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On equivalence of singularities of second order linear
differential equations by point transformations (∗)

Martin Klimeš (1)

ABSTRACT. — The article provides a local classification of singularities of mero-
morphic second order linear ordinary differential equations with respect to ana-
lytic/meromorphic linear point transformations, that is, transformations of both the
unknown function and of the independent variable. In particular, it is shown that
under a non-degeneracy condition two linear differential equations are analytically
equivalent if and only if the associated companion systems are analytically equiva-
lent as systems. Also the Lie algebras of analytic linear infinitesimal symmetries of
the singularities are determined.

RÉSUMÉ. — L’article propose une classification locale des singularités des équa-
tions différentielles linéaires du second ordre aux coefficients méromorphes par rap-
port aux transformations ponctuelles analytiques/méromorphes, c’est-à-dire, les
transformations de la fonction inconnue aussi que de la variable indépendante. En
particulier, il est montré que sous une condition de non-dégénérescence deux équa-
tions différentielles linéaires sont analytiquement équivalentes si et seulement si les
systèmes compagnons associés sont analytiquement équivalents comme systèmes.
Aussi les algèbres de Lie des symétries linéaires analytiques infinitésimales des sin-
gularités sont déterminées.

1. Introduction

Considering a second order linear differential equation (shortly LDE) on
a complex domain Ω ⊆ C

d2y

dx2 + a1(x) dy
dx + a0(x)y = 0, (x, y) ∈ Ω× C, (1.1)
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with meromorphic coefficients a1(x), a0(x), one can associate to it its com-
panion linear differential system for v = t(

y, dy
dx
)

dv
dx =

(
0 1
−a0 −a1

)
v, (x, v) ∈ Ω× C2. (1.2)

And vice versa every 2×2 linear differential system with meromorphic co-
efficients can be meromorphically transformed to the form of a companion
system (1.2) by virtue of the so called “cyclic vector lemma” [21, §2.1]. From
the point of study of the solutions there is not much distinction between
meromorphic second order LDEs (1.1) and 2×2 meromorphic differential
systems (1.2). Correspondingly, the two are also interchangeable from the
point of view of differential Galois theory. However, there is an important
difference between them when it comes to the underlying space and to its
transformation group, and consequently also when it comes to their Lie sym-
metry groups.

A meromorphic linear differential system
dv
dx = A(x)v, (x, v) ∈ Ω× C2, (1.3)

can be seen as a meromorphic connection on a (trivial) rank 2 vector bundle
over Ω. As such, a natural kind of transformations of the system are the
gauge-coordinate transformations

x̃ = φ(x), ṽ = T (x)v, (1.4)

with φ : Ω→ Ω an analytic diffeomorphism and T (x) a matrix-valued func-
tion that is either analytic and analytically invertible, or meromorphic and
meromorphically invertible. The corresponding systems for v and ṽ are then
called analytically, resp. meromorphically, equivalent. In the literature one
often considers the above transformations with φ = idΩ, but here we opt for
the more general form (1.4).

On the other hand, a second order LDE (1.1) is living as a connection on
the 1-jet bundle J 1(Ω) (or more generally on a codimension 1 subbundle of
the 2-jet bundle J 2(Ω), cf. [9, §19E]). A natural kind of transformations are
linear point transformations, that is the jet prolongations of the transforma-
tions

x̃ = φ(x), ỹ = t(x)y, (1.5)
with φ : Ω → Ω analytic diffeomorphism and t(x) either a non-vanishing
analytic, or a non-zero meromorphic, function. Such transformations were
considered already by Kummer [11], and it is known that general point trans-
formations preserving the class of second (or higher) order LDEs are locally
of the this form [23]. The corresponding equations for y and ỹ are then called
analytically, resp. meromorphically, equivalent.
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For higher order differential equations the group of transformations (1.5)
is very restrictive, therefore more general transformations are often consid-
ered such as “Weyl transformations” (generalized linear contact transforma-
tions) [9, 25]

x̃ = φ(x), ỹ = t0(x)y + . . .+ tn−1(x)
(
∂

∂x

)n−1
y,

where n is the order of the LDE. Nevertheless the case n = 2, that we
consider here, is special in the sense that the dimension of the solutions
space is the same as the dimension of the ambient (x, y)-space, and locally
the linear point transformations (1.5) are relatively rich enough to provide,
at least in a generic situation, a satisfactory theory.

In this paper, we are interested in local analytic classification of mero-
morphic second order LDEs (1.1) with respect to linear point transfor-
mations (1.5) near a fixed point in the x-space placed at the origin, i.e.
Ω = (C, 0). If both coefficients a0(x), a1(x) of (1.1) are analytic at x = 0,
then it is well known [12] that the equation is locally analytically equiva-
lent to

d2y

dx2 = 0.

We will therefore investigate only singular points, where at least one of
a0(x), a1(x) has a pole.

While the local analytic/meromorphic theory of meromorphic linear dif-
ferential systems with respect gauge transformations ṽ = T (x)v, fixing the
coordinate x, is well established by now, e.g. [1, 2, 3, 9, 21], and it is easily
generalized to all transformation (1.4), there appears to be very little writ-
ten on the subject of local analytic/meromorphic classification of singular
second-order LDEs with respect to linear point transformations. We will de-
scribe the local analytic/meromorphic moduli space of LDEs (1.1) at singu-
larities of regular or non-resonant irregular type, as well as those that become
non-resonant irregular in the ramified coordinate x 1

2 , (Sections 1.2/1.3), and
describe their Lie groups of linear infinitesimal symmetries (Section 1.4).

1.1. Singularities of linear differential equations

Suppose that at least one coefficient ai(x), i = 0, 1, of (1.1) has a pole at
the origin, and denote mi ∈ Z the respective orders of the poles. Let

ν = max
{
m1 − 1,

⌈m0

2

⌉
− 1
}
> 0;
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we will call it the Poincaré rank of the LDE. Denoting

δν := xν+1 ∂

∂x
,

and rewriting the equation (1.1) as

δ2
νy − p(x)δνy − q(x)y = 0, (1.6)

where p(x) = −xν+1a1(x) + (ν + 1)xν and q(x) = −x2ν+2a0(x), then the
Poincaré rank ν > 0 is the smallest integer for which p(x), q(x) are analytic
at 0.

The companion system for (1.6) is the system for v = t(
y, δνy

)
δνv =

(
0 1

q(x) p (x)

)
v. (1.7)

The equation (1.6) can be rewritten as(
δν −

p(x)
2

)2
y = ∆(x)

4 y, where ∆ := p2 + 4q − 2δνp. (1.8)

An equation (1.6) with p(x) = 0 will be called trace-free.

Definition.

(1) If ν = 0, then the singularity is called regular or Fuchsian (by a
theorem of Fuchs the notions of regular singularity and Fuchsian
singularity coincide for LDEs [9, Theorem 19.20]). A Fuchsian sin-
gularity is strictly non-resonant if the roots of λ2−p(0)λ− q(0) = 0
do not differ by an integer,(1) i.e. if

√
∆(0) /∈ Z, otherwise it is

called resonant.
(2) If ν > 0, then the singularity is called irregular. An irregular sin-

gularity is non-resonant if the roots of λ2 − p(0)λ − q(0) = 0 are
distinct; i.e. if ∆(0) 6= 0.

It will be called non-degenerate if
• either ∆(0) 6= 0 (non-resonant),
• or ∆(0) = 0 and p(0) = 0, in which case d∆

dx (0) 6= 0 (otherwise
the Poincaré rank would be lower than ν).

This is equivalent to say that in the coordinate s = x
1
2 the LDE has

a non-resonant irregular singularity.

We shall prove the following result relating the formal and the analytic
equivalence of singular LDEs with that of their companion systems (1.7).

(1) This condition is slightly stronger than the usual non-resonance condition that
demands that the roots do not differ by a non-zero integer [9, Definition 16.12].
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Theorem 1.1. — Two LDEs (1.6) with either a regular singularity or a
non-degenerate irregular singularity at the origin are analytically, resp. for-
mally, equivalent if and only if the companion systems (1.7) are analytically,
resp. formally, equivalent.

Let us stress that we consider equivalence by linear point transforma-
tions (1.5) for equations, and by gauge-coordinate transformations (1.4) for
systems. By formal equivalence it is meant that the diffeomorphism φ(x) and
the function t(x) in (1.5), resp. T (x) in (1.4), are formal power series of x.

On the other hand, for degenerate irregular singularities it is possible to
have analytically inequivalent LDEs with analytically equivalent companion
systems (Example 2.1).

In the following section we describe the moduli space of analytic equiv-
alence of regular and non-degenerate irregular singularities of LDEs. In the
light of Theorem 1.1, these results are parallel to the classical theory of sin-
gularities of linear differential systems and are a direct reformulation of it.

1.2. Formal and analytic classification

It is easy to verify that if y1(x), y2(x) are two linearly independent solu-
tions to (1.6) then one can express ∆(x) (1.8) as

∆(x) = −2Sν
(
y1

y2

)
(x), where Sν(f) = δν

(
δ2
νf

δνf

)
− 1

2

(
δ2
νf

δνf

)2

is the “Schwarzian derivative” associated to δν . The point transformation
(1.5) relate two such LDEs by

p = ψ · p̃ ◦ φ+ δνψ

ψ
− 2δνt

t
, (1.9)

q = ψ2 · q̃ ◦ φ+
[
ψ · p̃ ◦ φ+ δνψ

ψ

]
δνt

t
− δ2

νt

t
, (1.10)

∆ = ψ2 · ∆̃ ◦ φ− 2δν
(
δνψ

ψ

)
+
(
δνψ

ψ

)2
, (1.11)

where ψ(x) = δνφ
φν+1 , i.e. δν = ψ(x)δ̃ν . In fact, the formula (1.11) is just the

transformation rule for the above “Schwarzian derivative”

Sν(f ◦ φ) = ψ2 · Sν(f) ◦ φ+ δν

(
δνψ

ψ

)
− 1

2

(
δνψ

ψ

)2
.

– 531 –



Martin Klimeš

In this notation, the operator S−1 is the usual Schwarzian derivative for
which the transformation rule reads S−1(f ◦φ) =

(dφ
dx
)2·S−1(f)◦φ+S−1(φ),

and

∆(x) = −2x2ν+2S−1

(
y1

y2

)
− (ν2 − 1)x2ν .

Remark. — The point transformations preserving the space of trace-free
LDEs δ2

νy = ∆(x)
4 y are of the form x 7→ φ(x), y 7→ c ψ(x) 1

2 y with ψ(x) =
δνφ
φν+1 , i.e. up to the multiplication by a constant c ∈ C r {0} they act as

transformations of the (− 1
2 )-differential y(x)δ

1
2
ν , as was observed in [8].

Notation. — While we denote δ2
ν = δνδν , δ

3
ν = δνδνδν etc. the higher

order differential operators defined by composition of δν , at the same time
we also write δ−2

ν = (dx)2

x2ν+2 , and δ
1
2
ν = x

ν+1
2 (dx)− 1

2 for formal powers of the
differential form δ−1

ν = dx
xν+1 . This double convention should not cause any

confusion.

From (1.9) and (1.11) one can see that

p(x) = ψ(x) · p̃(φ(x)) +O(xν+1), ∆(x) = ψ(x)2 · ∆̃(φ(x)) +O(x2ν+1).

The natural objects to consider as invariants are the meromorphic form
Jν0 p (x)·δ−1

ν and the meromorphic quadratic differential J2ν
0 ∆(x)·δ−2

ν , where
Jk0 denotes the k-jet of a germ at x = 0, on which the point transformations
act as the usual transformation rule for differentials.

If ∆(0) 6= 0, let

µ2 =
(

Resx=0
√

∆(x) δ−1
ν

)2
,

be the square residue of the quadratic differential ∆(x)δ−2
ν . The following

proposition is well known in literature, see e.g. [24, Theorems 6.1, 6.3, 6.4].

Theorem 1.2 (Local normal form of the quadratic differential ∆(x)δ−2
ν ).

(1) If ν = 0 and µ2 = ∆(0) 6= 0 then there exists an analytic transfor-
mation x 7→ φ(x) such that in the new variable

∆(x)δ−2
0 = µ2δ−2

0 .

(2) If ν > 0 then there exists an analytic transformation x 7→ φ(x) such
that in the new variable

∆(x)δ−2
ν = (1 + µxν)2δ−2

ν ,

where µ ∈ C is a root of the square residue µ2, determined up to the
± sign.
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(3) If ∆(0) = 0, d∆
dx (0) 6= 0, then there exists an analytic transformation

x 7→ φ(x) such that in the new variable
∆(x)δ−2

ν = x δ−2
ν .

In the situation we consider (regular or non-degenerate irregular singular-
ities) it turns out that the simultaneous equivalence class of the pair of jets of
forms Jν0 p (x) · δ−1

ν and J2ν
0 ∆(x) · δ−2

ν is determined by the pair Jν0 p (x) · δ−1
ν

and Jν0 ∆(x) · δ−2
ν .

Definition (Formal invariants). — Let Jk0 f(x) denote the k-jet of a
germ f(x) at x = 0.

We define the formal invariant of the LDE (1.6) as the simultaneous
equivalence class of the pair of meromorphic forms

Jν0 p(x) · δ−1
ν , Jν0 ∆(x) · δ−2

ν , (1.12)
with respect to the action of analytic diffeomorphisms x 7→ φ(x) and jet
restriction.

• If ν = 0, then the formal invariant is given by the pair p(0), ∆(0) =
µ2, and will be identified with the pair of roots {λ1, λ2} of λ2 −
p(0)λ− q(0) = 0.
• If ν > 0 and the irregular singularity is non-resonant, ∆(0) 6= 0, let

λj(x) = λ
(0)
j + · · ·+ xνλ

(ν)
j , j = 1, 2,

be the ν-jets of the roots of the characteristic polynomial λ2−p(x)λ−
q(x). Then Jν0 p(x) = λ1(x) +λ2(x), Jν0

√
∆(x) = λ2(x)−λ1(x), and

the formal invariant can be identified with the equivalence class of
the pair

{λ1(x)δ−1
ν , λ2(x)δ−1

ν }
with respect to the action of analytic diffeomorphisms x 7→ φ(x) and
jet restriction. Moreover, one may always assume that ∆(x)δ−2

ν =
(1 + µxν)2δ−2

ν is in the normal form of Proposition 1.2 and
λ2(x)− λ1(x) = 1 + µxν . (1.13)

Such pair {λ1(x)δ−1
ν , λ2(x)δ−1

ν }, called in canonical form, is uniquely
determined up to the action of the rotations x 7→ e

lπi
ν x, l ∈ Z2ν . In

particular, if the equation is trace-free, then λ1(x) + λ2(x) = 0, and
the equivalence class of formal invariants is completely determined
by ν and µ2.
• If ν > 0, ∆(0) = 0 and the resonant irregular singularity is non-
degenerate, d∆

dx (0) 6= 0, then one can assume that ∆(x)δ−2
ν = x δ−2

ν ,
in which case Jν0 p(x) · δ−1

ν is uniquely determined up to the action
of the rotations x 7→ e

2lπi
2ν−1x, l ∈ Z2ν−1.
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Definition. — A linear differential equation (1.6) is called reducible if
it can be written as (

δν − α2(x)
)(
δν − α1(x)

)
y = 0, (1.14)

with α1(x), α2(x) analytic, αj(x) =
∑+∞
k=0 α

(k)
j xk.

1.2.1. Regular singularities

Definition (Projective monodromy). — Let y1(x), y2(x) be two linearly
independent solutions near a point x0 ∈ U∗ of some pointed neighborhood U∗
of the origin, and let f(x) := y2(x)

y1(x) . For a loop γ ∈ π1(U∗, x0), the analytic
continuation of f(x) along γ acts on f(x) as

f(γ · x) = ργ
(
f(x)

)
, for some ργ ∈ PGL2(C).

The map ρ : γ 7→ ργ is the projective monodromy representation
ρ : π1(U∗, x0)→ PGL2(C)

of the LDE. This representation, which is the projectivization of the mon-
odromy representation of the companion system, is well-defined up to conju-
gacy in PGL2(C).

Let γ0 be a positively oriented simple loop generating π1(U∗, x0). Then
ργ0 is conjugated to either

(i) f 7→ cf , for some c ∈ C∗, or
(ii) f 7→ f + 1.

In the case (i) we call the projective monodromy diagonalizable, and in the
case (ii) non-diagonalizable.

Lemma 1.3.

(1) Strongly non-resonant regular singularities (i.e. with µ = λ2 − λ1 /∈
Z) have diagonalizable projective monodromy (conjugated to f 7→
e2πiµf).

(2) A regular singularity has non-diagonalizable projective monodromy
if and only if its formal fundamental solution contains a logarithmic
term.

Theorem 1.4 (Analytic classification of regular singularities, ν = 0).

(1) Two LDEs (1.6) with regular singularities are analytically equivalent
if and only if they have the same pair of formal invariants {λ1, λ2}
and their projective monodromies are conjugated, i.e. either they are
both diagonalizable or both non-diagonalizable.

– 534 –



On equivalence of singularities of second order LDE

(2) A LDE (1.6) with a regular singularity is always reducible. It is
analytically equivalent to one of the following normal forms.
(a) Diagonalizable projective monodromy (λ1 6= λ2):(

δ0 − λ2
)(
δ0 − λ1

)
y = 0, (1.15)

whose basis of solutions is y1(x) = xλ1 , y2(x) = xλ2 .
(b) If λ1 =λ2 (then the projective monodromy is non-diagonalizable):(

δ0 − λ1
)2
y = 0, (1.16)

whose basis of solutions is y1(x) = xλ1 , y2(x) = xλ1 log x.
(c) If λ1 − λ2 = k ∈ Z>0 and the projective monodromy is non-

diagonalizable:(
δ0 − λ2 + k

xk

1− xk

)(
δ0 − λ1

)
y = 0, (1.17)

whose basis of solutions is y1(x) =xλ1 , y2(x) =xλ2 +kxλ1 log x.
Alternatively, it is also analytically equivalent to(

δ0 − λ2 + kxk
)(
δ0 − λ1

)
y = 0. (1.18)

1.2.2. Non-resonant irregular singularities

Proposition 1.5. — Two non-resonant irregular LDEs (1.6) are for-
mally equivalent if and only if their pairs of formal invariants {λ1(x)δ−1

ν ,
λ2(x)δ−1

ν } are in the same equivalence class. The formal transformation

x̃ = φ̂(x) =
+∞∑
j=1

φ(j)xj , ỹ = t̂(x) · y =
+∞∑
j=0

t(j)xj · y, φ(1), t(0) 6= 0, (1.19)

between the two LDEs is then Borel ν-summable (see Appendix for the defini-
tion), with singular directions arg(x) = β among those where =

(
e−νβi(λ(0)

2 −
λ

(0)
1 )
)

= 0.

Assuming that their formal invariants are equal, then a formal transfor-
mation φ̂, t̂ exists with φ̂(x) = x+ txν+1 + O(xν+2) which is unique (up to
y 7→ cy) for any t ∈ C.

In particular, the LDE is formally equivalent by means of a transforma-
tion (1.19) with φ̂(x) = x+O(xν+1) to the following formal normal form(

δν − λ2(x̃)− δν(λ2(x̃)− λ1(x̃))
λ2(x̃)− λ1(x̃)

)(
δν − λ1(x̃)

)
ỹ = 0, (1.20)
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i.e.
p̃(x̃) = λ1 + λ2 + δν log(λ2 − λ1),

q̃(x̃) = −λ1λ2 + 1
2δν(λ1 + λ2)− λ1 + λ2

2 δν log(λ2 − λ1),

∆̃(x̃) = (λ2 − λ1)2 − 2δ2
ν log(λ2 − λ1) + (δν log(λ2 − λ1))2

,

whose basis of solutions is

ỹj(x̃) = e
∫
λj(x̃)δ−1

ν , j = 1, 2.

Note that even though the factorization (1.20) is asymmetric, the equation
itself is completely symmetric with respect to interchanging of λ1 and λ2.

The formal transformation φ̂(x) = x+O(xν+1) is unique up to a compo-
sition with the flow of the vector field 1

λ2(x)−λ1(x)δν .

Up to an analytic change of coordinate x 7→ φ(x), one can suppose that
the pair {λ1(x)δ−1

ν , λ2(x)δ−1
ν } is in the canonical form

λ2(x)− λ1(x) = 1 + µxν .

Then the singular directions of φ̂(x), t̂(x) are βl = l
νπ, l ∈ Z. Let φΩl(x),

tΩl(x) be the Borel sums (see Appendix) of the formal transformation φ̂, t̂,
bounded and analytic on the sectors

Ωl =
{∣∣∣∣arg x− 2l + 1

2ν π

∣∣∣∣ < π

ν
− η, |x| < ρη

}
, l ∈ Z2ν ,

where 0 < η < π
2ν is arbitrarily small, and ρη > 0 depends on η. They

transform the LDE to its formal normal form (1.20), which means that on
each sector Ωl the original LDE has a canonical basis of solutions

yj,Ωl = tΩl(x) · ỹj (φΩl(x)) , j = 1, 2. (1.21)

We can now define projective Stokes operators of the equation, corresponding
to the projectivization of the Stokes matrices of the companion system, as
the operators connecting the bases on neighboring sectors in the following
way.

Definition (Projective Stokes operators). — Let fΩl(x) := y2,Ωl (x)
y1,Ωl (x) ,

where yj,Ωl are the canonical sectoral solutions (1.21). The projective Stokes
operators are the operators σβl ∈ PGL2(C) defined by

fΩl−1(x) = σβl (fΩl(x)) , for arg(x) = l

ν
π, l = 1, . . . , 2ν − 1,

fΩ2ν (e2πix) · e−2πiµ = σβ0 (fΩ0(x)) , for arg(x) = 0.
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They are of the form{
σβl : f 7→ f+sl if l is odd, i.e. when e

∫
(λ2−λ1)δ−1

ν is “exploding” as x→0,
σβl : f 7→ f

1+slf if l is even, i.e. when e
∫

(λ2−λ1)δ−1
ν is “flat” as x→ 0.

Their collection (σβ0 , . . . , σβ2ν−1) is well-defined up to simultaneous conju-
gation by a scalar multiplication (corresponding to the non-unicity of φ̂(x)).
It is extended to all l ∈ Z by

σβl+2ν (f) = e2πiµσβl(e−2πiµf).

Remark. — The canonical pair of solutions y1,Ωl(x), y2,Ωl(x) is up to mul-
tiplication by constants uniquely determined by their asymptotic behavior
at the singular directions βl − π

ν and βl + π
ν , one being flat at one direction

the other being flat at the other direction.

Definition (Rotational symmetries of the formal invariant). — Let
{λ1(x)δ−1

ν , λ2(x)δ−1
ν } be a pair of formal invariants in a canonical form.

Let us define G ⊆ Z2ν as the subgroup of the cyclic group consisting of the
elements g ∈ Z2ν such that the associated rotation x 7→ e

gπi
ν x preserves the

pair {λ1(x)δ−1
ν , λ2(x)δ−1

ν }. Since the pair of formal invariants in a canon-
ical form is uniquely defined up to rotations from Z2ν , which commute with
G, the group G is well-defined.

For example, if the equation is trace-free, λ1(x) + λ2(x) = 0, then either
G = Z2ν if µ = 0, or G = 2Zν if µ 6= 0.

Theorem 1.6 (Analytic classification of non-resonant irregular singular-
ities, ν > 0).

(1) Two formally equivalent LDEs (1.6) with a non-resonant irregular
singularity at the origin and the same pair of formal invariants in
canonical form {λ1(x)δ−1

ν , λ2(x)δ−1
ν } are analytically equivalent if

and only if their respective collections of projective Stokes operators
(σβl)l∈Z and (σ′βl)l∈Z are equivalent in the following sense: there
exist c ∈ C∗ and g ∈ G such that

σ′βl = ιg ◦
(

1
c
σβl+g

)
◦ (cιg) for all l ∈ Z,

where G ⊆ Z2ν is the symmetry group of the formal invariant and
ι : f 7→ 1

f .
(2) For every pair {λ1(x)δ−1

ν , λ2(x)δ−1
ν } in canonical form and every

collection of projective Stokes operators (σβ0 , . . . , σβ2ν−1), there ex-
ists a LDE with non-resonant irregular singularity of a given formal
class realizing them as its analytic invariants.
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Proposition 1.7.

(1) For a non-resonant irregular singularity the following are equivalent:
(a) The LDE (1.6) is reducible, i.e. of the form (1.14) for some

α1(x), α2(x).
(b) The LDE (1.6) has a “convergent solution” y(x)=e

∫
λ(x)δ−1

ν t(x),
where λ(x) is one of the formal invariants and t(x) is a con-
vergent power series.

(c) The Riccati equation

2δνr = r2 −∆(x) (1.22)

has an analytic solution r(x). In this case α1(x) = 1
2 (p(x) −

r(x)), α2(x) = 1
2 (p(x) + r(x)).

(d) For either all odd or all even indices l ∈ Z the projective Stokes
operators are trivial, σβl = id.

(2) For a non-resonant irregular singularity the following are equivalent:
(a) The LDE (1.6) is analytically equivalent to the formal normal

form (1.20).
(b) The LDE (1.6) has a pair of “convergent solutions” y(x) =

e
∫
λj(x)δ−1

ν tj(x), j = 1, 2, where {λ1(x)δ−1
ν , λ2(x)δ−1

ν } are the
formal invariants and tj(x) are convergent power series.

(c) The third order linear equation

δ3
νh−∆(x)δνh−

1
2
(
δν∆(x)

)
h = 0. (1.23)

has an analytic solution h(x).
(d) The Riccati equation(1.22) has two different analytic solutions

r1(x), r2(x). In this case h(x) = 1
r2(x)−r1(x) is an analytic so-

lution to (1.23).
(e) All the projective Stokes operators are trivial, σβl = id for all

l ∈ Z.

The differential operator of the left-hand side of (1.23) is known as the
second symmetric power of the operator δ2

ν −
∆(x)

4 [20, §3.1], [21, §2.3]. If
the LDE is reducible, and r(x) is an analytic solution to (1.22), then the
equation (1.23) can be factorized as(

δν − r(x)
)
δν
(
δν + r(x)

)
h = 0. (1.24)

Since in this case r(0) 6= 0, the formal/analytic solutions to (1.24) are also
formal/analytic solutions to δν

(
δν + r(x)

)
h = 0.

Remark. — If y1(x), y2(x) are two linearly independent solutions to the
LDE, f(x) = y2(x)

y1(x) , then r = δ2
νf
δf = p − 2 δνy1

y1
is a solution to (1.22), and
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h = f
δνf

is a solution to (1.23). However, in general, they may not be analytic
at 0.

Theorem 1.8 (Analytic normal forms when ν = 1).

(1) An irreducible LDE with a non-resonant irregular singularity at the
origin of Poincaré rank ν = 1 is analytically equivalent to an LDE
of the form

δ2
1y −

(
p(0) + xp(1))δ1y − (q(0) + xq(1) + x2q(2))y,

with 1 = ∆(0) =
(
p(0))2 + 4q(0) and µ = ∆(1)

2 = p(0)p(1) + 2q(1) ∈ C.
Two such equations are analytically equivalent if and only if

µ = ±µ̃, and cosπ
√

∆(2) + 1 = cosπ
√

∆̃(2) + 1,

where ∆(2) = (p(1))2 + 4q(2) − 2p(1).
(2) A reducible LDE (1.14) with a non-resonant irregular singularity at

the origin of Poincaré rank ν = 1 with µ = α
(1)
2 −α

(1)
1 /∈ Z60 (hence

with diagonalizable monodromy) is analytically equivalent to either(
δ1 − λ2(x)

)(
δ1 − λ1(x)

)
y = 0, (1.25)

with λ2(x)− λ1(x) = 1 + µx, or to (1.20).
(3) A reducible LDE (1.14) with a non-resonant irregular singularity at

the origin of Poincaré rank ν = 1 with µ = α
(1)
2 −α

(1)
1 ∈ Z60 is ana-

lytically equivalent to either (1.25), which in this case is analytically
equivalent to (1.20), if the monodromy is diagonalizable (scalar), or
to (

δ1 − λ2(x) + x2)(δ1 − λ1(x)
)
y = 0, (1.26)

with λ2(x)−λ1(x) = 1+µx, if the monodromy is non-diagonalizable.

1.2.3. Non-degenerate resonant irregular singularities

Proposition 1.9. — Two non-degenerate resonant irregular LDEs (1.6)
are formally equivalent if and only if their pairs of formal invariants Jν0 p(x) ·
δ−1
ν , Jν0 ∆(x) · δ−2

ν are from the same equivalence class. The formal transfor-
mation

x̃ = φ̂(x) =
+∞∑
j=1

φ(j)xj , ỹ = t̂(x) · y =
+∞∑
j=0

t(j)xj · y, φ(1), t(0) 6= 0,

between the two LDEs is then Borel (ν − 1
2 )-summable (see Appendix for

the definition), with singular directions arg(x) = β among those where
=
(
e(1−2ν)βi d∆

dx (0)
)

= 0.
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Assuming that their formal invariants are equal, then a unique formal
transformation φ̂, t̂ exists with φ̂(x) = x+O(xν+1) and t̂(0) = 1.

Suppose Jν0 ∆(x) = x and Jν0 p (x) = P (x), P (0) = 0. Consider the formal
normal form LDE (1.20) with λ1(x) + λ2(x) = P (x)− 1

2x
ν , λ2(x)− λ1(x) =

x
1
2 , that is the LDE

δ2
ν ỹ − p̃ (x)δν ỹ − q̃(x)ỹ = 0, (1.27)

with
p̃ (x) = P (x),

q̃(x) = 1
4

[
x− P (x)2 + xνP (x)−

(
ν + 1

4

)
x2ν + 2δνP (x)

]
,

∆̃(x) = x+ xνP (x)− (ν + 1
4)x2ν ,

whose basis of solutions is ỹj(x) = e
∫
λj(x)δ−1

ν , j = 1, 2.

By the Proposition 1.9, the LDE is equivalent to (1.27) by a formal trans-
formation φ̂(x), t̂(x), Borel (ν− 1

2 )-summable except in the singular directions

βl = 2l
2ν − 1π, l ∈ Z.

Hence the LDE has a canonical basis of solutions
yj,Ωl = tΩl(x) · ỹj (φΩl(x)) , j = 1, 2,

where φΩl(x), tΩl(x) are the Borel sums (see Appendix), bounded and ana-
lytic on the sectors

Ωl =
{∣∣∣∣arg x− 2l + 1

2ν − 1π
∣∣∣∣ < 2π

2ν − 1 − η, |x| < ρη

}
, l ∈ Z2ν−1,

where 0 < η < π
2ν−1 is arbitrarily small, and ρη > 0 depends on η.

The projective Stokes operators σβl ∈ PGL2(C) are now defined as before

fΩl−1(x) = σβl (fΩl(x)) , for arg(x) = l

ν
π, l = 1, . . . , 2ν − 1,

fΩ2ν (e2πix)−1 = σβ0 (fΩ0(x)) , for arg(x) = 0.

where fΩl(x) := y2,Ωl (x)
y1,Ωl (x) . Their definition is extended to all l ∈ Z by

σβl+2ν = ι ◦ σβl ◦ ι, where ι : f 7→ 1
f
.

They are of the form{
σβl : f 7→ f + sl when e

∫
(λ2−λ1)δ−1

ν is “exploding” as x→ 0,
σβl : f 7→ f

1+slf when e
∫

(λ2−λ1)δ−1
ν is “flat” as x→ 0.
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Definition (Rotational symmetries of the formal invariant). — Suppose
Jν0 ∆(x) = x, Jν0 p(x) = P (x). Let us define G ⊆ Z2ν−1 as the subgroup of the
cyclic group consisting of the elements g ∈ Z2ν−1 such that the associated
rotation x 7→ e

g2πi
2ν−1x preserves the differential form P (x)δ−1

ν . Since P (x)δ−1
ν

is uniquely defined up to rotations from Z2ν−1, which commute with G, the
group G is well-defined.

Theoreom 1.10 ([Analytic classification of non-degenerate resonant
irregular singularities, ν > 0).

(1) Two formally equivalent LDEs (1.6) with a non-degenerate resonant
irregular singularity at the origin and the same pair of formal invari-
ants in canonical form xδ−2

ν , P (x)δ−1
ν are analytically equivalent if

and only if their respective collections of projective Stokes operators
(σβl)l∈Z and (σ′βl)l∈Z are equivalent in the following sense: there
exist g ∈ G such that

σ′βl = ιg ◦ σβl+g ◦ ιg for all l ∈ Z,

where G ⊆ Z2ν−1 is the symmetry group of the formal invariant and
ι : f 7→ 1

f .
(2) For every pair of formal invariants xδ−2

ν , P (x)δ−1
ν in canonical form

and every collection of projective Stokes operators, there exists a
LDE with non-degenerate resonant irregular singularity of given for-
mal class realizing them as its analytic invariants.

Theorem 1.11 (Analytic normal forms when ν = 1). — LDE with a
non-degenerate resonant irregular singularity at the origin of Poincaré rank
ν = 1 is analytically equivalent to an LDE of the form

δ2
1y − p(1)xδ1y −

(
1
4x+ x2q(2)

)
y,

with ∆(x) = x + x2∆(2), with ∆(2) = (p(1))2 + 4q(2) − 2p(1). Two such
equations are analytically equivalent if and only if

p(1) = p̃(1), and cosπ
√

1 + ∆(2) = cosπ
√

1 + ∆̃(2).

1.3. Meromorphic classification

If the transformation (1.5) is meromorphic with t(x) = xmu(x), m ∈ Z,
u(0) 6= 0, then from (1.9)–(1.11) one can see that

p(x) = ψ(x)·p̃(φ(x))−2mxν+O(x2ν+1), ∆(x) = ψ(x)2·∆̃(φ(x))+O(xν+1).
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In the regular or non-resonant irregular case this means that λ1,2(x) =
ψ(x)λ̃1,2(φ(x)) − mxν + O(xν+1), i.e. that equivalence class of the pair of
formal invariants {λ1(x)δ−1

ν , λ2(x)δ−1
ν } is shifted by −mxνδ−1

ν .

Theorem 1.12 (Meromorphic classification). — Two LDEs (1.6) with
either regular or non-degenerate irregular singularities are meromorphically
equivalent if and only if they have the same equivalence class of formal in-
variants Jν0 ∆(x) · δ−2

ν , Jν0 p (x) · δ−1
ν up to a shift Jν0 p (x) · δ−1

ν 7→ Jν0 p (x) ·
δ−1
ν +mxνδ−1

ν , m ∈ Z, and

(1) if regular: their monodromies are conjugated (i.e. they are both either
diagonalizable or non-diagonalizable),

(2) if non-resonant irregular: their collections of Stokes operators are
equivalent in the sense of Theorem 1.6,

(3) if non-degenerate resonant irregular: their collections of Stokes op-
erators are equivalent in the sense of Theorem 1.10.

Let us remark that, unlike for systems, conjugation of monodromies of
regular singularities alone does not suffice to produce meromorphic equiva-
lence.

1.4. Lie symmetries

For non-resonant singularities of differential systems there is a canonical
diagonal formal normal form

δνu =
(
λ1(x) 0

0 λ2(x)

)
u, (1.28)

which is integrable in terms of elementary functions with fundamental so-
lution matrix

(
e

∫
λ1(x)δ−1

ν 0
0 e

∫
λ2(x)δ−1

ν

)
. Correspondingly, the analytic class of

this normal form system is the one that has the largest possible Lie alge-
bra of analytic infinitesimal symmetries (see [5]) of all the systems within
the formal class. It turns out that the same holds also for non-resonant ir-
regular LDEs (1.6): they are analytically equivalent to their formal normal
form (1.20) if and only their Lie algebra of linear analytic point symmetries
is the largest possible (Theorem 1.13 below).

Let us recall that an infinitesimal linear symmetry of a LDE (1.1) is a
vector field

Y = g(x) ∂
∂x

+ f(x)y ∂
∂y
,
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whose second jet prolongation pr(2) Y leaves the surface yxx + a1(x)yx +
a0(x)y = 0 invariant. This is equivalent [7, p. 350] to ask that

[X,pr(1) Y ] = α(x)X, for some function α(x), (1.29)

where
X = ∂

∂x
+ yx

∂

∂y
+
(
a1(x)yx + a0(x)y

) ∂

∂yx
, (1.30)

and pr(1) Y is the first jet prolongation of Y :

pr(1) Y = g(x) ∂
∂x

+ f(x)y ∂
∂y

+
(

df
dx (x)y+ f(x)yx−

dg
dx (x)yx

)
∂

∂yx
. (1.31)

Theorem 1.13. — The infinitesimal linear symmetries of a LDE (1.6)
are of the form

Y = h(x)δν + 1
2
(
c+ δνh(x) + p(x)h(x)

)
y
∂

∂y
,

where c ∈ C, and h(x) is a solution of (1.23). The Lie algebra of analytic
infinitesimal linear symmetries of

(1) a regular singularity:
(a) strictly non-resonant with λ1 − λ2 /∈ Z r {0} in the normal

form (1.15) is generated by

y
∂

∂y
, δ0,

(b) resonant with λ1 − λ2 = k ∈ Z>0 and trivial projective mon-
odromy, in the normal form (1.15), is generated by

y
∂

∂y
, δ0, xk

(
δ0 + λ1y

∂

∂y

)
,

(c) resonant with λ1 − λ2 = k ∈ Z>0 and non-diagonalizable pro-
jective monodromy, in the normal form (1.17),

y
∂

∂y
,

xk

1− xk

(
δ0 + λ1y

∂

∂y

)
,

(2) a non-resonant irregular singularity of Poincaré rank ν > 0:
(a) in the normal form (1.20) is generated by

y
∂

∂y
,

1
λ2(x)− λ1(x)

(
δν + λ1(x) + λ2(x)

2 y
∂

∂y

)
,

(b) not analytically equivalent to (1.20) is generated only by

y
∂

∂y
.
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(3) a non-degenerate resonant irregular singularity of Poincaré rank ν >
0 is generated only by

y
∂

∂y
.

Let us remark that for non-singular LDEs the Lie algebra of analytic
linear infinitesimal symmetries is of maximal dimension 4, namely for d2y

dx2 =
0 it is generated by

y
∂

∂y
,

∂

∂x
, x

∂

∂x
, x

(
x
∂

∂x
+ y

∂

∂y

)
,

while the Lie algebra of all analytic infinitesimal symmetries, i.e. infinitesi-
mal point symmetries of the form Y = G(x, y)∂x + F (x, y)∂y, is of dimen-
sion 8 (and is well known to be isomorphic to sl3(C)).

2. Proofs

We will review and adapt to our needs some basics of the theory of
singularities of linear differential systems which can be found in some form
in most standard references, e.g. in [1, 2, 3, 9, 15, 21, 22]. In the case of regular
singularities the analytic classification agrees with a formal one, and in the
case of non-resonant irregular singularities the analytic modulus consists of
a set of formal invariants and of a conjugacy equivalence class of a collection
of Stokes matrices.

Proof of Theorem 1.1. — Follows from Theorems 1.4, 1.6 and 1.10. �

Regular singular points

If ν = 0, the singular point is of Fuchsian kind and, according to the
general theory [9, Theorem 16.16], the companion system (1.7) is analytically
equivalent by a gauge transformation v = T (x)ṽ to a normal form

δ0ṽ =
(
λ1 εxλ1−λ2

0 λ2

)
ṽ, (2.1)

where ε ∈ {0, 1} and ε 6= 0 only if λ1−λ2 ∈ Z>0. Therefore the system (1.7)
possesses a fundamental solution matrix V (x) = T (x)

(
xλ1 εxλ1 log x

0 xλ2

)
, where

T (x) =
(
Tij(x)

)
is analytic and

T (0) =
{( 1 1

λ1 λ2

)
if λ1 6= λ2,( 1 0

λ1 1
)

if λ1 = λ2 in which case ε = 1.
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The complete analytic invariant of the system is given by the pair {λ1, λ2}
and by ε ∈ {0, 1}. The monodromy matrix M of this fundamental solution,
V (e2πix) = V (x)M , is then given by M =

(
e2πiλ1 ε 2πie2πiλ1

0 e2πiλ2

)
.

The LDE has therefore a solution basis

y1(x) = T11(x)xλ1 , y2(x) = T12(x)xλ2 + εT11(x)xλ1 log x. (2.2)

Proof of Lemma 1.3. — By the above, the strict non-resonance condition
λ1 − λ2 /∈ Z means ε = 0. The diagonalizability of the monodromy M is
equivalent to ε = 0, which is equivalent to the absence of log x in (2.2). �

Proof of Theorem 1.4. — The statement (1) is a corollary of (2).

(2a) Regular singularity with diagonalizable monodromy. — By the above
considerations, the LDE (1.6) has a solution basis (2.2) with ε = 0, where
T1j(x) is an analytic germ with T1j(0) = 1. We are looking for an analytic
transformation x̃ = φ(x), ỹ = t(x)y (1.5), such that

T1j(x)xλj = t(x) · φ(x)λj , j = 1, 2.

Writing φ(x) = x(1 + g(x)), g(0) = 0, then g(x) is a solution to

log
(
T12

T11

)
(x) = (λ2 − λ1) log(1 + g(x)),

where the right-hand side is an analytic function of x and g whose derivative
with respect to g at (x, g) = 0 is λ2 − λ1 6= 0, so it has by the implicit
function theorem a unique analytic solution g(x) with g(0) = 0. Then also
t(x) = T11(x)(1 + g(x))−λ1 is an analytic germ, t(0) = 1.

(2b) Regular singularity with λ1 = λ2 =: λ. — The LDE (1.6) has a solu-
tion basis (2.2) with ε = 1, where T11(0) = 1, T12(0) = 0. The transformation
equation we want to solve is

T11(x)xλ = t(x) · φ(x)λ, T12(x)xλ + T11(x)xλ log x = t(x) · φ(x)λ log φ(x).

Writing φ(x) = x(1 + g(x)), g(0) = 0, then
T12

T11
(x) = log(1 + g(x)), hence g(x) = e

T12
T11

(x) − 1,

and t(x) = T11(x)(1 + g(x))−λ, t(0) = 1.

(2c) Regular singularity with non-diagonalizable monodromy, λ1 − λ2 =
k ∈ Z>0. — The LDE (1.6) has a solution basis (2.2) with ε = 1, where
T11(0) = T12(0) = 1. The transformation equation we want to solve is

T11(x)xλ1 = t(x) · φ(x)λ1 ,

k
(
T12(x)xλ2 + T11(x)xλ1 log x

)
= t(x) ·

(
φ(x)λ2 + kφ(x)λ1 log φ(x)

)
.
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Writing φ(x) = cx(1 + g(x)), g(0) = 0, let c = k−
1
k , then g(x) is a solution

to
T12

T11
(x) = (1 + g(x))−k + xk log(1 + g(x))− xk

k
log k.

The derivative of the right side with respect to g at (x, g) = 0 is λ2−λ1 = −k,
therefore the equation has a unique analytic solution g(x) with g(0) = 0.
Then t(x) = T11(x)c−λ1(1 + g(x))−λ1 , t(0) = c−λ1 . �

Non-resonant irregular singular points

Let λj(x) = λ
(0)
j + . . .+λ

(ν)
j xν , j = 1, 2, be modulo xν+1 the roots of the

characteristic polynomial λ2− p(x)λ− q(x) = 0. If ν > 0 and λ1(0) 6= λ2(0),
then the singular point is non-resonant irregular and, according to the gen-
eral theory [9, §20], the companion system (1.7) possesses a formal funda-

mental solution matrix V̂ (x) = T̂ (x)e
∫ (λ1 0

0 λ2

)
δ−1
ν , where T̂ (x) =

(
T̂ ij(x)

)
is

a formal power series, T̂ (0) =
(

1 1
λ

(0)
1 λ

(0)
2

)
. Correspondingly, the LDE has a

formal solution basis

ŷ1(x) = T̂ 11(x)e
∫
λ1(x)δ−1

ν , ŷ2(x) = T̂ 12(x)e
∫
λ2(x)δ−1

ν . (2.3)

A complete formal invariant of the system (1.7) with respect to formal gauge
transformations v 7→ T (x)v (1.4) is formed by the pair of meromorphic 1-
forms {λ1(x)δ−1

ν , λ2(x)δ−1
ν }. If one allows also for transformations x 7→ φ(x),

then it is always possible to transform analytically the pair to a canonical
form where

(
λ2(x)− λ1(x)

)
δ−1
ν = (1 + µxν)δ−1

ν , where µ is well-defined up
to the ± sign.

A Stokes direction (also known as separating direction) α ∈ R is defined
by <

(
e−να(λ(0)

2 − λ(0)
1 )
)

= 0, and an anti-Stokes direction (also known as
singular direction) β ∈ R is defined by =

(
e−νβ(λ(0)

2 − λ(0)
1 )
)

= 0. After the
normalization λ(0)

2 −λ
(0)
1 = 1, this means α ∈ π

νZ, β ∈
π
2ν + π

νZ. Let {αl}l∈Z,
resp. {βl}l∈Z, be all the Stokes directions, resp. anti-Stokes directions in
their order, αl+2ν = αl + 2π. By a classical theorem of Horn, Trjitzinsky,
Hukuhara, Turittin, and others [9, Theorem 20.16], the formal power series
T̂ (x) is asymptotic to a unique bounded analytic matrix-valued function
Tαl(x) on every open sector Ωl covering exactly one Stokes direction arg(x) =
αl. Let Ω2ν = Ω0, . . . ,Ω2ν−1 be a cyclic covering by such sectors of a pointed
neighborhood of the origin, such that the intersection of two neighboring
sectors covers exactly one anti-Stokes direction (when considered on the
Riemann surface of log x), let Tα2ν = Tα0n . . . , Tα2ν−1 be the associated
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sectorial transformations, and let Vαl(x) = Tαl(x)e
∫ (λ1(x) 0

0 λ2(x)

)
δ−1
ν be the

sectorial fundamental matrix solutions, Vαl+2π(x) = Vαl(x)e
2πi
(
λ

(ν)
1 0
0 λ

(ν)
2

)
.

For each anti-Stokes direction β the Stokes matrix Stβ is defined by

Vβ− π
2ν

= Vβ+ π
2ν
Stβ .

The collection of the Stokes matrices {Stβ0 , . . . , Stβ2ν−1} modulo simulta-
neous conjugation by diagonal matrices is a complete analytic invariant of
the system (1.7) with given formal invariants (sometimes called Malgrange–
Sibuya modulus) [9, Theoerm 20.21].

Proof of Proposition 1.5. — By the above considerations, the LDE (1.6)
has a formal solution basis (2.3), where T̂ 1j(x) is formal power series that
is Borel ν-summable, T̂ 1j(0) 6= 0. After an eventual analytic change of the
x-variable, we can suppose that the formal invariants {λ1(x)δ−1

ν , λ2(x)δ−1
ν }

are in a canonical form with λ2(x)− λ1(x) = 1 + µxν . We are looking for a
formal transformation

x̃ = φ̂(x) = x(1 + xν ĝ(x)), ỹ = t̂(x)y,

such that

T̂ 1j(x)e
∫
λj(x)δ−1

ν = t̂(x) ·
(
e
∫
λjδ
−1
ν
)
◦ φ̂(x), j = 1, 2.

Therefore ĝ(x) is a solution to

log
(
T̂ 12

T̂ 11

)
(x) = 1

νxν
− 1
νxν(1 + xν ĝ)ν + µ log(1 + xν ĝ),

where the right-hand side is an analytic function of x and g whose de-
rivative with respect to ĝ at x = 0 is λ(0)

2 − λ
(0)
1 = 1, so by the for-

mal implicit function theorem it has a unique formal solution ĝ(x) with
ĝ(0) = log

(
T̂ 12(0)
T̂ 11(0)

)
. Since φ̂(x) = x + O(xν+1) then also t̂(x) is a formal

power series, t̂(0) = T̂ 11(0)e−λ
(0)
1 ĝ(0).

One can also solve the equation on the sectors Ωα (see Proposition 2.2
in the Appendix) and deduce that φ̂(x), t̂(x) are Borel ν-summable in the
same directions as is the pair (T̂ 11(x), T̂ 12(x)). �

Proof of Theorem 1.6. —

(1). Analytic equivalence. — Let us show that if two LDEs (1.6) with
non-resonant irregular singularity have their companion systems (1.7) ana-
lytically equivalent, than so are the equations. After an analytic change of
x we can assume that the formal invariants {λ1(x)δ−1

ν , λ2(x)δ−1
ν } are in the
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canonical form and are the same for the two systems. Up to right multipli-
cation of T̂ (x) by a constant diagonal matrix, we can also suppose that their
collections of Stokes matrices agree. Therefore, for a singular direction β:

T1j,β−(x) = T1j,β+(x) + sβT1i,β+(x)e
∫

(λi(x)−λj(x))δ−1
ν ,

T1i,β−(x) = T1i,β+(x),

T̃ 1j,β−(x) = T̃ 1j,β+(x) + sβT̃ 1i,β+(x)e
∫

(λi(x)−λj(x))δ−1
ν ,

T̃ 1i,β−(x) = T̃ 1i,β+(x),

where sβ is the Stokes multiplier on the position (j, i) of Stβ , with (j, i) =
(1, 2) or (2, 1) depending on β such that e

∫
(λi(x)−λj(x)) is flat when x → 0,

arg x = β. The conjugation equations to solve are

T1l,β±(x)e
∫
λl(x)δ−1

ν = tβ±(x) ·
(
T̃ 1l,β±e

∫
λlδ
−1
ν

)
◦ φβ±(x), l = 1, 2.

Comparing the above expressions we see that on the intersection sector
Ωβ+ π

2ν
∩Ωβ− π

2ν
both φβ−(x) and φβ±+(x) solve the same functional equation

T1j,β±

T1i,β±
e
∫
λj−λiδ−1

ν = T̃ 1j,β±

T̃ 1i,β±
e
∫
λj−λiδ−1

ν ◦ φβ±,

hence they shall be equal if the existence and the unicity of a bounded
sectorial solution is ensured, which means that they will all glue up together
to form an analytic germ φ(x). Writing φβ±(x) = x(1 + xνgβ±(x)), the
conjugation equation becomes

log
(
T1j,β±

T1i,β±

)
(x) = log

(
T̃ 1j,β±

T̃ 1i,β±

)(
x+ xν+1gβ±)

)
+ 1
νxν

− 1
νxν(1 + xνgβ±)ν + µ log(1 + xνgβ±(x)),

which by virtue of Proposition 2.2 in the Appendix, has a unique bounded
analytic solution gβ±(x) on Ωβ± π

2ν
satisfying gβ±(0) = log

(
T1j(0)T̃ 1i(0)
T1i(0)T̃ 1j(0)

)
.

And similarly with tβ+ = tβ−.

(2). Realization. — Given ν > 1, formal invariants λ1(x), λ2(x), and a
collection of projective Stokes operators, we want to show that there exists
an equation (1.6) of which they are analytic invariants.

By the Birkhoff–Malgrange–Sibuya theorem ([4], [15], [22], [9, Theo-
rem 20.22], [1, Theorem 4.5.1]) there exists a differential system δνv = A(x)v
with the given formal invariants realizing the associated Stokes matrices as
its analytic invariants. Under the non-resonance condition one may as well
assume that A(0) =

(
λ1(0) 1

0 λ2(0)

)
. Writing A = (Aij), then it is easy to
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verify that the system satisfied by ṽ =
(

1 0
A11(x) A12(x)

)
v is of the companion

form.

Another possibility is to prove the realization theorem directly using the
Ahlfors–Bers theorem. For the sake of completeness let us give a rough
sketch of this second approach, following the ideas of Malgrange [15, 16].
Let f(x) = e

∫
(λ2−λ1)δ−1

ν (x). For an anti-Stokes direction β and a projective
Stokes operator σβ , let ψβ(x) ∼ x+O(e−

c
|x|ν ) (with some c > 0) be defined

by solving the equation σβ ◦ f(x) = f ◦ ψβ(x) on a small sector bisected by
β, x ∈ Ωβ+ π

2ν
∩Ωβ− π

2ν
, where Ωα = {|arg x− α| < π

ν − η, |x| < ρ} for some
0 < η < π

2ν , |ρ| > 0. We then want to find bounded analytic sectorial maps
φα(x) = x+O(x2), x ∈ Ωα that solve the cohomological equation

ψβ = φβ− π
2ν
◦ φ◦−1

β+ π
2ν
. (2.4)

Since f ◦φβ− π
2ν

= σβ ◦(f ◦φβ+ π
2ν

) are related by a projective transformation,
they define the same ∆(x) = −2Sν(f ◦ φα) for all α, which is therefore
analytic on a neighborhood of 0, and the equation (1.6) with p(x) = λ1(x) +
λ2(x) and q(x) = 1

4
(
∆(x)−p(x)2+2δνp (x)

)
then realizes the invariants. The

problem of solving the cohomological equation (2.4) can be easily solved in
the C∞-smooth category by some sectorial germs ϕα exponentially tangent
to identity (cf. [1, §4.3]). One then can obtain the bounded analytic solutions
φα(x) after correcting ϕα(x) by a C∞ germ g(x), φα = ϕα ◦ g◦−1, obtained
by the Ahlfors–Bers theorem as a solution to the Beltrami equation ∂x̄g

∂xg
= h

on a neighborhood of the origin, where h(x) is an exponentially flat C∞ germ
defined by h := ∂

∂x̄ϕα
/
∂
∂xϕα which is independent of the sector Ωα since

0 = ∂

∂x̄
ψ̃β = ∂

∂x̄

(
ϕβ− π

2ν
◦ ϕ◦−1

β+ π
2ν

)
=
(
∂

∂x̄
ϕβ− π

2ν
− ∂

∂x
ϕβ− π

2ν
·
∂
∂x̄ϕβ+ π

2ν
∂
∂xϕβ+ π

2ν

)
· ∂
∂x̄

(ϕ̄−1
β+ π

2ν
)

by the chain rule for the Wirtinger derivative. �

Remark. — In the formal equivalence problem for non-resonant irregular
singularities one can assume that T̂ 11(0) = T̂ 12(0) = 1, hence that ĝ(0) = 0,
i.e. φ̂(x) = x + O(xν+2). On the other hand, in the analytic equivalence
problem one may have T̂ 12(0)

T̂ 11(0) 6= 1 and ĝ(0) 6= 0, i.e. φ̂(x) = x+O(xν+1). To

be able to solve the equation for t̂(x), one needs that φ̂(x) = x + O(xν+1).
This observation is at the heart of the following two examples.

Example 2.1. — (Formally equivalent but analytically non-equivalent res-
onant irregular singularities with analytically equivalent companion sys-
tems.)
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Consider the reducible equation of Poincaré rank ν = 2(
δ2 − α2(x)

)(
δ2 − α1(x)

)
y = 0,

with

α1(x) = 1, α2(x) = 1 + x+ x2 + cx3

1 + cx
, c ∈ C.

Its basis of solutions is

y1(x) = e−
1

2x2 , x ∈ C,

y2(x) = e−
1

2x2

∫ x

0+
e−

1
t

1 + ct

t2
dt = e−

1
2x2

∫ +∞

1
x

e−s
(

1 + c

s

)
ds, x ∈ C \ R60,

where the integration path in the s-variable follows horizontal rays. The
projective Stokes matrices of the associated companion systems are easily
calculated using the residue to be St0 = id and Stπ = ( 1 2πic

0 1 ), which are
conjugated by diagonal matrices for all c 6= 0. Up to analytic gauge trans-
formation, the companion systems can be written as

δ2v =
(
α1(x) 1

0 α2(x)

)
v,

and are all formally equivalent to each other for all c ∈ C by a gauge transfor-
mation. Indeed, writing the formal gauge transformation between two such
systems with c and c̃ as v =

(
1 f̂(x)
0 1+cx

1+c̃x

)
ṽ, then f̂(x) must satisfy

δ1f̂ = c− c̃
1 + c̃x

−
(

1 + x+ c̃x2

1 + c̃x

)
f̂ ,

which has a unique formal solution with f̂(0) = c− c̃. Hence the companion
systems are all analytically equivalent for c, c̃ 6= 0.

Also the equations are formally equivalent for all c ∈ C: indeed, it suffices
to solve the conjugation equations

e−
1
x

1 + cx

x2 = e−
1
φ

1 + c̃φ

φ2 · dφ
dx , e−

1
2x2 = t̂(x)e−

1
2φ2 .

Writing φ(x) = x+ x2g(x), then g(x) satisfies an analytic ODE

δ1g = e−
g

1+xg (1 + xg)2 1 + cx

1 + c̃x(1 + xg) − 1− 2xg,

with a “saddle-node” type singularity at (x, g) = (0, 0), which is known
to have a unique formal solution ĝ(x) = (c − c̃)x + O(x2). Then t̂(x) =
− c−c̃2 +O(x) can also be formally solved.

On the other hand, in the problem of analytic equivalence one needs to
equalize the bases cy1(x), y2(x) and c̃ỹ1(x̃), ỹ2(x̃), with respect to which the
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Stokes matrices agree, and the conjugation equations

e−
1
x

1 + cx

cx2 = e−
1
φ

1 + c̃φ

c̃φ2 · dφ
dx , ce−

1
2x2 = c̃t̂(x)e−

1
2φ2 ,

are solved on sectors by the same φ(x) = x+log c̃
cx

2+O(x3) which is analytic
as in the proof of Theorem 1.6. But now the equation for t(x) has no formal
solution if c 6= c̃, and hence no analytic one either.

Proof of Proposition 1.7. —

(1). — Indeed, for a reducible LDE (1.14) one has ∆(x) = r(x)2 −
2δνr(x) for r(x) = α2(x) − α1(x), and moreover y1(x) = e

∫
α1(x)δ−1

ν is
convergent solution. Vice-versa, if ∆(x) = r(x)2 − 2δνr(x) for an analytic
r(x), then the equation factors as (1.14) with α2(x) = 1

2
(
p(x) + r(x)

)
and

α1(x) = 1
2
(
p(x) − r(x)

)
. If y(x) is a “convergent solution”, then the equa-

tion factors as (1.14) with α1(x) = δν log y(x) and α2(x) = p(x) − α1(x),
i.e. r(x) = p(x) − 2α1(x). Finally, it is known that the companion system
is analytically reducible, i.e. analytically equivalent to one in a triangular
form, if and only if the Stokes matrices of are either all upper triangu-
lar or all lower triangular (indeed the formal diagonalizing transformation
for a triangular system is triangular and therefore the Stokes matrices will
have the same triangular form, and vice versa, a solution to the sectorial
cohomological equation with triangular Stokes matrices exists that is tri-
angular). The system δνv = A(x)v, A(x) =

(
aij(x)

)
, realizing triangular

Stokes data can be assumed upper triangular and with a12(0) = 1 (since
a11(0) 6= a22(0)), and is therefore it is conjugated to δνv =

(
α1(x) 1

0 α2(x)

)
v

for some α1(x), α2(x), hence analytically equivalent to the companion system
of a reducible LDE (1.14).

(2). — The normal form LDE (1.20) has two linearly independent solu-
tions yj(x) = e

∫
λj(x)δ(

ν−1), j = 1, 2, and the equation (1.23) has an analytic
solution h(x) = 1

λ2(x)−λ1(x) . In general, if yj(x) = tj(x)e
∫
λj(x)δ−1

ν , j = 1, 2,
is a pair of linearly independent solutions of the LDE, f(x) = y2(x)

y1(x) , then
h(x) := f

δνf
= 1

λ2(x)−λ1(x)+δν log t2
t1

is an analytic solution to (1.23).

Supposing that h(x) is a nontrivial analytic solution to (1.23), let us show
that the LDE is reducible. First, let us notice that from (1.23) it follows that
h(x)2∆(x) = c2 +O(x2ν+1) for some 0 6= c ∈ C. Let r(x, c) := c−δνh(x)

h(x) and

∆(x, c2) := r(x, c)2 − 2δνr(x, c) = c2−
(
δνh(x)

)2
+2h(x)δ2

νh(x)
h(x)2 , c ∈ C. Consider-

ing the equation (1.23) as a non-homogeneous first order linear differential
equation for unknown ∆ with coefficients determined by h(x), then ∆(x, a2)
are its solutions for all a ∈ C and for the reason of dimension there are
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no other solutions. Hence ∆(x) = ∆(x, c2) and the LDE is reducible, with
r(x) = r(x,±c), two different solution to ∆(x) = r(x)2−2δνr(x) (1.22), and
y1(x) = e

∫
α1(x)δ−1

ν , y2(x) = h(x)e
∫
α2(x)δ−1

ν , where α1(x) = 1
2
(
p(x) − r(x)

)
and α2(x) = 1

2
(
p(x) + r(x)

)
are two linearly independent convergent solu-

tions to the LDE.

Vice-versa, if rj(x), j = 1, 2, are two different solution to (1.22), then
h(x) = 1

r2(x)−r1(x) , δν log h(x) = − r1(x)+r2(x)
2 , is an analytic solution

to (1.23).

Finally, a system with an irreducible irregular singularity and formal
invariants {λ1(x)δ−1

ν , λ2(x)δ−1
ν } is analytically equivalent to δνv =(

λ1(x) 0
0 λ2(x)

)
v, if and only if its collection of Stokes matrices is trivial, and

one concludes by Theorem 1.6. �

Proof of Theorem 1.8. — Two 2×2 linear differential systems with non-
resonant irregular singularity at the origin of Poincaré rank ν = 1 are an-
alytically equivalent if and only if they have the same formal invariants
and the same trace of monodromy. Indeed, the monodromy matrix of such
system with respect to the sectorial fundamental solution V−π2 (x) is of the

form M =
(
e
2πiλ(1)

1 0
0 e

2πiλ(1)
2

) ( 1 0
sπ 1

) ( 1 s0
0 1

)
, where the product s0sπ 6= 0 is

the invariant characterizing the pair of Stokes matrices. Therefore detM =
e2πi(λ(1)

1 +λ(1)
2 ) = e2πip(1) and the quantity

(detM)− 1
2 trM = eπi(λ

(1)
2 −λ

(1)
1 (1+s0sπ)+eπi(λ

(1)
1 −λ

(1)
2 = 2 cosπµ+eπiµs0sπ

is a natural invariant. On the other hand the eigenvalues of the residue
matrix of the companion system at x =∞ are −p

(1)−1
2 ± 1

2

√
∆(2) + 1, where

∆(2) = (p(1))2 + 4q(2) − 2p(1), and therefore

(detM)− 1
2 trM = 2 cosπ

√
∆(2) + 1,

from which one has (cf. [18, p. 144])

s0sπ = 4e−πiµ sin π
(
µ+
√

∆(2) + 1
2

)
sin π

(
µ−
√

∆(2) + 1
2

)
.

For given formal and analytic invariants, the equation for ∆(2) can be always
solved.

If the LDE is reducible, written as (1.14), then there are only two analytic
equivalence classes within a given formal equivalence class: one corresponds
to both Stokes matrices trivial, and the other to one non-trivial Stokes matrix
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conjugated to
(

1 1
0 1
)
. he equation has two canonical solutions:

y1(x) = e
∫
α1(x)δ−1

1 ,

y2(x) = e
∫
α1(x)δ−1

1

∫ x

0
e
∫
α2(x)−α1(x)δ−1

1 δ−1
1 ,

x ∈ Cr(α(0)
2 −α

(0)
1 )R60, where the integration path follows a real trajectory

of δ1
α2(x)−α1(x) . Assuming that α2(x) − α1(x) = 1 + µx + x2r(x) for some

analytic germ r(x), then

y2(x) = y1(x)
∫ x

0+
e−

1
xxµ−2R(x)dx = y1(x)

∫ +∞

1
x

e−ss−µR

(
1
s

)
ds,

where R(x) := e
∫
r(x)dx, the integration in the second integral following a

horizontal ray. Denoting y2,+(x), resp. y2,−(x), the branch of y2(x) on arg x ∈
]π, 2π[, resp. arg x ∈ ]0, π[, then for arg x = π

y2,+(x)−y2,−(x) = y1(x)sπ, sπ =
(
e2πiµ−1

)∫ +∞

0
e−ss−µR

(
1
s

)
ds. (2.5)

In particular, if α2(x) − α1(x) = 1 + µx, i.e. R(x) = 1, then sπ =
(
e2πiµ −

1
)
Γ(1−µ) = eπiµ 2πi

Γ(µ) which vanishes if and only if µ ∈ Z60. And if α2(x)−
α1(x) = 1+µx−x2, i.e. R(x) = e−x, then sπ =

(
e2πiµ−1

)∑
j>0(−1)jΓ(1−

µ− j) = 2πieπiµ
∑
j>0

1
Γ(µ+j) which is positive for every µ ∈ Z. �

Non-degenerate resonant irregular singularities

By Theorem 1.2, we may suppose Jν0 ∆(x) = x and let Jν0 p (x) =: P (x),
P (0) = 0. The LDE may be rewritten as

δ2
ν− 1

2
y −

(
x−

1
2 p(x)− 1

2x
ν− 1

2

)
δν− 1

2
y − x−1q(x)y = 0, (2.6)

which is non-resonant in the variable x 1
2 . Correspondingly it has a formal

solution basis
ŷ1(x) = T̂ 11(x 1

2 )x− 1
4 e
∫ 1

2 (P (x)−x
1
2 )δ−1

ν ,

ŷ2(x) = T̂ 12(x 1
2 )x− 1

4 e
∫ 1

2 (P (x)+x
1
2 )δ−1

ν ,
(2.7)

where T̂ 11(0) = T̂ 12(0) = 1. By the results of the previous section, for
every two such LDE for y and ỹ respectively there exists a unique formal
transformation in x 1

2

x̃
1
2 = φ̂

1
2 (x 1

2 ) = x
1
2 +O(xν+ 1

2 ), ỹ = t̂(x 1
2 )y, t̂(0) = 1,
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that transforms the respective solutions (2.7) one to the other, and is Borel
(2ν − 1)-summable in the variable x 1

2 .

Proof of Proposition 1.9. — Let us show that there exists a formal trans-
formation in x

x̃ = φ̂(x) = x+O(xν+1), ỹ = t̂(x)y, t̂(0) = 1,

between the LDEs. This transformation will necessarily also transform the
respective solutions (2.7) one to the other, so by the unicity it will agree
with the above one. We can assume ∆̃(x̃) = x̃, ∆(x) = x + O(xν+1), and
we construct the transformation x̃ = φ̂(x) as a formal infinite composition
φ̂ = . . . φν+2 ◦φν+1 ◦φν , where φk(x) = x+ akx

k+1 is such that if ∆k = x+
bkx

k+1 +O(xk+2) and x̃ = φk(x) then ∆k+1(x̃) = x̃+O(x̃k+2). Plugging this
into (1.11) gives x+akxk+1+O(xk+2) = x+(2k−2ν+1)bkxk+1+O(xk+2),
hence bk = ak

2k−2ν+1 is uniquely determined. If φ̂(x) = x + O(xν+1) and
p(x) = p̃ (x) + O(xν+1), then also the equation (1.9) for log t̂(x) has a
unique formal solution. �

Proof of Theorem 1.10. — If the Stokes operators agree, then by the
reasoning of the proof of Theorem 1.6, the sectorial transformation between
the respective solutions (2.7) of the two LDEs glue up to an analytic trans-
formation in the variable x 1

2

x̃
1
2 = φ

1
2 (x 1

2 ) = x
1
2 +O(xν+ 1

2 ), ỹ = t(x 1
2 )y, t̂(0) = 1.

The Taylor expansion of this transformation is a formal transformation that
is tangent to identity, hence by Proposition 1.9 it contains only whole powers
of x, and therefore φ(x 1

2 ) and t(x 1
2 ) are analytic also in x. �

Proof of Theorem 1.11. — By the same reasoning as in the proof of
Theorem 1.8. If ν = 1, then the equation (2.6) is of Poincaré rank 1 in the
variable x 1

2 . �

Proof of Theorem 1.12. — Up to a composition with transformation
y 7→ xmy, which changes Jν0 p (x) · δ−1

ν by mδ−1
0 while preserving the mon-

odromy and the Stokes operators, the meromorphic classification problem
is reduced to the analytic one. In fact, in the irregular case meromorphic
transformations preserve the canonical sectorial solution bases. �

Proof of Theorem 1.13. — Calculating the coefficients of ∂x and ∂y
in (1.29) with (1.30) and (1.31) both give α = d

dxg. Then the coefficients
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of y∂yx and yx∂yx in (1.29) give respectively

2 q

x2ν+2
d

dxg + g
d

dx

( q

x2ν+2

)
= d2

dx2 f −
(

p

xν+1 −
ν + 1
x

)
d

dxf

d2

dx2 g +
(

p

xν+1 −
ν + 1
x

)
d

dxg + g
d

dx

(
p

xν+1 −
ν + 1
x

)
= 2 d

dxf.

Hence

2f(x) = d
dxg +

(
p(x)
xν+1 −

ν + 1
x

)
g(x) + 2f (0), for some f (0) ∈ C.

Let h(x) = g(x)
xν+1 , then 2f = δνh+p h+2f (0), and δ2

νf−p δνf = 2q δνh+δνq h,
from which

δ3
νh−∆ δνh−

1
2δν∆h = 0.

For a strictly non-resonant regular singularity (1.15), the equation to
solve is

δ3
0h− (λ1 − λ2)2δ0h = 0,

which has a basis of solutions h1(x) = 1, h2(x) = xλ1−λ2 , h3(x) = xλ2−λ1 if
λ1 6= λ2, and h1(x) = 1, h2(x) = log x, h3(x) = (log x)2 if λ1 = λ2.

For a resonant regular singularity (1.17), the equation for h is of the
form (1.24) with ν = 0 and r(x) = − k

1−xk , which has a basis of solu-
tions h1(x) = xk

1−xk , h2(x) = 1
1−xk + kxk

1−xk log x, and h3(x) given by
(
δ0 +

r(x)
)
h3(x) = 1

xk
+ k log x.

If ν > 0 and ∆(0) 6= 0, then by Proposition 1.7 the equation (1.23) has a
non-trivial analytic solution h(x) if and only if the LDE is analytically equiv-
alent to its formal normal form (1.20), for which one has h(x) = c

λ2(x)−λ1(x) ,
c ∈ C. �

Appendix: Implicit function theorem for Borel summable power
series

We will recall the notion of Borel summability and present a Borel sum-
mable version of the implicit function theorem.

There are several equivalent ways to define Borel summability (see e.g. [2,
13, 17, 18, 22]). We will use the following one due to J.-P. Ramis.

Let (E, ‖ · ‖) be a Banach space: we will consider the following two, (i)
the field (C, | · |), (ii) the space of bounded analytic functions on some small
disc D = {|y| 6 ε}, ε > 0, together with supremum norm.
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Let f̂(x) =
∑
n>0 f

(n)xn ∈ E[[x]] be a formal power series with coefficients
f (n) ∈ E.

• An open sectorial domain at the origin is a simply connected do-
main U in C (or in the Riemann surface of logarithm) with 0 in its
boundary that can be written as an (infinite) union of open sectors
at 0 of increasing angular opening (and decreasing radius).
• Let U be an open sectorial domain at the origin. An analytic func-
tion f : U → E is said to be s-Gevrey asymptotic to f̂ , s > 0, if
for every sector V ⊂⊂ U (i.e. such that V ⊂ U ∪ {0}) there exist
C,A > 0 such that

‖f(x)−
N−1∑
n=0

f (n)xn‖ 6 C|x|NANΓ(1 + sN), for all N > 0 and all x ∈ V .

• An analytic function f : U → E is said to be exponentially flat of
order ν > 0 if it is 1

ν -Gevrey asymptotic to the zero series. This is
equivalent to ask that for every sector V ⊂⊂ U there exist C,A > 0
such that

‖f(x)‖ 6 Ce−
A
|x|ν , for all x ∈ V.

• The formal power series f̂(x) is said to be Borel ν-summable in
a direction α ∈ R for ν > 0, if there exists an open sector U of
angular width > π

ν bisected by α, and a function fα : U → E that
is 1

ν -Gevrey asymptotic to f̂(x). It is said to be Borel ν-summable if
it is summable in all directions α ∈ [0, 2π[ up to finitely many. The
directions of non-summability are called anti-Stokes or singular.

Let β0 < . . . < βm−1 be the anti-Stokes directions of a Borel ν-summable
f̂(x) in the interval [0, 2π[, βm = β0 + 2π. For η > 0 arbitrarily small, let

Vj =
{

arg x ∈
]
βj −

π

2ν + η, βj+1 + π

2ν − η
[
, |x| < ρ(η)

}
,

j = 0, . . . ,m− 1, (2.8)

with some ρ(η) > 0, be a cyclic covering of a pointed neighborhood of 0
by sectors, and fVj : Vj → E the Borel sum of f̂ in the directions α ∈
]βj +η, βj+1−η[. Then by definition fVj+1−fVj is exponentially flat of order
ν on the intersection Vj ∩ Vj+1.

By the Ramis–Sibuya theorem the converse is also true, giving thus a
useful characterization of Borel summability.

Theorem (Ramis–Sibuya). — Let Vj, j ∈ Zm, be a cyclic covering of
a pointed neighborhood of 0 by sectors. Let fVj ,Vj+1 : Vj ∩ Vj+1 → E be
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exponentially flat of order ν, for all j ∈ Zm. Then there exists a formal power
series f̂(x), and a “cochain” of sectorial functions fVj : Vj → E, j ∈ Zm,
that are 1

ν -Gevrey asymptotic to f̂(x), such that fVj ,Vj+1 = fVj+1 − fVj .

In particular, if the angular opening of Vj is > π
ν , then f̂(x) is Borel

ν-summable in the directions covered by e− π
2ν Vj ∩ e

π
2ν Vj.

Proposition 2.2 (Implicit function theorem). — Let F̂ (x, y) =∑
j>0 F

(j)(y)xj be a formal power series of x such that the coefficients
F (j)(y) bounded and analytic in y on some small disc D = {|y| 6 ε},
ε > 0, and the series is Borel ν-summable. Suppose that F (0)(0) = 0 and
dF (0)

dy (0) 6= 0. Then the implicit equation

F̂ (x, g(x)) = 0,

has a unique formal solution ĝ(x) =
∑
j>0 g

(j)xj, g(0) = 0, which is Borel ν-
summable with singular directions among the singular directions of F̂ (x, y).

The above proposition follows directly from a sectoral implicit function
theorem with Gevrey asymptotics that is stated in [19, Theorem 2.8] with a
reference to the book [14], and also proved in [6]. Some related statements
can be also found in [26]. We provide a sketch of a proof below.

Proof. — For any small η > 0, let FVj : Vj × D → C, j ∈ Zm, be the
“cochain” of the Borel sums of F̂ on the cyclic sectorial covering Vj (2.8).
Then there exist C,A > 0 such that

|FVj+1(x, y)− FVj (x, y)| 6 Ce−
A
|x|ν

on the intersections (x, y) ∈ (Vj ∩ Vj+1)×D.

We shall solve the sectorial implicit equations

FVj (x, gVj (x)) = 0,

for x ∈ Vj , by replicating the usual proof of the implicit function theorem.
The sectorial solution gVj (x) is obtained as a fixed point of the operator

Kj : y(x) 7→ y(x)−
(
∂F (0)

∂y
(0)
)−1

FVj (x, y(x)), gVj (x) = lim
n→+∞

K◦nj (x, 0),

on the space of bounded analytic functions on the sector Vj with
supx∈Vj |y(x)| 6 ε

2 for some small ε > 0, supposing that the radius of Vj
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is small enough. Indeed, let us estimate∣∣∣∣∂Kj∂y
(x, y)

∣∣∣∣ 6 ∣∣∣∣∂F (0)

∂y
(0)
∣∣∣∣−1∣∣∣∣∂FVj∂y

(x, y)− ∂F (0)

∂y
(y)
∣∣∣∣

+
∣∣∣∣(∂F (0)

∂y
(0)
)−1

∂F (0)

∂y
(y)− 1

∣∣∣∣,
for x ∈ Vj , |y| < ε

2 . The second term can be made arbitrarily small by
restricting the radius ε of D. The first term can expressed by the Cauchy
formula as

1
2π

∣∣∣∣∂F (0)

∂y
(0)
∣∣∣∣−1
∣∣∣∣∣
∫
|ζ−y|= ε

2

FVj (x, ζ)− F (0)(ζ)
ζ − y

dζ

∣∣∣∣∣ 6 c|x|,
for some c > 0. Hence, up to restricting the radius ρ(η) of the sector Vj , one
can assume that

∣∣∂Kj
∂y (x, y)

∣∣ 6 1
2 for x ∈ Vj , |y| < ε

2 , and the operator is
contractive.

Let us now show that |gVj+1(x) − gVj (x)| 6 Ke−
A
|x|ν on the intersec-

tions Vj+1∩Vj for some K > 0 in order to apply the Ramis–Sibuya theorem
and obtain the Borel summability. For x ∈ Vj+1∩Vj and |yj+1|, |yj | 6 ε

2 one
can estimate |Kj+1(x, yj+1) − Kj(x, yj)| 6 |Kj+1(x, yj+1) − Kj+1(x, yj)| +
|Kj+1(x, yj) − Kj(x, yj)|, where the first term is bounded by |yj+1 − yj | ·∫ 1

0
∣∣∂Kj
∂y (x, tyj+1+(1−t)yj)

∣∣dt 6 1
2 |yj+1−yj |, and the second term is bounded

by |∂F
(0)

∂y (0)|−1Ce−
A
|x|ν . Therefore the difference of all the respective itera-

tions satisfy |K◦nj+1(x, 0)−K◦nj (x, 0)| 6 Ke−
A
|x|ν for K = 2|∂F

(0)

∂y (0)|−1C and
so do the limits |gVj+1(x)− gVj (x)| 6 Ke−

A
|x|ν . �
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