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Topological singularities for vector-valued Sobolev
maps and applications

Giacomo Canevari (1) and Giandomenico Orlandi (2)

ABSTRACT. — We review the analysis of topological singularities of Sobolev maps
into manifolds and their applications to variational problems of Ginzburg–Landau
type and to the lifting problem for BV maps into manifolds. We describe in particular
recent results obtained in the vector-valued case related to variational models of
material science, more precisely the Landau–de Gennes model.

RÉSUMÉ. — Nous passons en revue certains résultats d’analyse des singularités
topologiques des fonctions de Sobolev à valeurs dans des variétés, ainsi que leurs
applications aux problèmes variationnels de type Ginzburg–Landau et au problème
du relèvement dans l’espace BV. En particulier, nous présentons des résultats récents,
portant sur les fonctions à valeurs vectorielles, qui trouvent leur application dans
l’étude des modèles variationnels pour la science des matériaux, tels que le modèle
de Landau–de Gennes.

1. Topological singularities of Sobolev maps into spheres

1.1. Motivating example: the Ginzburg–Landau energy

Consider the Ginzburg–Landau functional

u ∈W 1,2(Ω, C) 7→ EGL
ε (u) :=

∫
Ω

{
1
2 |∇u|

2 + 1
4ε2 (1− |u|2)2

}
, (GLε)
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where Ω is a smooth, bounded domain in Rd, d > 2, and ε > 0 is a small
parameter. Functionals of this form arise as variational models for the study
of type-II superconductivity. In this context, u(x) represents the magneti-
sation vector at a point x ∈ Ω and the energy favours configurations with
|u(x)| = 1, which have a well-defined direction of magnetisation as opposed
to the non-superconducting phase u = 0. Let S1 denote the unit circle in the
complex plane C.

A rigorous mathematical analysis of the model, since the fundamental
monograph by Bethuel, Brezis and Hélein [14], show that minimisers uε sub-
ject to a (ε-independent) boundary condition uε|∂Ω = ubd ∈W 1/2,2(∂Ω, S1)
satisfy the (sharp) energy bound EGL

ε (uε) 6 C|log ε| for some ε-independent
constant C. In particular, uε takes on average values closer and closer to S1

as ε tends to 0, since
∫

Ω(1−|uε|2)2 6 Cε2|log ε|. Despite the lack of uniform
energy bounds, under suitable conditions on ubd, minimisers uε converge
to a limit map u0 : Ω → S1, which is smooth except for a singular set of
codimension two (see e.g. [2, 14, 15, 18, 50, 52, 65, 66]). Moreover, the sin-
gular set of u0 is itself a minimiser (in a suitable sense) of some “weighted
area” functional. The emergence of singularities in the limit map u0 is re-
lated to topological obstructions, which may prevent the existence of a map
in W 1,2(Ω, S1) that satisfies the boundary conditions.

It should be remarked that the logarithmic energy bound

EGL
ε (vε) 6 C |log ε|

does not guarantee compactness of the sequence (vε)ε>0, in any Sobolev
norm. Indeed, the maps vε(x) := exp(iϕ(x)|log ε|1/2), where ϕ ∈ C∞(Ω, R)
is a fixed, non-constant function, satisfy |vε| = 1 and

EGL
ε (vε) = |log ε|

2

∫
Ω
|∇ϕ|2 6 C |log ε| ,

but |∇vε| = O(|log ε|1/2) so the gradient diverges as ε → 0. Actually, even
for energy minimisers, no compactness can be expected even in L1

loc (unless
additional assumptions on the boundary datum are made). Indeed, Brezis
and Mironescu [24] constructed a sequence of minimisers uεn , on the unit
ball Bd ⊆ Rd with d > 2, that satisfies EGL

εn
(uεn

) = o(|log εn|) as εn → 0
and yet has no subsequence that converges a.e. on a set of positive measure,
as there holds supx∈Bd |uεn

(x)− exp(inx1)| → 0.

In the previous examples, the lack of compactness is due to oscillations of
the phase and not to topological obstructions. In fact, it is possible to isolate
the topological contribution to the energy and prove compactness results
on that part alone. This is usually achieved by the use of distributional
Jacobians.
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1.2. Distributional Jacobian

Let d > k > 2 be integers. Given a map u : Rd → Rk, u = (u1, . . . , uk),
of class C2, we compute that

du1 ∧ . . . ∧ duk = 1
k

d
(

k∑
i=1

(−1)i+1uid̂ui
)
, (1.1)

where d̂ui := du1 ∧ . . . ∧ dui−1 ∧ dui+1 ∧ . . . ∧ duk. In case d = k, we can
rewrite the identity (1.1) using vector calculus instead of differential forms.
More precisely, when d = k = 2 we have

det(∇u) = 1
2∂1

(
u1∂2u

2 − u2∂2u
1)+ 1

2∂2
(
u2∂1u

1 − u1∂1u
2)

and if d = k = 3 then

det(∇u) = 1
3 div(u · ∂2u× ∂3u, u · ∂3u× ∂1u, u · ∂1u× ∂2u).

Similar (but more involved) reformulations are possible if d = k > 3.

The left-hand side of (1.1) is well-defined for any u ∈ W 1,k
loc (Rd, Rk),

while the right-hand side is well-defined (in the sense of distributions) if
u ∈ (L∞ ∩W 1,k−1

loc )(Rd, Rk). Therefore, we might use the right-hand side
of (1.1) to define the distributional Jacobian of u:

Ju := 1
k

d
(

k∑
i=1

(−1)i+1uid̂ui
)

for u ∈ (L∞ ∩W 1,k−1)(Rd, Rk). (1.2)

The rôle of the distributional Jacobian in connection with relaxation prob-
lems in the calculus of variations has been pointed out, for instance, by
Ball [6] (distributional determinant in non-linear elasticity) and by Brezis,
Coron and Lieb [23] (harmonic maps and minimal connections; see also
Bethuel, Brezis and Coron [13]).

As a consequence of its definition (1.2), the Jacobian enjoys weak com-
pactness properties. For instance, if (uj)j∈N is a sequence of maps such that

sup
j∈N
‖uj‖L∞(Rd,Rk) < +∞

and uj → u strongly in W 1,k−1(Rd,Rk), (1.3)

then Juj ⇀ Ju in the distributional sense of D ′(Rd). The same conclusion
holds if

sup
j∈N
‖uj‖L∞(Rd,Rk) < +∞

and uj → u weakly in W 1,p(Rd,Rk) for p > k − 1. (1.4)
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A quantitative continuity estimate for the Jacobian was proved by Brezis
and Nguyen.

Theorem 1.1 ([25, Theorem 1]). — Let d = k > 2, k − 1 6 p 6 +∞,
and let 1 6 q 6 +∞ be such that (k − 1)/p + 1/q = 1. Then, for any u,
v ∈ (Lq ∩W 1,p

loc )(Rk, Rk) and any C1 function ϕ : Rk → R supported in a
ball B ⊆ Rk, there holds

|〈Ju− Jv, ϕ〉| 6 C ‖u− v‖Lq(B)

(
‖∇u‖k−1

Lp(B) + ‖∇v‖k−1
Lp(B)

)
‖∇ϕ‖L∞(B)

where C > 0 is a constant that only depends on k.

Another important feature of the Jacobian is its ability to capture topo-
logical information. To understand why this is the case, we introduce the
(k − 1)-form

ωSk−1(y) := 1
k

k∑
i=1

(−1)i+1yid̂yi for y ∈ Rk,

which is (the 1-homogeneous extension of) a volume form on Sk−1. The
cohomology class of ωSk−1 , restricted to Sk−1, generates the de Rham coho-
mology Hk−1

dR (Sk−1) ' R, as a real vector space. Then, we may rewrite (1.2)
as

Ju = du∗(ωSk−1). (1.5)
Consider now a sphere-valued map u : Rk → Sk−1, possibly with point sin-
gularities (e.g. u(x) := x/|x|), and let B ⊆ Rk be a ball whose boundary ∂B
does not intersect any singularity of u. By formally integrating the iden-
tity (1.5) on B and applying Stokes’ theorem, we obtain∫

B

Ju =
∫
B

du∗(ωSk−1) =
∫
∂B

u∗(ωSk−1) = αk deg(u, ∂B),

where αk = Vol(Sk−1)/k is the volume of the unit ball of Rk and deg(u, ∂B)
denotes the topological degree of u|∂B : ∂B → Sk−1. More precisely, we
have the following property which was proven in [23]: suppose that u ∈
W 1,k−1

loc (Rk, Sk−1) is smooth except for a finite number of points x1, . . . , xp.
Then, there holds

Ju = αk

p∑
i=1

diδxi
in D ′(Rk), (1.6)

where di ∈ Z denotes the topological degree of u restricted to a small sphere
around the point xi. To prove this formula, one can approximate u with a
sequence of smooth maps uε : Rk → Rk such that u = uε out of small balls
Bε(xi) around the singularites. By constructing suitable approximations,
one can compute Juε using Stokes’ theorem as above, and make sure that
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uε → u strongly in W 1,k−1, so to pass to the limit using the continuity of J,
(1.3). We refer the reader to [21] and references therein for a comprehensive
treatment of the relation between the jacobian and the topological degree.

In a similar spirit, if d > k > 2 and u ∈W 1,k−1
loc (Rd, Sk−1) is smooth out

of a smoothly embedded, closed, oriented (d−k)-manifoldM ⊆ Rd, then the
distributional Jacobian Ju may be identified with a vector-valued measure
supported on M . Indeed, we have (see [51])

? Ju = αk∆τMH d−k M, (1.7)
where ∆ is an integer number and denotes the topological degree of u re-
stricted to the boundary of a k-disk that intersects transversally M , while
τM is a unit, tangent (d− k)-vector field that orients M . Moreover,

? : ΛkRd → Λd−kRd

is (a variant of) the Hodge star duality operator: for a k-covector ω, ?ω is
defined as the unique (d− k)-vector such that

〈τ, ?ω〉 = 〈ω ∧ τ, e1 ∧ . . . ∧ ed〉 for any (d− k)-covector τ,
where (e1, . . . , ed) is a positively oriented, orthonormal basis for Rd. If u is
smooth and x is a regular point for u (that is, the gradient ∇u(x) : Rd →
Rk is surjective), then the level set u−1(u(x)) is locally a smooth (d − k)-
submanifold, and ?Ju(x) is a simple (d − k)-vector that spans the tangent
space to u−1(u(x)) at x.

We will come back to the link between Jacobian and level sets, which is
made precise by the coarea formula, in Section 1.3 below. For the time be-
ing, we consider an example. Let u : Rk → Sk−1 be defined by u(x) := x/|x|
for x ∈ Rk \ {0}. This map has an isolated singularity at the origin, which
coincides with the support of the distributional Jacobian by (1.6), but is
also the boundary of any level set u−1(y), for y ∈ Sk−1. This is no coin-
cidence, and in fact the distributional Jacobian of u ∈ W 1,k−1

loc (Rd, Sk−1),
for d > k, may be characterised as the boundary of a generic level set u−1(y),
for y ∈ Sk−1 [1, Theorem 3.8]. This fact, combined with the boundary rec-
tifiability theorem by Federer and Fleming [37], implies the following recti-
fiability result: if d > k > 2, u ∈ W 1,k−1

loc (Rd, Sk−1), and if Ju is a bounded
measure, then Ju may be written in the form (1.7), where M is a (d − k)-
rectifiable set with orientation τM , and ∆ is an integer-valued multiplicity
function (see [1, Theorem 5.6] and [51, Theorem 1.1]).

1.3. The oriented coarea formula

In Section 1.2, we have described some properties of the distributional
Jacobian of a sphere-valued map u ∈ W 1,k−1

loc (Rd, Sk−1). It turns out that
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the study of Ju when u ∈ (L∞ ∩W 1,k−1
loc )(Rd, Rk) can be reduced to the

previous case. Indeed, for y ∈ Rk, we define the map uy : Rd → Sk−1 by

uy(x) := u(x)− y
|u(x)− y| for x ∈ Rd \ u−1(y).

If u is smooth and y is a regular value of u, then by the discussion of Sec-
tion 1.2 we might expect Juy to be a unit multiplicity rectifiable current
supported on the smooth (d − k)-manifold u−1(y). The following property,
sometimes referred to as the oriented coarea formula, relates Juy and Ju.

Theorem 1.2 ([51, Theorem 1.2], [1]). — Let d > k > 2 and u ∈ (L∞ ∩
W 1,k−1

loc )(Rd, Rk). Then, for a.e. y ∈ Rk we have uy ∈ W 1,k−1
loc (Rd, Sk−1),

Juy is supported on a (d− k)-rectifiable set, and there holds

Ju = 1
αk

∫
Rk

Juy dy

in the sense of distributions. Here αk denotes the volume of the unit ball
in Rk.

To pave the way for the discussion in Section 2, it will be useful to recall
here why we have uy ∈W 1,k−1

loc (Rd, Sk−1) for a.e. y ∈ Rk. This proof is based
on a trick that was used by Hardt, Kinderlehrer and Lin [42, Lemma 2.3].
The chain rule implies that |∇uy| 6 2|u − y|−1|∇u|. W.l.o.g., we might
restrict our attention to the case |y| 6 M := ‖u‖L∞(Rd) + 1. By integrating
over y in the ball BkM ⊆ Rk of radius M , and letting Bd ⊆ Rd be a ball, we
obtain∫

Bk
M

‖∇uy‖k−1
Lk−1(Bd) dy 6 2

∫
Bk

M

(∫
Bd

|∇u(x)|k−1

|u(x)− y|k−1 dx
)

dy

= 2
∫
Bd

|∇u(x)|k−1

(∫
Bk

M

dy
|u(x)− y|k−1

)
dx

6 2
∫
Bd

|∇u(x)|k−1

(∫
Bk

2M

dz
|z|k−1

)
dx

=: Ck,M ‖∇u‖k−1
Lk−1(Bd)

We have made the change of variable z = u(x) − y in the inner integral,
and used the fact that z 7→ |z|−p is locally integrable on Rk for p < k. The
constant Ck,M depends also on M , hence on ‖u‖L∞(Rd).

– 332 –



Topological singularities for vector-valued maps

1.4. Applications to variational problems

The theory of distributional Jacobians can be applied to the asymptotic
analysis, as ε→ 0, of variational problems of the form (GLε). Let Ω ⊆ Rd be
a bounded, Lipschitz domain. For 1 6 p < +∞, we defineW−1,p(Ω, Λd−2Rd)
as the dual of W 1,p′

0 (Ω, Λd−2Rd), where p′ := p/(p− 1) is the Hölder conju-
gate of p. We have

Theorem 1.3 ([2, 50]). — Let Ω ⊆ Rd be a bounded, Lipschitz domain
with d > 2, and let K > 0 be a fixed constant. Then, the following properties
hold.

(1) Compactness and lower bound. For any sequence uε ∈ W 1,2(Ω, C)
such that EGL

ε (uε) 6 K|log ε|, there exists a (non relabelled) subse-
quence and a (d − 2)-current J such that ?Juε → πJ in W−1,p for
every p < d/(d − 1). The current J has the structure of a (d − 2)-
rectifiable boundary in Ω with finite mass |J |(Ω) < +∞ and integer
multiplicity. Moreover,

lim inf
ε→0

EGL
ε (uε)
|log ε| > π|J |(Ω).

(2) Upper bound. For any (d − 2)-rectifiable boundary J in Ω with
finite mass and integer multiplicity, there exists a sequence uε ∈
W 1,2(Ω, C) such that ?Juε → πJ in W−1,p for every p < d/(d− 1)
and

lim
ε→0

EGL
ε (uε)
|log ε| = π|J |(Ω).

If the uε’s are critical points of EGL
ε with EGL

ε (uε) 6 K|log ε|, and un-
der suitable assumptions on the boundary data, the bounds on Juε make
it possible to obtain compactness for the uε’s themselves, by PDE argu-
ments [15]. In this case, we have uε → u0 in W 1,p for p < d/(d − 1), and
πJ = limε ?Juε = ?Ju0.

Ginzburg–Landau type functionals of k-growth in the gradient (i.e., the
term |∇u|2 in (GLε) is replaced by |∇u|k, with k > 2 an integer) and Dirich-
let boundary conditions have also been studied [2]. In this case, the Juε’s
concentrate on a rectifiable set of codimension k, whose cobordism class is de-
termined by the domain and the boundary condition. Other energy regimes
arise naturally for Ginzburg–Landau type functionals and are interesting for
applications. In particular the energy regime Eε(uε) ≈ |log ε|2 corresponds to
the onset of the mixed phase in type-II superconductors, and to the appear-
ance of vortices in Bose–Einstein condensates. These situations have been
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extensively studied in the two-dimensional case, especially by Sandier and
Serfaty in the case of superconductivity (see [66] and references therein).

From a variational viewpoint, Theorem 1.3 shows that the Ginzburg–
Landau functional itself can be considered an approximation of a (d − 2)-
dimensional “weighted area” functional (see also [2, 3, 50, 66]). Therefore,
the Ginzburg–Landau functional and its variants have been proposed as tools
to construct “weak minimal surfaces” or, more precisely, stationary varifolds
of codimension greater than one [5, 15, 53, 64, 67].

2. Manifold-valued Sobolev maps, topological singularities and
applications

2.1. Motivation: variational problems for material science

There are other functionals, arising as variational models for material
science, which share a common structure with the Ginzburg–Landau func-
tional (GLε), i.e. they can be written in the form

u ∈W 1,k(Ω, Rm) 7→ Eε(u) :=
∫

Ω

{
1
k
|∇u|k + 1

ε2 f(u)
}
. (2.1)

Here f : Rm → R is a non-negative, smooth potential that satisfies suitable
coercivity and non-degeneracy conditions, and N := f−1(0) is assumed to
be a non-empty, smoothly embedded, compact, connected submanifold of Rm
without boundary. The elements of N correspond to the ground states for
the material, i.e. the local configurations that are most energetically conve-
nient. An important example is the Landau–de Gennes model for nematic
liquid crystals (in the so-called one-constant approximation of the uniaxial
phase, see e.g. [39]). In this case, k = 2 and the distinguished manifold is
a real projective plane N = RP2, whose elements describe the locally pre-
ferred direction of alignment of the constituent molecules (which might be
schematically described as un-oriented rods).

Minimisers of (2.1) subject to a boundary condition

u|∂Ω = v ∈W 1−1/k,k(∂Ω, N )
may not satisfy uniform energy bounds, due to topological obstructions car-
ried by the boundary datum v. When this phenomenon occurs, the en-
ergy of minimisers is of order |log ε| (see e.g. [14, 20, 65] in case k = 2,
N = S1). A similar phenomenon arises for tangent vector fields on a closed
manifold, due to the Poincaré-Hopf theorem (see e.g. [46]). Based on the
analogy with the Ginzburg–Landau case (see e.g. [14, 15, 52, 66]), under
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suitable conditions on N we expect the energy of minimisers to concen-
trate, to leading order, on a (d − k)-dimensional surface. Indeed, energy
concentration results have been established for Landau–de Gennes minimis-
ers [9, 26, 27, 33, 41, 48, 49, 54, 62]. To our best knowledge, minimisers of
functionals associated with more general manifolds N , in the logarithmic
energy regime, have been studied only in case d = k = 2 so far [26, 58].

Unfortunately, the theory of Jacobians does not carry over directly to
this setting. Consider the following example: let S be a (d − k)-plane that
intersects Ω, and let u : Ω \ S → N be a map that is smooth everywhere,
except at S. Then, each point of S can be encircled by a (k−1)-dimensional
sphere Σ ⊆ Ω\S, contained in the k-plane orthogonal to S. The (based) ho-
motopy class of u|Σ : Σ→ N defines an element of πk−1(N ) which, roughly
speaking, characterises the behaviour of the material configuration around
the defect. (This is the basic idea of the topological classification of defects
in ordered materials; see e.g. [55] for more details.) If πk−1(N ) contains ele-
ments of finite order, these cannot be realised by integration of a differential
form. Indeed, suppose that the homotopy class of u|Σ has finite order q > 1
in πk−1(N ). Let [Σ] be a generator for Hk−1(Σ) ' Z, corresponding to
a choice of the orientation. By the Hurewicz homomorphism, the homology
class u∗[Σ] ∈ Hk−1(N ) satisfies qu∗[Σ] = 0. As a consequence, for any closed
differential (k − 1)-form ω in N , we have∫

Σ
u∗(ω) =

∫
u∗[Σ]

ω = q−1
∫
qu∗[Σ]

ω = 0

and hence, no notion of Jacobian that can be expressed as a differential form
(such as (1.2)) is able to capture such homotopy classes of defects.

In the following sections, our aim is to construct an object that (i) brings
topological information and (ii) enjoys compactness properties even when
the distributional Jacobian is not defined, in particular when πk−1(N ) con-
tains elements of finite order. A notion of “set of topological singularities”
for a manifold-valued Sobolev map was already introduced by Pakzad and
Rivière [63], using the language of flat chains. In the context of manifold-
constrained problems, the use of flat chains with coefficients in an abelian
group traces its roots back in the earlier literature on the subject: the very
notion of “minimal connection”, introduced by Brezis, Coron and Lieb [23],
can be interpreted as the flat norm of the distributional Jacobian. Very
roughly, flat chains can be thought of as sets equipped with multiplicities,
which belong to a given coefficient group. Pakzad and Rivière first defined the
topological singular set SPR(u) of a map u : Ω→ N that is discontinuous on
a polyhedral set of dimension d−k at most. In this case, SPR(u) was defined
as a (d−k)-dimensional flat chain with multiplicities in πk−1(N ), supported
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by the polyhedral set where u is discontinuous. Maps with polyhedral singu-
larities as above are dense in W 1,k−1(Ω, N ) [12, Theorem 2]. Then, Pakzad
and Rivière were able to define SPR(u) for any u ∈ W 1,k−1(Ω, N ) by a
density argument, using deep results from Geometric Measure Theory and a
refined topological construction (a variant of the “dipole insertion” proposed
in [13]).

In [28], we carry out a different construction. In a first step, we consider a
smooth (not necessarily N -valued) map u : Ω→ Rm and define a family of
flat chains Sy(u), depending on a parameter y ∈ Rm. We prove a continuity
estimate, which allows us to define Sy(u) for any u ∈ (L∞∩W 1,k−1)(Ω, Rm),
by density; the arguments rely essentially on projection “à la Hardt, Kinder-
lehrer and Lin” ([42], see Section 1.3) and the coarea formula. Although the
construction is different, we recover Pakzad and Rivière’s operator SPR in
case u is N -valued; more precisely, if u ∈ W 1,k−1(Ω, N ), then SPR(u) =
Sy(u) for a.e. y of norm small enough.

Before giving a few more details on the construction of [28], let us recall
some basic definitions and facts about flat chains, following the approach
in [38, 69, 70].

2.2. Flat chains with coefficients in an abelian group

Let (G, | · |) be a normed abelian group, that is, an abelian group together
with a non-negative function | · | : G→ [0, +∞) that satisfies

(1) |g| = 0 if and only if g = 0
(2) |−g| = |g| for any g ∈ G
(3) |g + h| 6 |g|+ |h| for any g, h ∈ G.

In addition, we assume that there exists a constant c > 0 such that
|g| > c for any G \ {0}. (2.2)

For n ∈ Z, 1 6 n 6 d, a polyhedral n-chain with coefficients in G is a
linear combination, with coefficients in G, of compact, convex, oriented n-
dimensional polyhedra in Rd, modulo a suitable equivalence relation ∼. We
define ∼ by requiring −σ ∼ σ′ if the polyhedra σ′ and σ only differ for
the orientation, and σ ∼ σ1 + σ2 if σ is obtained by gluing σ1, σ2 along a
common face (with the correct orientation). The set of polyhedral n-chains
with coefficients in G is a group, with a naturally defined addition operation,
and is denoted Pn(Rd; G). Every element S ∈ Pn(Rd; G) can be represented
as a finite sum

S =
p∑
i=1

giJσiK, (2.3)
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where gi ∈ G, the σi’s are compact, convex, non-overlapping n-dimensional
polyhedra, and J · K denotes the equivalence class modulo the relation ∼
defined above. Thus, S may be identified with a finite collection of polyhedra
as above, endowed with multiplicities in G.

Polyhedral chains enjoy a notion of boundary: the boundary is a linear
operator ∂ : Pn(Rd; G) → Pn−1(Rd; G), identified by its actions on sin-
gle polyhedra, which satisfies ∂(∂S) = 0 for any chain S. The mass of a
polyhedral chain S ∈ Pn(Rd; G), presented in the form (2.3), is defined
by M(S) :=

∑
i |gi|H n(σi). The flat norm of a polyhedral n-dimensional

chain S is defined by

F(S) := inf
{
M(P ) + M(Q) : P ∈ Pn+1(Rd; G), Q ∈ Pn(Rd; G),

S = ∂P +Q

}
.

Thus, two chains S1, S2 are close with respect to the flat norm if S2−S1 is,
up to small errors, the boundary of a chain of small mass. It can be showed
(see e.g. [38, Section 2]) that F indeed defines a norm on Pn(Rd; G), in such
a way that the group operation on Pn(Rd; G) is F-Lipschitz continuous. The
completion of (Pn(Rd; G), F) as a metric space will be denoted Fn(Rd; G).
It can be given the structure of a G-module, and it is called the group of flat
n-chains with coefficients in G. Moreover, the mass M extends to a F-lower
semi-continuous functional Fn(Rd; G) → [0, +∞], still denoted M, and it
remains true that

F(S) = inf
{
M(P ) + M(Q) : P ∈ Fn+1(Rd; G), Q ∈ Fn(Rd; G),

S = ∂P +Q

}
(2.4)

for any S ∈ Fn(Rd; G) [38, Theorem 3.1].

A flat chain S is said to be supported in a closed set K ⊆ Rd if, for
any open set U ⊇ K, S is the F-limit of a sequence of polyhedral chains
supported in U . If M is a smooth n-dimensional manifold, respectively a n-
rectifiable set, then we can define a chain JMK supported onM with constant
multiplicity 1 ∈ G by approximating M with polyhedral sets, considering
the associated polyhedral chains (with unit multiplicity), and passing to the
limit in the flat norm. The chain JMK is an example of a smooth, respectively,
rectifiable chain. More generally, Equation (2.4) shows that the boundary of
a n-rectifiable chain of finite mass is a (n − 1)-flat chain; for instance, the
“Koch’s snowflake”, which is a planar set of Hausdorff dimension greater
than 1 that bounds a finite area, can be seen as the support of a 1-dimensional
flat chain. In fact, under the assumption (2.2), any (n−1)-flat chain has the
form (boundary of a rectifiable n-chain) + (rectifiable (n−1)-chain) [38, 69].

In case G = Z, rectifiable chains may be identified with rectifiable cur-
rents with integer multiplicity, by integration. The class of n-chains of finite
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mass with coefficients in Z may be interpreted as bounded measures with
values in the space of n-vectors, and in general flat n-chains with coefficients
in Z may be regarded as elements of W 1,∞

0 (Rd, ΛnRd)′.

Finally, we define the group of flat n-chains relative to an open set Ω ⊆ Rd
as the quotient group

Fn(Ω; G) := Fn(Rd; G)/{S ∈ Fn(Rd; G) : S is supported in Rd \ Ω}.
The quotient norm may equivalently be rewritten as

FΩ(S) := inf
{
M(P Ω)+M(Q Ω):

P ∈ Fn+1(Rd; G), Q ∈ Fn(Rd; G),
S − ∂P −Q is supported in Rd \ Ω

}
(2.5)

where P Ω denotes the restriction of P to Ω (see [28, Section 2] for more
details).

2.3. Sketch of the construction

Let N ⊆ Rm be a smoothly embedded manifold without boundary;
let k > 2 be an integer. We make the following assumption on N and k:

(H) N is compact and (k − 2)-connected, that is π0(N ) = π1(N ) =
. . . = πk−2(N ) = 0. In case k = 2, we also assume that π1(N ) is
abelian.

The integer k is thus related to the topology of N . The condition (H) guar-
antees that k 6 dim N + 1 and in case N is a sphere, we can indeed choose
k = dim N + 1; however, the inequality may be strict in general. For in-
stance, if N is a real projective plane, N ' RP2, then (H) is satisfied if
and only if k = 2. Under the assumption (H), there is no topological ob-
struction associated with defects of codimension < k; N -valued maps may
have singularities of codimension < k, but these can be removed by local
surgery. On the other hand, singularities of codimension k (or higher) may
be associated with topological obstructions, and are classified by elements
of πk−1(N ). As a consequence of (H), the group πk−1(N ) is abelian and
may be endowed with a norm that satisfies (2.2) (see e.g. (2.11) below). It
will be the coefficient group for our flat chains.

While it is impossible to construct a smooth projection of Rm onto a
closed manifold N , under the assumption (H) it is possible to construct a
smooth projection % : Rm \X → N , where X is a finite union of polyhedra
of dimension m− k at most. Moreover, we can make sure that

|∇%(y)| 6 C

dist(y, X ) for any y ∈ Rm \X . (2.6)
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(In Section 1.3, we used the radial projection % : Rk \ {0} → Sk−1, %(y) :=
y/|y|.) The existence of such % was obtained by Hardt and Lin as a conse-
quence of more general results of topology [43, Lemma 6.1]; self-contained
approaches are presented in [22, 44].

Let d > k > 2, let Ω ⊆ Rd be a bounded, smooth domain, and let u ∈
C∞(Rd, Rm). One could be tempted to identify the set of topological sin-
gularities of u with u−1(X ), which is exactly the set where the reprojec-
tion %(u) fails to be well-defined, but u−1(X ) may be very irregular even
if u is smooth. However, Thom transversality theorem implies that, for a.e.
y ∈ Rm, the set (u − y)−1(X ) is indeed a finite union of (possibly discon-
nected) manifolds of dimension 6 d−k. For each (m−k)-manifold K ⊆X ,
we consider the inverse image (u − y)−1(K) ∩ Ω, we assign an orientation
to (u − y)−1(K) and we equip it with a multiplicity, in the following way.
Let x ∈ (u− y)−1(K) be a point such that u(x)− y lies in the interior of the
polyhedron K. We consider the normal k-plane Π to (u − y)−1(K) at the
point x, and let Σ := ∂Bdρ(x) ∩ Π be a small (k − 1)-sphere around x. The
given orientation of (u − y)−1(K) induces an orientation of Σ and hence,
an orientation-preserving diffeomorphism Σ ' Sk−1. By means of this dif-
feomorphism, the homotopy class of (u − y)|Σ can be identified with an
element αy(u, K) ∈ πk−1(N ). The homotopy class αy(u, K) is actually in-
dependent of ρ and x, but it does depend on the orientation of (u−y)−1(K).
Now, we define the smooth chain

Sy(u) :=
∑
K

αy(u, K)J(u− y)−1(K)K ∈ Fd−k(Ω; πk−1(N ))

The chain Sy(u) is independent on the choice of the orientation on each
(u − y)−1(K): if we change the orientation, then both αy(u, K) and
J(u − y)−1(K)K will change their sign, so their product remains unaffected.
Moreover, even if πk−1(N ) is an infinite group, it is possible to show [28,
Section 3.2] that the multiplicities αy(u, K) belong to a finite subset of
πk−1(N ), which depends on %, X but not on u and y. (This is a consequence
of transversality, just as the local degree of a vector field u : Rk → Rk at a
point x ∈ Rk such that u(x) = 0, det∇u(x) 6= 0 can only be 1 or −1.) We
have disregarded the contributions coming from manifoldsK ⊆X of dimen-
sion < m − k: this is because no S ∈ Fd−k(Ω; πk−1(N )) can be supported
on a set of dimension < d− k, unless S = 0 [68, Theorem 3.1].

The chain Sy(u) satisfies the following topological property. Let D ⊆ Ω
be a smoothly embedded, oriented k-disk, such that ∂D does not inter-
sect (u − y)−1(X ) (hence, %(u − y) is well defined on ∂D). Generically, D
intersects the support of Sy(u) at a finite number of points. By summing up
the multiplicities of Sy(u) at the intersection points, with a sign accounting
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for the relative orientations of D and Sy(u), we define the so-called intersec-
tion index, denoted I(Sy(u), JDK) ∈ πk−1(N ) (see e.g. [28, Section 2.1] for
more details). Then, a simple topological argument shows that

I(Sy(u), JDK) = homotopy class of %(u− y) on ∂D. (2.7)
In this sense, the chain Sy(u) carries topological information on u.

Thanks to the estimate (2.6) on ∇%, we can now integrate over y ∈ Rm
and apply a strategy similar to that devised by Hardt, Kinderlehrer and Lin
(sketched in Section 1.3). In particular, by applying the coarea formula, we
obtain a continuity estimate on Sy(u) depending on the Sobolev norms of u.
Then, by density, one can define Sy(u) in case u is a Sobolev map.

We let X := (L∞ ∩W 1,k−1)(Ω, Rm) and endow this set with a topology,
in such a way that a sequence (uj)j∈N converges to u in X if and only
if uj → u strongly in W 1,k−1 and supj∈N ‖uj‖L∞ < +∞. Let us take a
number δ∗ ∈ (0, dist(N , X )) and define B∗ := Bm(0, δ∗). We consider
the set Y := L1(B∗, Fd−k(Ω; πk−1(N ))), whose elements are measurable
maps y ∈ B∗ 7→ Sy ∈ Fd−k(Ω; πk−1(N )) such that

‖S‖Y :=
∫
B∗

FΩ(Sy) dy < +∞.

The set Y is a complete normed modulus, with respect to the norm ‖ · ‖Y .

Theorem 2.1 ([28, 30]). — Suppose that (H) is satisfied. Then, there
exists a unique continuous map S : X → Y such that, for any u ∈ X ∩
C∞(Ω, Rm), a.e. y ∈ B∗, and any smoothly embedded, oriented k-disk D ⊆
Ω such that ∂D ∩ (u − y)−1(X ) = ∅, the property (2.7) holds. In addition,
for any u0, u1 ∈ X and a.e. y ∈ B∗, we can write Sy(u1) − Sy(u0) = ∂Ry
in Ω, where Ry is a (d− k + 1)-chain that satisfies∫

B∗
M(Ry) dy 6 C

∫
Ω
|u1 − u0|

(
|∇u1|k−1 + |∇u0|k−1

)
(2.8)

and C is a constant that only depends on N , k, %, X , δ∗ and Ω. Finally,
if u ∈W 1,k−1(Ω, N ) then for a.e. y, y′ ∈ B∗ there holds

Sy(u) = Sy′(u). (2.9)

Actually, Property (2.7) holds for any u ∈ X, provided that both sides of
the identity are suitably defined (we refer to [28, Section 2 and Theorem 3.1]).
The inequality (2.8), together with (2.5), implies the continuity estimate

‖S(u1)− S(u0)‖Y 6 C

∫
Ω
|u1 − u0|

(
|∇u1|k−1 + |∇u0|k−1

)
,

which is analougous to Theorem 1.1. In particular, we have stability of S
with respect to strong and weak convergence, as in (1.3)–(1.4). Therefore,
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some of the compensation compactness properties that are typical of the
Jacobian are retained by S. By choosing u0 equal to a constant (so that
Sy(u0) = 0 for a.e. y), we also see that Sy(u1) may be written as a relative
boundary: Sy(u1) = ∂Ry inside Ω, where Ry is a (d− k + 1)-flat chain that
satisfies ∫

B∗
M(Ry) dy 6 C ‖∇u1‖k−1

Lk−1(Ω) . (2.10)

In case u is N -valued, (2.9) states that the map y 7→ Sy(u) is locally con-
stant; we denote its constant value by SPR(u). The chain SPR(u) coincides
with the topological singular set as introduced by Pakzad and Rivière in [63].

The inequality (2.8) is the main item in the statement of Theorem 2.1. To
prove (2.8), first we construct a chain Ry such that ∂Ry = Sy(u1)−Sy(u1),
then we estimate the mass of Ry using the coarea formula. The construction
of Ry, which is inspired by [2, Section 6], is fairly straightforward because,
contrarily to [63], we are now working with Rm-valued maps: we reduce
to the case u0, u1 are smooth, consider the affine interpolant U(x, t) :=
(1− t)u0(x) + tu1(x) for (x, t) ∈ Ω× [0, 1] and define Ry as the projection
of Sy(U) onto Ω. Topological arguments show that ∂Ry = Sy(u1)− Sy(u0).

In the special case N = Sk−1 ⊆ Rk, we have πk−1(Sk−1) ' Z and so
Sy(u) has an alternative description in terms of currents. If we make the
choice X = {0} ⊆ Rk and %(y) = y/|y|, then Theorem 1.2 implies

Ju = 1
αk

∫
Rm

Sy(u) dy for any u ∈ (L∞ ∩W 1,k−1)(Ω, Rk),

where αk is the volume of the unit k-disk and the integral in the right-hand
side is intended in the sense of distributions. However, if πk−1(N ) is a finite
group (or, more generally, if it only contains elements of finite order), then
there is no meaningful way to define the integral of Sy(u) with respect to
the Lebesgue measure dy. In order to define such an integral, we would need
to define the “product” between an element of πk−1(N ) (the multiplicity
of a flat chain) and a real number (the volume element). It is natural to re-
quire that this “product” be linear (i.e., a Z-module homomorphism) in both
arguments, so as to be compatible with the group structures on πk−1(N )
and R. However, if πk−1(N ) is a finite group and G is any group, then any
bilinear form πk−1(N )× R→ G is identically equal to zero.

If the gradient of u ∈ X has better integrability, i.e. u ∈ W 1,k(Ω, Rm),
then Sy(u) can be identified with a finite-mass chain, i.e.

Sy(u) ∈ Fd−k(Rd; πk−1(N )) and M(Sy(u)) < +∞ for a.e. y ∈ B∗

(see [28, Theorem 3.1] and [30, Proposition 2.3]). In particular, Sy(u) is well-
defined not only as a relative flat chain in Ω, but also “up to the boundary”.
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(Something analogous happens with the Jacobian determinant, too: the Ja-
cobian of a map u : Ω ⊆ Rk → Rk is well defined in a distributional sense
if u ∈ L∞ ∩W 1,k−1, and in a pointwise sense if u ∈W 1,k; in the latter case,
Ju is a finite measure.) Then, we can extend S|L∞∩W 1,k to a continuous
operator

W 1,k(Ω, Rm)→ L1(B∗, Fd−k(Rd;πk−1(N ))),
still denoted S, for simplicity. This operator satisfies an important topolog-
ical property:

Proposition 2.2. — Let u0, u1 ∈W 1,k(Ω, Rm) be such that

u0(x) = u1(x) ∈ N for H d−1-a.e. x ∈ ∂Ω
(in the sense of traces). Then, for a.e. y0, y1 ∈ B∗ there exists a finite-mass
(d− k + 1)-chain R, supported in Ω, such that Sy1(u1)− Sy0(u0) = ∂R.

It is worth noticing that the proofs of Theorem 2.1 and Proposition 2.2
do not strictly rely upon the manifold structure of N . What is needed, is
the existence and regularity of the exceptional set X and the retraction %,
in order to be able to apply Thom transversality theorem. This suggests a
possible extension to more general targets N ⊆ Rm such as, for instance,
finite simplicial complexes.

The results we presented in this section are valid for any group norm
on πk−1(N ) that satisfies (2.2). However, for the variational applications
we will give in Section 2.4 below, we need to choose a specific norm. A
natural attempt, motivated by the analogy with the functional (2.1), is to
define

Emin(σ) := inf
v∈W 1,k(Sk,N )∩σ

(
1
k

∫
Sk−1
|∇>v|k

)
for any σ ∈ πk−1(N ). Here ∇> denotes the tangential gradient on Sk−1,
that is, the restriction of the Euclidean gradient ∇ to the tangent plane to
the sphere. However, Emin does not satisfy the triangle inequality, in general.
Instead, following [32], for any σ ∈ πk−1(N ) we define

|σ|∗ := inf
(σ1,...,σq)

q∑
i=1

Emin(σi), (2.11)

where the infimum is taken over all the q-uples (σ1, . . . , σq) ∈ (πk−1(N ))q,
with arbitrary q, such that

∑q
i=1 σi = σ. Under the assumption (H), the func-

tion | · |∗ is a norm on πk−1(N ) that satifies (2.2) (and the infimum at the
right-hand side of (2.11) is achieved; see [30, Proposition 2.1]).
In case N = Sk−1, the group πk−1(Sk−1) is isomorphic to Z and |d|∗ =
(k− 1)k/2αk |d| for any d ∈ Z (where αk is the Lebesgue measure of the unit
ball in Rk).
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2.4. An application: asymptotics for Eε

Let us consider again the functional Eε defined by (2.1). In [30] we
show that the re-scaled functional |log ε|−1

Eε does converge to a (d − k)-
dimensional weighted area functional as ε→ 0, thus extending Theorem 1.3
to more general potentials f . The key tool is the topological singular set
of vector-valued maps, that is, the operator S we introduced above, which
identifies the appropriate topology of the Γ-convergence. The operator S
effectively serves as a replacement, or rather a generalisation, of the distri-
butional Jacobian.

We can now state our main Γ-convergence result ([30, Theorem C]) and
its application to the asymptotic analysis of minimisers of (2.1) in the limit
as ε → 0. We make the following assumptions on the potential f and the
exponent k:

(H1) f ∈ C1(Rm) and f > 0.
(H2) The set N := f−1(0) 6= ∅ is a smooth, compact manifold with-

out boundary. Moreover, N is (k − 2)-connected, that is π0(N ) =
π1(N ) = . . . = πk−2(N ) = 0, and πk−1(N ) 6= 0. In case k = 2, we
also assume that π1(N ) is abelian.

(H3) There exists a positive constant λ0 such that f(y) > λ0 dist2(y, N )
for any y ∈ Rm.

The assumption (H2) is consistent with (H) and is satisfied, for instance,
when k = 2 and N = S1 (the Ginzburg–Landau case) or k = 2 and N =
RP2 (the Landau–de Gennes case). The assumption (H3) is both a non-
degeneracy condition around the minimising set N and a growth condition,
because it implies that f grows at least quadratically at infinity. We de-
fine flat chains with coefficients in πk−1(N ) using the group norm defined
by (2.11). We impose a Dirichlet boundary condition u = v on ∂Ω, where

(H4) v ∈ W 1−1/k,k(∂Ω, N ), that is, v ∈ W 1−1/k,k(∂Ω, Rm) and v(x) ∈
N for H d−1-a.e. x ∈ ∂Ω.

Let W 1,k
v (Ω, Rm) be the set of maps u ∈ W 1,k(Ω, Rm) with trace v at the

boundary. Given an arbitrary u0 ∈W 1,k
v (Ω, Rm) and a generic y0 ∈ B∗, we

define

C (Ω, v) :=
{

Sy0(u0) + ∂R :
R is a (d− k + 1)-chain
of finite mass, supported in Ω

}
.

By Proposition 2.2, we have Sy(u) ∈ C (Ω, v) for any u ∈W 1,k
v (Ω, Rm) and

a.e. y ∈ B∗.
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Theorem 2.3 ([30, Theorem C]). — Suppose that the assumptions (H1)–
(H4) are satisfied. Then, the following properties hold.

(1) Let (uε)ε>0 be a sequence in W 1,k
v (Ω, Rm) that satisfies

sup
ε>0

Eε(uε)
|log ε| < +∞.

Then, there exists a (non relabelled) countable subsequence and a
finite-mass chain S ∈ C (Ω, v) such that S(uε) → S in Y and, for
any open subset A ⊆ Rd,

M(S A) 6 lim inf
ε→0

Eε(uε, A ∩ Ω)
|log ε| .

(2) For any finite-mass chain S ∈ C (Ω, v), there exists a sequence of
maps uε ∈W 1,k

v (Ω, Rm) such that S(uε)→ S in Y and

lim sup
ε→0

Eε(uε)
|log ε| 6 M(S).

As an application of Theorem 2.3, we can characterise the energy con-
centration set for minimisers of (2.1), in the limit as ε→ 0. Let uε,min be a
minimiser of (2.1) in W 1,k

v (Ω, Rm). Under the assumptions (H1)–(H4), the
rescaled energy densities

µε,min :=
(

1
k
|∇uε,min|k + 1

εk
f(uε,min)

)
dx Ω
|log ε|

have uniformly bounded mass, by Theorem 2.3 (here, dx Ω denotes the
Lebesgue measure restricted to Ω). Up to extraction of a subsequence, we
may assume that µε,min converges weakly∗ (as measures in Rd) to a non-
negative measure µmin, as ε → 0. We provide a variational characterisation
of µmin in terms of flat chains with coefficients in (πk−1(N ), | · |∗).

Theorem 2.4 ([30, Theorem A]). — Under the assumptions (H1)–(H4),
there exists a finite-mass chain Smin ∈ C (Ω, v), such that

µmin(E) = M(Smin E)
for any Borel set E ⊆ Rd. Moreover, Smin minimises the mass in C (Ω, v),
that is, for any S ∈ C (Ω, v), we have

M(Smin) 6 M(S).

In other words, in the limit as ε → 0 the energy of minimisers concen-
trates, to leading order, on the support of a flat chain Smin that solves a
least area problem in a given homology class. In particular, we expect Smin
to be (at least partially) regular. In fact, since regularity is a local property,
most of the regularity theory for solutions to the Plateau problem extend
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to mass-minimisers in a given homology class. If the coefficient group is Z
or Z/2Z, mass-minimising (d − k)-chains (with k > 2) are smooth, em-
bedded manifolds on their interior, except for a singular set of Hausdorff
dimension d− k − 2 at most; this bound is sharp. This follows from results
by Federer [35, 36], in case the coefficient group is Z/2Z, and by Almgren [4],
in case the coefficient group is Z.

The proof of the Γ-lower bound in Theorem 2.3 is based on the same
strategy as in [2]. However, the construction of a recovery sequence is rather
different from [2]. The main building block is inspired by the “dipole con-
struction” [11, 13, 23]. In our situation, dipoles are suitably inserted into a
non-constant and, in fact, singular background.

2.5. Another application: lifting of BV maps into manifolds

The methods described in Section 2.3 also find application to the so-
called lifting problem. Let N be a smooth, compact, connected Riemannian
manifold without boundary. Let

π : E → N

be the (smooth) universal covering of N . We endow E with the pull-back
metric, so that π is a local isometry. Given a bounded, smooth domain Ω ⊆
Rd and measurable maps u : Ω → N , v : Ω → E , we say that v is a lifting
for u if π ◦ v = u a.e. on Ω. We are interested in the

Lifting problem. — Given a regular map u : Ω → N , is there a lift-
ing v : Ω→ E of u that is as regular as u?

Of course, the answer depends on what we mean precisely by “regular”.
If u is of class Ck (with k = 0, 1, . . . ,∞) and Ω is simply connected, then
the lifting problem has a positive answer. If other notions of regularity (for
instance, Sobolev regularity) are considered, the problem may be more del-
icate. The lifting problem for non-continuous maps has been studied first
when N is the unit circle, N = S1, in connection with the Ginzburg–
Landau theory of superconductivity. In this case, E = R and the covering
map π : R → S1 is given by π(θ) = exp(iθ). The study of this case was
initiated in [17, 19] and culminated with the work by Bourgain, Brezis and
Mironescu [21], who gave a complete answer to the lifting problem when
u ∈ W s,p(Ω, S1), s > 0, 1 < p < +∞. Their results have been extended to
the Besov setting by Mironescu, Russ and Sire [56]. Another particular in-
stance of the lifting problem is the case when N is the real projective plane,
N = RP2, which is obtained from the 2-dimensional sphere S2 by identi-
fying pairs of antipodal points. The covering space E is then the sphere S2
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and π : S2 → RP2 is the natural projection. RP2-valued maps and their lift-
ing have a physical interpretation e.g. in materials science, as they serve as
models for a class of materials known as (uniaxial) nematic liquid crystals
(see e.g. [7, 8] for more details). The lifting problem for RP2-valued maps,
in the context of Sobolev W 1,p-spaces, has been studied e.g. by Ball and
Zarnescu [8] and Mucci [59].

For more general target manifolds N , the lifting problem inW s,p(Ω, N )
with s 6= 1 was studied by Bethuel and Chiron [16], and only very recently it
has been completely settled by Mironescu and Van Schaftingen [57]. Among
other results, Bethuel and Chiron proved that, if Ω is simply connected
and p > 2, then every map u ∈ W 1,p(Ω, N ) has a lifting v ∈ W 1,p(Ω, E ).
However, there exist maps that belong to W 1,p(Ω, N ) for any p < 2, and
yet have no lifting in W 1,p(Ω, E ) (for instance, we can take N = S1, Ω
the unit disk in R2, and u(x) := x/ |x|). Bethuel and Chiron raised the
conjecture [16, Remark 1] that any map u ∈ W 1,p(Ω, N ), with p > 1, has
a lifting of bounded variation (BV).

In [30] we consider the lifting problem when u is a BV-map. Previous
works showed that the lifting problem for u ∈ BV(Ω, N ) has a positive
answer in case N = S1 (Giaquinta, Modica and Souček [40, Corollary 1
in Volume 2, Section 6.2.2], Davila and Ignat [34], Ignat [45]), N = RPk
(Bedford [10], Ignat and Lamy [47]) and more generally, if the fundamental
group of N , π1(N ), is abelian [28]. We prove a lifting result for maps
u ∈ BV(Ω, N ) without assuming that π1(N ) is abelian. Examples of closed
manifolds with non-abelian fundamental group are obtained by taking the
quotient of SO(3), the set of rotations of R3, by the symmetry group of a
regular, convex polyhedron. The elements of this quotient space describe
the possible orientations of the given polyhedron in R3. Manifolds of this
form appear in variational problems, arising from applications of different
kinds. For instance, in material science, they appear in models for ordered
materials, such as biaxial nematics (see e.g. [55]). In numerical analysis,
they are found in Ginzburg–Landau functionals with applications to mesh
generation, via the so-called cross-field algorithms (see e.g. [31]).

By Nash’s theorem [61], we can embed isometrically both N and E into
Euclidean spaces, N ⊆ Rm, E ⊆ R`. Moreover, since N , E are complete
Riemannian manifolds, we can choose the embeddings so that the images
of N , E are closed subsets of Rm, R`, respectively [60]. From now on, we
will identify N , E with their closed Euclidean embeddings. Given an open
set Ω ⊆ Rd, we define BV(Ω, N ) as the set of maps u ∈ BV(Ω, Rm) that
satisfy the pointwise constraint u(x) ∈ N for a.e. x ∈ Ω. We also define
SBV(Ω, N ) as the set of maps u ∈ BV(Ω, N ) such that the distributional
derivative Du (taken in the sense of BV(Ω, Rm)) has no Cantor part. We
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define BV(Ω, E ), SBV(Ω, E ) in a similar fashion. We write |µ|(Ω) to denote
the total variation of a vector-valued Radon measure µ on Ω. The main result
in [29] then reads

Theorem 2.5 ([29, Theorem 1]). — Let N ⊆ Rm be a smooth, compact,
connected manifold without boundary. Let Ω ⊆ Rd be a smooth, bounded
domain with d > 1. Then, any u ∈ BV(Ω, N ) has a lifting v ∈ BV(Ω, E )
that satisfies

|Dv|(Ω) 6 CΩ,N |Du|(Ω)
‖v‖L1(Ω) 6 CΩ,N (|Du|(Ω) + 1),

where the constant CΩ,N depends only on Ω and (the given Euclidean em-
bbeding of) N . Moreover, if u ∈ SBV(Ω, N ) and v ∈ BV(Ω, E ) is a lifting
of u, then v ∈ SBV(Ω, E ).

Theorem 2.5 implies, in particular, that a map u ∈ W 1,p(Ω, N ) with
p > 1 has a lifting v ∈ SBV(Ω, E ), thus proving Bethuel and Chiron’s
conjecture in [16].

The construction given in Section 2.3 depends on the assumption that
the group π1(N ) is abelian, see (H), because the theory of flat chains re-
quires the coefficient group to be abelian. In constrast, we do not assume
that π1(N ) is abelian in Theorem 2.5 and as a consequence, we may not
be able to define Sy(u), not even for u ∈ W 1,1(Ω, N ). Nevertheless, the
proof of Theorem 2.5 is very much inspired by the arguments we have de-
scribed in Section 2.3. Given u ∈ BV(Ω, N ), we first approximate u with
a sequence of piecewise-affine maps uj : Ω → Rm. (In this case, we prefer
to use piecewise-affine approximations instead of smooth ones just because
this simplifies some technical points in the proof.) Using the retraction %,
and choosing suitable constants yj ∈ Rm with sufficiently small modulus,
we project uj − yj onto N , so to define a map % ◦ (uj − yj) : Ω → N with
polyhedral singularities of dimension d − 2 at most. Then, by combining
standard topological results with the properties of %, we construct a suitable
lifting vj : Ω→ E of % ◦ (uj − yj). The lifting vj may jump on a polyhedral
set of dimension d−1, but is locally Lipschitz continuous out of its jump set.
Moreover, the total variation of ∇vj can be bounded from above, essentially
by adapting the proof of Theorem 2.1. Therefore, we can pass to the (weak)
limit in the vj ’s and obtain the desired lifting v for u.
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