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Magnetic Ginzburg–Landau energy with a periodic
rapidly oscillating and diluted pinning term (∗)

Mickaël Dos Santos (1)

ABSTRACT. — We study the 2D full Ginzburg–Landau energy with a periodic
rapidly oscillating, discontinuous and (strongly) diluted pinning term using a per-
turbative argument. This energy models the state of an heterogeneous type II super-
conductor submitted to a magnetic field. We calculate the value of the first critical
field which links the presence of vorticity defects with the intensity of the applied
magnetic field. Then we prove a standard dependence of the quantized vorticity
defects with the intensity of the applied field. Our study includes the case of a
London solution having several minima. The pinning effect is explicitly established
and we give the asymptotic location of the vorticity defects with various scales. The
macroscopic location of the vorticity defects is understood with the famous Bethuel–
Brézis–Hélein renormalized energy restricted to the minima of the London solution
coupled with a renormalized energy obtained by Sandier–Serfaty. The mesoscopic
location, i.e., the arrangement of the vorticity defects around the minima of the
London solution, is described, as in the homogenous case, by a renormalized energy
obtained by Sandier–Serfaty. The microscopic location is exactly the same than in
the heterogeneous case without magnetic field. We also compute the value of sec-
ondary critical fields that increment the quantized vorticity.

RÉSUMÉ. — À l’aide d’un argument perturbatif, on étudie une énergie de type
Ginzburg–Landau bidimensionnelle avec un champ magnétique et présentant un
terme de chevillage périodique rapidement oscillant, discontinu et (fortement) dilué.
Cette énergie modélise l’état d’un supraconducteur hétérogène de type II soumis à un
champ magnétique. On calcule la valeur du premier champ critique à partir duquel
les défauts de vorticité apparaissent. Ensuite on démontre une dépendance classique
reliant les défauts de vorticité quantifiés avec l’intensité du champ appliqué. Notre
étude traite aussi le cas où la solution de London admet plusieurs point de mini-
mum. L’effet d’ancrage des défauts de vorticité est clairement établi et on précise
suivant différentes échelles l’emplacement asymptotique des défauts de vorticité. La
position macroscopique des défauts de vorticité est donnée par la célèbre énergie re-
normalisée de Bethuel–Brézis–Hélein restreinte au points de minimum de la solution
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de London couplée avec une énergie renormalisée obtenue par Sandier–Serfaty. La
position mesoscopique, i.e., l’arrangement des défauts de vorticité autour des points
de minimum de la solution de London, est décrite, comme dans le cas homogène, par
une énergie renormalisée obtenue par Sandier–Serfaty. La position microscopique est
exactement la même que dans le cas sans champ magnétique. On calcule aussi des
champs critiques secondaires qui incrémentent la vorticité quantifiée.

1. Introduction

This article studies the pinning phenomenon in type-II superconducting
composites.

Superconductivity is a property that appears in certain materials cooled
below a critical temperature. These materials are called superconductors.
Superconductivity is characterized by a total absence of electrical resistance
and a perfect diamagnetism. Unfortunately, when the imposed conditions are
too intense, superconductivity is destroyed in certain areas of the material
called vorticity defects.

We are interested in type II superconductors which are characterized by
the fact that the vorticity defects first appear in small areas. Their num-
ber increases with the intensity of the conditions imposed until filling the
material. For example, when the intensity hex of an applied magnetic field
exceeds a first threshold, the first vorticity defects appear: the magnetic field
begins to penetrate the superconductor. The penetration is done along thin
wires and may move resulting an energy dissipation. These motions may be
limited by trapping the vorticity defects in small areas.

The behavior of a superconductor is modeled by minimizers of a
Ginzburg–Landau type energy. In order to study the presence of traps for
the vorticity defects we consider an energy including a pinning term that
models impurities in the superconductor. These impurities would play the
role of traps for the vorticity defects. We are thus lead to the subject of this
article: the type-II superconducting composites with impurities.

The case of an infinite long homogenous type II superconducting cylinder
was intensively studied in mathematics by various authors since the 90’s
(see [16] for a guide to the litterature). Namely, the present work deals
with a cylindrical superconductor S = Ω × R (whose section is Ω ⊂ R2)
submitted to a vertical magnetic field (0, 0, hex). Under these considerations,
the vorticity defects are thin vertical cylinders. Thus their study may be done
via a 2D problem formulated on Ω ⊂ R2. Following the works of various
authors (see [1, 11, 14]), for a small parameter ε > 0 (ε→ 0 in this article)
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and hex = hex(ε) > 0, we are interested in the description of the (global)
minimizers of the functional

Eε,hex : H −→ R+

(u,A) 7−→ 1
2

∫
Ω
|∇u− ıAu|2 + 1

2ε2 (a2
ε − |u|2)2 + |curl(A)− hex|2

where (see Section 2 for more detailed notation)

• Ω ⊂ R2 is a smooth bounded simply connected open set,
• H := H1(Ω,C)×H1(Ω,R2),
• aε : Ω→ {1, b} (b ∈ (0, 1) is independent of ε) is a periodic diluted
pinning term (see Figure 1.1 and Section 2.3 for a construction of
aε). The impurities are the connected components of ωε := a−1

ε ({b}).
In the definition of aε, δ = δ(ε) →

ε→0
0 is the parameter of period,

λ = λ(ε) →
ε→0

0 is the parameter of dilution and 0 ∈ ω ⊂ R2 is a
smooth bounded simply connected open set which gives the form of
the impurities.PINNED MAGNETIC GINZBURG-LANDAU ENERGY 3

aε = b ∈ (0, 1)

aε = 1
δ

Ω

(a) The pining term is periodic on a δ × δ-grid

δ

≈ λδ

(b) The parameter λ controls the
size of an inclusion in the cell

Figure 1. The periodic pinning term

Under these considerations, if (uε, Aε) minimizes Eε,hex , then the vorticity defects
may be interpreted as the set {|uε| < b/2}. It is excepted that the connected compo-
nents of {|uε| < b/2} are close to disks with radii of order ε.

As said above, our study takes place in the extrem type II case ε → 0 and we
also assume a divergent upper bound for hex. Vorticity defects appear for minimizers
above a critical valued Hc1 = [b2| ln ε|+ (1− b2)| ln(λδ)|]/(2kξ0kL∞(Ω)) + O(1) [see

Corollary 64 and (75)]. Here ξ0 ∈ H1
0 ∩H2 is called the London solution and is the

unique solution of the London equation

(1)











−Δ2ξ0 +Δξ0 = 0 in Ω

Δξ0 = 1 on ∂Ω

ξ0 = 0 on ∂Ω

.

The value Hc1 is calculated by a standard balance of the energetic costs of a
configuration without vorticity defects [|u| ≥ b/2] with well prepared competitors
having an arbitrary number of quantized vorticity defects. Here quantization has
to be interpreted by the degree of u around a vorticity defect. It is an observable
quantity related with the circulation of the superconducting currents.

In order to lead the study, the set Λ := {z ∈ Ω | ξ0(z) = min ξ0} ⊂ Ω is of major
interest [it is standard to prove that, in Ω, −1 < ξ0 < 0]. From Lemma 4.4 in [17]
and Lemma 4 in [15] we have the following :

Lemma 1. The set Λ is finite. Moreover there exist η > 0 and M ≥ 1 s.t. for a ∈ Ω
we have ξ0(a) ≥ min ξ0 + ηdist(a,Λ)M (1) .

We write N0 := Card(Λ) and Λ = {p1, ..., pN0}.

We may give a simple picture of the emergence of the vorticity defects. The first
vorticity defects appear close to Hc1 . If N0 = 1 then there is first a unique vorticity

1In Lemma 4 in [15], M is just a positive number, but ξ ∈ C0(Ω), and then, up to considering
η > 0 sufficiently small, we may assume M ≥ 1.
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(b) The parameter λ controls the
size of an inclusion in the cell

Figure 1.1. The periodic pinning term

We focus on a strongly diluted case λ1/4|ln ε| → 0 with not too small
connected components of ωε in order to trap the vorticity defects |ln(λδ)| =
O(ln|ln ε|) but with a sufficiently small parameter of the period (see (1.4)).

Under these considerations, if (uε, Aε) minimizes Eε,hex , then the vorticity
defects may be interpreted as the set {|uε| < b/2}. It is excepted that the
connected components of {|uε| < b/2} are close to disks with radii of order ε.
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As said above, our study takes place in the extrem type II case ε→ 0 and
we also assume a divergent upper bound for hex. Vorticity defects appear for
minimizers above a critical valued

Hc1 = [b2|ln ε|+ (1− b2)|ln(λδ)|]/(2‖ξ0‖L∞(Ω)) +O(1)

(see Corollary 10.3 and (7.5)). Here ξ0 ∈ H1
0 ∩ H2 is called the London

solution and is the unique solution of the London equation
−∆2ξ0 + ∆ξ0 = 0 in Ω
∆ξ0 = 1 on ∂Ω
ξ0 = 0 on ∂Ω.

(1.1)

The value Hc1 is calculated by a standard balance of the energetic costs
of a configuration without vorticity defects |u| > b/2 with well prepared
competitors having an arbitrary number of quantized vorticity defects. Here
quantization has to be interpreted by the degree of u around a vorticity
defect. It is an observable quantity related with the circulation of the super-
conducting currents.

In order to lead the study, the set Λ := {z ∈ Ω | ξ0(z) = min ξ0} ⊂ Ω is
of major interest (it is standard to prove that, in Ω, −1 < ξ0 < 0). From
Lemma 4.4 in [17] and Lemma 4 in [15] we have the following:

Lemma 1.1. — The set Λ is finite. Moreover there exist η > 0 and
M > 1 s.t. for a ∈ Ω we have ξ0(a) > min ξ0 + η dist(a,Λ)M .(1)

We write N0 := Card(Λ) and Λ = {p1, . . . , pN0}.

We may give a simple picture of the emergence of the vorticity defects.
The first vorticity defects appear close to Hc1 . If N0 = 1 then there is first
a unique vorticity defect and it is close to Λ. If N0 > 2 the situation is
less clear: we first have d?1 ∈ {1, . . . , N0} vorticity defects and each of them
is located near one element of Λ. By increasing the intensity of the applied
field hex by a bounded quantity we increment the number of vorticity defects
until filling Λ.

Once each elements of Λ is close to a vorticity defect, then by increasing
hex of a O(ln|ln ε|), additional defects appear one by one.

We may now state the main theorems of the present work. For simplicity
of the presentation the theorems are not stated in their most general form
(see Theorem 3.3).

(1) In Lemma 4 in [15], M is just a positive number, but ξ ∈ C0(Ω), and then, up to
considering η > 0 sufficiently small, we may assume M > 1.
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These main results are obtained assuming that λ, δ and hex satisfy

λ1/4|ln ε| −→ 0 and |ln(λδ)| = O(ln|ln ε|), (1.2)

There is K > 1 s.t. hex 6
b2|ln ε|

2‖ξ0‖L∞(Ω)
+K ln|ln ε| (1.3)

and when hex →∞ we need

ln(δ
√
hex)

ln(ln hex) → −∞. (1.4)

Namely, in order to meet Hypothesis (1.2), (1.3) and (1.4), we may think
λ ' |ln ε|−s, δ ' |ln ε|−t with s > 4 and t > 1/2.

We need also assume thatß
the minimal points of ξ0, Λ = {p1, . . . , pN0},
are non degenerate critical points (1.5)

in the sense that for p ∈ Λ, letting Hessξ0(p) be the Hessian matrix of ξ0 at
p, the quadratic form Qp(z) = z · Hessξ0(p)z is a definite positive quadratic
form. Note that if (1.5) holds then we may take M = 2 in Lemma 1.1.

The strategy of this work is based on a perturbative argument. This
argument applies for families of quasi-minimizers of the energy with some
regularity assumptions (see Theorem 3.3). In particular, we cannot have a
sharp profile near a zero of a quasi-minimizer since such profile does not
make any sense for quasi-minimizer. Therefore we cannot speak about an
ad-hoc notion of vortices s.t. “isolated zeros”. However with a natural L∞-
bound on the gradient of quasi-minimizers, the notion of vorticity defects is
sufficiently robust to give them a nice description.

For simplicity of the presentation we first state the main results for a
family {(uε, Aε) | 0 < ε < 1} ⊂H s.t.

(uε, Aε) minimizes Eε,hex in H . (1.6)

Theorem 1.2. — Assume that (1.5) holds and λ, δ, hex,K satisfy (1.2),
(1.3) and (1.4). There exists DK,b > 1 s.t. for {(uε, Aε) | 0 < ε < 1} ⊂ H
satisfying (1.6), for sufficiently small ε, there exists dε ∈ N s.t. if dε = 0
then |uε| > b/2 in Ω, and if dε ∈ N∗ then there exists a set of dε points,
Zε = {zε1, . . . , zεdε} ⊂ Ω, s.t. for µ > 0 sufficiently small and independent of
ε we have:

(1) dε 6 DK,b
(2) {|uε| 6 b/2} ⊂

⋃
B(zεi , εµ) ⊂ Ω,

(3) |zεi − zεj | > h−1
ex ln hex for i 6= j,

– 709 –
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(4) dist(zεi ,Λ) 6 h−1/2
ex ln hex for all i,

(5) deg∂B(zε
i
,εµ)(uε) = 1 for all i.

Moreover:

(1) There is ηω,b > 0 depending only on ω and b s.t., for all i,
B(zεi , ηω,bλδ) ⊂ ωε.

(2) If for a sequence ε = εn ↓ 0 we have hex = O(1) then dε = 0 for
small ε.

From Theorem 1.2 we know that, for small ε, if {|uε| < b/2} 6= ∅, then
the vorticity defects are contained in small disks which are well separated,
trapped by the impurities and located near Λ. The second theorem gives
sharper informations related with the location of these disks. We divide the
second theorem in three parts:

• Macroscopic location: We know that the disks are near Λ, for some
p ∈ Λ, how many disks are near p?
• Mesoscopic location: For p ∈ Λ, how are the disks near p organized?
What is their inter-distance?
• Microscopic location: We know that the disks are trapped by the
inclusion ωε, what is their location inside ωε.

These questions are related with the crucial notion of renormalized energy
(see Section 6).

Theorem 1.3.
Direct part. — Assume that (1.5) holds and λ, δ, hex,K satisfy (1.2),

(1.3) and (1.4). Assume also hex →∞.

Let {(uε, Aε) | 0 < ε < 1} ⊂ H satisfying (1.6) and let ε = εn ↓ 0 be
a sequence. Since d = dε 6 DK,b, up to passing to a subsequence, we may
assume that d is independent of ε. Assume d > 0.

Macroscopic location. — Recall that Λ = {p1, . . . , pN0} and for k ∈
{1, . . . , N0} we let Dk := deg∂B(pk,2 ln(hex)/

√
hex)(uε). Write D = (D1, . . . ,

DN0). Up to a subsequence we may assume that D is independent of ε. We
then have:

• The distribution of the disks B(zεi , εµ) around the elements of Λ is
the most homogenous possible:

D ∈ Λd :=
®

D′ ∈
ß°

d

N0

§
;
õ
d

N0

û™N0
∣∣∣∣∣
N0∑
k=1

D′k = d

}
.

Here, for x ∈ R, we wrote dxe for the ceiling of x and bxc for the
floor of x.
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• There exists a renormalized energy Wd : Λd → R (see (9.16)) s.t. D
minimizes Wd.

Mesoscopic location. — The mesoscopic location is the same than in the
homogenous case. Namely, for p ∈ Λ s.t. deg∂B(p,2 ln(hex)/

√
hex)(uε) = D > 0,

there exists a renormalized energy (see Section 6.2)

Wmeso
p,D :

{
(a1, . . . , aD) ∈ (R2)D

∣∣ ai 6= aj for i 6= j
}
−→ R

s.t., denoting ` :=
»

D
hex

and for zεi ∈ B(p, 2 ln(hex)/
√
hex) letting z̆εi :=

zεi−p
` , we have z̆ε = (z̆ε1, . . . , z̆εD) (assuming zεi ∈ B(p, 2 ln(hex)/

√
hex)⇔ i ∈

{1, . . . , D}) which converges to a minimizer of Wmeso
p,D . In particular ` is the

typical interdistance between two close zεi , zεj .

Microscopic location. — We know that, for i∈{1, . . . , d}, B(zεi , ηω,bλδ)⊂
ωε. Moreover for i 6= j we have |zεi − zεj | > ln(hex)h−1

ex � λδ. Then each
connected component of ωε contains at most one disk B(zεi , εµ).

There exists a renormalized energy Wmicro : ω → R (see Section 6.3) s.t.
for i ∈ {1, . . . , d}, letting yεi ∈ δ · Z2 be s.t. B(zεi , ηω,bλδ) ⊂ yεi + λδω and
ẑεi := zεi−y

ε
i

λδ ∈ ω we have

• Wmicro(ẑεi )→ minωWmicro,
• Up to passing to a subsequence, there is ai ∈ ω s.t. ẑεi → ai and ai
minimizes Wmicro.(2)

Optimality of the renormalized energies. — Consider a sequence ε =
εn ↓ 0 previously fixed (in order to have D independent of ε) and assume
d 6= 0. We let

• D′ ∈ Λd be a minimizer of Wd,
• for k ∈ {1, . . . , N0} s.t. D′k > 1, a′k be a minimizer of Wmeso

pk,D′k
,

• a0 be a minimizer of Wmicro.

Then, for ε = εn, there exist (u′ε, A′ε) ∈ H and d distinct points of Ω,
{z′1, . . . , z′d} = {zε1 ′, . . . , zεd

′} ⊂ ωε, s.t.

• Eε,hex(u′ε, A′ε) 6 infH Eε,hex + o(1),
• {|u′ε| 6 b/2} ⊂

⋃
B(z′i,

√
ε) ⊂

⋃
p∈ΛB(p, ln(hex)/

√
hex),

• for k ∈ {1, . . . , N0}, D′k = deg∂B(pk,2 ln(hex)/
√
hex)(u′ε),

• deg∂B(z′
i
,
√
ε)(u′ε) = 1 for all i,

(2) For example if ω is a disk then ai is the center of the disk [7].
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• writing for pk ∈ Λ (s.t. D′k > 1) and z′i ∈ B(pk, ln(hex)/
√
hex),

z̆′i := (zi − pk)/
√
Dk/hex and z̆′pk := {z̆′i | z′i → pk},(3) we have

z̆′pk → a′k,
• For i ∈ {1, . . . , d}, letting yεi ∈ δ · Z2 be s.t. z′i ∈ yεi + λδ · ω and
ẑ′i := z′i−y

ε
i

λδ ∈ ω we have ẑ′i → a0.

The third theorem underlines the link between the number d and hex.

Theorem 1.4. — Assume that Ω satisfies (1.5), λ, δ, hex,K satisfy (1.2),
(1.3) and (1.4).

There are integers L ∈ {1, . . . , N0}, 0 = d?0 < d?1 < · · · < d?L = N0

(d?k ∈ N is independent of ε) and critical fields (depending on ε) K(I)
1 < · · · <

K(I)
L < K(II)

1 < K(II)
2 < · · · (see (10.9) and (10.10) for the expressions of K(I)

k

and K(II)
k ) s.t. for {(uε, Aε) | 0 < ε < 1} ⊂ H a family satisfying (1.6) and

for a sequence ε = εn ↓ 0:

• If dε = 0 for small ε, then hex 6 K(I)
1 + o(1).

• If dε > 0 for small ε, then hex > K(I)
1 + o(1).

• Assume L > 2. For k ∈ {1, . . . , L − 1}, if for small ε we have
d?k−1 < dε 6 d?k, then

K(I)
k + o(1) 6 hex 6 K(I)

k+1 + o(1).

• For L > 1, if for small ε we have d?L−1 < dε 6 d?L = N0, then

K(I)
L + o(1) 6 hex 6 K(II)

1 + o(1).

• Let l ∈ N∗. If for small ε we have dε = N0 + l, then

K(II)
l + o(1) 6 hex 6 K(II)

l+1 + o(1).

Remark 1.5. — A more complete statement for dε ∈ {1, . . . , N0} may be
found in Proposition 10.7.
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2. Notation

2.1. Sets, vectors and numbers

• We identify the real plan R2 with C and we denote by S1 the unit
circle in C.
• For U ⊂ R2, N ∈ N \ {0; 1}, (U N )∗ := {(z1, . . . , zN ) ∈ U N | zi 6=
zj for i 6= j}.
• For k ∈ {1; 2}, Hk is the k-dimensional Hausdorff measure.
• If (a1, a2), (b1, b2) ∈ R2, then |(a1, a2)| =

√
a2

1 + a2
2, (a1, a2)⊥ =

(−a2, a1), (a1, a2) · (b1, b2) = a1b1 + a2b2 and (a1, a2) ∧ (b1, b2) =
a1b2 − a2b1.
• For U ⊂ R2, U is the closure of U w.r.t. | · |
• For ∅ 6= U ,V ⊂ R2 and x0 ∈ R2 we write dist(U ,V ) := inf{|x− y| |
x ∈ U , y ∈ V } and dist(x0,V ) := dist({x0},V ).
• For Γ ⊂ R2 a Jordan curve we let:

– int(Γ), the interior of Γ, be the bounded open set U ⊂ R2 s.t.
Γ = ∂U where ∂U is the boundary of U .

– ν be the outward normal unit vector of int(Γ)
– τ be the direct unit tangent vector of Γ (τ = ν⊥)

• If S is a finite set then Card(S) is the cardinal of S.

• If x ∈ R, then we write dxe := min{m ∈ Z |m > x}, the ceiling of
x, and bxc := max{m ∈ Z |m 6 x}, the floor of x.

2.2. Functions

• When U ⊂ R2 is a smooth bounded open set we write H1(U ,C)
for the Classical Sobolev space of the first order modeled on the
Lebesgue space L2 and, for K ⊂ C, H1(U ,K) := {u ∈ H1(U ,C) |
u(x) ∈ K for a.e. x ∈ U }.

For k ∈ N∗ and p ∈ [1,∞] we use the standard notation for
the higher order Sobolev spaces Hk(U ,K) modeled on L2 and
W k,p(U ,K) for the Sobolev space of order k modeled on Lp.
• We use the standard notation for the differential operators: “∇” for
the gradient, “curl” for the curl, “div” for the divergence, “∂τ =
τ · ∇” for the tangential derivative, “∂ν = ν · ∇” for the normal
derivative. . .
• We let tr∂U : H1(U ,C) → H1/2(∂U ,C) be the (surjective) trace
operator. For Γ a connected component of ∂U and u ∈ H1(U ,C),
we let trΓ(u) be the restriction of tr∂U (u) to Γ.

We write H1
0 (U ,C) := {u ∈ H1(U ,C) | tr∂U (u) = 0}.
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• For u : Ω→ C a function we let

u :=
®
u if |u| 6 1
u/|u| if |u| > 1.

• For Γ ⊂ R2 a Jordan curve and g ∈ H1/2(Γ,S1), the degree of g is
defined as

degΓ(g) := 1
2π

∫
Γ
g ∧ ∂τg ∈ Z.

For a smooth and bounded open set U ⊂ R2, Γ a connected compo-
nent of ∂U and u ∈ H1(U ,C), if there exists η > 0 s.t. g := trΓ(u)
satisfies |g| > η, then g/|g| ∈ H1/2(Γ,S1) and we write degΓ(u) :=
degΓ(g/|g|).

When U ,V ⊂ R2 are smooth bounded simply connected open
sets s.t. V ⊂ U and u ∈ H1(U \ V ,S1), then we write (without
ambiguity) deg(u) instead of degΓ(u) for any Jordan curve Γ ⊂
U \ V s.t. V ⊂ int(Γ).

2.3. Construction of the pinning term

Let

• δ = δ(ε) ∈ (0, 1), λ = λ(ε) ∈ (0, 1);
• ω ⊂ R2 be a smooth bounded and simply connected open set s.t.

(0, 0) ∈ ω and ω ⊂ Y := (−1/2, 1/2)2.

For m ∈ Z2 we denote Y δm := δm+ δ · Y and

ωε =
⋃

m∈Z2 s.t.
Y δm⊂Ω

[δm+ λδ · ω].

For b ∈ (0, 1) we may now define the pinning term
aε : R2 −→ {b, 1},

x 7−→
®
b if x ∈ ωε,
1 otherwise.

2.4. Asymptotic

• In this article ε ∈ (0, 1) is a small number. We are essentially inter-
ested in the asymptotic ε→ 0. In order to keep simple notation we
will often omit to mention the parameter ε.
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• When we consider a sequence (εn)n ⊂ (0, 1) s.t. εn ↓ 0 we often
omit the mention of the index n writing ε = εn.
• The notation o(1) means a quantity depending on ε which tends to

0 when ε→ 0.
• For f : (0, 1) → (0,+∞), the notation o[f(ε)] means a quantity
g(ε) s.t. g(ε)/f(ε) = o(1) and O[f(ε)] means a quantity g(ε) s.t.
g(ε)/f(ε) is bounded for small ε.

3. Classical facts and the strongest theorem

Gauge invariance and Coulomb Gauge

It is standard to quote the gauge invariance of the energy Eε,hex . Namely,
two configurations (u,A), (u′, A′) ∈ H are gauge equivalent, denoted by
(u,A) gauge∼ (u′, A′), if there exists a gauge transformation from (u,A) to
(u′, A′):

(u,A) gauge∼ (u′, A′)⇐⇒∃ ϕ ∈ H2(Ω,R) s.t. u′ = ue ıϕ and A′ = A+∇ϕ.

Two gauge equivalent configurations describe the same physical state.
Then, physical quantities are those which are gauge invariant. For example,
if (u,A) ∈H , then |u|, |∇u−ıAu|, curl(A) and then Eε,hex(u,A), {|u| 6 b/2}
also are gauge invariants. Note that the main results of the present work are
gauge invariant.

In the context the Ginzburg–Landau energy, a classical choice of gauge
is the Coulomb gauge. We say that (u,A) is in the Coulomb gauge if®

div(A) = 0 in Ω
A · ν = 0 on ∂Ω.

(3.1)

One may prove (see [16, Proposition 3.2]) that, for (u,A) ∈H , there exists
ϕ ∈ H2(Ω,R) s.t. A′ := A +∇ϕ satisfies (3.1). Then, letting u′ = ue ıϕ, we
have (u′, A′) which is in the Coulomb gauge and (u,A) gauge∼ (u′, A′).

One of the main motivations in using the Coulomb gauge comes from the
fact that ‖curl(A)‖L2 controls ‖A‖H1 . Namely there exists C > 1 (which
depends only on Ω) s.t. if A satisfies (3.1) then (see [16, Proposition 3.3])

‖A‖H1(Ω,R2) 6 C‖curl(A)‖L2(Ω) (3.2)

and
‖A‖H2(Ω,R2) 6 C‖curl(A)‖H1(Ω). (3.3)
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Moreover we have an easy representation of A ∈ H1(Ω,R2) satisfying (3.1)

A ∈ H1(Ω,R2) is a solution of (3.1)
⇐⇒∃ ξ ∈ H1

0 ∩H2(Ω,R) s.t. A = ∇⊥ξ. (3.4)

Basic description of a minimizer

We first note that, by direct minimization, for all aε ∈ L∞(Ω, [b, 1]),
ε, hex > 0, the minimization problem of Eε,hex in H admits (at least) a
solution (uε, Aε) ∈H .

Writing hε := curl(Aε), it is standard to check that a such minimizer
solves: 

−(∇− ıAε)2uε = uε
ε2 (a2

ε − |uε|2) in Ω
(∇− ıA)uε · ν = 0 on ∂Ω
−∇⊥hε = uε ∧ (∇− ıAε)uε in Ω
hε = hex on ∂Ω.

(3.5)

Using a maximum principle, we may get the following proposition:

Proposition 3.1. — Let ε, hex > 0 and a ∈ L∞(Ω, [b, 1]). If (uε, Aε) is
a minimizer of E(u,A) = 1

2
∫

Ω |∇u− ıAu|
2 + 1

2ε2 (a2−|u|2)2 + |curl(A)−hex|2
in H then |uε| 6 1 in Ω.

On the other hand, if (uε, Aε) is a minimizer of Eε,hex in the Coulomb
gauge, then it solves®

−∆uε = uε
ε2 (a2

ε − |uε|2)− 2ı(Aεuε · ∇uε)− |Aε|2uε in Ω
∂νuε = 0 on Ω.

(3.6)

A fundamental bound in the study concerns ‖∇uε‖L∞(Ω). We have the fol-
lowing lemma which is a Gagliardo–Nirenberg type inequality with homoge-
nous Neumann boundary condition.

Lemma 3.2. — (4) Let Ω ⊂ R2 be a smooth bounded simply connected
open set. There exists CΩ > 1 s.t. if u ∈ H2(Ω) is s.t. ∂νu = 0 on ∂Ω then

‖∇u‖2L∞(Ω) 6 CΩ
(
‖∆u‖L∞(Ω) + ‖u‖L∞(Ω)

)
‖u‖L∞(Ω).

(4) The proof of Lemma 3.2 is done by first using Φ : D→ Ω, a conformal representation
of Ω on the unit disk D. Then we extend ũ := u ◦Φ in the disk B(0, 2) by letting u′(x) =
ũ(x/|x|) for x ∈ B(0, 2)\D. By using the boundary condition we have u′ ∈ H2(B(0, 2),C).
And finally one may conclude by using an interior version of Lemma 3.2 (Lemma A.1
in [3]).
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Consequently, with Lemma 3.2 (up to changing the value of CΩ), for
ε, hex > 0 and aε ∈ L∞(Ω, [b2, 1]), if (uε, Aε) ∈H minimizes Eε,hex is in the
Coulomb gauge and is s.t. ‖Aε‖L∞(Ω) 6 1/ε (which is the case in the present
work) then

‖∇uε‖L∞(Ω) 6
CΩ

ε
. (3.7)

In the homogenous case as well as in the case without magnetic field, Esti-
mate (3.7) is crucial to describe vorticity defects. It is the same in the present
work. More precisely, the main result (Theorem 3.3) states that the three
above theorems are true replacing (uε, Aε) that minimizes Eε,hex in H by
any configuration (ũε, Ãε) s.t. Eε(ũε, Ãε) = infH Eε,hex +o(1) with two extra
hypotheses on |ũε|: ‖∇|ũε|‖L∞(Ω) = O(ε−1) and |ũε| ∈W 2,1(Ω) (see (3.11))

Lassoued–Mironescu decoupling

In order to study pinned Ginzburg–Landau type energies, a nice trick was
initiated by Lassoued and Mironescu in [12]. Before explaining this trick we
have to do a direct calculation for (u,A) ∈H :

Eε,hex(u,A) = Eε(u)+ 1
2

∫
Ω
−2(u∧∇u) ·A+ |u|2|A|2 + |curl(A)−hex|2 (3.8)

with
Eε(u) = 1

2

∫
Ω
|∇u|2 + 1

2ε2 (a2
ε − |u|2)2.

The Lassoued–Mironescu decoupling is obtained by first minimizing Eε
in H1(Ω,C). It is clear that Eε admits minimizers and if U minimizes Eε
then it satisfies ®

−∆U = U
ε2 (a2

ε − |U |2) in Ω
∂νU = 0 on ∂Ω.

(3.9)

By an energetic argument it is easy to prove that, if U minimizes Eε
in H1(Ω,C), then b 6 |U | 6 1. Moreover from (3.9), U ∧ ∇U = 0, i.e.
U = |U |e ıθ with θ ∈ R.

Then one may consider a scalar minimizer Uε : Ω → [b, 1]. This scalar
minimizer may be seen as a regularization of aε (see Proposition 5.2).

Using this scalar minimizer one may get the well known Lassoued–
Mironescu decoupling: for v ∈ H1(Ω,C) we have

Eε(Uεv) = Eε(Uε) + Fε(v) (3.10)
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with
Fε(v) := 1

2

∫
Ω
U2
ε |∇v|2 + U4

ε

2ε2 (1− |v|2)2.

Using this decoupling, one may prove that, for ε > 0, there exists a unique
positive minimizer Uε : Ω→ [b, 1] of Eε in H1(Ω,R).

On the other hand, from (3.8) and (3.10), for (u,A) ∈H and v = u/Uε
we have:
Fε,hex(v,A) := Eε,hex(Uεv,A)− Eε(Uε)

= 1
2

∫
Ω
U2
ε |∇v − ıAv|2 + U4

ε

2ε2 (1− |v|2)2 + |curl(A)− hex|2.

It is easy to check that Fε,hex(v,A) is gauge invariant. This functional is
of major interest in the study since (v,A) minimizes Fε,hex in H if and only
if (Uεv,A) minimizes Eε,hex in H .

An easy comparaison argument implies that if (vε, Aε) minimizes Fε,hex

then ‖vε‖L∞(Ω) 6 1.

From now on we focus on the study of the minimizer of Fε,hex . Namely
we have the following theorem.

Theorem 3.3. — Assume that (1.5) holds and λ, δ, hex,K satisfy (1.2),
(1.3) and (1.4).

Let {(vε, Aε) | 0 < ε < 1} ⊂H be s.t. F(vε, Aε) 6 infH F+o(1). Assume
also that ®

|vε| ∈W 2,1(Ω,C)
‖∇|vε|‖L∞(Ω) = O(ε−1).

(3.11)

Then Theorems 1.2, 1.3 and 1.4 hold for uε = Uεvε.

Remark 3.4. — Theorem 3.3 may be rephrased in term of Uε. Let
(hex)0<ε<1 ⊂ (0,∞), {(uε, Aε) | 0 < ε < 1} ⊂ H and let vε := uε/Uε ∈
H1(Ω,C). On the one hand, from the decoupling (3.10), we have {(uε, Aε) |
0 < ε < 1} ⊂ H is s.t. Eε,hex(uε, Aε) 6 infH Eε,hex + o(1) if and only
{(vε, Aε) | 0 < ε < 1} is s.t. Fε,hex(vε, Aε) 6 infH Fε,hex +o(1). On the other
hand, if (vε)ε is bounded in L∞(Ω), then vε satisfies (3.11) if and only if we
have |uε| ∈W 2,1(Ω,C) and ‖∇|uε|‖L∞(Ω) = O(ε−1).

4. Plan of the article and proof of Theorem 3.3

The proof of Theorem 3.3 is done in several steps. It is based on a pertur-
bative argument by replacing the energy Fε,hex with an energy ‹Fε,hex . This
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step is called the energetic cleaning (Section 5.1). The functional ‹Fε,hex is a
perturbation of Fε,hex : for (vε, Aε) ∈H which is in the Coulomb gauge and
s.t. Fε,hex(vε, Aε) = O(h2

ex) we have ‹Fε,hex(vε, Aε) − Fε,hex(vε, Aε) = o(1)
(see Proposition 5.3). In particular we have Fε,hex(vε, Aε) 6 infH Fε,hex +
o(1) if and only if ‹Fε,hex(vε, Aε) 6 infH

‹Fε,hex + o(1).

In Section 5.2 we apply a vortex ball construction of Sandier–Serfaty
(Proposition 5.5) and we follow the strategy of Sandier–Serfaty developed
in [15] to prove that the vorticity of a reasonable configuration is bounded
(see Theorem 5.6).

Once the bound on the vorticity yields, we adapt a result of Serfaty [17]
which gives a decomposition of ‹Fε,hex(vε, Aε) in term of Fε(vε) and the
location of the vorticity defects (Proposition 5.7).

The decomposition obtained in Proposition 5.7 allows to focus the study
on the energy Fε which ignores the magnetic field. From this point on, the
study of a configuration (vε, Aε) is done for a major part via classical results
based on the case without magnetic field (as in [4]). To this end we adapt to
our case some standard estimates ignoring the magnetic field, in particular
the crucial notion of Renormalized energies is presented in Section 6.

With these preliminary results, in Section 7, for d ∈ N∗, we construct
competitors (vε, Aε) ∈ H with d quantized vorticity defects and then we
get a sharp upper bound (see Proposition 7.3):

inf
H
Fε,hex 6 h

2
exJ0 + dMΩ

[
−hex +H0

c1

]
+ L1(d) ln hex + L2(d) + o(1).

Here J0 and MΩ are independent of ε and d, L1(d) and L2(d) are indepen-
dent of ε and H0

c1 is the leading term in the expression of the first critical
field.

With the above upper bound for the minimal energy, the heart of the work
consists in getting lower bounds for quasi-minimizers. Before getting such
lowers bounds we adapt to our case some tools in Section 8: an η-ellipticity
result is proved (Proposition 8.1), a construction of ad-hoc bad-discs is done
(Proposition 8.3) and the strong effect of the dilution is expressed by various
results in Section 8.3.

In Section 9 we begin the proof of the theorems. The part of Theorem 3.3
related with Theorem 1.2 is a direct consequence of Propositions 9.3, 9.4,
9.6 and 9.7 (and also Corollary 10.4).

The part of Theorem 3.3 related with Theorem 1.3 is given by Corol-
lary 10.1 and Proposition 7.3.
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The part of Theorem 3.3 related with Theorem 1.4 is a direct consequence
of Corollary 10.4 and Propositions 10.7 and 10.8.

We end this section by giving some explanations on the technical hy-
potheses (1.2) and (1.4).

Hypothesis (1.2) consists in two estimates: λ1/4|ln ε| → 0 and |ln(λδ)| =
O(ln|ln ε|). The estimate “λ1/4|ln ε| → 0” is essentially used in the cleaning
step (Section 5.1) in conjunction with Proposition 5.3. Without this estimate
the perturbative argument is no longer valid.

The estimate “|ln(λδ)| = O(ln|ln ε|)” is frequently used in this work (the
same hypothesis was used in [6]). The major use of this hypothesis is to
apply Theorem 5.6 which is fundamental in the study. On the one hand,
Hypothesis (1.3) is crucial in the strategy to prove Theorem 5.6. On the
other hand, vorticity defects appear (see Corollary 10.4) for hex > Hc1 +o(1)
where

Hc1 = b2|ln ε|+ (1− b2)|ln(λδ)|
2‖ξ0‖L∞(Ω)

+O(1).

Consequently, if we want to deal with vorticity defects and with the (fun-
damental) conclusion of Theorem 5.6 then we need assume “|ln(λδ)| =
O(ln|ln ε|)”.

Hypothesis (1.4) is often used in a weaker form (δhex → 0). Estimate (1.4)
is crucial in Proposition 9.6 to get macroscopic and mesoscopic informations
on the location of the vorticity defects.

5. Some preliminaries

5.1. Energetic cleaning

In order to do the cleaning step, we have to get some estimates. Our
goal is to study quasi-minimizer of Fε,hex . To keep a simple presentation, we
write F instead of Fε,hex and F instead of Fε when there is no ambiguity.

From (3.2), (3.3) and classical elliptic regularity arguments we have the
following proposition.

Proposition 5.1. — Let {(vε, Aε) | 0 < ε < 1} ⊂ H be a family of
configurations in the Coulomb gauge. Then there is ξε ∈ H1

0 ∩H2(Ω,R) s.t.
Aε = ∇⊥ξε. Moreover, if for some hex = hex(ε) we have

F(vε, Aε) = O(h2
ex), (5.1)
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then there exists C (independent of ε) s.t.
‖ξε‖H2(Ω) 6 Chex. (5.2)

Consequently, for p ∈ [1,∞), there exists Cp > 1 (independent of ε) s.t.
‖∇ξε‖Lp(Ω) = ‖Aε‖Lp(Ω) 6 Cphex. (5.3)

Moreover, up to increasing the value of C > 1 (independently of ε), we have
‖∇vε‖L2(Ω) 6 Chex. (5.4)

And if curl(Aε) ∈ H1(Ω) then
‖ξε‖H3(Ω) 6 C‖curl(Aε)‖H1(Ω). (5.5)

In particular, for further use, note that if curl(Aε) ∈ H1(Ω) then ξε ∈ H1
0 ∩

H2 ∩W 1,∞(Ω) and
‖∇ξε‖L∞(Ω) 6 C‖curl(Aε)‖H1(Ω). (5.6)

In order to do the cleaning step we need to underline the fact that Uε
may be seen as a regularization of aε in W 1,∞ with estimates that become
bad when approaching ∂ωε.

Proposition 5.2. — There exist Cb, sb > 0 depending only on b and Ω
s.t. for ε, r > 0 we have:

‖∇Uε‖L∞(Ω) 6
Cb
ε
, (5.7)

|Uε − aε| 6 Cbe−
sbr

ε in {x ∈ Ω |dist(x, ∂ωε) > r}, (5.8)

|∇Uε| 6
Cbe−

sbr

ε

ε
in {x ∈ Ω |dist(x, ∂ωε) > r}. (5.9)

Proof. — Estimate (5.7) is a consequence of Lemma 3.2. The proof of
(5.8) is the same than Proposition 2 in [9]. Estimate (5.9) is proved in Ap-
pendix A. �

Since the 2-dimensional Hausdorff measure of ωε satisfiesH2(ωε) =O(λ2),
from (5.8), for p ∈ [1,∞[, we have the following crucial estimate

‖U2
ε − 1‖Lp(Ω) = O(λ2/p). (5.10)

We are now in position to do the cleaning step. We assume that {(vε, Aε) |
0 < ε < 1} ⊂ H is a family of configuration in the Coulomb gauge which
satisfies (5.1). We denote αε = U2

ε and ρε = |vε|. From direct computations,
by splitting the integrals with the identity αε = (αε − 1) + 1 and using
(1− ρε)4 6 (1− ρ2

ε)2, we have the existence of C > 1 (independent of ε) s.t.∣∣∣∣∫
Ω
αε(vε ∧∇vε) ·Aε −

∫
Ω

(vε ∧∇vε) ·Aε
∣∣∣∣ 6 C√λh2

ex (5.11)
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and ∣∣∣∣∫
Ω
αερ

2
ε|Aε|2 −

∫
Ω
|Aε|2

∣∣∣∣ 6 Ch2
ex(εhex + λ). (5.12)

By combining (5.11) and (5.12) we immediately get the following propo-
sition.

Proposition 5.3. — If (vε, Aε) is in the Coulomb gauge and satis-
fies (5.1) then

|‹F(vε, Aε)−F(vε, Aε)| 6 Ch2
ex(εhex +

√
λ)

with C which is independent of ε and‹F(v,A) = ‹Fε,hex(v,A)

:= F (v) + 1
2

∫
Ω
−2(v ∧∇v) ·A+ |A|2 + |curl(A)− hex|2. (5.13)

Remark 5.4.

(1) One may claim that ‹F is not gauge invariant if αε 6≡ 1.
(2) Note that if λ1/4|ln ε| → 0 and if hex = O(|ln ε|) then for (vε, Aε) ∈

H which is in the Coulomb gauge and satisfies (5.1) we have‹F(vε, Aε)−F(vε, Aε) = o(1) without any assumption on δ ∈ (0, 1).

5.2. Bound on the vorticity and energetic decomposition

By applying Proposition 1 in [15] with Uε > b we immediately get the
following proposition which does not need any assumption for λ, δ ∈ (0, 1).

Proposition 5.5. — Assume hex 6 C0|ln ε| with C0 > 1 which is inde-
pendent of ε. Let {(vε, Aε) | 0 < ε < 1} be a family s.t. F(vε, Aε) 6 C0|ln ε|2.

Then there exist C, ε0 > 0 (depending only on Ω, b and C0) s.t. for
ε < ε0 we have either |vε| > 1−|ln ε|−2 in Ω or there exists a finite family of
disjoint disks {Bi | i ∈ J } with J ⊂ N∗ (J depends on ε) and Bi := B(ai, ri)
satisfying:

(1) {|vε| < 1− |ln ε|−2} ⊂
⋃
Bi

(2)
∑
ri < |ln ε|−10,

(3) writing hε = curl(Aε), ρε = |vε| and vε = ρεe ıϕε (ϕε is locally
defined) we have

1
2

∫
Bi

ρ2|∇ϕε −Aε|2 + |hε − hex|2 > π|di|(|ln ε| − C ln|ln ε|), (5.14)

with di = deg∂Bi(v) if Bi ⊂ Ω and 0 otherwise.
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By following the argument of Sandier and Serfaty [15], we get the main
result of this section.

Theorem 5.6. — Assume that λ, δ satisfy (1.2) and δ2|ln ε| 6 1. Assume
also Hypothesis (1.3) holds for hex with some K > 1.

Then there exist εK > 0 andMK > 1 (independent of ε) s.t. if {(vε, Aε) |
0 < ε < 1} ⊂ H is a family in the Coulomb gauge satisfying F(vε, Aε) 6
infH F +K ln|ln ε| then for 0 < ε < εK we have

1
2

∫
Ω
|∇vε|2 + 1

2ε2 (1− |vε|2)2 6MK |ln ε|. (5.15)

Moreover, if |vε| 6> 1− |ln ε|−2 in Ω, then letting {Bi | i ∈ J } be a family of
disks given by Proposition 5.5, for 0 < ε < εK , we have di > 0 for all i ∈ J
and there is s0 > 0 (depending only on Ω) s.t. if i ∈ J is s.t. di 6= 0 then
dist(Bi,Λ) 6MK |ln ε|−s0 .

The proof of this theorem is postponed in Appendix B.

We let

J0 := ‹F1,1(1,∇⊥ξ0) =
‹Fε,hex(1, hex∇⊥ξ0)

h2
ex

. (5.16)

Note that if {(vε, Aε) | 0 < ε < 1} is a family of quasi-minimizers then

Fε,hex(vε, Aε) 6 Fε,hex(1,∇⊥ξ0) + o(1) = h2
exJ0 + o(1) = O(h2

ex).
The discs given by Proposition 5.5 are “too large” for our strategy. Indeed
one of the main argument is a construction of bad discs in the spirit of [4]
which links xε ∈ {|vε| 6 1/2} with the energetic cost in a ball B(xε, εµ) with
small µ > 0. Namely if xε ∈ {|vε| < 1− |ln ε|−2} ⊂

⋃
Bi then the energetic

cost in a ball B(xε, εµ) is not sufficiently large comparing to our error term.

In the next proposition we present the good framework of vortex balls re-
quired in the study. The first step in the study is an energetic decomposition
valid under some assumptions (no assumption on δ ∈ (0, 1) is required).

Proposition 5.7. — Let C0>1, (vε)0<ε<1⊂H1(Ω,C) and hex>0 be s.t.
F (vε) 6 C0|ln ε|2, hex 6 C0|ln ε|. (5.17)

Assume furthermore that λ1/4|ln ε| → 0 and, for ε ∈ (0, 1), either |vε| >
1/2 in Ω or vε admits a family of valued disks {(B(ai, ri), di) | i ∈ J } (J is
finite) s.t.:

• the disks Bi = B(ai, ri) are pairwise disjoint
• {|vε| 6 1/2} ⊂

⋃
i∈J Bi

•
∑
i∈J ri < |ln ε|−10
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• For i ∈ J , letting

di =
®

deg∂Bi(v) if Bi ⊂ Ω
0 otherwise,

we assume
∑
i∈J |di| 6 C0.

Then, if (ξε)ε ⊂ H1
0 ∩H2 ∩W 1,∞(Ω,R) is s.t.

‖∇ξε‖L∞(Ω) 6 C0|ln ε|, (5.18)
writing ζε := ξε − hexξ0 we have in the case |vε| 6> 1/2 in Ω:

F(vε,∇⊥ξε)−h2
exJ0 = F (vε)+2πhex

∑
i∈J

diξ0(ai)+‹V (a,d)(ζε)+o(1) (5.19)

where for ζ ∈ H1
0 ∩H2(Ω) we denoted‹V (a,d)(ζ) := 2π

∑
i∈J

diζ(ai) + 1
2

∫
Ω

(∆ζ)2 + |∇ζ|2. (5.20)

And if |v| > 1/2 in Ω then

F(vε,∇⊥ξε)− h2
exJ0 = F (vε) + 1

2

∫
Ω

(∆ζε)2 + |∇ζε|2 + o(1) (5.21)

The proof of Proposition 5.7 is an adaptation of an argument of Ser-
faty [17, Section 4]. The proof is presented Appendix C

Before going further, we state a result which will be useful in this article
and whose proof is left to the reader.

Lemma 5.8. — For v ∈ H1(Ω,C), 0 < ε < 1 and hex > 0, there exists
a unique potential Av,ε,hex = Av ∈ H1(Ω,R2) s.t. (v,Av) is in the Coulomb
gauge and satisfies®

−∇⊥ curl(Av) = α(ıv) · (∇v − ıAvv) in Ω
curl(Av) = hex on ∂Ω.

(5.22)

Moreover Av is the unique solution of the minimization problem
inf

A satisfies (3.1)
Fε,hex(v,A) (5.23)

and from (3.3) and (3.4) we have Av=∇⊥ξv with ξv∈H1
0∩H2∩W 1,∞(Ω,R).

Remark 5.9. — Assume λ, δ satisfy (1.2), δ2|ln ε| 6 1 and Hypothe-
sis (1.3) holds. Consider {(vε, Aε) | 0 < ε < 1} ⊂H a family in the Coulomb
gauge satisfying F(vε, Aε) 6 infH F +O(ln|ln ε|).

• From Theorem 5.6, either |vε| > 1 − |ln ε|−2 in Ω or the family of
disjoint disks given by Proposition 5.5 satisfies the properties of the
family of discs used in Proposition 5.7.
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• Let Avε = ∇⊥ξvε ∈ H1(Ω,R2) be given by Lemma 5.8. Then
with (3.3) and (5.22) we have Avε ∈ L∞(Ω) and ‖Avε‖L∞(Ω) 6
C|ln ε| where C depends only on Ω.

As noted by Serfaty [17], with the help of the decomposition given by
Proposition 5.7, we may prove that h2

exJ0 is almost the minimal energy of a
vortexless configuration.

Corollary 5.10. — Let
H 0 :=

{
(ρe ıϕ, A)

∣∣ ρ ∈ H1(Ω, [0,∞)), ϕ ∈ H1(Ω,R) and A ∈ H1(Ω,R2)
}
.

Note that H 0 is gauge invariant. Assume λ1/4|ln ε| → 0.

(1) Let ε = εn ↓ 0. Assume hex =O(|ln ε|) and for each ε let (vε,∇⊥ξε)∈
H 0 be s.t. ξε ∈ H1

0∩H2∩W 1,∞(Ω,R) with ‖∇ξε‖L∞(Ω) = O(|ln ε|).
Writing ζε := ξε − hexξ0 we have:

F(vε,∇⊥ξε) = h2
exJ0 + F (vε) + 1

2

∫
Ω

(∆ζε)2 + |∇ζε|2 + o(1). (5.24)

Thus, if F(vε,∇⊥ξε) 6 h2
exJ0 +o(1) then ζε → 0 in H2(Ω), |vε| → 1

in H1(Ω) and, up to a subsequence, there exists v ∈ S1 s.t. vε → v
in H1(Ω).

(2) We have infH 0 F = h2
exJ0 + o(1).

Proof. — We prove the first assertion. Estimate (5.24) is a direct conse-
quence of Proposition 5.7.

For sake of simplicity of the presentation we drop the subscript ε. If
F(v,∇⊥ξ) 6 h2

exJ0 + o(1), then F (v) + ‖ζ‖H2(Ω) = o(1) and then ζ → 0 in
H2(Ω), |v| → 1 in H1(Ω). Moreover ‖∇v‖L2(Ω) = o(1) and ‖v‖L2(Ω) = O(1).
This clearly implies the remaining part of the assertion.

We prove the second assertion. We first claim, by the definition of J0, that
using the configuration (1, hex∇⊥ξ0) ∈H 0 we have infH 0 F 6 h2

exJ0 +o(1).

By the gauge invariance of H 0 we may consider a family of quasi-
minimizer {(vε, Aε) | 0 < ε < 1} ⊂ H 0 which is in the Coulomb gauge.
We write (vε, Aε) = (v,A). Let (ṽ, Ã) ∈ H 0 be defined by ṽ = v and Ã is
the unique solution of (5.23) associated to ṽ.

By direct calculations we have: F(ṽ, Ã) 6 F(ṽ, A) 6 F(v,A) 6 h2
exJ0 +

o(1).

Moreover, by denoting h := curl(Ã), we have ∇h = αṽ ∧ (∇⊥ṽ − Ã⊥ṽ)
in Ω and h = hex on ∂Ω. Then ‖h‖H1(Ω) = O(|ln ε|) and using (5.5) we get
‖Ã‖H2(Ω) = O(|ln ε|).
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We are then able to apply the first assertion to get F(ṽ, Ã) > h2
exJ0 +

o(1). �

5.3. Pseudo vortex structure

We assume λ1/4|ln ε| → 0. Let {(vε, Aε) | 0 < ε < 1} ⊂H be a family of
configurations in the Coulomb gauge satisfying (5.17). We assume that |vε| 6>
1/2 in Ω and that there exists {(B(ai, ri), di) | i ∈ J } as in Proposition 5.7.
Then Proposition 5.7 gives a decomposition of F(v,A). Except in the crucial
hypothesis

∑
ri < |ln ε|−10, the radii ri do not play any role as well as the

disks “B(ai, ri)” associated to a zero degree. We thus introduce an ad-hoc
notion of pseudo vortex.

Definition 5.11. — We assume that we have either ε = εn ↓ 0 or
0 < ε < 1. We consider (vε)ε ⊂ H1(Ω,C), (hex)ε ⊂ (1,∞) satisfying (5.17).

Let {Bi = B(ai, ri) | i ∈ J } be a family of disks as in Proposition 5.7 and
let di = d

(ε)
i ∈ Z be the associated “degrees” defined in Proposition 5.7. We

denote J ′ = J ′ε := {i ∈ J | di 6= 0} (note that we have Card(J ′ε) 6
∑
|di| =

O(1)).

If J ′ 6= ∅, then we say that {(a,d)} = {(ai, di) | i ∈ J ′} is a set of pseudo
vortices of vε.

For a fixed configuration (a,d) of pseudo vortices, Serfaty studied in [17]
the minimization problem of ‹V (a,d) (defined in (5.20)). We have the following
result ([17, Proposition 4.2]).

Proposition 5.12. — Let (a,d) = {(ai, di) | i ∈ J ′} ⊂ Ω × Z∗ be a
configuration s.t. 1 6 Card(J ′) <∞ and ai 6= aj for i 6= j. Then ‹V (a,d)(ζ)
is minimal for ζ = ζ(a,d) which satisfies®

−∆2ζ(a,d) + ∆ζ(a,d) = 2π
∑
i∈J ′ diδai in Ω

ζ(a,d) = ∆ζ(a,d) = 0 on ∂Ω.
(5.25)

(Here δa is the Dirac mass at a ∈ R2.)

And we have ‹V [ζ(a,d)] = π
∑
i∈J ′ diζ(a,d)(ai).

In order to prove the above proposition, Serfaty introduced for a ∈ Ω the
function ζa ∈ H1

0 ∩H2(Ω) which is the unique solution of®
−∆2ζa + ∆ζa = 2πδa in Ω
ζa = ∆ζa = 0 on ∂Ω.
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In particular we have ζa 6 0 in Ω. It is easy to see that ζ(a,d) =
∑
i∈J ′ diζ

ai

is the unique solution of (5.25).

Lemma 4.6 in [17] gives important properties related with ζa and ζ(a,d):

Proposition 5.13. — For s ∈ (0, 1), there exists Cs > 0 s.t. for a, b ∈ Ω
‖ζa‖L∞(Ω) 6 Cs dist(a, ∂Ω)s

and
‖ζa − ζb‖H2(Ω) 6 Cs|a− b|s.

Consequently there exists C > 0 depending only on Ω s.t., if ζ(a,d) is the
unique solution of (5.25), then

|‹V [ζ(a,d)]| =

∣∣∣∣∣∣π ∑
i,j∈J ′

didjζ
ai(aj)

∣∣∣∣∣∣ 6 C
(∑
i∈J ′
|di|

)2

.

For a further use we need the following lemma.

Lemma 5.14. — Let (a,d) be as in Proposition 5.12 then ζ(a,d) ∈ H1
0 ∩

H2 ∩W 1,∞(Ω,R) and there is C > 1 depending only on Ω s.t.

‖∇ζ(a,d)‖L∞(Ω) 6
C
∑
|di|

min dist(ai, ∂Ω) .

Proof. — Let (a,d) be as in Proposition 5.12, with Proposition 5.13 we
have ζ(a,d) =

∑
diζ

ai ∈ H1
0 ∩ H2 and ‖ζ(a,d)‖H2(Ω) 6 C

∑
i |di| where C

depends only on Ω.

Moreover, from (5.25), we have ∆ζ(a,d) = ζ(a,d) +
∑
di ln|x− ai|+R(a,d)

where R(a,d) is the harmonic extension of tr∂Ω(−
∑
di ln|x− ai|) in Ω.

Consequently there exists C > 1 depending only on Ω s.t.

‖∆ζ(a,d)‖L3(Ω) 6
C
∑
|di|

min dist(ai, ∂Ω)
and therefore by elliptic regularity and a Sobolev embedding we get the
result. �

Until now, the only way to get a nice magnetic potential associated to
a function v was to consider Av = Av,ε,α ∈ H2(Ω,R2), the unique solution
of (5.23). The previous results give that, after the cleaning step, we can do
asymptotically as well by using a magnetic potential depending on a pseudo
vortices structure of v instead of v itself (see Remark 5.16).

Definition 5.15. — Let N > 1 and (a,d) ∈ (ΩN )∗ × (Z∗)N , hex > 0.
Then we define A(a,d) := hex∇⊥ξ0 + ∇⊥ζ(a,d) where ζ(a,d) is the unique
solution of (5.25), the potential associated to (a,d).
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Remark 5.16. — Let C0 > 1 and (vε)0<ε<1 ⊂ H1(Ω,C), hex > 0 satis-
fying (5.17) be s.t. (vε)0<ε<1 admits a set of pseudo vortices ((a,d)ε)0<ε<1
with

∑
|di| 6 C0. We write v and (a,d) instead of vε and (a,d)ε.

Assume min dist(ai, ∂Ω) > |ln ε|−1 in order to have ‖∇ζ(a,d)‖L∞(Ω) =
O(|ln ε|) (with Lemma 5.14) and λ1/4|ln ε| → 0.

For 0 < ε < 1, let Av ∈ H1(Ω,R2) be the unique solution of (5.23) and
A(a,d) be defined in Definition 5.15. Then we have A(a,d) = ∇⊥ξ(a,d) and
Av = ∇⊥ξv where ξ(a,d), ξv ∈ H1

0 ∩H2 ∩W 1,∞(Ω,R) satisfy the hypotheses
of Proposition 5.7 (here we used (3.3) and (5.22)). Therefore we have the
following inequalities

F(v, 0) > F(v,Av) = ‹F(v,Av) + o(1) > ‹F(v,A(a,d)) + o(1),

F(v,Av) 6 F(v,A(a,d)) = ‹F(v,A(a,d)) + o(1).

In particular we have F(v,Av) = O(|ln ε|2) and F(v,A(a,d)) = O(|ln ε|2).

5.4. Cluster of pseudo vortices

From a standard result for the homogenous case, it is expected that,
for a reasonable magnetic field, the asymptotic location of pseudo vortices
of a studied configuration is a subset of Λ. This problem is related to the
macroscopic location of the pseudo vortices. To treat this problem we use an
ad-hoc notion of cluster of pseudo vortices.

Definition 5.17. — Let N, ‹N0 ∈ N∗, ‹N0 6 N , (p,D) ∈ (ΩÑ0)∗×ZÑ0 ,
ε = εn ↓ 0 and (a,d)ε ∈ (ΩN )∗×ZN s.t. D is independent of ε. We say that
(a,d)ε admits a cluster structure on (p,D) if

• for i ∈ {1, . . . , N}, lim ai exists, lim ai ∈ {p1, . . . , pÑ0
} and we write

for k ∈ {1, . . . , ‹N0}, Sk := {i ∈ {1, . . . , N} | ai → pk}
• for k ∈ {1, . . . , ‹N0} Sk 6= ∅,
• for k ∈ {1, . . . , ‹N0}, Dk =

∑
i∈Sk di.

Remark 5.18. — In this article we will use the notion of cluster structure
with (a,d) as in Proposition 5.7 and p ⊂ Λ.

Proposition 5.19. — Let N > 1, ε = εn ↓ 0, (a,d)ε ∈ (ΩN )∗×ZN s.t.∑
|di| is bounded independently of ε.

(1) If ((a,d)ε)ε admits a cluster structure on (p,D) (and then D is
independent of ε) then (p,D) is unique. We say that (p,D) is the
cluster of ((a,d)ε)ε.
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(2) Up to passing to a subsequence, there exist 1 6 ‹N0 6 N and
(p,D) ∈ (ΩÑ0)∗ × ZÑ0 s.t. (p,D) is the cluster of ((a,d)ε)ε.

(3) If (p,D) is the cluster of ((a,d)ε)ε then, denoting χ :=
maxk maxi∈Sk |aεi − pk|, we have∣∣∣∣∣∣

Ñ0∑
k=1

∑
i∈Sk

|di||ξ0(aεi )− ξ0(pk)|

∣∣∣∣∣∣ 6 Cχ (5.26)

and ∣∣∣‹V [ζ(a,d)ε ]− ‹V [ζ(p,D)]
∣∣∣ 6 C√χ (5.27)

where C depends only on N ,
∑
|di| and Ω.

Proof. — The two first assertions are obvious. Estimate (5.26) is direct
by noting that ξ0 a Lipschitzian function in Ω. Estimate (5.27) is a direct
consequence of Proposition 5.13. �

We then have:

Corollary 5.20. — Assume that λ, δ, hex satisfy (1.2) and (1.3) for
some K > 0 independent of ε. Assume also δ2|ln ε| 6 1.

Let {(vε, Aε) | 0 < ε < 1} ⊂ H be a family s.t. F(vε, Aε) 6 infH F +
K ln|ln ε| which is in the Coulomb gauge and let {(aε,Dε) = (a,d) | 0<ε<1}
be a family of pseudo vortices associated to {(vε, Aε) | 0 < ε < 1} (indexed
on J = Jε possibly empty).

(1) Letting Avε ∈ H1(Ω,R2) be defined by Lemma 5.8 we have

F(vε, Aε) > F(vε, Avε)

> h2
exJ0 + 2πhex

∑
i∈J

diξ0(ai) + F (vε) + ‹V [ζ(a,d)] + o(1). (5.28)

And then
F(vε, Aε) > h2

exJ0 + 2πhex
∑
i∈J

diξ0(ai) + F (vε) +O(1). (5.29)

(2) Assume furthermore that (a,d) admits a cluster structure on (p,D).
Then we have

F(vε, Aε) > h2
exJ0 + 2πhex

∑
i∈J

diξ0(ai) + F (vε) + ‹V [ζ(p,D)] + o(1). (5.30)

Proof. — The lower bounds (5.28) and (5.29) are direct consequences of
Theorem 5.6, Lemma 5.8, Remark 5.9 and Propositions 5.1, 5.7 and 5.12.

Estimate (5.30) is a direct consequence of Proposition 5.19 and (5.28). �

We then have the following corollary.
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Corollary 5.21. — Assume that λ, δ, hex satisfy (1.2) and (1.3). As-
sume also δ2|ln ε| 6 1.

Let (vε)0<ε<1 ⊂ H1(Ω,C) be s.t. |vε| 6> 1/2 in Ω and assume the ex-
istence of (Bε)0<ε<1 ⊂ H1(Ω,R2) s.t. (vε, Bε) is in the Coulomb gauge
and F(vε, Bε) 6 infH F + O(ln|ln ε|). Assume also that (aε,Dε) = (a,D)
are pseudo-vortices as in Definition 5.11 for vε (note that we thus have∑
|di| = O(1)), then

F(vε, A(a,D)) = h2
exJ0 +2πhex

∑
diξ0(ai)+F (vε)+‹V [ζ(a,D)]+o(1). (5.31)

where A(a,D) := hex∇⊥ξ0 +∇⊥ζ(a,D).

Consequently we get

F (vε) 6 2πhex
∑

di|ξ0(ai)|+O(ln|ln ε|)

6 πb2
∑
|di||ln ε|+O(ln|ln ε|).

(5.32)

Proof. — Corollary 5.21 is a direct consequence of infH F 6 h2
exJ0,

Corollary 5.20 and Propositions 5.7 and 5.13. �

Remark 5.22. — Wemay state an analog of Corollary 5.21 if (a,d) admits
a structure of cluster.

6. Renormalized energies

6.1. Macroscopic renormalized energy (at scale 1)

We consider in this section:

• N ∈ N∗, z = z(n) ∈ (ΩN )∗ := {(z1, . . . , zN )⊂Ω | zi 6= zj for i 6= j},
• D = (d1, . . . , dN ) ∈ ZN .
• ~ = ~(z) := mini dist(zi, ∂Ω)

We are going to deal with functions defined in the set Ω perforated by disks
with radius r̃ = r̃n ↓ 0:

Ωr̃ = Ωr̃(z) := Ω \
⋃
i

B(zi, r̃).

We assume
r̃ <

1
8 min

ß
min
i 6=j
|zi − zj | ; ~

™
. (6.1)
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For a radius r̃ > 0 s.t. (6.1) is satisfied, we consider the set of functions

Ideg
r̃ :=

¶
w ∈ H1(Ωr̃,S1)

∣∣∣deg∂B(zi,r̃)(w) = di for i ∈ {1, . . . , N}
©

and

IDir
r̃ :=

ß
w ∈ H1(Ωr̃,S1)

∣∣∣∣ w(zi + r̃e ıθ) = Cie ıdiθ for i ∈ {1, . . . , N},
(C1, . . . , CN ) ∈ (S1)N

™
.

In this section we are interested in the minimization of the Dirichlet func-
tional in Ideg

r̃ and IDir
r̃ .

Before beginning we state an easy result proved by direct minimization
(the proof is left to the reader, see [4]).

Proposition 6.1. — For N > 1, (z,d) ∈ (ΩN )∗ × ZN and r̃ > 0 s.t.
(6.1) is satisfied, the following minimization problems admit solutions:

Ideg
r̃ = Ideg

r̃ (z,d) := inf
w∈Ideg

r̃

1
2

∫
Ωr̃
|∇w|2 (6.2)

and
IDir
r̃ = IDir

r̃ (z,d) := inf
w∈IDir

r̃

1
2

∫
Ωr̃
|∇w|2. (6.3)

Moreover, these solutions are unique up to the multiplication by an S1 con-
stant.

6.1.1. Study of Ideg
r̃ and IDir

r̃

Following [4], it is standard to define the canonical harmonic map asso-
ciated to (z,d).

Definition 6.2. — Let N ∈ N∗ and (z,d) ∈ (ΩN )∗ × ZN .

A function w(z,d)
? ∈ ∩0<p<2W

1,p(Ω,S1)∩C∞(Ω \ {z1, . . . , zN},S1) is the
canonical harmonic map associated to the singularities (z,d) if

w
(z,d)
? (z) = eıϕ?(z)

N∏
i=1

Å
z − zi
|z − zi|

ãdi
with


ϕ? is harmonic in Ω,
∂νw

(z,d)
? = 0 on ∂Ω,∫

∂Ω ϕ? = 0.
(6.4)

Remark 6.3. — In this framework, it is classic to define Φ(z,d)
? (with the

notation of Definition 6.2), the unique solution of®
∆Φ(z,d)

? = 2π
∑N
i=1 diδzi in Ω

Φ(z,d)
? = 0 on ∂Ω.
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This function satisfies ∇⊥Φ(z,d)
? = w

(z,d)
? ∧ ∇w(z,d)

? . Moreover, by denoting
R(z,d) the unique solution of®

∆R(z,d) = 0 in Ω
R(z,d)(z) = −

∑
i di ln|z − zi| on ∂Ω,

we have Φ(z,d)
? (z) =

∑
i di ln|z − zi|+R(z,d)(z).

We first study the asymptotic behavior of minimizers of Ideg
r̃ (z,d) when

r̃ → 0.

Proposition 6.4. — Let N ∈ N∗ and (z,d) = (z,d)(n) ⊂ (ΩN )∗ × ZN .
We write ~ = ~(z) and we assume that

∑
i |di| = O(1).

For r̃ > 0 s.t. (6.1) is satisfied, we may consider w(z,d)
r̃ , the unique solu-

tion of the problem

Ideg
r̃ (z,d) := inf

w∈Ideg
r̃

1
2

∫
Ωr̃
|∇w|2, (6.5)

of the form

w
(z,d)
r̃ (z) = eıϕr̃(z)

N∏
i=1

Å
z − zi
|z − zi|

ãdi
with

®
ϕr̃ ∈ H1 ∩ C∞(Ωr̃,R),∫
∂Ω ϕr̃ = 0.

(6.6)

We thus have the existence of C > 0 (depending only on Ω, N and the bound
of
∑
i |di|) s.t.

‖∇w(z,d)
? ‖L∞(Ωr̃) 6

C(1 + |ln r̃|)
r̃

. (6.7)

We denote

X :=
{
r̃(1+|ln(~)|)

~

Ä
1 + r̃(1+|ln(~)|)

~

ä
if N = 1Ä

r̃
mini6=j |zi−zj | + r̃(1+|ln(~)|)

~

ä Ä
1 + r̃(1+|ln(~)|)

~

ä
if N > 2

(6.8)

and we have
‖ϕr̃ − ϕ?‖2H1(Ωr̃) 6 CX, (6.9)

0 6 1
2

∫
Ωr̃
|∇w(z,d)

? |2 − inf
w∈Ideg

r̃

1
2

∫
Ωr̃
|∇w|2 6 CX. (6.10)

Moreover, if there exists η > 0 (independent of n) s.t. ~ > η then (6.7) may
be refined into

‖∇w(z,d)
? ‖L∞(Ωr̃) 6

C

r̃
. (6.11)

The proof of Proposition 6.4 is in Appendix D.1.

By adapting the proof of Proposition 5.1 in [17] we have
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Proposition 6.5. — For N > 1, there exists an application W macro
N =

W macro : (ΩN )∗×ZN → R s.t. for sequences (z,d) = (z,d)(n) ∈ (ΩN )∗×ZN
and r̃ = r̃n → 0 satisfying (6.1) and s.t. D is independent of n, there exists
C > 1 (depending only on N ,

∑
|di| and Ω) s.t.∣∣∣∣∣12

∫
Ωr̃
|∇w(z,d)

? |2 − π
∑
i

d2
i |ln r̃| −W macro(z,d)

∣∣∣∣∣ 6 CX
with

W macro(z,d) = −π
∑
i 6=j

didj ln|zi − zj | − π
∑
i

diR(z,d)(zi),

R(z,d) ∈ C∞(Ω,R) satisfies ‖R(z,d)‖L∞(Ω) 6 C(1 + |ln ~|).

Proposition 6.5 is proved in D.2. We immediately obtain from Proposi-
tion 6.5 the following corollary.

Corollary 6.6. — Under the hypotheses of Proposition 6.5 and assum-
ing that there exists C1 > 0 (independent of r) s.t. r̃(1+|ln ~|)

~ 6 C1, there
is C > 1 (depending only on Ω, N ,

∑
i |di| and C1) s.t.

∫
Ωr̃ |∇w

(z,d)
? |2 6

C|ln r̃|.

We end this section by linking Ideg
r̃ and IDir

r̃ .

Proposition 6.7. — Let N > 1, z ∈ (ΩN )∗ and r̃ = r̃n ↓ 0 satisfy-
ing (6.1). Assume r̃

~ → 0 and if N > 2, we also assume r̃
mini6=j |zi−zj | → 0.

Let

η :=
®

10−1~ if N = 1
10−1 min{~ ; mini 6=j |zi − zj |} if N > 2.

Assume furthermore

Z := 1
ln(η/r̃)

ï
η(1 + |ln(~)|)

~
+ 1
ò2
→ 0.

Then for D ∈ ZN (independent of n), there exists C > 1 (depending only on
Ω, N and

∑
|di|) s.t.

0 6 inf
w∈IDir

r̃

1
2

∫
Ωr̃
|∇w|2 − inf

w∈Ideg
r̃

1
2

∫
Ωr̃
|∇w|2 6 C(X + Z).

Proposition 6.7 is proved Appendix D.3.
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6.1.2. Macroscopic renormalized energy and cluster of vortices

We first state an easy lemma.

Lemma 6.8.

(1) Let N ∈ N∗ and D ∈ ZN . Let χ > 0 and z, z′ ∈ (ΩN )∗ be s.t. for
i ∈ {1, . . . , N} we have |zi − z′i| 6 χ. Then we have

‖R(z,d) −R(z′,D)‖L∞(Ω) 6
∑
i

|di|
χ

max{~(z), ~(z′)} .

(2) Let 1 6 ‹N0 6 N , p ∈ (ΩÑ0)∗, (z,d) = (z,d)(n) ∈ (ΩN )∗ × ZN be
s.t. D is independent of n and for i ∈ {1, . . . , N} there exists k ∈
{1, . . . , ‹N0} s.t. zi → pk. We let χ := maxi dist(zi, {p1, . . . , pÑ0

}).
For k ∈ {1, . . . , ‹N0} we let Dk :=

∑
zi→pk di and D = (D1, . . . , DÑ0

).
Then we have

‖R(z,d) −R(p,D)‖L∞(Ω) 6
∑
i

|di|
χ

~(p) .

Proof. — The first assertion is obtained with the help of the maximum
principle and the bound |R(z,d) − R(z′,D)| 6

∑
i |di|

χ
max{~(z),~(z′)} on ∂Ω.

The second assertion follows by the same way. �

With Lemma 6.8 we may exploit a structure of cluster for Wmacro.

Proposition 6.9. — Let 1 6 ‹N0 6 N , p ∈ (ΩÑ0)∗ (independent of n)
and write

γp :=
®

1 if ‹N0 = 1,
mink 6=l |pk − pl| otherwise.

Let (z,d) = (z,d)(n) ∈ (ΩN )∗ × ZN be s.t. D is independent of n and
for i ∈ {1, . . . , N} there exists k ∈ {1, . . . , ‹N0} s.t. zi → pk. We denote
χ := maxi dist(zi, {p1, . . . , pÑ0

}).

For k ∈ {1, . . . , ‹N0} we denote Dk :=
∑
zi→pk di and D = (D1, . . . , DÑ0

).
Then there exists C > 1 (depending only on Ω, N and

∑
|di|) s.t.∣∣∣∣∣∣∣∣W

macro
N (z,d)−

Ö
Wmacro
Ñ0

(p,D)− π
Ñ0∑
k=1

∑
zi,zj→pk
i 6=j

didj ln|zi − zj |

è∣∣∣∣∣∣∣∣
6 Cχ

Å1 + |ln[~(p)]|
~(p) + 1

γp

ã
.
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Proof. — We have

W macro(z,d) = −π
Ñ0∑
k=1

∑
zi,zj→pk
i 6=j

didj ln|zi − zj |

− π
∑
zi→pk
zj→pl
k 6=l

didj ln|zi − zj | − π
∑
i

diR(z,d)(zi).

It is easy to check that∑
zi→pk
zj→pl
k 6=l

didj ln|zi − zj | =
∑
k 6=l

DkDl ln|pk − pl|+H (6.12)

with H 6 4 (
∑
i |di|)

2 χ
γp

for sufficiently large n.

On the other hand, from Lemma 6.8 (second assertion), we have

‖R(z,d) −R(p,D)‖L∞(Ω) 6
∑
i

|di|
χ

max{~(z), ~(p)} .

From standard pointwise estimates for the gradient of harmonic functions
(see (D.6)) there exists C > 1 depending only on Ω,

∑
|Dk| and N (here

we used 1 6 ‹N0 6 N) s.t. for zi → pk we have
∣∣R(p,D)(zi)−R(p,D)(pk)

∣∣ 6
Cχ1+|ln[~(p)]|

~(p) .

Then, up to changing the value of C, we have∣∣∣∣∣∑
i

diR(z,d)(zi)−
∑
k

DkR(p,D)(pk)
∣∣∣∣∣ 6 Cχ1 + |ln[~(p)]|

~(p) . (6.13)

By combining (6.12) and (6.13) we get the result. �

6.2. Mesoscopic renormalized energy (at scale h−1/2
ex )

From the work of Sandier and Serfaty we may obtain mesoscopic infor-
mations. To this end we need to assume a non degeneracy assumption for
minimal points of ξ0. So we assume in this section that Hypothesis (1.5)
holds.

Let

ηΩ :=
®

10−3 min{1; dist(Λ, ∂Ω)} if N0 = 1
10−3 min{1; dist(Λ, ∂Ω); mink 6=l |pk − pl|} if N0 > 2.

(6.14)
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For p ∈ Λ, by applying Lemma 11.1 in [16] in the disk B(p, ηΩ), we get the
following proposition.

Proposition 6.10. — Assume that Hypothesis (1.5) holds. Let D ∈ N∗
and hex ↑ ∞ when ε→ 0. Then for p ∈ Λ and R = R(ε)→ 0 s.t. R

√
hex →

∞ we have

inf
z∈[B(p,R)D]∗

−π∑
i6=j

ln|zi − zj |+ 2πhex
∑
i

[ξ0(zi)− ξ0(p)]


= π

2 (D2 −D) ln
Å
hex

D

ã
+ Cp,D + o(1) (6.15)

with
Cp,D := min

[(R2)D]∗
Wmeso
p,D (6.16)

and
Wmeso
p,D : [(R2)D]∗ −→ R

x = (x1, . . . , xD) 7−→ −π
∑
i 6=j

ln|xi − xj |+ πD

D∑
i=1

Qp(xi).
(6.17)

where Qp(x) := x ·Hessξ0(p)x, Hessξ0(p) is the Hessian matrix of ξ0 at p.

Moreover the infimum in (6.15) is reached and if zε ∈ [B(p,R)D]∗ is s.t.

− π
∑
i6=j

ln|zεi − zεj |+ 2πhex
∑
i

[ξ0(zεi )− ξ0(p)]

= π

2 (D2 −D) ln
Å
hex

D

ã
+ Cp,D + o(1)

then for all sequence ε = εn ↓ 0, up to a subsequence, denoting ` =
»

D
hex

and z̆εi = zεi−p
` , we have z̆ε = (z̆ε1, . . . , z̆εD) which converges to a minimizer

of Wmeso
p,D . In particular |z̆εi | 6 CΩ,D with CΩ,D > 0 which depends only on

Ω and D.

6.3. Microscopic renormalized energy (at scale λδ)

The location of the vorticity defects at scale λδ (inside a connected
component of ωε) is given by the microscopic renormalized energy exactly
as in the case without magnetic field. In order to define the microscopic
renormalized energy we need some notation. Recall that the pinning term
aε : Ω→ {b, 1} is obtained (see Section 2.3) from a smooth bounded simply
connected set ω s.t. 0 ∈ ω ⊂ ω ⊂ Y := (−1/2, 1/2)2. The construction of the
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pinning term uses two parameters δ = δ(ε) (the parameter of period) and
λ = λ(ε) (the parameter of dilution). For x0 ∈ ω and a sequence ε = εn ↓ 0,
we consider x̂ε ∈ ω s.t. x̂ε → x0 ∈ ω.

Let mε ∈ Z2 be s.t. the cell Yε = δ(mε + Y ) satisfies Y ε ⊂ Ω. We then
denote zε = δ[mε + λx̂ε]. It is proved in [7, Estimates (9) and (10)] that for
R = Rε � λδ and r = rε � λδ, denoting R̂ = R/(λδ), r̂ = r/(λδ), Dε =
B(δmε, R) \B(zε, r), “Dε = B(0, R̂) \B(x̂ε, r̂) and “D = B(0, R̂) \B(x0, r̂):

inf
w∈H1(Dε,S1)

deg(w)=1

1
2

∫
Dε
U2
ε |∇w|2 = inf

w∈H1(Dε,S1)
w(zε+Reıθ)=eıθ

w(xε+reıθ)=Cst eıθ

1
2

∫
Dε
U2
ε |∇w|2 + oε(1) (6.18)

= inf
ŵ∈H1(D̂ε,S1)

deg(w)=1

1
2

∫
D̂ε
a2|∇ŵ|2 + oε(1). (6.19)

Moreover from the main result in [8], we have the existence of an appli-
cation W̃micro : ω → R (depending only on ω and b) s.t.

inf
ŵ∈H1(D̂ε,S1)

deg(w)=1

1
2

∫
D̂ε
a2|∇ŵ|2 = fω(R̂)+b2π|ln(r̂)|+W̃micro(x0)+o(1). (6.20)

where fω(R̂) := infw∈H1[B(0,R̂)\ω,S1]
deg(w)=1

1
2
∫
B(0,R̂)\ω |∇w|

2.

It is clear that there exists Cω ∈ R (depending only on ω) s.t. when
R̂→∞ we have fω(R̂) = π ln(R̂) + Cω + o(1).

Then, by denoting Wmicro(x0) := W̃micro(x0) + Cω, we get from (6.20):

inf
ŵ∈H1(D̂,S1)

deg(w)=1

1
2

∫
D̂
a2|∇ŵ|2 = π ln(R̂) + b2π|ln(r̂)|+Wmicro(x0) +o(1). (6.21)

Moreover, from [9] we know that Wmicro admits minimizers in ω.

7. Sharp upper bound: construction of a test function

From now on we assume that Hypothesis (1.5) holds. We thus may use
for p ∈ Λ and D ∈ N∗ the constant Cp,D defined in (6.16). We denote also
Cp,0 := 0.

We let for d ∈ N∗:

Λd :=
®

D ∈
ß°

d

N0

§
;
õ
d

N0

û™N0
∣∣∣∣∣
N0∑
k=1

Dk = d

}
, (7.1)
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Wd,Ω =Wd := min
D∈Λd

{
Wmacro(p,D) +

N0∑
k=1

Cpk,Dk + ‹V [ζ(p,D)]
}

(7.2)

where, for x ∈ R, dxe is the ceiling of x, bxc is the floor of x, Wmacro( · ) is
defined in Proposition 6.5 and ‹V [ζ(p,D)] is defined in Proposition 5.13.

We now state an easy lemma whose proof is left to the reader.

Lemma 7.1. — Let d ∈ N∗ and D ∈ Λd. Then the following quantities
are independent of D:

L1(d) := π

2

[(
N0∑
k=1

D2
k

)
− d

]
,

L2(d) :=Wd + π

2

N0∑
k=1

s.t. Dk>1

(Dk −D2
k) ln (Dk) .

Moreover: d 6 N0 ⇐⇒ L1(d) = 0⇐⇒ L2(d) =Wd.

Notation 7.2. — We let L1(0) = L2(0) = 0.

The main result of this section is the following proposition.

Proposition 7.3. — Assume that hex = O(|ln ε|), hex → +∞,

λ1/4|ln ε| → 0 and δ
√
hex → 0 (7.3)

and assume that Hypothesis (1.5) holds.

Let d ∈ N∗ and let D ∈ Λd be a minimizer of the minimizing prob-
lem (7.2).

For 0 < ε < 1, there exists (vε, Aε) ∈ H which is in the Coulomb gauge
with d vortices of degree 1 s.t. deg(vε, pk) = Dk,
F(vε, Aε) = h2

exJ0 +dMΩ
[
−hex +H0

c1

]
+L1(d) ln hex +L2(d) +o(1) (7.4)

with MΩ := 2π‖ξ0‖L∞(Ω) and

H0
c1 := b2|ln ε|+ (1− b2)|ln(λδ)|

2‖ξ0‖L∞(Ω)
+ γ̃b,ω (7.5)

where
γ̃b,ω := minωWmicro + b2[γ + π ln b]

2π‖ξ0‖L∞(Ω)
, (7.6)

γ is a universal constant defined in Lemma IX.1 of [4] and Wmicro is defined
in Section 6.3.

Proposition 7.3 is proved in Appendix E.
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8. Tool box

The proof of the main theorems of this article is done in a classic way: by
matching upper and lower bounds. A (sharp) upper bound is obtained by
Proposition 7.3. Getting a sharp lower bound is the most challenging part
of the proof. It needs the proof of several facts related with the vorticity
defects of a family of quasi-minimizers (quantization, localization, size. . . ).

In this section we present some technical and quite classical results
adapted to our situation.

8.1. An η-ellipticity property

In this section we focus on quasi-minimizers. We let hex = O(|ln ε|) and
we consider {(vε, Aε) | 0 < ε < 1} a family of quasi-minimizers for F , i.e.,

F(vε, Aε) 6 inf
H
F + o(1). (8.1)

We assume that for all ε ∈ (0, 1), (vε, Aε) is in the Coulomb gauge and that
vε ∈ H1(Ω,C) is s.t.

‖∇|vε|‖L∞(Ω) = O(ε−1). (8.2)
The major result of this section is a key tool in this article: an η ellipticity
property.

Proposition 8.1. — Let hex = O(|ln ε|) and let {(vε, Aε) | 0 < ε < 1} ⊂
H be a family in the Coulomb gauge satisfying (8.1) and (8.2).

For η ∈ (0, 1) there exist εη > 0 and Cη > 0 s.t. for 0 < ε < εη, if z ∈ Ω
is s.t.

b2
∫
B(z,

√
ε)∩Ω

|∇vε|2 + b2

ε2 (1− |vε|2)2 6 Cη|ln ε|,

then |vε(z)| > η.

Proposition 8.1 is proved in Appendix F.

By combining Proposition 8.1 with Theorem 5.6 we get immediately a
first step in the (macroscopic) localization of the vorticity defects. In order
to apply Theorem 5.6 we need assume®

λ, δ satisfy (1.2), δ2|ln ε| → 0, hex →∞,
(1.3) holds for hex with some K > 0 independent of ε.

(8.3)
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Corollary 8.2. — Assume that λ, δ and hex satisfy (8.3) and let
{(vε, Aε) | 0 < ε < 1} ⊂H be s.t. (8.1) and (8.2) hold. There exist 0 < ε0 6
εK and M > 1 s.t. for 0<ε<ε0, letting Λ̃ε :=Λ∩

⋃
di 6=0B(ai, 2MK |ln ε|−s0)

where the (ai, di)’s (depend on ε) are given by Proposition 5.5 and εK ,MK

and s0 are given by Theorem 5.6, we have

{|vε| 6 1/2} ⊂
⋃
p∈Λ̃ε

B(p,M |ln ε|−s̃0) where s̃0 := min{s0, 10}.

Proof. — We argue by contradiction and we assume that there exist ε =
εn ↓ 0 and a sequence ((vε, Aε))ε ⊂ H s.t. (8.1) and (8.2) hold and s.t. for
all n there exists

z0 = zn0 ∈ {|v| 6 1/2} \
⋃
p∈Λ̃ε

B(p, n|ln ε|−s̃0).

Since (8.1) and (8.2) are gauge invariant we may assume that, for all ε,
(vε, Aε) is in the Coulomb gauge.

Let B := {(B(ai, ri), di) | i ∈ J } be given by Proposition 5.5. Write
Bi := B(ai, ri) for i ∈ J . Note that by Theorem 5.6, from the quasi-
minimality of (vε, Aε), for ε sufficiently small, we have di > 0 for all i and
d :=

∑
|di| =

∑
di = O(1). Up to a subsequence, we may thus assume that

d is independent of ε.

From the definition of Λ̃ε, we have⋃
di>0

Bi ⊂
⋃
p∈Λ̃

B(p, 2MK |ln ε|−s0).

Note that from Theorem 5.6 we have F(vε, 0) = O(|ln ε|2). Then we
may use Proposition 5.5 for the configuration (vε, 0) ∈H to get a covering⋃
i∈J̃
‹Bi of {|vε| < 1 − |ln ε|−2} with disjoint disks ‹Bi = B(ãi, r̃i),

∑
r̃i <

|ln ε|−10.

Therefore there is ρ ∈ [2MK |ln ε|−s̃0 , (2MK + 6)|ln ε|−s̃0 ] s.t. ⋃
p∈Λ̃ε

∂B(p, ρ)

 ∩
⋃
i∈J

Bi ∪
⋃
i∈J̃

‹Bi = ∅.

In particular |vε| > 1 − |ln ε|−2 on
⋃
p∈Λ̃ε ∂B(p, ρ). Thus, writing d̃i :=

deg∂B̃i(vε) when ‹Bi ⊂ Ω, we get for p ∈ Λ̃ε

∑
B̃i⊂B(p,ρ)

|d̃i| >

∣∣∣∣∣∣ ∑
B̃i⊂B(p,ρ)

d̃i

∣∣∣∣∣∣ = deg∂B(p,ρ)(vε) =
∑

Bi⊂B(p,ρ)

di.

– 740 –



Pinned magnetic Ginzburg–Landau energy

Note that for sufficiently large n we have B(z0,
√
ε) ∩

⋃
p∈Λ̃ε B(p, ρ) = ∅.

On the other hand, since
∑
r̃i < |ln ε|−10, we have for ‹Bi ⊂ Ω (here we

use (5.14))
F (v, ‹Bi) > πb2|d̃i|(|ln ε| − C ln|ln ε|).

Using Proposition 8.1 we obtain
F (v) > (πb2d+ C1/2)|ln ε| − O(ln|ln ε|) (8.4)

where C1/2 > 0 is given by Proposition 8.1 with η = 1/2. Estimate (8.4) is
in contradiction with (5.32). �

8.2. Construction of the εs-bad discs

As in the previous section we assume that λ, δ and hex satisfy (8.3).
In this section we establish the existence of εs-bad discs associated to a
quasi-minimizing sequence. The construction of the bad discs requires the
hypothesis: |vε| ∈W 2,1(Ω).

An εs-bad discs family associated to a familly {(vε, Aε) | 0 < ε < 1} ⊂H
consists in sets of discs that have small diameters (a roots of ε) s.t. for fix
ε the discs are “well separated”, the union of the discs is a covering of
{|v| 6 1/2} and each “heart” of a disc intersects {|v| 6 1/2}. Such sets of
discs give thus a nice visualization of {|v| 6 1/2}.

In Section 9, adding an extra hypothesis on λ, δ and hex we get some
informations in terms of location and quantification of the εs-bad discs.

Proposition 8.3. — Assume that λ, δ and hex satisfy (8.3). There exists
M0 ∈ N∗ s.t. for µ ∈ (0, 1/2), if {(vε, Aε) | 0 < ε < 1} is in the Coulomb
gauge and agrees with (3.11) and (8.1), then there exist εµ > 0 and Cµ > 1
(independent of ε) s.t. for 0 < ε < εµ, there is Jµ = Jµ,ε ⊂ {1, . . . ,M0}
(possibly empty) s.t. if Jµ = ∅ then |v| > 1/2 in Ω and if Jµ 6= ∅ then there
are {zi | i ∈ Jµ} ⊂ Ω, a set of mutually distinct points, and r ∈ [εµ, εµ∗ ] with
µ∗ := 2−M2

0µ verifying:

(1) |zi − zj | > r3/4 for i, j ∈ Jµ, i 6= j,
(2) {|vε| 6 1/2} ⊂

⋃
Jµ
B(zi, r) ⊂ Ω and, for i ∈ Jµ, B(zi, r/4) ∩

{|vε| 6 1/2} 6= ∅,
(3) For i ∈ Jµ we have r

∫
∂B(zi,r) |∇vε|

2 + 1
2ε2 (1 − |vε|2)2 6 Cµ and

|v| > 1− |ln ε|−2 on ∂B(zi, r).

Proposition 8.3 is proved in Appendix G. We have the following standard
estimate.
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Proposition 8.4. — Assume (8.3) and let {(vε, Aε) | 0 < ε < 1} be as
in Proposition 8.3. Fix µ ∈ (0, 1/2) and let εµ, Cµ be given by Proposi-
tion 8.3. For 0 < ε < εµ we consider Jµ, {zi | i ∈ Jµ} ⊂ Ω and r obtained in
Proposition 8.3. We denote di := deg∂B(zi,r)(vε).

There exists cµ,b > 1 independent of ε s.t. for ε < εµ we have

|di| 6 4
√
Cµ, (8.5)

1
2

∫
B(zi,r)

|∇vε|2 + b2

2ε2 (1− |vε|2)2 > π|di|ln
(r
ε

)
− cµ,b (8.6)

and then

F (vε, B(zi, r)) > π|di| inf
B(zi,r)

α
[
ln
(r
ε

)
− cµ,b

]
> π inf

B(zi,r)
α |di|[(1− µ) ln ε− cµ,b]. (8.7)

Moreover there is 0 < ε̃µ 6 εµ s.t. for 0 < ε < ε̃µ we have

di 6= 0 for all i (8.8)

and ∑
i∈Jµ

|di| 6 DK,b := 3MK

b2
(8.9)

Proof. — It is classical to get (8.5) from Proposition 8.3(3) and the
Cauchy Schwartz inequality. Estimate (8.6) follows from Proposition 8.3 and
Lemma VI.1 in [2] and (8.7) is a consequence of (8.6).

The proof of (8.8) is done arguing by contradiction with the construction
of a comparaison function

ṽ :=
®
v in Ω \B(zi0 , r)
ρ̃e ıφ̃ in B(zi0 , r)

s.t. ṽ ∈ H1(Ω,C) and F (ṽ, B(zi0 , r)) = O(1) where we assumed di0 = 0.

Since (v,A) is a quasi-minimizer of F we have F(v,A) 6 F(ṽ, A) + o(1).

On the other hand, by direct calculations F(v,A) − F(ṽ, A) =
F (v,B(zi0 , r))− F (ṽ, B(zi0 , r)) + o(1). Consequently F (v,B(zi0 , r)) = O(1)
which is in contradiction with F (v,B(zi0 , r)) > C1/2|ln ε| (given by Propo-
sition 8.1) for small ε.

We now prove (8.9). From (8.7) we have
∑
Jµ
|di| [π(1− µ)|ln ε| − cµ,b] 6

MK |ln ε|
b2 . Since µ ∈ (0, 1/2), the last estimate gives the result for ε > 0

sufficiently small. �
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8.3. Lower bounds in perforated disks

The goal of this section is to get lower bounds for 1
2
∫
D α|∇v|

2 where D
is a perforated disk s.t. D ⊂ Ω and |v| > 1/2 in D.

The starting point of the argument is an estimate on circles. Let b̃ ∈ (0, 1),
β ∈ L∞((0, 2π), [̃b, 1]). With Lemma D.7 in [6], for ϕ ∈ H1((0, 2π),R) s.t.
ϕ(2π)− ϕ(0) = 2π, we have the following lower bound:

1
2

∫ 2π

0
β|∂θϕ|2 >

2π2∫ 2π
0

1
β

. (8.10)

In order to use (8.10) we need to do a preliminary analysis.

For α = U2
ε ∈ L∞(Ω, [b2, 1]), using Lemma E.1 in [6], we have the exis-

tence of C > 1 (independent of ε) s.t.ß
For almost all s > δ/3, letting Cs be a circle with radius s,
we have

∫
Cs∩Ω (1− α) 6 Cλs. (8.11)

From now on, in all this section, we consider a sequence ε = εn ↓ 0,
λ, δ, hex and ((vε, Aε))ε ⊂ H satisfying the hypotheses of Proposition 8.3
(namely (3.11), (8.1) and (8.3)). We drop the subscript ε writing (v,A) in-
stead of (vε, Aε)

Recall that ηΩ is defined in (6.14) and consider
xε ∈ Ω and 0 < r = rε < R = Rε < ηΩ s.t. dist(xε, ∂Ω) > ηΩ > 0. (8.12)

We then denote R := B(xε, R) \B(xε, r) ⊂ Ω.

Assume |v| > 1/2 in R and let d := degR(v). From the proof of Proposi-
tion 8.3 (see (G.2) in Appendix G), there exists 1/2 < tε < 1, tε = 1 + o(1)
s.t. tε ∈ Im(|v|) ∩ [1− 2/|ln ε|2, 1− 1/|ln ε|2] andV (tε) := {|v| = tε} is a finite union of Jordan curves included

in Ω and of simple curves whose endpoints are on ∂Ω and
H1[V (tε)] = o(1).

(8.13)

and since H2({|v| 6 tε}) = o(1) we then have if U is a connected component of {|v| 6 tε} s.t. U ⊂ Ω
then there is Γ, a connected component of V (tε),
which is a Jordan curve s.t. U ⊂ int(Γ).

(8.14)

Remark 8.5. — Since H1[V (tε)] = o(1), for sufficiently small ε, if Γ
(resp. U) is a connected component of V (tε) (resp. {|v| 6 tε}) which in-
tersects R then Γ is a Jordan curve (resp. ∂U is a union of connected com-
ponents of V (tε)).
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We have the following lemma:
Lemma 8.6. — Assume xε, r, R satisfy (8.12) and we assume |v| > 1/2

in R. Then, for s ∈ (r,R), letting

Ks :=
{
θ ∈ [0, 2π)

∣∣∣ |v(xε + se ıθ)| 6 tε
}

we have
H1(Ks) 6 π

H1[V (tε)]
s

.

Proof. — Let s ∈ (r,R) be s.t. H1(Ks) > 0 and denote ÛKs := {xε +
se ıθ | θ ∈ Ks} ⊂ ∂B(xε, s). Then H1(ÛKs) = sH1(Ks).

On the one hand, letting VR(tε) be the union of the connected compo-
nents of {|v| 6 tε} which intersect R, we have ÛKs = VR(tε) ∩ ∂B(xε, s).

On the other hand, by Remark 8.5, ∂VR(tε) is a union of connected com-
ponents of V (tε) which are Jordan curves. Among these Jordan curves, we
may select the maximal curves w.r.t. the inclusion of their interior. We de-
note these maximal curves by Γ1, . . . ,ΓN and we let for i ∈ {1, . . . , N}, Vi :=
int(Γi). We then obtain VR(tε) ⊂

⋃N
i=1 Vi and thus ÛKs ⊂ ⋃Ni=1[∂B(xε, s) ∩

Vi].

For i ∈ {1, . . . , N}, we fix xi ∈ Vi and we define the disk Bi :=
B(xi,diam(Vi)). It is clear that Vi ⊂ Bi. Consequently

H1[∂B(xε, s) ∩ Vi] 6 H1[∂B(xε, s) ∩Bi] 6 2π diam(Vi).
We claim that 2 diam(Vi) 6 H1(Γi). Since the curves Γi are pairwise disjoint,
we have

∑N
i=1H1(Γi) 6 H1[V (tε)].

We may now conclude:

sH1(Ks) = H1(ÛKs) 6 N∑
i=1
H1[∂B(xε, s) ∩ Vi]

6 π
N∑
i=1

2 diam(Vi) 6 πH1[V (tε)]. �

The next proposition is one of the major uses of the dilution λ→ 0.
Proposition 8.7. — Let xε, r, R satisfying (8.12) and r = o(R), assume

also |v| > 1/2 in R. We write d := degR(v) and, in R, we let w := v/|v|
and ρ := |v|.

(1) If r > δ/3 and if H1[V (tε)]/r + (1− t2ε) + λ = o[1/ ln(R/r)] then
1
2

∫
R

α|∇v|2 > 1
2

∫
R

αρ2|∇w|2 > πd2
ï
ln
Å
R

r

ã
− o(1)

ò
.
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(2) If r = o(1) and if H1[V (tε)]/r + (1− t2ε) = o[1/ ln(R/r)] then
1
2

∫
R

|∇v|2 > 1
2

∫
R

ρ2|∇w|2 > πd2
ï
ln
Å
R

r

ã
− o(1)

ò
.

Proof. — We prove the first assertion. We claim that, up to replacing v
with v, we may assume |v| 6 1 in Ω. Moreover, if d = 0 then there is nothing
to prove. We then assume d 6= 0.

We write v = ρe ıdϕ where ϕ is locally defined and its gradient is globally
defined. Letting xε+R+ := {xε+s | s > 0}, we may assume ϕ ∈ H1(R\(xε+
R+),R). For s ∈ (r,R), we let ϕs(θ) = ϕ(xε+se ıθ), ρs(θ) = |v(xε+se ıθ)| and
αs(θ) = α(xε + se ıθ). Then ϕs ∈ H1((0, 2π),R) is s.t. ϕs(2π)− ϕs(0) = 2π
and we immediately get

1
2

∫
R

αρ2|∇w|2 > d2

2

∫ R

r

ds
s

∫ 2π

0
αsρ

2
s|∂θϕs|2dθ.

From (8.10) with β := αsρ
2
s we get

1
2

∫ 2π

0
αsρ

2
s|∂θϕs|2 >

2π2∫ 2π
0

1
αsρ2

s

.

Since b2/4 6 αsρ2
s 6 1 we have

0 6
Ç∫ 2π

0

1
αsρ2

s

å
− 2π =

∫ 2π

0

1− αsρ2
s

αsρ2
s

6
4
b2

Ç∫ 2π

0
1− ρ2

s +
∫ 2π

0
1− αs

å
.

On the one hand, from Lemma 8.6 we have∫ 2π

0
1− ρ2

s 6 H1(Ks) +
[
2π −H1(Ks)

]
(1− t2ε) 6

πH1[V (tε)]
s

+ 2π(1− t2ε).

On the other hand, using (8.11), there is C > 1 (independent of ε) s.t.∫ 2π
0 1− αs 6 Cλ. Then∫ 2π

0

1
αsρ2

s

6 2π + 4
b2

ï
πH1[V (tε)]

s
+ 2π(1− t2ε) + Cλ

ò
.

We thus get

1
2

∫
R

αρ2|∇w|2 > d2
∫ R

r

ds
s

2π2

2π − 4
b2 [πH1[V (tε)]/s+ 2π(1− t2ε) + Cλ]

= πd2
ï
ln
Å
R

r

ã
+ o(1)

ò
.

The second assertion is obtained exactly in the same way than the first
one. Indeed, since α plays no role in the statement, we may use the same
argumentation with λ = 0 and δ > 0 an arbitrary small number. �
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We now state the reformulation of Proposition 8.7 by replacing the an-
nular R with a perforated disk.

Corollary 8.8. — Let D0 ∈ N∗ be independent of ε, 0 < r = rε < R =
Rε be s.t. r = o(R), N = Nε ∈ N∗ be s.t. N 6 D0 and z1 = zε1, . . . , zN = zεN
be s.t. |zi − zj | > 8r for i 6= j.

Let y = yε ∈ Ω and assume z1, . . . , zN ∈B(y,R)⊂B(y, 4R)⊂B(y, ηΩ)⊂
Ω. We let D := B(y, 2R) \

⋃N
i=1B(zi, r).

Assume ρ = |v|> 1/2 in D. For i ∈{1, . . . , N}, we let di := deg∂B(zi,r)(v).
We also assume di > 0 for all i ∈ {1, . . . , N} and

∑N
i=1 di 6 D0. Write

v = ρw in D.

Then there exists C0 > 0 depending only on D0 s.t.:

(1) If r > δ/3 and H1[V (tε)]/r + (1− t2ε) + λ = o[1/ ln(R/r)] then, for
sufficiently small ε, we have

1
2

∫
D
α|∇v|2 > 1

2

∫
D
αρ2|∇w|2 > π

N∑
i=1

d2
i ln(R/r)− C0.

(2) If H1[V (tε)]/r+ (1− t2ε) = o[1/ ln(R/r)] then, for sufficiently small
ε, we have

1
2

∫
D
|∇v|2 > 1

2

∫
D
ρ2|∇w|2 > π

N∑
i=1

d2
i ln(R/r)− C0.

Proof. — We claim that, up to replacing v with v, we may assume |v| 6 1
in Ω.

We first proceed to a scaling with the conformal mapping:
Φ : B(y, 4R) −→ B(0, 4)

x 7−→ x− y
R

.

We then let ẑi := Φ(zi), r̂ := r/R, “D := Φ[D] = B(0, 2) \
⋃N
i=1B(ẑi, r̂),

α̂ := α ◦ Φ−1 and v̂ := v ◦ Φ−1.

If N = 1 or N > 2 and |ẑi − ẑj | > 4 × 10−2D0 for i 6= j then, letting
Ω̃ := B(0, 4), ηΩ̃ = 10−1, we may apply Proposition 8.7(1)

1
2

∫
D
α|∇v|2 = 1

2

∫
D̂
α̂|∇v̂|2 >

N∑
i=1

1
2

∫
B(ẑi,2×10−2D0 )\B(ẑi,r̂)

α̂|∇v̂|2

> π
N∑
i=1

d2
i

(
|ln(R/r)| − |ln(2× 10−2D0)|

)
+ o(1).
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This estimate is the desired result with C0 = πD2
0|ln(2× 10−2D0)|+ 1.

If we are not in the previous case, i.e. N > 2 and there exists i 6= j s.t.
|ẑi− ẑj | < 4× 10−2D0 , then we apply the separation process presented in [6,
Section C.3.1] to the domain “D with ηstop := 10−2D0 .

The key ingredient in the separation process is a variant of Theorem IV.1
in [4] (stated with P = 9, the general case P ∈ N\{0, 1} is left to the reader):

Lemma 8.9. — Let N > 2, P ∈ N \ {0, 1}, x1, . . . , xN ∈ R2 and η > 0.
There are κ ∈ {P 0, . . . , PN−1} and ∅ 6= J ⊂ {1, . . . , N} s.t.

N⋃
i=1

B(xi, η) ⊂
⋃
i∈J

B(xi, κη) and |xi − xj | > (P − 1)κη for i, j ∈ J, i 6= j.

The separation process is an iterative selection of points in {ẑ1, . . . , ẑN}
associated to the construction of a good radius.

We initialize the process by letting η0 := r̂,M0 :=N and J0 ={1, . . . ,M0}.

For k > 1 (where k is the index in the iterative process) we construct a
set ∅ 6= Jk ( Jk−1, Mk := Card(Jk) and 3 numbers

κk ∈ {91, . . . , 9Mk−1−1}, η′k := 1
4 min
i,j∈Jk−1
i 6=j

|ẑi − ẑj | and ηk := 2κkη′k.

These objects are obtained with Lemma 8.9 with P = 9, N = Mk−1 =
Card(Jk−1), {x1, . . . , xN} = {zi | i ∈ Jk−1}, J = Jk, η = ηk, κ = κk The
process stops at the end of Step K0 > 1 if MK0 = 1 or MK0 > 2 and
mini,j∈JK0

i 6=j
|ẑi − ẑj | > 4ηstop.

By construction, we have for 1 6 k 6 K0, ∅ 6= Jk ( Jk−1 and ηk−1 6
η′k < ηk. In particular, since Card(J0) 6 D0, we get K0 6 D0 − 1.

By definition, for k ∈ {1, . . . ,K0} we have 2 · 9η′k 6 ηk 6 9D0η′k. We let

η0 :=
®

9D0 · ηstop if MK0 = 1
min{9D0 · ηstop,

1
4 mini,j∈JK0 ,i6=j |ẑi − ẑj |} if MK0 > 2

and then η0 > ηstop = 10−2D0 . For k ∈ {0, . . . ,K0 − 1} and i ∈ Jk we
denote Ri,k := B(ẑi, η′k+1) \ B(ẑi, ηk), and, for i ∈ JK0 , Ri := B(ẑi, η0) \
B(ẑi, ηK0). By construction, the previous rings are pairwise disjoint. From
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Proposition 8.7(1) we have for k ∈ {0, . . . ,K0 − 1} and i ∈ Jk:
1
2

∫
Ri,k

α̂|∇v̂|2 > π degRi,k
(v̂)2 [ln(ηk+1/ηk)− ln(9D0)

]
− o(1)

> π
∑

ẑj∈B(ẑi,η′k+1)

d2
j ln(ηk+1/ηk)− πD2

0 ln(9D0)− o(1).

And for i ∈ JK0 :
1
2

∫
Ri

α̂|∇v̂|2 > π degRi
(v̂)2 ln(η0/ηK0)− o(1)

> π
∑

ẑj∈B(ẑi,η0)

d2
j ln(η/ηK0)− o(1).

By summing the previous lower bound we get the result. As for Proposi-
tion 8.7, the second assertion is obtained in a similar way than the first
assertion. �

8.4. Lower bounds in a perforated domain

In this section we state a lower bound for a weighted Dirichlet energy in
the domain Ω perforated by small (but not too small) disks. The philosophy
of this lower bound is that in the case which interest us we may ignore the
weight if the perforations are not too small; it is an effect of the dilution
λ→ 0.

Proposition 8.10. — Let β ∈ (0, 1), (α̃n)n ⊂ L∞(Ω, [β2, 1]) be s.t.

Kn :=
 ∫

Ω
(1− α̃n)2 → 0.

Let N ∈ N∗ and (z,d) = (z,d)(n) ⊂ (ΩN )∗×ZN be s.t. D is independant of
n. We denote ~ := mini dist(zi, ∂Ω).

Assume the existence of r̃ > 0 s.t. r̃ = o(1), (6.1) holds and s.t. there is
C1 > 0 (independent of n) satisfying r̃|ln r̃|

~ 6 C1. Write Ωr̃ := Ω\
⋃
B(zi, r̃).

Let (un)n ⊂ H1(Ω,C) satisfying |un| > 1
2 in Ωr̃ and deg∂B(zi,r̃)(un) = di

for all i.

Assume also

Ln :=
 ∫

Ωr̃
(1− |un|2)2 → 0.
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Then∫
Ωr̃
α̃n|∇un|2 >

∫
Ωr̃
|∇Φ(z,d)

? |2

− (4β−1 + 3)‖∇Φ(z,d)
? ‖L∞(Ωr̃)‖∇Φ(z,d)

? ‖L2(Ωr̃) (Kn + Ln)−O(X)

with Φ(z,d)
? is defined in Remark 6.3 and X is defined in (6.8).

Proposition 8.10 is proved in Appendix H.

9. Study of the εs-bad discs

In this section, in addition to the assumption (8.3) on λ, δ and hex, we
assume that (1.4) holds. This (technical) hypothesis (1.4) is a little bit more
restrictive than (7.3) (δ

√
hex → 0) used to get a nice upper bound.

Let ε = εn ↓ 0 and let ((v,A))ε = ((vε, Aε))ε be a sequence that agrees
with (3.11) and (8.1). Let also µ ∈ (0, 1/2).

Since (3.11) and (8.1) are gauge invariant we may assume that (v,A) is
in the Coulomb gauge.

The goal of this section is to prove that, for sufficiently small ε and µ, if
Jµ 6= ∅ then di = 1, dist(zi,Λ) 6 ln(hex)/

√
hex and zi ∈ ωε for all i ∈ Jµ

and for i 6= j, |zi − zj | > ln(hex)/hex with a “uniform” distribution of the
zi’s around Λ.

With the notation of Proposition 8.3 we let Ωr := Ω \
⋃
i∈Jµ B(zi, r) and

d :=
∑
i∈Jµ |di|.

In view of the goal of this section we may argue on subsequences. First
note that from (8.8) we have di 6= 0 for all i. Up to a subsequence, from (8.9),
we may assume that Jµ 6= ∅ and independent of ε as well as the di’s.

Since we are interested here only in informations related with |v| and the
di’s, we may consider that (v,A) is in the Coulomb gauge and we may also
change the potential vector. Namely, we may assume that A = ∇⊥ξ with
ξ = ξε ∈ H1

0 ∩H2(Ω,R) is the unique solution of (5.23). Note that (8.1) still
holds.

Consequently, curl(A) ∈ H1 and then with (3.5) and (5.5): ‖ξ‖H3(Ω) 6
C|ln ε|.

From Proposition 5.7 and letting ζ = ζε := ξ − hexξ0

F(v,∇⊥ξ) = h2
exJ0 + F (v) + 2πhex

∑
diξ0(zi) + ‹V (z,d)(ζ) + o(1).
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Proposition 5.13 implies ‹V (z,d)(ζ) = O(1). Consequently

F(v,∇⊥ξ) = h2
exJ0 + F (v) + 2πhex

∑
diξ0(zi) +O(1). (9.1)

In particular we have F(v,∇⊥ξ) 6 h2
exJ0 + o(1), thus with (9.1) we get

F (v) 6 −2πhex
∑

diξ0(zi) +O(1). (9.2)

From Corollary 8.2 and Propositions 8.3 and 8.4 we deduce −
∑
diξ0(zi) =

‖ξ0‖L∞(Ω)
∑
di + o(1) and we immediately obtain∑

di > 0. (9.3)

On the other hand, from Proposition 7.3, we have

F(v,∇⊥ξ) 6 h2
exJ0 + dMΩ

[
−hex +H0

c1

]
+ L1(d) ln hex +O(1). (9.4)

By combining (9.1) and (9.4) we get

F (v) 6 dπ
[
b2|ln ε|+ (1− b2)|ln(λδ)|

]
+ L1(d) ln hex +O(1). (9.5)

In conclusion, from (8.6) in conjunction with (9.5) we obtain

1
2

∫
Ωr
α|∇v|2 6 dπ

[
b2|ln r|+ (1− b2)|ln(λδ)|

]
+ L1(d) ln hex +O(1). (9.6)

We first have the following proposition.

Proposition 9.1. — Assume

0 < µ < min
ß 1
DK,b + 1 ,

1− b2

2(DK,b + 1)

™
(9.7)

where DK,b = 3MK

b2 andMK is as in Theorem 5.6.

Then there exists ε̃′µ > 0 s.t. for 0 < ε < ε̃′µ if Jµ 6= ∅ then

(1) di > 0 for all i,
(2) dist(zi, ωε) <

√
ε.

Proof.

Step 1. We prove that di > 0 for all i. — We argue by contradiction
and we assume the existence of an extraction still denoted by ε = εn ↓ 0 s.t.
J− := {i ∈ Jµ | di < 0} 6= ∅ (from (8.8), for 0 < ε < ε̃µ, we have di 6= 0 for
all i ∈ Jµ).
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From (9.3) we thus obtain:
∑
i∈Jµ\J− di > d + 1. Then, with the help

of (8.7), we obtain

F (v) > b2(1− µ)π|ln ε|

Ñ∑
i∈J−

|di|+
∑

i∈Jµ\J−

di

é
> (d+ 2)π(1− µ)b2|ln ε|+O(1).

Consequently (9.5) implies d(1+o(1)) > (d+2)(1−µ)−o(1). This inequality
gives µ > 2

d+2 − o(1) which is in contradiction with 0 < µ < (DK,b + 1)−1

for sufficiently small ε > 0 (here we used DK,b >MK > d).

Step 2. We prove that dist(zi, ωε) <
√
ε for all i. — We argue by contra-

diction and we assume the existence of a subsequence still denoted by ε =
εn ↓ 0 and i0 ∈ Jµ s.t. dist(zi0 , ωε) >

√
ε. From (5.8) we have infB(zi0 ,r) α >

1 − o(|ln ε|−2). Consequently using (8.7) we get F (v,B(zi0 , r)) > di0π(1 −
µ)|ln ε|−O(1). Then F (v) > πb2(1−µ)d|ln ε|+π(1−b2)(1−µ)di0 |ln ε|−O(1).

From (9.5) we obtain
db2|ln ε|+O(ln|ln ε|) > b2(1− µ)d|ln ε|+ (1− b2)(1− µ)|ln ε| − O(1).

The last estimate implies µ > 1−b2
b2d+1−b2 + o(1) which is in contradiction with

µ 6 1−b2
2(DK,b+1) for ε > 0 sufficiently small. �

Definition 9.2.

• For i ∈ Jµwe let yi ∈ δ · Z2 be the unique point s.t. zi ∈ B(yi, δ/2).
Since dist(zi, ωε) <

√
ε for all i, yi is well defined.

• We denote also J̃ ⊆ Jµ a set of indices s.t.
⋃
i∈Jµ B(zi, r) ⊂⋃

k∈J̃ B(yk, 2λδ) and for k, l ∈ J̃ s.t. k 6= l we have yk 6= yl. We
then let for k ∈ J̃ , J̃k := {i ∈ Jµ | zi ∈ B(yk, 2λδ)}.
• We may also select “good indices” in order to get well separated
centers yk’s. Using Lemma 8.9 with P = 17, η = δ, there exists
a set ∅ 6= J (y) ⊂ Jµ and a number κ ∈ {1, 17, . . . , 17Card(Jµ)−1}
(dependent on ε) s.t.ß⋃

k∈J̃ B(yk, δ) ⊂
⋃
k∈J(y) B(yk, κδ)

for k, l ∈ J (y) with k 6= l we have |yk − yl| > 16κδ.

We denote, for k ∈ J (y), d̃k := deg∂B(yk,κδ)(v).
• There exists also {Jk | k ∈ J (y)}, a partition of Jµ with non empty
sets (dependent on ε), s.t.

B(zi, δ/2) ⊂ B(yk, κδ)⇐⇒ i ∈ Jk for k ∈ J (y).

We are going to prove that J̃ = Jµ and for all k ∈ J (y) we have Jk = J̃k.
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Proposition 9.3. — Assume (9.7), for ε > 0 sufficiently small, if Jµ 6=
∅ then di = 1 for all i ∈ Jµ.

Proof. — We argue by contradiction and we assume the existence of a
subsequence (still denoted by ε = εn ↓ 0) s.t. for all ε there exists i0 ∈ Jµ
s.t. di0 > 2.

From Corollary 8.8(2) applied in B(yk, 2λδ) \
⋃
i∈J̃k B(zi, r):

1
2

∫
Ωr
α|∇v|2 >

∑
k∈J̃

b2

2

∫
B(yk,2λδ)\

⋃
i∈J̃k

B(zi,r)
|∇v|2

> πb2
∑
k∈J̃

∑
i∈Jk

d2
i ln
Å
λδ

r

ã
−O(1)

> πb2

Ñ
1 +

∑
i∈Jµ

di

é
ln
Å
λδ

r

ã
−O(1).

We then get F (v) > πb2(d|ln ε|+ |ln r|) +O(|ln(λδ)|). Since |ln ε| = O(|ln r|)
and |ln(λδ)| + ln hex = o(|ln ε|), this estimate is in contradiction with (9.5)
for sufficiently small ε. �

Proposition 9.4. — Assume µ satisfies (9.7) and Jµ 6= ∅. Then for
sufficiently small ε > 0 we have dist(z,Λ) 6 lnhex√

hex
.

The proof of the proposition uses the following obvious lemma whose
proof is left to the reader.

Lemma 9.5.

(1) Let N ∈ N∗, D ∈ NN and for k ∈ {1, . . . , N} let Nk ∈ N∗ and
D(k) ∈ NNk be s.t. Dk =

∑
i d

(k)
i . Then we have

N∑
k=1

D2
k >

N∑
k=1

Nk∑
i=1

(d(k)
i )2.

Moreover the equality holds if and only if for all k ∈ {1, . . . , N} and
for all i ∈ {1, . . . , Nk} we have d(k)

i ∈ {0, Dk}.
(2) Let N, d ∈ N∗ and denote Ed := minD∈NN ,

∑
Dk=d

∑N
k=1D

2
k. Then

we have for D ∈ NN s.t.
∑
Dk = d:

N∑
k=1

D2
k = Ed ⇐⇒ D ∈ {bd/Nc; dd/Ne}N .
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Proof of Proposition 9.4. — We argue by contradiction and we assume
the existence of a subsequence (still denoted by ε = εn ↓ 0) and i0 ∈ Jµ s.t.
dist(zi0 ,Λ) > lnhex√

hex
.

Then there exists η > 0 (independent of ε) s.t.

hexξ0(zi0) > −hex‖ξ0‖L∞(Ω) + 4η(ln hex)2.

Consequently:

−2πhex
∑

ξ0(zi) 6 2πdhex‖ξ0‖L∞(Ω) − 4η(ln hex)2.

From (9.2) we get (for small ε)

F (v) 6 2πdhex‖ξ0‖L∞(Ω) − 3η(ln hex)2

(Hyp. (1.3)) 6 πd|ln ε| − 2η(ln hex)2.

Using (8.6) we get
1
2

∫
Ωr
α|∇v|2 6 dπ

[
b2|ln r|+ (1− b2)|ln(λδ)|

]
− η(ln hex)2. (9.8)

We let χ := 10 maxk∈J̃ dist(yk,Λ) and for p ∈ Λ, Dp := deg∂B(p,χ)(v),
Jp := {k ∈ J (y) | yk ∈ B(p, χ)}. For a latter use we claim that χ >
ln(hex)/

√
hex and then

λ|lnχ|/χ→ 0. (9.9)
We have (see Definition 9.2 for notation)

1
2

∫
Ωr
α|∇v|2

>
∑
k∈J̃

1
2

∫
B(yk,2λδ)\

⋃
i∈J̃k

B(zi,r)
α|∇v|2 +

∑
k∈J̃

1
2

∫
B(yk,δ/3)\B(yk,2λδ)

α|∇v|2

+
∑
p∈Λ

1
2

∫
B(p,χ)\

⋃
k∈Jp

B(yk,κδ)
α|∇v|2 + 1

2

∫
Ω\
⋃
p∈Λ

B(p,χ)
α|∇v|2. (9.10)

It is clear that, for k ∈ J̃ , we may use Corollary 8.8(2) in B(yk, 2λδ) \⋃
i∈J̃k B(zi, r) in order to get∑

k∈J̃

1
2

∫
B(yk,2λδ)\

⋃
i∈J̃k

B(zi,r)
α|∇v|2 > b2dπ ln

Å
λδ

r

ã
+O(1). (9.11)

Let k ∈ J̃ , from (5.8) and Proposition 8.7(2) we obtain
1
2

∫
B(yk,δ/3)\B(yk,2λδ)

α|∇v|2 > π deg∂B(yk,2λδ)(v)2|lnλ|+O(1). (9.12)
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Let p ∈ Λ be s.t. Dp 6= 0, Corollary 8.8(1) gives
1
2

∫
B(p,χ)\

⋃
k∈Jp

B(yk,κδ)
α|∇v|2 > π

∑
k∈Jp

d̃2
k ln

(χ
δ

)
+O(1).

From Propositions 6.4, 6.5 and 8.10 (with (9.9)) we deduce
1
2

∫
Ω\
⋃
p∈Λ

B(p,χ)
α|∇v|2 > π

∑
p∈Λ

D2
p|lnχ|+O(1).

From Lemma 9.5(1) we have

d 6
∑
k∈J̃

deg∂B(yk,2λδ)(v)2 6
∑
p∈Λ

∑
k∈Jp

d̃2
k 6

∑
p∈Λ

D2
p.

Then we get
1
2

∫
Ωr
α|∇v|2 > dπ

[
b2|ln r|+ (1− b2)|ln(λδ)|

]
+O(1).

This estimate is in contradiction with (9.8) for sufficiently small ε. �

Proposition 9.6. — Assume µ satisfies (9.7) and let ε = εn ↓ 0 be a
sequence.

(1) If Card(Jµ) > 2 then for ε > 0 sufficiently small and for i 6= j,
|zi − zj | > h−1

ex ln hex.
(2) For ε>0 sufficiently small we have for p∈Λ, deg

∂B(p,h−1/2
ex lnhex)(v)∈

{bd/N0c; dd/N0e}.

The proof of Proposition 9.6 is postponed to Appendix I.

Since λδhex → 0, Proposition 9.6 implies that each cell of period contains
at most a disc B(zi, r) with i ∈ Jµ.

Following the argument in [6, proof of the third part in Proposition 3.6,
see Appendix D-Section 4.5], we may refine Proposition 9.1(2).

Proposition 9.7. — Assume µ satisfies (9.7), then there is ηω,b > 0
depending only on ω and b s.t. for i ∈ Jµ we have B(zi, 2ηω,bλδ) ⊂ ωε.

Corollary 9.8. — Assume µ satisfies (9.7). Then we have∫
Ω\
⋃
i∈Jµ

B(zi,λ2δ2)
|∇v|2 + 1

ε2 (1− |v|2)2 = O(|ln(λδ)|). (9.13)

Moreover
|v| = 1 + o(1) in Ω \

⋃
i∈Jµ

B(zi, 2λ2δ2). (9.14)
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Proof. — We have
b4

4

∫
Ω\
⋃
i∈Jµ

B(zi,λ2δ2)
|∇v|2 + 1

ε2 (1− |v|2)2 6 F (v)−
∑
i∈Jµ

F (v,B(zi, λ2δ2)).

For i ∈ Jµ, from Corollary 8.7(2):

F (v,B(zi, λ2δ2)) > b2

2

∫
B(zi,λ2δ2)\B(zi,r)

|∇v|2 + F (v,B(zi, r))

> 2b2π ln(λδ) + b2π|ln ε|+O(1).

Since, by Proposition 9.6, the discs B(zi, λ2δ2) are pairwise disjoint, we
obtain with (9.5):

b4

4

∫
Ω\
⋃
i∈Jµ

B(zi,λ2δ2)
|∇v|2 + 1

ε2 (1− |v|2)2 6 O(|ln(λδ)|).

This estimate is equivalent to (9.13).

We are going to prove (9.14). We argue by contradiction and we assume
the existence of an extraction still denoted ε = εn ↓ 0, t ∈ (0, 1) and (xn)n ⊂
Ω \

⋃
i∈Jµ B(zi, 2λ2δ2) s.t. |vεn(xn)| < t.

By Proposition 8.1, there exists Ct > 0 s.t. for sufficiently large n:∫
B(xn,

√
εn)∩Ω

|∇vεn |2 + 1
ε2
n

(1− |vεn |2)2 > Ct|ln εn|. (9.15)

Moreover, for n sufficiently large to get
√
εn < λ2δ2, we have [B(xn,

√
εn)∩

Ω] ⊂ Ω \
⋃
i∈Jµ B(zi, λ2δ2). This inclusion is in contradiction with (9.13)

and (9.15). �

From Proposition 9.7, for i ∈ Jµ, we have ẑi := zi−yi
λδ ∈ ω where yi ∈ δZ2

is s.t. zi ∈ B(yi, λδ). Moreover, up to considering an extraction, we may
assume that, for i ∈ Jµ, there exists ẑ0

i ∈ ω s.t. ẑi → ẑ0
i .

We start with the following proposition.

Proposition 9.9. — We have the following sharp lower bound:

F(v,A) > h2
exJ0 + dMΩ

[
−hex +H0

c1

]
+ L1(d) ln hex + L2(d)

+
∑
i∈Jµ

[Wmicro(ẑ0
i )−min

ω
Wmicro] + [Wd(D)−Wd] + o(1)

where Wd = minΛdWd is defined in (7.2) and

Wd(D) := Wmacro
N0

(p,D) +
∑
p∈Λ

Cp,Dp + ‹V [ζ(p,D)] (9.16)
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where for p ∈ Λ, D ∈ N∗, Cp,D is defined in (6.16), Cp,0 := 0 and ‹V [ζ(p,D)]
is defined in Proposition 5.13.

We split the proof of Proposition 9.9 in several lemmas.

The first step is the following lemma consisting in a “macroscopic/
mesoscopic” version of Proposition 9.9.

Lemma 9.10. — Let ρ = |v| and w = v/ρ in Ω \
⋃
i∈Jµ B(yi, δ/3). We

then have
1
2

∫
Ω\
⋃
i∈Jµ

B(yi,δ/3)
αρ2|∇w|2

> dπ|ln(δ/3)| − π
∑
p∈Λ

bbDp>2

∑
i,j∈Jp
i 6=j

ln|zi − zj |+Wmacro
N0

(p,D) + o(1).

Proof. — On the one hand, from Proposition 9.4 and letting χ := h
−1/4
ex

we have |v| > 1/2 in Ω\
⋃
p∈ΛB(p, χ). Then, from Proposition 8.10, we have

1
2

∫
Ω\
⋃
p∈Λ

B(p,χ)
α|∇v|2 > π

∑
p∈Λ

D2
p|lnχ|+Wmacro

N0
(p,D) + o(1). (9.17)

On the other hand, from Proposition 9.6, if Card(Jµ) > 2 then, for i, j ∈ Jµ
with i 6= j, we have |yi − yj | > h−1

ex ln(hex)− 2λδ.

Consequently, if Dp = deg∂B(p,ηΩ)(v) 6= 0 (ηΩ is defined in (6.14)), letting
Jp := {i ∈ Jµ | zi ∈ B(p, ηΩ)}, Dp := B(p, χ) \

⋃
i∈Jp B(yi, h−1

ex ),

Φ : B(p, χ) −→ D = B(0, 1)

x 7−→ x− p
χ

,

v̂ = v ◦ Φ−1, α̂ = α ◦ Φ−1, “Dp := Φ(Dp) and ŷi := Φ(yi) for yi ∈ B(p, χ),
then we may apply Proposition 8.10. Writing (ŷp,1) := {(ŷi, 1) | i ∈ Jp},
Proposition 8.10 gives:

1
2

∫
Dp
α|∇v|2 = 1

2

∫
D̂p
α̂|∇v̂|2 > πDp ln(χhex)+Wmacro

Dp,D (ŷp,1)+o(1) (9.18)

where Wmacro
Dp,D is the macroscopic renormalized energy in the unit disc D

with Dp points.

From Proposition 1 in [13] we have

Wmacro
Dp,D (ŷp,1) = −π

∑
i,j∈Jp
i6=j

î
ln|ŷi − ŷj | − ln|1− ŷiŷj |

ó
+ π

∑
i∈Jp

ln(1− |ŷi|2).
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Using Proposition 9.4, we get for i ∈ Jp, |ŷi| 6 h−1/2
ex lnhex

χ = o(1) and then

Wmacro
Dp,D (ŷp,1) = −π

∑
i,j∈Jp
i 6=j

ln|yi − yj | − π(D2
p −Dp)|lnχ|+ o(1). (9.19)

For i ∈ Jµ, we let Ri := B(yi, h−1
ex ) \B(yi, δ/3). With Proposition 8.7(1) we

obtain
1
2

∫
Ri

α|∇v|2 > π|ln(δhex/3)|. (9.20)

By combining (9.17), (9.18), (9.19) and (9.20) the result is proved. �

The second step is a “microscopic” version of Proposition 9.9.
Lemma 9.11. — If r 6 r̃ 6 λ2δ2, then:∑
i∈Jµ

F (v,Ri) > dπ
(
|ln(3λ)|+ b2|ln(λδ/r̃)|

)
+
∑
i∈Jµ

Wmicro(ẑ0
i ) + o(1)

where, for i ∈ Jµ, Ri := B(yi, δ/3) \B(zi, r̃).
Proof. — Note that in order to prove Lemma 9.11 (up to replacing v

by v) we may assume ρ = |v| 6 1.

We first consider the case λ4δ4 6 r̃ 6 λ2δ2. We then may assume∑
i∈Jµ

Fε(v,Ri) = O(|ln(λδ)|) (9.21)

since in the contrary case there is nothing to prove.

Fix i ∈ Jµ and let v? be a minimizer of Fε( · ,Ri) in H1(Ri,C) with the
Dirichlet boundary condition tr∂Ri

( · ) = tr∂Ri
(v). Note that such minimiz-

ers exist and we have Fε(v?,Ri) 6 Fε(v,Ri) = O(|ln(λδ)|).

The key ingredient consists in noting that since v? is a minimizer of a
weighted Ginzburg–Landau type energy we may thus use a sharp interior
η-ellipticity result. Namely, following the strategy of [9] to prove Lemma 1
(see [9, Appendix C]), by using the first part of the proof (the interior argu-
ment which does not required any information on tr∂Ri(v?)), we get

ρ? := |v?| > 1−O(
»
|ln(λδ)|/|ln ε|)

in ‹Ri := B(yi, δ/3− ε1/4) \B(zi, r̃ + ε1/4). (9.22)

Write in ‹Ri: v? = ρ?w? where w? ∈ H1( ‹R,S1).

Note that by (1.2) (namely |ln(λδ)|=O(ln|ln ε|)) we have |ln(λδ)|3/|ln ε|=
o(1) and then from (9.21) and (9.22) (and also ρ? 6 1) we have∫

R̃i

αρ2
?|∇w?|2 =

∫
R̃i

α|∇w?|2 + o(1).
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We then immediately get:

F (v,Ri) > F (v?,Ri) >
1
2

∫
R̃i

α|∇w?|2 + o(1)

> inf
w̃∈H1(R̃i,S1)

deg(w̃)=1

1
2

∫
R̃i

α|∇w̃|2 + o(1).

It suffices now to claim that from (6.21) we have

inf
w̃∈H1(R̃i,S1)

deg(w̃)=1

1
2

∫
R̃i

α|∇w̃|2 = π
(
|ln(3λ)|+ b2|ln(λδ/r̃)|

)
+Wmicro(ẑ0

i ) + o(1)

in order to get F (v,Ri) > π
(
|ln(3λ)|+ b2|ln(λδ/r̃)|

)
+ Wmicro(ẑ0

i ) + o(1).
By summing these lower bounds we get the result.

We complete the proof by considering the cases r 6 r̃ < λ4δ4. With
Proposition 8.7.2 we get

1
2

∫
B(zi,λ4δ4)\B(zi,r̃)

α|∇v|2 > b2

2

∫
B(zi,λ4δ4)\B(zi,r̃)

|∇v|2

> πb2 ln λ
4δ4

r̃
− o(1).

This estimate ends the proof. �

Lemma 9.12. — There exists r 6 r̃ = o(λ2δ2) s.t. for i ∈ Jµ we have

F [v,B(zi, r̃)] > b2[π ln(r̃/ε) + ln b+ γ] + o(1).

Proof. — We first note that we have∑
i∈Jµ

F [v,B(zi, λ2δ2) \B(zi, r)]

6 db2π ln(λ2δ2/r) + L1(d) ln hex +O(1). (9.23)

The above estimate is proved by contradiction and assuming the existences
of an extraction (still denoted by ε = εn ↓ 0) and of a sequence Rn ↑ ∞ s.t.∑

i∈Jµ

F [v,B(zi, λ2δ2) \B(zi, r)] > db2π ln(λ2δ2/r) + L1(d) ln hex +Rn.

From (8.7) we get∑
i∈Jµ

F [v,B(zi, λ2δ2)] > db2π ln(λ2δ2/ε) + L1(d) ln hex +Rn +O(1).

Using Lemmas 9.10 and 9.11 we get an estimate which contradicts (9.5).
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By a classical argument, for sufficiently small ε, there exists
√
r 6 r̃ 6

r1/4 s.t. for i ∈ Jµ
r̃

2

∫
∂B(zi,r̃)

|∇v|2 + b2

2ε2 (1− |v|2)2 6 π + 4L1(d) ln hex +O(1)
|ln r|

Arguing as in the proof of Proposition 8.3 (Step 3 in Appendix G) it is clear
that we may assume |v| > 1− |ln ε|−2 on ∂B(zi, r̃) for i ∈ Jµ.

We now define for i ∈ Jµ, ρi := tr∂B(zi,r̃)(|v|), wi := tr∂B(zi,r̃)(v/|v|). We
immediately get
r̃

2

∫
∂B(zi,r̃)

|∇wi|2 = π + o(1), r̃

2

∫
∂B(zi,r̃)

|∇ρi|2 + b2

2ε2 (1− ρ2
i )2 = o(1).

On the other hand, since deg(wi) = 1, there exists φi = φi,ε ∈ H1((0, 2π),R)
s.t. φi(0) = φi(2π) ∈ [0, 2π) and wi

(
zi + r̃e ıθ

)
= e−ı(θ+φi(θ)). A direct

calculation gives:

2π + o(1) = r̃

∫
∂B(zi,r̃)

|∂τwi|2 =
∫ 2π

0
|(φi + θ)′|2 = 2π +

∫ 2π

0
|φ′i|

2
.

The last equalities imply φ′i → 0 in L2(0, 2π) and then φi − φi(0) → 0 in
L2(0, 2π). Hence, up to a subsequence, we get the existence of θi ∈ [0, 2π]
s.t. φi → θi in H1(0, 2π).

We now define w̃i ∈ H1(B(zi, 2r̃) \B(zi, r̃),S1) by

w̃i(zi + se ıθ) = e ı[θ+φ̃i(zi+se
ıθ)] with φ̃i(zi + se ıθ) = [φi(θ)− θi]

2r̃ − s
r̃

+ θi.

A direct calculation gives
∫
B(zi,2r̃)\B(zi,r̃) |∇φ̃i|

2 = o(1) and then

1
2

∫
B(zi,2r̃)\B(zi,r̃)

|∇w̃i|2 = 1
2

∫
B(zi,2r̃)\B(zi,r̃)

|∇[θ + φ̃i(zi + se ıθ)]|2 + o(1)

= π ln(2) + o(1).

Let ρ̃i∈H1[B(zi, 2r̃)\B(zi, r̃),R+] be s.t. ρ̃i(zi+se ıθ) := ρ̃i(zi+ r̃e ıθ) 2r̃−s
r̃ +

s−r̃
r̃ .

We then have F [ρ̃i, B(zi, 2r̃)\B(zi, r̃)] = o(1). Consequently, letting vi :=
ρ̃iw̃i ∈ H1[B(zi, 2r̃) \B(zi, r̃),C] we have

F [vi, B(zi, 2r̃) \B(zi, r̃)] = b2

2

∫
B(zi,2r̃)\B(zi,r̃)

|∇w̃i|2 + o(1).

In order to conclude we let

ui :=
®
vi in B(zi, 2r̃) \B(zi, r̃),
v in B(zi, r̃).
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It is clear that ui(zi+2r̃e ıθ) = e ıθie ıθ and then, using Lemma IX.1 in [4],
we get

F [ui, B(zi, 2r̃)] > b2[π ln(2r̃/ε) + γ + π ln b] + o(1).

The last estimate ends the proof of the lemma. �

Proof of Proposition 9.9. — From the three previous lemmas we have

F (v) > dπ
[
b2|ln ε|+ (1− b2)|ln(λδ)|

]
− π

∑
p∈Λ

bbDp>2

∑
i,j∈Jp
i 6=j

ln|zi − zj |

+Wmacro
N0

(p,D) +
∑
i∈Jµ

Wmicro(ẑ0
i ) + db2[π ln b+ γ] + o(1). (9.24)

On the other hand, with Corollary 5.20 (estimate (5.30)) we get

F(v,A) > h2
exJ0 + 2πhex

∑
i∈Jµ

ξ0(zi) + F (v) + ‹V [ζ(p,D)] + o(1) (9.25)

where ζ(p,D) is defined in Proposition 5.12.

From Proposition 6.10 (estimate (6.15)), for p ∈ Λ s.t. Dp > 2, we have:

− π
∑
i,j∈Jp
i 6=j

ln|zi − zj |+ 2πhex
∑
i

[ξ0(zi)− ξ0(p)]

>
π

2 (D2
p −Dp) ln

Å
hex

Dp

ã
+ Cp,Dp + o(1). (9.26)

By combining (9.24), (9.25) and (9.26) (and also ξ0 6 0) we obtain

F(v,A) > h2
exJ0 + dπ

[
b2|ln ε|+ (1− b2)|ln(λδ)|

]
− 2πdhex‖ξ0‖L∞(Ω)

+ π

2
∑
p∈Λ

bbDp>2

ï
(D2

p −Dp) ln
Å
hex

Dp

ã
+ Cp,Dp

ò
+Wmacro

N0
(p,D)

+
∑
i∈Jµ

Wmicro(ẑ0
i ) + ‹V [ζ(p,D)] + db2[π ln b+ γ] + o(1). (9.27)

It suffices to see that, since D ∈ Λd, from the definition of L1(d) we have

π

2
∑
p∈Λ

bbDp>2

(D2
p −Dp) ln

Å
hex

Dp

ã
= L1(d) ln hex + π

2
∑
p∈Λ

(Dp −D2
p) ln (Dp)
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in order to deduce from (9.27) that
F(v,A) > h2

exJ0 + dπ
[
−2hex‖ξ0‖L∞(Ω) + b2|ln ε|+ (1− b2)|ln(λδ)|

]
+ L1(d) ln hex +

∑
i∈Jµ

Wmicro(ẑ0
i ) +Wd(D)

+ π

2
∑
p∈Λ

(Dp −D2
p) ln (Dp) + db2[π ln b+ γ] + o(1)

where Wd(D) is defined in (9.16). This estimate with the definition of H0
c1

and Wd (see (7.2), (7.5) and (7.6)) ends the proof of the proposition. �

10. The first critical field and the location of the vorticity defects

We assume that λ, δ, hex satisfy (1.2) and (1.3) for some K > 0 indepen-
dent of ε. We assume also (1.4). We consider a sequence ε = εn ↓ 0.

As in the previous section we focus on sequences of quasi-minimizers of
F . For simplicity we write (v,A) instead of (vε, Aε). We assume that (3.11)
and (8.1) holds and since (3.11) and (8.1) are gauge invariant we may also
assume that (v,A) is in the Coulomb gauge.

From above results, for a fixed µ > 0 sufficiently small (satisfying (9.7))
and for ε > 0 sufficiently small, there exists a (finite) set Z ⊂ Ω, de-
pending on ε and possibly empty s.t. letting d := Card(Z) (we write Z =
{z1, . . . , z2}):

• If d = 0, then |v| > 1/2 in Ω.
• If d > 0, then |zi − zj | & h−1

ex ln hex if i 6= j, |v| > 1/2 in Ω \⋃d
i=1B(zi, εµ) and deg∂B(z,εµ)(v) = 1 for z ∈ Z.

Moreover d = O(1). Then if needed, up to a subsequence, we may assume
that d is independent of ε.

By combining Corollary 5.10, Propositions 6.10, 7.3, 9.6 and 9.9 we get
the following corollary.

Corollary 10.1. — Assume λ, δ, hex satisfy (1.2) and (1.3) for some
K > 0 independent of ε. Let ε = εn ↓ 0 and let ((vε, Aε))ε ⊂H be a sequence
satisfying (3.11) and (8.1). Assume that d is independent of ε. Without loss
of generality we may assume that (vε, Aε) is in the Coulomb gauge. We have
F(vε, Aε) = h2

exJ0 +dMΩ[−hex +H0
c1 ]+L1(d) ln hex +L2(d)+o(1). (10.1)

Moreover, if d 6= 0 then:
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• We have D ∈ Λd (see (7.1)) and D minimises Wd in Λd where Wd

is defined in (9.16).
• For p ∈ Λ s.t. Dp > 0 and i ∈ Jp, we denote z̆i := (zi− p)

√
Dp/hex

and z̆p := {z̆i | i ∈ Jp}. Then, up to a subsequence, z̆p converges to
a minimizer of Wmeso

p,Dp
defined in (6.17).

• For i ∈ {1, . . . , d}, we write ẑi := (zi − yi)/(λδ) ∈ ω where yi ∈ δZ2

is s.t. zi ∈ B(yi, λδ). Then, up to a subsequence, ẑi converges to a
minimizer of Wmicro.

For a further use, we claim that for d0 > 0, from Proposition 7.3, there
exists a configuration (v0, A0) ∈H which is in the Coulomb gauge s.t.

F(v0, A0)− h2
exJ0

= d0MΩ
[
−hex +H0

c1

]
+ L1(d0) ln hex + L2(d0) + o(1). (10.2)

Recall that, from Lemma 7.1, for d 6= 0, we have d ∈ {1, . . . , N0} if and
only if L1(d) = 0 and L2(d) =Wd.

For further use, in the next lemma, we define four kinds of numbers ∆(1)
d ,

∆(1)
d′,d, ∆(2)

d and ∆(2)
d′,d. Lemma 10.2 (whose proof is left to the reader) is

dedicated to give some explicit expressions of this numbers based on basic
computations.

Lemma 10.2. — For 0 6 d < d′ we let:

(1) ∆(1)
d := L1(d+1)−L1(d)

MΩ
= π

MΩ

ö
d
N0

ù
.

(2) ∆(1)
d′,d := L1(d′)−L1(d)

MΩ(d′−d) = π
MΩ(d′−d)

∑d′−1
k=d

ö
k
N0

ù
.

(3) ∆(2)
d := L2(d+1)−L2(d)

MΩ
and

∆(2)
d −

Wd+1 −Wd

MΩ

=
®

0 if d 6 N0−1,
− π

2MΩ

⌊
d
N0

⌋[(
1+
⌊
d
N0

⌋)
ln
(
1+
⌊
d
N0

⌋)
+
(
1−
⌊
d
N0

⌋)
ln
⌊
d
N0

⌋]
if d > N0.

(4) ∆(2)
d′,d := L2(d′)−L2(d)

MΩ(d′−d) thus, if d′ 6 N0, then ∆(2)
d′,d = Wd′−Wd

MΩ(d′−d) .

By using (10.1) and (10.2) we easily get the following corollary.

Corollary 10.3. — Let ε = εn ↓ 0, λ, δ, hex and ((vε, Aε))ε ⊂ H be
as in Corollary 10.1.

Assume that d is independent of ε. Then we have for d′ > d

hex 6 H
0
c1 + ∆(1)

d′,d × ln hex + ∆(2)
d′,d + o(1).
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Then, letting χ be s.t. hex = H0
c1(1 +χ) (χ = o(1) from (1.3)), we have thus

hex 6 H
0
c1 + ∆(1)

d′,d × lnH0
c1 + ∆(2)

d′,d + o(1). (10.3)

If d > d′ > 0 then

hex > H
0
c1 + ∆(1)

d,d′ × lnH0
c1 + ∆(2)

d,d′ + o(1). (10.4)

We are now in position to give an asymptotic value for the first critical
field. Indeed with Corollary 10.3 ((10.3) with d = 0 and d′ ∈ {1, . . . , N0}
and (10.4) with d > 1 and d′ = 0).

Corollary 10.4. — Denote Hc1 := H0
c1 + mind∈{1,...,N0}

Wd

dMΩ
. Let

{(vε, Aε) | 0 < ε < 1} ⊂H be a family of quasi-minimizers satisfying (3.11).

(1) If for sufficiently small ε we have d = 0 then hex 6 Hc1 + o(1).
(2) If for sufficiently small ε we have d > 0 then hex > Hc1 + o(1).

Proof. — The corollary is a direct consequence of Corollary 10.3 taking
d′ ∈ {1, . . . , N0} which minimizes ∆(2)

d′,0 = Wd′/(MΩd
′) in (10.3) for the first

assertion and d′ = 0 in (10.4) for the second. �

10.1. Secondary critical fields for d ∈ {1, . . . , N0}

If N0 = 1, if hex is near Hc1 and if d > 0, then it is standard to prove that
d = 1. If N0 > 2 and d ∈ {1, . . . , N0}, then the situation is more involved:
we have no a priori sharp informations about the number of vorticity defects
and their (macroscopic) location. The goal of this section is to get such
informations.

10.1.1. Preliminaries

Note that for 0 6 d < d′ 6 N0 we have ∆(1)
d′,d = 0 and ∆(2)

d′,d = Wd′−Wd

MΩ(d′−d) .

Rephrasing Corollary 10.3 for d, d′ ∈ {0, . . . , N0} we have the following
key lemma.

Lemma 10.5. — Let ε = εn ↓ 0, λ, δ, hex and ((vε, Aε))ε ⊂H be as in
Corollary 10.1.

Assume Card(Z) = d is independent of ε then the following properties
hold:

– 763 –



Mickaël Dos Santos

(1) If 0 6 d′ < d then, letting W0 := 0, we have hex > H0
c1 + Wd−Wd′

MΩ(d−d′) +
o(1). In particular taking d′ = 0 we get hex > H0

c1 + Wd

MΩd
+ o(1).

(2) If d < N0 and d < d′ 6 N0 then hex 6 H0
c1 + Wd′−Wd

MΩ(d′−d) + o(1).
(3) If N0 > 2, N0 > d′ > d > 1 then

Wd′

d′
<
Wd′−Wd

d′−d
⇐⇒ Wd

d
<
Wd′

d′
and Wd′

d′
>
Wd′−Wd

d′−d
⇐⇒ Wd

d
>
Wd′

d′
.

(4) If N0 > 2 and N0 > d′ > d > 1 then
Wd′

d′
= Wd′ −Wd

d′ − d
⇐⇒ Wd

d
= Wd′

d′
.

(5) If N0 > 2 and 0 6 d < d′ < d′′ 6 N0 then we have the following
convex combination
Wd′′ −Wd

d′′ − d
= d′′ − d′

d′′ − d
Wd′′ −Wd′

d′′ − d′
+ d′ − d
d′′ − d

Wd′ −Wd

d′ − d
.

Consequenlty Wd′′−Wd

d′′−d is between Wd′′−Wd′
d′′−d′ and Wd′−Wd

d′−d .

Proof. — The two first assertions are obtained with Corollary 10.3. The
remaining part of the lemma consists in basic calculations. �

10.1.2. First step in the definition of the critical fields

Assume N0 > 2. We are going to define some energetic levels (in term
of Wd) related with the number of vorticity defects and their (macroscopic)
location.

We denote d?0 := 0, S1 := {1, . . . , N0}, K ?
1 := mind∈S1

Wd

d =

mind∈S1

Wd−Wd?0
d−d?0

, S ?
1 := {d ∈ S1 |Wd/d = K ?

1 } and D1 := {D ∈ Λd | d ∈
S ?

1 and D minimizes Wd}. We let also d?1 := max S ?
1 and D?

1 := D1 ∩ Λd?1 .

If d?1 = N0 we are going to prove that for hex > Hc1 + o(1) (but hex not
too large), then there is exactly one vorticity defect close to each point of Λ.
In the contrary case (1 6 d?1 < N0), then there are other critical fields which
govern the number of vorticity defects.

If d?1 < N0, then S2 := {d?1 + 1, . . . , N0} 6= ∅. For d ∈ S2 we let K2(d) :=
Wd−Wd?1
d−d?1

, S ?
2 := {d ∈ S2 |K2(d) = minS2 K2}, d?2 := max S ?

2 and K ?
2 :=

K2(d?2).

We denote D2 := {D ∈ Λd | d ∈ S ?
2 and D minimizes Wd} and D?

2 :=
D2 ∩ Λd?2 .
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We claim that for d ∈ S2 we have Wd/d > Wd?1
/d?1. Then, with Lem-

ma 10.5(3), we get K2(d) >Wd?1
/d?1. In particular

K ?
2 =

Wd?2
−Wd?1

d?2 − d?1
>
Wd?1

d?1
= K ?

1 . (10.5)

If d?2 = N0 then we stop the construction. In the contrary case, for d ∈ S3 :=
{d?2 + 1, . . . , N0} 6= ∅ we have K2(d) > K2(d?2).

We continue the iterative construction. For k > 2, assume that we have
1 < d?k−1 < d?k < N0, we let Sk+1 := {d?k + 1, . . . , N0} 6= ∅ and we assume
that for d ∈ Sk+1:

Kk(d) :=
Wd −Wd?

k−1

d− d?k−1
>
Wd?

k
−Wd?

k−1

d?k − d?k−1
= K ?

k . (10.6)

For d ∈ Sk+1 we let Kk+1(d) :=
Wd−Wd?

k

d−d?
k

,

S ?
k+1 :=

ß
d ∈ Sk+1

∣∣∣∣Kk+1(d) = min
Sk+1

Kk+1

™
,

d?k+1 := max S ?
k+1 and K ?

k+1 := Kk+1(d?k+1).

We define also
Dk+1 := {D |D ∈ Λd, d ∈ S ?

k+1 and D minimizes Wd}
and D?

k+1 := Dk+1 ∩ Λd?
k+1

.

From (10.6) we have

Kk(d?k+1) =
Wd?

k+1
−Wd?

k−1

d?k+1 − d?k−1
>
Wd?

k
−Wd?

k−1

d?k − d?k−1
= K ?

k . (10.7)

Then, from Lemma 10.5(5) with d = d?k−1, d′ = d?k and d′′ = d?k+1, we get
that Kk(d?k+1) is between K ?

k and K ?
k+1. Consequently, with (10.7) we get

K ?
k+1 > K ?

k . (10.8)
We stop the construction at Step L s.t. d?L = N0. Since 1 6 d?k < d?k+1 6 N0,
it is clear that a such L exists and 1 6 L 6 N0.

We then have two possibilities: L = 1 or L ∈ {2, . . . , N0}. If L > 2 then,
for k ∈ {1, . . . , L− 1}, (10.8) holds. We also claim that (1, . . . , 1) ∈ DL.

Lemma 10.6. — Let k ∈ {1, . . . , L}, assume that d?k − d?k−1 > 2 and fix
d?k−1 < d < d?k. We have

Wd?
k
−Wd

d?k − d
6 K ?

k 6
Wd −Wd?

k−1

d− d?k−1
.
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Moreover, if d /∈ S ?
k , then

Wd?
k
−Wd

d?k − d
6 K ?

k <
Wd −Wd?

k−1

d− d?k−1
.

Proof. — From Lemma 10.5(5), K ?
k is between

Wd−Wd?
k−1

d−d?
k−1

and
Wd?

k
−Wd

d?
k
−d .

On the other hand, from the definition of d?k, K ?
k 6

Wd−Wd?
k−1

d−d?
k−1

. Clearly
the first part of the lemma holds. If d /∈ S ?

k then, by definition, K ?
k <

Wd−Wd?
k−1

d−d?
k−1

. �

10.1.3. Main result

For k ∈ {1, . . . , L} we let

K(I)
k := H0

c1 + K ?
k

MΩ
(10.9)

and we let also
K(II)

1 := H0
c1 + ∆(1)

N0
× lnH0

c1 + ∆(2)
N0
. (10.10)

Recall that the K ?
k ’s are defined in Section 10.1.2 and ∆(1)

N0
and ∆(2)

N0
in

Lemma 10.2. Note that Hc1 = K(I)
1 .

Proposition 10.7. — Assume that (1.5) holds and λ, δ, hex,K satisfy
(1.2), (1.3) and (1.4).

Let {(vε, Aε) | 0 < ε < 1} ⊂ H be a family satisfying (3.11) and (8.1)
which is in the Coulomb gauge. Assume dε = Card(Zε) ∈ {1, . . . , N0}.

We denote D = (D1, . . . , DN0) with Dl = deg∂B(pl,ηΩ)(v) (ηΩ is defined
in (6.14)).

(1) Assume L = 1. For sufficiently small ε > 0 we have D ∈ D1.
Moreover, if ε = εn ↓ 0 is a sequence s.t. dε is independent of ε

and dε 6= N0 (i.e. D 6= (1, . . . , 1)) then hex 6 K(I)
1 + o(1).

(2) Assume L > 2. For k ∈ {1, . . . , L− 1}, if d?k−1 < dε 6 d?k for small
ε or for a sequence indexed by ε = εn ↓ 0, then

K(I)
k + o(1) 6 hex 6 K(I)

k+1 + o(1). (10.11)
Moreover, for sufficiently small ε, D ∈ Dk. And if D ∈ Dk \ D?

k

(i.e. d?k−1 < dε < d?k) then

hex 6 K(I)
k + o(1). (10.12)
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(3) If d?L−1 < dε 6 d?L = N0 for small ε or for a sequence indexed by
ε = εn ↓ 0, then

K(I)
L + o(1) 6 hex 6 K(II)

1 + o(1). (10.13)
Moreover, for sufficiently small ε, D ∈ DL. And if dε < N0 (i.e
D 6= (1, . . . , 1)) then

hex 6 K(I)
L + o(1). (10.14)

In particular, for sufficiently small ε, we have D ∈
⋃L
l=1 Dl.

Proof. — We prove the first item arguing by contradiction. First note
that if N0 = 1 then there is nothing to prove. Assume thus N0 > 2 and
L = 1 and let {(vε, Aε) | 0 < ε < 1} be as in the proposition. Assume there
exists ε = εn ↓ 0 s.t. D /∈ D1. Up to a subsequence we may assume that D
is independent of ε.

From Corollary 10.1, for sufficiently small ε, D minimizes Wd and then,
from the definition of D1, we get d /∈ S ?

1 . Consequently WN0/N0 < Wd/d
and thus, from Lemma 10.5(2) and 10.5(3) (with d′ = N0), we get the
existence of t > 0 s.t. hex 6 Hc1 − t. This last estimate is in contradiction
with Corollary 10.4(2). Thus D ∈ D1 for sufficiently small ε. The rest of the
first assertion is a direct consequence of d ∈ S ?

1 \ {N0} and Lemma 10.5(2)
and 10.5(4) (with d′ = N0).

We now prove the second assertion. Assume L > 2. For k ∈ {1, . . . ,
L − 1}, if d?k−1 < d 6 d?k, then, from Lemma 10.5(1) (with d′ = d?k−1) and
Lemma 10.5(2) (with d′ = d?k+1), we get

Wd −Wd?
k−1

MΩ(d− d?k−1) + o(1) 6 hex −H0
c1 6

Wd?
k+1
−Wd

MΩ(d?k+1 − d) + o(1). (10.15)

From the definition of d?k we have K ?
k 6

Wd−Wd?
k−1

d−d?
k−1

and then the lower
bound in (10.15) gives the first convergence in (10.11).

On the other hand, if d = d?k then, from the definition of K ?
k+1, the upper

bound in (10.15) gives the second convergence in (10.11).

If d 6= d?k, using Lemma 10.5(5) (with d < d?k < d?k+1) we obtain

that
Wd?

k+1
−Wd

d?
k+1−d

is between
Wd?

k
−Wd

d?
k
−d and K ?

k+1. But, from Lemma 10.6,

we get
Wd?

k
−Wd

d?
k
−d 6 K ?

k . Since from (10.8) we have K ?
k+1 > K ?

k , we obtain
Wd?

k+1
−Wd

d?
k+1−d

6 K ?
k+1. Therefore the upper bound of (10.15) gives the second

convergence in (10.11).
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We now demonstrate that, for sufficiently small ε, D ∈ Dk arguing by
contradiction. We assume the existence of sequence ε = εn ↓ 0 s.t. d?k−1 <
d 6 d?k with k ∈ {1, . . . , L − 1}, D is independent of ε and D /∈ Dk. From
Corollary 10.1, D minimizes Wd and then, from the definition of Dk, we get
d /∈ S ?

k (then d < d?k).

On the one hand, with Lemma 10.5(1) (with d′ = d?k−1) and Lem-
ma 10.5(2) (with d′ = d?k) we have

Wd −Wd?
k−1

MΩ(d− d?k−1) + o(1) 6 hex −H0
c1 6

Wd −Wd?
k

MΩ(d− d?k) + o(1).

On the other hand, with Lemma 10.6, we have
Wd−Wd?

k

d−d?
k

<
Wd−Wd?

k−1
d−d?

k−1
. This

inequality gives a contradiction.

Lemma 10.5(2) (with d′ = d?k) and Lemma 10.6 give immediately (10.12).

We now treat the last item of the proposition and we assume d?L−1 < d 6

d?L = N0. From (10.4) (with d′ = d?L−1) we get hex −H0
c1 > ∆(2)

d,d?
L−1

+ o(1).
On the other hand, from the definition of K ?

L , we get

hex −H0
c1 >

K ?
L

MΩ
+ o(1). (10.16)

Before ending the proof of (10.13) we prove that (10.14) holds and, for
sufficiently small ε, D ∈ DL. Assume that there exists ε = εn ↓ 0 s.t. D is
independent of ε and d?L−1 < d < N0.

From Lemma 10.5(2) (with d′ = N0) we have

hex −H0
c1 6

WN0 −Wd

MΩ(N0 − d) + o(1). (10.17)

Using (10.16) with (10.17) we get K ?
L 6 (WN0 −Wd)/(N0−d). Lemma 10.6

(with d?L−1 < d < N0) gives (WN0 − Wd)/(N0 − d) 6 K ?
L . Therefore,

(WN0 − Wd)/(N0 − d) = K ?
L and then by combining (10.16) and (10.17)

we deduce that, if for some sequence ε = εn ↓ 0 we have d?L−1 < d < N0,
then (10.14) holds.

Arguing as above, (using (10.2) with d0 = N0), one may prove that for
sufficiently small ε we have d ∈ S ?

L and thus D ∈ DL.

We complete the proof of (10.13). Assume that hex is sufficiently large in
order to have d = N0 (here we used (10.14)). It suffices to use (10.3) (with
d = N0 and d′ = N0 + 1) in order to get the remaining part of (10.13). �
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10.2. Secondary critical fields for d > N0 + 1

The case d > N0 + 1 is easier to handle than the case 1 6 d 6 N0.

For k ∈ N∗, we let

K(II)
k := H0

c1 + ∆(1)
N0+k × lnH0

c1 + ∆(2)
N0+k

where ∆(1)
N0+k and ∆(2)

N0+k are defined in Lemma 10.2. We have the following
proposition.

Proposition 10.8. — Assume that (1.5) holds and λ, δ, hex,K satisfy
(1.2), (1.3) and (1.4).

Let {(vε, Aε) | 0 < ε < 1} ⊂ H be a family satisfying (3.11) and (8.1)
which is in the Coulomb gauge.

Let k ∈ N∗. If for a sequence ε = εn ↓ 0 we have dε = N0 + k then

K(II)
k + o(1) 6 hex 6 K(II)

k+1 + o(1).

Proof. — The proposition is a direct consequence of (10.3) (with d =
N0 + k and d′ = N0 + k + 1) and (10.4) (with d = N0 + k and d′ =
N0 + k − 1). �

Appendix A. Proof of Estimate (5.9)

Consider a conformal mapping Φ : D→ Ω. From a result of Painlevé (see
Footnote (4) on p. 716), the maps Φ and Φ−1 may be extended in Ω and D
by smooth maps. Then there exists C? > 1 s.t.

‖∇Φ‖L∞(D), ‖∇Φ−1‖L∞(Ω) 6 C?. (A.1)

Write ãε := aε ◦ Φ and ‹Uε := Uε ◦ Φ. Since the function ‹Uε is a minimizers
of ‹Eε, the analog of Eε in D, ‹Uε is a solution of®

−∆‹U = w Ũ
ε2 (ã2

ε − |‹U |2) in D
∂ν‹U = 0 on S1

with w = Jac Φ is the Jacobian of Φ.

Define Vε : B(0, 2)→ [b2, 1] by

Vε(x) =
®‹Uε(x) if x ∈ D‹Uε(x/|x|2) if x ∈ B(0, 2) \ D.

Then−∆Vε = −∆‹Uε in D and−∆Vε(x) = −|x|−4∆‹Uε(x/|x|2) in B(0, 2)\D.
Thus Vε ∈ H2(B(0, 2),C).
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First note that if r 6 ε, then (5.9) is given by (5.7).

Let r > ε and x0 ∈ Ω be s.t. dist(x0, ∂ωε) > r. Let η := aε(x0) − Vε
in B(x0, r/2). From Lemma A.1 in [3] and (5.8) we get, for x ∈ B(x0, r/4),
|∇Vε(x)|2 = |∇η(x)|2 where

|∇η(x)|2 6 C
Å
‖∆η‖L∞(B(x0,r/2)) + 4

r2 ‖η‖L∞(B(x0,r/2))

ã
‖η‖L∞(B(x0,r/2))

6
Ce−

sbr

2ε

ε2 .

In the previous estimate the constants are independent of ε, r and x0. From
(A.1) we then get (5.9).

Appendix B. Proof of Theorem 5.6

Assume that λ, δ, hex,K satisfy (1.2), (1.3) and δ2|ln ε| 6 1.

Consider a family of configurations {(vε, Aε) | 0 < ε < 1} ⊂ H which is
in the Coulomb gauge and s.t.

F(vε, Aε) 6 inf
H
F +O(ln|ln ε|).

We drop the subscript ε. From Lemma 5.8, we may consider Av ∈ H1(Ω,R2)
s.t. (v,Av) is in the Coulomb gauge and (5.22) holds.

We then have

F(v,Av) 6 F(v,A) 6 inf
H
F +O(ln|ln ε|) = O(h2

ex). (B.1)

Proposition 5.5 gives the existence of C, ε0 > 0 (independent of ε) s.t., for
ε < ε0, there exists a family of disjoint disks {Bi | i ∈ J } with Bi = B(ai, ri)
satisfying:

(1) {|v| < 1− |ln ε|−2} ⊂
⋃
Bi

(2)
∑
ri < |ln ε|−10,

(3) writing ρ = |v| and v = ρe ıϕ we have
1
2

∫
Bi

ρ2|∇ϕ−A|2 + |curl(A)− hex|2 > π|di|(|ln ε| − C ln|ln ε|), (5.14)

where di = deg∂Bi(v) if Bi ⊂ Ω and 0 otherwise.

From now on, the notation C stands for a positive constant independent of
ε whose value may change from one line to another.
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B.1. A substitution lemma

As in [15], we first state a substitution lemma.

Lemma B.1. — There exists (ṽ, Ã) ∈H which is in the Coulomb gauge
and s.t., writing, ρ = |v|, v = ρe ıϕ and ρ̃ = |ṽ|, ṽ = ρ̃e ıϕ̃ we have

(1) (ṽ, Ã) satisfies (5.22) and ρ̃ 6 1,
(2) ρ̃ = 1 and ϕ = ϕ̃ in Ω \

⋃
Bi,

(3) ‖ρ(∇ϕ−Av)− ρ̃(∇ϕ̃− Ã)‖2L2(Ω) = o(1),
(4) ‖curl(Av)− curl(Ã)‖2L2(Ω) 6 C|ln ε|−2,
(5) F(ṽ, Ã) 6 F(v,Av) + o(1).

Lemma B.1 is proved in [15, Lemma 1] for α ≡ 1. The adaptation to our
case is presented below.

Proof of Lemma B.1. — The proof of the lemma follows the same lines
than in [15].

We define a continuous function χε = χ : [0, 1]→ [0, 1] by letting
χ(x) = x if 0 6 x 6 1/2
χ(x) = 1 if x > 1− |ln ε|−2

χ is affine if 1/2 6 x 6 1− |ln ε|−2.

We then let ṽ := χ(ρ)
ρ v ∈ H1(Ω,C) and we let Ã = Aṽ given by Lemma 5.8.

Letting h̃ = curl(Ã) we then get

−∇⊥h̃ = α(ıṽ) · (∇ṽ − ıÃṽ). (B.2)
Exactly as in [15] we have

‖v ∧∇v − ṽ ∧∇ṽ‖2L2(Ω) 6 C|ln ε|−2. (B.3)
As in [15], from (3.1), (5.22) and (B.2) we obtain PDE of the second order
satisfied by A and Ã.

By considering the difference of these PDE we get

−∆(Ã−A) + α(Ã−A)

= α(ṽ ∧∇ṽ − v ∧∇v) + α(1− ρ2)A+ α(1− ρ̃2)Ã. (B.4)

From (5.3), (B.1) and (B.3), the RHS of (B.4) is bounded in L2(Ω) by C
|ln ε| .

Since (Ã−A) ·ν = 0 on ∂Ω, by elliptic regularity, we deduce Assertions 3
and 4 of the lemma.

The end of the proof is exactly as in [15] �
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From now on we replace (v,Av) with (ṽ, Ã) and we claim that the valued
disks given by Proposition 5.5 is valid for (v,Av) and (ṽ, Ã) and getting the
conclusions of Theorem 5.6 for (ṽ, Ã) implies the same for (v,A).

In order to simplify the presentation we write (v,A) instead of (ṽ, Ã).

B.2. Energetic Decomposition

We have the following lower bound:

Proposition B.2. — let h := curl(A), h0 := ∆ξ0 = 1 + ξ0, f := h −
hexh0 and let {Bi = B(ai, ri) | i ∈ J } be the disks given by Proposition 5.5.
We have:

F(v,A) > h2
exJ0 +

∑
F [(v,A), Bi] + 2πhex

∑
diξ0(ai)

+ 1
2

∫
Ω\
⋃
Bi

|∇f |2 + 1
2

∫
Ω
f2 − o(1) (B.5)

where
F [(v,A), Bi] > πb2|di|(|ln ε| − C ln|ln ε|). (B.6)

This estimate is the starting point of the main argument of [15].

Proof of Proposition B.2. — Let Ω̃ := Ω \
⋃
Bi. With (B.6) we get

F[(v,A),∪Bi] > πb2
∑
i

|di|[|ln ε| − C ln|ln ε|].

On the other hand, letting f := h−hexh0 and since α|∇v−ıAv|2 > |∇h|2,
we get

1
2

∫
Ω̃
α|∇v − ıAv|2 + |h− hex|2

> h2
exJ0 + 1

2‖f‖
2
H1(Ω̃) + hex

∫
Ω̃
∇f · ∇(h0 − 1) + f(h0 − 1) + o(1).

Before refining the above lower bound we make some preliminary claims. We
first note that from (B.2) we have ‖h − hex‖2H1(Ω) 6 C‖∇v − ıAv‖2L2(Ω) =
O(h2

ex). Then ‖f‖2H1(Ω) = O(h2
ex). Consequently for g ∈ {f, h} we have

hex

∫
∪Bi∩Ω

|∇g ·∇(h0−1)|+|g(h0−1)| 6 C‖g‖H1(Ω)hex
∑

ri = o(1). (B.7)

We also observe that∫
Ω
−A⊥ · ∇(h0 − 1) + h(h0 − 1) = 0. (B.8)
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With (5.6) we get ‖A‖L∞(Ω) 6 Chex and then (with (B.2))∑
Bi⊂Ω

∣∣∣∣∫
∂Bi

∂τϕ(h0 − h0(ai))
∣∣∣∣ =

∑
Bi⊂Ω

∣∣∣∣∫
∂Bi

(h0 − h0(ai))(α−1∇⊥h+A) · τ
∣∣∣∣

6
∑
Bi⊂Ω

ï∣∣∣∣∫
∂Bi

α−1(h0 − h0(ai))∂νh
∣∣∣∣+ Chexri

ò
.

If Bi ⊂ Ω we have∣∣∣∣∫
∂Bi

α−1(h0 − h0(ai))∂νh
∣∣∣∣

=
∣∣∣∣∫
Bi

α−1∇h0 · ∇h+ (h0 − h0(ai)) div(α−1∇h)
∣∣∣∣

6

∣∣∣∣∫
Bi

(h0 − h0(ai)) div[v ∧ (∇⊥v − ıA⊥v)]
∣∣∣∣+O(hexri)

6
∫
Bi

|h0 − h0(ai)|[2|∂1v ∧ ∂2v|+ 4|∇(|v|)||A|+ |v|2|h|] +O(hexri)

6 Crih
2
ex.

And then ∑
Bi⊂Ω

∣∣∣∣∫
∂Bi

∂τϕ(h0 − h0(ai))
∣∣∣∣ 6 C ∑

Bi⊂Ω
rih

2
ex. (B.9)

If Bi 6⊂ Ω, then ‖h0 − 1‖L∞(Bi∩Ω) 6 Cri and∣∣∣∣∣
∫
∂(Bi∩Ω)

(h0 − 1)∂τϕ
∣∣∣∣∣

6
∫
Bi∩Ω

|∇h0 · ∇h|+ |h0 − 1|
[
2|∂1v ∧ ∂2v|+ 4|∇(|v|)||A|+ |v|2|h|

]
6 Crih

2
ex. (B.10)

By combining (B.9) with (B.10) we deduce:∑∫
∂Bi∩Ω

(h0 − 1)∂τϕ = 2π
∑

di(h0(ai)− 1) + o(1). (B.11)

We used that if Bi 6⊂ Ω then di = 0.

We end the preliminary claims by noting that∫
Ω
|α−1 − 1||∇h · ∇(h0 − 1)| 6 Chex‖α−1 − 1‖L2(Ω) = o(h−1

ex ). (B.12)
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On the one hand, since −∆f + f = −∆h + h, we have with (B.7), (B.8),
(B.11), (B.12) and integrations by parts:∫

Ω̃
∇f · ∇(h0−1) + f(h0−1) =

∫
Ω
α−1∇h · ∇(h0−1) + h(h0−1) + o(h−1

ex )

= o(h−1
ex ) +

∑
i

∫
∂Bi

∂τϕ(h0 − 1)

= o(h−1
ex ) + 2π

∑
Bi⊂Ω

di[h0(ai)− 1]

= o(h−1
ex ) + 2π

∑
Bi⊂Ω

diξ0(ai).

On the other hand, since ‖f‖L4(Ω) 6 Chex, we get
∫
∪Bi f

2 = o(h−4
ex ), and

this estimate ends the proof. �

B.3. Estimate related with the signs of the di’s

By Proposition B.2 we have:

0 > πb2
∑
i

|di|(|ln ε| − C ln|ln ε|) + 2πhex
∑
i

diξ0(ai)

+ 1
2

∫
Ω\
⋃
Bi

|∇f |2 + 1
2

∫
Ω
f2 − o(1). (B.13)

Denote I+ := {i ∈ J | di > 0}, I− := {i ∈ J | di < 0}, D :=
∑
J |di|,

D+ :=
∑
i∈I+ di and D− :=

∑
i∈I− |di|.

With (B.13) we obtain 2hexD+‖ξ0‖L∞(Ω) > b2D|ln ε|
Ä
1− C ln|ln ε|

|ln ε|

ä
+o(1)

and then:

D− 6 D+ ×
C ln|ln ε|
|ln ε| + o(1). (B.14)

B.4. Estimate related with dist(ai,Λ)

From Lemma 1.1, there exist η > 0 and M > 1 s.t., for a ∈ Ω, ξ0(a) >
min ξ0 + η dist(a,Λ)M .

We let I0 := {i ∈ I | dist(ai,Λ) < |ln ε|− 1
2M } and D0 :=

∑
i∈I0 |di|.
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If i /∈ I0, then |ξ0(ai)| 6 ‖ξ0‖L∞(Ω) − η√
|ln ε|

. We thus have

∣∣∣∣∣∑
i

diξ0(ai)
∣∣∣∣∣ 6

∣∣∣∣∣∣∑i∈I0 diξ0(ai)

∣∣∣∣∣∣+

∣∣∣∣∣∣∑i/∈I0 diξ0(ai)

∣∣∣∣∣∣
6 D0‖ξ0‖L∞(Ω) + (D −D0)

Ç
‖ξ0‖L∞(Ω) −

η√
|ln ε|

å
6 D‖ξ0‖L∞(Ω) − (D −D0) η√

|ln ε|
.

From (B.13) we may deduce

2hex

Ç
D‖ξ0‖L∞(Ω) − (D −D0) η√

|ln ε|

å
> b2D(|ln ε| − C ln|ln ε|)− o(1)

and consequently

D −D0 6 CD
ln|ln ε|√
|ln ε|

+ o(1). (B.15)

B.5. Estimate of the two last terms in (B.13)

We let t > |ln ε|− 1
2M > |ln ε|−1/2 and then t > δ since δ|ln ε|1/2 6 1.

On the one hand, from Lemma E.1 in [6], by denoting Ct a circle with
radius t we get: ∫

Ct∩Ω
|1− α−1| 6 Cbλt. (B.16)

We assume now that the center of Ct is in Λ and t is s.t. Ct ⊂ Ω̃ = Ω \
⋃
Bi.

We denote also Bt the disk bounded by Ct. On Ct we have |v| = 1 and then
v = e ıϕ with ϕ locally defined.

By direct calculations, we have (with f = h−hexh0, ν the outward normal
unit vector to Ct and τ = ν⊥):∫

Ct

α−1∂νh = −
∫

Ct

[∂τϕ−A · τ ] = −2πdt +
∫
Bt

h with dt := degCt(v).

On the other hand
∫

Ct
α−1∂νh0 =

∫
Bt
h0 +

∫
Ct

(α−1 − 1)∂νh0. Note that∣∣∣∣∫
Ct

(α−1 − 1)∂νh0

∣∣∣∣ 6 ‖∇h0‖L∞(Ω)

∫
Ct

|1− α−1| 6 Cbλt‖∇h0‖L∞(Ω).
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Then for ε > 0 sufficiently small: −
∫

Ct
α−1∂νf +

∫
Bt
f > 2πdt − Cλhext.

Consequently we obtain

2
∫

Ct

α−2
∫

Ct

|∂νf |2 + 2πt2
∫
Bt

f2 > 4π2d2
t − Ctλhex|dt|

and thus, by denoting mt :=
∫

Ct
α−2, we get

1
2

∫
Ct

|∂νf |2 + πt2

2mt

∫
Bt

f2 >
π2d2

t

mt
− Ctλhex|dt|

mt
.

Since 2πt 6 mt 6 b−42πt, for sufficiently ε > 0 small we obtain
1
2

∫
Ct

|∂νf |2 + t

4

∫
Bt

f2 > b4
πd2

t

2t − Cλhex|dt| > b4
πd2

t

4t . (B.17)

Following exactly the argument in [15] we get
1
2

∫
Ω\
⋃
Bi

|∇f |2 + 1
2

∫
Ω
f2 > C ′D2 ln|ln ε|+ o(1).

With (B.13) and ξ0(ai) 6 −‖ξ0‖L∞(Ω) there are C1, C2 > 0 (independent
of ε) s.t.

(C1D
2 − C2D) ln|ln ε| 6 g(ε) with g(ε)→ 0 for ε→ 0.

This estimate implies D 6 C1
C2

. Therefore with (B.14) and (B.15) we get the
three first assertion of the theorem.

It remains to get (5.15) whose proof follows the same lines as in [15,
Section 4].

Appendix C. Proof of Proposition 5.7

Let C0 > 1, (vε)0<ε<1 ⊂ H1(Ω,C), (hex)0<ε<1 ⊂ (0,∞) and (ξε)0<ε<1 ⊂
H1

0 ∩H2 ∩W 1,∞(Ω,R) be s.t. (5.17) and (5.18) hold. For simplicity of the
presentation we omit the index ε.

Let {(B(ai, ri), di) | i ∈ J } be as in the proposition and write Bi :=
B(ai, ri).

In this proof the letter “C” stands for a quantity bounded by a power of
C0 whose value may differ from one line to another.

We let A = ∇⊥ξ and Ω̃ :=
®

Ω \
⋃
Bi if |v| 6> 1/2 in Ω

Ω if |v| > 1/2 in Ω
. The heart of

the proof consists in estimating the quantity
∫

Ω(v ∧∇v) ·A in (5.13).
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We first get with the help of (5.17) and (5.18) that if |v| 6> 1/2 in Ω then∫
∪Bi v ∧∇v ·A = o(1).

We also claim that, letting w := v/|v| in Ω̃:
∫

Ω̃(v∧∇v−w∧∇w)·A = o(1).

In particular, if |v| > 1/2 in Ω then we have
∫

Ω(v ∧ ∇v) · A = o(1). We
thus assume that |v| 6> 1/2 in Ω.

Then, with an integration by part we get

−
∫

Ω
w ∧∇w ·A

= −
∑
Bi⊂Ω

ß
ξ(ai)

∫
∂Bi

(w ∧∇⊥w) · ν +
∫
∂Bi

(ξ − ξ(ai))(w ∧∇⊥w) · ν
™

+
∑
Bi 6⊂Ω

∫
∂(Bi∩Ω)

ξ(w ∧∇⊥w) · ν. (C.1)

For Bi ⊂ Ω we immediately have:∫
∂Bi

(w ∧∇⊥w) · ν = −2πdi. (C.2)

We define

u :=
®
v in Ω̃
ui in Bi ∩ Ω

where ui is the harmonic extension of tr∂(Bi∩Ω)(v) in Bi∩Ω. By the Dirichlet
principle we have for all i:

‖∇u‖L2(Bi∩Ω) 6 ‖∇v‖L2(Bi∩Ω) = O(|ln ε|). (C.3)

It is easy to check that (w ∧ ∇⊥w) · ν = |u|−2(u ∧ ∇⊥u) · ν on
⋃
i ∂Bi.

For i ∈ J , we let

fi =
®
ξ − ξ(ai) if Bi ⊂ Ω
ξ if Bi 6⊂ Ω

∈ H2 ∩W 1,∞(Bi ∩ Ω).

From (5.18) we get
‖∇fi‖L∞(Bi∩Ω) 6 C|ln ε|. (C.4)

Our goal is now to estimate
∫
∂(Bi∩Ω) fi(w ∧ ∇

⊥w) · ν. We first consider
the case where i ∈ J is s.t. |u| > 1/2 in Bi ∩ Ω. In this case we may write
in Bi: u = |u|e ıφ with φ ∈ H1(Bi,R), ‖φ‖H1(Bi) 6 C|ln ε|. We then have
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with (C.4) and an integration by parts∣∣∣∣∣
∫
∂(Bi∩Ω)

fi(w ∧∇⊥w) · ν
∣∣∣∣∣

6 ‖∇fi‖L2(Bi∩Ω)‖∇φ‖L2(Bi∩Ω) 6 C|ln ε|2ri. (C.5)

We now assume i ∈ J is s.t. |u| 6> 1/2 in Bi ∩ Ω. By smoothness of |ui|2 ∈
C∞(Bi ∩ Ω,R), there exists ti ∈ ]1/5, 1/4[, a regular value of |ui|2, s.t.
ωi := {|ui|2 < ti} 6= ∅. We denote Di := Ω ∩ [Bi \ ωi]. Since |u|2 > 1/4 on
∂Bi ∩ Ω we have ∂Di = (∂Bi ∩ Ω) ∪ ∂ωi ∪ (∂Ω ∩Di).

Letting W := u
|u| ∧∇

⊥
Ä
u
|u|

ä
we then get∫

∂Di

fiW · ν =
∫
Di

fi div(W ) +∇fi ·W. (C.6)

It is standard to check that div (W ) = 0 in Di. Moreover:∣∣∣∣∫
Di

∇fi ·W
∣∣∣∣ 6 2‖∇ξ‖L2(Bi∩Ω)‖∇u‖L2(Bi∩Ω) 6 C|ln ε|2ri.

Consequently using (C.6) we may deduce∣∣∣∣∫
∂Di

fiW · ν
∣∣∣∣ 6 C|ln ε|2ri. (C.7)

On the other hand, from (C.4), ξ = 0 on ∂Ω and div
(
u ∧∇⊥u

)
= −2∂1u ∧

∂2u in Bi ∩ Ω, we get∣∣∣∣∫
∂Di

fiW · ν −
∫
∂Bi∩Ω

fi(w ∧∇⊥w) · ν
∣∣∣∣

=
∣∣∣∣∫
∂ωi

fiW · ν
∣∣∣∣

= 1
ti

∣∣∣∣∫
ωi

−2fi∂1u ∧ ∂2u+∇fi ·
(
u ∧∇⊥u

)∣∣∣∣ 6 C|ln ε|3ri. (C.8)

We may conclude by using (C.1), (C.2), (C.5), (C.7) and (C.8):

−
∫

Ω
v ∧∇v ·A = 2π

∑
Bi⊂Ω

diξ(ai) + o(1).

The rest of the proof is exactly the same than in [17].
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Appendix D. Proof of some results of Section 6.1.1

D.1. Proof of Proposition 6.4

We use the same notation than in Proposition 6.4. In this proof, the
letter C is a quantity which depends only on Ω, N and

∑
i |di|, its value

may change from one line to another.

We argue as in [13]. We let Φ(z,d)
? ∈

⋂
0<p<2W

1,p(Ω,R) ∩ H1
loc(Ω \

{z1, . . . , zN},R) be the unique solution of®
∆Φ(z,d)

? = 2π
∑N
i=1 diδzi in Ω

Φ(z,d)
? = 0 on ∂Ω.

and let Φr̃ ∈ H1(Ωr̃,R) be the unique solution of
∆Φr̃ = 0 in Ωr̃
Φr̃ = 0 on ∂Ω
Φr̃ = Csti on ∂B(zi, r̃)∫
∂B(zi,r̃) ∂νΦr̃ = 2πdi for all i ∈ {1, . . . , N}.

(D.1)

We then have ∇⊥Φ(z,d)
? =w

(z,d)
? ∧∇w(z,d)

? and ∇⊥Φ(z,d)
r̃ =w

(z,d)
r̃ ∧∇w(z,d)

r̃ .
It is important to note that if w∈H1(Ωr̃,S1), then |∇w|= |w∧∇w|.

We may decompose Φ(z,d)
? as Φ(z,d)

? =
∑
i diΦzi where, for z ∈ Ω, Φz is

the unique solution of ®
∆Φz = 2πδz in Ω
Φz = 0 on ∂Ω.

With a standard pointwise bound for the gradient of an harmonic function
(see in [10, (2.31)]) we have ‖∇Φzi‖L∞(Ω\B(zi,r̃)) 6 C

‖Φzi‖L∞(Ω\B(zi,r̃/4))
r̃ .

Thus

‖∇Φ(z,d)
? ‖L∞(Ωr̃) 6 C

∑
i |di|‖Φzi‖L∞(Ωr̃/4)

r̃
. (D.2)

Moreover, it is easy to check that Φzi = ln|x − zi| + Rzi where Rzi is the
harmonic extension of − ln|x − zi||∂Ω. From (D.2) and by the maximum
principle we get for r̃ < min

{
[diam(Ω)]−1; 1/4

}
|∇Φ(z,d)

? | 6 C(1 + |ln r̃|)
r̃

in Ωr̃ (D.3)

which proves (6.7).
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If there is η > 0 s.t. ~ > η, then ‖Rzi‖C1(Ω) 6 Cη where Cη which
depends only on η and Ω. We thus get ‖∇Φ(z,d)

? ‖L∞(Ωr̃) 6
C̃η
r̃ (where ‹Cη

depends only on η, N ,
∑
|di| and Ω) and this estimates implies (6.11).

We now define R(z,d) :=
∑
i diRzi in order to have Φ(z,d)

? =
∑
i di ln|x−

zi|+R(z,d).

From Lemma I.4 in [4] we have

‖Φr̃−Φ(z,d)
? ‖L∞(Ωr̃) 6

∑
i

 sup
∂B(zi,r̃)

∑
j

ln|x− zj | − inf
∂B(zi,r̃)

∑
j

ln|x− zj |


+
∑
i

ñ
sup

∂B(zi,r̃)
R(z,d) − inf

∂B(zi,r̃)
R(z,d)

ô
. (D.4)

If N = 1, then the first term of the RHS in (D.4) is 0. Otherwise, as in [17,
Proposition 5.1], we have

∑
i

 sup
∂B(zi,r̃)

∑
j

ln|x−zj | − inf
∂B(zi,r̃)

∑
j

ln|x−zj |

6 Cr̃

mini6=j |zi−zj |
. (D.5)

And for i ∈ {1, . . . , N}, by harmonicity of R(z,d), for 0 < ρ < ~
2 we get

‖∇R(z,d)‖L∞(B(zi,ρ)) 6
C‖R(z,d)‖L∞(Ω)

dist(zi, ∂Ω)− ρ 6 C
1 + |ln(~)|

~
. (D.6)

Then ∑
i

ñ
sup

∂B(zi,r̃)
R(z,d) − inf

∂B(zi,r̃)
R(z,d)

ô
6 C

r̃(1 + |ln(~)|)
~

. (D.7)

We let

Y :=
{
r̃(1+|ln(~)|)

~ if N = 1
r̃

mini6=j |zi−zj | + r̃(1+|ln(~)|)
~ if N > 2.

(D.8)

By combining (D.4), (D.5) and (D.7) we get

‖Φr̃ − Φ(z,d)
? ‖L∞(Ωr̃) 6 CY. (D.9)

From (D.3) and (D.9) we immediately get

0 6
∫

Ωr̃
|∇Φ(z,d)

? |2 − |∇Φr̃|2 + |∇(Φ(z,d)
? − Φr̃)|2

6 C Y r̃max
i
‖∂νΦ(z,d)

? ‖L∞(∂B(zi,r̃)). (D.10)

On the other hand, for i ∈ {1, . . . , N}, we have (with (D.6))

‖∂νΦ(z,d)
? ‖L∞(B(zi,r̃)) 6 C

Å1
r̃

+ 1 + |ln(~)|
~

ã
. (D.11)
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Using X defined in (6.8), from (D.10) and (D.11), we get

0 6
∫

Ωr̃
|∇Φ(z,d)

? |2 − |∇Φr̃|2 + |∇(Φ(z,d)
? − Φr̃)|2 6 CX. (D.12)

From (D.12) we deduce (6.10) and since
∫
∂Ω(ϕ? − ϕr̃) = 0, with a Poincaré

inequality we obtain (6.9).

D.2. Proof of Proposition 6.5

Let (z,d) = (z,d)(n) ∈ (ΩN )∗ × ZN and denote ~ := mini dist(zi, ∂Ω) >
0. Assume that d1, . . . , dN are independent of n. Let r̃ = r̃n → 0 be s.t (6.1)
holds.

In this proof the letter C stands for a quantity which depends only on Ω,
N , C1 and

∑
i |di|, its value may change from one line to another.

By Remark 6.3 and an integration by parts we have
1
2

∫
Ωr̃
|∇w(z,d)

? |2 = 1
2

∫
Ωr̃
|∇Φ(z,d)

? |2 = −1
2
∑
i

∫
∂B(zi,r̃)

Φ(z,d)
? ∂νΦ(z,d)

? . (D.13)

For i0 ∈ {1, . . . , N}, we fix xi0 ∈ ∂B(zi0 , r̃). Then (with ∇⊥Φ(z,d)
? = w

(z,d)
? ∧

∇w(z,d)
? )∫
∂B(zi0 ,r̃)

Φ(z,d)
? ∂νΦ(z,d)

?

=
∫
∂B(zi0 ,r̃)

î
Φ(z,d)
? − Φ(z,d)

? (xi0)
ó
∂νΦ(z,d)

? + 2πdi0Φ(z,d)
? (xi0). (D.14)

On the one hand, arguing as in the proof of (D.9), we get for z ∈ ∂B(zi0 , r̃):

|Φ(z,d)
? (z)− Φ(z,d)

? (xi0)| 6 sup
∂B(zi0 ,r̃)

Φ(z,d)
? − inf

∂B(zi0 ,r̃)
Φ(z,d)
? 6 CY.

Then, using (D.11), we obtain∑
i

∣∣∣∣∣
∫
∂B(zi,r̃)

î
Φ(z,d)
? − Φ(z,d)

? (xi)
ó
∂νΦ(z,d)

?

∣∣∣∣∣ 6 CX. (D.15)

On the other hand, for i0 ∈ {1, . . . , N}

Φ(z,d)
? (xi0)−R(z,d)(zi0)

= −di0 |ln r̃|+
∑
j 6=i0

dj ln|xi0 − zj |+
[
R(z,d)(xi0)−R(z,d)(zi0)

]
,
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and with (D.6) we get
∣∣R(z,d)(xi0)−R(z,d)(zi0)

∣∣ 6 C(1+|ln ~|)r̃
~ . We then

immediately get:

Φ(z,d)
? (xi0) = R(z,d)(zi0)− di0 |ln r̃|+

∑
j 6=i0

dj ln|zi0 − zj |+O(X). (D.16)

With (D.14), (D.15) and (D.16) we may prove that (D.13) may be rewrit-
ten into

1
2

∫
Ωr̃
|∇w(z,d)

? |2

= π
∑
i

[
d2
i |ln r̃| − diR(z,d)(zi)

]
− π

∑
j 6=i

djdj ln|zi − zj |+O(X)

where “O(X)” is quantity bounded by CX with C depending only on N,Ω
and

∑
|di|.

D.3. Proof of Proposition 6.7

Let (z,d) = (z,d)(n) ∈ (ΩN )∗ × ZN , r̃ ↓ 0 and η > 0 be as in the
proposition.

In this proof the letter C stands for a quantity which depends only on Ω,
N and

∑
i |di|, its value may change from one line to another.

We first claim that, for i 6= j, B(zi, η) ∩ B(zj , η) 6= ∅, B(zi, η) ⊂ Ω and
η = χr̃ with χ → ∞. In particular we assume n sufficiently large to have
η > r̃.

Since ∇⊥Φ(z,d)
? = w

(z,d)
? ∧ ∇w(z,d)

? , for i0 ∈ {1, . . . , N} and z ∈ Ω \
{z1, . . . , zN}, we have

w
(z,d)
? ∧∇w(z,d)

? (z) = di0∇⊥(ln|z−zi0 |)+∇⊥
R(z,d)(z) +

∑
j 6=i0

dj ln|z − zj |

.
For j ∈ {1, . . . , N}, let θj be the main determination of the argument of
z−zj
|z−zj | and let R be an harmonic conjugate of R(z,d). In Ω \ {z1, . . . , zN} we
have

w
(z,d)
? ∧∇w(z,d)

? − di0∇θi0 = ∇

∑
j 6=i0

djθj +R

 .
Then for z ∈ B(zi0 , η) \ {zi0} we have w(z,d)

? (z) =
Ä
z−zi0
|z−zi0 |

ädi0 e ıϕi0 (z) with
ϕi0 =

∑
j 6=i0 dj θ̃j + R + Csti0 where, for j 6= i0, θ̃j is a determination
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of the argument of z−zi
|z−zi| which is globally defined in B(zi0 , η). Note that

ϕi0 ∈ H1(B(zi0 , η),R).

On the other hand, by direct calculations, we have∥∥∥∥∥∥
∑
j 6=i0

dj∇θ̃j

∥∥∥∥∥∥
L∞(B(zi0 ,η))

6
C

η

and, since R(z,d) is harmonic, we also have from the definition of R

‖∇R‖L∞(B(zi0 ,η)) = ‖∇R(z,d)‖L∞(B(zi0 ,η))

6 C
‖R(z,d)‖L∞(Ω)

dist(B(zi0 , η), ∂Ω) 6 C
|ln(~)|+ 1

~
.

We thus deduce

‖∇ϕi0‖L∞(B(zi0 ,η)) 6 C
Å1 + |ln(~)|

~
+ 1
η

ã
. (D.17)

We switch to polar coordinates by letting for i ∈ {1, . . . , N} and ρ ∈ ]r̃, η[,
ϕ̃i(ρ, θ) := ϕi(zi+ρe ıθ). We then get, by (D.17) and a mean value argument,
the existence of ρn ∈ ]√χr̃, η[ s.t.∑

i

∫ 2π

0
|∂θϕ̃i(ρn, θ)|2 dθ 6 C

lnχ

ï
η(|ln(~)|+ 1)

~
+ 1
ò2
.

We let Z := 1
lnχ

î
η(|ln(~)|+1)

~ + 1
ó2

and by assumption we have Z → 0.

We denote, for i ∈ {1, . . . , N}, mi = 1
2π
∫ 2π

0 ϕ̃i(ρn, θ) dθ in order to have∫ 2π

0
|ϕ̃i(ρn, θ)−mi|2 dθ 6 CZ.

We then define φi ∈ H1(B(zi, ρn) \B(zi, r̃),R) using polar coordinates:

φ̃i(s, θ) = s− ρn
r̃ − ρn

mi + s− r̃
ρn − r̃

ϕ̃(ρn, θ) with s ∈ (r̃, ρn).

For zi+se ıθ ∈ B(zi, ρn)\B(zi, r̃), we let φi(zi+se ıθ) := φ̃i(s, θ). By standard
calculations we get

∫
B(zi,ρn)\B(zi,r̃) |∇φi|

2 6 CZ.

We conclude by defining

v =
®
w

(z,d)
? in Ω \

⋃
B(zi, ρn)

uie ıφi in B(zi, ρn) \B(zi, r̃)
with ui(z) =

Å
z − zi
|z − zi|

ãdi
.

It is clear that v ∈ H1(Ωr̃,S1) and that for i ∈ {1, . . . , N} we have v(zi +
r̃e ıθ) = Csti ui (with Csti = e ımi). Note that since deg∂B(zi,r̃)(w

(z,d)
? ) = di
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we have

1
2

∫
B(zi,ρn)\B(zi,r̃)

|∇ui|2 6
1
2

∫
B(zi,ρn)\B(zi,r̃)

|∇w(z,d)
? |2

and

1
2

∫
B(zi,ρn)\B(zi,r̃)

|∇(uie ıφi)|2

= 1
2

∫
B(zi,ρn)\B(zi,r̃)

|∇ui|2 + 1
2

∫
B(zi,ρn)\B(zi,r̃)

|∇φi|2.

Consequently using (D.17) and ρn < η we obtain∑
i

1
2

∫
B(zi,ρn)\B(zi,r̃)

|∇v|2 6
∑
i

1
2

∫
B(zi,ρn)\B(zi,r̃)

|∇w(z,d)
? |2 + CZ.

Thus 1
2
∫

Ωr̃ |∇v|
2 6 1

2
∫

Ωr̃ |∇w
(z,d)
? |2 +CZ. The last estimate and (6.10) end

the proof.

Appendix E. Proof of Proposition 7.3

Proof.

Step 1. Selection of “good” points. — Let d ∈ N∗ and consider D ∈ Λd
which minimizes (7.2).

For k ∈ {1, . . . , N0}, if Dk > 1 we let (z̃(k)
1 , . . . , z̃

(k)
Dk

) ∈ [B(pk, h−1/4
ex )Dk ]∗

which minimizes the infimum in the left hand side of (6.15) with R = h
−1/4
ex ,

p = pk and D = Dk.

We then have the existence of C (depending only on Ω and d) s.t. |pk −
z̃

(k)
i | 6 Ch

−1/2
ex and if Dk > 2 then |z̃(k)

i − z̃
(k)
j | > h

−1/2
ex /C for i 6= j.

We may choose (in an arbitrary way) z(k)
i ∈ B(z̃(k)

i , δ)∩ [δ(Z×Z)]. Since
δ
√
hex → 0, we still have (up to changing the value C) |pk − z(k)

i | 6 Ch
−1/2
ex

and if Dk > 2 then |z(k)
i − z̃(k)

j | > h
−1/2
ex /C for i 6= j.

For i ∈ {1, . . . , Dk} we let x(k)
i := z

(k)
i +λδx0 where x0 ∈ ω is an arbitrary

point of minimum of Wmicro (defined in (6.21)).
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Step 2. Construction of the test function. — We construct test functions
in subdomains of Ω and then we glue the test functions.

• We let wmacro
hex

∈ H1(Ωh−1
ex

(z),S1) be a minimizer of IDir
h−1

ex
(z,d) (de-

fined in (6.3)) with D = (1, . . . , 1) ∈ Zd and z ∈ (Ωd)∗ is a d-
tuple s.t. {z1, . . . , zd} = {z(k)

i | k ∈ {1, . . . , N0} s.t. Dk > 1 and i ∈
{1, . . . , Dk}}.
• For k ∈ {1, . . . , N0} s.t. Dk > 1 and i ∈ {1, . . . , Dk}, we let wmicro

k,i ∈

H1[B(z(k)
i , h−1

ex ) \B(x(k)
i , λδ2),S1] be a minimizer of the right hand

side of (6.18) with zε = z
(k)
i , xε = x

(k)
i , R = h−1

ex and r = λδ2

(from (7.3) we have R/r →∞).
We let also uk,i ∈ H1[B(x(k)

i , λδ2),C] be a minimizer of

u 7−→ 1
2

∫
B(x(k)

i
,λδ2)

|∇u|2 + 1
2ε2 (1− |u|2)2

with the Dirichlet boundary condition u(x(k)
i + λδ2e ıθ) = e ıθ.

By considering well chosen constants Cst(1)
k,i , Cst(2)

k,i and Cstk, we may glue
the above test functions and we define v ∈ H1(Ω,C):

v =



wmacro
hex

in Ωh−1
ex

(z)
Cstk in B(z(k)

i , h−1
ex ) if Dk = 0

Cst(1)
k,i w

micro
k,i in B(z(k)

i , h−1
ex )\B(x(k)

i , λδ2),
k ∈ {1, . . . , N0} s.t. Dk > 1 and i ∈ {1, . . . , Dk}

Cst(2)
k,i uk,i in B(x(k)

i , λδ2)
k ∈ {1, . . . , N0} s.t. Dk > 1 and i ∈ {1, . . . , Dk}.

Step 3. The energy of the test function. — We first note that the config-
uration (z,d) is s.t. ~(z) > 1

2 dist(Λ, ∂Ω) and for i 6= j we have h−1
ex

|zi−zj | → 0,
then we may apply Propositions 6.4, 6.5 and 6.7. We may also use Proposi-
tion 6.9. From these propositions we get

1
2

∫
Ω
h
−1
ex

(z)
|∇v|2

= πd ln hex +Wmacro
N0

(p,D)− π
N0∑
k=1

s.t. Dk>2

∑
i 6=j

ln|z(k)
i − z(k)

j |+ o(1). (E.1)
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For k ∈ {1, . . . , N0} s.t. Dk > 1 and i ∈ {1, . . . , Dk} with (6.18), (6.19)
and (6.20) we get:

1
2

∫
B(z(k)

i
,h−1

ex )\B(x(k)
i
,λδ2)

α|∇v|2

= π|ln(λδhex)|+ b2π|ln(δ)|+Wmicro(x0) + o(1). (E.2)

Note that |∇v|6Cε−1. From Lemma IX.1 in [4] and (5.8), for k∈{1, . . . , N0}
s.t. Dk > 1 we have

1
2

∫
B(x(k)

i
,λδ2)

α|∇v|2 + α2

2ε2 (1− |v|2)2 = b2π ln(bλδ2/ε) + b2γ + o(1) (E.3)

where γ ∈ R is a universal constant.

In conclusion, by combining (E.1), (E.2) and (E.3) (note λδhex → 0):

F (v) 6 dπ
[
b2|ln ε|+ (1− b2)|ln(λδ)|

]
+ d

[
Wmicro(x0) + b2γ + b2π ln b

]
+Wmacro

N0
(p,D)− π

N0∑
k=1

s.t. Dk>2

∑
i 6=j

ln|z(k)
i − z(k)

j |+ o(1). (E.4)

Step 4. Definition of the magnetic potential and conclusion. — Let A(z,1)
be given by Definition 5.15 with (a,d) = (z,1). It is clear that we have

−π
N0∑
k=1

s.t. Dk>2

∑
i 6=j

ln|z(k)
i − z(k)

j | 6 C|ln δ|

where C depends only on d and Ω.

Consequently, for ε > 0 sufficiently small and C0 > πd we have F (v) 6
C0|ln ε|. Therefore, with Remark 5.16, the configuration (v,A(z,1)) ∈ H is
s.t. F(v,A(z,1)) 6 F(v, 0) + o(1) 6 C0|ln ε|2 +H2(Ω)h2

ex.

Using Proposition 5.7 and Lemma 5.14 we get

F(v,A(z,1)) = h2
exJ0 + 2πhex

d∑
i=1

ξ0(zi) + F (v) + ‹V [ζ(z,1)] + o(1)

where ζ(z,1) is the unique solution of (5.25) with (a,d) = (z,1).

We now use Assertion 3 of Proposition 5.19 in order to get ‹V [ζ(z,1)] =‹V [ζ(p,D)] + o(1) and then

F(v,A(z,1)) = h2
exJ0 + 2πhex

d∑
i=1

ξ0(zi) +F (v) +‹V (z,1)[ζ(p,D)] + o(1). (E.5)
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We claim that, from the choice of the points z(k)
i , z̃

(k)
i we have ξ0(z(k)

i )−
ξ0(z̃(k)

i ) = O(δ/
√
hex). Thus with Proposition 6.10 we have

− π
N0∑
k=1

s.t. Dk>2

∑
i6=j

ln|z(k)
i − z(k)

j |+ 2πhex

N0∑
k=1

∑
i

ξ0(z(k)
i )− 2πdhex min

Ω
ξ0

=
N0∑
k=1

s.t. Dk>1

−π ∑
i,j∈{1,...,Dk}

i 6=j

ln|z̃(k)
i − z̃

(k)
j |+2πhex

Dk∑
i=1

[
ξ0(z̃(k)

i )−min
Ω
ξ0

]+o(1)

=
N0∑
k=1

s.t. Dk>1

ï
π

2 (D2
k −Dk) ln

Å
hex

Dk

ã
+ Cpk,Dk

ò
+ o(1).

We may now conclude:

F(v,B) = h2
exJ0 + dMΩ

[
−hex +H0

c1

]
+ π

2 ln hex

N0∑
k=1

s.t. Dk>1

(D2
k −Dk)

+Wd + π

2

N0∑
k=1

s.t. Dk>1

(Dk −D2
k) lnDk + o(1).

This estimate ends the proof of the proposition. �

Appendix F. Proof of Proposition 8.1

Let hex and (vε, Aε) be as in Proposition 8.1. Note that we may assume
that Aε = Avε given by Lemma 5.8 and then ‖Aε‖L∞(Ω) = O(hex). We drop
the subscript ε. We first note that, by smoothness of Ω, there is t0 > 0,
s.t. letting Ωt0 := {x ∈ R2 | dist(x,Ω) < t0}, we may extend by reflexion
v ∈ H1(Ω,C) into u ∈ H1(Ωt0 ,C) letting u = v in Ω and u = v ◦ SΩ in
Ωt0 \ Ω where

SΩ : Ωt0 \ Ω −→ Ω
x 7−→ Π(x)− dist(x, ∂Ω)νΠ(x).

Here Π : Ωt0 \ Ω→ ∂Ω is the orthogonal projection on ∂Ω and, for σ ∈ ∂Ω,
νσ is the normal outward at σ.

Lemma F.1. — Let C0 > 1 and let {(vε, Aε) | 0 < ε < 1} be a family in
the Coulomb gauge of quasi-minimizers of F in H for an intensity of the
applied field hex = hex(ε) > 0 s.t. ‖∇|v|‖L∞(Ω) 6 C0ε

−1.
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Under these hypotheses, for η ∈ (0, 1) there exists εη, Cη > 0 (depending
on C0) s.t. for 0 < ε < εη, if z ∈ Ω is s.t.

b2
∫
B(z,

√
ε/2)
|∇u|2 + b2

ε2 (1− |u|2)2 6
Cη
3 |ln ε|

with

u =
®
v in Ω
v ◦ SΩ in Ωt0 \ Ω,

then |v(z)| > η.

In order to prove Proposition 8.1 we need the following lemma.

Lemma F.2. — There exists εΩ > 0 depending only on Ω s.t. for 0 < ε <
εΩ, z ∈ Ω and v ∈ H1(Ω,C), by defining u as in Lemma F.1, the following
inequality holds:∫

B(z,
√
ε/2)
|∇u|2 + b2

ε2 (1− |u|2)2 6 3
∫
B(z,

√
ε)∩Ω

|∇v|2 + b2

ε2 (1− |v|2)2.

Proof of Lemma F.2. — In order to prove the lemma it suffices to check
that by smoothness of Ω we have ‖∇(S−1

Ω )‖L∞(Ω), ‖Jac(S−1
Ω )‖L∞(Ω) = 1 +

o(1). We then immediately obtain∫
B(z,

√
ε/2)\Ω

|∇u|2 + b2

ε2 (1− |u|2)2

6 [1 + o(1)]
∫
SΩ[B(z,

√
ε/2)\Ω]

|∇v|2 + b2

ε2 (1− |v|2)2.

On the other hand, if x∈B(z,
√
ε/2)\Ω then |SΩ(x)−z| 6 [1+o(1)]

√
ε/2 6√

ε for sufficiently small ε > 0 (depending only on Ω). Then SΩ[B(z,
√
ε/2)\

Ω] ⊂ B(z,
√
ε) ∩ Ω. The lemma follows from the monotonicity of the

integral. �

By combining both lemmas we get Proposition 8.1.

Proof of Lemma F.1. — We argue by contradiction and we assume the
existence of η ∈ (0, 1), ε = εn ↓ 0 s.t. for all n > 1 there are (v,A) =
(vn, An) ∈ H , z = zn ∈ Ω and hex = h

(n)
ex > 0 s.t. (v,A) is a quasi-

minimizers of F in H satisfying:∫
B(z,

√
ε/2)
|∇u|2 + b2

ε2 (1− |u|2)2 6
|ln ε|
n

(F.1)

with

u = un =
®
v in Ω
ε ◦ SΩ in Ωt0 \ Ω
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and |v(z)| 6 η. Up to replacing v by v we may assume |v| 6 1 in Ω.

We are going to prove that (F.1) implies
1
ε2

∫
B(z,ε3/4)∩Ω

(1− |v|2)2 = o(1). (F.2)

On the other hand, ‖∇|v|‖L∞(Ω) = O(ε−1) and then, from an argument
in [4, Theorem III.3], we will get, for sufficiently large n, |v(z)| > η. Clearly
this contradiction will end the proof.

Since for n > 1 we have
∫√ε/2
ε3/4/2

dρ
ρ ρ

∫
∂B(z,ρ) |∇u|

2 + b2

ε2 (1− |u|2)2 6 |ln ε|n ,
there exists ρn ∈ (ε3/4,

√
ε/2) s.t. ρn

∫
∂B(z,ρn) |∇u|

2 + b2

ε2 (1 − |u|2)2 6 4
n .

Then we get:

ρn

∫
∂B(z,ρn)

|∂τu|2 + b2

ε2 (1− |u|2)2 6
4
n
. (F.3)

We switch in polar coordinate and we denote ũ(θ) := u(z + ρne ıθ). Esti-
mate (F.3) becomes ∫ 2π

0
|∂θũ|2 + b2ρ2

n

ε2 (1− |ũ|2)2 6
4
n
. (F.4)

On the one hand, |∂θ|ũ||2 6 |∂θũ|2 and then
∫ 2π

0 |∂θ|ũ|| 6
2
√

2π√
n

. Conse-
quently in [0, 2π] we get (1−|ũ|2)2 > max[0,2π](1−|ũ|2)2− 2

√
2π√
n

. From (F.4)
we deduce

4ε2

nb2ρ2
n

>
∫ 2π

0
(1− |ũ|2)2 > 2π

ñ
max
[0,2π]

(1− |ũ|2)2 − 2
√

2π√
n

ô
and thus for sufficiently large n we get 0 6 max[0,2π](1− |ũ|2)2 6 100√

n
.

For a further use we define
χn : B(z, ρn) −→ [0, 1]

z + ρe ıθ 7−→ (|ũ(θ)| − 1) ρ

ρn
+ 1

By direct calculations we have∫
B(z,ρn)

|∇χn|2 + 1
2ε2 (1− χ2

n)2 = O
Å 1
n

ã
. (F.5)

On the other hand, for n sufficiently large, |u|2 > 1
2 in ∂B(z, ρn). We thus

may compute the degree of u on ∂B(z, ρn) and we find |deg∂B(z,ρn)(u)| =
O
( 1
n

)
which implies, for sufficiently large n, deg∂B(z,ρn)(u) = 0. Conse-

quently, we may write u = |u|e ıϕ with ϕ = ϕn ∈ H1(∂B(z, ρn),R). More-
over, up to multiplying u by a constant in S1, we may assume

∫
∂B(z,ρn) ϕ = 0.
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We then consider ϕ̃ : [0, 2π] → R defined by ϕ̃(θ) = ϕ(z + ρne ıθ), and
thus

O
Å 1
n

ã
= ρn

∫
∂B(z,ρn)

|∇ϕ|2 >
∫ 2π

0
|∂θϕ̃|2.

Since
∫ 2π

0 ϕ̃ = 0, this estimate implies
∫ 2π

0 ϕ̃2 = O
( 1
n

)
.

Letting ψ = ψn : B(z, ρn) → R, z + ρe ıθ 7→ ρ
ρn
ϕ̃(θ), it is direct to check∫

B(z,ρn) |∇ψ|
2 = O

( 1
n

)
.

We are now in position to end the proof by considering V = Vn = χne ıψ ∈
H1(B(z, ρn),C) in order to have V = v on ∂B(z, ρn) ∩ Ω,

1
2

∫
Ω∩B(z,ρn)

|∇V |2 + 1
2ε2 (1− |V |2)2 = O

Å 1
n

ã
.

and (with ‖A‖L∞(Ω) = O(hex))∣∣∣∣∣
∫

Ω∩B(z,ρn)
α(V ∧∇V ) ·A

∣∣∣∣∣ 6 Chexρn√
n

= o(1).

Since V = v on ∂B(z, ρn) ∩ Ω we have

w :=
®
v in Ω \B(z, ρn)
V in B(z, ρn) ∩ Ω

∈ H1(Ω,C).

Considering the comparison configuration (w,A), from the quasi-minimality
of (v,A) and the above estimates we get∫

Ω∩B(z,ρn)
|∇v|2 + 1

2ε2 (1− |v|2)2

6 b−4
∫

Ω∩B(z,ρn)
|∇V |2 + 1

2ε2 (1− |V |2)2 + o(1) = o(1).

Since ρn > ε3/4 we get (F.2) and thus this estimate ends the proof. �

Appendix G. Proof of Proposition 8.3

The proof of the proposition is an adaptation of the arguments presented
in [2, Section V] and also used in [17, Proposition 3.2]. It is also inspired
of the bad disk construction in [4]. Let µ, λ, δ, (v,A) and hex be as in the
proposition.
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Step 1. A first covering of {|v| 6 1/2}. — For 0 < ε < ε1/2 (ε1/2 > 0 is
given by Proposition 8.1 with η = 1/2) we consider a covering of Ω by disks
{B(xε1, 4

√
ε), . . . , B(xεNε , 4

√
ε)} s.t., for i 6= j, B(xεi ,

√
ε) ∩ B(xεj ,

√
ε) = ∅

and xεi ∈ Ω.

For the simplicity of the presentation we omit the dependance in ε.

We say that B(xi, 4
√
ε) is a bad disk if ‹Eε[v,B(xi, 8

√
ε)∩Ω] > C1/2|ln ε|

where for a disk B we denoted‹Eε(v,B ∩ Ω) :=
∫
B∩Ω
|∇v|2 + 1

ε2 (1− |v|2)2

and C1/2 > 0 is given by Proposition 8.1 with η = 1/2. Let

J ′ = J ′ε := {i ∈ {1, . . . , Nε} |B(xi, 4
√
ε) is a bad disk}.

We make two fundamental claims:

(1) There exists M0 > 1 (independent of ε) s.t. Card(J ′) 6M0.
(2) If B(xi, 4

√
ε) is not a bad disk then |v| > 1/2 in B(xi, 4

√
ε).

The first claim is a direct consequence of (5.15) and B(xεi ,
√
ε)∩B(xεj ,

√
ε) =

∅ for i 6= j.

The second claim is given by Proposition 8.1. Then
⋃
i∈J′ B(xi, 4

√
ε) is

covering of {|v| 6 1/2} and Card(J ′) 6M0.

Up to droping some disks, we may always assume that for i ∈ J ′ we
have B(xi, 4

√
ε) ∩ {|v| 6 1/2} 6= ∅. Consequently using Corollary 8.2, for

i ∈ J ′ and 0 < ε < min{ε0, ε1/2} (ε0 given by Corollary 8.2) we have
dist(xi,Λ) = O(|ln ε|−s0).

If |v| > 1/2 in Ω then there is nothing to prove. We then assume J ′ 6= ∅.

Step 2. Separation process. — We replace the above bad disks with disks
having same centers and with a radius εµ. Let ε(1)

µ > 0 be s.t. min{ε0, ε1/2} >
ε

(1)
µ , for 0 < ε < ε

(1)
µ we have 4

√
ε < εµ and

max
i∈J′

dist(B(xi, εµ),Λ) 6 1
ln|ln ε| .

In particular
⋃
i∈J′ B(xi, εµ) is a covering of {|v| 6 1/2}.

The goal of this step is to get a covering of {|v| 6 1/2} with disks B(xi, εs)
where i ∈ J̃ = J̃ε ⊂ J ′, s = sε = 2−Kµ, K = Kε ∈ {0, . . . ,M0 − 1} and s.t.
for i, j ∈ J̃ , i 6= j, we have

|xi − xj | > εs/2. (G.1)
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If Card(J ′) = 1 or (G.1) is satisfied with s = µ (i.e. K = 0) then we let
J̃ = J ′ and we obtained the desired result of this step. Otherwise, there
are i0, j0 ∈ J ′ (with i0 < j0) s.t. |xi0 − xj0 | < εµ/2. In this case we let
J (1) := J ′ \ {i0} and we claim that Card(J (1)) = Card(J ′)− 1.

If Card(J (1)) = 1 or Card(J (1)) > 1 with (G.1) holds with s = 2−1µ (i.e.
K = 1) for all i, j ∈ J (1) (i 6= j) then the goal of this step is done with
J̃ = J (1) and s = 2−1µ.

Otherwise, there exists i0, j0 ∈ J (1) (with i0 < j0) s.t. |xi0 − xj0 | < εs/2.
We then let J (2) := J (1) \ {i0} and thus Card(J (2)) = Card(J (1))− 1.

By noting that Card(J ′) 6 M0, the above process stops after at most
M0 − 1 iteration. We thus get the existence of K = Kε ∈ {0, . . . ,M0 − 1}
and ∅ 6= J (K) = J

(K)
ε ⊂ J ′ s.t. Card(J (K)) = 1 or (G.1) is satisfied with

s = sε = 2−Kµ and i, j ∈ J (K) (i 6= j).

We then denote J̃ := J (K), s = 2−Kµ and we fix 0 < ε
(2)
µ 6 ε

(1)
µ s.t. for

0 < ε < ε
(2)
µ we have

max
i∈J̃

dist(B(xi, εs/4),Λ) 6 1
ln|ln ε| < 10−1 dist(Λ, ∂Ω).

In particular B(xi, εs/4) ⊂ Ω for i ∈ J̃ .

Step 3. Definition of r. — With Corollary 5.2 in [5], for a.e. t ∈ Im(|v|)
the set V (t) := {x ∈ Ω | |v(x)| = t} is a finite union of curve. Moreover if a
such curve is included in Ω then it is a Jordan curve.

Following the same strategy as in [2, Lemma V.1], we have the existence
of tε ∈ [1− 2|ln ε|−2, 1− |ln ε|−2] s.t. V (tε) is a finite union of Jordan curves
s.t.

H1[V (tε)] 6 Cε|ln ε|5 with C is independent of ε. (G.2)

We fix 0 < ε
(3)
µ 6 ε

(2)
µ s.t. for 0 < ε < ε

(3)
µ we have Cε|ln ε|5 6 10−2εs.

We denote for i ∈ J̃

Ai = Aεi := {ρ ∈ [εs, ε2s/3] | |v| > tε on ∂B(xi, ρ)}. (G.3)

From the continuity of |v|, it is clear that [εs, ε2s/3] = Ai ∪ Bi ∪ Ci where

Bi = Bεi := {ρ ∈ [εs, ε2s/3] | ∃ x ∈ ∂B(xi, ρ) s.t. |v(x)| = tε}

and
Ci = Cεi := {ρ ∈ [εs, ε2s/3] | |v| < tε on ∂B(xi, ρ)}.
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We first claim that, since the function ρ 7→ ρ is increasing, we have

O(ε2|ln ε|) =
∫
Ci

dρ
∫
∂B(xi,ρ)

(1− |v|2)2

> 2π(1− t2ε)2
∫
Ci
ρdρ

> 2π(1− t2ε)2
∫ H1(Ci)

0
ρdρ = π(1− t2ε)2H1(Ci)2.

Then H1(Ci) = O(ε|ln ε|5/2).

On the other hand one may prove that if I is a connected components of
Bi, then there is ρ1, ρ2 s.t. I = [ρ1, ρ2]. Since straight lines are geodesics, we
obviously get

H1(I) = ρ2 − ρ1 6 H1[V (tε) ∩B(xi, ρ2) \B(xi, ρ1)].
Moreover one may prove that if [ρ1, ρ2] and [ρ′1, ρ′2] are distinct connected
component of Bi and if Γ is a connected component of V (tε) s.t. Γ∩B(xi, ρ2)\
B(xi, ρ1) 6= ∅ then Γ ∩ B(xi, ρ′2) \ B(xi, ρ′1) = ∅ (here we used (G.2)). One
may conclude: H1(Bi) 6 H1(V (tε)) 6 Cε|ln ε|5.

Consequently
H1(Ai) > H1([εs, ε2s/3])−H1(Bi)−H1(Ci)

> ε2s/3 − εs −H1(V (tε))−O(ε|ln ε|5/2).

Fix 0 < ε
(4)
µ 6 ε

(3)
µ s.t. for 0 < ε < ε

(4)
µ we have H1(Ai) > ε2s/3 − εs −

√
ε.

Define
A = Aµ,ε := ∩i∈J̃Ai. (G.4)

It is clear that H1(A) > ε2s/3 − εs −M0
√
ε

Since ρ 7→ 1/ρ is decreasing we have

O(|ln ε|) >
∫
A

dρ
ρ

∑
i∈J̃

ρ

∫
∂B(xi,ρ)

|∇v|2 + 1
ε2 (1− |v|2)2

>
∫ ε2s/3

ε2s/3−H1(A)

dρ
ρ
× inf

ρ∈A

∑
i∈J̃

ρ

∫
∂B(xi,ρ)

|∇v|2 + 1
ε2 (1− |v|2)2.

Consequently, there exist r = rµ,ε ∈ A, Cµ > 1 (Cµ is independent of ε) and
0 < ε

(5)
µ 6 ε

(4)
µ s.t. for 0 < ε < ε

(5)
µ we have∑

i∈J̃

r

∫
∂B(xi,r)

|∇v|2 + 1
ε2 (1− |v|2)2 6 Cµ. (G.5)

We finally let Jµ := J̃ , with (G.1) and (G.5) the result is proved.
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Appendix H. Proof of Proposition 8.10

The proof is an adaptation of the proof of (VI.21) in [2].

Let α̃ = α̃n ∈ L∞(Ω, [β2, 1]), (z,d) = (z,d)(n) ∈ (ΩN )∗ × ZN and u =
un ∈ H1(Ω,C) be as in the proposition.

We first claim that up to considering u instead of u we may assume |u| 6 1
in Ω. Note also that if

∫
Ωr̃ |∇u|

2 > β−2 ∫
Ωr̃ |∇w

(z,d)
? |2, then there is nothing

to prove. We thus may assume∫
Ωr̃
|∇u|2 < β−2

∫
Ωr̃
|∇w(z,d)

? |2.

Let w := u/|u| ∈ H1(Ωr̃,S1). From Lemma I.1 in [4] we have w ∧ ∇w =
∇⊥Φ(z,d)

? +∇H with H = Hε ∈ H1(Ωr̃,R) and∫
Ωr̃
|∇H|2 6 (β−1 + 1)2

∫
Ωr̃
|∇Φ(z,d)

? |2. (H.1)

Let Φr̃ be the unique solution of (D.1). We have
∫

Ωr̃ ∇H · ∇
⊥Φr̃ = 0. Then

letting ρ = |u|:∫
Ωr̃
α̃ρ2∇H · ∇⊥Φ(z,d)

?

=
∫

Ωr̃
(α̃ρ2 − 1)∇H · ∇⊥Φ(z,d)

? +
∫

Ωr̃
∇H · (∇⊥Φ(z,d)

? −∇⊥Φr̃).

But, from (D.12), there exists C > 1 s.t.∣∣∣∣∫
Ωr̃
∇H · (∇⊥Φ(z,d)

? −∇⊥Φr̃)
∣∣∣∣ 6 C‖∇H‖L2(Ωr̃)

√
X

where X is defined in (6.8).

Consequently, letting ‹C := 4C2/β2 we get

2
∫

Ωr̃
∇H · ∇⊥Φ(z,d)

? +
∫

Ωr̃
α̃ρ2|∇H|2

= 2
∫

Ωr̃
∇H · (∇⊥Φ(z,d)

? −∇⊥Φr̃) +
∫

Ωr̃
α̃ρ2|∇H|2

> ‖∇H‖L2(Ωr̃)

Å
β2

4 ‖∇H‖L
2(Ωr̃) − 2C

√
X

ã
> −‹CX.
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Therefore∫
Ωr̃
α̃ρ2|∇w|2 >

∫
Ωr̃
|∇Φ(z,d)

? |2 −
∫

Ωr̃
(1− α̃ρ2)|∇Φ(z,d)

? |2

− 2
∫

Ωr̃
(1− α̃ρ2)|∇H||∇Φ(z,d)

? | − O(X).

On the other hand, using (6.7) and Corollary 6.6, we get∣∣∣∣∫
Ωr̃

(1− α̃ρ2)|∇Φ(z,d)
? |2

∣∣∣∣ 6 ∣∣∣∣∫
Ωr̃

(1− ρ2)|∇Φ(z,d)
? |2

∣∣∣∣+
∣∣∣∣∫

Ωr̃
(1− α̃)|∇Φ(z,d)

? |2
∣∣∣∣

6 ‖∇Φ(z,d)
? ‖L∞(Ωr̃)‖∇Φ(z,d)

? ‖L2(Ωr̃) (K + L)

and with (H.1):∣∣∣∣∫
Ωr̃

(1− α̃ρ2)|∇H||∇Φ(z,d)
? |

∣∣∣∣
6

∣∣∣∣∫
Ωr̃

(1− ρ2)|∇H||∇Φ(z,d)
? |

∣∣∣∣+
∣∣∣∣∫

Ωr̃
(1− α̃)|∇H||∇Φ(z,d)

? |
∣∣∣∣

6 ‖∇Φ(z,d)
? ‖L∞(Ωr̃)‖∇Φ(z,d)

? ‖L2(Ωr̃) (K + L) (2β−1 + 1).

The proposition is thus proved.

Appendix I. Proof of Proposition 9.6

We prove the first assertion and we assume Card(Jµ) > 2. We let χ1 :=
2h−1

ex ln hex, χ2 := 2h−1/2
ex ln hex and Ωχ2 = Ω \

⋃
p∈ΛB(p, χ2).

In order to get sufficiently sharp estimates to prove the proposition, we
decompose Ωr in several subdomains. To this aim, we distinguish two cases
for p ∈ Λ: either Card(J (y)

p ) > 2 or Card(J (y)
p ) ∈ {0, 1} where J (y)

p := {k ∈
J (y) | yk ∈ B(p, χ2)} (the yk’s are introduced in Definition 9.2).

If p ∈ Λ is s.t. Card(J (y)
p ) > 2, then with Lemma 8.9 (with P = 17 and

η = χ1/2), there are κp = κp,ε ∈ {170, . . . , 17N0−1} and J̃ (y)
p ⊂ J (y)

p s.t.
⋃

k∈J(y)
p

B(yk, χ1/2) ⊂
⋃

k∈J̃(y)
p

B(yk, κpχ1/2)

|yk − yl| > 8κpχ1 for k, l ∈ J̃ (y)
p , k 6= l.

We then let Dp := B(p, χ2) \
⋃
k∈J̃(y)

p
B(yk, κpχ1) and, for k ∈ J̃ (y)

p , we write
dk := deg∂B(yk,κpχ1)(v). We denote also Dp :=

∑
k∈J̃(y)

p
dk
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If p ∈ Λ is s.t. J (y)
p = {k}, then we let Dp = B(p, χ2) \ B(yk, κδ) with κ

given by Definition 9.2. We let also Dp := dk := deg∂B(yk,κδ)(v).

Recall that we denoted (see Definition 9.2), for k ∈ J (y), d̃k :=
deg∂B(yk,κδ)(v). Consequently, if J (y)

p = {k}, then Dp = dk = d̃k.

If J (y)
p = ∅ then we denote Dp = 0 and Dp = B(p, χ2).

The heart of the proof consists in proving that dk = 1 for all k. Indeed, we
know that if i ∈ Jµ then deg∂B(zi,r)(v) = 1. Consequently dk is the number
of points zi contained in a disk of radius at least χ1.

We let:

• R :=
⋃
k∈J(y) B(yk, κδ) \

⋃
i∈Jµ B(zi, r), κ given in Definition 9.2.

• For p ∈ Λ s.t. Card(J (y)
p ) > 2 and for k ∈ J̃ (y)

p we denote

Qk,p := B(yk, κpχ1) \
⋃

l∈J(y)

yl∈B(yk,κpχ1)

B(yl, κδ).

Moreover, by construction, we have (for sufficiently small ε)⋃
l∈J(y)

yl∈B(yk,κpχ1)

B(yl, κδ) ⊂
⋃

l∈J(y)

yl∈B(yk,κpχ1)

B(yl, χ1/2) ⊂ B(yk, κpχ1/2). (I.1)

Thus
1
2

∫
Ωr
α|∇v|2 > 1

2

∫
R
α|∇v|2 +

∑
p∈Λ

1
2

∫
Dp
α|∇v|2

+
∑
p∈Λ

Card(J(y)
p )>2

∑
k∈J̃(y)

p

1
2

∫
Qk,p

α|∇v|2 + 1
2

∫
Ωχ2

α|∇v|2. (I.2)

From (9.11) and (9.12) we have
1
2

∫
R
α|∇v|2 > dπ

[
b2|ln r|+ (1− b2)|lnλ| − b2|ln δ|

]
+O(1). (I.3)

If J (y)
p = {k}, then with Corollary 8.8(1) we get

1
2

∫
Dp
α|∇v|2 > πd2

k ln
(χ2

δ

)
+O(1). (I.4)

And if Card(J (y)
p ) > 2, still with Corollary 8.8(1):

1
2

∫
Dp
α|∇v|2 > π

∑
k∈J̃(y)

p

d2
k ln
Å
χ2

χ1

ã
+O(1). (I.5)
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We continue by dealing with the case Card(J (y)
p ) > 2. From Corol-

lary 8.8(1) applied in Qk,p for k ∈ J̃ (y)
p (with (I.1)) we get∑

k∈J̃(y)
p

1
2

∫
Qk,p

α|∇v|2 > π
∑
k∈J̃(y)

p

∑
l∈J(y)

yl∈B(yk,κpχ1)

d̃2
l ln

(χ1

δ

)
+O(1) (I.6)

In order to end the proof, using Propositions 6.4, 6.5 and 8.10, we get
1
2

∫
Ωχ2

α|∇v|2 > π
∑
p∈Λ

D2
p|lnχ2|+O(1). (I.7)

We let

∆ :=
∑

p∈Λ s.t.
Card(J(y)

p )>2

∑
k∈J̃(y)

p

d2
k +

∑
p∈Λ s.t.
J(y)
p ={k}

d2
k and ‹∆ :=

∑
k∈J(y)

d̃2
k.

From (I.2), (I.3), (I.4), (I.5), (I.6) and (I.7) we get
1
2

∫
Ωr
α|∇v|2

> O(1) + dπ
[
b2|ln r|+ (1− b2)|lnλ| − b2|ln δ|

]
+ π

∑
p∈Λ s.t.
J(y)
p ={k}

d2
k ln

(χ2

δ

)

+ π
∑
p∈Λ

Card(J(y)
p )>2

 ∑
k∈J̃(y)

p

d2
k ln
Å
χ2

χ1

ã
+

∑
l∈J(y)

yl∈B(p,χ2+λδ)

d̃2
l ln
(χ1

δ

)+π
∑
p∈Λ

D2
p|lnχ2|

> dπ
[
b2|ln r|+ (1− b2)|ln(λδ)|

]
+ π|lnχ2|

Ñ∑
p∈Λ

D2
p −∆

é
+ π|ln δ|(‹∆− d)

+ π|lnχ1|
∑
p∈Λ

Card(J(y)
p )>2

 ∑
k∈J̃(y)

p

d2
k −

∑
l∈J(y)

yl∈B(p,χ2+λδ)

d̃2
l

+O(1).

Since dk, d̃l > 1 for all k, l, from Lemma 9.5(1) we have
∑
p∈ΛD

2
p > ∆ >‹∆ > d and moreover

∆ = d⇐⇒ (dk = 1 for all k)

and ‹∆ = d⇐⇒ (d̃l = 1 for all l).
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On the other hand since for p ∈ Λ s.t. J (y)
p = {k} we have dk = d̃k, we get

∆− ‹∆ =
∑
p∈Λ

Card(J(y)
p )>2

 ∑
k∈J̃(y)

p

d2
k −

∑
l∈J(y)

yl∈B(p,χ2+λδ)

d̃2
l

 .
Then (9.6) gives

L1(d)
π

ln hex >

Ñ∑
p∈Λ

D2
p −∆

é
|lnχ2|+(‹∆−d)|ln δ|+(∆−‹∆)|lnχ1|+O(1).

Since |lnχ1| = ln(hex) + O[ln(ln hex)] and |lnχ2| = ln
√
hex + O[ln(ln hex)]

we obtainÇ
L1(d)
π

+
d−

∑
p∈ΛD

2
p

2

å
ln hex

> (∆− ‹∆) ln
√
hex + (‹∆− d)|ln(δ

√
hex)|+O[ln(ln hex)]. (I.8)

From Lemma 9.5(2) and the definition of L1(d) (see Lemma 7.1), we
have

L1(d)
π

+
d−

∑
p∈ΛD

2
p

2 6 0. (I.9)

Using (I.9) in (I.8), (1.4), ‹∆ − d > 0 and ∆ − ‹∆ > 0 we get ‹∆ − d =
∆− ‹∆ = 0 and then ∆ = d, i.e. dk = 1 for all k.

On the other hand, with the help of (I.8) we may write

0 >
Ç

L1(d)
π

+
d−

∑
p∈ΛD

2
p

2

å
ln hex > O[ln(ln hex)].

We may thus deduce L1(d)
π +

d−
∑

p∈Λ
D2
p

2 = 0 and then, with Lem-
ma 9.5(2), for p ∈ Λ we have Dp ∈ {bd/N0c; dd/N0e}.
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