
and F is a middle-extension `-adic sheaf on the affine line over Fq.
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Then we say that i is continuous if there exists an integer C > 1
such that

|i(f,F)| 6 (2 c(f) c(F))C

for all pairs (f,F) as above such that c(f) < p.(1)

(2) Similarly, if

j : f 7−→ j(f) (resp. k : F 7−→ k(F))

are real-valued maps taking as input a non-constant rational func-
tion f ∈ Fq(X,Y ) for some finite field Fq (resp. a middle-extension
`-adic sheaf F on the affine line over Fq), then we say that j
(resp. k) is continuous if and only if there exists an integer C > 1
such that

|j(f)| 6 (2 c(f))C(resp. |k(F)| 6 (2 c(F))C),

for all f with c(f) < p (resp. all middle-extension sheaves F).

Remark 6.2. — Some of our arguments are easier to follow and check if
one uses a weaker definition of continuity, where one only asks that

|i(f,F)| 6 Ψ(c(f), c(F))

for some function Ψ taking positive integral values. For some basic appli-
cations, such a statement is also sufficient, and the reader might wish to
consider this as the notion of continuity in a first reading.

Example 6.3. — For instance, Theorem 2.3 asserts that the maps

(f,F) 7−→ c(T iK(F))

are continuous, and Theorem 2.5 that the maps

(f,F) 7−→ dimHi
c(A2 × Fq, p∗2F ⊗K)

are continuous. Lemma 4.3 proves that the functions

F 7−→ dimHi
c(A1 × Fq,F)

are continuous.

Clearly, if we fix one argument of a continuous map i(f,F) and let the
other vary, this gives a continuous map of this second argument. Also, a sum
i1 + i2 of continuous functions is also continuous, as well as a product i1i2.

(1) This restriction on c(F) may seem artificial, and it is possible that it would not
be needed for our results. But it has no influence on the applications.

– 235 –



Étienne Fouvry, Emmanuel Kowalski and Philippe Michel

For simplicity, we denote

ci(f,F) = c(T iK(F)), 0 6 i 6 2
hj(f,F) = dimHj

c (A2 × Fq, p∗2F ⊗ Lψ(f)), 0 6 j 6 4
m(f,F) = rank(T 1

K(F)) + pct(T 1
K(F)).

The proof of Theorems 2.3 and 2.5 will be based on the following steps:

Proposition 6.4. — The following assertions are true:

(1) The map (f,F) 7→ c0(f,F) is continuous.
(2) For 0 6 j 6 4, the map f 7→ hj(f,Q`) = dimHj

c (A2×Fq,Lψ(f)) is
continuous.

(3) (a) If f 7→ h2(f,Q`) is continuous, then f 7→ c2(f,Q`) is cont-
inuous;

(b) if (f,F) 7→ h2(f,F) is continuous, then (f,F) 7→ c2(f,F) is
continuous.

(4) If f 7→ c1(f,Q`) and f 7→ c2(f,Q`) are continuous, then (f,F) 7→
h2(f,F) is continuous.

(5) (a) If f 7→ c2(f,Q`) is continuous, then f 7→ m(f,Q`) is cont-
inuous;

(b) if (f,F) 7→ c2(f,F) is continuous, then (f,F) 7→ m(f,F) is
continuous.

(6) (a) If f 7→ m(f,Q`) and f 7→ h2(f,Q`) are both continuous, then
f 7→ c1(f,Q`) is continuous;

(b) if (f,F) 7→ m(f,F) and (f,F) 7→ h2(f,F) are both continuous,
then (f,F) 7→ c1(f,F) is continuous.

(7) If (f,F) 7→ ci(f,F) is continuous for 0 6 i 6 2, then (f,F) 7→
hj(f,F) is continuous for all 0 6 j 6 4.

We now explain how to deduce Theorems 2.3 and 2.5 from this propo-
sition. Since this may also look like spaghetti-mathematics, the reader may
also wish to go straight to Sections 7 and 14 (possibly in the opposite order)
which together give an account of the proof for the special case of the Fourier
transform (and discuss another example arising in the Polymath8 project),
in which case the flow of the proof is much easier to follow.

First of all, c0 is continuous by (1), so we must show that c1, c2 and the
hj are continuous.

Step 1. — Using (2), we can apply (3a) and deduce that f 7→ c2(f,Q`)
is continuous. By (5a), it follows that m(f,Q`) is continuous. Combining
this with (6a) and (2) again, we deduce that f 7→ c1(f,Q`) is continuous.
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At this point, we have proved both theorems in the special case when
F = Q` is the trivial sheaf.

Step 2. — From (4) and Step 1, we see that (f,F) 7→ h2(f,F) is con-
tinuous. This fact combined with (3b) shows that (f,F) 7→ c2(f,F) is con-
tinuous. In turn, (5b) then proves that (f,F) 7→ m(f,F) is continuous, and
finally (6b) allows us to conclude that (f,F) 7→ c1(f,F) is continuous.

At this point we have proved Theorem 2.3 (and the continuity of (f,F) 7→
h2(f,F)); by (7), we deduce that all hj are continuous.

Remark 6.5.

(1) We will in fact establish (3b) and (3a) directly by proving a direct
relation between c2(f,F) and h2(f,F) for F = Q` or in general,
and similarly for (5b) and (5a), (6b) and (6a).

(2) The most crucial points in Proposition 6.4 are
• (2), which gives the starting point of the argument for the triv-
ial sheaf, and which comes from the bounds for Betti numbers
of Bombieri, Adolphson–Sperber and Katz.
• (4), which allows us to pass from properties known for the
trivial sheaf only, to properties of all sheaves.

(3) It is only in the proof of (5b) and (5a) that we will use the restriction
that continuity applies to f with c(f) < p.

7. Spectral sequence argument

We state here the few simple facts about spectral sequences that we
require. We first recall the basic formalism, referring to [18, Appendix B] for
a survey and [21, Chap. 10] for details.

Let k be a fixed field. A converging (first quadrant) spectral sequence
Ep,q2 =⇒ En,

of k-vector spaces involves

(1) vector spaces Ep,q2 defined for p, q > 0;
(2) vector spaces En defined for n > 0;
(3) linear maps

dp,q2 : Ep,q2 −→ Ep+2,q−1
2 ,

(called differentials)(2) for all p and q (with the convention Ep,q2 = 0
if p or q is negative), such that

dp,q2 ◦ dp−2,q+1
2 = 0.

(2) Note that these differentials show that p and q do not play symmetric roles.
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Remark 7.1. — The use of the indices p and q for the spectral sequence
is almost universal, although it clashes with the usual convention that p is
a prime and q a power of p. We will use i and j instead of p and q when
both notation are involved, although the difference in context should avoid
confusion.

One defines
Ep,q3 = ker dp,q2 / im dp+2,q−1

2 , (7.1)
and one shows that there are linear maps

dp,q3 : Ep,q3 −→ Ep+3,q−2
3 , (7.2)

such that dp,q3 ◦d
p−3,q+2
3 = 0. This process is then suitably iterated to obtain

Ep,qj for all j > 2, and differentials

dp,qj : Ep,qj −→ Ep+j,q−j+1
j

(with composites vanishing).

One says that the spectral sequence degenerates at the Ej-level (where
j = 2 or 3) if dp,qi = 0 for all p, q > 0 and i > j. When this is the case, the
formalism gives (among other things) the following relation between the Ep,qj
and the spaces En: we have for all n > 0, a (non-canonical) isomorphism

En '
n⊕
p=0

Ep,n−pj , (7.3)

of k-vector spaces. (There is often more structure involved, but this will
suffice for us.)

Furthermore, whether the spectral sequence degenerates at the E2 or E3
level or not, there is an exact sequence

0 −→ E1,0
2 −→ E1 −→ E0,1

2 −→ E2,0
2 . (7.4)

All these facts are stated in [18, p. 307–309]. The next proposition then
summarizes all results we will need from spectral sequences:

Proposition 7.2. — Let k be a field and let

Ep,q2 =⇒ En

be a converging spectral sequence as above. Assume that Ep,q2 = 0 unless
0 6 p 6 2 and 0 6 q 6 2.

(1) The spectral sequence degenerates at the E3-level and we have

E2 ' E0,2
3 ⊕ E1,1

2 ⊕ E2,0
3 . (7.5)
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(2) We have

dimEn 6
n∑
p=0

dimEp,n−p2 ,

and
dimE0,2

2 6 dimE2 + dimE2,1
2 .

(3) Assume in addition that Ep,q2 = 0 if q = 0. We have then E0,1
2 ' E1.

Proof.

(1). — From (7.1), we see that Ep,q3 = 0 unless 0 6 p, q 6 2 since it is
a quotient of a subspace of Ep,q2 . But then (7.2) shows that, for any p, q,
either the source of the target of dp,q3 is zero. In fact, for all i > 3, either
the target or the source of dp,qi vanishes, and therefore the spectral sequence
degenerates at that level.

By (7.3) we deduce that

E2 ' E0,2
3 ⊕ E1,1

3 ⊕ E0,2
3 ,

but
E1,1

3 = ker d1,1
2 / im d−1,2

2 ,

and since d1,1
2 and d−1,2

2 are both zero (the target of the first and the source
of the second are zero), we have E1,1

3 = E1,1
2 , hence (7.5).

(2). — By (1) and (7.3), we have

En ' En,03 ⊕ En−1,1
3 ⊕ · · · ⊕ E0,n

3 .

Since
dimEp,q3 6 dimEp,q2 ,

for all p and q, by (7.1), we obtain

dimEn =
n∑
p=0

dimEp,q3 6
n∑
p=0

dimEp,q2 .

Similarly, we note that

E0,2
3 = ker d0,2

2 / im d−2,1
2 = ker d0,2

2 ,

and hence we have a short exact sequence

0 −→ E0,2
3 −→ E0,2

2
d0,2

2−→ E2,1
2

which implies that

dimE0,2
2 6 dimE0,2

3 + dimE2,1
2 .
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From the degeneracy at the E3-level, we then get
dimE0,2

3 6 dimE2,

hence the bound for E0,2
2 .

(3). — The exact sequence (7.4), under the assumptions that Ep,02 = 0,
becomes

0 −→ E1 −→ E0,1
2 −→ 0,

hence the result. �

The spectral sequences we use are given by the following lemma:
Lemma 7.3. — Let Fq be a finite field of characteristic p, ` 6= p a prime

number. Let f ∈ Fq(X,Y ) be a rational function, and denote
K = Lψ(f(X,Y )),

where ψ is a non-trivial additive `-adic character. Denote f∗(X,Y ) =
f(Y,X) ∈ Fq(X,Y ), and

K∗ = Lψ(f∗).

Let F be a constructible `-adic sheaf on A1
Fq .

(1) For any dense open subsets U , V of A1
Fq , with p1, p2 denoting the

projection maps U × V → U and U × V → V , respectively, there
exist converging spectral sequences

Ei,j2 = Hi
c(U, T

j
K(F)) =⇒ Hi+j

c (U ×A1, p∗2F ⊗K),

Ei,j2 = Hi
c(V ,F ⊗ T

j
K∗(Q`)) =⇒ Hi+j

c (A1 × V , p∗2F ⊗K)

of Q`-vector spaces
(2) These two spectral sequences satisfy Ei,j2 = 0 unless 0 6 i 6 2 and

1 6 j 6 2.
Proof.

(1). — The first spectral sequence is the Leray spectral sequence of the
first projection map p1 : U×A1 → U and of the sheaf p∗2F⊗K (see, e.g., [7,
Thm. 7.4.4(ii)] or [18, Thm. VI.3.2(c)]).

The second spectral sequence arises from the Leray spectral sequence of
the second projection p2 : A1 × V → V and of the sheaf p∗2F ⊗K, namely

Ei,j2 = Hi
c(V ,Rjp2,!(p∗2F ⊗K)) =⇒ Hi+j

c (A1 × V , p∗2F ⊗K)
together with the facts that

Rjp2,!(p∗2F ⊗K) = F ⊗Rjp2,!(Lψ(f(X,Y )))
by the projection formula (see, e.g., [7, Thm. 7.4.7]), and that we can identify
Rjp2,!(Lψ(f(X,Y ))) with T jK∗(Q`) (restricted to V ).
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(2). — The fact that Ei,j2 = 0 unless 0 6 i, j 6 2 is immediate from (1)
and from the vanishing of cohomology of curves (resp. of higher-direct image
sheaves for maps with curves as fibers) in Proposition 4.1(1): the former
constrains i to be between 0 and 2, and the second constrains similarly j.

For the vanishing when j = 0, we note that the stalk at x ∈ A1(Fq) of
R0p1,!(p∗2F ⊗K) is, by the proper base change theorem, equal to

H0
c (A1 × Fq,F ⊗ Lψ(f(x,Y ))) = 0

by Lemma 4.2. Similarly, the stalk of R0p2,!(K) at y is

H0
c (A1 × Fq,Lψ(f(X,y))) = 0,

and these facts show that Ei,02 = 0 for all i in both spectral sequences. �

8. Beginning of the proof

We will now begin the proof of Proposition 6.4. As a warm-up, the reader
may wish to have a look at Section 14 where we discuss the simpler case of
the Fourier transform (where f(X,Y ) = XY ) and a closely related case
appearing in the Polymath8 project.

We first deal with parts (1) and (2) of Proposition 6.4.

(1). — We claim that T 0
K(F) = 0 for all f and F . Indeed, by the proper

base change theorem (Proposition 4.1(4)), the stalk of R0p1,!(p∗2F ⊗K) over
x ∈ A1(Fq) is

H0
c (A1 × Fq,F ⊗ Lψ(f(x,Y ))) = 0

by Lemma 4.2.

(2). — By the bounds of Bombieri, Adolphson–Sperber and Katz (see,
e.g., [14, Thm. 12]), the sum of Betti numbers

4∑
i=0

dimHi
c(A2 × Fq,Lψ(f))

is bounded by (1 + c(f))B for some absolute constant B > 1, which proves
the continuity of hi(f,Q`). Precisely, in order to apply the result of Katz, one
writes f = f1/f2 with fi ∈ Fq[X,Y ] and f1 coprime to f2, then one notes
that if U2 ⊂ A2 is the open subset where the denominator f2 is invertible,
we have

Hi
c(A2 × Fq,Lψ(f)) = Hi

c(U2 × Fq,Lψ(f))
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by definition of cohomology with compact support. Define Z ⊂ A3, where A3

has coordinates (U,X, Y ), to be the zero set of the polynomial Uf2(X,Y )−1.
Then the morphism

α

{
Z → U2

(u, x, y) 7→ (x, y)

is an isomorphism such that α∗Lψ(f) is isomorphic to the lisse sheaf Lψ(f̃) for
the polynomial f̃ = Uf1(X,Y ) ∈ Fq[U,X, Y ]. Katz’s theorem gives precisely
the upper-bound

4∑
i=0

dimHi
c(Z,Lψ(f̃)) 6 3

(
1 + 1 + max(1 + deg f1, 1 + deg f2)

)3+1
,

and hence the result.

The other parts of the proof are more involved, and require the tools
of Section 7. However, before going further we will deal directly with the
special case when f ∈ Fq(X)+Fq(Y ) (the reader is invited to figure out the
analogue of Section 3 in this case).

8.1. Proof of Theorems 2.3 and 2.5 in a factorable case

So assume that
f = f1 + f2,

with f1 ∈ Fq(X) and f2 ∈ Fq(Y ). We have K = p∗1L1 ⊗ p∗2L2, where Li =
Lψ(fi), hence

Rip1,!(p∗2F ⊗ p∗2L2 ⊗ p∗1L1) ' L1 ⊗Rip1,!(p∗2(F ⊗ L2)),
for 0 6 i 6 2, by the projection formula (see, e.g., [7, Thm. 7.4.7]).

But the sheaf Rip1,!(p∗2(F ⊗ L2)) is the constant sheaf associated to
Hi
c(A1 × Fq,F ⊗ L2): indeed, applying [2, Arcata, IV, Thm. 5.4] to the

cartesian diagram
A1

s2
��

A2
p2

oo

p1
��

Spec Fq A1
s1
oo

and the sheaf F ⊗ L2 on A1, we obtain
s∗1R

is2,!(F ⊗ L2) ' Rip1,!(p∗2(F ⊗ L2)),
and the left-hand side is a constant sheaf (since it is pulled-back from Fq)
and has fiber Ris2,!(F ⊗ L2) = Hi

c(A1 × Fq,F ⊗ L2), by the definition of
cohomology with compact support and higher-direct images.
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Hence we have (see (2.1))

ci(f1 + f2,F) 6 (dimHi
c(A1 × Fq,F ⊗ L2))× c(L1),

which is continuous as a function of c(F) and c(f) by Lemmas 4.3 and 4.4.

This proves Theorem 2.3 in the special case f ∈ Fq(X) + Fq(Y ), and
Theorem 2.5 follows either from the argument in Section 13 (which is general)
or from an application of the Künneth formula (see, e.g., [2, Sommes Trig.,
(2.4)*]) and of Lemma 4.3.

Remark 8.1. — In particular, by the definition of the conductor, we have
established Proposition 6.4 in the case f ∈ Fq(X) + Fq(Y ). In the sequel,
we may (and will) assume that

f 6∈ Fq(X) + Fq(Y ).

9. Proposition 6.4: proof of (3b) and (3a)

We prove (3b) and assume that the function (f,F) 7→ h2(f,F) is contin-
uous, and our aim is to show that

(f,F) 7→ c2(f,F) = c(T 2
K(F))

is continuous. As pointed out in Remark 8.1, we can assume from now on
that

f /∈ Fq(X) + Fq(Y ).

Lemma 9.1. — Assume f /∈ Fq(X) + Fq(Y ). Then T 2
K(F) vanishes

generically.

Proof. — Denote

G = T 2
K(F) = R2p1,!(p∗2F ⊗K).

Let (Fi) be the (geometric) Jordan–Hölder factors of F ; then the geo-
metric Jordan–Hölder factors of p∗2F ⊗K are the p∗2Fi ⊗K, so that we may
assume that F is geometrically irreducible.

Let η = Spec(Fq(X)) be the generic point of the affine line A1
Fq (with

coordinate X), let η = Spec(Fq(X)) be a geometric point above η. By con-
structibility, the stalks of G vanish for all x in a dense open subset if and
only if the stalk Gη̄ is zero.

By the proper base change theorem, we have

Gη̄ = H2
c (A1 × Fq(X),F ⊗ Lψ(fX(Y ))),
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where fX(Y ) = f(X,Y ). Assume this stalk is non-zero. Then, using the
coinvariant formula for the second cohomology group on a curve, it follows
that there exists an open subset U of the affine line (with coordinate Y ) over
Fq(X) such that

F ' Lψ(−fX(Y ))

as sheaves on U ×Fq(X). Since they are middle-extension sheaves, they are
isomorphic as sheaves on the affine line over Fq(X).

Note that F is pulled back from the affine line A1 over Fq (still with
coordinate Y ), and so the classification of Artin–Schreier sheaves shows that
f is, up to an additive “constant” in Fq(X), an element in Fq(Y ), i.e., we
have

f = f1 + f2,

with f1 ∈ Fq(X) and f2 ∈ Fq(Y ). �

Remark 9.2. — One can also prove this lemma using more elementary
arguments on rational functions, by looking at the vanishing at individual
stalks and the classification of Artin–Schreier sheaves on A1

Fq .

Because of this lemma, the conductor of G = T 2
K(F) is equal to pct(G)

(the generic rank is 0, and thus the action of all inertia groups on the generic
fiber is trivial, which implies that n(G) = 0 and hence the Swan conductors
also vanish). Hence

c(G) = dimH0
c (A1 × Fq, T 2

K(F)).

In the first spectral sequence of Lemma 7.3, with U = A1, we must
therefore bound dimE0,2

2 . By the last part of Proposition 7.2(2), we have

dimE0,2
2 6 dimE2 + dimE2,1

2

= dimH2
c (A2 × Fq, p∗2F ⊗K) + dimH2

c (A1 × Fq, T 1
K(F))

= h2(f,F) + dimH2
c (A1 × Fq, T 1

K(F)). (9.1)

We have already recalled in the proof of Lemma 4.3 that
dimH2

c (A1 × Fq, T 1
K(F)) 6 rank(T 1

K(F)).

Using the notation of Definition 4.7 and the proper base change theorem,
we get

dimH2
c (A1 × Fq, T 1

K(F)) 6 max
x∈A1(F̄q)

dimT 1
K(F)x

6 max
x∈F̄q

dimH1
c (A1 × Fq,F ⊗ Lx),

– 244 –



On the conductor of cohomological transforms

and by Corollary 4.10, this shows that (f,F) 7→ dimH2
c (A1×Fq, T 1

K(F)) is
continuous. The inequality (9.1) then finishes the proof of (3b).

The proof of (3a) is identical: it suffices to fix F = Q` in the above
argument.

10. Proposition 6.4: proof of (4)

We assume that the function f 7→ ci(f,Q`) are continuous for i = 1 and
i = 2, and aim at proving that (f,F) 7→ h2(f,F) is continuous.

We apply the second spectral sequence of Lemma 7.3, with V = A1, and
the first part of Proposition 7.2(2) with n = 2: this gives

h2(f,F) = dimE2 6 dimE2,0
2 + dimE1,1

2 + dimE0,2
2 ,

where
Ei,j2 = Hi

c(A1 × Fq,F ⊗ T jK∗(Q`)).

We note that c(K∗) = c(K). We have E2,0
2 = 0 (cf. (1) of Section 8), and

dimE1,1
2 = dimH1

c (A1 × Fq,F ⊗ T 1
K∗(Q`))

is continuous by Lemmas 4.3 and 4.4, since the conductor of T 1
K∗(Q`) is

bounded polynomially in terms of the conductor of f by assumption.

Finally, we have

dimE0,2
2 = dimH0

c (A1 × Fq,F ⊗ T 2
K∗(Q`)) 6 c(F ⊗ T 2

K∗(Q`)).

By assumption, f 7→ c2(f∗,Q`) is continuous, and therefore the function
dimE0,2

2 is continuous (Lemma 4.4). Thus h2(f,F) is also continuous.

11. Proposition 6.4: proof of (5b) and (5a)

We assume that the function (f,F) 7→ c2(f,F) is continuous, and aim
at proving that (f,F) 7→ m(f,F) is continuous. We still assume that f /∈
Fq(X) + Fq(Y ).

We set
G = T 1

K(F) = R1p1,!(p∗2F ⊗K).
We have to bound the rank rank(G) and the punctual part pct(G).
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11.1. Bounding rank(G)

For x ∈ A1(Fq), the stalk of G at x is

Gx = H1
c (A1 × Fq,F ⊗ Lx)

by the proper base change theorem. The generic rank of G is at most the
maximal value of the dimension of this stalk as x varies. Hence, by Corol-
lary 4.10, it is a continuous function of (f,F).

11.2. Bounding pct(G)

We have
pct(G) = dimH0

c (A1 × Fq,G).

Again by (1) of Section 8, we have T 0
K(F) = 0, therefore in the first

spectral sequence of Lemma 7.3 (with U = A1) we have Ep,0
2 = 0 so that

applying Proposition 7.2(3), we obtain

pct(G) = dimH1
c (A2 × Fq, p∗2F ⊗K).

To bound this last quantity, we need the following cohomological lemma:

Lemma 11.1. — Let Fq be a finite field of characteristic p, ` 6= p a
prime number and ψ a non-trivial `-adic additive character. Let f = g1/g2 ∈
Fq(X,Y ) be a rational function with g1, g2 ∈ Fq[X,Y ] coprime and

K = Lψ(f).

Let F be a constructible `-adic sheaf on A1
Fq .

Let C be the union of the zero set of g2, seen as a reduced subscheme of
A2, and of the lines

A1 × {y} ⊂ A2,

where y ∈ A1(Fq) is a singularity of F . Let W ⊂ A2 be the open subset
complement of C.

(1) We have
H1
c (W × Fq, p∗2F ⊗K) = 0.

(2) The map

(f,F) 7−→ dimH1
c (C × Fq, p∗2F ⊗K)

is continuous.
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We give the proof of this lemma below, but let us explain first how to
conclude the proof of (5b).

Let W ⊂ A2 × Fq be the (dense) open set defined in Lemma 11.1 and
C = A2 −W its complement. By (1) of this Lemma, we have

H1
c (W × Fq, p∗2F ⊗K) = 0

and from the excision inequality (4.2), we get

pct(G) = dimH1
c (A2 × Fq, p∗2F ⊗K) 6 dimH1

c (C × Fq, p∗2F ⊗K),

and the second part of Lemma 11.1 shows that (f,F) 7→ pct(G) is continuous.

The proof of (5a) is identical: it suffices to fix F = Q` in the above
argument.

Proof of Lemma 11.1.

(1). — The open subset W is a smooth affine surface, and p∗2F ⊗ K is
lisse on W , so (4.4) gives the vanishing of the first cohomology group.

(2). — Write C1 for the zero set of g2 (as a reduced scheme) and

C2 =
⋃
y∈S̃

A1 × {y},

where y ranges over those singularities of F in A1(Fq) such that A1 × {y}
is not contained in C1.

Let S = C1 ∩C2 be the intersection of these two sets; because of the last
restriction, this is a finite set, and its order is bounded polynomially in terms
of c(F) and c(f) (e.g., by Bézout’s Theorem for plane curves). Applying the
excision exact sequence (4.1) to C and the complement U (in C) of the closed
set C1, we get by (4.2) the bound

dimH1
c (C, p∗2F ⊗K) 6 dimH1

c (U, p∗2F ⊗K) + dimH1
c (C1, p

∗
2F ⊗K)

= dimH1
c (U, p∗2F ⊗K) (11.1)

since K, by definition, is zero on C1.

We have U = C2 − S, and we apply again the excision exact sequence to
C2 and its open set U , obtaining by (4.3) the bound

dimH1
c (C, p∗2F ⊗K) 6 dimH1

c (U, p∗2F ⊗K) 6 dimH1
c (C2, p

∗
2F ⊗K)

(because H0
c (S, p∗2F ⊗K) = 0 since S ⊂ C1, so that K is zero on S). Finally,

we have

H1
c (C2, p

∗
2F ⊗K) =

⊕
y∈S̃
Fy ⊗H1

c (A1 × Fq,Lψ(f(x,Y ))),
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and moreover both S̃ and S have order bounded in terms of c(F) and c(f),
so that we obtain the result. �

12. Proposition 6.4: proof of (6b) and (6a)

We assume that the functions (f,F) 7→ m(f,F) and (f,F) 7→ h2(f,F)
are continuous, and aim at proving that

(f,F) 7−→ c1(f,F)
is continuous. We recall that

G = T 1
K(F) = R1p1,!(p∗2F ⊗K).

We have by definition
c(G) = c(G′) + pct(G)

where G′ is the quotient of G by punctual sections. From the assumption that
m(f,F) is continuous, the punctual part pct(G) and rank(G′) are continuous;
by Lemma 4.11 (applied to G′), it is enough to prove that

(f,F) 7−→ dimH1
c (A1 × Fq, T 1

K(F))
is continuous.

We use the first spectral sequence of Lemma 7.3 (with the open set A1).
By Proposition 7.2(1) and (7.3), we have

E2 ' E0,2
3 ⊕ E1,1

2 ⊕ E2,0
3

and in particular
dimH1

c (A1×Fq, T 1
K(F)) = dimE1,1

2 6 dimE2 = dimH2
c (A2×Fq, p∗2F⊗K).

Since h2(f,F) is also assumed to be continuous, this proves (6b).

The proof of (6a) is identical: it suffices to fix F = Q` in the above
argument.

13. Proposition 6.4: proof of (7)

We assume that the functions (f,F) 7→ ci(f,F) are continuous for 0 6
i 6 2, and aim at proving that

(f,F) 7−→ hj(f,F)
is continuous for j 6 4.
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We use the first spectral sequence of Lemma 7.3 with U = A1. For any
j, it implies that

hj(f,F) = dimEj 6
j∑
p=0

dimHp
c (A1 × Fq, T j−pK (F)).

By Lemma 4.3, and the continuity of cj−p(f,F), each term in the sum is
a continuous function, and hence so is hj(f,F).

14. Two special examples

This section is largely independent of the full proof of Proposition 6.4.
We establish Theorem 2.3 in the special but fundamental case of the Fourier
transform, and in a related case which arose during the discussions related
to the Polymath8 project [20].

The complications which account for the length of the proof Proposi-
tion 6.4, compared with the case of the Fourier transform, are that the
cohomology of the specializations Lψ(f(x,Y )) are not as simple as that of
Lψ(xY ) (for instance, it is not the case in general that pct(Lψ(f(x,Y ))) = 0,
as happens in the case of the Fourier transform, see below).

Remark 14.1. — We will not strictly keep track of the fact that the con-
ductor bounds for the Fourier transform are of polynomial size in terms of
c(F), but this is easily checked to follow from the argument.

14.1. The Fourier transform

We consider the case

f(X,Y ) = XY ∈ Fq[X,Y ],

and we write FTψ(F) for the corresponding transform

FTψ(F) = R1p1,!(p∗2F ⊗ Lψ(XY ))(1/2),

which is up to the Tate twist the “naive” Fourier transform of [9, Chap. 8].
Note that c(f) = 2, independently of q. We will not need, however to restrict
to primes p > 2.

Let F be a middle-extension sheaf and

G = FTψ(F).
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By Lemma 4.11 it suffices to show that rank(G), pct(G) and h1(G) are
bounded in terms of c(F).

We start with the rank: by the proper base change theorem, the fiber of
G at x ∈ A1(Fq) is

H1
c (A1 × Fq,F ⊗ Lψ(xY )).

From Lemmas 4.4 and 4.3, we already see that the maximum over x of the
dimension of these spaces, hence also rank(G), is bounded in terms of c(F).

We next claim that pct(G) = 0. For this, we use the first spectral sequence
of Lemma 7.3 (taking U = A1 there) and apply Proposition 7.2(3) to deduce

pct(G) = dimH0
c (A1 × Fq,G) = dimH1

c (A2 × Fq, p∗2F ⊗ Lψ(XY )).

Let S ⊂ A1 be the finite set of singularities of F in A1 and T = A1×S ⊂
A2. The sheafM = p∗2F⊗Lψ(XY ) is lisse on the dense open setW = A2−T .
Applying excision (4.1), we get an exact sequence

· · · −→ H1
c (W,M) −→ H1

c (A2 × Fq,M) −→ H1
c (T ,M) −→ · · · .

We have
H1
c (W,M) = 0

by (4.4), because W is an affine surface andM is lisse on W . Also, since T
is a disjoint union of “horizontal” lines, we have

H1
c (T ,M) =

⊕
y∈S

H1
c (A1 × Fq,Lψ(yX))⊗Fy = 0

because H1
c (A1 × Fq,Lψ(yX)) = 0 for all y ∈ S (including y = 0). The

excision exact sequence then gives H1
c (A2 × Fq,M) = 0, as claimed.

By Lemma 4.11, we deduce that the conductor of G is bounded in terms
of the conductor of F , and of the invariant

h1(G) = dimH1
c (A1 × Fq,G).

By the first spectral sequence of Lemma 7.3 and Proposition 7.2(1),
we get

dimH1
c (A1 × Fq,G) 6 dimH2

c (A2 × Fq,M).

To compute this last group, we first use the second spectral sequence,
which shows that

H2
c (A2 × Fq,M) ' E0,2

3 ⊕ E1,1
3 ⊕ E2,0

3 ' E0,2
3 ⊕ E1,1

3 .
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We have
E1,1

2 = H1
c (A1 × Fq, R1p2,!(p∗2F ⊗ Lψ(XY )))

= H1
c (A1 × Fq,F ⊗R1p2,!Lψ(XY ))

by the projection formula. But the sheaf R1p2,!Lψ(XY ) is zero, since the fiber
at any y ∈ A1(Fq) is

H1
c (A1 × Fq,Lψ(yX)) = 0.

As for E0,2
3 , it is a subspace of

E0,2
2 =H0

c (A1×Fq, R2p2,!(p∗2F⊗Lψ(XY ))) =H0
c (A1×Fq,F⊗R2p2,!Lψ(XY )).

The stalk of R2p2,!Lψ(XY ) at y ∈ Fq is

H2
c (A1 × Fq,Lψ(yX)) =

{
Q` if y = 0
0 otherwise,

so the sheaf R2p2,!Lψ(XY ) is punctual and supported at 0 with stalk F0.
Hence the dimension of E0,2

2 is at most the rank rank(F) 6 c(F). Thus we
obtain

dimH2
c (A2 × Fq,M) 6 c(F).

This concludes the proof of Theorem 2.3 for the Fourier transform. We state
it formally for convenience:

Corollary 14.2. — Let Fq be a finite field of characteristic p, ` 6=
p a prime number. Let ψ be a non-trivial additive `-adic character of Fq.
There exists a function n 7→ C(n) with positive integral values such that, for
any middle-extension sheaf F on A1

Fq , the naive Fourier transform FTψ(F)
satisfies pct(FTψ(F)) = 0 and we have

c(FTψ(F)) 6 C(c(F)).

As we already mentioned in the introduction, we obtain in [5, Prop. 8.2]
the estimate

c(FTψ(F)) 6 10 c(F)2

for F a Fourier sheaf on A1
Fp , using the local study of the Fourier transform,

due to Laumon [17]. It is clear that the arguments above can also be used
to give a completely effective upper bound.

Remark 14.3.

(1) A Fourier sheaf is defined to be a middle-extension sheaf which has
no subsheaf or quotient sheaf geometrically isomorphic to an Artin–
Schreier sheaf Lψ(aX). For a sheaf which is not of this type, the
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naive Fourier transform is not the right object to consider, but this
is of course not due to a failure of continuity.

For instance, if F = Lψ(Y ) (a typical non-Fourier sheaf!) we have

R1p1,!(p∗2F ⊗ Lψ(XY )) = 0

since the stalk of this sheaf at x ∈ A1(Fq) is
H1
c (A1 ⊗ Fq,Lψ((1+x)Y )) = 0

for all values of x. This certainly has bounded conductor!
(2) For Fourier sheaves, other properties of the Fourier transform are

established, relatively elementarily, in [9, 8.2.5, 8.4.1]: the Fourier
transform is again a Fourier sheaf, and the Fourier transform of a
geometrically irreducible Fourier sheaf is again geometrically irre-
ducible.

We can deduce a version of the irreducibility property (which
suffices in many applications) from the diophantine irreducibility
criterion of Lemma 5.13. Indeed, if F is a middle-extension Fourier
sheaves which is pointwise pure of weight 0, we have the discrete
Plancherel formula

1
qν

∑
x∈Fqν

|tF (x, qν)|2 = 1
qν

∑
t∈Fqν

|tFTψ(F)(t, qν)|2

for ν > 1. The Fourier transform FTψ(F) is mixed of weight 6 0 by
the Riemann Hypothesis (in fact, it is known to be pure of weight 0,
but this is again a deeper fact), hence Lemma 5.13 implies that F is
geometrically irreducible if and only if the weight 0 part of FTψ(F)
is geometrically irreducible.

14.2. The POLYMATH8 kernel

We next consider another example discussed in the blog of the Poly-
math8 project, which we will reduce to a Fourier transform. We let

f = 1
X(X + Y ) + hY

where h ∈ F×q is a parameter, and we wish to bound the conductor of

R1p1,!Lψ(f)(1/2),
i.e., the corresponding transform of the trivial sheaf, by a constant (inde-
pendent of q).

We outline the steps that prove such a bound, leaving some details to the
reader.
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• It is equivalent to bound the conductor of

R1p1,!Lψ(g)(1/2)

where g = (XY )−1+hY−hX (applying the automorphism (X,Y ) 7→
(X,X + Y )). By the projection formula, we have

R1p1,!Lψ(g)(1/2) = Lψ(−hX) ⊗ G,

where

G = R1p1,!Lψ(h)(1/2), h = 1
XY

+ hY.

By Lemma 4.4, it is enough to estimate the conductor of G.
• Note that the trace function of G is

1
q1/2

∑
y 6=0

ψ

(
1
xy

+ hy

)
= 1
q1/2

∑
v 6=0

ψ

(
1
v

+ h

x
v

)
for x 6= 0, which is visibly a normalized Kloosterman sum with
parameter h/x. Let

π :
{

Gm ×Gm → Gm ×Gm

(x, y) 7→ (hx−1, xy)

and

ν :
{

Gm → Gm

x 7→ hx−1

Then the analogue of the change of variable (u, v) = π(x, y) =
(h/x, xy) that establishes this identity is the isomorphism

ν∗R1p1,!Lψ(V −1+UV ) ' R1p1,!Lψ((XY )−1+hY )

of sheaves over the multiplicative group Gm=A1−{0} over Fq, which
is a consequence of the isomorphism π∗Lψ(V −1+UV )'Lψ((XY )−1+Y ).

Note that

R1p1,!Lψ(V −1+UV )(1/2) = FTψ(Lψ(V −1)),

which has bounded conductor independently of q. Since ν is an auto-
morphism, and since the dimensions of the stalk of G at 0 is bounded,
it follows from the fact that G coincides with (ν−1)∗ FTψ(Lψ(V −1))
on Gm that the conductor of G is bounded for all q, as desired.

Remark 14.4. — The Fourier transform of Lψ(X−1) is the Kloosterman
sheaf (in one variable), that was originally defined by Deligne. See [9] for its
properties, and generalizations to more than one variable.
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