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Torus-like solutions for the Landau–De Gennes model.

Adriano Pisante (1)

ABSTRACT. — In this note we report on some recent progress [10, 11, 12] about
the study of global minimizers of a continuum Landau–De Gennes energy functional
for nematic liquid crystals in three-dimensional domains. First, we discuss absence of
singularities for minimizing configurations under norm constraint, as well as absence
of the isotropic phase for the unconstrained minimizers, together with the related
biaxial escape phenomenon. Then, under suitable assumptions on the topology of the
domain and on the Dirichlet boundary condition, we show that smoothness of energy
minimizing configurations yields the emergence of nontrivial topological structure in
their biaxiality level sets. Then, we discuss the previous properties under both the
norm constraint and an axial symmetry constraint, showing that in this case only
partial regularity is available, away from a finite set located on the symmetry axis.
In addition, we show that singularities may appear due to energy efficiency and
we describe precisely the asymptotic profile around singular points. Finally, in an
appropriate class of domains and boundary data we obtain qualitative properties
of the biaxial surfaces, showing that smooth minimizers exibit torus structure, as
predicted in [16, 24, 25, 39].

RÉSUMÉ. — Dans cette note, nous présentons des avancées récentes [10, 11, 12] sur
l’etude des minimiseurs globaux d’une énergie continue de Landau–De Gennes dans
des domaines 3D utilisée dans la modélisation des cristaux liquides nématiques.Dans
un premier temps, nous décrivons l’absence de singularités des configurations mini-
misantes sous contrainte de norme, ainsi que l’absence de phase isotrope pour les
minimiseurs non contraints, et le phénomène de fuite biaxiale en résultant. Sous cer-
taines hypothèses sur la topologie du domaine et la condition de Dirichlet au bord,
nous montrons ensuite comment la régularité / absence de phase isotrope des confi-
gurations minimisantes permet de déduire une structure topologique non triviale
des ensembles de niveau de la biaxialité. Enfin, nous discutons ces mêmes proprie-
tés pour des minimiseurs sous contrainte de symétrie axiale et sous contrainte de
norme. Dans ce dernier cas, nous montrons que les minimiseurs ne satisfont qu’une
régularité partielle, à savoir la régularité en dehors d’un ensemble fini situé sur l’axe
de symétrie. De plus, nous démontrons que ces singularités ponctuelles peuvent en
effet exister pour des raisons énergétiques, et nous décrivons en détails le compor-
tement asymptotique des minimiseurs près de ces points singuliers. Pour terminer,
nous donnons quelques propriétés qualitatives des surfaces de biaxialité pour une
classe de domaines et de données au bord montrant que les minimiseurs réguliers
présentent une structure en tore biaxial comme celle prédite dans [16, 24, 25, 39].
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1. Introduction

Nematic liquid crystals are mesophases of matter intermediate between
crystalline solids and isotropic fluids (see [17]). Nematic molecules typically
have elongated shape, approximately rod-like, and the interaction between
them yields a local (mean) orientational order. These molecules also exhibit
high responsivity to external stimuli (e.g., electromagnetic fields) so to affect
the local orientation, which is the fundamental reason for their ubiquitous
use in contemporary technological devices.

For a nematic liquid crystal filling a region Ω ⊆ R3 the key feature of
a (mean) orientational order can be modeled in different ways, depending
on the choice of parameters. Among different possibilities (see [3, 46]) we
mention, in decreasing order of complexity, the following ones:

Onsager-type theories : the description of the mean orientation is en-
coded in a family of probability measures Ω 3 x → µx ∈ P(S2)
subject to the balancing condition µx(B) = µx(−B) for any x ∈ Ω
and any B ⊆ S2 (head-to-tail symmetry of the molecules).

Landau–De Gennes theory : local orientation is described by the so-
called Q-tensor, i.e., a family of symmetric traceless matrices Ω 3
x→ Q(x) ∈ S0 ≈ R5, with

S0 :=
{
Q = (Qij) ∈M3×3(R) : Q = Qt , tr(Q) = 0

}
. (1.1)

Ericksen theory : local orientation is described by a vector field together
with a scalar (the degree of orientation), i.e., Ω 3 x→ (s(x), n(x)) ∈
R × S2, corresponding to special (uniaxial) Q-tensors of the form
Q = s

(
n⊗ n− 1

3I
)
.

Oseen–Frank theory : mean orientation is encoded in a family of vectors
Ω 3 x → n(x) ∈ S2 (with constant degree of orientation), taking
possibly into account the head-to-tail symmetry by identifying op-
posite vectors to get a map into the projective plane RP 2 of the
form Ω 3 x→

(
n(x)⊗ n(x)− 1

3I
)
∈ RP 2 .

The first description, though closer to the statistical mechanics interpre-
tation of the local orientation of nematic molecules, is notoriously awkward,
since the state space P(S2) is infinite dimensional. In the present note we
will follow the second approach, using the description of nematics in terms
of Q-tensors (see [38] for an introduction), which seems to give the most con-
vincing description of the experimentally observed optical defects [23, 27].
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Note that this second possibility can be regarded as a five-dimensional ap-
proximation of the first one in view of the formula

Q(x) =
∫
S2

(
p⊗ p− 1

3I
)

dµx(p) ,

although we will drop for simplicity the resulting constraint Q(x) > − 1
3I

given in terms of the identity tensor. The Ericksen and the Oseen–Frank
theory can be regarded as special cases of de Landau–de Gennes theory of
Q-tensor. However, we will not discuss this connection here and for mathe-
matical results on these two simpler models we refer the interested reader,
e.g., to [1, 5, 18, 30].

According to the (LdG) theory, we consider S0 as in (1.1), endowed with
the Hilbertian structure given by the usual (Frobenius) inner product and
the induced norm,

P : Q :=
3∑

i,j=1
PijQij = tr(PQ) and |Q|2 = tr(Q2) .

Upon the choice of an orthonormal basis {Ej}j=0,...,4, the space S0 can be
identified with the Euclidean space R5. In particular,{

Q ∈ S0 : |Q| = 1
}

= S4 .

As anticipated above, a liquid crystal configuration in an occupied region
Ω ⊆ R3 (bounded, with smooth boundary) will be described through a map
Ω 3 x→ Q(x) ∈ S0, so that at each point x ∈ Ω the corresponding spectrum
of Q(x) will be σ(Q(x)) = {λ1(x), λ2(x), λ3(x)} ⊆ R, where the three eigen-
values are ordered increasingly and satisfy the constraint

∑3
j=1 λj(x) ≡ 0.

In order to discuss the properties of liquid crystal configurations (such as
isotropic/nematic phase transition, biaxial escape), following [12] we find
convenient to modify the usual definition of the biaxiality parameter as
follows.

Definition 1.1. — For any Q ∈ S0\{0}, we define the signed biaxiality
parameter of Q as

β̃(Q) :=
√

6 tr(Q3)
|Q|3

∈ [−1, 1] . (1.2)

Observe that under the previous convention on the eigenvalues,
β̃(Q) = ±1 iff the minimal/maximal eigenvalue of Q is double (purely
positive/negative uniaxial phase), β̃(Q) = 0 iff λ2 = 0 and λ1 = −λ3 (max-
imal biaxial phase), and Q = 0 iff λ1 = λ2 = λ3 (isotropic phase). Note
that in the uniaxial region, i.e. the regions {β̃ ◦ Q( · ) = ±1} ⊆ Ω, the ten-
sors are those admissible in the Ericksen theory. Thus, the main feature of

– 303 –



Adriano Pisante

the Landau–De Gennes model will be the presence in the energy minimizing
configuration of biaxial phase {β̃ ◦ Q( · ) 6= ±1} 6= ∅ (biaxial escape). The
goal here is to account on some results from [10, 11, 12] on the regularity of
minimizers and the emergence of topological structure in the corresponding
biaxial surfaces {β̃ ◦ Q( · ) = t}, t ∈ (−1, 1), which in the model case of a
nematic droplet are expected to be of torus type [16, 24, 25, 39].

2. Energy functionals and Lyuksyutov constraint

Let Ω ⊆ R3 a bounded domain with (at least) C1-smooth boundary, and
Q : Ω → S0 a configuration in the Sobolev space W 1,2(Ω;S0). We consider
the Landau–De Gennes energy functional of the form

FLG(Q) =
∫

Ω

L

2 |∇Q|2 + FB(Q) dx , (2.1)

i.e., with the one-constant approximation for the elastic energy density with
parameter L > 0 and quartic polynomial bulk potential

FB(Q) := −a
2

2 tr(Q2)− b2

3 tr(Q3) + c2

4
(
tr(Q2)

)2
, (2.2)

where a, b and c are material-dependent strictly positive constants. Crit-
ical points Q ∈ W 1,2(Ω;S0) of the energy functional FLG under smooth
and compactly supported perturbations are weak solutions to the following
semilinear elliptic system of Euler–Lagrange equations

−L∆Q + ∂FB
∂Q − 1

3

(
tr ∂FB
∂Q

)
I = 0 ,

where the last term in the equation is present in view of the trace constraint.

Under sufficiently nice Dirichlet boundary condition (strong anchoring)
on ∂Ω, e.g., Q = Qb ∈ Lip(∂Ω;S0), it is routine to prove existence of energy
minimizing configurations Q ∈W 1,2(Ω;S0) by the direct method in the Cal-
culus of Variations. In addition, elliptic regularity theory yields Holder conti-
nuity up to the boundary together with Q ∈ Cω(Ω;S0), i.e., real-analyticity
in the interior.

In order to single-out relevant Dirichlet boundary conditions and exploit
the presence of topological defects in the energy minimizing configurations,
it is fundamental to discuss qualitative properties of the potential energy
FB(Q). It turns out that the potential is minimal when the signed biaxiality
is maximal, and FB(Q) = 0 iff Q ∈ Qmin, i.e., if Q is in the vacuum-manifold
of positive uniaxial matrices

Qmin :=
{
Q ∈ S0 : Q = s+

(
n⊗ n− 1

3I
)
, n ∈ S2

}
, (2.3)
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where

s+ := b2 +
√
b4 + 24a2c2

4c2 (2.4)

is the positive root of the characteristic equation

2c2t2 − b2t− 3a2 = 0 . (2.5)

Notice that, up to a multiplicative constant, Qmin ∼ RP 2 ⊆ S4, therefore
Qmin has nontrivial topology. In particular, there are nontrivial homotopy
groups π2(Qmin) = Z and π1(Qmin) = Z2. The choice of boundary data
with zero potential energy which explore this nontrivial topology is the key
ingredient leading to the presence of topological defects and to the biaxial
escape phenomenon.

To simplify the presentation we mainly focus in this note on the model
case of a nematic droplet, i.e., when Ω = {|x| < 1} is the unit ball (pos-
sibly up to difffeomorphism). The outer unit normal to the boundary is
~n(x) = x/|x|, and a natural boundary datum is the so called radial anchor-
ing, namely

Qb(x) = s+

(
~n(x)⊗ ~n(x)− 1

3I
)
. (2.6)

Thus, the energy functional FLG has an O(3)-equivariant (radial) critical
point usually known as the melting hedgehog

H(x) := s(|x|)
(
x

|x|
⊗ x

|x|
− 1

3I
)
, 0 < |x| < 1 . (2.7)

This solution is obtained from a unique function s(|x|) increasing from 0 to
s+ solving an ODE with the prescribed values at |x| = 0 and |x| = 1, see
e.g. [21, 35] and the references therein. It turns out to be the unique uniaxial
critical point of Fλ,µ w.r.t. arbitrary (not necessarily uniaxial) perturbations,
see [26]. Moreover, the origin is an isotropic point. Stability/instability of
the melting hedgehog as well as its energy minimality property depends in a
crucial way on the choice of the parameters a2, b2, c2, and L. In particular,
instability of (2.7) in the low-temperature limit (essentially a2 → ∞) was
proved in [22] (see also [15, 35]) and the explicit form of the destabilizing
perturbation shows an (infinitesimal) biaxial escape phenomenon and rules
out its energy minimality.

Without altering any of the previous considerations, it is convenient to
subtract-off an additive constant and introduce

F̃B(Q) := FB(Q)−min
S0

FB , (2.8)
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so that the potential becomes nonnegative. The corresponding energy func-
tional is

F̃LG(Q) :=
∫

Ω

L

2 |∇Q|2 + F̃B(Q) dx , (2.9)

which is the sum of two nonnegative terms, penalizing respectively spatial
variations and deviations from the vacuum manifold Qmin.

As in [12], we rescale a tensor by setting

Q =: s+

√
2
3Q .

In this way, the vacuum manifold becomes exactly the real projective plane
RP 2 = S2/{±1}, where RP 2 ⊆ S4 is embedded as in (2.3), i.e., through
the so-called Veronese immersion. Thus, we can rewrite the energy func-
tional (2.9) as

F̃LG(Q) = 2
3s

2
+LFλ,µ(Q) , (2.10)

with

Fλ,µ(Q) :=
∫

Ω

1
2 |∇Q|

2 + λW (Q) + µ

4 (1− |Q|2)2 dx . (2.11)

Here the reduced parameters λ and µ are given by

λ :=
√

2
3
b2s+

L
> 0 , µ := a2

L
> 0 ,

where 1√
λ

and 1√
µ are, up to an harmless numerical factor, the biaxial

coherence length and the nematic-isotropic correlation length respectively,
see [14, 25, 39].

On the other hand, the reduced smooth potential W : S0 → R is nonneg-
ative, vanishes exactly on RP 2 and in view of (2.4)–(2.5) it is given by the
equivalent formulas

W (Q) = 1
3
√

6

(
|Q|3−

√
6 tr(Q3)

)
+ 1

12
√

6
(
3|Q|2+2|Q|+1

)(
|Q|−1

)2
, (2.12)

or
W (Q) = 1

4
√

6
|Q|4 − 1

3 tr(Q3) + 1
12
√

6
. (2.13)

The structure relations (2.11) and (2.12) suggests that, in a regime where
λ is fixed and µ is large, the energy Fλ,µ favours minimizing configurations
of approximatively unit norm. More precisely, as introduced and rigorously
discussed in [11, 12], this phenomenon happens in the Lyuksyutov regime,
which is defined by the relations

diam Ω ∼ 1√
λ

=

√
L

b2s+
,

1√
λ
·
(

1
√
µ

)−1
=

√
a2

b2s+
� 1 . (2.14)
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In particular, as detailed in [12], such restriction on the parameters yields
absence of the isotropic phase in any energy minimizers (see also the next
section) and in the special case of a nematic droplet the instability of the
melting hedgehog in a broader range of parameters.

To simplify the presentation and in view of the previous considerations,
in this note we make the fundamental assumption that the norm of any
admissible configuration is given by the constant value proper of the vacuum
manifold [34], i.e.,

|Q(x)| ≡
√

2
3 s+ (Lyuksyutov constraint) . (2.15)

Under the Lyuksyutov constraint, the energy functional takes the form

F̃LG(Q) = 2
3s

2
+LEλ(Q)

for rescaled tensors Q ∈W 1,2(Ω; S4), where

Eλ(Q) :=
∫

Ω

1
2 |∇Q|

2 + λW (Q) dx . (2.16)

The restriction of the potential W : S0 → R to S4 is given by

W (Q) = 1
3
√

6

(
1− β̃(Q)

)
∀ Q ∈ S4 , (2.17)

it is nonnegative on S4, {W = 0}∩S4 = RP 2 and ∇tanW (Q) = 0 for any Q ∈
RP 2. As a consequence, when further restricted to the subspace of uniaxial
configurations W 1,2(Ω;RP 2), the energy functional (2.16) reduces to the
Dirichlet integral for maps into RP 2, i.e., the Frank–Oseen energy in the
one-constant approximation. For an account on the qualitative properties of
defects in the Frank–Oseen model, we refer the interested reader to e.g. [1, 5],
whereas connections between the two models are not discussed here but can
be found, e.g., in [36] for Fλ,µ and in [11] for Eλ, in the regimes L→ 0 and
λ→ +∞ respectively.

3. Regularity of energy minimizing configurations

A critical point Qλ ∈W 1,2(Ω;S4) of Eλ among S4-valued maps satisfies in
the sense of distributions in Ω the following elliptic system of Euler–Lagrange
equations

∆Qλ + |∇Qλ|2Qλ = λ∇tanW (Qλ) , (3.1)
with the tangential gradient of W along S4 ⊆ S0 given by

∇tanW (Q) = −
(
Q2 − 1

3I − tr(Q3)Q
)
.
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Observe that the left hand side of (3.1) is the so-called tension field of Q, a
tangent field along Q in S4, and equation (3.1) is nothing but the harmonic
map equation for S4-valued map with the extra term λ∇tanW (Q) as a source
term. Since everywhere discontinuous weakly harmonic maps among maps
inW 1,2 do exist, we expect smoothness of solutions to (3.1) to fail in general
because in the left hand side of (3.1) the quadratic term in the gradient is
critical, having the same scaling property of the Laplace operator, while the
right hand side should be of lower order perturbation. As a consequence,
under the constraint (2.15) we will restrict to weak solution to (3.1) which
are energy minimizers, possibly in some restricted class of symmetric maps,
exploiting energy minimality to obtain regularity properties.

In this section we first consider the minimization of the energy func-
tional Eλ among Sobolev maps in the spaceW 1,2(Ω;S4) satisfying a Dirichlet
boundary condition. We fix a Lipschitz boundary datum Qb ∈ Lip(∂Ω;S4),
and we consider the set of admissible configurations

AQb(Ω) :=
{
Q ∈W 1,2(Ω;S0) : Q|∂Ω = Qb , |Q| = 1 a.e. in Ω

}
⊆W 1,2(Ω; S4) , (3.2)

which is always nonempty by standard theory of Sobolev maps between
manifolds. Indeed, since S4 is simply connected and π2(S4) = 0, one has
strong density of maps which are continuous up to the boundary and smooth
in the interior.

By the direct method in the Calculus of Variations, it is routine to show
that there exist minimizers Qλ ∈ AQb(Ω) of Eλ. Under more regularity of
the boundary map Qb in [12] the following result is proved.

Theorem 3.1. — Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω;S4).
If Qλ is a minimizer of Eλ in the class AQb(Ω), then Qλ ∈ Cω(Ω)∩C1,α(Ω)
for every α ∈ (0, 1). If in addition Ω is a domain with analytic boundary and
Qb ∈ Cω(∂Ω;S4), then Qλ ∈ Cω(Ω;S4).

Since the energy functional Eλ in (2.9) is a perturbation of the Dirichlet
energy for maps in the space W 1,2(Ω;S4), the proof of this theorem relies
in an essential way on ideas and techniques from the regularity theory of
harmonic maps, starting from the pioneering papers [42, 43, 44], as summa-
rized, e.g., in the books [31, 45]. The regularity properties claimed in the
theorem could be obtained combining the results in [42, 43, 44]. However, as
commented below, the proof in [12] is somewhat different and it is organized
so that the argument also covers the case of minimization in a symmetric
class of maps, as considered in [10, 11], with only minor modifications.
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The argument requires two steps:

(A) Hölder-continuity of minimizers of the functional (2.9) (difficult).

(B) Real-analyticity of Hölder continuous solutions to (3.1) (easy).

(B). — The second step is much simpler than the first one, as it es-
sentially follows from classical (interior and boundary) regularity theory for
elliptic systems according to the following implications:

Q ∈W 1,2 ∩ C0,α =⇒ Q ∈ C0,1 =⇒ Q ∈ Ck,α =⇒ Q ∈ Cω .
The crucial point is to get Lipschitz continuity, which is obtained using the
harmonic approximation technique, adapting the argument of [41] for har-
monic maps. Then, higher order regularity follows from standard Calderon–
Zygmund and Schauder theories and the analyticity results in [37].

(A). — The first step is much more difficult and it is where energy
minimality comes into play. The main goal is to show that the L2-deviation
of Q from its average −

∫
Q has a power-like decay at small scales, i.e.,

−
∫
B

∣∣∣∣Q−−∫
B

Q

∣∣∣∣2 6 C|B|2α/3 , (3.3)

for some absolute constant C > 0 and α > 0 and for any sufficiently small
ball B, a property which is known to be equivalent to the fact that Q ∈ C0,α.
To do this a useful ingredient is the Poincarè inequality

−
∫
B

∣∣∣∣Q−−∫
B

Q

∣∣∣∣2 6 C|B|2/3−
∫
B

|∇Q|2 , (3.4)

for an absolute constant C > 0 and any ball B, which allows to bound the
left hand side of (3.3) when the right hand side of (3.4) is bounded and in
turn to show that the former has even a power-type decay when the latter
is sufficiently small. More precisely, following [12], both in the interior and
at the boundary Hölder continuity is obtained combining the following four
steps:

Step (A1): Interior and boundary monotonicity formulae. — These are
derived in form of identities, as opposed to those in [42, 43] which are just in
form of inequalities obtained by comparison maps using energy minimality.
As a consequence, both boundedness and asymptotic monotonicity for the
function giving the scaled energy on balls of small radii 0 < r � 1, i.e.

g(r) = 1
r
Eλ(Q;Br ∩ Ω) , (3.5)

are obtained. In particular, the right hand side in (3.4) is bounded. Note that
the monotonicity formulae are not obtained by inner variations, as in [45]
for the interior case, but instead by a penalty approximation, passing to
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the limit in monotonicity formulae for smooth solutions of approximated
problems. This approach is more flexible, as it applies also on the boundary
and it is of use even in the symmetric case considered in [10, 11], where inner
variations no longer give admissible deformations.

Step (A2): Strong compactness of blow-ups. — When analyzing Q at
small scales around a given point x one considers Qr(x) = Q(x + rx) to
zoom Q into possible singularities; the previous step guarantees that the
scaled maps are locally bounded inW 1,2, so one can pass to subsequences and
study weak blow-up limits Q∗ ∈W 1,2

loc (R3;S4). Strong compactness of blow-
ups relies on energy minimality; it is obtained by construction of comparison
maps using the Luckhaus interpolation lemma [33], arguing as in [45] for
harmonic maps again both in the interior and near the boundary. As a
consequence minimality is preserved under blow-up and any Q∗ is locally
minimizing the Dirichlet integral.

Step (A3): Constancy of blow-up limits (Liouville property). — As a
consequence of the previous steps, when rescaling around an interior point
strong limits of rescaled maps are degree-zero homogeneous and minimizing
harmonic maps from R3 into S4, hence Q∗(x) = ω (x/|x|) for some harmonic
sphere ω : S2 → S4 and Q∗ is stable under compactly supported perturba-
tions. Then, following [44], for the 1−parameter family of maps

Qt∗(x) = Q∗(x) + tΦ(x)
|Q∗(x) + tΦ(x)| , Φ ∈ C∞0 (R3;S0) ,

one has a stability inequality from the second variation formula at t = 0 for
the Dirichlet energy E0, i.e.,

E
′′

0 (Φ;Q∗) =
∫
B1

|∇ΦT |2 − |∇Q∗|2|ΦT |2 dx > 0 ,

where ΦT := Φ − Q∗(Q∗ : Φ) is the tangential component of Φ along Q∗.
Then, averaging over (localized) conformal vector fields Φj = ϕEj , ϕ ∈
C∞0 (R3) and {Ej} ⊆ S0 o.n.b., by the Bochner’s method one finally gets∫
S2 |∇Tω|4 = 0 and constancy follows. At a boundary point, strong limits
of rescaled maps are of the form Q∗(x) = ω+ (x/|x|) with x3 > 0 (up to
rotations in the domain), for some harmonic half-sphere ω+ : S2

+ → S4 with
constant trace on ∂S2

+. Then a somewhat different argument from [29], this
time using Pohozaev identity and unique continuation, gives constancy also
in this case.

Step (A4): Continuity under smallness of the scaled energy (ε-regularity).
As a consequence of the previous steps one clearly has smallness of the scaled
energy around any point for sufficiently small scales, because 1

rEλ(Q;Br ∩
Ω) → 0 as r → 0, the limit being the energy of any constant blow-up Q∗.
The approach in [12] to ε-reguarity is a purely PDEs argument and it treats
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in a unified way the interior and the boundary case, adapting for the latter
the clever nonlinear reflection trick introduced in [40] for harmonic maps. On
the contrary, the argument in [42, 43] is essentially variational, constructing
comparison maps and exploiting energy minimality to show that the right
hand side in (3.4) has power-type decay, whence Hölder-continuity follows
from Morrey’s growth lemma.

To obtain Hölder-continuity of solutions to (3.1) under monotonicity and
smallness of the scaled energy the method is not indirect, as the compact-
ness argument using the Hardy-BMO duality presented in [13]. The approach
in [12] follows the elementary iteration via harmonic replacement introduced
in [7] for harmonic maps, based on the divergence structure of the quadratic
gradient term in (3.1). As a consequence one obtains the power decay with
respect to the radius for the BMO seminorm on balls, or the family of quan-
tities equivalent to it,

‖u‖pBMO(B) ∼ sup
Bρ(y)⊆B

−
∫
Bρ(y)

∣∣∣u−−∫
Bρ(y)

u
∣∣∣p dx ,

associated to the left hand side of (3.3) and in turn Hölder continuity of Q.

Relying on Theorem 3.1, we can relax the norm constraint (2.15) and
discuss briefly the full energy functional (2.11). One minimizes Fλ,µ over
maps in W 1,2(Ω;S0) still satisfying a Dirichlet boundary condition given
by Qb ∈ Lip(∂Ω;S0). Existence and regularity for such problem have been
already recalled above, hence minimizers Qµλ ∈ W 1,2(Ω;S0) actually satisfy
Qµλ ∈ Cα(Ω;S0) ∩ Cω(Ω;S0) for some α ∈ (0, 1).

On a fixed domain Ω the Lyuksyutov regime (2.14) corresponds to

λ =
√

2
3
b2s+

L
≡ const , µ = a2

L
→ +∞ , (3.6)

particular cases being a2 →∞ , b2 ∼ |a|−1 or L→ 0 , b2 ∼ L.

Under these restrictions on the parameters, since the last term in Fλ,µ
acts as a penalty approximation of the norm constraint (2.15), one can prove
convergence of the family {Fλ,µ}µ to the functional Eλ (in the sense of Γ-
convergence), and in particular that minimizers of Fλ,µ converge to mini-
mizers of Eλ. The following result is taken from [12].

Theorem 3.2. — As µ → ∞ with λ constant (Lyuksyutov regime), the
following holds:

(1) there exists Qλ ∈ W 1,2(Ω; S4) minimizing Eλ in the class AQb(Ω)
such that, up to a subsequence, Qµλ → Qλ strongly in W 1,2(Ω;S0);

(2) Fλ,µ(Qµλ)→ Eλ(Qλ) and |Qµλ| → 1 uniformly in Ω;
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In particular, for each λ > 0, there exists a value µλ = µλ(λ,Ω, Qb) > 0
such that for µ > µλ, any minimizer Qµλ of Fλ,µ satisfies |Qµλ| > 0 in Ω, i.e.,
minimizers do not exibit the isotropic phase.

The last claim of the theorem above is by far the most interesting as it
guarantees that the isotropic phase is avoided by energy minimizing configu-
rations Qµλ in the Lyuksyutov regime, as already proved [8, 20] in 3D domains
in the low-temperature limit a2 → ∞. The proof of this property is based
in a crucial way on the regularity of minimizers from Theorem 3.1. Indeed,
smoothness of the limiting minimizer Qλ and the strong W 1,2-convergence
yield smallness of the scaled energy of Qµλ in (3.5) at a sufficiently small scale.
Combining monotonicity formulae with elliptic regularity in a way similar
to [36], it is then possible to show that |Qµλ| has to converge to one uni-
formly as µ → ∞ since the potential energy must become uniformly small
in a pointwise sense.

There is a clear interpretation of the previous results in the model case
of a nematic droplet discussed above. Indeed, the radial hedgehog described
in (2.7) is a critical point of Fλ,µ with an isotropic point at the origin. As
a consequence of Theorem 3.2 we see that it does not minimize Fλ,µ in the
class W 1,2

Qb
(Ω;S0), at least for µ large enough. Thus, biaxial escape must

occur for minimizers. In addition, some more work in [12] on the second
variations F ′′λ,µ shows even its energy instability w.r.t. biaxial perturbations
for µ large enough.

4. Topology of minimizing configurations

In the previous section we have seen that the minimizers Qλ of the en-
ergy Eλ have constant norm and they are smooth. Similarly, at least in the
Lyuksyutov regime (3.6), minimizers Qµλ of the energy Fλ,µ are smooth and
with empty isotropic phase. Here we want to discuss for both cases the topo-
logical properties related to the presence of biaxial phase, and the way they
are connected with the topology of the vacuum manifold Qmin ∼ RP 2.

To describe the way a configuration Q encodes some topological informa-
tion, we shall make use of the biaxiality function as follows.

Definition 4.1. — For a configuration Q ∈ C1(Ω;S0 \ {0}) we define
its biaxiality function β := β̃ ◦ Q and for each t ∈ [−1, 1] the associated
biaxiality regions as the closed subsets of Ω given by

{β 6 t} :=
{
x ∈ Ω : β̃ ◦Q(x) 6 t

}
and {β > t} :=

{
x ∈ Ω : β̃ ◦Q(x) > t

}
,

(4.1)
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where β̃ is the signed biaxiality parameter (1.2). The corresponding biaxial
surfaces are defined as

{β = t} :=
{
x ∈ Ω : β̃ ◦Q(x) = t

}
.

Observe that if t ∈ (−1, 1) is a regular value of β, then biaxial surfaces are
smooth surfaces inside Ω, possibly with boundary which is anyway smooth
and contained in ∂Ω.

We now introduce a notion of “mutual linking”, a property that will
(partially) encode the topological nontriviality of the biaxiality regions.

Definition 4.2. — Let A,B ⊆ Ω be two compact subset. The sets A
and B are said to be mutually linked(1) if A is not contractible in Ω\B and
B is not contractible in Ω \A.

To gain more insight in the previous definitions, it is convenient to fo-
cus on the case of a nematic droplet. If Ω is the unit ball and Qb is the
radial boundary datum (2.6), then the energy minimizer cannot inherit
O(3)-symmetry of the boundary datum because of the instability of O(3)-
equivariant critical point, both for Eλ and for Fλ,µ, therefore symmetry
breaking occurs. Thus, it is natural to expect the minimizers Qλ or Qµλ
to be axially symmetric around a fixed axis (in a sense made precise in the
next section). In particular, the corresponding biaxiality regions (4.1) should
be axially symmetric as well. More precisely, {β < t} with t ∈ (−1, 1) should
be an increasing family of axially symmetric solid tori, and the complemen-
tary regions {β > t} should be kind of distance neighborhoods from the
boundary ∂Ω with cylindrical neighborhoods of the symmetry axis added.
In the extreme case t = ±1, the set {β = −1} should be a circle with axial
symmetry, and {β = 1} the sphere ∂Ω with a diameter lying on the symme-
try axis added. Clearly sub and superlevel of the biaxiality function should
be mutually linked in the sense of Definition 4.2 above. There is a wide nu-
merical evidence for these symmetry properties and indeed this conjectural
picture has been already investigated in [16, 24, 25, 39], where authors refer
to such an equilibrium configuration as the “torus solution” of the Landau–
De Gennes model. The situation here clearly reminds the one corresponding
to the Hopf fibration

C× C ⊇ S3 Φ−→ S2 ⊆ C× R , Φ(z1, z2) = (2z1z2, |z1|2 − |z2|2) ,

(1) As an example, if Ω is the unit ball, A is an unknotted embedded copy of S1 into
Ω, and B = Ω \ Aδ with Aδ a sufficiently small tubular neighborhood of A, then A and
B are mutually linked.
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where the subsets {|z1|2 − |z2|2 > t} and {|z1|2 − |z2|2 < t} with t ∈ (−1, 1)
form a decomposition of S3 into two disjoint mutually linked solid tori (a
so-called Heegaard splitting).

In the paper [12] a class of domains Ω ⊆ R3 and configurations Q is
singled-out that includes energy minimizers Qλ and Qµλ on a nematic droplet
under radial anchoring. The class is defined by the following assumptions:

(HP1) Q ∈ C1(Ω;S0 \ {0}) ∩ Cω(Ω;S0) .

(HP2) β := minx∈∂Ω β̃ ◦Q(x) > −1 .

(HP3) Ω is smooth, connected and simply connected.

(HP4) For x ∈ ∂Ω the maximal eigenvalue λmax(x) admits a smooth choice
of eigenvectors vmax ∈ C1(∂Ω;S2) with total degree which is odd.

Roughly speaking, the idea is to restrict the attention to smooth configu-
rations without isotropic phase by (HP1), such that the maximal eigenvalue
is simple at the boundary in view of (HP2), on connected domains with only
spherical boundary components because of (HP3). Then the corresponding
eigenspace map Vmax ∈ C1(∂Ω;RP 2) has an orientation vmax ∈ C1(∂Ω;S2)
with total degree which is odd due to (HP4). These conditions are satisfied,
e.g., if the domain Ω is topologically a ball possibly with an even number of
disjoint closed balls removed from its interior and the boundary condition
is the radial anchoring, so that Qb ∈ C1(∂Ω;RP 2). Several interesting cases
are left out, e.g., the case of nematic shells and the case of toroidal domains.

Note that under the previous assumptions, if in particular the trace of
Q at the boundary satifies Qb ∈ C1(∂Ω;RP 2), then it has a lifting by
(HP2), i.e., Qb is of the form (2.6), up to a constant factor, with vmax(x)
instead of the outer normal. Moreover, any lifting v ∈ C1(∂Ω;S2) of Qb ad-
mits a finite energy extension v ∈ W 1,2(Ω; S2) but no continuous extension
because of assumption (HP3). As a consequence, Qb admits an extension
Q ∈W 1,2(Ω;RP 2) of the form

Q(x) =
√

3
2

(
v(x)⊗ v(x)− 1

3I
)
. (4.2)

In view of [4] and (HP3), any extension Q ∈ W 1,2(Ω;RP 2) of Qb is in
fact of the form (4.2) for a suitable (necessarily) discontinuous map v ∈
W 1,2(Ω;S2). The configuration Q being smooth and without isotropic phase
by assumption (HP1), it cannot be purely uniaxial (i.e., RP 2-valued) and
biaxial escape must occur for purely topological reasons.

A weak counterpart of the conjectural picture described in the example
above with a foliation of the domain by axially symmetric tori is the main
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topological result in [12] and we refer to solutions of (3.1) satisfying the con-
clusion of the theorem below on a general domain as “torus-like solutions”.

Theorem 4.3. — If assumptions (HP1)–(HP4) hold (e.g., if Ω is
smooth, connected and simply connected, ∂Ω has an odd number of con-
nected components, and that Qb(x) =

√
3/2(~n(x) ⊗ ~n(x) − 1

3I) is the ra-
dial anchoring), then the biaxiality regions associated to the configuration Q
satisfy:

(1) the set of singular values of β = β̃◦Q in [−1, β] is at most countable,
and it can accumulate only at β; moreover, for any regular value
−1 < t < β of β the set {β = t} ⊆ Ω is a smooth surface with a
connected component of positive genus;

(2) for any −1 6 t1 < t2 < β, the sets {β 6 t1} ⊆ Ω and {β > t2} ⊆ Ω
are nonempty, compact, and not simply connected;

(3) if in addition Q ∈ Cω(Ω) and β = 1, then the set of critical values
is finite and {β = 1} ⊆ Ω is nonempty, compact, and not simply
connected; in particular {β = 1} ∩ Ω is not empty;

(4) for any −1 6 t1 < t2 < β, if the interval (t1, t2) contains no critical
value, then {β 6 t1} and {β > t2} are mutually linked.

Claim (1) on discreteness of the set of singular values is a consequence
of the analytic Morse–Sard theorem. The rest of the claim together with
claim (2) is proved by contradiction, supposing is that each component of a
biaxial surface {β = t} is spherical and using a degree-counting argument
based on (HP3) to reach a contradiction. The argument for (2) and (3) above
applies for regular values t ∈ (−1, β), and the extension to arbitrary values
is based on the analytic regularity of Q and the Łojasiewicz retraction theo-
rem [32]. Finally, the linking property in (4) follows easily by contradiction
using a deformation of the biaxial regions along the positive/negative gradi-
ent flow of β. We expect analogous properties to hold also for t ∈ (β, 1), but
this range seems to be more difficult to analyze, since the biaxial surfaces
meet the boundary ∂Ω and the degree-counting argument mentioned above
should take these boundary components into account.

5. Axially symmetric minimizing configurations

From now on we consider the energy functional (2.9) restricted to a class
of S1-equivariant configurations. Let us now first make the concept of S1-
equivariance precise. We consider R3 with the standard basis {e1, e2, e3}, and
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we identify the group S1 with the subgroup of SO(3) of rotations around the
vertical axis Re3 ⊆ R3, so that in the standard basis a matrix R ∈M3×3(R)
represents a rotation of angle α around the vertical axis iff it can be written
in the form

R =
(
R̃ 0
0 1

)
with R̃ :=

(
cosα − sinα
sinα cosα

)
. (5.1)

In particular, under the previous identification we will also use the complex
notation R = eiα ∈ S1 for both the complex number, the rotation in R2 (or
C), and, possibly, the corresponding rotation around the vertical axis in R3,
so that for x = (x′, x3) ∈ R3 we have R · x = (eiαx′, x3).

The S1-action by rotation on R3 yields an induced action on S0 given by
S0 3 Q 7→ R ·Q := RQRt ∈ S0. For elements in S0, let us use the notation

Q =:
(
Q̃− q0

2 I q
qt q0

)
,

where q0 ∈ R, q ∈ M2×1(R) ' R2, and Q̃ = Q̃t ∈ M2×2(R) satisfies
tr(Q̃) = 0. In this way, for a rotation around the x3-axis R ∈ S1, and
R̃ ∈ SO(2) the corresponding rotation in the (x1, x2)-plane, we have

R ·Q = RQRt =
(
R̃Q̃R̃t − q0

2 I R̃q
(R̃q)t q0

)
. (5.2)

We assume that the open set Ω ⊆ R3 is bounded, smooth and S1-invariant
or axisymmetric/rotationally symmetric, i.e., RΩ = Ω for any R ∈ S1, and
we restrict ourselves to maps Q : Ω → S0 which are S1-equivariant, i.e.,
such that

Q(Rx) = RQ(x)Rt , a.e. x ∈ Ω , ∀ R ∈ S1 , (5.3)
with the obvious analogue definition for the boundary conditions Qb : ∂Ω→
S0.

Thus, we may consider continuous, Lipschitz or W 1,2 configuration just
adding the constraint (5.3) of being equivariant. In particular, if Ω is rota-
tionally symmetric around the x3-axis andQb is S1-equivariant and Lipschitz
continuous, we set

Asym
Qb

(Ω) :=
{
Q ∈W 1,2(Ω;S4) : Q|∂Ω = Qb and Q is S1-equivariant

}
( AQb(Ω) . (5.4)

It is not difficult to see that for Qb as above the set Asym
Qb

(Ω) is always not
empty. In addition, any element Q ∈ Asym

Qb
(Ω) has a well defined trace on

the symmetry axis and (5.3) together with the norm constraint implies that
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a.e. on {x2
1 + x2

2 = 0} ∩ Ω one has Q(0, 0, x3) = ±E0, the unique norm-one
matrices in S0 which are fixed by the S1-action on S0,

E0 :=
√

3
2

(
e3 ⊗ e3 −

1
3I
)

= 1√
6

−1 0 0
0 −1 0
0 0 2

 .

The same restriction occurs on {x2
1 + x2

2 = 0} ∩ ∂Ω for the boundary datum
Qb. In particular, if Ω is the unit ball and Qb satisfies Qb(0, 0,±1) = ±E0,
then the classAsym

Qb
(Ω) contains no map which is continuous up to the bound-

ary, because x3 → Q(0, 0, x3) : E0 should be constant.

As a consequence, we can minimize the energy functional (2.9) in the
class Asym

Qb
(Ω) of equivariant configurations and the direct method in the

Calculus of Variations easily applies as the constraint (5.4) is weakly closed
in W 1,2, but energy minimizers could have singularities, sometimes just for
trivial topological reasons as in the example suggested above.

Indeed, the following partial regularity result holds.

Theorem 5.1. — Let Ω ⊆ R3 be a rotationally symmetric Lipschitz
domain, let Qb ∈W 1,2(Ω;S4) be an S1-equivariant map in the sense of (5.3)
and let Qλ ∈ W 1,2(Ω;S4) be a minimizer of Eλ in the class Asym

Qb
(Ω). Then

Qλ ∈ Cω(Ω \ Sing Qλ;S4), where Sing Qλ ⊆ Ω is a locally finite subset of
the x3-axis or empty.

Moreover the following holds:

(1) If in addition ∂Ω is C3 and Qb ∈ C1,1(∂Ω;S4), then Qλ ∈
C1,α(∂Ωρ;S4) for any α ∈ (0, 1), where ∂Ωρ ⊆ Ω is a tubular neigh-
bourhood of the boundary, and Sing Qλ is finite or empty. Finally,
if Ω is a domain with analytic boundary and Qb ∈ Cω(∂Ω;S4) then
Qλ ∈ Cω(∂Ωρ;S4).

(2) For any x ∈ Sing Qλ there exists s ∈ R such that if Q(s)(x) is the
corresponding stable homogeneous equivariant blow-up as in (6.7)
below, then there exists ν > 0 such that
‖Qλ(x+ rx)−Q(s)(x)‖C2(S2;S4) = O(rν) asr → 0.

To compare the previous regularity result with the one in the nonsym-
metric case we first observe that minimizers of (2.9) in the symmetric class
Asym
Qb

(Ω) essentially satisfy Palais’ Symmetric Criticality Principle (although
neither the functional is C1-differentiable, nor the space W 1,2(Ω;S4) has a
Banach manifold structure), therefore they are true critical point of (2.9),
i.e., they are weak solution of (3.1). One can try to discuss (partial) regu-
larity along the lines on Section 3 an indeed both step (B) and Step (A4)
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discussed there apply to the present case without any modification. On the
other hand, these critical points satisfy an energy minimality property only in
the restricted class Asym

Qb
(Ω) of equivariant configurations, so the arguments

to obtain (A1)–(A3) here are similar in the spirit but actually deviate from
those mentioned in Section 3 and even the conclusion are different, because
in the present context singularities on the symmetry axis are allowed.

More precisely, smallness of the scaled energy both in interior or at bound-
ary points x = (x′, x3) ∈ Ω automatically holds out of the symmetry axis,
i.e.,

x′ 6= 0 =⇒ 1
r
Eλ(Q;Br(x) ∩ Ω) r→0−→ 0 ,

in view of a classical capacity argument (as nontrivial S1-orbits have pos-
itive H1-measure), therefore the singular set is confined to the symmetry
axis. Around points on the symmetry axis we wish to apply Steps (A1)–
(A3) as in the nonsymmetric case. Here monotonicity formulas are obtained
by adapting the same penalization trick from [12] to the S1-equivariant case.
Compactness of blow-ups centered on the symmetry axis are discussed fol-
lowing the same strategy as in the general case, but constructing suitable
S1-equivariant comparison maps. The Liouville property at the boundary is
obtained in a way similar to the nonsymmetric case, hence boundary regu-
larity also follows in the present case. The crucial difference for the proof of
Theorem 5.1 is the Liouville property in the interior since in the nonsym-
metric case any locally minimizing harmonic tangent map into S4 is constant
by [44]. On the contrary, as shown in [10] and reviewed in the next section,
there exists a one-parameter family of nonconstant degree-zero homogeneous
S1-equivariant harmonic tangent maps {Q(s)}s∈R which are smooth out of
the origin and locally minimizing the Dirichlet energy among compactly
supported axisymmetric perturbations. As a consequence, singularities of
minimizers to (2.9) may occurr, but they form a locally finite set (actually
finite when boundary regularity holds).

As for harmonic maps near isolated singularities [45], rescaling around
any point x ∈ Sing Qλ, the maps Qλ(x+rx) have a unique asymptotic limit
in C2

loc-topology away from the origin which is an element of the family of
degree-zero homogeneous maps {Q(s)}s∈R mentioned above. The key point
is that is that by homogeneity

Q(s)(x) = ωη

(
x

|x|

)
, η = eis , s ∈ R ,

where the harmonic spheres {ωη}η∈S1 ⊆ C3(S2;S4) all satisfy E0(ωη) ≡ 4π
as reviewed in the next section. Since all these possible tangent maps belong
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to the manifold of 4π-energy harmonic spheres into S4, i.e.,(
Conf+(S2;S4)× Isom(S2;S4)

)
/SO(3) ⊆ C3(S2;S4) ,

one can apply the Simon–Łojasiewicz inequality with optimal exponent for
the Dirichlet energy E0 on C3(S2;S4), namely

|E0(u)− E0(ωη)| 6 C|∇E(u)|2L2 , ‖u− ωη‖C3 � 1 , (5.5)

and following [45] obtain the unique asymptotic limit together with the
power-type decay.

In the final part of this section we present the topological counterpart
of the previous regularity result. Still in the simple case of axisymmetric
domain equivalent the a ball we have the following result from [10].

Theorem 5.2. — Let Ω⊆R3 be a rotationally symmetric domain withC3

boundary diffeomorphic to the unit ball and suppose that Qb∈C2(∂Ω;RP 2)
is the ( S1-equivariant) radial anchoring as in (2.6). Let Qλ ∈W 1,2(Ω;S4) be
a minimizer of Eλ in the class Asym

Qb
(Ω) and Σ ⊆ Ω ∩ {x′ = 0} the (possibly

empy) subset of its singularities. Then the following holds.

(1) If Σ = ∅ then Qλ is a torus-like solution; moreover, for any regular
value t ∈ (−1, 1) the biaxial surface {β = t} is a finite union of
axially symmetric tori.

(2) If Σ 6= ∅ then Qλ is a split solution; the set Σ contains 2m > 0
points and for any regular value t ∈ (−1, 1) (for Qλ in Ω \ Σ) the
biaxial surface {β = t} contains m > 0 disjoint axially symmetric
spheres each touching {x′ = 0} at a pair of singular points (i.e.,
{β = t} ∩ {x′ = 0} = Σ).

As we will see in the final section, both the cases in the two theorems
above are indeed possible, depending on the geometry of the domain Ω.
However, in case of smooth (torus-like) solution, the S1-symmetry simplifies
the possible topology in the smooth configurations and only tori are possible
as connected component in any regular biaxial surface. On the other hand,
when singularities are present, the biaxial surfaces must contain spheres,
pairwise connecting these singularities, and, possibly, extra smooth tori. In
the latter case numerical simulations suggest in case of a nematic droplet
that the level sets {β = t} as t ∈ (−1, 1) varies, should give a foliation of
the domain (minus the symmetry axis) by spheres and no extra tori should
appear.
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6. Asymptotic behaviour at axially symmetric singularities

According to Theorem 5.1, it is possible to describe the behaviour of
axially symmetric energy minimizing configurations Qλ in terms of suitable
equivariant degree-zero homogeneous harmonic maps (tangent maps) into S4,
which are locally minimizing the Dirichlet integral with respect to compactly
supported axially symmetric perturbations. Recall that such maps appear
as degree-zero homogeneous extension of harmonic spheres, i.e., maps ω ∈
C∞(S2;S4) which are critical points of the Dirichlet integral.

In order to describe these equivariant maps and to discuss their stabil-
ity/instability properties, starting from (5.2) it is convenient to decompose
S0 into invariant subspaces {Li}i=0,1,2, so that

S0 = L0 ⊕ L1 ⊕ L2 ≈ R⊕ C⊕ C .
The previous identification allows to rewrite the S1-action (5.2) in terms of
complex numbers, so that for any w = (w0,w1,w2) ∈ S0 and R = eiα ∈ S1

we have
R · (w0,w1,w2) = (w0, e

iαw1, e
i2αw2) . (6.1)

Note that if ω is an equivariant map then V = spanRω(S2) ⊆ S0 is an
invariant subspace. Combining this observation with [6], we deduce that S4-
valued equivariant harmonic spheres are either linearly degenerate, i.e.,

ω(1)(x) = (w0(x),w1(x), 0) , or ω(2)(x) = (w0(x), 0,w2(x)) ,
hence S2-valued, or linearly full, i.e., dimV = 5 otherwise. In the linearly
degenerate case it is not difficult to show that, up to a possible application
of the antipodal map a : S4 → S4, for k = 1, 2 we have

ω(k)(x) = σ−1
(
µk (σ(x))k

)
, µk ∈ C∗ , (6.2)

where σ : S2 → C∪{∞} is the stereographic projection from the south pole.

In order to describe linearly full harmonic spheres ω into S4, following [6]
(see also, e.g., [2, 28] for more details) it is convenient to identify S2 with
CP 1 and to study their canonical (or twistor) lift ω̃ to CP 3, the twistor
space of S4. As detailed, e.g., in [2, Chapter 7], the twistor space of S4,
i.e., the space of orthogonal complex structures on S4, is SO(5)/U(2); how-
ever, it is elementary but not obvious to identify it with complex projective
3-space CP 3. Thus, CP 3 has a natural structure of fibre bundle over S4

with fiber SO(4)/U(2) = S2. In addition, for any x ∈ S2 the correspond-
ing ω̃(x) is the natural orthogonal complex structure on Tω(x)S4 for which
the oriented subspaces V = Imdωx and V ⊥ are complex lines. Notice that
CP 3 = C4/C∗ = S7/S1, so the projection τ : CP 3 → S4 is nothing but the
restriction to circles of the Hopf fibration S7 → S4.
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If we write [z0, z1, z2, z3] ∈ CP 3, with (z0, z1, z2, z3) ∈ C4 \ {0} the ho-
mogeneous coordinates in CP 3, and we consider S4 as the unit sphere of
R⊕C⊕C, then the twistor fibration τ : CP 3 → S4 turns out to be the map
given by

τ
(
[z0, z1, z2, z3]

)
:=
(
|z0|2 − |z1|2 − |z2|2 + |z3|2 , 2(z0z1 + z2z3), 2(z0z2 − z1z3)

)
|z0|2 + |z1|2 + |z2|2 + |z3|2

. (6.3)

Considering the S1-action on CP 3 defined by

R · [z0, z1, z2, z3] := [z0, e
iαz1, e

2iαz2, e
3iαz3] ∀ R = eiα ∈ S1 , (6.4)

and the (induced) S1-action on S4 ⊆ R ⊕ C ⊕ C given by (6.1), the twistor
map τ turns out to be equivariant.

This way, up to a possible application of the antipodal map as above
and up to postcomposing with the twistor fibration τ : CP 3 → S4, one has
a one-to-one correspondence between harmonic spheres ω : S2 → S4 and
horizontal(2) algebraic curves ω̃ : CP 1 → CP 3 given by their twistor lift,
and the commutative diagram

CP 3

τ

��
S2 = CP 1 ω //

ω̃

99

S4

(6.5)

reflects the fact that ω = τ ◦ ω̃. In addition, the harmonic sphere ω is equi-
variant if and only if its twistor lift is equivariant. As a consequence, spe-
cializing to the equivariant setting allows to classify the canonical lifts that
in homogeneous coordinates [λ0, λ1] ∈ CP 1 can be written as

ω̃([λ0, λ1]) =
[
λ3

0, µ1λ
2
0λ1, µ2λ0λ

2
1,−

µ1µ2

3 λ3
1

]
∈ CP 3 ,

(µ1, µ2) ∈ C∗ × C∗ . (6.6)

Notice that according to [6], the energy of any harmonic sphere ω is always
quantized, namely E0(ω) = 4πk, for some k ∈ N. In view of equivariance we
have k ∈ {0, 1, 2, 3}, where k = 0 corresponds to ω ≡ ±E0, (6.2) describe
the cases k = 1 or k = 2, and the case k = 3 is described in terms of (6.5)
and (6.6).

(2) Horizontality here means that at each point ω̃([λ0, λ1]) ∈ CP 3 the image of the
differential dω̃[λ0,λ1] is orthogonal to the tangent space to the fiber τ−1(ω([λ0, λ1])) with
respect to the Fubini–Study metric.
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As in Section 3 above, analyzing the second variation E ′′0 (·, Q) for the cor-
responding maps Q(x) = ω( x

|x| ) in the class of S1-equivariant deformations
a tricky but elementary argument gives the following result from [10].

Theorem 6.1. — Let Q(x) = ω( x
|x| ) be a nonconstant degree-zero ho-

mogeneous S1-equivariant harmonic maps into S4 and ω ∈ C∞(S2;S4) the
corresponding harmonic sphere. Then the following holds.

(1) For any s ∈ R, if µ1 = eis and ω = ω(1) is the corresponding map
in (6.2), then Q ∈ W 1,2

loc (R3;S4) is a minimizer of the Dirichlet
integral E0 with respect to compactly supported axially symmetric
perturbations. In particular the map Q is stable.

(2) All the other nonconstant degree-zero homogeneous S1-equivariant
harmonic maps into S4 are unstable.

In view of Theorems 5.1 and 6.1 above, the only possible profiles for
axially symmetric minimizers of Eλ at isolated singularities are of the form

Q(s)(x) = ± 1
|x|

(x3, e
isx′, 0) , x = (x′, x3) ∈ R3 \ {0} , s ∈ R , (6.7)

or in matrix form

Q(s)(x) = ±eis · 1√
6

1
|x|

 −x3 0
√

3x1
0 −x3

√
3x2√

3x1
√

3x2 2x3

, x = (x1, x2, x3) ∈ R3 \{0}.

On the other hand, instability occurs as soon as for the harmonic map Q(x)
the last component w2 6≡ 0, therefore both Q(x) = ω(2)( x

|x| ) and all the tan-
gent maps coming from linearly full harmonic spheres ω = τ◦ω̃ corresponding
to (6.6) are unstable. In particular the homogeneous radial hedgehog

H(x) =
√

3
2

(
x

|x|
⊗ x

|x|
− 1

3I
)
, x ∈ R3 \ {0} (6.8)

is unstable.

7. Torus solutions vs split solutions

In this section we mention briefly a result from [11] about the presence
or even the coexistence of smooth and singular minimizers of the energy
functional Eλ in the symmetric class Asym

Qb
defined in (5.4). More precisely,

for δ ∈ [−1, 1] we consider a continuous family {Ωδ}δ∈[−1,1] of S1-invariant
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smooth cylinder-type domains in R3 together with the corresponding family
of boundary data corresponding to radial anchoring,

Q(δ)
b (x) =

√
3
2

(
~nδ(x)⊗ ~nδ(x)− 1

3I
)
. (7.1)

We assume each element Ωδ of the family of cylidrical domains above is
determined by two sidelenghts `1 = `1(δ) and `2 = `2(δ), so that for each
δ ∈ [−1, 1]

Ωδ ≈ {|x′| < `1 , |x3| < `2 } , x = (x′, x3) ∈ R3 ,

and we analyze what happens to the minimizers Qλ of Eλ as the mutual ratio
`2/`1 varies continuously from `2/`1 � 1 on the domain Ω−1 to `2/`1 � 1
on the domain Ω1. Here the intermediate domain Ω0 corresponds by con-
struction to the case `1 ∼ `2, so that it should be euristically comparable to
a nematic droplet. For simplicity we consider `1 constant for δ ∈ [−1, 0] and
`2 constant for δ ∈ [0, 1].

Notice that as δ varies in [−1, 1] the domains vary smoothly together with
the boundary conditions, hence the set of minimizers is compact in W 1,2-
topology (although some care is needed because the domain Ωδ is varying)
and, up to subsequences, minimizers converge to minimizers. As a conse-
quence of the regularity theory and the analysis of the asymptotic profiles
at singular point in Sections 5 and 6 it is not difficult to prove the following
stability (closure) properties for the set of minimizers under deformation of
the domain:

• the strongW 1,2-limit of smooth minimizers is a smooth minimizers;

• the strongW 1,2-limit of singular minimizers is a singular minimizers.

Notice that a simple consequence of these facts about energy minimizing con-
figurations is that singularities cannot appear through a bifurcation mech-
anism from a smooth minimizer (no creation/annihilation mechanism for
pairs of singularities is possible for minimizers).

The following is one of the main results in [11].

Theorem 7.1. — Let {Ωδ}δ∈[−1,1] ⊆ R3 and {Q(δ)
b }δ∈[−1,1] as above and

let Qλ any minimizers of Eλ in Asym
Q

(δ)
b

for some δ ∈ [−1, 1]. If λ is sufficiently

small (depending only on a2, b2, c2 and L) then the following hold:

(1) in the domain Ω−1 if `1 ∼ 1 and `2 � 1 is large enough (depending
only on a2, b2, c2 and L) then any minimizers Qλ is a split solution;

(2) in the domain Ω1 if `2 ∼ 1 and `1 � 1 is large enough (depending
only on a2, b2, c2 and L) then any minimizers Qλ is a torus solution;
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(3) there exists δ∗ ∈ (−1, 1) such that in the domain Ωδ∗ the energy
functional Eλ has both a split solution and a torus solution as min-
imizing configurations with the same energy.

Some comments about the previous statement are in order. The first
claim shows that in the energy minimization the presence of singularities
may be energetically favourable and this fact is clearly reminiscent of the
similar energy gap phenomenon discovered in [19] for maps into S2. Indeed,
one can construct a singular competitor Q̃ with the same trace and energy
strictly smaller than the one of any smooth map; for such a map on a long
subinterval of the symmetry axis one has Q̃(0, 0, x3) ≡ −E0 as opposed to
the boundary value Q̃(0, 0, x3) = E0 for x = (0, 0, x3) ∈ ∂Ω−1 and even
in a neighborhood of the boundary. The second claim reflects the fact that
in the limit `1 → ∞ one gets a minimizer in an infinite slab with constant
boundary value, which is therefore constant; since regularity/singularities
persist under strong convergence this clearly yields only torus solutions on
the domain Ω1 for `1 large enough. Finally, the same persistence properties
recalled above through a continuity+compactness method allow to obtain an
intermediate value δ∗ ∈ (−1, 1) such that both singular (split) and smooth
(torus) solutions appear as minimizers on the same domain Ωδ∗ and with the
same energy. It is not known whether this is the case for δ = 0, i.e., whether
or not on a domain similar or even equal to a nematic droplet minimizers
among all axially symmetric maps are smooth or singular.

As a concluding remark, we observe that Theorem 7.1 together with The-
orem 3.1 yield another very interesting consequence. Indeed, claim (1) in the
theorem above implies that energy minimizers for Eλ in the class A

Q
(−1)
b

being smooth, they cannot be axially symmetric even if the boundary con-
dition Qb satisfies this property. As a consequence, axial symmetry breaking
and nonuniqueness phenomena must occur in the minimization of the energy
functional Eλ. Such phenomena are in agreement with the numerical simu-
lations in [9] and are the natural counterpart for the Landau–De Gennes
model of those known from [1] for minimizers of the Frank–Oseen energy.
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