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Regularity of optimal transport maps on locally nearly
spherical manifolds

Yuxin GE ) anD J1an YE @

ABSTRACT. — Given a compact connected n-dimensional Riemannian manifold,
we investigate the smoothness of the optimal transport map between the smooth
densities with respect to the squared Riemannian distance cost. The optimal map
is characterized by exp(gradu), where the potential function u satisfies a Monge—
Ampere type equation. Delanoé [7] showed the smoothness of u on the Riemannian
surfaces when the scalar curvature is close to 1 in C2 norm. In this work, we study
the regularity issue on Riemannian manifolds with curvature sufficiently close to cur-
vature of round sphere in C? norm in all dimensions and prove that the C-curvature
on such Riemannian manifolds satisfies an improved Ma-Trudinger-Wang condition
and the Jacobian of the exponential map is positive. As a consequence, we imply the
smoothness of the optimal transport map by the continuity method.

RESUME. — Etant donné une variété riemannienne compacte connexe de dimen-
sion n, nous étudions la régularité de ’application du transport optimal entre les
densités lisses par rapport au colit de la distance riemannienne au carré. L’applica-
tion du transport optimal est caractérisée par exp(grad u), ot la fonction potentielle
u satisfait une équation de type Monge—Ampére. Delanoé 7] a montré la régularité
de wu sur les surfaces riemanniennes lorsque la courbure scalaire est proche de 1 dans
la norme C2. Dans ce travail, nous étudions le probléme de régularité sur les variétés
riemanniennes avec courbure suffisamment proche de la courbure de la sphére usuelle
dans la norme C? en toutes les dimensions et prouvons que la C-courbure sur de telles
variétés riemanniennes satisfait une condition Ma-Trudinger-Wang améliorée et le ja-
cobien de l'application exponentielle est strictement positive. Par conséquent, nous
impliquons la régularité de I'application du transport optimal par la méthode de
continuité.
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1. Introduction and main results
1.1. Background

Let (M, g) be a compact connected Riemannian manifold without bound-
ary of dimension n > 2. For short, we call such (M, g) as a closed Riemannian
manifold. Let d(-,-) be geodesic distance on M and denote dvol the Rie-
mannian volume form. We consider the optimal transportation problem on
M with the cost ¢(-,-) = 1d?(-,-). The problem of optimal transportation
is to find the most efficient strategy to transport an assigned mass distri-
bution to another one. Precisely, let py = pgdvol and pu; = pydvol be two
positive Borel probability measures on M with the density py and p; with
respect to the volume form dvol. The problem consists in minimizing the

total cost functional

Cost(G) = /M c(x, G(x))dpo

among all Borel measurable maps G : M — M which push forward ug to py
in the sense that

w(E) = uo(G~Y(E)), VY E C M Borel set.

The minimizers are called optimal transport maps. This problem is first
posed by Monge [34] in 1781 with the Euclidean distance cost ¢(x,y) = |z—y|.
One and a half centuries later, Kantorovich [20] reduced the problem to an
infinite dimensional linear program. For the squared Euclidean distance cost
c(x,y) = 3|z — y|?, Brenier [1] showed the existence and uniqueness of the
optimal transport map which can be characterized as the gradient of some
convex function. McCann [32] developed Brenier’s theory on Riemannian
manifolds. He showed the optimal transport map is unique and takes the
form G(m) = exp,,(Vu(m)) where u is some c-convex function, that is,
Vo€ M, u(r) = sup,ep(—c(r,y) —v(y)) for some function v on M. Such
function w is called the potential function of the optimal transport map G.
The aim of this paper is to show the smoothness of the optimal transport
maps G, or equivalently, the smoothness of the optimal transport potential w.
Ma-Trudinger-Wang [31] introduced for the first time the MTW tensor which
is crucial in the study of the regularity theory of the optimal transport maps.
Later on, Kim—McCann [22] interpreted the MTW tensor as a curvature
tensor of some pseudo-Riemannian metric. There are a lot of developments
in the past decade for example [5, 7, 8,9, 11, 13, 15, 17, 24, 26, 27, 28, 30, 35]
etc. For more references, see the book of Villani [36].

We recall the definition of the C-curvature. Given m € M, denote by
Cut,,, € M the cut locus of M at m. The closed subset Cut of T'M is
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defined by
Cut = {(m,v) € M x T, M, exp,, v € Cuty,}.
We consider the open connected component of TM\ Cut containing the zero
section and denote it by
NoCut = {(m,v), Vt € [0,1] and (m,tv) ¢ Cut}.
Given (m,v) € NoCut, (§,7n) € T;nM x T,, M, we define the C-curvature by
3 0? 0?

C(m,v)(&,n) = T909s2 szo@

c(exp,, t&, exp,, (v + sn)). (1.1)
t=0

For the more intrinsic geometric interpretation, we use the aforemen-
tioned pseudo-Riemannian metric h on M x M and set Secty, for its sectional
curvature tensor viewed as a field of quadratic forms on A*T(M x M), for
each (m,m) € M x M \ Cuty; with Cuty; = exp(Cut) the cut locus of M

and each (£,&) € T,,M x Tz M, the associated cross-curvature is defined
in [22]:

Cross(m,m) (€, &) = Sectx[(§ © 0) A (0D E)].

Kim and McCann [22] observed that it must vanish for some choice
of (£,6). Trudinger etal. noted [31, p. 164] that one identically recovers
L cross(m,m)(§,€) at m = exp,,(V) with (m,V) € NoCut and & =
d(exp,,)(V)(v), by calculating the quantity:

2
e
where A(m,V)(§) = Vdp — c(p,exp,,(V))]p=m(&, &) with V the Levi-
Civita connection of the Riemannian metric g and where D stands for the
canonical flat connection of T}, M.

C(m,V)(f,l/) = A(m7V+AV)(€)}A:o (1'2)

When v = 0, Loeper [28] observed that the C-curvature is just the sec-
tional curvature. In fact, it follows from the Taylor expansion for the geodesic
distance [33, p. 5] that

d*(exp,, t&, exp,, sn) = [£[2,6% — 2gm (&, )ts + |n]7, s>
1
- ng(fa 7]7 53 77)15252 + O((tQ + 52)2)'

Thus we see C(m,0)(&,n) = R(&,m,&,7m). More generally, we have the as-
ymptotic expansion [24] for the C-curvature

C(mv V)(fﬂ?) = Rm(g; 77753 n)+%(vnR)(£7 l/agvn)+i(vVR)(£vnagan)+0(|y|)
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We introduce several curvature conditions [23, 31, 35]

(i) A3S condition is satisfied if there exists some kg > 0 such that
C(m,v)(&n) = rolé*In*V (m,v) € NoCut, V (&, 1) € Ty M xT,, M
with (£, ) = 0;

(ii) A3BW condition is satisfied if C(m,v)(&,n) > 0,V (m,v) € NoCut, V
(&,m) € TuM x Ty, M with (§,7) = 0;

(iii) the non-negatively c-curved (or NNCC) condition is satisfied if
C(m,v)(&,n) =0,V (m,v) € NoCut,V (§,n) € T,, M x T,,,M;

(iv) the almost-positively c-curved (or APCC) condition is satisfied if
NNCC condition is satisfied and C(m, v)(€,n) = 0 if and only if the
span of the vectors (v,&,n) has dimension at most 1.

The A3S condition is satisfied on the round sphere [29] and on nearly spheri-
cal manifolds [8, 14, 17, 30]. The NNCC condition is stable under Riemannian
products, unlike A3W condition. Each of the above conditions is stable un-
der Riemannian submersion [23]. The APCC condition holds on spheres [23]
(see also [8, 14, 29]), on projective spaces CP* and HP* [23] and on posi-
tively curved Riemannian locally symmetric space [10]. The APCC condition
is satisfied on surfaces close to 2-sphere [9]. On the other hand, the A3W
condition can imply nonnegative sectional curvature[28], but the inverse is
not true [16, 21, 30].

For the regularity issue, the A3W condition is necessary for the continuity
of the optimal transport map [28] and also sufficient under some suitable
assumptions [35]. There are many works related to the C! regularity of
potential « (or continuity of optimal transport maps) for all measures g, 11
(possibly not smooth). For the instance, see references [14, 15, 16, 17, 23] etc.
Here we are interested in the high order regularity on closed manifolds. Such
regularity result holds on flat manifolds [5], on spheres [29], on complexe
or quaternionic projective spaces [7, 13, 23] (see also [27]), on product of
spheres [12, 13, 23], on nearly spherical manifolds with topology [8, 30] and on
2 dimensional simply connected manifolds or positively curved Riemannian
locally symmetric spaces [7].

1.2. Main results and outline of the paper

Let us recall some notations (see [2, 3, 4, 18]). Let X, Y, Z, W be smooth
vector fields on M. The (3,1)-type Riemann curvature tensor of the Riema-
niann manifold (M, g) is defined by

R(X,Y)Z =VxVyZ —-VyVxZ —Vxy|Z
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where V denotes the Levi-Civita connection of g. We set Riem for the asso-
ciated (4,0)-type Riemann curvature tensor(!), that is.

Riem(X,Y, Z, W) = (R(Z, W)Y, X)

Here, we adopt the Einstein summation convention over repeated indexes.
In a local coordinate system{z!,..., a:"} the components of Riemann cur-
vature tensor are given by R(%7 62 )6901 = Ri]kad and Riji = gsz]kl
respectively. The Ricci tensor is obtained by the contraction Ric;; = gF le] !
and the scalar curvature by Scal = g% Ric;;. The Riemannian metric induces
norms on all the tensor bundles. More precisely, the squared norm of (r, s)-

tensor field T' in the coordinate system z = (z!,...,2") is given by

2 _ . Jil Jrr 01...0s kl
IT1" = Girky -+ Gink, 9" g7 TGS T

Let K : Gra(M) — R be the sectional curvature defined on the Grass-
mann bundle of tangent 2-planes (see [7]). We always assume the sectional
curvatures satisfy

min K =1. (1.3)
GI‘Q(M)

and we define for the Riemann curvature tensor when n > 3

Scal
Rmm———Eng®g

2n(n —1 (14)

C?(M,g)
Here the Kulkarni-Nomizu product ® is defined as follows: given two 2-
covariant tensors h and k, the Kulkarni-Nomizu product is a 4-covariant
tensor, determined by
(h W) k) (Xla X27 X37 X4) = h(X17 X3)k(X2a X4) + k(X17 X3)h(X27 X4)

— h( X1, Xy)k(X2, X3) — k(X1, X4)h(X2, X3),
where X; for 1 < j < 4 are tangent vectors. If necessary, we could identify
the contravariant tensor and the covariant one via the Riemannian metric g.

In two dimension, the tensor on the right hand identically vanishes and we
replace the quantity on the right hand in (1.4) by

E = HK — ]-”CQ(M,g) (15)

While the dimension n > 3, the quantity (1.4) vanishes if and only if (M, g)
is space form. It follows from [8] that we consider an equivalent term to (1.4)
when n > 3 or (1.5) when n =2

(1.6)

1
= HRiem—g@g .
2 C2(M.g)

(1) We use g(-,-) and (-,-) interchangeably.
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It is known on the round spheres S™ that for v #£ 0
2
_ 1%
Am, () = 6Py — (1 ] cot [v]un) (m g (5, M) ) (L.7)

and we can calculate the C-curvature

2
Clm 1) (&) =~ 3| Almv+m)(e) (18)

It follows from [23] that the APCC condition holds on spheres S™. Our first
main result concerns about the stability of the APCC condition.

THEOREM 1.1. — Let (M,g) be a closed n-dimensional Riemannian
manifold satisfying (1.3). Then there exists some universal positive constants
€0, ko such that if € < gq, that is, when n > 3

< &g
C2(M,g)

Scal
‘Riem— c 1)g®g

2n(n —

when n = 2
K — 1||C2(M,g) <&op
Then for all (m,v) € NoCut and all tangent vectors &, n in Ty M
C(m,v) (& n) = ko€ Anlp, + €l In A vla + 1€ AVIZ IR, (1.9)
where [€ A5, = €m0l — gm (&), In A vl = Inllvi, — gm(n.v)?,
€AV = €[5V — gm(& V)%

Since the NNCC condition is stable for the Riemannian products, a direct
consequence of the above theorem can be read as the following.

COROLLARY 1.2. — Assume M and N satisfy the assumptions as in
Theorem 1.1. Then the A3W condition holds on the product manifold M x N .

Once we prove the A3S condition, we could study the regularity of the
optimal transport maps. For this purpose, we use the PDE setting. If the
potential function u is C?, it satisfies the following fully nonlinear PDE

det(Hess'® (u)(z)) = B (z, Vau), (1.10)
where
HGSS(C) (u) (a:) = [Vd C( ' 7Q)}[w,expm(Vu(w))] + Vdu(m),
and

. po(z)
Bl NVat) = (Gl et 0 exp, ) (2, Vo)

An observation due to Delanoé [7, Lemma 3.5] is the stay away property,
that is, if the potential u is C?, then for all point m € M the image point
G(m) of the optimal transport map does not meet the cut locus Cut,,. This
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is some kind of the first order estimate for the potential w. With the help of
Theorem 1.1, we prove the following regularity result.

THEOREM 1.3. — Let (M,g) be a closed n-dimensional Riemannian
manifold satisfying (1.3). Then there exists some universal positive constant
&1 such that if whenn >3

Scal

2n(n — 1)g®g

< &1

HRiem
C2(M,g)

when n = 2
1K — 1c2(ar,g) < &1

then for all given (podvol, pydvol) of C*® positive Borel probability measures
on M with k > 2 and a € (0,1), the potential function of the optimal
transport map is C*T22,

We use the continuity method to get the result. For this purpose, we
need to establish the suitable estimates & priori. The main difficulties come
from two parts: on one hand, we need to deduce the suitable C? estimates.
This is solved by Ma-Trudinger-Wang [31] under the suitable positivity of
C-curvature. Thus, it is done with the help of result in Theorem 1.1; on the
other hand, the optimal transport map G needs to avoid the cut locus, that
is, for all m € M, G(m) is uniformly away from the cut-locus of m. For
this aim, we choose a suitable new test function to obtain the maximum
principle. Delande [6] communicates kindly to us that he has obtained some
stability result on A3S condition on the homogenous manifolds with positive
sectional curvature and proved smoothness result on such manifolds.

The paper is organized as follows. Section 1 presents the main results of
the paper. Section 2 is devoted to recall some notions of Riemannian geom-
etry. In Section 3 we prove Theorem 1.1, that is, the C-curvature satisfies
APCC condition. The proof relies on a careful analysis together with the
perturbative arguments comparing to the constant curvature case. It is di-
vided into three cases: near the origin, the intermediate case and near the
focalization. The asymptotic expansion of the C-curvature gives the improved
MTW condition near the origin. In the intermediate case, the fact that the
improved MTW condition holds on the sphere gives rise to the improved
MTW condition on M. We adapt the method [17] to verify improved MTW
condition near the cut-locus. The last section is devoted to the proof of The-
orem 1.3 by continuity method. We collect some known results and prove
some technical results related to Jocobi fields in Appendix.
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2. Preliminaries

In this section, we collecte some notions in riemannian geometry [2, 3, 4,

18] (see also [8, 36]).

2.1. Basic notations and conventions

Recall a fact that the tensor g ® g is parallel, i.e.
V(gog)=0. (2.1)

By the condition (1.3) and taking trace of the Riemann curvature tensor one
and two times we get the following relations
[Ric —(n — 1)gllc2(ar,g) = €, |Scal =n(n — 1)||c2(ar,q) =~ €. (2.2)
The (3,1)-form of %g ® g is denoted by R, i.e.
R(X,)Y)Z =(Y,Z)X — (X, 2)Y,
which is also the curvature tensor on the sphere S*. The components of R

; PO 9 \O _pl D
are given by R(z57, o7 ) g7 = Lijraar-

By Bonnet Myers theorem [4], the normalization (1.3) implies (M, g) is
compact and there is conjugate point along every geodesic. Moreover, there is
cut point along every geodesic [2]. Given m € M,V v € T,,, M with |v|,, = 1,
let to(m,v) be the distance from point m to the cut point of m along the
geodesic exp,, (tv), i.e.

tc(m,v) =sup{t > 0 : exp,,(sv)|ogs<t is @ minimizing geodesic}.
The injectivity domain at m is denoted by I(m), i.e.
I(m)={tv:0<t <tc(m,v),veT,M\{0}}.
The focal time tg(m,v) is defined by
tp(m,v) =inf{t > 0 : exp,,(tv) is conjugate to m}.

We recall that the cut time is smaller than the focal time, the injectiv-
ity domain is an open subset contains the origin in 7, M and star-shaped
with respect to origin. Moreover, M = exp,,(I(m)) | | Cuty,, where | | means
disjoint union. The exponential map exp,, : I(m) — M\ Cut,, is a diffeo-
morphism. We denote by exp;,!(y) all the velocities v € T;,, M such that the
geodesic exp,, (sv)|ogs<1 is minimizing and exp,, v = .

The geometry of injectivity domain is complicated. But on some special
manifolds they have special geometric properties.
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We state 2d?(-,) is smooth in M x M\ Cutp. For any y ¢ Cut,,, the
Gauss lemma implies that

& .
vm ?(yam) = —€XpP,, Y. (23)

Given a real smooth function u defined on M, the Hessian of u at m is
given by the linear operator from T, M to T,,M defined

V& €T, M, V2 u() = Ve(grad u).

It is easy to see that the Hessian is a self adjoint and can be calculated as

follows
d2
(Va,u(),&) = 12

S| ), 24)

s=0
where « is a geodesic such that v(0) = m and 4(0) = &, where " is the
derivative with respect to the real variable s.

2.2. Jacobi fields

DEFINITION 2.1. — Givenmé€ M andveT,,M\{0}, let {E1,Es, ..., E,}
be an orthonormal basis of Ty, M with Ey = v/|V|m. Let y(+) be a geodesic
with initial point m and initial velocity v and {e1,ea,...,e,} be the parallel
transport of {E1,Es,...,En} along v. We define Jo(m,v,t), Ji(m,v,t) as
the matriz valued solutions of the second order equation

J.+RJ,=0,a=0,1,
Jo(m, v,0) = 0, Jo(m, v,0) = I, (2.5)
Jl(myyv 0) = I’fLa jl(mal/a O) =0.

where the elements of R are given by

Rij () = (R(ei(t), ¥(£)) (1), €5 (1))- (2.6)

As same as on the sphere, we define J,(m,v,t) as the matrix-valued of
the second order equation

J,+RI,=0, a=01, (2.7)

with the initial condition Jo(m,v,0) = 0,%(771, v,0) = I,, and J;(m,v,0) =
I, J1(m,v,0) = 0. The elements of R are given by

Rij(m,v,t) = (R(ei(t), (1))3(t), e5(t)).
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It is easy to see that .Jy and .J; in the orthonormal basis {e1, e, ..., e,} are
given respectively by

0= Jo sy 1 T 0 cos(|v|t) 1]

V]

From the homogeneity of a geodesic (see[2, p. 64]), we get the homo-
geneity of the Jacobi fields AJo(m, Av,t) = Jo(m,v,At), Ji(m, v, t) =
Ji(m,v, At), VA > 0. For t € [0, 1], we extended J, by continuity at v = 0
by Ji(m,0,t) = tI,, and J;(m,0,t) = I,. For simplicity, the Jacobi fields
Jo(m, v, t) are abbreviated to J,(t) unless otherwise specified. By the defini-
tion of conjugate points, the matrix Jy(t) is invertible for V ¢ € (0, tr(m, v)).
Moreover, the continuity of the Jacobi fields implies [36] det Jo(t) > 0 for
vVt e (0,tp(m,v)). We first state the fundamental formula which will be
used in Section 3 to calculate the C-curvature, that is, the hessian of the
squared distance can be expressed in terms of Jacobi fields and we have the
representation formula for the inhomogeneous Jacobi equations. We recall
some results in [17, 36].

PROPOSITION 2.2. — Under the above assumptions, we have
(a) Given v € T, M\{0}, let J(t) be the Jacobi field along the geo-

desic exp,, (tv) determined by the conditions J(0) =&, J(1) =0 and
J(t) #0 for all 0 < t < 1. Then J(t) = —Jo(t)Jy (1) J1(1)(&) +

J1(t)(€):
(b) Fort e [0,tp(m,v)), let S(m,v,t) be the linear operator from T, M
to T, M whose matriz in the orthonormal basis {Ey, Ea, ..., E,} is

given by tJo(t) "1 J1(t). Then the linear operator S(m,v,t) : T, M —
T M is self adjoint. Moreover, if v € I(m), then for ¥V & € T,, M,

<v$nc('76XPm v)(§), &) = (S(m, v, 1)(€),§)- (2.8)
(¢) (Representation formula) The solution of the matriz valued inhomo-
geneous Jacobi equation

J(t) + R(t)J(t) = B(t)
is given by the formula
t t
T(t) = Jo(®)J(0) + J (£)7(0) + Jo(t) / JiBds — Ji(1) / JiBds, (2.9)
0 0
where J* is the transpose (or adjoint) of the matriz J, for a =0,1.
Remark 2.53. —

(1) (Homogeneity) From the homogeneity of the Jacobi fields, we have
S(m, v, t) = S(m,v,At) for A > 0. Then we can extended S by
continuity at v = 0 by S(m,0,t) = L,.
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(2) The linear operator S(m,v,t) has explicit formula on space forms
[25], for instance, on the round sphere

", S, 0)(6) = € - (1= dvlottl) (€= (6.2 ) ).

v/ vl

(3) Given some C? real valued function f : I C R — R defined on some
interval I, we consider some ODE

f+f=¢

where " is the derivative with respect to the real variable. Hence, it
is known that the representation formula holds

J(l) J(:)C:Et J(:)Elnt
: A ;(f)C:Ef:lf COS A ;(f)E f:I'S ( :)

2.3. Fermi coordinate system

In this work, we use extensively the Fermi chart in the calculus. Here we
recall the definition and some results in [8].

DEFINITION 2.4 (Fermi coordinate system). — Let (M, g) be a n-dimens-
ional Riemannian manifold. Given (mg,vg) € NoCut with vg # 0, let I =
[0,|vg]] € R be a compact interval. Let v : I — M such that vy(t) =
exp,,, (tvo/|vo|) be a geodesic and {ei(t),ea(t),... ,en(t)} be a parallel or-
thonormal moving frame of vector fields along the geodesic v with e1(t) =

\1& The Fermi coordinate system {x',... 2"} are defined by
- t
1 B —
x| exp MNeg(t) = —,
( 0 <§ ’ 3 (1)

z® (exp,y(t)Z/\ﬂeg(t)> = \%, 2<a<n, tel.
p=2

where \? are sufficiently small so that the exponential maps are defined.

The Fermi coordinate system is generalization of the normal coordinate
system. To see this, along the axis we have

Val eI, Vi, j ke {1,2,...,n}, gij(@*,0) = 0;j, Orgij(z",0) =0, (2.11)

where § is Kronecker symbol. In the following, the Latin indices run over
1,...,n and the Greek indices run over 2,...,n. We calculate higher order
derivatives of the metric and Christoffel symbols in such chart.
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LEMMA 2.5. — The following identities hold on the axis
aizjgll = —2R1a;, aiﬂglu = *%(Ralﬁu + Rapupi), (2.12)
OagIpn = _%(Rﬁpau + Rauap); (2.13)
Il =Rl 0aT, = %(ng +R0s): (2.14)
92,74, = ViR, + VaRig, (2.15)
T, = é(le},aﬂ — ViR 50) — VaR}5, (2.16)

nal albp

1 1
02517, = i(vaRZﬁ1 +VgRl 1)+ 6(VlRF’ +ViRG,,) (2.17)

Proof. — All identities are proved in [8, Lemma 2] except (2.13). How-
ever, its proof is same. We leave the detail for the readers. |

3. Proof of Theorem 1.1

We give first the expression of the C-curvature. We adapt the presentation
in [17]. The proof of theorem relies on a careful analysis together with the
perturbative arguments comparing to the constant curvature case.

3.1. C-curvature calculation in dimension n

In this subsection we calculate the C-curvature. Fix mg € M, vy €
I(mo)\{0} and (&,m) € TmeM x T, M. Since the C-curvature is homo-
geneous with degree 2 in both £ and 7, it suffices to assume that |€],,, =
INlme = 1. Fix an orthonormal basis {E1, Es, ..., E,} of the tangent space
TmoM so that vy = |l/0|m0E1,§ = flEl +§2E2 +€3E3,7’] = ’I71E1 + ’172E2 and
identify the tangent vectors at mg with their coordinates in this basis. Then
the metric at the point mg is given by the canonical scalar product of R™.
We denote 7 = |vp|. It will be implicitly understood throughout the calcu-
lations that the inner product and the Riemann curvature are evaluated at
the point mg.

Combining (1.2) and (2.8), we have

3 d2 )
C(mo,vo)(&,m) = T5ds2 (Vo (s exp, (vo + 51))(€), §)my
s=0
3 d2
=932 S:0<S(m07 vo + 51, 1)(£),&)mo -
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For any s € R small enough, we can write vo+sn = t(s)(cos 0 E1+sin 0E3),
where

_ S7)2
t(s) = 6(s) = tan~! .
() = |vo + $N|mg, 0(s) an (T n S771)

Together with Remark 2.3, it follows that

3 d?

C(mm Vo)(fﬂ]) = —5@%:0

(S(mg, cosO(s)Ey + sin6(s)Ea, t(3)) (&), &) me-

We give some notations now. Let v (¢) be the geodesic with initial point
mo and initial velocity cos 0 E; + sin §Es. For |0] small, let {e1(6,t),e2(0,1),
..., en(0,t)} be the parallel transport along the geodesic vy (t) with e;(6,0) =
cosOF; + sinfFEs, e2(0,0) = —sinfF; + cos0FEs, €;,(0,0) = E; for i > 3.
Let Jo(0,1), J1(8,t) be the solutions of the Jacobi equation (2.5) and R(0, )
the curvature matrix by (2.6) along the geodesic 7y(t). The matrix of
S(mg,e1(0,0),t) in the orthonormal basis {e;1(6,0),e3(8,0),...,e,(6,0)} is
given by

5(07 t) = tJO(ev t)iljl (0, t)'

cosf)  sinf
Q(f) = | —sinf cosb .
In72
Then the matrix of S(mg,e1(6,0),t) in the orthonormal basis {E, Es,
o Byl is Q(0)TS(0,6)Q(9), ie.

(S(mo, e1(0,0),1)(£), &) = (S(0,£)Q0)E, Q(O)E)- (3.1)

Here, the dot stands for the derivative with respect to ¢ and the prime for
the derivative with respect to 6.

Let

Differentiating (3.1) once and twice with respect to s successively, we
have

& (Stmo,e1(0,0),1)(6).€) = [(5'Q%, Q8) +2(5QE, QEN T + (996,06 T

%<S(m0, 61(97 0),t)(£)7€>

2
= [(S"Q&,QE) +4(5'QE, Q') +2(5Q'E, Q€Y +2(5SQ¢E, Q" E)] <j§>
(3.2)

2
+[2(5'Q€, Q8) + 4(SQk, Q’€>1%3—Z +(5Q¢, Qe) (gi)
/ , d29 . d2¢

+(5'QE, Q) +2(SQE, Q)] 15 + (5Q¢, Q) 75
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The direct computations lead to

dt _ s(ni +n3) +7m &t

ds lvo + 51 7 ds?  |vg +snf?’

dg _ wr da?0  2mps(ni +n3) + 7]

ds  s2(nf +m3) + 2stm + 727 ds? [s2(n? +n3) + 257 + 722
so that at s = 0, we have

2 2 2

t=r1, gzm, %:"72, 9 =0, j—zz%, %:—@. (3.3)

Writing

P£Z(§17£2707"'70)T7 PL€:(§2’—§1707~-~70)Ta

then at s = 0, we have

Q¢=¢ QE=PrE, Q'¢=-Pc (3.4)
Gathering (3.2), (3.3) and (3.4), we obtain
2
G| (80m0.000.0).1(0). 0

2
= [(8"€,€) + 4(8'¢, P6) +2(SP*¢, Pre) —2(S6. Pe)l
+ [2(5'6,6) + 4(5¢, P 2 + (S¢, o

+[(5'¢.€) + 2(SE, P%( ’71"2> (569
—(Se.0m + | 28,6+ 256, PHo) - <5/§,§>7i<55,PL5>]771?72

+ (56 O+ 186 0 T S'6 PLO + TSP PO~ (56 PO]R
which yields
C(mo,vo)(§,n)
= —2(3e.0m
+3]186.6) — 286 PL) + T5(5°6.6) + {56 PHe)

3

1. 1. 4
+[—72<5 §8) — (966~

1 1

: (56, Pre)
_E Sple pt 3 SeE P 2
7_2< ga §>+T2< 57 €> T2

= ay1(mo, vo, )Nt + ar2(mo, vo, £)mnz + aa(mo, vo, £)n3,
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where
ai1(mo, v, &) 1= —%<5575>

3|-Hisred

2
a12(m07V07§) : - ;

(86, P40 + (566 + 556, P49

oaalima, €)= 3 |~ 5 (5766 - (56,9

- SUS'EPhG - SUSPrE P + (6 o)

3.2. Proof of Theorem 1.1 and Corollary 1.2

The proof of Theorem 1.1 is divided into three cases: near the origin, the
intermediate case and near the focalization. The asymptotic behaviour gives
the improved MTW condition near the origin. In the intermediate case, we
use the similar strategy in [8]: the fact that the improved MTW condition
holds on the sphere gives rise to the improved MTW condition on M. We
adapt the method [17] to verify improved MTW condition near the cut-locus.

3.2.1. Asymptotic behaviour near the origin

With the help of the above preparations, we can obtain our main result
in this subsection as follows.

THEOREM 3.1. — Under the same assumptions as in Theorem 1.1, there
exist some universal positive constants €g, 01, k1 such that if € < &g, then for
all (mo, vy) € NoCut with T = |vp| < 91 and all tangent vectors £, n in Ty M

C(mo,10)(&m) = K1(1E Anlt, + €17 In Avolz, + 1€ Avolo,Inl7,)- (3-5)

Proof. — We deduce first the expansion of the C-curvature near the ori-
gin. For this purpose, by (B.25)(B.26)(B.27) below, we have

C(mo,v0)(§,n)

3
= |R(&,, E1L,E By + ZT(V1R1212€§ + 2V Ri2136283 + V1 R131383)
2
2G4 )+ Oler® + ) + )] o
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+ {2R(§, B, & Es) + 7 sznggg + (V1Ri223 + V2 Ri213)6283
+ <V1R1323 + ;V231313> €5 — ViRi21261& — V131213§1§3]
—2#&&+O@ﬁ+ﬁﬂg+g+&&+&&%mm
+ {R(ﬁ, By, 6 Ey)+ 7 {1V1R1212§% - lv2312125152

1
ViRi223 + VaR1213)61&3 + - VaR12236283

5( 2

1
< Vi1Ra323 + 2V2R1323>f§]
T @+ G2+ Oer 41 oIt

= R(fa Elv 'g’ El)n% + 2R(£v E17£7 E2)771772 + R(f, E27 fa E2)77%
3
+ ZT(V1R1212§§ + 2V 1 Ri21360€3 + V1 Ri31363)n3

1
T {2V2R1212€§ + (V1R1223 + V2aR1213)6283
1
+ (V1R1323 + §V231313)€§ — ViR121261&2 — V1R1213§1§3} 172
1 , 1 1
T 1V1R1212§1 - §VzR1212€1§2 - §(VIR1223 + VaRi1213)61€3
1 1 1 1,
+ §V2PL1223§2€3 + *V132323 + *V2Pt1323 §31m5

1
+ 7 <155%77§ 5152771772 + 52771 + 52772 + 53771 53772>

+O0(er? +T4)(§1§2771772 +&183mn2 +52771 +Emna+Ent +Emn2+n3)
=L+ 1L+ 1L + IV, (3.6)

where Iy (resp. I, III;, IV7) collects all terms containing 0-power (resp.
1-power, 2-power and higher order powers) in 7.

We estimate term by term from I to I'V;. The key point is the fact that
the combination of the zero order term and the second order term controls
all others.

- 368 —



Regularity of optimal transport maps

The term I,. — Tt is clear that Iy = Ry, (€, 71,&,n). Recall the curvature
approximation (1.3). Thus the term [; has the lower bound

I = €21 = (& m)? = (&m2 — &am)? + E (7 +n3). (3.7)

The term II,. — The term I involves the first order parts 76203, 76303,
T&1&9m2 and TE2m1m2. They cann’t be directly controlled by the associated
terms in the second order, but the combination of them composes good
terms, more precisely, the term I; can be stated as

3 T
I = ZTV1R1212f§TI% — 7V1R1212616ammn2 + ZV1R1212§f77§
T 3
+ §V2R1212(€§771?72 —&6m3) + 57V1R1213§2§377%
3
+ ETV1R1313£§77§ +7 [(V131223 + VaR1213)&263

1
+ (VlR1323 + 2V2R1313> & — V1R1213€1§3} 71M2
1 1
+7 {—2(V1R1223 + VaRi213)6163 + §V2R1223§2§3

1 1
+ <4V1R2323 + 2V2R1323>£§:| 77%

T T
= ZV1R1212(§2771 - 51772)2 + §V131212(§2771 - 51772)52771
T 3
+ §V2R1212(§2771 —&im2)&amns + §TV131213€2§377f

3
+ ZTV131313§§7I§ +7 [(V1R1223 + VaRi213)&63
1
+ <V131323 + 2V231313> & - V1Rl213§1§3] 112

(ViR1223 + VaR1213)€163

L]
.
2

1

1
~VaoR
+ 5 V2 12236263 + <4

1
Vi1Ro323 + 2V2R1323> f?%} 3

Using the curvature approximation (1.6), Cauchy Schwartz inequality and
the parallel property (2.1), we estimate the term IT; as follows

T 1
Ih > 6(4 + 2) (&1m2 — Goam)® — eT2Eims — 2e7E5mT
1 5 3 7 3
- gergnd—e(3+ 5r )t - <+ 3r )
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Here we drop the upper indicator for € in (1.6). Now assume 0 < 7 < 2, the
following inequality holds

5
IL > —e(&mp — o )? — eT?E3ms — 15725377%

1 5 3 7T 3
- 557255773 - €<4 + 2T>§32,77% - 5(4 + 27') &3 (3.8)
The term IVy. — The remainder error term is negligible comparing with

the second order of 7 when ¢ and 7 are small. Let €1 be some small positive
real number to be fixed later. Assume 0 < e < 5,0 <7 < % such that

IVy = O(e® + 74 (803 + Enf + &3 + Enf + 03 +n3)

(3.9)
> —e1m* (&7 + &t + n3).

Here we use the fact £2+£3+£3 = 1. Gathering (3.6), (3.7), (3.8) and (3.9),
we estimate

C(mo, VO)(Ean)
1 1
> (&2 — 52771)2 + 53(77% + 773) - 551(51772 - 52771)2 - 551725%775

5 1 5 3 7 3
- Sergnl - jargnd - (G + ) &t -3+ 57) ek
1 2 2 2 2
72568 - Seramm + 36508 + 5 + SR + 156ind )

— e (307 + &30 +n3)

€1

= (1- 3 Jem - am? + (55 - 3 )t - 2raicamn
+ (§_€1> &+ (115 2) &n; + [272—61 (2 - jT) +1} &n
+ [125 2—¢ < g ) 1} — 1T (EnT + &7 + n3)
= [1 —e1+ (115 - 2€1> ]51772 — 2<1 —e1+ 2)6152771772
+ {1 —e ot (z = 281) }62771 Lrne — €am)?
+ {1 — & (2 + ZT +7 )]&,nf + {1 —€1 (; ﬂﬁg% + 3517255775

3 1 2
=+ 8517252771 + (15 - ) 2ms + 7' 2 + 7 28 — a1t
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The discriminant of the quadratic polynomial

1 2|42 7 2 2
hb‘,T(t): 1—e+ B_QS Tt —2 1—€+€ t+1—e+ 3—26 T

is polynomial with arguments (g, 7). By continuity, there exists a small pos-
itive constant &7 such that the discriminant is non-positive in [0, 1] x [0, &1].
Together with the fact £ + €3 + &5 = 1, we have

C(mo,v0)(&,n) = %(51772 - 52771) [1 — €1 (2 + %T + TZ)}fsﬂh

7
+ [1—51(8 )]f:sﬁz"‘ S&1T 51772"‘ 517' 52771

1 551 2
+ (15> 3 2+* 2Ent + (1551> T2E5m;3.

Thus, we could choose some small ¢ < £; such that for any 7 < 5 there
holds 1 —e1(3 4+ 37+ 7%) > 0 and 1 —e1( + 27) > 0. As a consequence,
there exist the constants €y, k1 and d; such that Ve < &y and V vy € T;,,, M
with |vg| < 01, we have

C(mo,10)(&,m) = k1 [(IE17 1] — (& m)?) + [vol*(€3 + ) Inl* + [wo*I€[*n3] -
Finally, we prove Theorem 3.1. g

3.2.2. Behaviour near the focalization

Under the curvature assumption (1.3) and (1.4) (or (1.5)) with £ small
enough, we can obtain by the method in [17] near the focalization.

THEOREM 3.2. — Under the same assumptions as in Theorem 1.1, there
exist some universal positive constants €o1,02 € (%’T,w),m’l such that if

€ < &p,1, then for all (mg,vy) € NoCut with §y < T = || < tr(mo,vy) and
for all tangent vectors &,n in Ty, M

C(mo,10)(&,m) = K111 Anloy + €l 1 Avoli, + 1€ Aol Inla,)- (3.10)

Proof. — In view of [17, (5.22)], there exist positive numbers ko, €2, 02 €
(2%, 7) such that if ¢ < &5, then for all (mg,) € NoCut with d; < 7 =
lvo| < tr(mo, o) and for all tangent vectors &, 7 in T,,,, M with [¢] = |n| = 1,

the C-curvature has the following estimate

C(mo,vo)(&,1m) = ka(|STE[7 | + €13), (3.11)

where S+ denotes the orthogonal projection of S on the orthogonal sub-
1
space Vg .
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From the curvature assumption (1.3), the Hessian comparison theorem [4]

infers

Vo) cos v
gt s _Imleosiwol
sin |vg]|

Hence the term |S£|? controls &3 + &3 if |vo| > 2, ie. [STE|2 > 2(¢2 +€3).
By Cauchy—Schwarz inequality, we estimate

1 1
5(512773 + &) = 1(51772 —&m)?.
Thus, it follows from (3.11),

C(mo,0)(&,n) = ke %5%03 + 3(51772 —&m)® + (& + §§)U|2}

WV

(1 1 1
K2 55%775 + ngn% - 55152771772 + &+ f§)|772}

(1 1 3
w2 | USRI =€) + G + P + S|

> i [([E 7 = (&,m)?) + (&3 + &) nl* + 1€ n3]
> Cra [([E1 11" = (&.m)*) + vol*(&3 + &) nl* + |vol?I&]*n3 ] -

Therefore, there exist positive constants €y 1 < €2, £1,1 < Ckg such that (3.10)
holds. Finally, the proof of Theorem 3.2 is complete. g

3.2.3. Behaviour in the intermediate case

In this subsection we assume §; < || < d2 < tp(mo, ), where the
positive constant s is strictly smaller than 7 and given in Theorem 3.2, and
the positive constant ¢; is given in Theorem 3.1. We adapt the same strategy
in [8, Theorem 2| to get the stability result. For convenience of readers, we
recast as follows.

PROPOSITION 3.3. — Let (M, g) be a closed n-dimensional Riemannian
manifold satisfying (1.3) and (1.4) (or (1.5)) with ¢ < ~. Let (mo,vp) €
NoCut with 7 = |vy| < 02. Assume v is small enough such that 6y <

tr(mo, o) and
o 1

sinfvg| " 4v/n—1
Then there exists a positive constant Cy > 1 under control (independent of
(mo, vo,7)) such that for all £, € Ty M the following inequality holds

. ol \*
|aWMM@m—CWmWMWﬂ<Q< 0 )w&%+ml%

sin |vg]|
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where £+ (resp. ') is orthogonal projection of & (resp. n) on the orthogonal

subspace vg-.

Proof. — The C-curvature difference has the following expression

C(m071/0)(€>77) 7€(m0,1/0)(£7n) (312)
8- §>f,s>nf

+3] =280+ (569~ 2 (8- 96 Pe 1+ S (5516, P e

+2 [—72<S”£,§> - 2§~ 866 - S('PELE)

- 25 - 5)Pet Pe) + S5 - 96 P

Plugging (B.28) and (B.29) into (3.12) we get the result. Therefore, Propo-
sition 3.3 is proved. (|

As a consequnce, we get the stability result as follows.

THEOREM 3.4. — Under the same assumptions as in Theorem 1.1, there
exist some universal positive constants €o 2, k1,2 such that if € < o2, then
for all (mg,vp) € NoCut with 61 < 7 = || < 02 < tp(mo,vo) and for all
tangent vectors §,m in T M

C(mo,v0)(&,n) = K12(]€ /\77| + |§|im|77 A V0|3no +1EA V0|12710|77|72'no)' (3.13)

Proof. — Assume 0 < € < ; 5?\‘}%. We note the function <& is nonde-
creasing in the interval [0, 7), and the condition in Proposition 3.3 is satisfied.

Thus, we have

_ 5o \*
Clmos ) (&,1) > Cloma, ) = o () (& + &+ 1)

E \

2 ~ 2 C143 2 2 2
(€21 — (&, m?) + (For® = e ) (& + &+ 1))
168

2sin* 6,

R

6P~ (€m)) + (7o - gagize )& + & +d)

%na (7l = (€02 + 72(E3 + & + 1R)]

> w1z [(IEP 1> = (&,m)%) + [l (& + ) nl* + |Vo|2|£\277§] :

= 3 .4 .
R207 sin® 02 sin 8o

2C105 7 462/n—1

Here we choose € < €7 9 := min( ) and K12 < %2 Finally,

we prove the result. O
Proof of Theorem 1.1. — 1t is a direct consequence of Theorems 3.1, 3.2
and 3.4. ]
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Proof of Corollary 1.2. — Thanks to Theorem 1.1, NNCC conidtion
holds. Such condition is stable for Riemannian product. On the other hand,
NNCC condition implies A3W condition. Thus, the desired result yields. O

4. Proof of Theorem 1.3

In this section, we are going to prove Theorem 1.3. Let (podvol, pydvol)
be C* positive Borel probability measures on M. The curvatures of M
satisfy (1.3) and (1.4) (or (1.5)). Fix any couple (k,a) € N x (0,1), with
k > 2. Let Hess® u be c-Hessian of u, namely,

Hess'® u = V2, u+ V2,¢( -, exp,, V).

On the one hand, a C? potential function w of the optimal transport map
G(m) = exp,,, Vmu pushing forward podvol to p;dvol satisfies the following
Monge-Ampeére equation

po(m)

det(dv,, det Hess'® 4y = — 202
et(dy,, . exp,, ) det Hess'” u (oD Vo)

(4.1)
On the other hand, a classical C? solution of the above equation is the poten-
tial function of the optimal transport map exp,,, V,u pushes forward podvol
to p1dvol. To establish Theorem 1.3, it suffices to prove the Monge—Ampeére
equation admits a classical C*t2 solution. We attack it by the continuity
method. Here we consider only regularity issue on simply connected man-
ifold M. For the general case, we reduce to simply connected manifold by
covering arguments (see [8]).

Let Z be the set of the parameter ¢ € [0, 1] for which there exists a C*+2:
solution u; of the equation (4.1) with p; replaced by p; = (1 — t)po + tp1.
It is clear that 0 € Z, so the set Z is not empty. The openness is derived
by the implicit function theorem [19]. If 7 is closed, the connectedness of
the set [0, 1] shows Z = [0, 1] and we prove the equation (4.1) admits a C*:
solution. From Theorem 1.1, we know that on the Riemannian manifold with
the curvature conditions (1.3) and (1.4) (or (1.5)), A3S condition holds. [7,
Theorem 6.1] (see also [8]) reduced the closedness of the set Z to the following
estimate

MAIN ESTIMATE. — There exists a positive number 0y (depending on the
densities) under control such that

detdv,, ., exp,, = do, (4.2)
for each (t,m) € T x M.
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Fix t € Z. From [7, Theorem 3.1], we know that Vu,; at m locates in
the injectivity domain at m. Recalling the curvature assumption (1.3), by
Rauch comparison theorem [2], the length |V ,,u,]| is strictly less than . The
Jacobian is related to Jacobi field, i.e.

det dy, v, exp,, = det Jo(m, V,u, 1)

By Bishop’s theorem[4], det dy,, v, €xp,, is uniformly bounded above by 1
if M has nonnegative Ricci curvature. It is known that detdv,, ., exp,, is
positive. But detdy,,., exp,, may not has a positive lower bound. Since
det Jo(m, v, 1) vanishes if (and only if) exp,, v is conjugate to m, so the esti-
mate (4.2) is not obvious. For instance, on the sphere S™ with the standard
sin |V, ue )n71
|Vmut‘

to m. Making use of Lemma A.2 in Appendix, the estimate (4.2) is obvious if
max{|V,u| : m € M} < 2%, provided ¢ is small enough. Thus without loss
of generality, we assume there exists at least a point such that the length of
gradient |Vu,| at that point is not smaller than 2T. To prove (4.2) we need
to construct an appropriate test function.

Let J(m, Vimuy) = —|Viw|?S~1(m, V,ug, 1). We consider the minimiza-
tion problem

metric, det dy, 4, €xp,, = ( is close to zero when |V, u,| is close

min{w&,@ () € TM, 5 < [Vl €l =1, fwmut}.

Let (mg, &) be the minimum point. We consider the test function

(TE€) + (&, Vur)?
h(m, 5) = |§|2 _ <£,vut>2t .
[Vui|?

Then h attains the minimum at the point (mg,&y) in a neighborhood of
the point (mg, &) in TM. To see this, let £+ = ¢ — <§’vut>|VVTu:|2 be the
orthogonal projection of & on (V,,u)*. Then

1 ¢1

By continuity, we obtain h attains local minimum at the point (mg, &p)-
The minimum h(mg, ) has a nice explanation: the second eigenvalue of 7.
Specifically, as h is bilinear with respect to & on the orthogonal subspace
(Vnu)®, the minimum h(mg, &) is the second eigenvalue of the self adjoint
operator J (mq, Vm,u) with the associated eigenvector £y. As a consequence
of the above explanation, a necessary condition for the main estimate (4.2)
is that the minimum h(mg, &) has a positive lower bound. At first the min-
imum h(mg,&p) has to be positive. To see this, from the Hessian Compar-
ison Theorem, we know that —S* is positive definite. Thus the minimum
h(mo, &o) is positive and has a lower bound under control. To differentiate
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the test function h, it needs to rule out the boundary case. Proposition B.8

infers )
Vi ue sin [V, ue|

h(mo,&o) = Csge,

€08 | Vo it
provided € < ~;. Since the function f% is non-increasing in (5, 7), we
can assume |V, u¢| > m—0, 0 < 6 < §. Henceforth, we drop the subscript

t and set for short 7 = |V, ul.

Some local notations. — We take the Fermi coordinate system x =
(z',2?,...,2™) along the geodesic exp,, (sVm,u) as the one constructed
in section 2 and v = (v',v2,...,v") be the fiber coordinates of TM — M
naturally associated to . We abbreviate the partial derivatives as follows

0 02 0 0?
ox? 7 Qxt0xd ovt T Qvtoud

Components of tensors will be denoted by

=V 9 2 =Vt i 9
grad u = V'u(m) B Vinu = Viu(m)dr! @ B
S:Sj(m,u,l)daﬂ@%, j:%(myy)d@ﬁj@w’
i .0 ; .
H= Hj(mv v)de! @ Itk F = *Fj (m,v)da? ® pyes

i i
where i = Viu+ i, HiFF = oL,

We denote D¥ = ¢g*D; and 0% = ¢*'9; the lifting indices. Let us now
describe the behavior of the components jﬁ‘.

PROPOSITION 4.1. — Let (mg, ) € NoCut and |vy| > m — & with 0 <
0 < G. Let x be the Fermi coordinate system associated to the geodesic
exp,,, svo and v be the fiber coordinates of TM — M naturally associated to
x. Then there exists a positive constant C under control such that the absolute
value of the first and second partial derivatives of the components Jg', o, B €
{2,...,n} with respect to (z,v), evaluated at the point (0, (|vol,0),1), are all
bounded above by Ce, except the following partial derivatives

DIy, 9spJss Duds, Dgsds, DeyJ?s W # ¢ t#¢.
and the following estimates hold

|D1JS + ] < Cle +9), (4.3)

055 T — 7| < C(e +9), (4.4)

|DinJy +2| < Ce +9), (4.5)

|Dpp T + 1+ 2003] < Cle +6), (4.6)
Doy T + 0pp0up + pupbup| S Cle+0), V# @, t#¢.  (4.7)
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Proof. — Recalling Proposition B.8, we only need to calculate the fol-
lowing components

aﬁlﬁjg’ D'Ujg? a’l)’L‘jg? D.’E’Ujgﬂ D'U’Ujg
where J = —|v|2S~1(m, v, 1). By differentiating the equation

ﬁ)z,where F(v) = _Ivlsinfv]
14

Evaluated at the point (mq, vo,§) with £ L vy and [£] = 1, we get

(T€€) = F(vDIER = (1> + fIrD)E,

vl

0T 36a” =0, DiT5¢%¢" = fou,
0:;T3€a” = ~Inolf(Inol),  8:D;T3¢%¢" =0,
D;; T5€°6° = fo1:01; + |VJ;|(6U — 61301;)
sin |vp| o
—2(1 =) (1 —6) (1 — ——2 ) ¢igd,
(16001 - ) (1= e e
Using the symmetry of 7, we get the desired results. O
Remark 4.2. — Let (mg, 1) € NoCut. Assume z is the Fermi coordinate

system associated to the geodesic exp,,, svo and v is the fiber coordinates of
TM — M naturally associated to x. It is well-known

P2 = exppl [_ gradpl C( : ap2)]7 (48)

whenever ps € M is not cut point with respect to p; € M. Assume the
points p, for a = 1,2 are in the domain of the Fermi coordinate system and
set x = x(p1). Suppose m = p; and my = exp,, (v) and denote v = (v%), v’ =
dz?(v). Differentiating (4.8) with respect to the coordinates z at z(m), we
have

Dy X' (v, 1)V§c(m, exp,, V) = 5J-in(x, v, 1), (4.9)

where 6y X' = 0; X" — F?l(x)lepXi is defined in an intrinsic way (see [7]).
In the following, all terms are evaluated at the point (z,v) = (0, (7,0)).
It is implicitly understood throughout the calculations.

The critical point condition. — By differentiating the test function with
respect to x, the first derivative condition on critical point could be read as

(3iJE+Vqukjﬁ)(fo)a(€o)ﬂ = 0. (4.10)

Under the curvature assumption (1.3), by the Hessian comparison theorem
we have h(mg,&) > 0. The components of & are denoted by (&), i.e.,

§o = (0)'0s.
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Differentiating two times on the test function h with respect to z, the
second derivative condition on extrema can be read as follows

0< Io+ I + III, + IV + Vs, (4.11)
where
Iy = —(T€0,60)F; 9" 03905 (€0)* (€0)” + F' 0790x T5 (£0)* (&),
Il = =7 Fj T, DrJ§ (§0)a (&) + Fig 0775 (S0)a()”,
L = 2FiViud; Dk TS (€0)a(€0)”,

IV, = 2<1 + T12<j§07§0>>]:;V?UVZ;U(§O)(X(§0)§

+ ]—';VfuvguDlejﬁa(fo)a(f‘J)B’
Vo = I}@ijuDkJE(fo)a(fo)ﬁ-

Here (£)i = gi;(£)? are coordinates of the corresponding co-vector related
to &. The potential function u evaluated at the point m satisfies the equa-
tion

Po
proG

with the matrix (H}) positive definite and Jo = D, X. The positive definite-

ness of the matrix (H J’) implies that V}u is larger than —1. We also write
the expression

det Jy det(H;) =

S(0, (r,0),1) = B Sog} .

Moreover, we have

I, _ 4.12
sinT ! ( )

We calculate each of the terms I to V5.

The term I. — Recall g;; = 0;; on the axis and J} = 0 at the point
(0, (7,0)) so that the term I can be recast as

Iy = —(T&0,€0) F 59" 02,90 (€0)" (€0)” + Fi 9" 02,90 T5(€0)* (&)
Then we calculate the term I by Lemma 2.5 and find
2 2
Iy = g(jgo’fo)fiRwawﬂ(go)a(fo)ﬁ - gfiRsoawbjﬂL@O)a(fO)B-

Using the curvature assumption (1.4) (or (1.5)), Proposition B.8, the posi-
tive definiteness of (F ;) and the Cauchy—Schwarz inequality, there exists a
universal constant C' > 0 such that the following upper bound holds

I, < CeFe. (4.13)
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The term Il. — Using (1.4) (or (1.5)), Lemma 2.5, Proposition B.8 and
the Cauchy—-Schwarz inequality, there exists a universal constant C' > 0
(maybe different value than previous one) such that the following upper
bound holds

Il < C(e + 8)F}.

Recalling f}V}uV{u = Viu—1+ F}, we have F} <2+ f;V}uV{u since
Viu > —1. Thus, we infer

Ib < C(e + 0)FS + Cle + 0) FiVEuViu + C. (4.14)
The term IIl;. — Using }",iV?u = 5} — f,iSJ’?, we estimate
Il = 20, D* J§ (§0)a (€0)° + 2F}510: DRI (§0)a(€0)”-
From the Proposition B.8, there exists a universal constant C' > 0 such that
1L < Ce(1 + FiSLSH).
Let us observe that the following identities hold: V k,1 = {1,...,n}
FiViuViu = Viu— Sf + FiSES] = Hf — 2Sf + FiSES]. (4.15)

The positive definiteness of (#7), (—S*) and the facts S} = 1 and S}, = 0
imply
1L < Ce(FiViuViu+1). (4.16)

The term IVy. — Splitting the negative term
FiVEuViuDe D' T§ (&0)a(€0)”
into four parts, we have
IVy = FiViuViuD1 D' T§ (§0)a(é0)” + 2F;ViuV]uDi D" T (§0)a ()"
+ FiIN{uVIiuD, D¢ J5 (€0)a(&)”

+ Z f;Vquiququj/?(fO)a(fO)ﬁ
PpFEY

+2 (1 + {78, 50>)f FViuVhuEo)a()™

Using Proposition B.8, there exists a universal constant C' > 0 such that the
following upper bound holds

IVa < [Cle +0) — 2] FiVIuViu + [Cle + 6) — 1| FiVEuViu

+ 2T, QY VI iu(@)a(@). (417)
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The term V5. — The term V5 involves the third derivatives of u. We use
the equation (4.1). After commuting the third derivatives of u, the term V5
can be estimated

Vo = FH(O*VIu+ g™ TR, ,) DTS (€)™ (€0)”.

By taking the logarithm and differentiating the equation (4.1) with respect
to the variable ¥, we obtain the following simplified expressions

0 0 . .
vy [” =g Yok
Po Pt

(T - f;aksﬁ} DF 5 (€0)a (60)°

9; i —1\i ]
# |- 22 = Ui,

— (T DT} — f;?Dsz} ViuD* T8 (60)a (0)°
2 o
+ S VDTS (0)a(0)” + 797" Fi Rl DTS (€0)a(60)

We observe that S = —S(0571)S and DS = —S(DS~1)S. Using the
critical condition (4.10), Lemma A.4, Proposition B.8, the identities (4.15)
and Cauchy—Schwarz inequality, there exists a positive constant C' > 0 such
that there holds

Vo < Ctm[gu%]ﬂdlog pe|} 4+ Cle + 6)}';Vquiu
€10,
+[C(e+6) — | F2+C. (4.18)

Gathering (4.11), (4.13), (4.14), (4.16), (4.17) and (4.18), we obtain the
following inequality

0< Ctm[g?]ﬂdlog pel} +[C(e +0) — ] FS + [Cle + 6) — 2 FiViuViu
€0,

2 . )
+ |Cle +9)+ ;(J&)f@ - 1| FViuViu+C.

Fix € < 55,0 < g&. Recalling (4.10), (4.12), (4.15), Proposition B.8 and
using the fact the function r —

we obtain the inequality

_rsinr

f . . . 3771—
S5T is decreasing in the interval [, 7],

—1(m—9)cosd
2 sin &

+ (TQQU&»&)) - i)f;?v?uvgu +C. (419

n
0 < C max {|dl Pt —
te[o,l]{| og t|}
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3v27n(n—1)
max;¢[o,17{] dlog p¢| }+1

We take § < min{%, 607 )}, the minimum h(mg, &)

must be bounded below by

1 ( . { 1 3v2m(n —1) })2
— (7 —min{ —, :
] 8C" 16C (maxye(o,1){| dlog p¢|} + 1)

Finally, the proof of Theorem 1.3 is complete. g

Appendix A. The geodesic motion and applications
A.1. The derivatives up to third order of geodesic motion

In this subsection, we collect some results in [8]. Fix mg € M,y €
I(mp)\{0} and take the associated Fermi coordinate system along the geo-
desic exp,, (trg) and v = (v',0%,...,0") be the fiber coordinates of TM —
M naturally associated to x. The curvatures of the Riemaniann manifold
satisfy the assumptions (1.3) and (1.4) (or (1.5)). For m € M,v € I(m)
with m in the domain of the Fermi coordinate system x, let X (z,v,t) be the
coordinates of the geodesic exp,, tv. Then X (x,v,t) is the solution of the
Cauchy problem

Xk 4 Ffj(X)Xin =0, X*(z,v,0) = 2F, X*(x,v,0) = v*. (A1)
In the Fermi coordinate system, (mg, 1) corresponds to (0,vo) where vy =
(|vol, 0). On the axis, set for short Xo(t) := X (0, vg, t). We recall some results
in [8]. Let Jy = D, X, J1 = 0, X be Jacobi fields in Section 2. Differentiat-

ing (A.1) once with respect to the variable z (or v), on the axis, we get the
following equation

Ji+ Ol (X)XIXPJL 421 (X)XTJF =0, (A.2)
with the initial conditions, namely either
0 X'(0) = 6,,0.X"(0) = 0,
or . .. .
DoX'(0) =0, D, X(0) = 6.
We note that the equation (A.2) is equivalent to (2.5) on the axis. Thus, we
have

LEMMA A.1 ([8, Lemma 4]). — There exists a positive constant Ca > 0
such that on the axis, for each t € [0,1], the terms

|8IX(O,U0,t)|, |amX(07’Uo,t)|, |DUX(O,’U()7?5)|, |DUX(O,’U()7t)|,
are all bounded above by Cs.
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We require the notation 9, X (t) and D, X (t) for the solution .J, of the
unperturbed equation

TE+ o2 R 5 2 =0,
with the initial conditions, namely either
B X7(0) = &% 9aX7(0) = 0,

or

D,Xi(0) =0,D,X(0) = 5.
It is clear that 0, X (t) and D, X (t) correspond to .J; and .Jy respectively on
the axis. Thus, we have

LEMMA A.2 ([8, Lemma 5]). — There exists a positive constant Cs > 0
such that on the axis, for each t € [0, 1], we have
0.X (0, v, 1) — B, X (8)] < Ce,
10, X (0, v0,£) — T X ()| < Cse,
| Dy X (0,v9,t) — D, X (t)| < Cse,
D, X (0,v0,) = DX (1)] < Che.

Remark A.3. — For later use, dealing with |Jo — j0|, the constant C3 can
be taken value 2y/n — 1 (see [8, Remark 5]).

Let J,, be 8§bX, 0aDp X, D,0, X or ngX. Differentiating the Cauchy
problem (A.1) twice with respect to the parameters x and v

Jiy + o XIXFJL, 4 21 X JF,
=~ T XIXFJLIP — 20T X7 (JFJL + JEJL) — 20, JT k. (A.3)
and the homogenuous initial conditions
ap(0) = J5,(0) = 0. (A4)
On the axis, recalling (2.15), equation (A.3) is reduced to
Ta + 10l* Rian (X0) I, = ~|vo 05,151 T ] = 2ol Rigar (Xo) (5 T + T ).

By Lemma 2.5, we have (see [8, Lemma 9])

LEMMA A.4. — There exists a positive constant Cy > 0 such that on the
azis, for each t € [0,1], the terms
|02, X(0,v0, )], 1032,X(0,v0, 1),

|0. Dy X (0,v0,1)|, |0:DyX(0,v0,1)|,
|D3vX(m07'U0’t)|a |ngX(0av07t)‘
are all bounded by Cy.
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Let us introduce the solutions 02, X, 9, D, X, D,0,X and D2,X along
the axis of the unperturbed equation

Tip + 1|20 JS, = —2|vol (3564 — 6101 (J2 I + T TF), (A.5)
with null initial conditions

Ji(0) = J2,(0) = 0. (A.6)

We have the following perturbation result (see [8, Lemma 10]).

LEMMA A.5. — There exists a positive constant Cs > 0 such that on the
axis, for each t € [0,1], we have

|02, X (0,v0,t) — 02, X (t)] < Cse,
102, X (0,00, t) — 92, X, ()] < Cse,
|0 Dy X (0,v9,t) — 0, D, X (t)] < Che,
105D, X (0,00, 1) — Fa Dy X (1)) <
|D2,X(0,v0,t) — D2,X(t)| < Cse,
D2, X (0,v0,) — D2,X(1)| < Cse.
Furthermore, |02, X (0,v9,t)| < Cse, |01D, X (0,v9,1)] < Cse.
Proof. — The first 6 statements are the results in (or comes directly from)
[8, Lemma 10]. The last two approximations are just the consequences of the
facts 92, X (t) = 0 and 9, D, X (t) = 0 which follows from the equation (A.5)
and the initial conditions (A.6). O
Let J?, .(t) equal to 92, X (0,v0,t), 0%, D, X (0,v9,t), 0, D2, X (0,v9,t) or
D3

X (0,00, t). Differentiating (A.1) three times with respect to the vari-
ables x and v

Jébc + |V0‘2Ria1(X0)Jabc = _‘V0|28l3pqui1']<l1‘]l?‘]g - |V0‘26l2p1—‘§1 Z J(lleg

a

(a,b,c)
—2woldp T D Ja Y
(a,b,c)
—2|V0\R§€51(X0) Z (jsz,ﬁc+jfbjcﬂ)
(a,b,c)
— 2057, > LI
(a,b,c)

with null initial conditions

£10(0) = iy, (0) = 0.

abe abc
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Here }_, ;) means circular summation on (a, b, ¢). It is stated (or with the
same arguments) in [8, Lemma 12].

LEMMA A.6. — There exists a positive constant Cg > 0 such that on the
azis, for each t € [0,1], the terms

10300 X (0,00, 8)], (03, X(0,v0, 1),
|02, D, X (0,v0,1)|, [02,D,X(0,v,1)],
|0,D2,X(0,00,t)|, |0.D2,X(0,v0,t)|,
D3, X (0,00, )], D3, X(0,v0,t)

are all bounded above a universal positive constant Cg.

32X, 02,D,X, 0,D,0,X, D,0%,X
0,D2,X, D,0,D,X, D?,0,X and D3 , X along the axis of the unperturbed
equatlon

Let us introduce the solutions 03

abc + ‘VO| 50( abc

= S0 6180 Y (o T T T — 20 R T

(a,b,c)
— 2wl (88% — 8167) S (TETL + TEIE) — 205 — sish) S TLILTE
(a,b,c) (a,b,c)
[251%—1— (i — 5{5,1)} ST (JEFETE 4 TR, (A7)

(a,b,c)
with null initial conditions
Jabe(0) = Jape(0) = 0.
It is shown (or with the same arguments) in [8, Lemma 13].

LEMMA A.7. — There exists a positive constant C7 > 0 such that on the
axis, for each t € [0,1], we have

‘ TXTT (07U07 ) 8gxm ( )| < 076’
102, D, X (0,v0,t) — 02, D, X (t)| < Cre,
0, D2, X(0,v9,t) — 0, D2, X (t)| < C
‘vav (071}07 ) nguX( )| < C’75

7€,
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Appendix B. The behaviour of Jacobi fields and applications
B.1. The behaviour of the curvature matrix

In this subsection, we study the behaviour of the curvature matrix. Given
mo € M, vy € I(mp)\{0} and some orthonormal basis { £} = e Eas E,.}
of the tangent space T,, M, let vy(t) be the geodesic with the initial point
mo and the initial velocity cos@FE; + sin6E,. For |0 small enough, let
{e1(0,1),e2(0,1),...,en(0,t)} be the parallel transport along the geodesic
vo(t) with €1(0,0) = cosOF; + sin0Fs, e3(6,0) = —sinOE; + cosF5, and
ei(6,0) = E; for i > 3. Then {e1(0,t),e2(0,1), ...,e,(0,%)} is the parallel
orthonormal moving frame along the geodesic 7o(t) with e1(0,t) = 5o(t).

Let X(0,t) = (X(0,t), X2(0,t),...,X"(0,t)) denote the coordinate of

the geodesic 74 (¢) in the Fermi coordinate system, i.e.
X*0,t) = X*(0, (cos 0,sin 6,0, ...,0),t).

Along the geodesic y4(t), there are two bases in the tangent space: the natural
basis {z2:} and the orthonormal basis {e1,...,e,}. Set (Y7 (0,1)) for the
coordinates of the orthonormal chart {es,...,e,}, i.e. €;(0,¢t) = Yij(Q,t)Bj.
It is clear that Y} (6,t) = X(6,t). Recall the dot stands for the derivative
with respect to ¢ and the prime for the derivative with respect to 6. Given
two real function f(¢) and h(t), we write f(¢t) = B(h(t)) if there exists a
positive constant C' (under control) such that |f(¢)| < C|h(t)| for all ¢ in a
given range. The third derivative of f(¢) with respect to ¢ will be denoted
by f(t). The derivatives of the elements of the n x k matrix-valued function
(a’(0,t)) with respect to ¢ and 6 will be denoted by a’(6, t), a'é- 0,1),...,etc.
For short, we drop the indices x and v if there is no confusion in the context.

B.1.1. More asymptotic behaviour of the geodesic motion

We investigate the geodesic motion. In particular, we study its asymptotic
behaviour near the origin.

LEMMA B.1. — Under the curvature assumptions (1.3) and (1.4) (or
(1.5)) with € < 1, for all t € [0, 7] with T = |vy|, the geodesic motion on the
axis satisfies in Fermi chart

(1) X'(0,) = (0,sint + B(et®), B(et®), ..., B(et*))T,
X'( 1) = (07cost+8(5t2),8(5t2) B(£t2) T
X'(0 t) (0, —sint + B(et), B(et), ..., B(et)T,

where T is the transpose;
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(2) X"(0,t) = (—sintcost + B(et?), B(et?), ..., B(et?))T,
X"(0,t) = (—cos(2t) + B(et?), B(et?), ..., B(ct?))7,
X”(O t) = (4sintcost + B(et), B(et), ..., B(et))T;

(3) X ( 0) = (0, =R%51(0), ..., —Ri5(0))",

X"(0,0) = (—4R}y, (0 )7—43521(0) -, —4R%,(0)".

Proof. — The coordinates of the geodesic exp,,, t(cosE; + sin 0Fy) are
the solution of the following Cauchy problem

X'+ T (X)XIXF =0, (B.1)
X(6,0) =0, X(0,0) = (cosf,sinh,0,...,0)T. '
On the axis, since the Christoffel symbols vanish, we have
X(0,t) = (t,0,...,0)T.
(1). — Differentiating (B.1) with respect to 8, we obtain
X"y O XIXF X' 42T XTI XF =0,
with the initial condition
X"'(0,0) = 0, X"*(0,0) = &.
It follows from (2. 14) and (2.17) that on the axis we have
l 1@
X"+ R X = 0, (B.2)
X'(0,0) =0, X'(0,0) = (0,1,0,...,0)T.

It is clear that X’l(O,t) = 0. For ¢ > 1, we first establish the following
standard estimation.

CramM. — For any t € [0,7] C [0, 7],
max{|X'(0,1)], [ X(0, )]} < e?.

Proof of the Claim. — Let f = |X'|?> + |X'|? with £(0) = 1. The deriva-
tive of f has the form f = 2(RY (X) — R (X))X'*X'P. Recall ¢ < 1
Using the Cauchy-Schwarz inequality, we get f < f. We conclude that
f(t) < et <e™. Thus claim is proved. O

We define X7(t) = (X7 (t),..., X" (t)) so that
X+ R X =0,
X'(0,0) =0, X’(0,0) = (0,1,0,...,0)T.

Denote £ be the difference X'* — X7'. We rewrite the equation (B.2) in the
perturbative form
£+ & = (Rioy — Ria) X', (B.3)
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with the homogeneous initial conditions
£1(0,0) = £4(0,0) = 0.
By the representation formula (2.10), we get

t
E10,1) :Sint/ (R, — Ry)) X “ cossds
0

¢
- cost/ (R}, — Ri, )X “sinsds.
0

which yields by the above claim [£7(0,t)| < 3et?e® for all ¢ € [0, 7]. More
precisely, we have for all ¢ € [0, 7]

3 ., ; 3 . 2
1X7%(0,1) — sint| < ette. IX70.0)] < JetteE, Vi3,

Using (B.3), we have [£(0,t)] < (2me® + 1)et. Therefore,

¢ t
£(0,4) = / £(0,5)ds = B(et2),  £(0,1) = / £(0, 5)ds = B(=t).
0 0
Hence, we prove the first part.
(2). — Differentiating (B.1) twice with respect to 6, we obtain
X" 4+ 9,TH XIXPX"P + 02 T XIXFX'P X'
+ 40,15, XXX 4 oTi (X" XF + XTX'F) =0,
with the initial condition
X"'(0,0)=0, X"'(0,0)=—5.
Using (2.14), (2.16) and (2.17), we get on the axis
X" 4 Rign X" + (VaRigy + ViR ) X X" + 4R, X X7 =0,
X"(0,0) = 0, X"(0,0) = (—1,0,...,0)T.

CrLAM. — There exists a positive universal constant C' such that, for
any t € [0,7] C [0, 7],

max{| X" (0,t)],|X"(0,t)|} < e°".
Proof of the Claim. — Let f(t) = |X"(0,t)|? +|X"(0,t)]?. Then
fi(t) = 2X" X" 42X "X
— 92X X" —9Ri X" X"
—2[(VaRig + ViR )X X" 4 4R, X' X'P] X"
< Cifi(t) + Cn,
which gives fi(t) < C1e“* < e“™. Thus the claim is proved. O
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When i = 1, let fo(t) = X”"(0,¢) + sint cost. Thus
folt) = —ViRb X' “ X" + 4(Rb oy — RY,1) X' X'P
— 4R} X" X'P — 4sintcost
= 4X'*X'™ — 4sintcost + B(et)
= 4X"?X"? — 4sintcost + B(ct)
= 4(X"? —sint) X' + 4(X"? — cost) sint + B(et)
= B(et).

When i > 1, X"" satisfies the following equation
X" 4 X" = (Rl — Ripn) X" - (VaRig + VlR%od)X/aXIB
—4R% XOX'P
with the initial condition
X"*(0,0) = X"(0,0) = 0.
By the representation formula (2.10), we get

X"(0,) = sint/ot [(Rigy — Rin) X" — (VaRig + ViR, )X X"’
— ARG, X' X'P] cos sds
- COSt/t [(7?1041 — R )X" - (vaRli,Bl + Vleal)X/aX/ﬂ
0 — 4R}, X" X'P] sin sds.
Note that R, — Ri,; = B(e), VaRis = B(e), ViRj,, = B(e), R,y =

B(e) and X', X', X" are uniformly bounded shown by two previous claims.
Thus we have X"*(0,t) = B(et). Gathering the above results, we infer

X"(0,t) = (4sintcost,0,...,0)T + B(et).
Integrating this equality, we obtain
X"(0,t) = (—cos(2t),0,...,0)" + B(et?),
X"(0,t) = (—sintcost,0,...,0)" 4+ B(et?).

(3). — Differentiating (B.1) once with respect to 6 and ¢ respectively,
we have
X' 4 2T XIXFXP X 4 9,1 (XIXEXP + XIXEXP 4+ XIXFX'P)

1 20,T X XFXP 4 2T, (X XF + X9XR) = 0.
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Using the facts X (0,0)=(1,0,...,0)", X’(0,0)=0,X'(0,0)=(0,1,0,...,0)
and alrfj(()) = 0 and together with (2.17), we get

X'1(0,0) = —Rjy, (0).

Differentiating (B.1) twice with respect to 6 and once with respect to ¢
respectively

X' 92,1, XIXEXP X 4 g, (29 XEXP 1 XTXRXP)

+ O T XIXEXP XX 4207 T (XVXFEXP X+ XTXEXPX'Y)
+ 40,
+20, T (XIXF 4 XX XP 4 o, (X XF 4 X1 XF 42X X0 = o,

2 T4 X XFXP X 4 40, T (X XEXP 4+ X XEXP 4+ XITXRXP)

Again by (2.17) and toget.her with the facts X (0, 0) =(1,0,...,0)", X'(0,0)=
X"(0,0) = (0,...,0)T, X’(0,0) = (0,1,0...,0)T, X"(0,0) = (—1,0...,0)T
and I'};(0) = 01T} ()—0,weget

X71(0,0) = —4R35:(0).
Finally, the Lemma is proved. ]

B.1.2. The orthonormal basis motion

We write e;(6,t) = Y7 (6,1)d; for all i. Since the orthonormal moving
basis {ej,...,e,} is parallel, we consider its equation in Fermi chart
V4T (X)X'Y) =0, (B.4)
with the initial condition

cosf —sinf
Y(6,0) = |sinf cosf
In—2

We remark when j is equal to 1, Y (6,t) = X%(0,t). It is obvious that
Y (0,t) = I,.

LEMMA B.2. — Under the curvature assumptions (1.3) and (1.4) (or
(1.5)) with e < 1, then in the Fermi chart, the derivatives of the basis motion
along the azis satisfy the following estimates, ¥V t € |0, 7] with T = |vy|

(1) Y"%(0,t) = (5502 — 6%}) cost + B(et?),

Y75(0,t) = (6502 — 6561) sint + B(et);
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(2) Y"5(0,t) = —oi6} cos(2t) — 0307 cos” t
+ $(8% — 6562 — 6]6%) sin® t + B(et?),
Y7(0,t) = 4616} sint cost + 26%6? sint cost
+ %(5; — 0502 — 616%) sint cost + B(et);
(3) Y74(0,0) =0,
. , ,
Y"”:(0,0) = 25]2‘R2121(0) - %(1 + 5531') 52;(0).
Proof. —
(1). — Differentiating equation (B.4) with respect to 6, we get
Y+ 0,0, XIXPYF 4 Ty (X1YF + X'y =0,
which implies by Lemma 2.5
Y+ R, X' =0,
with initial condition _
Y’;(0,0) = 535} — 5}5?.

Thus, we infer

Y75(0,t) = =R}, X'
:( Z’al - ;’al)X/a - ;‘alX/a'

By Lemma B.1, we have
Y75(0,1) = R X' + B(et)
= —R§21X’2 + B(et)
= (0167 — 6507 ) sint + B(et).
Integrating this equality, we deduce

t
Y'j(o,t):y'j(o,o)+/0 Y7 (0,5) ds

1
= 050; — 6107 + (6107 — 535})/0 sin s ds + B(et?)
= (5;5;- - 6{(5?-) cost + B(et?).

(2). — Differentiating equation (B.4) twice with respect to the parame-
ter 6, we obtain

Y7 420,10, XIXPY'Y 4 0,10, XX Y E 420,14, X XPYE
+ 82T XX XYE 4 T (XMYE 42Xy 4+ XYY = o,
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with the initial condition
Y"5(0,0) = —616; — 6507
which yields on the axis
Y7 4 2R XY 4 R X 20,1, XX 4 02,T XX = 0,
We consider the cases j > 1. Using (2.16), (2.17) and Lemma B.1, we get

[\)

Y7 = 2R XY — S(Ri; + RLs) X' X8 4+ Bet)

N W

= _2E§ca1X,aY/§ o 7(723041' + R;I'aﬁ)XIQX/B + B(et)

w

— ’ ’ 2 . —. .
= _25]2‘ I X7Yy — g( 525 + R}22)X/2X/2 + B(et)
_ 2 _
= 25J2-R1121 sintcost — §R§2j sint cost + B(et)
_ 2
= 25%5? sintcost + §(5; - 55632) sint cost + B(et).

which gives by integration

. _ t
Y”j((),t) :Y//j(0,0)+/0 Y”j(O,s) ds

¢
—636? + 2635?/ sin s cos s ds
0

¢
+ %(6; - 635?)/ sin s cos sds + B(et?)
0

i i 52 s Lo i .
= —626?- + (525? sin?t + §(5j - 626?-) sin? t + B(et?)
7 1 i i .
= 7525]24 cos?t + g(dj - 525]2) sin?t + B(et?).
Similarly, when j = 1, it follows from Lemmas 2.5 and B.1
Y7 = —2R) XY — RL XY — 20,75, XX 4 92T, X X1
= —4Rby, sint cost + B(et?)
= —4R%y,(0)sint cost + B(et)
= 46% sint cost + B(et)
Recalling the initial condition Y ’i(O, 0) = —dt, this yields
Y (0,) = — cos 2t6% + B(et?).
We prove (2).

- 391 —



Yuxin Ge and Jian Ye

(3). — The first part comes directly (2).

For the second part, differentiating equation (B.4) twice with respect to
0 and once with respect to ¢ respectively

Y7 + 20, Tia X XPXY'E 4 20,T (XIXPYE £ XIXPYE 4 XIXTYT)
+a2 XpX//qu: _|_a FZ ( X//pyk +X X”ka +X X”ka)

4 282 le/lXpX/q}/jk 4 2apr’;€l (X/ X/pyjk‘ 4 X/lX/pyjk 4 X/lX/pyjk)
+05, leXaX”’X’qW

+82 ( lequYk +X XIpX/qu +X lequyk +X lequYk)
+ 9, (XY 42Xy 4 Xy X

NRE AT NS S S OSSO W
Combining (2.17) with the relations X(0,0) = (1,0,...,0), X’(0,0) =
X"(0,0)=(0,...,0)T, X'(0,0) = (0,1,0,...,0)T, X”(0,0) = (-1,0,...,0)7T,

Y (0,0) = I, and I'};(0) = &, T%;(0) = 0, we get
Y(0,0) = —2Ri,, (0)Y"5(0,0) — 20,T%.(0)

; i i 2 ;
= _251‘R221(0) + 2532‘R121(0) - 25]1‘R221(0) - 5(1 - 6]1‘)R22j(0)
2

5 Rjy,(0) + 252 191(0) — 3 32]'(0)
2
= 252 121( ) — 3(1 +56 ) 223(0)
We complete the proof of Lemma B.2. O

B.1.3. The behaviour of curvature matrix

In this subsection, we take account of the derivatives of the curvature
matrix. Combining (2.6) and equality “5(t) = e1(6,t), by the anti-symmetry
of the Riemann curvature tensor, R;;(,t) = 0 when i = 1 or j = 1. Our
main result in this subsection can be read as

PROPOSITION B.3. — Under the curvature assumptions (1.3) and (1.4)
(or (1.5)) with € < 1, then in the Fermi chart, we have on the axis: for all
t € [0,7]) with 7 = |vp

(1) Rij(0,t) = V1 Ry1;(X(0,1)),

R};(0,t) = (Ruigj + Rujoi + Ri216} + R12115 )cost
+ VaRy;sint + B(et?);
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(2) Wheni,j> 1,
R;;(0,t) = Vi1 Ruiny(X(0,1)),
R};(0,t) = (ViRuizj + ViRij2i + VaRiy) cost + Bet),
R (0,t) = [2R2i2; — 2R1i1; + 02 Ri21; + 5]2R121i + 26} R122;
+ 25]1-R122i + 2R12126i15}] COS2 t
+ (=Vi1Rui1j + 2VaRoi; + 2VaRoj1; + 2V R121:0}
+ 2V2R121j5}) sintcost + B(et?);
(3) When i,j > 1,
R5(0,0) = 2V Rai2(0) — 3V 1 R1i15(0) + 67 V1 R121(0)
+ 5J2V1R121i (O) + 25}V1R122j (O) + 25}V1R122i (0)
+ 2V1R1212(0)5i15} + 2V R21;(0) + 2V2Ry,;1,(0)
+ 2VQR1211'(0)(5]1- + 2V2R121j (0)53,
R;Ij (07 0) = - [2R2i2j (0) - 2]%11'1]' (0) + 6l‘2R121j (0) + 6j2R121i (0)
+ 2(5}R122j (0) + 2(5]1R122i (0) + 2R1212 (0)511(5}]
+ [2V1 V1 R2i2;(0) — 4V1 V1 R141;(0) + 62V1 V1 R121;(0)
+ 5]2-V1V1R1212‘ (O) + 252-1V1V1R122j (0)
+ 25;-V1V1R1227:(0) + 2V1V1R1212(0)5}5}]
+2 [2V1V2R21‘1j(0)+2V1V2R2j1i(0)+2V1V2R121i(0)5j1'
+ 2V1V2R121j (0)511] + B(E)
= B(e).
Proof. — As we see R;;(0,t) =0 when i =1 or j = 1, we study the cases
i,j > 1.
Recall e;(0,t) = Y7 (8,1)9; ¥ i, in particular e; (8, t) = X7(,1)d;. By (2.6),
we can write
Rij (9, t) = <R(€i(9, t), 61(0, t))el(ﬁ, t), 6]‘(9, t)>
= Racba XY XV} (B.5)
_ RabchaY;‘bXC}/jd-
Here the last equality follows from the symmetry of the Riemann curvature
tensor.
(1). — Differentiating (B.5) with respect to ¢, we deduce
Rij(t?, t) = 6pRabchaY;bXCY}pr -+ Rabcdﬁt (XaY;bXCY}d)
= OpRapea XY XY XP
+Rabcd(XaY;-bXCY—jd+XaY;—bXCY}d+XaY;-bXCY—jd+XaY;-bXCY}d).
Using the relations X (0,t) = (¢,0,...,0)T,Y(0,t) = I,,, we infer on the axis

R;;(0,t) = 01 R1;1;(X(0,1)).
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Recall the first covariant derivative formula
_ h h h h
VpRabed = OpRabea — Upa Bived — UppRaned — UpeRavha — UpgRaven-

Since the Christoffel symbols vanish identically on the axis, we have

Rij (0, t) = v1R1i1j~ (BG)
Differentiating (B.5) with respect to 6, we obtain
R;j (97 t)
—_ 8pRabchaYich}/jdX/p 4 Rabcdae (Xa}/ibXCde)
— 8pRabchaYich}/jdX/p
+Rabcd(X,a)/ibXCde +XGY/?XC}/jd +Xa)/ibX/C)/tjd +Xa}/ichyl‘;l).

(B.7)

Using the relations X (0,¢) = (£,0,...,0)7, X" (0,t) = 0,Y(0,t) = I,,, we
infer
R;;(0,t) = 6aR1i1jXO/ + Railea/ + lejYia/ + Rliana, + Rlilay}a/
= VaRlileal + (Rai1j + Rliozj)Xa/ + R1a1jYia/ + Rlilan/7

since the Christoffel symbols vanish identically on the axis. From Lemma B.1
and Lemma B.2, we get

R/ij (O,t) = VQRlile/a =+ (Railj =+ Rliaj)X/a + B(€t2)
= VQRlile/Q + (R2i; + R1i2j)X'2 + B(et?)
= VQRMU sint + (R1i2j + leQi) cost + B(€t2).

2). Differentiating (B.6) with respect to ¢ and using the relation
t

( _
X(0,t) = (¢,0,...,0)T, we get

Rij(0,t) = 01V1 Ry (X (0,1)) = V3, Ryt (X(0,1)),

since the Christoffel symbols vanish identically on the axis. Differentiat-
ing (B.5) with respect to 6 and ¢ respectively, there holds
R;’j (97 t)
— 82qRabchaYichY}quX/p + 8pRabcha}/ibXC)/jdX/p
+ 8pRabcd8t (XaY;bXCde)X/p + 6pRabcd89 (XaYibXCde)Xp
+ Rabcdage (XaYibXCde)
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= 02 Rabea XY XVIXUX" + 0, Rapea X Y XY X'P
4 3pRabcd(XaYichde i Xa}‘/ichde 4 X“YibXCde T Xa)/ibXC)‘/jd)X/P
+ Oy Rapea (XY XY XY XY+ XV X Y+ X0V XY ]) XP
+ Rabcd (X/a}/ichY'jd + X/aY;bXCde + Xla}/ichY}d 4 X/a}/ichY}d
+ XYIXOY 4 XY XY+ XY XY 4+ XY Xy
+ Xa)/ibX/Cde JrXva}'/ib)'(/cyjd + Xa}'/ibX/C}/jd + Xa)/ibX/chd

+ Xa}/ichyl? +Xa5};chyl;i _|_ Xa}/ichylj + Xa}/ibXCY/?).

Using the relations X (0,t) = (¢,0,...,0)7, X'1(0,t) = 0,Y(0,t) = I, we
infer on the axis
R(0,t) = 93, Rij; X' + 0aR1i1; X' + 01 Rait; X' + 01 R1a1, Y5
+ 01 Ryin; X' + alRlilaY/? + RaﬂjX’a
+ Rlale/ia + Rlianla + Rlilay/?
= 07 R1i; X' + (OaRii1j + 01 Ruinj + 01 Ruinj) X'

+ (Ras1j + Rlz’ozj)X,a + O Ria1 Y5 + alRlilaY/?

+ Ria1;Y'; + RiaY';.
Using the fact VpRaped = OpRabeqd o1 the axis, it follows from Lemma B.1
and Lemma B.2 that on the axis there holds

03, Rabea = Vi, Rabed,
and
R (0,8) = V3, Ru; X" + (VaRisj + ViRaitj + ViRiiag) X'

+ (Rai1j + Rliaj)X/a + ViRia1,Y's + VlRlilaY/?
+ Rlaljyl? + Rlilayl?

= v%aRlile/a + (VR + ViRai1j + leliaj)X/a
+ (Rai1j + Ruinj)X'" + B(et)

= v%leile/Q + (VaR1i1; + ViRoia, + lelin)X/2
+ (Rai1j + R1i2j)X/2 + B(et)

= Vi Riujsint + (VaRyaj + ViRoinj + ViRij) cost
— (Rai1; + Ruizj) sint + B(et)

= (V1Rii2j + ViR1j2; + VaRy1j) cost + Blet).

Here in the last equality we used the fact that Ri,0; = B(e).
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Differentiating (B.5) twice with respect to 0, we get
R} (6,1)
_ 8§qRabch“Y;chY}dX’pX’q n apRabcha}/ibXCY}pr”
+20,RapedOs (XaYichnd)X/p + RapeaOiy (XaYibXCde)
= 02 Rabea X VP XY X" X' + 0y Rapea XY XV X"
+20p Rapea (XY XY+ XY XY+ XOVPX YA+ XV XY X"
+ Rapea(X"OYP XY 42X 7Y XY 4 2X VP XY 4 2X 0y XY ]
+XOYIXY 42Xy XY 42Xy XY
+ XOVPX"eYd 4 2X VP XY + XOYPXeY").

Applying the relations X (0,t) = (¢,0,...,0)7, X’(0,t) = 0,Y(0,t) = I,,,
we deduce on the axis

RI0,8) = 025 Ruin; X' X" + 0, Ruin; X" + 204 Rpin; X' X0
+ 20, Rip1; X' Y] + 200 Ruigi X'O X% + 20, Ruinp XY
+ Rainj X" + 2Rap1j XY} + 2Raigj X'* X' + 2Rainp X'°Y ")
+ R1ﬂ1jY”f + ZRwan/aY/f + 2R1a1/3Y/?Y'? + Ryjqj X"
+ QlebX/aY/? + RulﬂY”?

= 5 R1; X" X" 4 8, R1i1; X" + 20 Rpinj + OaRuipy) X'* X'

+2(0uRip1; XY + 0uR1ing X'“Y"]) + (Rainj + Rija) X"
+2R0aip; X' X 4 2(Rapi; XY} + Riiap X'°Y"))
+2(RaingX'*Y"] + Ripa; X'°Y"7)
+2R101sY" S Y] 4 Rip1; Y] + RinpY"’.

It is clear that on the axis V,Raped = OpRaped- On the other hand, using
Lemma 2.5, we deduce on the axis

Qs Ring = VigRing + 0aTh g Ryinj + 0ol 3 Rupi;
+ aogl—‘lfﬁRlipj + 5(11"?5311‘1;)
=V2sRu, + 9ol 5 (Rping + Ruips)
+ 8arfﬂRlp1j + 5QF§5Rli1p
= VagRuinj + Rp,, (Ruipj + Rujpi)

1 1
+ E(R?aﬂ + Rgai)Rlplj + g(Rﬁaﬁ + Rgaj)Rlilp'
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Thus 82 gRii1; are uniformly bounded on the axis. Therefore

Ri;(0,1) = aglﬁRMle/aX/ﬁ+VpRli1jX”p+2(vaRﬁilj+vaR1iﬁj)X/aX/B
+ Z(VaRlﬁle/aY’iB + VQRlﬂﬁX/aY’?) + (Railj + lej)X//a
+ 2R X' X" 4 2(Rap; XY} + Riiap X'°Y"))
+ 2(Rains X Y] + Ripga; X'°Y']) + 2R1apY 7]
+ R1ﬂ1jyﬂf + Rqu”?.

With the help of Lemma 2.5 and Lemma B.1, we obtain

R;/]-(OJ) = 3§2R111jX/2X'2 + lelz’leNl +2(VaRgi1; + V2R1z’2j)X/2X/2

+ 2R1i1jXH1 + 2R2i2jX/2X/2
+ 2(52iR211jX/2Y,é + R1i2162jXI2Y/;)
+ Ry Y} + ij-Y”;j + B(et?)

= 3§2R1i1j sin®t — ViRyi1;sintcost
+2(V2R2i1j + VaRy9j) sint cost — 2R1;1; cos(2t) + 2Ra;0; cos? t
+ 2(02; + d2;)Rui1j cos’t — (02i + 02;)Rai1j cos? t
+ %(61-3 + 03+ -+ Gin + 8jn)Rujry sin® t + B(et?)

= 03y Ryj1jsin? t + (=V1Ryi1j + 2VaRoi1j + 2V Ryi0j) sint cost
— 2Rq;15 cos(2t) + 2Ra;; cos® t + (Jo; + d2;)Rai1; cos®t

1
+ g(csig, + 683+ + Gin + 0jn) Rugry sin® t + B(et?).

In view of (2.17) and by the formula for the second covariant derivative, we
have on the axis

D3y R1i1;

= V§2R1i1j+82FgIRm‘1j + 82ngR1p1j + agrglRlipj + agrijlilp

1 1

3 3
8 1

= _gRlilj + 5(522' + 625)Rii1j + B(e).

(B.8)

P . p .
R22iR1P1J + R22j Rlzlp

= V3 Rii1j + Rbyy (Rpirj + Ruips) +
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Therefore, we infer on the axis
8 1
R;/j (0, t) = 7§Rlﬂj SiIl2 t+ 5(521 + 52j)R1i1j sin2 t
+ (—V1R1i1j + 2VQR21'1]‘ + QVQRUQJ') sintcost
- 2R1i1j COS(2t) + 2R2i2j cos®t + ((522 + (52j)R1i1j cos®t
1
+ §(5i3 + 834+ + Oin + 6jn) Ruiny sin® t + B(et?).
Since for i,7 > 1,0;3+ -+ i = 1 —(522‘,(53‘34-"'—1-5]'” =1 —52]‘ so that
there holds on the axis
8 . 1 .
R;;(O, t) = 7§R1i1j Sll’l2 t+ 3(521 + 52j)Rlilj SlIl2 t
+ (_lelilj + 2V2R2i1j + 2V2R1i2j) sintcost
- 2R1i1j COS(Zt) + 2R2i2j COS2 t+ (52@ + 52j)R1i1j COS2 t

+ %(2 — 02; — 025)Ri41; sin?t + B(et?)
= —2Ry;1; sin?t + (=V1Ryi15 + 2V2Rai15 + 2V Ry4o5) sint cost
— 2Ry415 €os(2t) 4+ 2Ra;9; cos®t + (02i + 025)Rui1j cos®t + B({—:t2)
= 2(Raizj — Riij) cos? t
+ (=V1R1i1j + 2VaRy2; + 2Va Ry jo;) sint cost
+ (82i + 025) Ruirj cos t + B(et?).
(3). — It is a direct consequence of the second part. This ends the proof

of the Proposition B.3. O

As a direct consequence of Proposition B.3, we have the following result.

COROLLARY B.4. — Under the curvature assumptions (1.3) and (1.4)
(or (1.5)) with € < 1, then in the Fermi chart, we have on the axis: for all
t € [0, 7] with T = ||

: 0 0
1) R'(0,0) = ;
(1) #(0,0) [0 ViRii2; + ViRijoi + V2R1i1j]

(2) R(0,1) = {0 B?s)], R(0,1) = [g B(()E)], R(0,1) = B B?E)].

o

B.1.4. Asymptotic behaviour near the origin

In this part, we deduce the asymptotic behavior of the C-curvature near
the origin. We first take account of the asymptotic behavior of the coefficient

a11 which involves S.
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LEMMA B.5. — Under the curvature assumptions (1.3) and (1.4) (or
(1.5)) with € < 1, we have on the axis for smallt >0
t2 3. t
5(0,t) =1, — 3 3 1(0,0) = 5 1(0;0) - wAT O(et* + 1), (B.9)
. 2 2

$(0.0) = ~2tR(0,0) - 2 20,0) - E@A L0+, (B.10)
5(0,t) = —%R(O, 0) — 5R(O,O) — 1—5t2A + O(et? + 1), (B.11)

t? 3.
5'(0,t) = —gR’(0,0) - ﬁR’(o, 0) + O(et* + 1%), (B.12)

. 2 2.
§1(0,6) = S #R(0,0) - %R’(0,0) Ot + 1), (B.13)

t? 3 .
S"(0,t) = —gR”(O, 0) — ER”(o,o) + O(et* +19). (B.14)

where A = [8 Ino,l] and R is given by (2.6) (see also Section B.1.3)

Remark B.6. — The formula (B.9) can also recover the expression of
the C-curvature in the special case vy = 0. Using a Riemannian normal
coordinate system at mg, we get from (1.1),

3 d2
5| (S0mom (0.9

= <R(O’O)§>€> = Rmo(f’nafan)-

Proof. — Let J(t) be the solution of the following second order equation

C(mo,0)(&,n) =

Ja(t) + R(0,0)J,(t) =0, Ya=0,1
with the initial conditions
To(0) =0, Jo(0) = I,
J1(0) = I, J1(0) = 0.
From the representation formula (2.9), we derive

B0 = To(0) + 7o) [ Tr(6)R0,0) ~ B, 9} b(s)as

0
t
— 70 [ T5100.0) - RO s
0
It follows from the Taylor formula and Proposition B.3,
R(0,t) = R(0,0) + tR(0,0) + O(et?).
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On the other hand, we have Jo(t) = tI,, — %R(O7 0)+ %(R(O, 0))2 +O(t")
so that

Jo(0,8) = Jo(t) — %R(o, 0) 4 O(et?)

3 . 5
=tI, — %R(o 0) — —R(O 0) + 120 ——(R(0,0))? + O(t® +17)
t3 4
= —_ — —_— 714 5
t, — = R(0,0) - R(O 0) + 155 A+ Oet” +1 n.

Here we use the fact (R(0,0))? = A + O(e). Similarly, we have
2 3 ¢
Ji(0,t) =1, — ER(O, 0) — ER(o, 0) + At O(et* + ).

Gathering the above estimates, we infer

S(0,t) = tJo(0,)"1J1(0,1)

t3 4 5 .
—t[ﬂn—GR(O,O) —R(O 0)+ﬁA+O (et> +1 }

2 t3

X {In - t—R(070) G —R(0,0) + A + O(et* + t6)}

3
[I + R(o 0)+t R(0, O)+Lt4A+O 5t4+t6}

6 360
t2 t3 4
X [In - 5 R(0,0) - : —R(0,0) + oAt O(et* +t° }
t2 t3 4
=1, - §R(o, 0) — —R(o 0) — EA + O(et* +19).

As the term S involves J; *Jy and Jy 'J;, we cosider the expansion of J; ' .Jy
and J0’1J1. Differentiating (2.5) with respect to t, Jy(0,t) satisfies

jo + Rjo = —RJ(),
Jo(0) = I,, Jo(0) =0.

With the help of the representation formula (2.9) again, we obtain
t t
Jo(0,t) = J1(0,t) — JO(O,t)/ JiRJyds + J1(0,t)/ JiRJyds,

0 0

which implies

. t . t .
tJy Jo(0,t) = tJy tJ1(0,1) — t/ JiRJgds +tJy T, (o,t)/ JiRJyds.

0 0
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It follows from Proposition B.3
t
R(0,t) = R(0,0) +/ R(0,5)ds
0
. t
= R(0,0) +/ V2, R(0,s)ds
0

= R(0,0) + O(et).

Hence, we deduce

. 2 t3 . 4
tJy 1 Jo(0,t) = I, — %R(O, 0) — ZR(o, 0) — %A +O(et* +%). (B.15)
Similarly, we infer
. t .
JytJi(0,t) = —R(0,0) — 5R(o, 0) + O(et? +t1). (B.16)

Recall the first and second derivatives of S with respect to ¢
S = (I, —tJy Jo)Jy Ly + tJy L,
S=2J5 = 2tJy o dy gy + 205 o (t Ty o — 1) Ty
Together with (B.15) and (B.16), we deduce (B.10) and (B.11).
We consider J, 'J§, Jy ' J;. J.(0,t) satisfies the following equations
{Jg +RJ =-RJ, VYa=01,
J!(0,0) =0=J.(0,0).

By the representation formula (2.9), we infer V ¢
¢ ¢
Ji(0,t) = fJo(O,t)/ JiR' J,(0,5)ds + Jl((),t)/ JOR' J,(0,s)ds. (B.17)
0 0
By Proposition B.3, we have

R'(0,t) = R'(0,0) + tR'(0,0) + O(ct?).
Hence, we infer
t t
Jy L p(0,t) = —/ JiR'J, ds + ngJl(o,t)/ JyR J,ds (B.18)

0 0

t2 3.
= fER/(O,O) - ﬁR/(O,O) + O(et* +5).

With the same arguments, we get
t t? .
JytT(0,t) = —§R’(O, 0) — ER’(o, 0) + O(et® + t9). (B.19)
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On the other hand §" = —tJy ' J5Jy 'y + tJy ' J{. Together with (B.18)
and (B.19), we prove (B.12). With the same arguments, we estimate on the
axis

2
Jy L (0,t) = —%R’(O, 0) — %R’(o, 0) 4 O(et® + t°), (B.20)
JLJ1(0,4) = —R'(0,0) - %R’(0,0) O+, (B.21)

which yields (B.13).

It is obvious the J!(0,t) for a = 1,2 satisfies the following equations

J!+RJ] =—R"J,—2R'J],
Ji(0) = 0= J;(0).

Applying the representation formula (2.9), we infer on the axis

t
J7(0,4) = —Jo(0, 1) / JH(R' T, + 2R'T)(0, ) ds
0
t
+10,4) / (R"J. + 2R'J))(0,5)ds.  (B.22)
0

By Proposition B.3, we have R”(0,t) = R"(0) + tR"(0) + O(t?) so that
Jo 15 (0,)
t t
- —/ TH(R Ty + 2R 7)) ds + (o 1)(0, 1) / (R"J, + 2R J) ds
0 0

t2 .
= —ER”(QO) — ER”(o, 0) + O(et* +1%). (B.23)

Similarly, we have
-1 g 4 7 tz o 4 3 5
JoHI1(0.1) = =5 R'(0,0) = £ R"(0,0) + Oet? +1°). (B.24)

On the other hand, we remark S” = 2tJy ' JiJy  JoJy — tJy Ty Jy Ty —
2tJ5  Jb Ty T+t Jy Y. Together with (B.23) and (B.24), we deduce (B.14).
We finish the proof of Lemma B.5. ]

As consequences of Lemma B.5, the coefficients ai1,a12 and aq2 in the
C-curvature (3.5) have the following expansion
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COROLLARY B.7. — Under the same assumptions as in Lemma B.5, we
have on the axis

all(mOa o, f) = R(é-v Elv 67 El)
3
+ ZT(V131212§§ +2V1R1213685 + Vi Ri31383) (B.25)

FIPEHE) + 06T + )@ + )
a12(m07 o, 5) = 2R(£v E17 57 EQ)

1
+7 {2V2R1212§§ + (ViR1223 + V2 R1213)&263
1
+ (V1R1323 + 2V231313)§§ (B.26)
— ViRi2126162 — V1R1213§1§3}

- 2725152 +O0(em* + ) (& + & + &1 + &1&).
a22(m05 o, 5) = R(fa E27 ga EQ)

1 1
+ 7 |:4V1R1212£% — §V2R1212§1£2

1 1
— §(V1R1223 +VaRi913)61€3+ §V2R122352§3 (B.27)

1 1
+ <4V1R2323 + 2V2R1323>§§]

2
+ %5(6% + 24262+ O(em® + ).

Proof. — We study first the coefficients a1;. In view of (B.11), we calcu-
late

3 . 2
all(mOa o, f) = <R(O7 0)57 §> + ZT<R(O7 O)Ea €> + 57—2 <A£a €>
+O0(er® + 746 + £3)
= Ri121285 + 2R12136283 + Ri313635
+ ZT(VlRmmfg + 2V Ri2136283 + V1 R131383)
+ TG+ )+ Ol + TG + &)
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= R(§, Ev, &, En)
+ ZT(V1R1212£§ + 2V 1 R12138283 + V1R1313§§)
+EE + D)+ 0l + TG +8D)
Therefore, we prove (B.25).

Now we calculate the coefficients a12. Noting that (£, P¢) = 0, thus the

coefficient a1 takes the form
3, . 6
—= (56,6 — =
T T

axz(mo, v, €) = (36, PA€) + {5660+ (S~ )6 PAe).

Plugging (B.9), (B.10), (B.12) and (B.13) into the above expression, we get

aralmo, v, ) = 2(R(0)6,€) + S (R (0)6 €) + HR(O)E, P6)
+ Sr(RO0)€, PE) + (A€ PE) — (R(0)6,¢)
- TR(0).6) - 2AR0)E, P1e) - T (R(0)6, PHe)
— 5T AL P + O + (6 + & + L6 + 6&)
= (R(0)5.€) + 2RO)€, P¢)

T(;<R'(0>s7£> + (R(0), PL§>)

o =

2
+ 372<A§, PLE) 4+ O(et? +t4) (&3 + €2 + 616 + &163).
In view of Proposition B.3, we get

a12(mo, vo, €) = 2R1923€2€3 + 2R139362 + 2(—Ri212&1 62 — Ri01361&3)

1
+7 {2V2R1212€§ + (ViR1223 + V2 R1213)6283
1
+ (V1R1323 + 2V231313>§§
— ViR121261&2 — V1R1213§1§3}

~ 26 + O + )@ + G+ 66 +66),

which gives the desired result (B.26). Now we consider the coefficient ags.
We remark that (P1¢, PLE) = (€, PE) so that the coefficient aqo takes the
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form

3 " 3 ¢ 6 !
a22(m0al/0,£) = _ﬁ<s §7€> - E<S§a§> - ﬁ<S €7PL§>
3 3
Plugging (B.9), (B.10), (B.12) and (B.14) into the above expression, we get

(im0, 10,€) = 5(R"(0)6,€) + ZUR(0)6,€) + (R(OVE,&) + T (R(0)€,8)

+ %T%Ag,@ +2(R/(0)¢, &) + S (R (0)¢, P*¢)
2

+{RO)PHE,PRE) + T(RO)PE, PE) + (AP, PYe)

T, - 72
- TURO)E, P - =

+ (R(0)PHE, PHE) — (R(0)E, PE)
+

— (R(0)€, P€)
1

(A€, PE) + O(er? + 14)

(
| SUEO6,€) + SR (0)6 PE) + S(R0)6€)

+ L R0, Pe)

(RO)PHE, PHe) — o

NG

2
+ = [2(A6,€) + (AP1E, PYe) — (Ag, PO + O(er® + 7).

By Proposition B.3, we obtain

azz(mo, vo, €) = —Ri21362&3 + (—Ri313 + Ra323)&3 — 2R122361&3 + Ri21265
+ 2R191360€3 + Ri31365 + Ri21267 — (Ri21265 + Ri2136083)

1
+ 7{8 [—VlRulzfg + 4(—V1iRi213 + VaR1223)6283

+ (2V1Ra323 — 3V1Ri313 + 4V2R1323)§§}

1
—-3 [V2R1212§1€2 + (V1R1223 + V2R1213)§1§3}

3
+ é(v131212§§ + 2V Ri2136283 + V1 R131383)

1 1
+ ZV1R1212@ - Z(VlRlzufg + V1R1213§2§3)}

2
+ (26 426 -8+ &)+ 0(er® + )
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= Ri1212&] — 2R1223&1&3 + Ra303&3

1 1
+7 [4V1R1212£f - §V23121251§2

1 1
- §(V1R1223 + VaR1213)6163 + §V2Ru23§2§3

1 1
+ <4V132323 + 2V2Rl323>€§]
-2
+ @+ E+28) + 0 +7Y),

which yields the desired (B.27). Therefore, we prove the result. |

B.2. The inverse of the Hessian of the squared distance near the
focalization

In this subsection we consider the approximation of the inverse of the
squared distance and the associated derivatives.

PROPOSITION B.8. — Let (M,g) be a closed n-dimensional Riemann-
tan manifold satisfying (1.3) and (1.4) (or (1.5)) with ¢ small enough. Set
(mo, o) € NoCut, |vg| > %”. Let = be the Fermi coordinate system associ-
ated to the geodesic exp,, tvo for t € [0,1] and v be the fiber coordinates
of TM — M naturally associated to x. Then there exist positive numbers
~v1,Cs > 0 such that for all e < 71, we have

(1) |8~ (mo,v0,1) = S (mo, v0,1)| < Cse;

(2) |81~S_1(m0,l/0, 1) — axg_l(mo,llo, 1)‘ < Cge,
|DUS_1(m0’V07 1) - Dvg_l(mmVo, 1)| < Cge;

(3) 102,8*(mo,10,1) — 82,8 1 (mo, 10, 1)| < Cse,
|8IDUS*1(m0,1/0, 1) — 8EDU§*1(mO, o, ].)| < Cg{-:,
|D312571(m07’/03 1) - D2 571(m071/0, 1)| < 085.

vU

Proof. — Thanks to Lemma A.1 and Lemma A.2, 9, X (mg, vp,1) is in-
versible provided |vp| > ?ﬂf and € small enough. We state

Sil(mOa o, 1) = (8rX(m0a o, 1))71DUX(m07 o, 1)

Thus, the desired results yield from Lemmas A.1, A.2; A.4, A.5, A.6 and A.7.
Finally, we prove Proposition B.8. ]
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B.3. Perturbative calculation of the Hessian of the squared dis-
tance

PROPOSITION B.9. — Let (M, g) be a closed n-dimensional Riemannian
manifold satisfying (1.3) and (1.4) (or (1.5)) with € < . Given any da €
(3mw/4,m), let (mo,vp) € NoCut with 7 = || < 62. Assume v is small
enough such that do < tgp(mo,vo) and

ol 1
sinfvg| " T 4vn—1

Then there exists a positive constant C > 1 independent of (mq, vo,7y) such
that

4 4 4
§-81<C=7, 1§-81<C=5=7, [S-8<C=5, (B.2S)
sin® 7 sin® 7 sm T

! T4 S/ T4 1" 7-5
19| < C—5—7, [8|<C—5—7, [8"]<C—5—. (B.29)
sm- T sm- T sin® 7

Proof. — It is known that [8, Section 2]

2
_ = T
\Jot =I5 <4\/n1(sim> 5. (B.30)
I < 2vn— 181;. (B.31)

We adapt the proof in [8]. We investigate S — S. From the expression of S,
we have

§— 8 =2(J5t — Iy )y + 205 (Jy — ) — 24(Jg = Ty ) dedg LA
— 2T (Jo — Jo) Iyt dy — 205 M Jo(Jg = )0
— oty oy Ny = Jy) + 26T — Ty Yoy e dg
+ 205 (Jo — Jo)Jg oy W + 2605 o (gt = Jg ) dody
+ 2ty o dy Mo — Jo) g My + 260y Yoy o (Jy = Jg A
+ 2t d5 o dg Yo dg Ty — J1) — 26(Jgt — T Yo dg L
— 2T (o — Jo) Iyt Iy — 2T o (Jg = T )y
— 2T T dg My — Jy) + Tyt — TN+ T (= ).

Together with (B.30), (B.31) and Lemmas A.1 and A.2, we infer the first
estimate in (B.28). With the same arguments, we get the last two esti-
mates in (B.28). On the other hand, using the representation formula (B.17)
and (B.22) and Proposition B.3, we get |J.| = B(ry), |J|= B(ry),
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\j6| = B(77) for a = 0, 1. From the expression of S’, 5", ", we get the desired
estimates in (B.29). Therefore, Proposition B.9 is proved. |
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