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On divergent fractional Laplace equations

Serena Dipierro (1), Ovidiu Savin (2) and Enrico Valdinoci (3)

ABSTRACT. — We consider the divergent fractional Laplace operator presented
in [5] and we prove three types of results.

Firstly, we show that any given function can be locally shadowed by a solution of
a divergent fractional Laplace equation which is also prescribed in a neighborhood
of infinity.

Secondly, we take into account the Dirichlet problem for the divergent fractional
Laplace equation, proving the existence of a solution and characterizing its multi-
plicity.

Finally, we take into account the case of nonlinear equations, obtaining a new
approximation results.

These results maintain their interest also in the case of functions for which the
fractional Laplacian can be defined in the usual sense.

RÉSUMÉ. — Nous considérons le Laplacien fractionnaire divergent introduit dans
[5] et démontrons trois types de résultats.

Premièrement, nous montrons que toute fonction donnée peut être approchée
localement par une solution d’une équation de Laplace fractionnaire divergente, dont
les valeurs sont de plus prescrites au voisinage de l’infini.

Deuxièmement, nous démontrons l’existence de solutions au problème de Diri-
chlet pour le Laplacien fractionnaire divergent, et caractérisons leur multiplicité.

Enfin, nous obtenons des résultats d’approximation dans le cadre d’équations
non linéaires, résultats qui sont nouveaux même lorsque le Laplacien fractionnaire
peut être défini au sens usuel.
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1. Introduction

Given u : Rn → R and s ∈ (0, 1), to define the fractional Laplacian of u,

(−∆)su(x) := lim
ρ↘0

∫
Rn\Bρ(x)

u(x)− u(y)
|x− y|n+2s dy, (1.1)

one typically needs two main requisites on the function u:

• u has to be sufficiently smooth in the vicinity of x, for instance u ∈
Cγ(Bδ(x)) for some δ > 0 and γ > 2s,
• u needs to have a controlled growth at infinity, for instance∫

Rn

|u(x)|
1 + |x|n+2s dx < +∞. (1.2)

Nevertheless, in [5] we have recently introduced a new notion of “divergent”
fractional Laplacian, which can be used even when condition (1.2) is violated.
This notion takes into account the case of functions with polynomial growth,
for which the classical definition in (1.1) makes no sense, and it recovers the
classical definition for functions with controlled growth such as in (1.2).

The notion of divergent fractional Laplacian possesses several interesting
features and technical advantages, including suitable Schauder estimates in
which the full smooth Hölder norm of the solution is controlled by a suitable
seminorm of the nonlinearity. Moreover, compared to (1.1), the notion of
divergent fractional Laplacian is conceptually closer to the classical case in
the sense that it requires a sufficient degree of regularity of the function u at
a given point, without global conditions (up to a mild control at infinity of
polynomial type), thus attempting to make the necessary requests as close
as possible to the case of the classical Laplacian.

In this article, we consider the setting of the divergent Laplacian and we
obtain the following results:

• an approximation result with solutions of divergent Laplacian equa-
tions: we will show that these solutions can locally shadow any
prescribed function, maintaining also a complete prescription at
infinity,
• a characterization of the Dirichlet problem: we will show that the
(possibly inhomogeneous) Dirichlet problem is solvable and we de-
termine the multiplicity of the solutions,
• an approximation result with solutions of nonlinear divergent Lapla-
cian equations, up to a small error also in the forcing term.
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To state these results in detail, we now recall the precise framework for
the divergent fractional Laplacian. Given k ∈ N, we consider the space of
functions

Uk :=

u : Rn → R,
s.t. u is continuous in B1 and∫

Rn

|u(x)|
1 + |x|n+2s+k dx < +∞

 .

Then (see [5, Definition 1.1]) we use the notation

χR(x) :=
{

1 if x ∈ BR,
0 if x ∈ Rn \BR,

and we say that
(−∆)su k= f in B1 (1.3)

if there exist a family of polynomials PR, which have degree at most k − 1,
and functions fR : B1 → R such that (−∆)su = fR + PR in B1 in the
viscosity sense, with

lim
R→+∞

fR(x) = f(x)

for any x ∈ B1.

Interestingly, one can also think that the right hand side of equation (1.3)
is not just a function, but an equivalence class of functions modulo polyno-
mials, since one can freely add to f a polynomial of degree k when s ∈

(
0, 1

2
]

and of degree k + 1 when s ∈
( 1

2 , 1
)
(see [5, Theorem 1.5]).

The first result that we provide in this setting states that every given
function can be modified in an arbitrarily small way in B1, remaining un-
changed in a large ball, in such a way to become s-harmonic with respect to
the divergent fractional Laplacian.

Theorem 1.1 (All divergent functions are locally s-harmonic up to a
small error). — Let k, m ∈ N and u : Rn → R be such that u ∈ Cm(B1)
and ∫

Bc1

|u(x)|
|x|n+2s+k dx < +∞.

Then, for any ε > 0 there exist uε and Rε > 1 such that

(−∆)suε
k= 0 in B1, (1.4)

‖uε − u‖Cm(B1) 6 ε (1.5)
and uε = u in BcRε . (1.6)

A graphical sketch of Theorem 1.1 is given in Figure 1.1 (notice the
possible wild oscillations of uε in BRε \B1).

– 257 –



Serena Dipierro, Ovidiu Savin and Enrico Valdinoci

Figure 1.1. The approximation result in Theorem 1.1.

Remark 1.2. — When k = 0 and u = 0 outside B2, Theorem 1.1 reduces
to the main result of [4]. Interestingly, in the case considered here, one can
preserve the values of the given function u at infinity and, if the growth of u
at infinity is “too fast” for the classical fractional Laplacian to be defined,
then the result still carries on, in the divergent fractional Laplace setting.

Remark 1.3. — We observe that Theorem 1.1 does not hold under the
additional assumption that

|uε(x)| 6 P (x) for all x ∈ Rn, (1.7)
for a given polynomial P (that is, one cannot replace a growth assumption
at infinity with a pointwise bound). Indeed, under assumption (1.7), we have
that ∫

Rn

|uε(x)|
1 + |x|n+2s+d dx 6

∫
Rn

|P (x)|
1 + |x|n+2s+d dx =: J < +∞,

being d ∈ N the degree of the polynomial P . As a consequence of this
and (1.4), we deduce from [5, Theorem 1.3] that for any γ > 0 such that γ
and γ + 2s are not integer,

‖uε‖Cγ+2s(B1/2) 6 C J,
for some C depending only on J , n, s, γ and d. In particular, if γ + 2s > m,
we would have from (1.5) that

ε > ‖uε − u‖Cm(B1) > ‖uε − u‖Cm(B1/2)

> ‖u‖Cm(B1/2) − ‖uε‖Cm(B1/2) > ‖u‖Cm(B1/2) − C J.

This set of inequalities would be violated for ε ∈ (0, 1) by any function u
satisfying

‖u‖Cm(B1/2) > C J + 1. (1.8)

– 258 –



On divergent fractional Laplace equations

That is, solutions with a large Cm-norm (more specifically with a norm as
in (1.8)) cannot be approximated arbitrarily well by s-harmonic functions
(not even “modulo polynomials”) that satisfy a polynomial bound as in (1.7).

Interestingly, this remark is independent from Rε in (1.6) (hence, it is
not possible to arbitrarily improve the approximation results if we require
an additional polynomial bound, even if we drop the request that the ap-
proximating function is compactly supported).

Theorem 1.1 is also related to some recent results in [1, 2, 3, 6, 8, 10]
(see [11] for an elementary exposition in the case of the fractional Laplacian
in dimension 1).

Next result focuses on the Dirichlet problem for divergent fractional
Laplacians. We show that, given an external datum and a forcing term,
the Dirichlet problem has a solution. Differently from the classical case,
when k 6= 0 such solution is not unique, and we determine the dimension of
the multiplicity space.

Theorem 1.4 (Solvability of the Dirichlet problem for divergent frac-
tional Laplacians). — Let k ∈ N and u0 : Bc1 → R be such that∫

Bc1

|u0(x)|
|x|n+2s+k dx < +∞.

Let f be continuous in B1. Then, there exists a function u ∈ Uk such that{
(−∆)su k= f in B1,

u = u0 in Bc1.
(1.9)

Also, the space of solutions of (1.9) has dimension Nk, with

Nk :=
k−1∑
j=0

(
j + n− 1
n− 1

)
. (1.10)

With the aid of Theorems 1.1 and 1.4, we can also consider the case of
nonlinear equations, namely the case in which the right hand side depends
also on the solution (as well as on its derivatives, since the result that we
provide is general enough to comprise such a case too).

In this setting, we establish that any prescribed function satisfies any
prescribed nonlinear (and possibly divergent) fractional Laplace equation,
up to an arbitrarily small error, once we are allowed to make arbitrarily
small modifications of the given function in a given region, preserving its
values at infinity. The precise result that we have is the following one:
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Theorem 1.5 (All divergent functions almost solve nonlinear equations).
Let k, m ∈ N and u : Rn → R be such that u ∈ C2m(B1) and∫

Bc1

|u(x)|
|x|n+2s+k dx < +∞.

Let

N(m) := n+
m∑
j=0

nj

and let F ∈ Cm(RN(m)).

Then, for any ε > 0 there exist uε, ηε : Rn → R and Rε > 1 such that

(−∆)suε(x) k= F
(
x, uε(x),∇uε(x), . . . , Dmuε(x)

)
+ ηε(x)

for all x ∈ B1, (1.11)
‖ηε‖L∞(B1) 6 ε, (1.12)
‖uε − u‖Cm(B1) 6 ε (1.13)

and uε = u in BcRε . (1.14)

Remark 1.6. — We think that it is a very interesting open problem to de-
termine whether the statement in Theorem 1.5 holds true also with ηε := 0.
This would give that any given function can be locally approximated arbi-
trarily well by functions which solve exactly (and not only approximatively)
a nonlinear equation.

Remark 1.7. — All the results presented here maintain their own interest
even in the case k = 0: in this case, the definition of divergent fractional
Laplacian boils down to the usual fractional Laplacian (see [5, Corollary 3.8]).

The rest of this article is organized as follows. In Section 2 we give the
proof of Theorem 1.1, in Section 3 we deal with the proof of Theorem 1.4,
and in Section 4 we focus on Theorem 1.5.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we first present an observation on the decay of
the divergent fractional Laplacians for functions that vanish on a large ball:

Lemma 2.1. — Let k ∈ N and R > 3. Let u : Rn → R be such that u = 0
in BR and ∫

Rn

|u(x)|
1 + |x|n+2s+k dx < +∞. (2.1)
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Then, there exists f : B1 → R such that (−∆)su k= f in B1 and for which
the following statement holds true: for any ε > 0 and any m ∈ N, there
exists Rε > 3 such that if R > Rε then

‖f‖Cm(B1) 6 ε. (2.2)

Proof. — From Remark 3.5 in [5], we can write that (−∆)su k= f in B1,
with

f(x) = fu(x)

:=
∫
B2

u(x)− u(y)
|x− y|n+2s dy +

∫
Bc2

u(x)
|x− y|n+2s dy +

∫
Bc2

u(y) ψ(x, y)
|y|n+2s+k dy

=
∫
Bc
R

u(y) ψ(x, y)
|y|n+2s+k dy,

for some function ψ satisfying, for any j ∈ N,

sup
x∈B1, y∈Bc2

|Dj
xψ(x, y)| 6 Cj ,

for some Cj > 0. In particular, for any x ∈ B1,

|Djf(x)| 6
∫
Bc
R

|u(y)| |Dj
xψ(x, y)|

|y|n+2s+k dy 6 Cj
∫
Bc
R

|u(y)|
|y|n+2s+k dy,

so the desired claim in (2.2) follows from (2.1). �

With this, we complete the proof of Theorem 1.1 in the following way.

Proof of Theorem 1.1. — From [4, Theorem 1.1] we know that there
exist a function vε and ρε > 1 such that

(−∆)svε = 0 in B1, (2.3)
‖vε − u‖Cm(B1) 6 ε (2.4)

and vε = 0 in Bcρε . (2.5)

For any R > 3, we also set ũR := (1− χR)u. Notice that

ũR = u in BcR. (2.6)

In addition,
ũR = 0 in BR, (2.7)

so, in view of Lemma 2.1, there exist a function fε and Rε > 3 such that

(−∆)sũR̄ε
k= fε in B2, (2.8)

and ‖fε‖Cm(B2) 6 ε. (2.9)
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Now we consider the standard solution of the Dirichlet problem{
(−∆)swε = fε in B2,

wε = 0 in Bc2.
(2.10)

From [9, Proposition 1.1], we have that
‖wε‖Cs(Rn) 6 C ‖fε‖L∞(B2), (2.11)

for some C > 0.

Now we take γ := m−s. Notice that γ 6∈ N and γ+2s = m+s 6∈ N. Then,
by Schauder estimates (see e.g. [5, Theorem 1.3], applied here with k := 0),
and exploiting (2.9) and (2.11), possibly renaming C > 0 line after line, we
obtain that

‖wε‖Cm(B1) 6 ‖wε‖Cγ+2s(B1) 6 C

(
[fε]Cγ(B2) +

∫
Bc1

|wε(y)|
|y|n+2s dy

)
6 C

(
‖fε‖Cm(B2) + ‖wε‖L∞(Rn)

)
6 C ‖fε‖Cm(B2) 6 Cε. (2.12)

Now we define
uε := vε + ũR̄ε − wε.

Using (2.3), (2.10) and the consistency result in [5, Corollary 3.8], we see
that

(−∆)svε
0= 0 and (−∆)swε

0= fε in B1.

Thus, the consistency result in [5, formula (1.7)] implies that

(−∆)svε
k= 0 and (−∆)swε

k= fε in B1.

Consequently, from (2.8), we deduce that (−∆)suε
k= 0 + fε − fε in B1, and

this establishes (1.4).

Furthermore, from (2.4), (2.7) and (2.12), we see that
‖uε−u‖Cm(B1) 6 ‖vε−u‖Cm(B1) +‖ũR̄ε‖Cm(B1) +‖wε‖Cm(B1) 6 ε+0+Cε.

This proves (1.5) (up to renaming ε).

Now we take Rε := ρε + Rε. From (2.5), (2.6) and (2.10), we have that,
in BcRε , it holds that uε = 0 + u− 0, which establishes (1.6), as desired. �

3. Proof of Theorem 1.4

First, we prove the existence result in Theorem 1.4. To this aim, we let u0
and f be as in the statement of Theorem 1.4 and we define

u1 := χBc2 u0 and u2 := χB2\B1 u0.
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We stress that u1 is smooth in B1 and u2 is supported in B2.

From [5, Remark 3.5], we can write (−∆)su1
k= fu1 in B1, for a suitable

function fu1 .

Now we set f̃ := f − fu1 and we consider the solution of the standard
problem {

(−∆)sũ = f̃ in B1,

ũ = u2 in Bc1.
Hence, the consistency result in [5, Corollary 3.8 and formula (1.7)] give that{

(−∆)sũ k= f̃ in B1,

ũ = u2 in Bc1.

Then, we define u := u1 + ũ and we see that (−∆)su k= fu1 + f̃ = f in B1.
Moreover, in Bc1 it holds that u = u1 + u2 = u0, namely u is a solution
of (1.9). This establishes the existence result in Theorem 1.4.

Now, we prove the uniqueness claim in Theorem 1.4. For this, we observe
that for any polynomial P of degree at most k − 1 there exists a unique
solution uP of the standard problem{

(−∆)suP = P in B1,

uP = 0 in Bc1.
(3.1)

That is, in view of the consistency result in [5, Corollary 3.8], we have
that (−∆)suP

0= P in B1. Accordingly, from [5, formula (1.7)], we get that
(−∆)suP

k= P in B1. Then, by [5, formula (1.8)], it follows that uP is a
solution of {

(−∆)suP
k= 0 in B1,

uP = 0 in Bc1.
This means that if u is a solution of (1.9), then so is u+ uP .

Conversely, if u and v are two solutions, then w := v − u satisfies{
(−∆)sw k= 0 in B1,

w = 0 in Bc1.

This and the consistency result in [5, Lemma 3.9] (used here with j := 0)
give that (−∆)sw 0= P in B1, for some polynomial P of degree at most k−1.
Hence, using the consistency result in [5, Corollary 3.8], we can write{

(−∆)sw = P in B1,

w = 0 in Bc1.
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From the uniqueness of the solution of the standard problem in (3.1), we
conclude that w = uP , and so v = u+ uP .

These observations yield that the space of solutions of (1.9) is isomorphic
to the space of polynomials P with degree less than or equal to k− 1, which
in turn has dimension Nk, as given in (1.10) (see e.g. [7]).

4. Proof of Theorem 1.5

We can extend u such that u ∈ C2m(B1+h), for some h ∈ (0, 1). Then,
for all x ∈ B1+h, we define f(x) := F

(
x, u(x),∇u(x), . . . , Dmu(x)

)
. Then,

f ∈ Cm(B1+h) and we can exploit Theorem 1.4 and obtain a function v ∈ Uk
such that {

(−∆)sv k= f in B1+h,

v = 0 in Bc1+h.

By Theorem 1.3 in [5], we have that v ∈ Cm(B1). Hence, we can set w :=
u − v ∈ Cm(B1) and make use of Theorem 1.1 to find wε and Rε > 2 such
that

(−∆)swε
k= 0 in B1,

‖wε − w‖Cm(B1) 6 ε

and wε = w in BcRε .
Now, we define uε := v + wε. We observe that

(−∆)suε(x) k= (−∆)sv(x) + (−∆)swε(x)
k= f(x) = F

(
x, u(x),∇u(x), . . . , Dmu(x)

)
for all x ∈ B1.

This gives that (1.11) is satisfied with

ηε(x) := F
(
x, u(x),∇u(x), . . . , Dmu(x)

)
− F

(
x, uε(x),∇uε(x), . . . , Dmuε(x)

)
. (4.1)

Moreover, in BcRε ,
uε = v + wε = v + w = u,

and this proves (1.14).

Furthermore,
‖uε − u‖Cm(B1) = ‖v + wε − u‖Cm(B1) = ‖wε − w‖Cm(B1) 6 ε,

which establishes (1.13).
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Then, we take

S := 2 +
m∑
j=0
‖Dju‖L∞(B1)

and we denote by L the Lipschitz norm of F in [−S, S]N(m). Thus, employ-
ing (1.13) and (4.1), for all x ∈ B1 we have that
|ηε(x)|

=
∣∣∣F (x, u(x),∇u(x), . . . , Dmu(x)

)
− F

(
x, uε(x),∇uε(x), . . . , Dmuε(x)

)∣∣∣
6 L

m∑
j=0
|Dju(x)−Djuε(x)| 6 Lm ‖uε − u‖Cm(B1) 6 Lmε,

and this gives (1.12), up to renaming ε.
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