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Magnetic Ginzburg—Landau energy with a periodic
rapidly oscillating and diluted pinning term *)

MICKAEL Dos SanTos (U

ABSTRACT. — We study the 2D full Ginzburg-Landau energy with a periodic
rapidly oscillating, discontinuous and (strongly) diluted pinning term using a per-
turbative argument. This energy models the state of an heterogeneous type II super-
conductor submitted to a magnetic field. We calculate the value of the first critical
field which links the presence of vorticity defects with the intensity of the applied
magnetic field. Then we prove a standard dependence of the quantized vorticity
defects with the intensity of the applied field. Our study includes the case of a
London solution having several minima. The pinning effect is explicitly established
and we give the asymptotic location of the vorticity defects with various scales. The
macroscopic location of the vorticity defects is understood with the famous Bethuel—
Brézis—Hélein renormalized energy restricted to the minima of the London solution
coupled with a renormalized energy obtained by Sandier—Serfaty. The mesoscopic
location, i.e., the arrangement of the vorticity defects around the minima of the
London solution, is described, as in the homogenous case, by a renormalized energy
obtained by Sandier—Serfaty. The microscopic location is exactly the same than in
the heterogeneous case without magnetic field. We also compute the value of sec-
ondary critical fields that increment the quantized vorticity.

RESUME. — A laide d’un argument perturbatif, on étudie une énergie de type
Ginzburg-Landau bidimensionnelle avec un champ magnétique et présentant un
terme de chevillage périodique rapidement oscillant, discontinu et (fortement) dilué.
Cette énergie modélise I’état d’un supraconducteur hétérogeéne de type II soumis & un
champ magnétique. On calcule la valeur du premier champ critique a partir duquel
les défauts de vorticité apparaissent. Ensuite on démontre une dépendance classique
reliant les défauts de vorticité quantifiés avec 'intensité du champ appliqué. Notre
étude traite aussi le cas ou la solution de London admet plusieurs point de mini-
mum. L’effet d’ancrage des défauts de vorticité est clairement établi et on précise
suivant différentes échelles ’emplacement asymptotique des défauts de vorticité. La
position macroscopique des défauts de vorticité est donnée par la célebre énergie re-
normalisée de Bethuel-Brézis—Hélein restreinte au points de minimum de la solution
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de London couplée avec une énergie renormalisée obtenue par Sandier—Serfaty. La
position mesoscopique, i.e., ’arrangement des défauts de vorticité autour des points
de minimum de la solution de London, est décrite, comme dans le cas homogene, par
une énergie renormalisée obtenue par Sandier—Serfaty. La position microscopique est
exactement la méme que dans le cas sans champ magnétique. On calcule aussi des
champs critiques secondaires qui incrémentent la vorticité quantifiée.

1. Introduction

This article studies the pinning phenomenon in type-II superconducting
composites.

Superconductivity is a property that appears in certain materials cooled
below a critical temperature. These materials are called superconductors.
Superconductivity is characterized by a total absence of electrical resistance
and a perfect diamagnetism. Unfortunately, when the imposed conditions are
too intense, superconductivity is destroyed in certain areas of the material
called vorticity defects.

We are interested in type II superconductors which are characterized by
the fact that the vorticity defects first appear in small areas. Their num-
ber increases with the intensity of the conditions imposed until filling the
material. For example, when the intensity hex of an applied magnetic field
exceeds a first threshold, the first vorticity defects appear: the magnetic field
begins to penetrate the superconductor. The penetration is done along thin
wires and may move resulting an energy dissipation. These motions may be
limited by trapping the vorticity defects in small areas.

The behavior of a superconductor is modeled by minimizers of a
Ginzburg-Landau type energy. In order to study the presence of traps for
the vorticity defects we consider an energy including a pinning term that
models impurities in the superconductor. These impurities would play the
role of traps for the vorticity defects. We are thus lead to the subject of this
article: the type-II superconducting composites with impurities.

The case of an infinite long homogenous type II superconducting cylinder
was intensively studied in mathematics by various authors since the 90’s
(see [16] for a guide to the litterature). Namely, the present work deals
with a cylindrical superconductor & = Q x R (whose section is Q C R?)
submitted to a vertical magnetic field (0,0, hey ). Under these considerations,
the vorticity defects are thin vertical cylinders. Thus their study may be done
via a 2D problem formulated on Q C R2. Following the works of various
authors (see [1, 11, 14]), for a small parameter £ > 0 (¢ — 0 in this article)
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Pinned magnetic Ginzburg-Landau energy

and hex = hex(€) = 0, we are interested in the description of the (global)
minimizers of the functional

gs’hex : H — RJF

1 1
(u, A) — 7/ |Vu —1Aul? + == (a? — [u|*)? + |curl(A) — hex|?
2 Jo 2¢e2
where (see Section 2 for more detailed notation)

e ) C R? is a smooth bounded simply connected open set,

o = H'(Q,C) x H'(Q,R?),

o a.:Q — {1,b} (b€ (0,1) is independent of €) is a periodic diluted
pinning term (see Figure 1.1 and Section 2.3 for a construction of
ae). The impurities are the connected components of w. := aZ ' ({b}).
In the definition of a., 6 = §(¢) T 0 is the parameter of period,

A= Ae) = 0 is the parameter of dilution and 0 € w C R? is a
e—

smooth bounded simply connected open set which gives the form of
the impurities.

(a) The pining term is periodic on
a § X d-grid

(b) The parameter A controls the
size of an inclusion in the cell

Figure 1.1. The periodic pinning term

We focus on a strongly diluted case A'/4|lne| — 0 with not too small
connected components of w. in order to trap the vorticity defects [In(Ad)| =
O(In|lne|) but with a sufficiently small parameter of the period (see (1.4)).

Under these considerations, if (u., A.) minimizes & ., , then the vorticity
defects may be interpreted as the set {|u.| < b/2}. It is excepted that the
connected components of {|us| < b/2} are close to disks with radii of order ¢.
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As said above, our study takes place in the extrem type II case € — 0 and
we also assume a divergent upper bound for hey. Vorticity defects appear for
minimizers above a critical valued

He, = [p?|Ine] + (1 = ) [In(A0)[]/(2]|€ol = (2) + O(1)

(see Corollary 10.3 and (7.5)). Here & € H} N H? is called the London
solution and is the unique solution of the London equation

A%+ A =0 inQ
A =1 on 0N (1.1)
fo =0 on 0.

The value H,, is calculated by a standard balance of the energetic costs
of a configuration without vorticity defects |u| > b/2 with well prepared
competitors having an arbitrary number of quantized vorticity defects. Here
quantization has to be interpreted by the degree of u around a vorticity
defect. It is an observable quantity related with the circulation of the super-
conducting currents.

In order to lead the study, the set A := {z € Q& (z) = min&y} C Q is
of major interest (it is standard to prove that, in Q, —1 < & < 0). From
Lemma 4.4 in [17] and Lemma 4 in [15] we have the following:

LEMMA 1.1. — The set A is finite. Moreover there exist n > 0 and
M >1 s.t. for a € Q we have &y(a) > min & + ndist(a, ).V

We write Ny := Card(A) and A = {p1,...,pn, }

We may give a simple picture of the emergence of the vorticity defects.
The first vorticity defects appear close to H,,. If Ny = 1 then there is first
a unique vorticity defect and it is close to A. If Ny > 2 the situation is
less clear: we first have df € {1,..., No} vorticity defects and each of them
is located near one element of A. By increasing the intensity of the applied
field hex by a bounded quantity we increment the number of vorticity defects
until filling A.

Once each elements of A is close to a vorticity defect, then by increasing
hex of a O(In|ln¢l), additional defects appear one by one.

We may now state the main theorems of the present work. For simplicity
of the presentation the theorems are not stated in their most general form
(see Theorem 3.3).

(D In Lemma 4 in [15], M is just a positive number, but £ € C°(Q), and then, up to
considering 1 > 0 sufficiently small, we may assume M > 1.
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These main results are obtained assuming that A\, ¢ and hey satisfy

A4 mel — 0 and [In(Ad)| = O(In[lne|), (1.2)
b2
There is K > 1 s.t. hex < _blnel + K In|ln¢] (1.3)
2[|€oll L= ()
and when hex — 00 we need
In(0v/hex

In(In hey)

Namely, in order to meet Hypothesis (1.2), (1.3) and (1.4), we may think
A~ |lne|™%,§ ~ |Ing|~t with s >4 and ¢t > 1/2.

We need also assume that

{the minimal points of &, A = {p1,..., DN, } (15)

are non degenerate critical points

in the sense that for p € A, letting Hesse, (p) be the Hessian matrix of &, at
p, the quadratic form Q,(z) = z - Hess¢,(p)z is a definite positive quadratic
form. Note that if (1.5) holds then we may take M = 2 in Lemma 1.1.

The strategy of this work is based on a perturbative argument. This
argument applies for families of quasi-minimizers of the energy with some
regularity assumptions (see Theorem 3.3). In particular, we cannot have a
sharp profile near a zero of a quasi-minimizer since such profile does not
make any sense for quasi-minimizer. Therefore we cannot speak about an
ad-hoc notion of vortices s.t. “isolated zeros”. However with a natural L°°-
bound on the gradient of quasi-minimizers, the notion of vorticity defects is
sufficiently robust to give them a nice description.

For simplicity of the presentation we first state the main results for a
family {(ue, Ac) |0 <e <1} C 2 s.t.

(ue, Ac) minimizes & p_, in JZ. (1.6)

THEOREM 1.2. — Assume that (1.5) holds and X, §, hex, K satisfy (1.2),
(1.3) and (1.4). There exists Dip > 1 s.t. for {(ue, A) |0 < e <1} C A
satisfying (1.6), for sufficiently small €, there exists d. € N s.t. if de = 0
then |us| > b/2 in Q, and if d. € N* then there exists a set of d. points,
Z.={z,...,25.} CQ, s.t. for p > 0 sufficiently small and independent of
€ we have:

(1) de < Dkp
(2) {lue| <b/2} CUB(zf,e) C Q,
(3) |Zz€ - Zj' > h‘e_x1 In hex fOT’i #]7
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(4) dist(25,A) < hex/*In hey for all i,
(5) degyp(zz cny(ue) =1 for all i.

Moreover:

(1) There is n,p > 0 depending only on w and b s.t., for all i,
B(28,1,,bA0) C we.

(2) If for a sequence € = €, | 0 we have hexy = O(1) then d. = 0 for
small €.

From Theorem 1.2 we know that, for small e, if {|uc| < b/2} # 0, then
the vorticity defects are contained in small disks which are well separated,
trapped by the impurities and located near A. The second theorem gives
sharper informations related with the location of these disks. We divide the
second theorem in three parts:

e Macroscopic location: We know that the disks are near A, for some
p € A, how many disks are near p?

e Mesoscopic location: For p € A, how are the disks near p organized?
What is their inter-distance?

e Microscopic location: We know that the disks are trapped by the
inclusion w,, what is their location inside w,.

These questions are related with the crucial notion of renormalized energy
(see Section 6).

THEOREM 1.3.
Direct part. — Assume that (1.5) holds and X, 0, hex, K satisfy (1.2),
(1.3) and (1.4). Assume also hex — 00.

Let {(ue, Ac) |0 < € < 1} C S satisfying (1.6) and let € = €, | 0 be
a sequence. Since d = d. < Dk p, up to passing to a subsequence, we may
assume that d is independent of €. Assume d > 0.

Macroscopic location. — Recall that A = {p1,...,pn,} and for k €
{1,...,No} we let Dy, := degaB(pka1n(hcx)/\/ﬂ)(u€)- Write D = (D, ...,
Dn,). Up to a subsequence we may assume that D is independent of . We
then have:

o The distribution of the disks B(z5,e") around the elements of A is
the most homogenous possible:

a1 | d V| &
P ! e / —
DecAg:= {D EHNJ’LNOJ} ];Dk d}.
Here, for x € R, we wrote [x] for the ceiling of x and || for the

floor of x.
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o There exists a renormalized energy Wy : Ag — R (see (9.16)) s.t. D
minimizes Wy.

Mesoscopic location. — The mesoscopic location is the same than in the
homogenous case. Namely, for p € A s.t. degaBlen(hex)/\/@)(us) =D>0,
there exists a renormalized energy (see Section 6.2)

s {(a1,...,ap) € (]RQ)D{ai #aj fori£j} —R

s.t., denoting £ := h%x and for zf € B(p,2In(hex)/Vhex) letting 25 :=
zf;p, we have 2° = (%5,...,25) (assuming z§ € B(p,21n(hex)/Vhex) < i €
{1,..., D}) which converges to a minimizer of W '5°. In particular { is the

typical interdistance between two close z7, 25.

Microscopic location. — We know that, forie{1,...,d}, B(25, 1w 0) C
we. Moreover for i # j we have |25 — 25| > In(hex)hy! > A3 Then each
connected component of we contains at most one disk B(z5,et).

There exists a renormalized energy W™ : w — R (see Section 6.3) s.t.
fori € {1,...,d}, letting yi € &§ - Z* be s.t. B(25,m,pA0) C y5 + Nw and
zt = 2 € w we have

° Wmicro(g;j) N minw Wmicro7

e Up to passing to a subsequence, there is a; € w s.t. 25 — a; and a;

minimizes Wicro (2)

Optimality of the renormalized energies. — Consider a sequence € =
en 4 0 previously fixed (in order to have D independent of €) and assume
d#0. We let

e D' € Ay be a minimizer of Wy,
o forke{l,...,No} s.t. D} > 1, a}, be a minimizer of W;ﬁ?%);c,

e ay be a minimizer of W™re.

Then, for e = e, there exist (u.,AL) € A and d distinct points of Q,
{zf,....20} ={zF,...,25} Cuw., s.t.

o & (uz, AL) <infope & p,, +o(1),

o {Jul] <b/2} CUB(z, ve) CUpep B(p, In(hex)/vVhex),
o forke{l,...,No}, D} = degyp(py 2n(her)/vies) (UL

e degyp(.r,z)(uz) =1 for all i,

() For example if w is a disk then a; is the center of the disk [7].

- 711 —



Mickaél Dos Santos

o writing for prp € A (s.t. Di, > 1) and 2z, € B(pg,In(hex)/vhex),
Z = (2 — pk)/\/Di/hex and 2, = {Z |z} — pi},’¥ we have

P AL
e Fori € {1 . d}, letting y§ € 6 - Z2 be s.t. 2L € Yy + X6 - w and
Z = A y‘ € w we have Z — ay.

3

The third theorem underlines the link between the number d and hey.

THEOREM 1.4. — Assume that Q satisfies (1.5), A, 8, hex, K satisfy (1.2),
(1.3) and (1.4).

There are integers L € {1,...,No}, 0 = dj < df < --- < d} = Ny
(c(i;) € N(z’s)mde;zerident of €) and critical fields (depending on €) Kgl) < - ~(<)

I I I . I

K’ <K K5 - (see (10.9) and (10.10) for the expressions of K,
and Kk I)) s.t. for {(ue, Ac) |0 < e < 1} C I a family satisfying (1.6) and
for a sequence € = ¢, | 0:

Ifd. = 0 for small €, then hex <K + o(1).
If d. > 0 for small e, then hex > K (I) + o(1).
Assume L > 2. For k € {1, — 1}, if for small € we have
dy_, < d. < dj, then

K 4 0(1) < hox <KW, +o(1).

For L > 1, if for small € we have d}_, < d. < dj = No, then

K 4 0(1) < hex <K 4 0(1).
Let I € N*. If for small € we have d. = Ng + 1, then

K™ + 0(1) < hex <K+ o(1).

Remark 1.5. — A more complete statement for d. € {1,..., No} may be
found in Proposition 10.7.
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2. Notation

2.1. Sets, vectors and numbers

We identify the real plan R? with C and we denote by S! the unit
circle in C.

For % Cc R2, N € N\ {0;1}, (ZN)* := {(21,-..,2n) € UN |z #
zj for i # j}.

For k € {1;2}, H* is the k-dimensional Hausdorff measure.

o If (aj,as),(b1,b2) € R?, then |(ar,az2)] = v/a? +a3, (ar,a2)t =

(—az,a1), (a1,a2) - (b1,b2) = a1bi + a2bs and (a1,a2) A (b1, b2) =
a1b2 — agbl.

e For % C R?, % is the closure of % w.r.t. ||
o For() # %,v C R? and zg € R? we write dist (%, ¥) := inf{|z — y||

x €U,y € ¥V} and dist(zg, ¥) = dist({xo}, ¥).
For I' C R? a Jordan curve we let:
— int(T"), the interior of I, be the bounded open set % C R? s.t.
I' = 0% where 0% is the boundary of % .
— v be the outward normal unit vector of int(T")

— 7 be the direct unit tangent vector of T’ (1 = v
If S is a finite set then Card(S) is the cardinal of S.

)

If x € R, then we write [z] := min{m € Z|m > z}, the ceiling of
x, and |z] := max{m € Z|m < x}, the floor of .

2.2. Functions

When % C R? is a smooth bounded open set we write H*(%,C)
for the Classical Sobolev space of the first order modeled on the
Lebesgue space L? and, for K ¢ C, HY(%,K) := {u e HY(%,C)|
u(z) € K for a.e. x € % }.

For k € N* and p € [1,00] we use the standard notation for
the higher order Sobolev spaces H*(%,K) modeled on L? and
WkP(9 , K) for the Sobolev space of order k modeled on LP.

We use the standard notation for the differential operators: “V” for
the gradient, “curl” for the curl, “div” for the divergence, “0, =
7 - V7 for the tangential derivative, “0, = v - V” for the normal
derivative. . .

We let trogy : H (% ,C) — HY?(0%,C) be the (surjective) trace
operator. For ' a connected component of % and u € H'(%,C),
we let trp(u) be the restriction of troe (u) to T'.

We write H} (% ,C) :={u € H (%,C)| trog (u) = 0}.
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e For u: Q — C a function we let
u if lul <1
/] i ul > 1

e For ' C R? a Jordan curve and g € HY/?(T,S'), the degree of g is
defined as

1
degr(9) = o /Fg AN0Org € L.

For a smooth and bounded open set % C R?, ' a connected compo-
nent of 9% and u € HY(%,C), if there exists > 0 s.t. g := trp(u)
satisfies |g| > 0, then g/|g| € H'/?(I',S') and we write degp(u) :=
degr(g/19l)-

When % ,? C R? are smooth bounded simply connected open
sets s.t. ¥ C % and u € HY(% \ 7,S'), then we write (without
ambiguity) deg(u) instead of degp(u) for any Jordan curve T' C
U\ stV Cint(D).

2.3. Construction of the pinning term

Let

5= 8() € (0,1), A = A() € (0,1);
w C R? be a smooth bounded and simply connected open set s.t.
(0,0) cwand @ C Y :=(—1/2,1/2)%

For m € Z2 we denote Y9 :=ém +6-Y and

m

we = U [0m + Ad - w].

rnGZ2 s.t.
Y, CQ

For b € (0,1) we may now define the pinning term
ac : R? — {b,1},

b if x € we,
xXr +—
1 otherwise.

2.4. Asymptotic

e In this article € € (0,1) is a small number. We are essentially inter-
ested in the asymptotic € — 0. In order to keep simple notation we
will often omit to mention the parameter ¢.
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e When we consider a sequence (), C (0,1) s.t. &, | 0 we often
omit the mention of the index n writing € = ¢,,.

e The notation o(1) means a quantity depending on ¢ which tends to
0 when € — 0.

e For f : (0,1) — (0,400), the notation o[f(¢)] means a quantity
g(e) s.t. g(e)/f(e) = o(1) and O[f(e)] means a quantity g(e) s.t.
g(e)/ f(e) is bounded for small .

3. Classical facts and the strongest theorem
Gauge invariance and Coulomb Gauge

It is standard to quote the gauge invariance of the energy &, 5, . Namely,
two configurations (u, A), (v, A’) € H# are gauge equivalent, denoted by

(u, A) ¥R (u/, A), if there exists a gauge transformation from (u, A) to
(u, A”):
(u, A) ¥~ (u/,A') <= I o € H*(Q,R) s.t. ' = ue' and A’ = A+ V.

Two gauge equivalent configurations describe the same physical state.
Then, physical quantities are those which are gauge invariant. For example,
if (u, A) € S, then |u|, |Vu—12Au|, curl(A4) and then & 5, (u, A), {Ju| < b/2}
also are gauge invariants. Note that the main results of the present work are
gauge invariant.

In the context the Ginzburg—Landau energy, a classical choice of gauge
is the Coulomb gauge. We say that (u, A) is in the Coulomb gauge if
{diV(A) =0 inQ

(3.1)
A-v=0 on 0f2.

One may prove (see [16, Proposition 3.2]) that, for (u, A) € 5, there exists
o € H2(Q,R) s.t. A’ := A+ Vo satisfies (3.1). Then, letting v/ = ue®¥, we
have (u’, A’) which is in the Coulomb gauge and (u, 4) ¥~ (u/, A").

One of the main motivations in using the Coulomb gauge comes from the
fact that ||curl(A)||z2 controls ||A||g1. Namely there exists C' > 1 (which
depends only on ) s.t. if A satisfies (3.1) then (see [16, Proposition 3.3])

[All 1 (o,r2) < Clleurl(A)]|r2(q) (3.2)

and
[All 2 (0.r2) < Cllcurl(A)|| g1 (q)- (3.3)
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Moreover we have an easy representation of A € H'(,R?) satisfying (3.1)

A€ H*(Q,R?) is a solution of (3.1)
=3 HiNH*(Q,R) st. A=V4ie (3.4)

Basic description of a minimizer

We first note that, by direct minimization, for all a. € L*>®(Q,[b,1]),
€, hex > 0, the minimization problem of & ;. in 7 admits (at least) a
solution (uc, Ae) € H.

Writing h. := curl(4.), it is standard to check that a such minimizer
solves:

—(V —14.)%u. = %(ag —|uel?) in Q

(V—1A)u.-v=0 on 0f2

. (3.5)
~V4the =ue A(V =14, )u. in Q
hs = hex on 0f).

Using a maximum principle, we may get the following proposition:

PROPOSITION 3.1. — Let €, hex > 0 and a € L™ (Q, [b,1]). If (ue, A) is
a minimizer of E(u, A) = % [, [Vu—1Aul?+ 515 (a® — [u[?)? + |curl(A) — hex|?
in A then |us| <1 in Q.

On the other hand, if (u., Ac) is a minimizer of & ., in the Coulomb
gauge, then it solves

{—AuE = 2% (a2 — |uc|?) — 20(Acue - Vue) — [Ac?u. in Q

(3.6)
Oyu, =0 on (.

A fundamental bound in the study concerns ||Vuc/| ). We have the fol-
lowing lemma which is a Gagliardo—Nirenberg type inequality with homoge-
nous Neumann boundary condition.

LEMMA 3.2. — ) Let Q € R? be a smooth bounded simply connected
open set. There exists Cq > 1 s.t. if u € H*(Q) is s.t. O,u =0 on 0K then

IVullZe o) < Ca ([ Aull L) + [l Lo @) 1l Lo @) -

(4) The proof of Lemma 3.2 is done by first using ® : D — 2, a conformal representation
of Q on the unit disk D. Then we extend @ := u o ® in the disk B(0,2) by letting v’ (z) =
U(x/|x|) for z € B(0,2)\D. By using the boundary condition we have u’ € H2(B(0, 2),C).
And finally one may conclude by using an interior version of Lemma 3.2 (Lemma A.1l
in [3]).
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Consequently, with Lemma 3.2 (up to changing the value of Cgq), for
€, hex > 0 and a. € L>=($, [b%,1)), if (uc, Ac) € H# minimizes & 5, is in the
Coulomb gauge and is s.t. || A|| () < 1/¢ (which is the case in the present
work) then

Cq

Vel < 2. (37)
In the homogenous case as well as in the case without magnetic field, Esti-
mate (3.7) is crucial to describe vorticity defects. It is the same in the present
work. More precisely, the main result (Theorem 3.3) states that the three
above theorems are true replacing (ue, Ac) that minimizes & p_, in J€ by
any configuration (., gg) s.t. Ee (U, gg) = inf s &, ., +0(1) with two extra
hypotheses on |tc|: ||V]ie||| (o) = O(e™!) and |u.| € W>1(Q) (see (3.11))

Lassoued—Mironescu decoupling

In order to study pinned Ginzburg-Landau type energies, a nice trick was
initiated by Lassoued and Mironescu in [12]. Before explaining this trick we
have to do a direct calculation for (u, A) € -

1
oo A) = Eu(w)+ 5 [ =2unVu) A+ PP+ wl() - hesf? (3:5)
Q

with

=5 [ 17 + gl = )

The Lassoued—Mironescu decoupling is obtained by first minimizing E.
in H'(Q,C). It is clear that E. admits minimizers and if U minimizes E.
then it satisfies

{—AU: Z(@-UP) inQ (3.9)

o,U=0 on 0f).
By an energetic argument it is easy to prove that, if U minimizes E.

in H*(Q,C), then b < |U| < 1. Moreover from (3.9), U A VU = 0, i.e.
U = |Ule™ with § € R.

Then one may consider a scalar minimizer U, : Q@ — [b,1]. This scalar
minimizer may be seen as a regularization of a. (see Proposition 5.2).

Using this scalar minimizer one may get the well known Lassoued—
Mironescu decoupling: for v € H(£2, C) we have

EE(UEU) = EE(UE) + FE(U) (310)
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with .
F.(v):= 1/ UZ|Vol* + £(1 — v}
2 Q € 252
Using this decoupling, one may prove that, for € > 0, there exists a unique

positive minimizer U, : Q — [b,1] of E. in H*(,R).

On the other hand, from (3.8) and (3.10), for (u, A) € 5 and v = u/U.
we have:

]:s,hex (Ua A) = E,hex(U€v7 A) - EE(UE)

1 4
= 7/ UZ|Vv — 1 Av|* + Ue (1 — [v]*)? + |curl(A) — hex|?.
2 Q 2e2

It is easy to check that F. . (v, A) is gauge invariant. This functional is
of major interest in the study since (v, A) minimizes F j_, in . if and only
if (U.v, A) minimizes & 5, in 2.

An easy comparaison argument implies that if (v., A.) minimizes F; p,_,
then [Jve||pe ) < 1.

From now on we focus on the study of the minimizer of F, 5 . Namely
we have the following theorem.

THEOREM 3.3. — Assume that (1.5) holds and A, §, hex, K satisfy (1.2),
(1.3) and (1.4).

Let {(ve, Ac) |0 < e < 1} C S be s.t. F(ve, Ac) < infye F+o0(1). Assume
also that

{v6| € W1(2,C) a.1)

[V |velll ooy = O ™).
Then Theorems 1.2, 1.8 and 1.4 hold for u. = U.v,.

Remark 8.4. — Theorem 3.3 may be rephrased in term of U.. Let
(hex)o<e<1 C (0,00), {(ue, A:) |0 < & < 1} C A and let v := u. /U, €
H'(©,C). On the one hand, from the decoupling (3.10), we have {(u., A.) |
0 <e <1} CIHis st &, (ue, Ae) < infp & p,, + o(1) if and only
{(ve, A2) |0 < & < 1} is 8.t Fep, (Ve, Ae) < inf e Fe p,, +0(1). On the other
hand, if (ve)c is bounded in L (), then v, satisfies (3.11) if and only if we
have |uc| € W1(Q,C) and ||V|uc||| L=y = O(e™1).

4. Plan of the article and proof of Theorem 3.3

The proof of Theorem 3.3 is done in several steps. It is based on a pertur-
bative argument by replacing the energy F. 5., with an energy F. .. . This
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step is called the energetic cleaning (Section 5.1). The functional a3 e hex 15 &
perturbation of F 5 : for (ve, Ac) € S which is in the Coulomb gauge and
st Fon, (v, A2) = O(R2,) we have Fop, (v, Ac) — Fep, (ve, A2) = o(1)
(see Proposition 5.3). In particular we have F; p, (ve, Ae) < inf e Fep, +
o(1) if and only if fe,hex(vaAe) <inf e f&hex +o(1).

In Section 5.2 we apply a vortex ball construction of Sandier—Serfaty
(Proposition 5.5) and we follow the strategy of Sandier—Serfaty developed
in [15] to prove that the vorticity of a reasonable configuration is bounded
(see Theorem 5.6).

Once the bound on the vorticity yields, we adapt a result of Serfaty [17]
which gives a decomposition of F. . (ve, Ac) in term of F.(v.) and the
location of the vorticity defects (Proposition 5.7).

The decomposition obtained in Proposition 5.7 allows to focus the study
on the energy F. which ignores the magnetic field. From this point on, the
study of a configuration (v., A¢) is done for a major part via classical results
based on the case without magnetic field (as in [4]). To this end we adapt to
our case some standard estimates ignoring the magnetic field, in particular
the crucial notion of Renormalized energies is presented in Section 6.

With these preliminary results, in Section 7, for d € N*, we construct
competitors (ve, Ac) € H# with d quantized vorticity defects and then we
get a sharp upper bound (see Proposition 7.3):

inf Fopee < heJo + dMgq [—hex + HY | + L1(d) In hex + Z(d) + o(1).

Here Jo and Mg are independent of € and d, % (d) and %(d) are indepen-
dent of £ and H, 21 is the leading term in the expression of the first critical
field.

With the above upper bound for the minimal energy, the heart of the work
consists in getting lower bounds for quasi-minimizers. Before getting such
lowers bounds we adapt to our case some tools in Section 8: an n-ellipticity
result is proved (Proposition 8.1), a construction of ad-hoc bad-discs is done
(Proposition 8.3) and the strong effect of the dilution is expressed by various
results in Section 8.3.

In Section 9 we begin the proof of the theorems. The part of Theorem 3.3
related with Theorem 1.2 is a direct consequence of Propositions 9.3, 9.4,
9.6 and 9.7 (and also Corollary 10.4).

The part of Theorem 3.3 related with Theorem 1.3 is given by Corol-
lary 10.1 and Proposition 7.3.
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The part of Theorem 3.3 related with Theorem 1.4 is a direct consequence
of Corollary 10.4 and Propositions 10.7 and 10.8.

We end this section by giving some explanations on the technical hy-
potheses (1.2) and (1.4).

Hypothesis (1.2) consists in two estimates: A'/4[lng| — 0 and [In(\J)| =
O(In[ln¢|). The estimate “A'/4|Ine| — 0” is essentially used in the cleaning
step (Section 5.1) in conjunction with Proposition 5.3. Without this estimate
the perturbative argument is no longer valid.

The estimate “|In(Ad)| = O(In|lne|)” is frequently used in this work (the
same hypothesis was used in [6]). The major use of this hypothesis is to
apply Theorem 5.6 which is fundamental in the study. On the one hand,
Hypothesis (1.3) is crucial in the strategy to prove Theorem 5.6. On the
other hand, vorticity defects appear (see Corollary 10.4) for hex > H., +0(1)

where

H, = b*[lnel + (1 — b?)[In(\9)|

+ O(1).
2ol i~ 1)

Consequently, if we want to deal with vorticity defects and with the (fun-

damental) conclusion of Theorem 5.6 then we need assume “|/In(\d)| =
O(In|lnel)”.

Hypothesis (1.4) is often used in a weaker form (0hex — 0). Estimate (1.4)
is crucial in Proposition 9.6 to get macroscopic and mesoscopic informations
on the location of the vorticity defects.

5. Some preliminaries
5.1. Energetic cleaning

In order to do the cleaning step, we have to get some estimates. Our
goal is to study quasi-minimizer of F p_ . To keep a simple presentation, we
write F instead of F. p., and F' instead of F. when there is no ambiguity.

From (3.2), (3.3) and classical elliptic regularity arguments we have the
following proposition.

PROPOSITION 5.1. — Let {(ve,Ac) |0 < e < 1} C A be a family of
configurations in the Coulomb gauge. Then there is &, € Hi N H?(Q,R) s.t.
A, = V&, Moreover, if for some hex = hex(€) we have

]:(U&AE) = O(hgx)7 (51)
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then there exists C (independent of €) s.t.

||€EHH2(Q) < Chey. (52)
Consequently, for p € [1,00), there exists C, > 1 (independent of €) s.t.
IVEllLr(@) = [[AellLr(@) < Cphex- (5.3)
Moreover, up to increasing the value of C > 1 (independently of €), we have
||VU£||L2(Q) < Chex. (54)
And if curl(A.) € HY(Q) then
€<l 30y < Clleurl(Ae)| g(o)- (5.5)

In particular, for further use, note that if curl(A;) € HY(Q) then & € Hi N
H2nWh>(Q) and

||V§EHLoo(Q) < C”Curl(As)HHl(Q). (56)
In order to do the cleaning step we need to underline the fact that U,

may be seen as a regularization of a. in W1> with estimates that become
bad when approaching dw:.

PROPOSITION 5.2. — There exist Cy, sp > 0 depending only on b and €
s.t. for e,r > 0 we have:
C
[VUel| L (0) < ?b7 (5.7)
U. — a.| < Che™ ¢ in {z € Q|dist(z, dw.) >}, (5.8)
Che™ ¢ )
VU, | < — in {z € Q|dist(z, dw,) > r}. (5.9)

Proof. — Estimate (5.7) is a consequence of Lemma 3.2. The proof of
(5.8) is the same than Proposition 2 in [9]. Estimate (5.9) is proved in Ap-
pendix A. a

Since the 2-dimensional Hausdorff measure of w. satisfies H?(w.) = O(\?),
from (5.8), for p € [1, 00[, we have the following crucial estimate

U2 = 1| o) = ONP). (5.10)

We are now in position to do the cleaning step. We assume that {(ve, Ac) |
0 <e <1} C S is a family of configuration in the Coulomb gauge which
satisfies (5.1). We denote a. = U2 and p. = |v.|. From direct computations,
by splitting the integrals with the identity a. = (e — 1) + 1 and using
(1—po)* < (1 —p?)?%, we have the existence of C' > 1 (independent of ¢) s.t.

/ozg(vg/\VUE)-AE—/(UE/\VUE)-A6
Q

Q

< CVARZ, (5.11)
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\ [etiagp - [ 1ap
Q Q

By combining (5.11) and (5.12) we immediately get the following propo-
sition.

and
< ORZ (hex + N). (5.12)

PROPOSITION 5.3. — If (ve, A.) is in the Coulomb gauge and satis-
fies (5.1) then
|F(ve, A) — F(ve, AL)| < Ch2 (ehex + VN)
with C' which is independent of € and

F(v,A) = Fep., (v, A)
=F(v) + %/ —2(w A V) - A+ A2 + [curl(A) — hey|?. (5.13)
Q

Remark 5.4.

(1) One may claim that F is not gauge invariant if a. # 1.
(2) Note that if \'/4[lne| — 0 and if hey = O(|Ing|) then for (ve, A.) €
¢ which is in the Coulomb gauge and satisfies (5.1) we have

F(ve, Ae) — F(ve, Ae) = o(1) without any assumption on § € (0,1).

5.2. Bound on the vorticity and energetic decomposition

By applying Proposition 1 in [15] with U, > b we immediately get the
following proposition which does not need any assumption for A, ¢ € (0,1).

PROPOSITION 5.5. — Assume hex < Collne| with Cy = 1 which is inde-
pendent of €. Let {(ve, Ac) |0 < e < 1} be a family s.t. F(ve, Ac) < Co|lnel?.

Then there exist C,eq > 0 (depending only on Q, b and Cy) s.t. for
£ < g9 we have either |ve| > 1—|Ing|=2 in Q or there exists a finite family of
disjoint disks {B; |i € J} with J C N* (J depends on¢) and B; := B(a;,r;)
satisfying:

(1) {jvs] <1—|Ine|=2} cUB;

(2) S < |lng|710,

(3) writing he = curl(4.), pe = |ve| and ve = pee'= (p. is locally
defined) we have

1

5/ PV — A+ [he — heul? > 7lds|(JIng| — Clnflng]),  (5.14)
B;
with d; = degyp, (v) if B; C Q and 0 otherwise.
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By following the argument of Sandier and Serfaty [15], we get the main
result of this section.

THEOREM 5.6. — Assume that \, § satisfy (1.2) and 6%|lne| < 1. Assume
also Hypothesis (1.3) holds for hex with some K > 1.

Then there exist e > 0 and Mg > 1 (independent of €) s.t. if {(ve, Ac) |
0 <e <1} C I isa family in the Coulomb gauge satisfying F(ve, Ac) <
inf e F + Kln|lne| then for 0 < e < ex we have

1 1
3 /Q |V |? + @(1 — ve[?)? < Mg|Ineg. (5.15)

Moreover, if |[ve| # 1 — |Ine|=2 in Q, then letting {B;|i € J} be a family of
disks given by Proposition 5.5, for 0 < € < ex, we have d; > 0 for alli € J
and there is sg > 0 (depending only on Q) s.t. if i € J is s.t. d; # 0 then
dist(B;, A) < Mg/|lne|~%.

The proof of this theorem is postponed in Appendix B.
We let

fe,hex (17 hexvlgo)
h

Note that if {(ve, Ac) |0 < & < 1} is a family of quasi-minimizers then

Ferhex Ve, Ae) < Fen (1, V5 60) +0(1) = hiJo + 0(1) = O(h,).-

The discs given by Proposition 5.5 are “too large” for our strategy. Indeed
one of the main argument is a construction of bad discs in the spirit of [4]
which links z. € {|v.| < 1/2} with the energetic cost in a ball B(z., ") with
small g > 0. Namely if z. € {|v.| <1 — |Ing|~2} C |JB; then the energetic
cost in a ball B(x.,e") is not sufficiently large comparing to our error term.

JO = ./7\:/1,1(1, VL&)) ==

. (5.16)

In the next proposition we present the good framework of vortex balls re-
quired in the study. The first step in the study is an energetic decomposition
valid under some assumptions (no assumption on ¢ € (0, 1) is required).

PROPOSITION 5.7. — Let Cp>1, (ve)o<e<1 CH (2, C) and hex >0 be s.t.
F(v.) < Collnel?, hex < Co|lnel. (5.17)
Assume furthermore that \'/*[Ine| — 0 and, for ¢ € (0,1), either |v.| >

1/2 in Q or ve admits a family of valued disks {(B(a;,r;),d;)|i € T} (T is
finite) s.t.:

o the disks B; = B(a;,r;) are pairwise disjoint
o {|lv|<1/2} C Uz‘eJ B;
° Ziej r < |1nE|_10
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o Forie J, letting
4 = degyp, (v) if B; C Q
‘o otherwise,

we assume Ziej |d;| < Co.

Then, if (£.)e C HE N H2 N WL (Q,R) is s.t.
[VE&| Lo () < Collnel, (5.18)
writing (. := & — hex0 we have in the case |v:| # 1/2 in Q:
Fve, VEE) —h2 Jo = F(v.)+27hex Z di€o(a;) +V (aay(C) +o(1) (5.19)
ieJ
where for ¢ € HE N H*(Q) we denoted

V(O =27 Y dic(a) + 5 [ (AP + V¢ (5:20)
€T &
And if [v] > 1/2 in Q then

Fl0e V) = hido = o)+ [ (AP +IVGf +o(1) (21

The proof of Proposition 5.7 is an adaptation of an argument of Ser-
faty [17, Section 4]. The proof is presented Appendix C

Before going further, we state a result which will be useful in this article
and whose proof is left to the reader.

LEMMA 5.8. — Forv € HY(Q,C), 0 < e < 1 and hex > 0, there exists
a unique potential A, ¢ p,, = Ay, € HY(Q,R?) s.t. (v, A,) is in the Coulomb
gauge and satisfies

—Vteuwrl(A4,) = a(w) - (Vv —14,v)  in Q (5.22)
curl(A,) = hex on 0f2. ’
Moreover A, is the unique solution of the minimization problem
inf F. A 5.23
A satii%es (3.1) & hex (U7 ) ( )

and from (3.3) and (3.4) we have A, =V*&, with &, € HiNH?*NW 1L (Q, R).

Remark 5.9. — Assume \,§ satisfy (1.2), 6%|lne] < 1 and Hypothe-
sis (1.3) holds. Consider {(ve, Ac) |0 < € < 1} C 4 a family in the Coulomb
gauge satisfying F(ve, Ae) < inf e F + O(In|lnel).

e From Theorem 5.6, either |v.| > 1 — |lneg|~2 in Q or the family of
disjoint disks given by Proposition 5.5 satisfies the properties of the
family of discs used in Proposition 5.7.
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o Let A,, = V¢, € HYQ,R?) be given by Lemma 5.8. Then
with (3.3) and (5.22) we have A,, € L>*(Q) and [|A,,||L~@) <
Cllne| where C depends only on .

As noted by Serfaty [17], with the help of the decomposition given by
Proposition 5.7, we may prove that h2 Jg is almost the minimal energy of a
vortexless configuration.

COROLLARY 5.10. — Let
A = {(pe*?, A) |p e H'(Q,0,00)), p € H'(Q,R) and A € H'(Q,R?)}.
Note that H#° is gauge invariant. Assume \'/*|Ing| — 0.

(1) Lete = ¢, | 0. Assume hey = O(|In¢l|) and for each ¢ let (v., V¢, ) €
A0 be s.t. & € HiNH*NWH2(Q,R) with | V& L0y = O(|Inel).
Writing (. := & — hex&o we have:

1
Flve, V&e) = hedo + F(ve) + 5 / (AC?+ |V +o(1).  (5.24)
Q
Thus, if F(ve, VEE) < h2 Jo+o0(1) then (. — 0 in H2(Q), Jve| — 1
in H(Q) and, up to a subsequence, there exists v € St s.t. v. — v
in H(Q).
(2) We have inf jp0 F = h2 Jo + o(1).

Proof. — We prove the first assertion. Estimate (5.24) is a direct conse-
quence of Proposition 5.7.

For sake of simplicity of the presentation we drop the subscript e. If
F(v,VEE) < hi Jo + o(1), then F(v) + [|¢||g2(e) = o(1) and then ¢ — 0 in
H?(Q), [v] = 1 in H'(Q). Moreover ||Vvl|12(q) = o(1) and ||v]|r2(q) = O(1).
This clearly implies the remaining part of the assertion.

We prove the second assertion. We first claim, by the definition of Jg, that
using the configuration (1, hex V+&g) € S0 we have inf 0 F < h2 Jo+o0(1).

By the gauge invariance of #° we may consider a family of quasi-
minimizer {(v., 4:)|0 < & < 1} C #° which is in the Coulomb gauge.
We write (ve, Ac) = (v, A). Let (v, A4) € Y be defined by v = v and A is
the unique solution of (5.23) associated to v.

By direct calculations we have: F(7, A) < F(7, A) < F(v, A) < h2 Jo +
o(1).

Moreover, by denoting h := curl(A), we have Vh = a® A (V17 — AL7)
in Q and h = hex on 9Q. Then ||| g1q) = O(|lne|) and using (5.5) we get
| Allz2(0) = O(|Inel).
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We are then able to apply the first assertion to get F(7, A) > h2 Jo +
o(1). O

5.3. Pseudo vortex structure

We assume \'/4[lng| — 0. Let {(v., A.) |0 < e < 1} C H# be a family of
configurations in the Coulomb gauge satisfying (5.17). We assume that |v.| %
1/2 in © and that there exists {(B(a;,7;),d;)|? € J} as in Proposition 5.7.
Then Proposition 5.7 gives a decomposition of F (v, A). Except in the crucial
hypothesis Y r; < [Ing|71°) the radii r; do not play any role as well as the
disks “B(a;,r;)” associated to a zero degree. We thus introduce an ad-hoc
notion of pseudo vortex.

DEFINITION 5.11. — We assume that we have either ¢ = ¢, | 0 or
0 <e < 1. We consider (v.). C HY(Q,C), (hex)e C (1,00) satisfying (5.17).

Let {B; = B(a;, ;) |i € J} be a family of disks as in Proposition 5.7 and
let d; = dga) € 7Z be the associated “degrees” defined in Proposition 5.7. We
denote J' = J! = {i € J|d; # 0} (note that we have Card(J!) < >_|di| =
o1)).

If J' # 0, then we say that {(a,d)} = {(a;,d;) |i € T’} is a set of pseudo
vortices of v..

For a fixed configuration (a, d) of pseudo vortices, Serfaty studied in [17]

the minimization problem of "7(a,d) (defined in (5.20)). We have the following
result ([17, Proposition 4.2]).

PROPOSITION 5.12. — Let (a,d) = {(a;,d;)|i € T} C Q x Z* be a
configuration s.t. 1 < Card(J') < oo and a; # a; fori # j. Then V(4 q)(C)
is minimal for ¢ = ((a,a) which satisfies

{—A2C(a,d) + A(a,a) = 27 ;e 70 dida, N
Ca,d) = Al(a,a) =0 on O9Q.

(Here &, is the Dirac mass at a € R?.)

And we have V[C(a7d)] =7 icq dila,a)(ai)-

(5.25)

In order to prove the above proposition, Serfaty introduced for a € €2 the
function ¢(* € Hi N H%(Q) which is the unique solution of

~A%(% + AC® =276, in Q
C“=A¢"=0 on 0f.
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In particular we have ¢* < 0 in Q. It is easy to see that ((a,q) = > _;c 7 diC"
is the unique solution of (5.25).

Lemma 4.6 in [17] gives important properties related with ¢* and (a.q):
PROPOSITION 5.13. — For s € (0, 1), there exists Cs > 0 s.t. for a,b € Q
1€ Loe (@) < Cs dist(a, 082)*
and

1€ = ¢l g2y < Csla — bl*.

Consequently there exists C' > 0 depending only on ) s.t., if (a,q) is the
unique solution of (5.25), then

|V[<(a,d)]|: ™ Z d;d;C" (aj) <C<Z |dz|> .

1,j€T’ ieJ’
For a further use we need the following lemma.

LEMMA 5.14. — Let (a,d) be as in Proposition 5.12 then () € Hj N
H2NWhe(Q,R) and there is C > 1 depending only on §) s.t.

C 2o ldi
min dist(a;, 00)

Proof. — Let (a,d) be as in Proposition 5.12, with Proposition 5.13 we
have (a,a) = - di¢* € Hy N H? and |[(a,a)lln2(0) < €3, [di| where C
depends only on 2.

1V¢ia,a)llze(@) <

Moreover, from (5.25), we have A((a,qa) = C(a,a) + > di In|x — a;| + R(a,q)
where R(, q) is the harmonic extension of troa(— ) d;In|z — a;]) in Q.

Consequently there exists C' > 1 depending only on 2 s.t.
O ldil
min dist(a;, Q)
and therefore by elliptic regularity and a Sobolev embedding we get the
result. |

1A @,y llz3 ) <

Until now, the only way to get a nice magnetic potential associated to
a function v was to consider A, = A, ., € H*(Q,R?), the unique solution
of (5.23). The previous results give that, after the cleaning step, we can do
asymptotically as well by using a magnetic potential depending on a pseudo
vortices structure of v instead of v itself (see Remark 5.16).

DEFINITION 5.15. — Let N > 1 and (a,d) € (QN)* x (Z*)V, hex > 0.
Then we define Aa.a) = hex V&0 + VLC(a’d) where ((a,q) 5 the unique
solution of (5.25), the potential associated to (a,d).
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Remark 5.16. — Let Cy > 1 and (v:)o<ec1 C HY(Q,C), hex > 0 satis-
fying (5.17) be s.t. (v:)o<e<1 admits a set of pseudo vortices ((a,d),)o<c<1
with ) |d;| < Cy. We write v and (a, d) instead of v. and (a,d)..

Assume mindist(a;, dQ2) > |Ine|™! in order to have ||[V{a,a)llL=@) =
O(lng|) (with Lemma 5.14) and \'/*[Ine| — 0.

For 0 < e < 1, let A, € H*(Q,R?) be the unique solution of (5.23) and
A(a,a) be defined in Definition 5.15. Then we have A q) = VLﬁ(a’d) and
A, = V+€, where §(a,a),&v € H} N H? N W1>°(Q,R) satisfy the hypotheses
of Proposition 5.7 (here we used (3.3) and (5.22)). Therefore we have the
following inequalities

F(0,0) = F(v,Ay) = F(v, Ay,) + 0(1) = F(v, Aqaa)) + o(1),

F(v,Ay) < F(v, A@a,a)) = F(v, A@a,a)) +o(1).
In particular we have F(v, A,) = O(|lnel?) and F(v, Aa.q)) = O(|lne|?).

5.4. Cluster of pseudo vortices

From a standard result for the homogenous case, it is expected that,
for a reasonable magnetic field, the asymptotic location of pseudo vortices
of a studied configuration is a subset of A. This problem is related to the
macroscopic location of the pseudo vortices. To treat this problem we use an
ad-hoc notion of cluster of pseudo vortices.

DEFINITION 5.17. — Let N, Nog € N*, Ng < N, (p,D) € (ﬁNO)* x ZNo |
e=¢,10and(a,d), € (QV)* xZ" s.t. D is independent of . We say that
(a,d), admits a cluster structure on (p,D) if

o forie{l,...,N}, lima; ewists, lima; € {p1,...,px,} and we write
forke{l,....No}, Sp:={ie{l,...,N}|a; — p}
o forke{l,...,No} Sy #0,
o forke{l,...,No}, D), = Dies, di-
Remark 5.18. — In this article we will use the notion of cluster structure
with (a,d) as in Proposition 5.7 and p C A.

PROPOSITION 5.19. — Let N > 1, e =¢, | 0, (a,d)_ € (QV)* xZV s.t.
> |di| is bounded independently of €.

(1) If ((a,d)_.)e admits a cluster structure on (p,D) (and then D is
independent of €) then (p,D) is unique. We say that (p,D) is the
cluster of ((a,d),)e.
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(2) Up to passing to a subsequence, there exist 1 < NO < N and

(p,D) € (QNO)* x ZNo s.t. (p,D) is the cluster of ((a, d),)..
(3) If (p,D) is the cluster of ((a,d).). then, denoting x =
maxy max;ecg, |a5 — px|, we have

No
> dillgo(ag) — o(pr)l] < Cx (5.26)

k=14€Sk
and
ViCaw.) = Vo] < CVX (5.27)
where C' depends only on N, > |d;| and Q.
Proof. — The two first assertions are obvious. Estimate (5.26) is direct

by noting that £, a Lipschitzian function in Q. Estimate (5.27) is a direct
consequence of Proposition 5.13. O

We then have:

COROLLARY 5.20. — Assume that X, 9§, hex satisfy (1.2) and (1.3) for
some K > 0 independent of €. Assume also 6%|Ine| < 1.

Let {(ve, Ac) |0 < e < 1} C H be a family s.t. F(ve, Ae) < infpe F +
K In|ln e| which is in the Coulomb gauge and let {(a.,D.) = (a,d) |0<e <1}
be a family of pseudo vortices associated to {(v., A:)|0 < e < 1} (indexed
on J = J. possibly empty).

(1) Letting A,, € H' (2, R?) be defined by Lemma 5.8 we have
F(ve, Ae) 2 F(ve, Ao,)
2 hEXJO + 27hex Z dlgo(al) + F(UE) + V[C(a,d)] + 0(1) (528)
ieJ
And then

F(ve, Ac) 2 h2 Jo + 2mhex Y diko(as) + F(ve) + O(1). (5.29)
i€J
(2) Assume furthermore that (a,d) admits a cluster structure on (p, D).
Then we have

F(ve, Ac) = h2 Jo + 2mhex Z diéola;) + F(ve) + V[C(p,D)] +o(1). (5.30)
€J
Proof. — The lower bounds (5.28) and (5.29) are direct consequences of
Theorem 5.6, Lemma 5.8, Remark 5.9 and Propositions 5.1, 5.7 and 5.12.

Estimate (5.30) is a direct consequence of Proposition 5.19 and (5.28). O
We then have the following corollary.
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COROLLARY 5.21. — Assume that X, 0, hex satisfy (1.2) and (1.3). As-
sume also 6%|lne| < 1.

Let (vo)o<cec1 C HY(Q,C) be s.t. |ve| # 1/2 in Q and assume the ex-
istence of (Be)o<e<1 C HY(Q,R?) s.t. (ve, Be) is in the Coulomb gauge
and F(ve, Be) < inf 50 F + O(In|lnel). Assume also that (a.,D.) = (a,D)
are pseudo-vortices as in Definition 5.11 for v. (note that we thus have

> ldi| = 0(1)), then
Flve, Aapy) = h2Jo+2mhex > dio(a:)+ F(v) +V[((a,py] +0(1). (5.31)

where A p) = hex V1o + VLC(a,D)'
Consequently we get

F(ve) < 2mhex Y diléo(ai)| + O(ln|Ine|)

(5.32)
<7b* Y |d;l[nel + O(In|lne]).

Proof. — Corollary 5.21 is a direct consequence of inf,» F < h2 Jo,
Corollary 5.20 and Propositions 5.7 and 5.13. g

Remark 5.22. — We may state an analog of Corollary 5.21 if (a, d) admits
a structure of cluster.

6. Renormalized energies
6.1. Macroscopic renormalized energy (at scale 1)

We consider in this section:

e NeN* z=z" ¢ (V) .= {(z1,...,2n) CQ| 2z, # 2z for i #75},
° D:(dl,...,dN)EZN.
o /i = h(z) := min, dist(z;, 0Q)

We are going to deal with functions defined in the set ) perforated by disks
with radius 7 =7, | O:

Qs = Qi(z) == Q\ UB(zi,ﬂ.

We assume )
7 < - mi in|z; — 2| ; h} . 6.1
7 < gmin {rln#l? |zi — 2] (6.1)
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For a radius 7 > 0 s.t. (6.1) is satisfied, we consider the set of functions
T8 .= {w € H'(Qz,Sh ‘degaB(Zif)(w) =d; forie{1,.. .,N}}
and

. . Fatl) — (V.atdif -
Iqur - {w € H'(Q58Y) w(z; +1e") = Cie forie {1,...,N}, }

(C1,...,On) € (SHN

In this section we are interested in the minimization of the Dirichlet func-
tional in Z3°® and ZP'r,

Before beginning we state an easy result proved by direct minimization
(the proof is left to the reader, see [4]).

PROPOSITION 6.1. — For N > 1, (z,d) € (QV)* x ZN and 7 > 0 s.t.
(6.1) is satisfied, the following minimization problems admit solutions:

1
48 = [2°%(z,d) := inf 7/ [Vawl? (6:2)
wezds 2 Jo,
and 1
[FDir:ITPir(z,d) = inf f/ |Vw|2- (6.3)
weI}_?ir2 Qr

Moreover, these solutions are unique up to the multiplication by an S' con-
stant.

6.1.1. Study of I°® and IP™"

Following [4], it is standard to define the canonical harmonic map asso-
ciated to (z,d).

DEFINITION 6.2. — Let N € N* and (z,d) € (QV)* x ZN.

A function wi*% € No<p<2aWLP(Q, S NC>®(Q\ {21,...,2n5},St) is the
canonical harmonic map associated to the singularities (z,d) if

d4; Vs 1s harmonic in €,
( ) with { d,w®Y =0 on 09, (6.4)
Joq 5 = 0.

,’:]2

z,d)
w,E = ¥+ (2)

i=1

Remark 6.8. — In this framework, it is classic to define q)iz’d) (with the
notation of Definition 6.2), the unique solution of
ASPY —2r SN 45, inQ
@iz’d) =0 on 0.
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This function satisfies VJ-CI>£z’d) = w,((z’d) N Vwiz’d). Moreover, by denoting
R(3,q) the unique solution of

AR(zq) =0 in Q
Rega)(2) = =), diln|]z — z;| on 09,

we have &% (z) = > diln|z — 2| 4+ Ry a)(2).

We first study the asymptotic behavior of minimizers of I?eg(z, d) when
r— 0.

PROPOSITION 6.4. — Let N € N* and (z,d) = (z,d)™ c (QV)* x ZV.
We write h = h(z) and we assume that )", |d;| = O(1).
(

For 7 >0 s.t. (6.1) is satisfied, we may consider wfz’d), the unique solu-

tion of the problem

1
I9°%(z,d) := inf 7/ |Vw|?, (6.5)
weTy® 2 Q5
of the form
N d; 1 00
w(z) = e O ] <7Z _ ) with {‘Pf CHNCTRR). ()
i=1 |2 = zil Joo 07 =0.

We thus have the existence of C > 0 (depending only on 2, N and the bound
of ¥, Idi]) s.t.

z C(1+|In7
|Vl ’d)||Loe(Q,~.) < w (6.7)
T
We denote
7(1+[In(h)|) 7(1+[In(R)|) . _
e { . s (14 <ﬁ>|>) F(1+In(R)]) el (6.8)
(mini¢jr|z1y—zj| + h ) <1 + h ) ZfN 2 2
and we have
||§0F - @*”%Il(gf) < CX, (6.9)
1 2 1
0< 5/ |Va{=Y |2 — inf 5/ |Vw|? < CX. (6.10)
Qr weI;g Qr

Moreover, if there exists n > 0 (independent of n) s.t. h > n then (6.7) may
be refined into

C

z,d
Va0 < = (6.11)

The proof of Proposition 6.4 is in Appendix D.1.
By adapting the proof of Proposition 5.1 in [17] we have
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PROPOSITION 6.5. — For N > 1, there exists an application WiF° =
Wracre . (QN)* x ZN — R s.t. for sequences (z,d) = (z, d)(") e (V) xzN
and 7 =7, — 0 satisfying (6.1) and s.t. D is independent of n, there exists
C > 1 (depending only on N, 3" |d;| and Q) s.t.

1 . .
5/ Vw2 — 73" d2[in | - Wme(z,d)| < CX
Q2 i

with

wraere(z,d) = —m Z did;jIn|z; — zj| — 7 Z diRz.q)(zi),
i#j i
Rz.q4) € C™(Q,R) satisfies || R(z,q)ll =) < C(1+ [InAl).

Proposition 6.5 is proved in D.2. We immediately obtain from Proposi-
tion 6.5 the following corollary.

COROLLARY 6.6. — Under the hypotheses of Proposition 6.5 and assum-
ing that there exists C1 > 0 (independent of r) s.t. r(thlnhD < (1, there
is C > 1 (depending only on Q, N, >, |d;| and C1) s.t. [, |Vw£z’d)|2 <
C|In 7.

We end this section by linking I3°® and IP™.

PROPOSITION 6.7. — Let N > 1, z € (QY)* and 7 = 7, | 0 satisfy-
ing (6.1). Assume ; — 0 and if N > 2, we also assume — 0.

-
min;z; [2;—z;]

Let

1071h if N=1
10 min{A; min; ;|2 — 2|} f N > 2.

Assume furthermore
1 [n(l+[n(h)) r
7 = 1
In(/7) R

Then for D € ZV (independent of n), there exists C > 1 (depending only on
Q, N and >_|d;|) s.t.

— 0.

1 1
0< inf 7/ |Vw|? —  inf 5/ |Vw|? < C(X + 2).
Q7 Qs

’wEI?" weI;’eg

Proposition 6.7 is proved Appendix D.3.
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6.1.2. Macroscopic renormalized energy and cluster of vortices

We first state an easy lemma.
LEMMA 6.8.

(1) Let N € N* and D € ZN. Let x > 0 and z,7z' € (QN)* be s.t. for
i€{l,...,N} we have |z; — z| < x. Then we have

X
H (z,d) (z’,D) ”L () 21 : | z| max{h(z% h(z’)}

(2) Let 1 < No < N, p € (Q¥0)*, (z,d) = (z,d)™ € (QV)* x ZN be
s.t. D is independent of n and for i € {1,...,N} there exists k €
{1,.. .,NO} s.t. zi — pr. We let x := max; dist(2;, {p1, ..., Px,})-
Forke{l,....No}welet Dy:=3", , di andD=(Dy,...,Dg,).
Then we have

X
IR @z.a) — Rp.p)llze@) <D \di\ﬁ

Proof. — The first assertion is obtained with the help of the maximum
principle and the bound |R(, 4y — R»/p)| < D, |d |m on 0f.
The second assertion follows by the same way. O

With Lemma 6.8 we may exploit a structure of cluster for Wmacre,

PROPOSITION 6.9. — Let 1 < Ng < N, p € (QN0)* (independent of n)

and write
1 if No =1,
Tp = . .
ming; [px — pi|  otherwise.

Let (z,d) = (z,d)"™ € (QV)* x Z¥ be s.t. D is independent of n and
fori € {1,...,N} there exists k € {1,...,No} s.t. z; = pr. We denote
X = max; dist(z;, {p1,. .-, Py, })-

Fork € {1,...,N0} we denote Dy, 1= d; andD = (Dy,...,Dg, ).

Zi =Pk

Then there exists C > 1 (depending only on Q, N and Y |d;|) s.t.

Wy**°(z,d) — | Wg**°(p,D) — = Z Z d;d;ln|z; — 2]
k=1 ?i,%j 7Pk
i#£]
1+ |Infh 1
< oy (Lol 1Y
h(p) Tp
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Proof. — We have

Wmaro(z d) —WZ > did;In|z — 2]

k=1 %i,%j 7Pk

i#]
- Z did;jIn|z; — z;] —de Rz.a)(zi).
2i =Pk
Zj—DP1
k£l
It is easy to check that
> didjln|z — 2| = DyDiInjpy — pi| + H (6.12)
= =

k£l

with H <43, \d;])? % for sufficiently large n.

On the other hand, from Lemma 6.8 (second assertion), we have
X
R - R () < E d; .
|| (Z,d) (P;D)HL (Q) - | ‘Inax{h(z), h(p)}

From standard pointwise estimates for the gradient of harmonic functions
(see (D.6)) there exists C' > 1 depending only on Q, > |Dy| and N (here

we used 1 < Ng < N) s.t. for z; — pj, we have |R(p p)(2i) — Rip.p) (k)| <

1+ [In[A(p)]|
OX—Fp

Then, up to changing the value of C, we have

In[A
Zd R(z d) Zz ZDkR(RD) (pk) RS CX:H_|7:L(1[))(p)]| (613)

By combining (6.12) and (6.13) we get the result. O

6.2. Mesoscopic renormalized energy (at scale hex !/ 2)

From the work of Sandier and Serfaty we may obtain mesoscopic infor-
mations. To this end we need to assume a non degeneracy assumption for
minimal points of . So we assume in this section that Hypothesis (1.5)
holds.

Let
{10—3 min{1; dist(A, 9Q)} if No=1
ng =

6.14
1073 min{1; dist(A, 0Q); ming4 |px, — m|}  if No =2 ( )
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For p € A, by applying Lemma 11.1 in [16] in the disk B(p,7q), we get the
following proposition.

PROPOSITION 6.10. — Assume that Hypothesis (1.5) holds. Let D € N*
and hex T 0o when ¢ — 0. Then for p € A and R = R(e) = 0 s.t. Ry/hex —
oo we have

—WZ]H‘Zi — Zj| + 27 hex 2[50(22) - 50(17)]

inf
z€[B(p,R)P]*

i#] i
m 2 hcx
=5(D°=D)ln +Cpp +o(1) (6.15)
2 D )
with
- 3 meso
Cpp = min Wy (6.16)
and
;;?E)so . [(R2)D]* R i
X = (1’1, - ,:L'D) — 77TZIH|SC¢ — Ij| + ﬂDZQp(zz) (617)
i#] i=1

where Qp(x) := x - Hesse, (p)z, Hesse, (p) is the Hessian matriz of & at p.
Moreover the infimum in (6.15) is reached and if z° € [B(p, R)P]* is s.t.

- WZ In|zf — 25| + 2mhex Z[ﬁo(zf) —&o(p)]

i#j i
="p? —D)ln(hex) +Cp.p +o(1)
2 D ’
then for all sequence € = €, | 0, up to a subsequence, denoting { = h?
and %5 = Zf;p, we have z° = (%5,...,%5%) which converges to a minimizer

of Wr5e. In particular |Z¢| < Cq.p with Cq.p > 0 which depends only on
Q and D.

6.3. Microscopic renormalized energy (at scale \J)

The location of the vorticity defects at scale Ad (inside a connected
component of w.) is given by the microscopic renormalized energy exactly
as in the case without magnetic field. In order to define the microscopic
renormalized energy we need some notation. Recall that the pinning term
as : 2 — {b,1} is obtained (see Section 2.3) from a smooth bounded simply
connected set w s.t. 0 € w Cw C Y := (—1/2,1/2)2. The construction of the
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pinning term uses two parameters § = 0(¢) (the parameter of period) and
A = A(e) (the parameter of dilution). For z¢ € w and a sequence € = ¢, | 0,
we consider T, € w s.t. T. — 7o € w.

Let m. € Z? be s.t. the cell Y. = §(m. + Y) satisfies Y. C Q. We then
denote z. = d[m. + AZ.]. It is proved in [7, Estimates (9) and (10)] that for
R=R.> X\ and r = r. < A, denoting R = R/(\), 7 = r/(\§), D. =
B(me, R)\ B(z., 1), D. = B(0,R) \ B(z.,7) and D = B(0, R) \ B(xo,7):

1 1
inf 5 UVl = inf */UQszJro 1) (6.18
weH' (D..8") 2 /DE Vel weH (D.,8Y) 2 Jp, = [Vl (1) (6.18)
deg(w):1 w(zg+Re19):e’9

w(ze+re'?)=Cst e*?

1
— i f/ CVEl +0.(1).  (6.19)
weH (D.,8") 2 JD.
deg(w)=1

Moreover from the main result in [8], we have the existence of an appli-
cation Wmicr : (, — R (depending only on w and b) s.t.

inf - / @?|VB|? = fu(R)+ 6w [In(7)|+ W™ (20) +0(1). (6.20)
weH (D..8") 2 JD.
deg(w)=1

where f,(R) := infweHl[B(o,R)\w,sl] %IB(O,R)\U [Vwl|?.
deg(w)=1

It is clear that there exists C, € R (depending only on w) s.t. when
R — oo we have f,(R) = 7In(R) + C,, + o(1).
Then, by denoting W™ (z4) := Wi (1) 4 C,,, we get from (6.20):

1 ~ .
mf L / VD2 = 7 In(B) + ba/In(F)| + W™ () +o(1). (6.21)
weH (DSY) 2 Jp

deg(w)=1

Moreover, from [9] we know that W™*® admits minimizers in w.

7. Sharp upper bound: construction of a test function

From now on we assume that Hypothesis (1.5) holds. We thus may use
for p € A and D € N* the constant C), p defined in (6.16). We denote also
Cp_’o =0.

We let for d € N*:
d d [N
ro= e[l %)
! { UM | [N
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No
Wd,g = Wd := min {Wmacro(pa D) + Z Cpk,Dk + V[C(p,D)]} (7.2)

DeAgy 1

where, for z € R, [z] is the ceiling of z, |z] is the floor of z, Wmare(.) ig
defined in Proposition 6.5 and V[((p py] is defined in Proposition 5.13.

We now state an easy lemma whose proof is left to the reader.

LEMMA 7.1. — Let d € N* and D € Ay. Then the following quantities
are independent of D:

No
Zi(d) = g KZD,%) —d] ,
k=1

No
—_— i
Lo(d) := Wy + 5 1; (D — D?)In (Dy).
s.t. 5k>1

Moreover: d < Ny <= Z£1(d) = 0 <= L (d) = Wy.
Notation 7.2. — We let .Z1(0) = .%(0) = 0.

The main result of this section is the following proposition.
PROPOSITION 7.3. — Assume that hex = O(|lnel), hex — 400,
Mgl = 0 and 6V hey — 0 (7.3)
and assume that Hypothesis (1.5) holds.

Let d € N* and let D € Ag be a minimizer of the minimizing prob-
lem (7.2).

For 0 < e < 1, there exists (v, Ac) € F which is in the Coulomb gauge
with d vortices of degree 1 s.t. deg(ve, pr) = Dy,

F(ve, Ac) = h2 Jo+dMq [—hex + H | + L1(d) In hex + La(d) + 0(1) (7.4)
with Mg := 27||&o|| L () and

2 _ K2
o bPne+ (1 —b?)[In(\o)] Toe (7.5)

c1 T

2|[€oll Lo ()

where

min,, W™ + b2 [y + 7 ln b]
2|[€oll Lo ()

7 is a universal constant defined in Lemma IX.1 of [4] and W™ js defined

in Section 6.3.

:\Yib,w = ) (76)

Proposition 7.3 is proved in Appendix E.
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8. Tool box

The proof of the main theorems of this article is done in a classic way: by
matching upper and lower bounds. A (sharp) upper bound is obtained by
Proposition 7.3. Getting a sharp lower bound is the most challenging part
of the proof. It needs the proof of several facts related with the vorticity
defects of a family of quasi-minimizers (quantization, localization, size...).

In this section we present some technical and quite classical results
adapted to our situation.

8.1. An n-ellipticity property

In this section we focus on quasi-minimizers. We let hex = O(|lng|) and
we consider {(ve, Ac) |0 < € < 1} a family of quasi-minimizers for F, i.e.,

F(ve, Ae) §in%f]:+o(1). (8.1)

We assume that for all € € (0,1), (ve, Ac) is in the Coulomb gauge and that
ve € HY(Q,C) is s.t.
[V |velllzoe ) = O(e™H). (8.2)
The major result of this section is a key tool in this article: an 7 ellipticity
property.
PROPOSITION 8.1. — Let hex = O(|lnel) and let {(ve, A) |0 <e <1} C
A be a family in the Coulomb gauge satisfying (8.1) and (8.2).

Forn € (0,1) there exist €, > 0 and C, > 0 s.t. for 0 <e < ey, if z € Q

s s.t.
2

b
[ o T B 0 S G,
z,3/€)N

then |ve(z)| > n.

Proposition 8.1 is proved in Appendix F.

By combining Proposition 8.1 with Theorem 5.6 we get immediately a
first step in the (macroscopic) localization of the vorticity defects. In order
to apply Theorem 5.6 we need assume

{A’ § satisfy (1.2), 02[lne| = 0, hex — 00, (8.3)

(1.3) holds for hey with some K > 0 independent of e.
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COROLLARY 8.2. — Assume that \,§ and hex satisfy (8.3) and let
{(ve, Ac) |0 < e < 1} C S be s.t. (8.1) and (8.2) hold. There exist 0 < g¢ <
ex and M > 1 s.t. for 0<e<eg, letting XE::AﬁUd#OB(ai,2MK|ln5|_SO)
where the (a;,d;)’s (depend on €) are given by Proposition 5.5 and e, Mg
and sg are given by Theorem 5.6, we have

{Jvel € 1/2} C U B(p, M|Ing|~%) where 59 := min{sg, 10}.
peA.

Proof. — We argue by contradiction and we assume that there exist ¢ =
en 4 0 and a sequence ((ve, A.)). C 2 s.t. (8.1) and (8.2) hold and s.t. for
all n there exists

20 =25 € {lol <1/2}\ [ B(p,njne[).
peAs
Since (8.1) and (8.2) are gauge invariant we may assume that, for all e,

(ve, Ac) is in the Coulomb gauge.

Let B := {(B(a;,r:),d;)|i € J} be given by Proposition 5.5. Write
B; := B(a;,r;) for i € J. Note that by Theorem 5.6, from the quasi-
minimality of (ve, Ac), for e sufficiently small, we have d; > 0 for all ¢ and
d:=>"|d;] =>_d; = O(1). Up to a subsequence, we may thus assume that
d is independent of €.

From the definition of /N\E, we have

U Bi ¢ | B(p,2Mx]|ne|~).

d; >0 pE[\

Note that from Theorem 5.6 we have F(v.,0) = O(|lng|?). Then we
may use Proposition 5.5 for the configuration (ve,0) € 2 to get a covering

Uics B; of {|jve] < 1 — |Ine|~2} with disjoint disks B; = B(d;, ), S.7 <
Ing|~10.

Therefore there is p € 2Mg|Ine| 7%, (2M g + 6)|Ing|~%] s.t.

€A ieJ ied
o pe. dB(p, p). Thus, writing d; :=
degyp, (ve) when B; C Q, we get for p € A,

Yoo ldl=| D0 dif=degopp ()= D di

BiCB(p,p) BiCB(p,p) BiCB(p.p)

In particular |v| > 1 — |lng|™2 on |
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Note that for sufficiently large n we have B(z0,v/2) N"U,ci. B(p,p) = 0.

On the other hand, since Y. 7; < |Ing|~1°, we have for B; CQ (here we
use (5.14))

F(v, B;) > wb%|d;|(|lne| — C'ln|nel).
Using Proposition 8.1 we obtain

F(v) > (mb®d+ Cy j9)|lne| — O(In[lnel) (8.4)
where Cy /5 > 0 is given by Proposition 8.1 with n = 1/2. Estimate (8.4) is
in contradiction with (5.32). O

8.2. Construction of the ¢°-bad discs

As in the previous section we assume that A, d and hex satisfy (8.3).
In this section we establish the existence of €°-bad discs associated to a
quasi-minimizing sequence. The construction of the bad discs requires the
hypothesis: |v.| € W1(Q).

An e%-bad discs family associated to a familly {(v., A:) |0 <e < 1} C #Z
consists in sets of discs that have small diameters (a roots of ¢) s.t. for fix
€ the discs are “well separated”, the union of the discs is a covering of
{Jv] £ 1/2} and each “heart” of a disc intersects {|v| < 1/2}. Such sets of
discs give thus a nice visualization of {|v| < 1/2}.

In Section 9, adding an extra hypothesis on A\, and hey we get some
informations in terms of location and quantification of the ¢°-bad discs.

PROPOSITION 8.3. — Assume that A\, § and hex satisfy (8.3). There exists
My € N* s.t. for p € (0,1/2), if {(ve, Ac) |0 < € < 1} is in the Coulomb
gauge and agrees with (3.11) and (8.1), then there exist ¢, > 0 and C, > 1
(independent of €) s.t. for 0 < ¢ < g, there is J, = J,. C {1,..., Mo}
(possibly empty) s.t. if J, =0 then |v| > 1/2 in Q and if J, # O then there
are {z;|i € J,} CQ, a set of mutually distinct points, and r € [e, et with
L = Q’Mgu verifying:

(1) |2 — 2| = r3/% fori,j € J,, i # j,
(2) {lvel < 1/2} € U,, B(zi,r) C @ and, for i € Jyu, B(zi,r/4) N

{lvel < 1/2} #10,
(3) For i € J, we have rfaB(ZM) |Voe|? + 522 (1 = |0e]?)? < Cy and

2e2
[v| > 1—|Ine|=2 on OB(z,7).

Proposition 8.3 is proved in Appendix G. We have the following standard
estimate.
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PROPOSITION 8.4. — Assume (8.3) and let {(ve, Ac) |0 < e < 1} be as
in Proposition 8.8. Fiz pu € (0,1/2) and let €,, C, be given by Proposi-
tion 8.3. For 0 < e < ¢, we consider J,,, {z;|i € J,} CQ and r obtained in
Proposition 8.3. We denote d; := degyp ., ) (Ve)-

There exists ¢, > 1 independent of € s.t. for € < e, we have

|di| <44/Cl, (8.5)
2

1 2 b 212 r
! B s el (D) —es (88
2 /B(zmr) [Veel” + 282( [vel®) m|di[In € Cub (86)

and then
r
F E,B 3 > di inf [l (7)— }
(ve, B(z, 1)) = | |Blg7r)a n |- Cub

>7 inf o|di|[(1—p)lne —cup]. (8.7)
B(zi,r)

Moreover there is 0 < £, < €, s.t. for 0 <e <&, we have
d; # 0 for alli (8.8)
and

Mg

> ldil < Dy = 2

i€,

(8.9)

Proof. — Tt is classical to get (8.5) from Proposition 8.3(3) and the
Cauchy Schwartz inequality. Estimate (8.6) follows from Proposition 8.3 and
Lemma VI.1 in [2] and (8.7) is a consequence of (8.6).

The proof of (8.8) is done arguing by contradiction with the construction
of a comparaison function

_ {v in Q\ B(z,,r)

pe'®  in B(zi,,r)

s.t. v € HY(Q,C) and F(v, B(z,,7)) = O(1) where we assumed d;, = 0.
Since (v, A) is a quasi-minimizer of F we have F (v, A) < F(v, A) + o(1).
On the other hand, by direct calculations F(v,A) — F(v,4) =

F(v,B(ziy,7)) — F(U, B(24,7)) + 0(1). Consequently F(v, B(z;,,r)) = O(1)

which is in contradiction with F(v, B(z,,7)) = C}/2|lne| (given by Propo-
sition 8.1) for small .

We now prove (8.9). From (8.7) we have Z']M |d;| [m(1 — p)lne| —¢pp] <
%. Since p € (0,1/2), the last estimate gives the result for ¢ > 0

sufficiently small. O
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8.3. Lower bounds in perforated disks

The goal of this section is to get lower bounds for % Ip a|Vv|? where D
is a perforated disk s.t. D C Q and |v| > 1/2 in D.

The starting point of the argument is an estimate on circles. Let be (0,1),
B € L>=((0,27), [b,1]). With Lemma D.7 in [6], for ¢ € H*((0,27),R) s.t.
©(27) — p(0) = 27, we have the following lower bound:

1 [ 272
5 [ Bloeel® > -7 (8.10)
0 o B

In order to use (8.10) we need to do a preliminary analysis.

For a = U2 € L*(Q, [b?,1]), using Lemma E.1 in [6], we have the exis-
tence of C' > 1 (independent of ¢) s.t.

For almost all s > §/3, letting € be a circle with radius s,
(8.11)
we have [, o (1 —a) < Cs.
From now on, in all this section, we consider a sequence ¢ = &, | 0,

A, 0, hex and ((ve, Ac))e C S satisfying the hypotheses of Proposition 8.3
(namely (3.11), (8.1) and (8.3)). We drop the subscript € writing (v, A) in-
stead of (ve, Ac)

Recall that nq is defined in (6.14) and consider
re€Qand 0 <r=7. < R= R. <ngq s.t. dist(z.,00) > ng > 0. (8.12)

We then denote #Z := B(z., R) \ B(z,7) C Q.

Assume |v| > 1/2 in Z and let d := degy,(v). From the proof of Proposi-
tion 8.3 (see (G.2) in Appendix G), there exists 1/2 < t. <1, t. =1+ o(1)
st. te € Im(jv]) N1 —2/|Ing?,1 - 1/[Ine|?] and
V(te) := {|v| = t.} is a finite union of Jordan curves included
in 2 and of simple curves whose endpoints are on 9§ and (8.13)
HHV (te)] = o(1).

and since H2({|v| < t.}) = o(1) we then have

if U is a connected component of {|v| <t.} s.t. U C Q
then there is I', a connected component of V' (¢.), (8.14)
which is a Jordan curve s.t. U C int(T").

Remark 8.5. — Since H[V(t.)] = o(1), for sufficiently small ¢, if T
(resp. U) is a connected component of V(t.) (resp. {|v] < t.}) which in-
tersects # then I' is a Jordan curve (resp. OU is a union of connected com-
ponents of V (t.)).
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We have the following lemma:

LEMMA 8.6. — Assume x.,r, R satisfy (8.12) and we assume |v| = 1/2
in #. Then, for s € (r,R), letting

Ky = {0 € 0.2m) | o(ee + 50 < 1)

we have

Proof. — Let s € (r,R) be s.t. H(K,) > 0 and denote K, := {z. +
se'? |0 € K,} € 0B(z.,s). Then H'(KC,) = sH' (K,).
On the one hand, letting V(¢.) be the union of the connected compo-

nents of {|v| < t.} which intersect %, we have K, = Vg (t.) N OB(z., s).

On the other hand, by Remark 8.5, 9V(t.) is a union of connected com-
ponents of V(t.) which are Jordan curves. Among these Jordan curves, we
may select the maximal curves w.r.t. the inclusion of their interior. We de-
note these maximal curves by I'y, ..., 'y and we let fori € {1,..., N}, V; :=

int(T';). We then obtain Vg (t.) C Ufil V; and thus K, C Uij\il[ﬁB(Is, s) N
Vil.
For ¢ € {1,...,N}, we fix x; € V; and we define the disk B; :=
B(z;,diam(V;)). It is clear that V; C B;. Consequently
HOB(ze,8) N V] < HY[OB(x., s) N B;] < 21 diam(V;).
We claim that 2 diam(V;) < H*(T;). Since the curves T'; are pairwise disjoint,
we have SN HY(T;) < HU[V(t)].

We may now conclude:

N
sHY(K,) = <Y H'[9B(xe,5) N Vi
=1

< WZ 2diam(V;) < 7H'[V(t.)]. O

The next proposition is one of the major uses of the dilution A — 0.

PROPOSITION 8.7. — Let z., 7, R satisfying (8.12) and r = o(R), assume
also |v| =2 1/2 in #. We write d := degg(v) and, in X, we let w := v/|v]
and p :=|v|.

(1) Ifr >6/3 and if H*[V (to)]/r 4+ (1 — t2) + X\ = o[1/In(R/7)] then

1 1
f/ alVo|* > 7/ ap?|Vw|? > nd? {ln <E) - 0(1)} .
2 )z 2 )z r
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(2) If r = o(1) and if H [V (te)]/r + (1 — %) = o[1/In(R/7)] then

/ |Vo)? > / P2 |Vw|? > nd? {ln (g) 70(1)} .

Proof. — We prove the first assertion. We claim that, up to replacing v
with v, we may assume |v| < 1 in Q. Moreover, if d = 0 then there is nothing
to prove. We then assume d # 0.

We write v = pe*® where ¢ is locally defined and its gradient is globally
defined. Letting . +R* := {z.+s|s > 0}, we may assume ¢ € H'(%Z\ (z-+
R*),R). For s € (r, R), we let ¢4(0) = p(z-+se"), ps(0) = |v(zc+se)| and
as(0) = a(z. + se*). Then ¢, € H((0,27),R) is s.t. p4(27) — ¢s(0) = 27
and we immediately get

1 2 (Ras [
5 [arvul =G [ [ atlone.as,
Xz r S 0

From (8.10) with 8 := a,p? we get

1 2m 271.2
5/0 asp§|39305|2 = Tor 1 -

fO asp?

Since b%/4 < asp? < 1 we have

27 27 2 2T 2T
1 1-— 4
0</ ; —27r=/ — s < / 1—p§+/ 1-ay ).
0 sPs 0 AsPy b 0 0

On the one hand, from Lemma 8.6 we have

TH [V (te)]

27
/ 1—p? <SH(K,) + [2m — HY(K)] (1-12) < +27(1 — t2).
0

On the other hand, using (8.11), there is C' > 1 (independent of ¢) s.t.
[2™1 — ay < CA. Then

0

S| 4 YV (t.

/ 2<2w+7{m+2ﬂ(1—t§)+0)\ :
0 Qsps b 5

We thus get

1 9 9 2/ dS 27r2
1 >d
2/%04; Vel ro 821 — g [THUV ()] /s + 2m(1 — 12) + O

= 7d* {hl <§) +0(1)} .

The second assertion is obtained exactly in the same way than the first
one. Indeed, since a plays no role in the statement, we may use the same
argumentation with A = 0 and > 0 an arbitrary small number. ]
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We now state the reformulation of Proposition 8.7 by replacing the an-
nular # with a perforated disk.

COROLLARY 8.8. — Let Dy € N* be independent of e, 0 <r=r. < R=
R. be s.t. 7 =0(R), N= N, € N* be s.t. N < Dy and z1 = 25,...,2ny = 2%
be s.t. |z — 2| = 8r fori #j.

Lety = y. € Q and assume 21, ...,zy € B(y, R) C B(y,4R) C B(y,nq) C
Q. We let D := B(y,2R) \ U, B(zi, 7).

Assume p = |v| 21/2inD. Fori € {1,...,N}, we letd; :==degyp(,, (V).
We also assume d; > 0 for all i € {1,...,N} and Zf\il d; < Dy. Write

v=pw inD.

Then there exists Cy > 0 depending only on Dy s.t.:
(1) If r = 6/3 and H [V (to)]/r + (1 — t2) + X = o[1/In(R/7)] then, for

sufficiently small €, we have

1 1
Q/Da\VUP > 5/ ap?|Vw|? > ﬂZdzln R/r) —

(2) IFHHV (t)]/r+ (1 —t2) =o[1/ ln(R/r)] then, for sufficiently small

€, we have

/ |Vol? > / P’ |Vw|* > deQ In(R/r) —

i=1
Proof. — We claim that, up to replacing v with v, we may assume |v| < 1
in Q.
We first proceed to a scaling with the conformal mapping:
®: B(y,4R) — B(O 4)
- y
s XY
v R
We then let z; := ®(z;), 7 := r/R, D= ®[D] = B(0,2) \ UilB(Ei,?),
d:=aod® land v:=vod L
IfN=1or N > 2 and |Z; — Z;| > 4 x 1072P0 for i # j then, letting
Q:= B(0,4), ng = 10~!, we may apply Proposition 8.7 (1)

= a|Vv| = a\V |
2 Z B(£:,2x1072P0 )\ B(%;,7)

>y di (In(R/r)] = In(2 x 107220)[) + o(1).

i=1

a|va|?
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This estimate is the desired result with Cy = 7 D2|In(2 x 10720P0)| + 1.

If we are not in the previous case, i.e. N > 2 and there exists i # j s.t.
|Z; —Zj] < 4x1072P0_ then we apply the separation process presented in [6,

Section C.3.1] to the domain D with Nstop := 1072P0,

The key ingredient in the separation process is a variant of Theorem IV.1
in [4] (stated with P = 9, the general case P € N\ {0, 1} is left to the reader):

LEMMA 8.9. — Let N > 2, P € N\ {0,1}, 1,...,zxy € R? and n > 0.
There are k € {P°, ..., PN"1} and 0 # J C {1,...,N} s.t.

N

UB(xi,n) C U B(zi,kn) and |z, —x;| = (P — 1)k fori,j € J, i # j.
i=1 icJ

The separation process is an iterative selection of points in {Z1,...,Zy}
associated to the construction of a good radius.
We initialize the process by letting ng:=7, My:=N and Jo={1,..., My}.

For k > 1 (where k is the index in the iterative process) we construct a
set 0 # Jp € Jg—1, My, := Card(Jx) and 3 numbers

_ L
rp € {9%, ..., 9Meam I gy 1, 1Zi — Z;| and ny := 2kpm;.
i#]

These objects are obtained with Lemma 8.9 with P = 9, N = M;_; =
Card(Jy—1), {z1,...,an} = {zi|i € Jy_1}, J = Jk, 1 = Mk, & = kg The
process stops at the end of Step Ko > 1 if Mg, = 1 or Mg, > 2 and
min je s, |2i — Zj| > Mstop-
i#j
By construction, we have for 1 < k < Ky, 0 # J, € Jp_1 and n,_1 <

=

M, < M. In particular, since Card(Jy) < Dy, we get Ko < Do — 1.
By definition, for k € {1,..., Ko} we have 2 - 9}, < < 9P0n,. We let

Mo i= 9D0 * Mstop if MKO =1
0 -— . . ~ ~ .
min{920 - siop, § Ming je s, izg 120 — 251} if Mk, > 2

and then 79 = Nstop = 10=2Po, For k € {0,..., Ko — 1} and i € J; we

denote %; . := B(Zi,m, 1) \ B(Zi,nr), and, for i € J,, Z; := B(Zi,1m0) \
B(Zi, Kk, ). By construction, the previous rings are pairwise disjoint. From
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Proposition 8.7(1) we have for k € {0,..., Kq — 1} and ¢ € Ji:

1 e -
5[ VIR > mdega, (9 G /) ~ 0] = of1)
Kk

>r > di (e /me) — DG In(97°) — o(1).

2;€B(2i,m;,, )

And for i € Jg,:

1 P 5
5 [ aIVEE > mdege, (0 Intm/nx,) ~ of1)
%.

>n Y dIn(n/nk,) — o(1).

2;€B(2:,m0)

By summing the previous lower bound we get the result. As for Proposi-
tion 8.7, the second assertion is obtained in a similar way than the first
assertion. (|

8.4. Lower bounds in a perforated domain

In this section we state a lower bound for a weighted Dirichlet energy in
the domain Q perforated by small (but not too small) disks. The philosophy
of this lower bound is that in the case which interest us we may ignore the
weight if the perforations are not too small; it is an effect of the dilution
A—=0.

PROPOSITION 8.10. — Let 3 € (0,1), (an)n C L>=(Q,[3%,1]) be s.t.

K, = /(1 —dn)2 = 0.
Q

Let N € N* and (z,d) = (z, d)(n) C (V) x ZYN be s.t. D is independant of
n. We denote I := min, dist(z;, 02).

Assume the existence of T > 0 s.t. ¥ = o(1), (6.1) holds and s.t. there is

Ci1 > 0 (independent of n) satisfying Fll;jl < Cy. Write Q7 := Q\J B(2;,7).

Let (up)n C H'(Q,C) satisfying |u,| > 5 in Qr and degyp(z, 7 (Un) = d;
for all .

Assume also



Pinned magnetic Ginzburg-Landau energy

Then

/&n|Vun|2>/ voEd

T T

= (@57 4 3V ) IV [ 20y (Ko + L) = O(X)
with &Y s defined in Remark 6.3 and X is defined in (6.8).

Proposition 8.10 is proved in Appendix H.

9. Study of the ¢°-bad discs

In this section, in addition to the assumption (8.3) on A, ¢ and hex, we
assume that (1.4) holds. This (technical) hypothesis (1.4) is a little bit more
restrictive than (7.3) (dv/hex — 0) used to get a nice upper bound.

Let € = €, } 0 and let ((v, 4)). = ((ve, Ac))e be a sequence that agrees
with (3.11) and (8.1). Let also p € (0,1/2).

Since (3.11) and (8.1) are gauge invariant we may assume that (v, A) is
in the Coulomb gauge.

The goal of this section is to prove that, for sufficiently small € and p, if
J, # 0 then d; = 1, dist(z;, A) < In(hex)/Vhex and z; € w, for all i € J,
and for ¢ # j, |z; — 2;j| = In(hex)/hex With a “uniform” distribution of the
z;’s around A.

With the notation of Proposition 8.3 we let €, := Q\ ;¢ ; B(zi,7) and
d = Zie‘]“ |dl|
In view of the goal of this section we may argue on subsequences. First

note that from (8.8) we have d; # 0 for all i. Up to a subsequence, from (8.9),
we may assume that J, # () and independent of € as well as the d;’s.

Since we are interested here only in informations related with |v| and the
d;’s, we may consider that (v, A) is in the Coulomb gauge and we may also
change the potential vector. Namely, we may assume that A = V¢ with
¢ =& € HENH?(Q,R) is the unique solution of (5.23). Note that (8.1) still
holds.

Consequently, curl(A) € H' and then with (3.5) and (5.5): [|£]|g3(q) <
Cllne|.

From Proposition 5.7 and letting ¢ = (; := & — hex&o
Flv, V1) = h2Jo + F(v) + 2mhex Y di€o(2i) + V (5,a) () + 0(1).
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Proposition 5.13 implies V(z’d)(ﬁ ) = O(1). Consequently
F(0,V*€) = h2 Jo + F(v) + 27hex Y _ difo(z:) + O(1). (9.1)
In particular we have F(v, V+¢) < h2 Jo + o(1), thus with (9.1) we get
F(v) € =27hex »_ difo(z:) + O(1). (9.2)

From Corollary 8.2 and Propositions 8.3 and 8.4 we deduce — > d;&o(z;) =
1ol o< (@) D_ di 4+ o(1) and we immediately obtain

> d; >0. (9.3)
On the other hand, from Proposition 7.3, we have
F(0, V1) < h2Jo + dMg [—hex + HL ] + Z1(d) Inhex + O(1).  (9.4)
By combining (9.1) and (9.4) we get
F(v) < dm [b?[Ine + (1 — b°)[In(A6)|] + Z1(d) In hex + O(1). (9.5)
In conclusion, from (8.6) in conjunction with (9.5) we obtain

%/ a|Vo|? <dr [b?[Inr|+ (1= b*)[In(AS)|] + Z1(d) Inhex + O(1). (9.6)
Q

r

We first have the following proposition.

PROPOSITION 9.1. — Assume
1 1-b%
0 < g < min { , } 9.7
K Dry+1 2(Dry + 1) (97)
where Dgp = 30}/2“‘ and Mg is as in Theorem 5.6.

Then there exists €, > 0 s.t. for 0 <e <&, if J, # 0 then

(1) d; > 0 for all i,
(2) dist(z;, we) < V/E.

Proof.

Step 1. We prove that d; > 0 for all i. — We argue by contradiction
and we assume the existence of an extraction still denoted by € = ¢,, | 0 s.t.
J_:={ie J,|di <0} #0 (from (8.8), for 0 < € < &,, we have d; # 0 for
all i € J,).
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From (9.3) we thus obtain: } ;. ; \; di > d + 1. Then, with the help
of (8.7), we obtain

F) > 020 —prinel [ Y1+ Y d
ieJ_ i€ T\
> (d+2)7(1 — p)b?*[Ineg| + O(1).
Consequently (9.5) implies d(14+0(1)) > (d+2)(1—p)—o(1). This inequality
gives p > d+2 o(1) which is in contradiction with 0 < u < (Dgp +1)7*
for sufficiently small € > 0 (here we used Dk p > Mg = d).

Step 2. We prove that dist(z;,w.) < \/€ for alli. — We argue by contra-
diction and we assume the existence of a subsequence still denoted by ¢ =
en 0 and ig € Jy s.t. dist(z;,,w:) > /€. From (5.8) we have infp(., .o >
1 — o(|lne|~2). Consequently using (8.7) we get F(v, B(z,,r)) = di,m(1 —
w)Ine|—O(1). Then F(v) > nb?*(1—p)d|lne|+7(1-b%)(1—p)d;, |Ine|—O(1).

From (9.5) we obtain

db*[Ine| + O(ln[lne|) = b*(1 — p)d|lne| + (1 — b?)(1 — p)[Ineg| — O(1).
The last estimate implies 1 > b%ﬁ% + o(1) which is in contradiction with
u< m for € > 0 sufficiently small. O

DEFINITION 9.2.

e Fori € Jywe let y; € §-Z? be the unique point s.t. z; € B(y;,6/2).
Since dist(z;,we) < v/ for all i, y; is well defined.
o We denote also J C Ju a set of indices s.t. UzeJ B(z,r) C

Ures Bk, 2X0) andfork leJstk % 1 we have yr # y,. We
then let for k€ J, Jy := {i € Ju | zi € By, 2X0)}.

e We may also select “good mdzces in order to get well separated
centers yi’s. Using Lemma 8.9 with P = 17, = §, there exists
aset® £ JW C J, and a number k € {1,17,...,17¢d()-1}
(dependent on €) s.t.

{Ukei B(yk,6) € Uresw By, 0)
for k,l € JW with k # | we have |y, — yi| > 16x0.

We denote, for k e JW), 671@ = degap(y,, né)( v).

o There exists also {Jy |k € Jw }, a partition of J,, with non empty
sets (dependent on €), s.t.

B(2i,6/2) C By, k6) <= i € Jp fork e JW
We are going to prove that J= J, and for all k € JW) we have J;, = jk.
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PROPOSITION 9.3. — Assume (9.7), for e > 0 sufficiently small, if J,, #
0 then d; =1 for alli € J,.

Proof. — We argue by contradiction and we assume the existence of a

subsequence (still denoted by ¢ = ¢, | 0) s.t. for all € there exists ig € J,
s.t. dio 2 2.

From Corollary 8.8(2) applied in B(yk, 2A6) \ U;c 5, B(zi,7):

1
f/ alVol> > / |Vvl?
2 Ja, ver 2 /BN, BGan)
A
s rn(y)-
> b ZZdzln —)-om
keJi€Jk
>ab? | 14> d; ln( )—0(1).
i€Jy

We then get F'(v) > nb*(d|lng| + |Inr|) + O([In(\d)]). Since |Ine| = O(|Inr|)
and [In(Ad)| + In hex = o(|lnel), this estimate is in contradiction with (9.5)
for sufficiently small e. O

PROPOSITION 9.4. — Assume p satisfies (9.7) and J, # 0. Then for

sufficiently small € > 0 we have dist(z, A) < %

The proof of the proposition uses the following obvious lemma whose
proof is left to the reader.

LEMMA 9.5.

(1) Let N € N*, D € NY and for k € {1,...,N} let N, € N* and
D®) € NVe be s.t. D =3, d(k). Then we have

N N

ZDk >3 @y

k=11=1

Moreover the equality holds if and only if for all k € {1,...,N} and
forallie {1,..., Ny} we have dl(.k) € {0,Dy}.

(2) Let N,d € N* and denote E; = minDeNN,ZDk=d Z,ivzl D3?. Then
we have for D € NV s.t. 3" Dy, = d:

N
S D% = By =D e {|d/N]: [d/N]}"

k=1
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Proof of Proposition 9.4. — We argue by contradiction and we assume

the existence of a subsequence (still denoted by € = ¢,, | 0) and i € J,, s.t.
: In hox
dist (2, A) > %

Then there exists 7 > 0 (independent of ¢) s.t.

heng(zio) = _heX”gO”L‘X’(Q) + 477(11’1 hex)2~
Consequently:

—2mhexe Y €0(21) < 27 dhex|S0]| Lo (0) — An(In hex).

From (9.2) we get (for small ¢)

F(v) < 2ndhen|€oll (0 — 3n(1n o)
(Hyp. (1.3)) < md|lne| — 2n(In hey)?.

Using (8.6) we get
1
5/ o| Vo> <dr [b?[Inr| + (1 = b*)[In(A6)|] — n(In hex)?. (9.8)

Q.

We let x := 10max, jdist(yx, A) and for p € A, D), := degyp(, ) (v),
= {k € JW |y, € B(p,x)}. For a latter use we claim that x >

P
In(hex)/vVhex and then
AMlnx|/x — 0. (9.9)

We have (see Definition 9.2 for notation)

1
5/9 a|Vu|?

>> 5 / alVol* + ) 5 /  alweP
wes - IBw2N\U,; B e = Bur8/3)\B(ux,228)
1
+ E / alVu)? + 7/ alVul?. (9.10)
2
peA p,x)\UkeJP B(yk,rd) N, B

It is clear that, for k € J, we may use Corollary 8.8(2) in B(yk, 2A0) \
Uiejk B(zi,r) in order to get

> S / a|Vo|? > b?drIn (A(s) +0(1).  (9.11)
By 200\, 5 B(ior)

keJ

Let k € J, from (5.8) and Proposition 8.7 (2) we obtain
1

5 / a|Vol? 2 mdegyp(y, 200 ()3 [In A +O(1).  (9.12)
B(yx,6/3)\B(yx,273)

- 753 —



Mickaél Dos Santos

Let p € A be s.t. D, # 0, Corollary 8.8(1) gives

1 / 2 g
- alVol* > 7 dj;In O(1).
2 B(rx)\U,.c, BWe:#9) k%; ( )

From Propositions 6.4, 6.5 and 8.10 (with (9.9)) we deduce

]‘/ 2 2
= Vol =7 > Dyllnx|+O(1).
2 )\, ., B 2

pEA

From Lemma 9.5 (1) we have

<Y degopg () <Y D A <Y D

ke peA kEJ, peA

Then we get

1

5/ a| Vo> > dr [b?[Inr| + (1 = b*)[In(A8)|] + O(1).

Q.
This estimate is in contradiction with (9.8) for sufficiently small . O
PROPOSITION 9.6. — Assume p satisfies (9.7) and let € = e, L 0 be a

sequence.

(1) If Card(J,) > 2 then for ¢ > 0 sufficiently small and for i # j,
|zi — 2] = hod In hex.
(2) Fore>0 suﬁlczently small we have forpe A, degaB(pvh;(l/z

{ld/No]; [d/Nol}-

In rex) (v)e

The proof of Proposition 9.6 is postponed to Appendix I.

Since Adhex — 0, Proposition 9.6 implies that each cell of period contains
at most a disc B(z;,r) with ¢ € J,,.

Following the argument in [6, proof of the third part in Proposition 3.6,
see Appendix D-Section 4.5], we may refine Proposition 9.1 (2).

PROPOSITION 9.7. — Assume p satisfies (9.7), then there is n,p > 0
depending only on w and b s.t. for i € J, we have B(z;, 21, s ) C we.

COROLLARY 9.8. — Assume p satisfies (9.7). Then we have

1
/ Vol + (1 = [v]*)? = O(|In(Ad))). (9.13)
Q\(J._, B(2i,A282) €
i€Jy

Moreover
[v] =14 o0(1) in 2\ U (25, 2026%). (9.14)
i€Jy
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Proof. — We have

b! 1
— Vo2 + < (1—|v*)? < F(v) — F(v, B(z;, \%6%)).
4 Q\UiEJ‘L B(z:,A26%) e’ ZEZJ;;

For i € J,, from Corollary 8.7 (2):

b2
F(v, B(2, A26%)) > 7/ Vo2 + F(v, B(z,1))
2 JB(2:,3262)\B(zi,1)

> 2027 In(A\S) + b?w|lne| + O(1).

Since, by Proposition 9.6, the discs B(z;, A\20?) are pairwise disjoint, we
obtain with (9.5):

b* 1
- [Vol? + 5 (1= [v]*)? < O(|In(Ad))).
4 N, ,, BzA2?) £

This estimate is equivalent to (9.13).

We are going to prove (9.14). We argue by contradiction and we assume
the existence of an extraction still denoted e = ¢, | 0, ¢ € (0,1) and (x,,), C
Q\U,eg, B(2i,2X%0%) s.t. Jve,, (z2)] < .

By Proposition 8.1, there exists Cy > 0 s.t. for sufficiently large n:

1
/ Voo, 24 = (1= oo, )2 > Cillnen].  (9.15)

B(xn,VE,,)NQ &n
Moreover, for n sufficiently large to get /g, < A?6%, we have [B(zy,/z,) N
Q] C Q\ UieJH B(2;,A\%6?). This inclusion is in contradiction with (9.13)
and (9.15). O

From Proposition 9.7, for i € J,,, we have Z; := %% € w where y; € 0Z2

is s.t. z; € B(y;, Ad). Moreover, up to considering an extraction, we may
assume that, for i € J,, there exists 20 € w s.t. 2; — 27.

We start with the following proposition.
PROPOSITION 9.9. — We have the following sharp lower bound:
F(v,A) = h2 Jo + dMgq [—hex + H) | + Z1(d) In hey + ZLo(d)

+ ) WMO(Z)) — min W] 4 [Wy(D) — W] + o(1)
=y

where Wy = mina, Wy is defined in (7.2) and

Wa(D) 1= W™(p,D) + Y Cpp, + V[{pp)] (9.16)
peEA
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where forp € A, D € N*, C,, p is defined in (6.16), Cp o := 0 and V[C(p’D)]
is defined in Proposition 5.13.

We split the proof of Proposition 9.9 in several lemmas.

The first step is the following lemma consisting in a “macroscopic/
mesoscopic” version of Proposition 9.9.

LeMMA 9.10. — Let p = |v] and w = v/p in Q\ U, B(yi;0/3). We
then have

ap?|Vw|?

sh
2Ja\U,.,, Bwna/3)
> drlln(6/3) =7 > > Infzi — z] + W (p, D) + o(1).

peEN i,jEJp
bbDp>2 i)
Proof. — On the one hand, from Proposition 9.4 and letting x := hex 1/4
we have [v] > 1/21in Q\ U, B(p; x)- Then, from Proposition 8.10, we have

1
/ alVol? > 7T§ D2l x|+ Wi (p, D) + o(1).  (9.17)
NU, ) Ble) pEA

On the other hand, from Proposition 9.6, if Card(J,) > 2 then, for i,j € J,
with i # j, we have |y; — y;| = hod In(hex) — 209.
Consequently, if D), = deggyp(, ) (v) # 0 (7q is defined in (6.14)), letting
Jp={i € Ju|z € B(p,na)}, Dp = B(p,X) \ Uics, Byi, hex' ),
& B(p,x) — D= B0, 1)
)
X

D=vod !l G =aod ! Y/D\p := ®(D,) and 7; := P(y;) for y; € B(p,X),
then we may apply Proposition 8.10. Writing (y,,1) = {(7:,1)|i € Jp},
Proposition 8.10 gives:

1

1
f/ ol Vo2 = f/ alvo|? > nD p I (Xhex) + WD (Yp, 1) +0(1) (9.18)
2 D, 2 D,

where Wgﬁ%o is the macroscopic renormalized energy in the unit disc D
with D,, points.

From Proposition 1 in [13] we have

Wmacro( p7]1) E— Z [hl':z/\z — /y\]‘ — ln‘l — @\z?]‘] + Z ln(l - |/y\z|2>
IRTA i€Jp
i#]

— 756 —



Pinned magnetic Ginzburg-Landau energy

. —1/2
Using Proposition 9.4, we get for ¢ € J,, |7;] < Pox " Inhex o(1) and then

X
Wmacro(yp, ]1) =7 Z 1H|y1 _ yj| — W(Dg — Dp)|1n X| =+ 0(1) (919)
4,jE€Jp
i#£]

For i € J,, we let Z; := B(y;, hoo) \ B(yi,6/3). With Proposition 8.7(1) we
obtain

1
f/ a|Vo|? = 7tIn(0hey/3)]. (9.20)
2 )

By combining (9.17), (9.18), (9.19) and (9.20) the result is proved. O

The second step is a “microscopic” version of Proposition 9.9.
LEMMA 9.11. — Ifr <7 < A\262, then:
> F(u, %) = dr (In(3N)] + b2 [In(AS/7)]) + Y W™re(2)) + o(1)
1€J, i€Jy,
where, fori € J,, %; == B(y;,0/3) \ B(z;,7).
Proof. — Note that in order to prove Lemma 9.11 (up to replacing v
by v) we may assume p = |v| < 1.
We first consider the case A*9* < 7 < A262. We then may assume
> F(v,%:) = O(|In(Ad)]) (9.21)
i€,
since in the contrary case there is nothing to prove.
Fix i € J,, and let v, be a minimizer of F.(-,%;) in H'(%;,C) with the

Dirichlet boundary condition trae, () = trae, (v). Note that such minimiz-
ers exist and we have F; (v, %;) < F:(v,%;) = O(|In(\9)|).

The key ingredient consists in noting that since v, is a minimizer of a
weighted Ginzburg-Landau type energy we may thus use a sharp interior
n-ellipticity result. Namely, following the strategy of [9] to prove Lemma 1
(see [9, Appendix C]), by using the first part of the proof (the interior argu-
ment which does not required any information on trpg, (v4)), we get

px = v 2 1= 0O(y/|In(Ad)|/[Ine])
in Z; == B(y;,6/3 — /Y \ B(z;, 7+ e/Y). (9.22)
Write in @/z Uy = pxwy where w, € Hl(@/7 Sh.

Note that by (1.2) (namely [In(A\§)|=O(In|lne|)) we have |[In(\5)|?/|Ine|=
o(1) and then from (9.21) and (9.22) (and also p, < 1) we have

/~ ap?|Vuw,|? :/~ a|Vw, |* + o(1).

2 2
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We then immediately get:

1

F(o, %) > Flo, %) > / oV, |? + o(1)
R
. 1 9
> inf = a|Vw|” + o(1).
weH (%:,SY) 2 Ja,
deg(w)=1
It suffices now to claim that from (6.21) we have
1 _ .
inf f/ a|Vw|? = 7 (In(BA)| + b*[In(A5/7)]) + W™ (Z)) + o(1)
weH (%:,SY) 2 Ja,
deg(w)=1

in order to get F(v,%;) > = (|In(3X\)] + b?[In(A/7)[) + W™ire(292) + o(1).
By summing these lower bounds we get the result.

We complete the proof by considering the cases r < 7 < A% With
Proposition 8.7.2 we get

b2
1/ a\Vv|2 > —/ 7|V1}|2
2 JB (2 X6\ B(z0o) 2 JB(z X169\ B(z17)

454
> b% In )\:5 —o(1).
T

This estimate ends the proof. O
LEMMA 9.12. — There ezists 1 <7 = 0(\26?) s.t. fori € Ju we have
Flv, B(z;,7)] = b*[xIn(7/e) + Inb+~] + o(1).

Proof. — We first note that we have

> Flv, B(2,X%6%) \ B(z,7))

i€,
< db?*mIn(A26%/r) + L (d) In hey + O(1).  (9.23)

The above estimate is proved by contradiction and assuming the existences
of an extraction (still denoted by € = ¢, | 0) and of a sequence R,, 1 00 s.t.

> Flv, B(2,X%6%) \ B(z;,7)] > db*mIn(\?6/r) + 21 (d) In hex + Ron.
icJd,
From (8.7) we get
> Flv, B(2i,\%6%)] > db*m In(X?6° /) + L1 (d) In hey + Ry + O(1).
i€Jy,

Using Lemmas 9.10 and 9.11 we get an estimate which contradicts (9.5).
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By a classical argument, for sufficiently small ¢, there exists /7 < 7 <
rt/4 st fori € J,

b2 4.2 (d)In hey + O(1
C/ |V’U|2 (1_‘ | ) T+ 1( ) 1 + ( )
2 OB (z;,T) |1n7”|

Arguing as in the proof of Proposition 8.3 (Step 3 in Appendix G) it is clear
that we may assume |v| > 1 — |Ing|~2 on dB(z;,7) for i € J,,.

We now define for i € J,,, p; := trop(.,.» ([v]), wi == trop,.»(v/|v]). We
immediately get

T T b2
5/ [Vw;[* =7+ o(1), 5/ Voil® + 55 (1= p7)* = o(1).
OB(z;,T) OB(z;,T)

On the other hand, since deg(w;) = 1, there exists ¢; = ¢; . € H'((0,27),R)
s.t. ;(0) = ¢(2m) € [0,27) and w; (2 +7e?) = eI (@) A direct
calculation gives:

27 27
27T+0(1):F/ |5’rWi|2:/ |(¢i+9)’|2:27r+/ EA
OB (2,7) 0 0

The last equalities imply ¢, — 0 in L?(0,27) and then ¢; — ¢;(0) — 0 in
L?(0,27). Hence, up to a subsequence, we get the existence of 6; € [0, 2]
s.t. ¢1 — '91 in H1(0727T).

We now define w; € H*(B(z;,27) \ B(2;,7),S!) b

~ 5. (2450 ~ 2 —
@iz + se'?) = e lF0: " with (2 + se*?) = [¢:(0) — 0] 7‘? >+ 6

A direct calculation gives fB(Z, SNBGEF |Vi|2 = o(1) and then

1 . 1 ~
s var=5/ 10+ iz + se )] +o(1)
B(Zri,QF)\B(Zi,f) B(thf)\B(zi,’l_‘)

= mln(2) 4+ o(1).
Let p; € H'[B(2;,27) \ B(2;,7), RT] be s.t. p; (2 + se*) :=p; (2; +7e*?) =2 +

s=T

T

We then have F[p;, B(z;, 2r)\ B(z;,7)] = o(1). Consequently, letting v; :=
piw; € HY[B(z;,27) \ B(z,7),C] we have

Flos, B(z:,27) \ B(z,7] = Z;/B(

\V@P —|—0(1).

Zi ,2?)\3(273 ,F)

In order to conclude we let

Wi = Ui in B<Z152F) \B(Z“m,
" v in B(z, 7).
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It is clear that u;(z; +27¢'?) = e*%e and then, using Lemma IX.1 in [4],
we get

Flu;, B(z;,27)] = b*[7 In(27/e) + v + 7w Inb] + o(1).
The last estimate ends the proof of the lemma. O
Proof of Proposition 9.9. — From the three previous lemmas we have
F(v) > dr [b*[lne] + (1= 0*)[lnAd)|] =7 > Y Infz -

peEAN i,jEJp
bbDp 22 i#j

+WEO(p, D) + Y W) 4 db?[rInb + 7] +o(1). (9.24)
i€y,

On the other hand, with Corollary 5.20 (estimate (5.30)) we get
Flv,A) 2 h2Jo + 2hex Y €0(2i) + F(v) + V[¢ppy +0(1)  (9.25)
i€,
where ((p p) is defined in Proposition 5.12.
From Proposition 6.10 (estimate (6.15)), for p € A s.t. D, > 2, we have:
-7 Z ln|zz—z]|+27rhexz&) 2;) (p)]
1,j€Jp
i#£j

> —(D:-Dy)ln <%> + Cp,p, +0(1). (9.26)

il

2P D,

By combining (9.24), (9.25) and (9.26) (and also &y < 0) we obtain
F(v,A) = h2 Jo + dm [b*[Ine| + (1 — b*)[In(A)|] — 27 dhex |0l L ()

hex macro
+ T Z {(Di —Dp)ln( ) +C D} + WR2°(p,D)

2 Dy
pEA
bbD,>2
+ 2 : mero 7 + V[C(p D)] 4 db? [77 Inb+ fy] (1) (927)

i€Jy,

It suffices to see that, since D € Ay, from the definition of % (d) we have

™ hex m
5 > (D} -D,)n (D ) = Z1(d) Inhey + 5 > (D, - D})In(D,)
bpr€A>2 ’ pel
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in order to deduce from (9.27) that
Flv, A) > h2Jo + dr [~2hexlléol o) + Blnz] + (1 — 03)[In(A)]]
+ LA(d) Inhex + > WMT(20) + Wy(D)

icd,
T
+5 > (D — D2)In(Dy) + db*[wInb+ 4] + o(1)
peEA
where Wy(D) is defined in (9.16). This estimate with the definition of HY,
and Wy (see (7.2), (7.5) and (7.6)) ends the proof of the proposition. O

10. The first critical field and the location of the vorticity defects

We assume that A, 0, hex satisfy (1.2) and (1.3) for some K > 0 indepen-
dent of . We assume also (1.4). We consider a sequence € = ¢, | 0.

As in the previous section we focus on sequences of quasi-minimizers of
F. For simplicity we write (v, A) instead of (ve, Ac). We assume that (3.11)
and (8.1) holds and since (3.11) and (8.1) are gauge invariant we may also
assume that (v, A) is in the Coulomb gauge.

From above results, for a fixed p > 0 sufficiently small (satisfying (9.7))
and for ¢ > 0 sufficiently small, there exists a (finite) set Z C Q, de-
pending on ¢ and possibly empty s.t. letting d := Card(Z) (we write Z =

{Zl,...72’2})2
o If d =0, then |v| > 1/2 in Q.
e If d > 0, then |z — zj| 2 holInhex if i # 4, |v| = 1/2 in Q\
Ule B(zj,et) and degyp(; cuy(v) = 1 for z € Z.

Moreover d = O(1). Then if needed, up to a subsequence, we may assume
that d is independent of e.

By combining Corollary 5.10, Propositions 6.10, 7.3, 9.6 and 9.9 we get
the following corollary.

COROLLARY 10.1. — Assume X, 0, hex satisfy (1.2) and (1.3) for some
K > 0 independent of e. Lete = e, | 0 and let ((ve, Ac))e C JZ be a sequence
satisfying (3.11) and (8.1). Assume that d is independent of . Without loss
of generality we may assume that (ve, Ac) is in the Coulomb gauge. We have

F(ve, Ae) = h2 Jo+dMg[—hex + HY |+ 21 (d) In hex + Z5(d) + 0(1). (10.1)
Moreover, if d # 0 then:
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o We have D € Ay (see (7.1)) and D minimises Wy in Ag where Wy
is defined in (9.16).

o Forpe A st. D, >0 andi € Jp, we denote Z; := (2; — p)\/Dp/hex
and z, := {%;|i € Jp}. Then, up to a subsequence, z, converges to
a minimizer of W' defined in (6.17).

o Forie{l,...,d}, we write Z; := (z; —y;)/(\0) € w where y; € §Z>
is s.t. z; € B(y;, A0). Then, up to a subsequence, z; converges to a
minimizer of Wmicro,

For a further use, we claim that for dy > 0, from Proposition 7.3, there
exists a configuration (v°, A%) € 5 which is in the Coulomb gauge s.t.

F(°, A% — h2 Jo
= doMg [~hex + H2 | + 21 (do) In hex + Z2(do) + o(1).  (10.2)

Recall that, from Lemma 7.1, for d # 0, we have d € {1,..., Ny} if and
only if £ (d) = 0 and %5 (d) = Wj.

For further use, in the next lemma, we define four kinds of numbers A&l),

A((;)d, AEIQ) and Afﬁ)d. Lemma 10.2 (whose proof is left to the reader) is
dedicated to give some explicit expressions of this numbers based on basic
computations.

LEMMA 10.2. — For 0 < d < d' we let:
(1) AD = AGD-Z@ _ {d J

Mg Mq [ No
(2) A((i},)d = zﬁiziﬁd) = Ma(@=a) k:dl L\%J
(3) Aff) = 732(d+j};$2(d) and
Aff) WH]QQ Wa
B {0 if d < No—1,
s SO+ S D O+ [ )+ (=[5 ) | ]] i d > No.

2 Lr(d)—L(d , 2 W =W,
(4) A&,?d = 7"}%@,725 ) thus, if d < Ny, then Ag/?d = 7M§‘:(d,7dd).

By using (10.1) and (10.2) we easily get the following corollary.

COROLLARY 10.3. — Lete =€, | 0, A, 8, hex and ((ve, Ac))e C I be
as in Corollary 10.1.

Assume that d is independent of €. Then we have for d' > d
hex < HY +AD < nhey + AR, + 0(1).
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Then, letting x be s.t. hex = HY (1+x) (x = o(1) from (1.3)), we have thus

hex < HY, + AG), x I HY, + AL, + o(1). (10.3)
Ifd > d >0 then
hex = H2, + A, x m HY, + AP, +o(1). (10.4)

We are now in position to give an asymptotic value for the first critical
field. Indeed with Corollary 10.3 ((10.3) with d = 0 and d’ € {1,..., Ny}
and (10.4) with d > 1 and d’ = 0).

COROLLARY 10.4. — Denote H., := HY + mingeqy,. NO} i Let
{(ve, Ac) |0 < & < 1} C S be a family of quasi-minimizers satisfying (3.11).

(1) If for sufficiently small e we have d = 0 then hex < He, + 0(1).
(2) If for sufficiently small € we have d > 0 then hex = H., + o(1).

Proof. — The corollary is a direct consequence of Corollary 10.3 taking
d' € {1,..., Ny} which minimizes AEI%?O = Wyu /(Mqd') in (10.3) for the first
assertion and d’ = 0 in (10.4) for the second. O

10.1. Secondary critical fields for d € {1,..., Ny}

If No =1, if hex is near H., and if d > 0, then it is standard to prove that
d=1.1f Ny > 2and d € {1,..., Ny}, then the situation is more involved:
we have no a priori sharp informations about the number of vorticity defects
and their (macroscopic) location. The goal of this section is to get such
informations.

10.1.1. Preliminaries

Note that for 0 < d < d’ < Ny we have Ad, 4 = 0and Afﬁ?d = %.

Rephrasing Corollary 10.3 for d,d’ € {0,..., Ny} we have the following
key lemma.

LEMMA 10.5. — Lete =¢, 10, A, §, hex and ((ve, Ac))e C I be as in
Corollary 10.1.

Assume Card(Z) = d is independent of € then the following properties
hold:
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(1) If0 < d’ < d then, letting Wy := 0, we have hey > HSJ%—}—
o(1). In particular taking d' =0 we get hox > 531 tj\ljf\:)dd +o(1).
(2) Ifd < No and d < d < Ny then hex < HY, + 374554 + o(1).
(3) fNo =2, No=d >d>1 then
Wa  Wa—Wy Wa Wa Wa  Wa—Wy Wa Wy
d/ < dl—d ¢>7< d/ and d/ > d/—d <:>7> d/ .
(4) If Ng > 2 and No > d' > d > 1 then
Wa  Wa —Wy Wi  Wa
I d—d ~d @
(5) If No 2 2 and 0 < d < d' < d’ < Ny then we have the following
convex combination

Wd”_wd B d//—d/Wdu—Wd/ d/—dwd/—Wd

d" —d 7d”—d d" —d er”—d d —d

W /lfwd . W //7W ’ W /7Wd
Consequenlty —47——* is between —4—% and —5—.

Proof. — The two first assertions are obtained with Corollary 10.3. The
remaining part of the lemma consists in basic calculations. O

10.1.2. First step in the definition of the critical fields

Assume Ny > 2. We are going to define some energetic levels (in term
of Wy) related with the number of vorticity defects and their (macroscopic)
location.

We denote d§ := 0, 1 = {1,...,No}, J* = mindeyl% =
W 7W * J—
minge o, W Fr={de S |Wq/d= 7} and 21 :={D € Ay|d €

1 and D minimizes Wy}. We let also di := max .77]" and 5 := 2, N Ag;.

If df = Ny we are going to prove that for hey > He, + o(1) (but hex not
too large), then there is exactly one vorticity defect close to each point of A.
In the contrary case (1 < df < Np), then there are other critical fields which
govern the number of vorticity defects.

Ifd’{ < N(), then % := {d;ﬂ-l,,N()} 7& (. For d € S5 we let %(d) =
W
;T I = {d € S| H(d) = ming, H}, di = max.¥y and Ay =

H(d3).

We denote 7, := {D € Aq|d € 5 and D minimizes Wy} and 25 :=
PN Ad; .
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We claim that for d € .5 we have Wq/d > Wy /dj. Then, with Lem-
ma 10.5(3), we get #3(d) > Wa: /df. In particular
Was —Was Was
L%/* — 2 1 > 1
o d—di df
If d5 = Ny then we stop the construction. In the contrary case, for d € .5 :=
{d5+1,...,No} # 0 we have J#a(d) > Ja(d3).

= . (10.5)

We continue the iterative construction. For k > 2, assume that we have
1<d;_ | <dj <Ny, welet Sqq:={df+1,...,No} # 0 and we assume
that for d € S11:

Wa=Wa, | Wiy = Way

K (d) = = 10.
. (d) d—di_, = dy —di_, A (106)
Wa—Wx
For d € S 41 we let Hpy1(d) = ——=,
k

L = {d € Shg1 | Hryr(d) = g’?ﬂ f%/k+1} ;
djyq = max S and ) = K (di ).
We define also
D1 :={D|D € Ay, d € | and D minimizes Wy}
and 2., = D1 N Ad2+1'

From (10.6) we have
Wiy, =Wy, Way = Wa
Ay — diy d; —dj,_,
Then, from Lemma 10.5(5) with d = dj_,, d’ = dj; and d" = df_,, we get
that . (dy, ;) is between 7" and %, ;. Consequently, with (10.7) we get
Kk > K (10.8)

We stop the construction at Step L s.t. df = No. Since 1 < di < di,; < No,
it is clear that a such L exists and 1 < L < Np.

S (di 1) = L= (10.7)

We then have two possibilities: L =1or L € {2,...,No}. If L > 2 then,
for k € {1,...,L — 1}, (10.8) holds. We also claim that (1,...,1) € ZL.

LEMMA 10.6. — Let k € {1,...,L}, assume that df — dj_, > 2 and fix
dy_, <d<dj. We have

Wa: — Wa Wa—Wa,
—h E A
i —d d—di_,
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Moreover, if d ¢ .}, then

Wa: =Wy . Wa—Wa: |
* = Tk *
di—d d—d;_,
. Wd—wdz ) War =Wy
Proof. — From Lemma 10.5(5), %" is between a=a—, and —gi—g
Wa—Wy

On the other hand, from the definition of dj, J£* < Wh. Clearly
k—1

the first part of the lemma holds. If d ¢ . then, by definition, J* <

WaWay |
d—d;_, O
10.1.3. Main result
For k€ {1,...,L} we let
(1 _ o A
K,/ =H; + o (10.9)
and we let also
K™ = H + A x mnH + AR (10.10)

Recall that the %, *’s are defined in Section 10.1.2 and A%g and Aﬁg in
Lemma 10.2. Note that H,, = K&I).

PROPOSITION 10.7. — Assume that (1.5) holds and X, 9, hex, K satisfy
(1.2), (1.3) and (1.4).

Let {(ve,Ac)|0 < e < 1} C I be a family satisfying (3.11) and (8.1)
which is in the Coulomb gauge. Assume d. = Card(Z.) € {1,..., No}.

We denote D = (Dx, ..., Dn,) with D = degypy, n)(v) (na is defined
in (6.14)).

(1) Assume L = 1. For sufficiently small € > 0 we have D € 2.
Moreover, if e =€, | 0 is a sequence s.t. d. is independent of €

and d. # Ny (i.e. D#(1,...,1)) then hex < K&I) +o(1).
(2) Assume L > 2. For ke {1,...,L—1}, if di_, < d. < dj for small
€ or for a sequence indexed by e =€, | 0, then
K+ 0(1) < hex <KUY, +0(1). (10.11)
Moreover, for sufficiently small e, D € Zy. And if D € 9 \ D}
(i.e. dj_, <d. <dj) then

hex <K 4 0(1). (10.12)
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(3) If d_, < d. < df, = Ny for small € or for a sequence indexed by
e=¢, 10, then

K + 0(1) < hex < K™ + 0(1). (10.13)

Moreover, for sufficiently small e, D € 9. And if d. < Ny (i.e
D#(1,...,1)) then

hex <KW + o(1). (10.14)

In particular, for sufficiently small €, we have D € Ulel 9.

Proof. — We prove the first item arguing by contradiction. First note
that if Ny = 1 then there is nothing to prove. Assume thus Ny > 2 and
L =1 and let {(ve, Ac)|0 < & < 1} be as in the proposition. Assume there
exists e = ¢, | 0 s.t. D ¢ 2;. Up to a subsequence we may assume that D
is independent of €.

From Corollary 10.1, for sufficiently small £, D minimizes W, and then,
from the definition of 2;, we get d ¢ .#;. Consequently Wy, /Ng < Wa/d
and thus, from Lemma 10.5(2) and 10.5(3) (with d' = Ny), we get the
existence of ¢t > 0 s.t. hex < H., —t. This last estimate is in contradiction
with Corollary 10.4(2). Thus D € 2, for sufficiently small e. The rest of the
first assertion is a direct consequence of d € .7\ { Ny} and Lemma 10.5(2)
and 10.5(4) (with d’ = Np).

We now prove the second assertion. Assume L > 2. For k£ € {1,...,
L —1},if df_, < d < d}, then, from Lemma 10.5(1) (with &’ = dj_,) and
Lemma 10.5(2) (with d’ = df_ ), we get

Wd — Wd* Wd* - Wd

k—1 0 k+1
——————~ 4+ 0(1) <hex — H, < ——F——— +0(1). (10.15)
MQ(d — dkfl) ! MQ(dk+1 d)
Wdfwd*
From the definition of dj; we have J#* < W’“‘l and then the lower

k—1
bound in (10.15) gives the first convergence in (10.11).

On the other hand, if d = dJ then, from the definition of ;% ;, the upper
bound in (10.15) gives the second convergence in (10.11).

If d # dj, using Lemma 10.5(5) (with d < dj < di ;) we obtain
Wy

*Wd W g —Wd

d
that dzill—d is between W and % . But, from Lemma 10.6,
Wd* —Wd

we get —k—— < J*. Since from (10.8) we have 2%, > J*, we obtain
k

W W .

— 2 —— < . Therefore the upper bound of (10.15) gives the second

convergence in (10.11).
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We now demonstrate that, for sufficiently small e, D € & arguing by
contradiction. We assume the existence of sequence € = ¢, | 0 s.t. dj_; <
d < di with k € {1,...,L — 1}, D is independent of € and D ¢ 2. From
Corollary 10.1, D minimizes W; and then, from the definition of %, we get
d ¢ 7 (then d < d}).

On the one hand, with Lemma 10.5(1) (with &’ = dj_;) and Lem-
ma 10.5(2) (with d’ = d}) we have

Wa = Way, +0(1) < hey — H® <
2T 77 I« N o ~X ex ~
Mq(d—d;_,) ’

. Wd—Wd* Wd*Wd* .
On the other hand, with Lemma 10.6, we have ——+% < ————"=%. This
k k—1

inequality gives a contradiction.
Lemma 10.5(2) (with d’ = dj) and Lemma 10.6 give immediately (10.12).

We now treat the last item of the proposition and we assume dj _; < d <
d;, = No. From (10.4) (with &' = dj_,) we get hex — HY, > A).  +o(1).
On the other hand, from the definition of JZ}*, we get

%*
0 L
hex = HY, > £+ 0(1) (10.16)
Before ending the proof of (10.13) we prove that (10.14) holds and, for
sufficiently small e, D € 2. Assume that there exists e = ¢, | 0 s.t. D is
independent of € and d} _; < d < Np.

From Lemma 10.5(2) (with d' = Ny) we have

Wi, — Wa
0
hex — HY, <~

X m + o(1). (10.17)

Using (10.16) with (10.17) we get #7* < Wn, — Wa)/(No—d). Lemma 10.6
(with df _, < d < Np) gives Wy, — Wa)/(No — d) < ;. Therefore,
Wn, — Wa)/(No — d) = X7 and then by combining (10.16) and (10.17)
we deduce that, if for some sequence € = ¢, | 0 we have d}_; < d < Ny,
then (10.14) holds.

Arguing as above, (using (10.2) with dy = Np), one may prove that for
sufficiently small ¢ we have d € ./} and thus D € 7.

We complete the proof of (10.13). Assume that hey is sufficiently large in
order to have d = Ny (here we used (10.14)). It suffices to use (10.3) (with
d = Ny and d' = Ny + 1) in order to get the remaining part of (10.13). O
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10.2. Secondary critical fields for d > Ny + 1

The case d > Ng + 1 is easier to handle than the case 1 < d < Ng.
For k € N*, we let
K'Y = 1O + AR, xImH? + A,
where A%g 45 and As\?g 4 are defined in Lemma 10.2. We have the following
proposition.
PROPOSITION 10.8. — Assume that (1.5) holds and X, 9, hex, K satisfy
(1.2), (1.3) and (1.4).

Let {(ve,Ac)|0 < e < 1} C I be a family satisfying (3.11) and (8.1)
which is in the Coulomb gauge.

Let k € N*. If for a sequence € = €, | 0 we have d. = Ny + k then

KU 4 0(1) < hex <K+ 0(1).

Proof. — The proposition is a direct consequence of (10.3) (with d
No +k and d = Ny + k + 1) and (10.4) (with d = Ny + k and d’
No+k—1). O

Appendix A. Proof of Estimate (5.9)

Consider a conformal mapping ® : D — . From a result of Painlevé (seﬁ
Footnote (4) on p. 716), the maps ® and ®~! may be extended in Q and D
by smooth maps. Then there exists C, > 1 s.t.

V@l Lo (), VO™ | Lo () < Ch (A.1)

Write a. := a. o ® and Z’js := U. 0 ®. Since the function ﬁg is a minimizers
of E., the analog of E. in D, U, is a solution of

AU =w5 (@~ |UP) inD

(“),,ij =0 on S*
with w = Jac @ is the Jacobian of .

Define V. : B(0,2) — [b?,1] by
(@) ﬁs(x) ifxeD
e xTr) = ~
Uc(z/|z|*) ifx € B(0,2)\D.

Then —AV. = —AU. inD and —AV,(z) = —|z| *AU.(z/|z|?) in B(0,2)\D.
Thus V. € H?(B(0,2),C).
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First note that if » < e, then (5.9) is given by (5.7).
Let r > ¢ and z¢ € Q be s.t. dist(xg,0w:) > r. Let n := a.(xg) — V&

in B(zg,r/2). From Lemma A.1 in [3] and (5.8) we get, for z € B(zg,r/4),
VV.(@)? = |Vn(z)? where

4
Vn(z)]> < C (||A77HL°°(B(zo,r/2)) + ﬁll??\lLoo(B(zo,r/z))) 71| Lo (B(x0,r/2))

spT

Ce™ =2
g2

<

In the previous estimate the constants are independent of ¢, r and xy. From
(A.1) we then get (5.9).

Appendix B. Proof of Theorem 5.6

Assume that ), §, hey, K satisfy (1.2), (1.3) and 62|lne| < 1.

Consider a family of configurations {(ve, A:) |0 < & < 1} C S which is
in the Coulomb gauge and s.t.

F(ue, Ag) < i?ff}'—i— O(In|lnel).
We drop the subscript ¢. From Lemma 5.8, we may consider A, € H'(Q, R?)
s.t. (v, Ay) is in the Coulomb gauge and (5.22) holds.
We then have
F(v,Ay) < F(v, A) < inf 7+ O(In|lne|) = O(K2). (B.1)
Proposition 5.5 gives the existence of C,g9 > 0 (independent of ¢) s.t., for

€ < gg, there exists a family of disjoint disks {B; |i € J} with B; = B(a;,7;)
satisfying:

(1) {jv| <1—|lne|™2} cUB;
(2) Yor < |lne|710
(3) writing p = |v| and v = pe'? we have

1
5/ P*|Vp — A2 + |curl(A) — hey|? = 7|d;|(|Ineg| — Cln|lne]),  (5.14)
B;

where d; = degyp. (v) if B; C 2 and 0 otherwise.

From now on, the notation C' stands for a positive constant independent of
¢ whose value may change from one line to another.
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B.1. A substitution lemma

As in [15], we first state a substitution lemma.

LEMMA B.1. — There exists (v, /T) € H which is in the Coulomb gauge
and s.t., writing, p = |v|, v = pe'? and p = [0], v = pe'? we have

( v, A) satisfies (5 22) and p <
=landp=¢ mQ\UBZ,

Ip(Ve = Ay) = BV = A)[35q = o),

|lcurl(4,) — curl(A )||L2(Q) Cllne| =2,
F(@,A) < Flv, Ay) +o(1).

Lemma B.1 is proved in [15, Lemma 1] for o = 1. The adaptation to our
case is presented below.

4

(1)
(2) p
(3)
(4)
(5)

Proof of Lemma B.1. — The proof of the lemma follows the same lines
than in [15].

We define a continuous function x. = x : [0,1] — [0, 1] by letting
x(z)=2z f0<z<1/2
xx)=1 1ifz> 1—|ln£\ -2
x is affine if 1/2 <2 <1—|lng|~2
We then let v := @v € H*(Q,C) and we let A = Aj; given by Lemma 5.8.
Letting h = curl(A) we then get

—V*h = a() - (Vi —1AD). (B.2)
Exactly as in [15] we have

As in [15], from (3.1), (5.22) and (B.2) we obtain PDE of the second order
satisfied by A and A.

By considering the difference of these PDE we get
—A(A—A) 4+ (A - A)
—a(@AVI—0vAVY)+a(l —p?)A+a(l —P)A. (BA)
From (5.3), (B.1) and (B.3), the RHS of (B.4) is bounded in L?(2) by ﬁ

Since (ﬁ —A)-v =0 on 99, by elliptic regularity, we deduce Assertions 3
and 4 of the lemma.

The end of the proof is exactly as in [15] O
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From now on we replace (v, A,) with (¥, A) and we claim that the valued
disks given by Proposition 5.5 is valid for (v, A,) and (v, A) and getting the
conclusions of Theorem 5.6 for (v, A) implies the same for (v, A).

In order to simplify the presentation we write (v, A) instead of (¥, A).

B.2. Energetic Decomposition

We have the following lower bound:

PROPOSITION B.2. — let h := curl(A), ho := A =1+ &, f:=h—
hexho and let {B; = B(a;,7;)|i € T} be the disks given by Proposition 5.5.
We have:

F(,A) > h2Jo+ Y Fl(v,A), Bj] + 2wheyx Y _ dio(a;)
+1/ |Vf\2 /f2—01 (B.5)
2 Jo

Fl(v, A), B;] > wb?|d;|(|lne| — Cn[lnel). (B.6)

where

This estimate is the starting point of the main argument of [15].

Proof of Proposition B.2. — Let € :=Q\ |JB;. With (B.6) we get
Fl(v, A),UB;] = mb* > |d;|[[Ine| — C'nflnel].

On the other hand, letting f := h—hexho and since a|Vv—1A4v|? > |Vh|?,

we get

1
f/oz|Vv—zAU|2+|h—hex|2
2 Ja

heJo + = ||f|\ )+hex/QVf~V(hof1)+f(h071)+o(1).

Before refining the above lower bound we make some preliminary claims. We
first note that from (B.2) we have ||h — hCX”%l(Q) < O Vo — ZAUH%Z(Q) =
O(h2,). Then Hf||§{1(ﬂ) = O(h2,). Consequently for g € {f, h} we have

hex VgV (ho—1)|+]g(ho—1)| < Cliglla @ hex Y i = o(1). (B.7)
UB;NQ
We also observe that
/ —AL Y (ho — 1) + h(ho — 1) = 0. (B.8)
Q
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With (5.6) we get || A]| L () < Chex and then (with (B.2))

/{)B Oriplho — ho(az))‘ -y

B, CQ

/ (ho — ho(a)) (@ "VEh+ A) - 7
oB

B;CQ

< Z { +Chexri]

B;CQ

/ Oz_l(ho — ho(ai))&,h
0B;

If B; C Q we have

/ a” ! (ho — ho(a;))d,h
oB;

/ @~ 'Vho - Vh+ (ho — ho(a;)) div(oz1Vh)‘
B;

< / (ho — ho(ay)) diviv A (Vo — 1A 0)]| + O(hexrs)
B;

< / |ho — ho(a:)|[2]01v A Bav| + 4|V (Jo)[| Al + [0]?[h] + O(hexr:)
B;
< C’I’ihgx
And then

D

B, CQ

If B; ¢ Q, then ||hg — 1|/ (B,nq) < Cr; and

/ (hO - 1)37'()0

< / |Vho - Vh| + [ho — 1] [2]01v A Ozv| + 4|V (|v])||A] + \U|2|h|]
B;NQ

87'()0(]7‘0 - hO az
9B,

<C Y bl (B.9)

B;CQ

< CrihZ,. (B.10)
By combining (B.9) with (B.10) we deduce:
Z/ (ho — 1) = 20" di(ho(ai) — 1) + o(1). (B.11)
OB;NQ

We used that if B; ¢ Q then d; = 0.

We end the preliminary claims by noting that
/ o~ 1[|Vh- V(ho — 1)] < Chexlla™ — 1z = o(hzl).  (B.12)
Q
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On the one hand, since —Af + f = —Ah + h, we have with (B.7), (B.8),
(B.11), (B.12) and integrations by parts:

/~Vf~V(h0—1)+f(h0—1):/a‘1Vh~V(h0—1)+h(h0—1)+o(he_x1)
Q Q

:o<h;3>+§; | (ko 1)

= 0(hey +27r2 i[ho(a;) — 1]
B;CQ

= o(hgl) +2m Y difo(ar).

B;CQ

On the other hand, since ||f||p1) < Chex, we get [ 5 f? = o(hgt), and

ex

this estimate ends the proof. O

B.3. Estimate related with the signs of the d;’s

By Proposition B.2 we have:

waZ\d\ Ine| — Cln\lne|)+27rheXZd €olas)

+;/Q\ V2 + /f2 o(1). (B.13)

Denote I :== {i € J|d; > 0}, I_ := {i € J|d; <0}, D =} |dil,
D, = Ziebr diand D_ =3, ; |di|.

With (B.13) we obtain 2hex D ||| (o) > b*Dllne] (1 — Spal)4o(1)
and then:

C'ln|lne|

D_ <Dy x
+ [Ine|

+o(1). (B.14)

B.4. Estimate related with dist(a;, A)

From Lemma 1.1, there exist n > 0 and M > 1 s.t., for a € Q, &(a) >
min & + ndist(a, A)M

We let Iy := {i € I| dist(a;, A) < [Ine|"27} and Do :== 3., |dil.

i€ly
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If ¢ §é Io, then |§0(al)| < ||£0||LOO(Q) — ﬁ We thus have

Z di&o(a;)
iglo

n
< DollSoll (@) + (D — Do) <”€0|L°°(Q) a |lne>

< Dl|éo]| () — (D — Do) ——L

ne

<Y digolas)| +

i€ly

Z d;i&o(as)

g

From (B.13) we may deduce

Ww(ﬂ@hwm—w—Dﬂ &d>>¥Mhd—Cmmw—dU

and consequently
In|ln |

V|Ine|

D—Dy<CD +o(1). (B.15)

B.5. Estimate of the two last terms in (B.13)

We let ¢ > [lne|~=z7 > |1n5|71/2 and then ¢ > ¢ since §[lne|'/? < 1.

On the one hand, from Lemma E.1 in [6], by denoting %; a circle with
radius ¢t we get:

/ |1 —a | < CpAt. (B.16)
ECrNQ

We assume now that the center of %; is in A and ¢ is s.t. €, ¢ Q@ = Q\ U B..
We denote also B; the disk bounded by %;. On %; we have |v| = 1 and then
v = e with ¢ locally defined.

By direct calculations, we have (with f = h—hexhg, v the outward normal
unit vector to ¢; and 7 = vt):

/ ato,h = —/ [Orp — A 7] = —2md; + h with d; := degq, (v).
Gt Ct By

On the other hand ﬁg a~to,hy = fo ho + ﬁg (o=t —1)d,hg. Note that

'é} 10,k <

IV holl 10 /|1—orl| CoM Vol =0
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Then for € > 0 sufficiently small: —f% a o, f + th f = 2ndy — CAhext.
Consequently we obtain

2/ a2 [ 10, f1F+2nt? | f? > 4An?d? — Ct\hex|dy|
G G By
and thus, by denoting m; := f% a2, we get

1 t2 2d?  CtAhex|d
Z |8Vf|2 + 4 f2 > Tay | tl )
2 %, 2mt B, et my

Since 27t < my < b~42rt, for sufficiently £ > 0 small we obtain
1

t wd? wd?
= L2+ - 2> 0Pt — O Mhey|ds| = b2 =L, B.17
g [Vt § [ g v T ol 20T )

Following exactly the argument in [15] we get
1 1

7/ IVfI?+ 7/ 2> C'D?In|lne| + o(1).

2 Ja\{ B 2 Ja

With (B.13) and &o(a;) < —[|éollz~(q) there are Cy,Cy > 0 (independent
of €) s.t.

(C1D? — CoD)In|lne| < g(g) with g(e) — 0 for ¢ — 0.

This estimate implies D < % Therefore with (B.14) and (B.15) we get the
three first assertion of the theorem.

It remains to get (5.15) whose proof follows the same lines as in [15,
Section 4].

Appendix C. Proof of Proposition 5.7

Let Co > 1, (ve)o<e<1 € H'(Q,C), (hex)o<e<1 C (0,00) and (&2 )o<e<1 C
H} N H2N WL (QR) be s.t. (5.17) and (5.18) hold. For simplicity of the
presentation we omit the index e.

Let {(B(ai,r;),d;)|i € J} be as in the proposition and write B; :=
B(ai, Ti)-

In this proof the letter “C"” stands for a quantity bounded by a power of
Cy whose value may differ from one line to another.

Q\UB; if|v]#1/2in Q

Q if |[v| >1/21in Q
the proof consists in estimating the quantity [,(v A Vv)- A in (5.13).

We let A = V+¢ and Q= { . The heart of
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We first get with the help of (5.17) and (5.18) that if |v| # 1/2 in Q then
Jup, vAVv-A=o0(1).
We also claim that, letting w := v/|v| in € Jo(AVv—wAVw)-A = o(1).

In particular, if [v| > 1/2 in Q then we have [,(v A Vv)-A = o(1). We
thus assume that |v| # 1/2 in Q.

Then, with an integration by part we get

Q
__ ‘ L - .

_ Bizcjﬂ {f(al)/aBi(w/\v w) V+/an-, (€ — £(ar)(w A Viw) V}
Viw) v (C1
' B;Q /B(Bmsz) SwAViw) v (C1)

For B; C Q we immediately have:
/ (wAV*tw) v = —2rd;. (C.2)
OB,

We define

v inQ
U =
U; iDBiﬂQ

where u; is the harmonic extension of try g,nq)(v) in B;NQ. By the Dirichlet
principle we have for all i:

IVullz2(B,na) < VY L2(B,n0) = O(Ing]). (C.3)

It is easy to check that (w A V4tw) - v = |u|=2(u A V*u) - v on |J; 9B.
For i € J, we let

it b
From (5.18) we get

IV fill Lo (Binay < Cllnel. (C.4)

Our goal is now to estimate f(’)(BﬂQ) filw A V+w) - v. We first consider
the case where ¢ € J is s.t. |u| > 1/2 in B; N Q. In this case we may write
in B;: u = |ule’® with ¢ € H'(B;,R), ||¢[/g1(5;) < C|lne|l. We then have

i
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with (C.4) and an integration by parts

/ filw AVEw) v

< |V fillezna IVOl 2500y < Cllnel*r;. (C.5)

We now assume i € J is s.t. [u| # 1/2 in B; N Q. By smoothness of |u;|? €
C>(B; N Q,R), there exists t; € |1/5,1/4], a regular value of |u;|?, s.t.
w; = {Jw;|? < t;} # 0. We denote D; := QN [B; \ w;]. Since |u? > 1/4 on

9B; N Q we have dD; = (0B; N Q) U dw; U (02N D;).

Letting W := % A V+ (ﬁ) we then get

T Tul

W= [ () + 95w
oD; D;

It is standard to check that div (W) = 0 in D,. Moreover:

Consequently using (C.6) we may deduce

fiW'V
8D1-

< Cllnel?r;.

/ VS, W\ < 2 V€ (mnm |Vl 2gmnay < Cllnel?ri.
D;

(C.7)

On the other hand, from (C.4), £ =0 on 99 and div (u A VLu) = —201u A

O2u in B; N Q, we get

fiW'I/—/ fi(w AV+w) - v
oD; aB;NQ

iW v
Ow;

/ —2f;0huNOu+ Vf;- (u A VLU)

i

We may conclude by using (C.1), (C.2), (C.5), (C.7) and (C.8):

1

< Cllnel’r;.

%

f/v/\Vv~A:27r Z di&(a;) + o(1).
Q

The rest of the proof is exactly the same than in [17].
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Appendix D. Proof of some results of Section 6.1.1
D.1. Proof of Proposition 6.4

We use the same notation than in Proposition 6.4. In this proof, the
letter C' is a quantity which depends only on Q, N and ), |d;|, its value
may change from one line to another.

We argue as in [13]. We let =Y ¢ No<p<2 WLP(Q,R) N HL (2 \

{z1,...,2n},R) be the unique solution of
ADY = 2r SN 45, in Q
=Y = on 0f.
and let @z € H'(Q7,R) be the unique solution of
A(Df =0 in Q,:
(bf =0 on 9f)
(D.1)
®x = Cst; on 8B(z“ F)

faB(z,-,f) 0,®7 =2md; forallie{l,...,N}.
We then have quﬁz’d) :wiz’d)/\Vwﬁz’d) and VL@;z’d) :w;z’d)/\wazz’d).
It is important to note that if we H(Qz,St), then |Vw|=|wAVw]|.

We may decompose <I>£z’d) as <I>£z’d) = .d;®., where, for z € Q, ®, is

the unique solution of
AP, =27, in
b, =0 on 0.
With a standard pointwise bound for the gradient of an harmonic function

P2l oo BT
(see in [10, (2.31)]) we have ||[V®., CH il CABELTA)
Thus

L= (Q\B(zi,7))

2 dalll P,

F
Moreover, it is easy to check that ®,, = In|z — z| + R,, where R,, is the
harmonic extension of —In|z — zj9q. From (D.2) and by the maximum
principle we get for ¥ < min {[diam(2)]~';1/4}

C(1+ |In7))
,,’Z’

Lo (Q7/4)

V&Y ey < C . (D.2)

Vo= | < in Q; (D.3)
which proves (6.7).
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If there is 7 > 0 s.t. b > 7, then ||RZ1||01(Q) < Gy where C, which

depends only on n and Q. We thus get HV@ ||L Q) < f_" (where 5,7
depends only on 1, N, > |d;| and §2) and this estimates implies (6.11).

We now define R, gy := ), d;R., in order to have oD = > diln|z —
Zi| + R(z,d)-

From Lemma I.4 in [4] we have

H<I>;f<I>£z’d)||Loo(Q;) < Z sup Zln|:v —zj| — 1nf Zln|x — zjl

4 B(z;,7)
+ sup Ry, inf R, D4
Z 9B(z;,T) D 0B(zi,7) (=) ( )

If N =1, then the first term of the RHS in (D.4) is 0. Otherwise, as in [17,
Proposition 5.1], we have

cr
sup In|z —z;| — inf Injz—zj| | < —— . (D.5)
; 83(2“7’)Z | J| 277'“')2]: | J m1ni¢j|zifzj|
And for i € {1,..., N}, by harmonicity of R, q), for 0 < p < % we get
CllRa)llL=(0) 1+ [In(h)|
VR ~(Blzi.0)) < — ’ <C . D.6
IVR(z,a) | L= (B(z:.0)) dist(z5, 0Q) — p h (D-6)
Then
7(1+ |In(h
Z sup Rz a) — mf R(Z d) Cw. (D.7)
OB (24,7 OBz h
We let
f(1+|;in(ﬁ)|) N =1
Y = = = D8
T MOy (D-8)

By combining (D.4), (D.5) and (D.7) we get
197 = &V || L 0,y < O (D.9)
From (D.3) and (D.9) we immediately get

0< / Vo= Y)2 Ve 2 + V(@Y — 3,2

7

< cwm?xnaycpimd)||Lm(aB(zi,;)). (D.10)
On the other hand, for ¢ € {1,..., N}, we have (with (D.6))
z 1 1+ |In(hk
0,85V e < € (2 HRED) oy
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Using X defined in (6.8), from (D.10) and (D.11), we get

0< / Vo=V 12 Ve 2 + V(@Y — 0,)2 < CX. (D.12)

From (D.12) we deduce (6.10) and since [, (o, — @) = 0, with a Poincaré
inequality we obtain (6.9).

D.2. Proof of Proposition 6.5

Let (z,d) = (z,d)™ € (QNV)* x ZN and denote h := min; dist(z;, Q) >
0. Assume that dy,...,dy are independent of n. Let ¥ =7, — 0 be s.t (6.1)
holds.

In this proof the letter C stands for a quantity which depends only on {2,
N, Cy and ), |d;|, its value may change from one line to another.

By Remark 6.3 and an integration by parts we have

/|v =d)j2 = /|v<1>2d Z/ =95, (D.13)
0B(z;,T)

For ig € {1,..., N}, we fix z;, € 0B(z;,,7). Then (with v4ipEd — @) 5

/ (I)iz7d)8yq>iz’d)
8B(z,i0 ,;)

_ / [0 — 0D (2,,)] 8,05 + 2md,, 85V (). (D.14)
BB(ZLO,T)

On the one hand, arguing as in the proof of (D.9), we get for z € 9B(z;,,T):
|<I>iz’d)(z) — =D ()] < sup o= if oY < v

63(210,’7') aB(Zi(Jvf)
Then, using (D.11), we obtain
> / [0 — oV (a)] 9,00V | < CX. (D.15)
: OB(z;,T)

On the other hand, for ig € {1,...,N}
z,d
(I)i )(-Tzo) - R(z,d) (ZZO)

= —dio\ln ,7:| + Z dj ln\:vio - Zj| + [R(z,d)(:vio) - R(z,d) (Zm)] s
J#i0
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and with (D.6) we get |Ra)(wi) — Riza)(2iy)| < w We then
immediately get:
oY (z;) = R o) — iy [In 7 d;jIn|zi, — 2| + O(X). (D.16
» (i) = Riza)(2i0) = digIn T+ ) djInfzi, — 2| + O(X).  (D.16)
Jj#io
With (D.14), (D.15) and (D.16) we may prove that (D.13) may be rewrit-
ten into

1 z
;) 1

=m Y [dn7] - d;iRiga)(z)] — 7Y _ djd;In|z; — 2| + O(X)
( J#i
where “O(X)” is quantity bounded by CX with C' depending only on N,
and > |d;].

D.3. Proof of Proposition 6.7

Let (z,d) = (z,d)(") € (V) xZN, 7 | 0 and n > 0 be as in the
proposition.

In this proof the letter C stands for a quantity which depends only on 2,
N and ), |d,|, its value may change from one line to another.

We first claim that, for ¢ # j, B(z;,n) N B(zj,n) # 0, B(z;,n) C Q and
n = xr with x — oo. In particular we assume n sufficiently large to have
n>T.

Since VL@Y"” = wiz’d) A Vw&z’d), for ip € {1,...,N} and z € Q\
{z1,...,2n}, we have

WY ATV (2) = diy V(2= 2, ) + V- | Ry (2) + Y djInfz — 2] |
J#io
For j € {1,...,N}, let 6; be the main determination of the argument of

é:i{l and let R be an harmonic conjugate of R, qy. In Q\ {21,...,2x} we

have
w* Y AV — 4, V0, =V |3 dig; + R
J#io
i .
Then for z € B(z;,,n) \ {#,} we have wﬁz’d)(z) = (|;ZL_O|) * e"?i0(%) with
. 0

Pio = Djzio djgj + R + Cst;, where, for j # g, 6; is a determination
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of the argument of Z=24 which is globally defined in B(zi,,n). Note that
Pip € ot (B(2ig5m)s R)

On the other hand, by direct calculations, we have

- c
Z djVHj < g
it L0 (B(2i.m))

and, since R(;, q) is harmonic, we also have from the definition of R

IVRI| Lo (B(2ig.m) = IV Rz,a) | Lo (B (210 )
IBaali=@ _ @) +1
dist(B(zi,,1),0Q) h ’

We thus deduce

1+ |In(h 1
||vg0io||L°°(B(ziO,n)) <C <% + H) . (Dl?)

We switch to polar coordinates by letting for i € {1,..., N} and p € |F,n],
2i(p,0) == pi(zi+pe). We then get, by (D.17) and a mean value argument,
the existence of p, € |\/x7, 7| s.t.

Z/zﬂwﬁpz (pn,0 \2d9<7 {(un(h)|+1)+1r'

We let Z := ﬁ [M + 1] and by assumption we have Z — 0.

27T ~

We denote, for i € {1,...,N}, m; = i o Pi(pn,0)do in order to have

2m
/ |&i(pn79) — mi|2d0 < CZ.
0

We then define ¢; € H'(B(z;, pn) \ B(2i,7), R) using polar coordinates:

bi(s,0) = ;: Z"mi + ps __T &(pn,0) with s € (7, pn).

For z+se" € B(z;, pn)\B(2:,7), we let ¢; (zi+se*) := ¢;(s,0). By standard
calculations we get fB(z_ P NBGD |Vei|? < CZ.

We conclude by defining
(zd) 5.0 Blz. o) .\
v = Wi m \U (Zzaipn) with 'LLZ(Z) = ( i “i ) .
u;e' in B(z, pn) \ B(zi,7) |z — 2]

It is clear that v € H'(Q7 S') and that for i € {1,..., N} we have v(z; +
re'?) = Cst; u; (with Cst; = e ). Note that since degyp(z,, )(wi d)) d;
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we have
1 1 2
,/ |Vui|2 < 7/ |Vw£ 7d)‘2
2 B(2;,pn)\B(zi,7) 2 B(24,pn)\B(zi,7)
and
1
5/ Ve
2 JB(zi,p)\B(z:,7)

1 1
— 5/ |V |2 + 5/ |Vi|2.
B(zi,pn)\B(zi,7) B(zi,pn)\B(zi,7)

Consequently using (D.17) and p,, < 1 we obtain

1 1 ;
> f/ Vo]* <) */ Vw2 + Cz.
~ 2 JB(2i,pn)\B(2:,7) —~ 2 JB(z21,pn)\B(2:,7)

Thus 3 [o Vo[> <3 [, (Vw2 + CZ. The last estimate and (6.10) end
the proof.

Appendix E. Proof of Proposition 7.3

Proof.

Step 1. Selection of “good” points. — Let d € N* and consider D € Ay
which minimizes (7.2).

For k € {1,...,No}, if Dy > 1 we let (31),...,2%)) € [B(py, he/*)P+]*
which minimizes the infimum in the left hand side of (6.15) with R = he!?,
p=pi and D = Dy.

We then have the existence of C (depending only on Q and d) s.t. |px —
A(]€)|<C'hel/2 and if Dy, > 2then\ k)| hex//Cforz;éj

We may choose (in an arbitrary way) z; (k) ¢ B(“{k) 0)N[d(Z x Z)]. Since
5V hex — 0, we still have (up to changing the value C) |pr — zz(k)| < Chet”?
and if Dy, > 2 then [2{") — 27| > hel/?/C for i # 5.

Fori € {1,...,Dy} welet xgk) = zl(k) +Adxg where xg € w is an arbitrary
point of minimum of W™ (defined in (6.21)).
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Step 2. Construction of the test function. — We construct test functions
in subdomains of €2 and then we glue the test functions.

o We let w> € H'(Q),-1(2),S") be a minimizer of I, (z,d) (de-
fined in (6.3)) with D = (1,...,1) € Z% and z € (Bd)* is a d-
tuple s.t. {z1,...,24} = {zi(k) |ke{l,....,Np} st. Dy, > 1and i €
{1,.. .,Dk}} _

e Fork e {l,...,No}s.t. Dy > landi€ {1,..., Dy}, we let wp'™° €
H' B b))\ B(z®, A62),S'] be a minimizer of the right hand
side of (6.18) with z. = 2™, 2. = 2", R = hZ! and r = A2

(from (7.3) we have R/r — 00).
We let also uy,; € Hl[B(xEk), A§2), C] be a minimizer of

5 [ [T g
(k) )\52
with the Dirichlet boundary condition u( )+ Ao2e W) = e,

By considering well chosen constants Cst,(cl’z7 Cstgjz and Cstg, we may glue
the above test functions and we define v € H' (2, C):

wjAere in ,-1(z)
Csty, in B(z® hzl) if Dy =0
Csty.) wiiere in B(=(Y, hol)\B(™, 362),

ke{l,...,No}st. Dy >1land i€ {1,...,Dy}
Cstgl). Up,; in B(mf ,)\52)
ke{l,...,No} st. Dy >1and i€ {1,...,Dx}.

Step 3. The energy of the test function. — We first note that the config-
uration (z,d) is s.t. h(z) > 3 dist(A, Q) and for i # j we have % — 0,
then we may apply Propositions 6.4, 6.5 and 6.7. We may also use Proposi-
tion 6.9. From these propositions we get

1
! / Vo2
2Jo, 1@

= TdIn hex + WEH2(p, D) — Z Sl — 29 o(1). (B.1)

= 3
s.t. Dk>2 #
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For k € {1,...,No} s.t. D > 1 and 7 € {1,..., Dy} with (6.18), (6.19)
and (6.20) we get:

1

2 /B(zik),he,})\B(mik),Aéz)

= 7[In(AShex )| + b27[In(8)| + W™ (20) + o(1). (E.2)

Note that |[Vv| < Ce™!. From Lemma IX.1 in [4] and (5.8), for k€ {1,..., No}
s.t. Dy > 1 we have

1

f/ a|Vv|? + —(1 — [v]?)? = b2 In(bAG? Je) + by + o(1) (E.3)
2 /B r62)

a|Vu|?

where v € R is a universal constant.

In conclusion, by combining (E.1), (E.2) and (E.3) (note Adhex — 0):
F(v) < dm [b*[Ine| + (1 — b2)|ln()\5)|] + d [W™(0) + b>y + b*m In b]

+ W (p, D Z Zln|z(k) (-k)| +o0(1). (E4)

— i#j
s.t. Dk>2 73

Step 4. Definition of the magnetic potential and conclusion. — Let A 1)
be given by Definition 5.15 with (a,d) = (z,1). It is clear that we have

No
Z Zln|z§k> - zj(.k)\ < C|lnd|

i#]
s.t. Dk>2

where C' depends only on d and §.

Consequently, for ¢ > 0 sufficiently small and Cy > wd we have F(v) <
Co|lne|. Therefore, with Remark 5.16, the configuration (v, A, 1)) € H is
st F(v, Agay) < F(v,0) +o(1) < Co|lnel* + H2(Q)R,.

Using Proposition 5.7 and Lemma 5.14 we get

d
Fv, Agr)) = 2 Jo + 2mhex Y €o(2i) + F(0) + V[((m1)] + 0(1)

i=1
where (1) is the unique solution of (5.25) with (a,d) = (z, 1).

We now use Assertion 3 of Proposition 5.19 in order to get V[C(z,ﬂ)] =
V[((p,p)] + 0(1) and then

d
F(v, Aga)) = h2Jo+2mhex Y &o(2:) + F(0) +V (5,1 [{(p.py] +0(1). (E.5)

i=1
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We claim that, from the choice of the points zi(k), E{ik) we have & (zi(k)) -

fo(ﬁgk)) = O(6/+/ hex). Thus with Proposition 6.10 we have

No No
a3 S e =2 2mhe 30T 60(5M) — 2mdhes min &

k=1 i#£] k=1 1
s.t. Dp>2

No

D
=Y | Y 1n|z§’“)—2§’“)|+2whexi{50(541.’“))—%1@0] +o(1)

k=1 i,5€{1,....D i=1
st Dis1| J {#j k)
No

[ Pex
= Z §(D2—Dk)ln(Dk> +Cpk7Dk:| +0<1).
s.t.k511>1

We may now conclude:

No

f(UaB):hng0+dMQ [_hex"‘Hgl] +glnhex Z (Dl%_Dk)
s.t.k5i21
T
+Wat g ; (Dy, — D) In Dy, + o(1).
s.t. 5k>1
This estimate ends the proof of the proposition. O

Appendix F. Proof of Proposition 8.1

Let hex and (ve, Ac) be as in Proposition 8.1. Note that we may assume
that A, = A,, given by Lemma 5.8 and then || A || ) = O(hex). We drop
the subscript . We first note that, by smoothness of €2, there is tg > 0,
s.t. letting Qy, = {z € R?| dist(z,Q) < to}, we may extend by reflexion
v € H'Y(Q,C) into u € H'(Q,,C) letting u = v in Q and u = v o Sg in
Q, \ Q where

Sa: % \Q—Q
x — Il(z) — dist(z, 0Q)vi(a)-
Here IT : Q;, \ © — 09 is the orthogonal projection on 9 and, for o € 99,
Vs is the normal outward at o.

LEMMA F.1. — Let Cp > 1 and let {(ve, Ae) |0 < € < 1} be a family in
the Coulomb gauge of quasi-minimizers of F in € for an intensity of the
applied field hex = hex(€) = 0 s.t. [|[V|v][| L) < Coe™!.

— 787 —



Mickaél Dos Santos

Under these hypotheses, for n € (0,1) there exists €,,Cy, > 0 (depending
on Cy) s.t. for 0 <e <ey, if z€Q is s.t.

2 2 b2 2\2 Cn
b [Vul* + (1 = [u]*)? < Zt[ing]
B(2,7//2) € 3

with

" v i Q
C|woSa in Q4 \Q,

then |v(z)| > n.

In order to prove Proposition 8.1 we need the following lemma.

LEMMA F.2. — There exists eq > 0 depending only on Q s.t. for0 < e <
eq, 2 € Q and v € HY(Q,C), by defining u as in Lemma F.1, the following
inequality holds:

b? b?
[ vl Ga-pr<s [ Vol + 21— [o?)2.
B(z,v/2/2) € B(z,v/2)NQ €
Proof of Lemma F.2. — In order to prove the lemma it suffices to check

that by smoothness of ) we have ||V(S§1)HL00(Q), “Jac(851)||Loo(Q) =1+
o(1). We then immediately obtain

b2
/ Val? + S50 a2
B(2,7E/2)\Q €

b2
<o) [ Vol + S o)
SalB(sVE/2\Q] €
On the other hand, if x € B(z,/2/2) \ Q then |Sq(z) — 2| < [1+0(1)]vE/2 <
/¢ for sufficiently small € > 0 (depending only on Q). Then Sq[B(z,/2/2) \
Q] C B(z,v€) N Q. The lemma follows from the monotonicity of the

integral. O
By combining both lemmas we get Proposition 8.1.

Proof of Lemma F.1. — We argue by contradiction and we assume the
existence of n € (0,1), ¢ = ¢, | 0 s.t. for all n > 1 there are (v, A) =
(Un, Ap) € H, 2z = z, € Q and hex = K > 0 st (v, A) is a quasi-
minimizers of F in S satisfying:

2
[ v Ga- e < 2 (F.1)
B(2,VE/2) € n

with

v in Q
U= U, = _
eoSq in Q4 \ Q2
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and |v(2)| < 1. Up to replacing v by v we may assume |v] < 1 in Q.
We are going to prove that (F.1) implies
1
i (1= [of?)? = o(1), (F.2)
€% JB(z,e3/1)NQ
On the other hand, |[V|v|[|L~@) = O(e™') and then, from an argument
in [4, Theorem III.3], we will get, for sufficiently large n, |v(z)| > n. Clearly
this contradiction will end the proof.

|Ine|
P

there exists p, € (£3/4,\/2/2) s.t. pn JoBzp )|Vu|2 ?2(1 —Ju?)? < 1,
Then we get:

Since for n > 1 we have f3/4/2 20 Joneap) |Vul? + ( —|u?)? <

b2
oo [ ol S0
9B(z,pn) €

We switch in polar coordinate and we denote u(0) := u(z + ppe®). Esti-
mate (F.3) becomes

(F.3)

3.\%

2 2 2
~ bp ~ 4
Hu|? + —22 (1 — |a]?)? < =. F.4
/0 |00l 52( ul*) n (F.4)

On the one hand, |9y|u||? < |9pu|? and then f027r|89|ﬂ|\ < % Conse-
quently in [0, 27] we get (1—[a|?)?® > maxg o) (1 — []?)? % From (F.4)

we deduce
4e? /27r _
_ > (1- |u| ) > 2
nb*py, 0

and thus for sufficiently large n we get 0 < maxg 2. (1 — [a]?)

2v/2m
[H}ax](l—| al*)? - n

2 100
< oo,

For a further use we define
Xn : B(z,pn) — [0,1]
24 pe s ([a(0) — 1) 2 +1
n

By direct calculations we have

/B(z’p") Vxnl? + L(1 S22 =0 (%) . 5

On the other hand, for n sufficiently large, |[u[* > L in 0B(z, p,). We thus
may compute the degree of u on 9B(z,p,) and we find |degyp(, ) (u)] =
O (L) which implies, for sufficiently large n, degyp(z,p,)(w) = 0. Conse-
quently, we may write u = |ule*¥ with ¢ = ¢, € H*(0B(z, pn),R). More-
over, up to multiplying u by a constant in S!, we may assume faB(Z,pn) @ =0.
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We then consider & : [0,27] — R defined by 3(0) = ¢(z + ppe*?), and

thus
1 ) 2 .
o()=m [~ 1vePz [ ot
n OB(20n) 0

Since fOQTr @ = 0, this estimate implies fo% ?=0(3).

Letting ¢ = ¢, : B(z,pn) = R, 2 + pe? ﬁg’ﬁ(&), it is direct to check
fB(z,pn) |v¢|2 =0 (%)

We are now in position to end the proof by considering V = V,, = y,e*¥ €
HY(B(z,pn),C) in order to have V = v on dB(z, p,) N,

1 1 1
5/ |VV\2+2—2(1— [V]%)2 :0(f).
QNB(z,pn) € n

and (with [|A 1= @) = O(hex))

/ a(V ATV A
QNB(z,pn)

Since V' = v on 9B(z, p,) N we have

W {v in Q\ B(z, pn)

PP
< O—=E2 — (1),
O\/ﬁ o(1)

i € H'(Q,C).
V in B(z,pn) N

Considering the comparison configuration (w, A), from the quasi-minimality
of (v, A) and the above estimates we get

1
Vol + 5 (1= [vf*)?
LﬁB(z,pn) 2¢2

_ 1
<t / IV g VPP (1) = o)

Since p, > £3/* we get (F.2) and thus this estimate ends the proof. O

Appendix G. Proof of Proposition 8.3

The proof of the proposition is an adaptation of the arguments presented
in [2, Section V] and also used in [17, Proposition 3.2]. It is also inspired
of the bad disk construction in [4]. Let u, A, §, (v, A) and hex be as in the
proposition.
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Step 1. A first covering of {|v] <1/2}. — For 0 <e <ey3 (612 >01s
given by Proposition 8.1 with n = 1/2) we consider a covering of Q by disks
{B(25,4V¢€), ..., B(z%_,4V/¢)} s.t., for i # j, B(xf,v/e) N B(x5,¢) = 0

and z§ € Q.
For the simplicity of the presentation we omit the dependance in €.
We say that B(x;,4+/€) is a bad disk if Eg[v, B(z,8/€)NQ] > C z|lne]

where for a disk B we denoted

~ 1
BwBn®)i= [ Vol 51— oy
BNQ €
and Cy /5 > 0 is given by Proposition 8.1 with n = 1/2. Let
J =Jl:={ie{l,...,N.}| B(x;,4V/e) is a bad disk}.
We make two fundamental claims:

(1) There exists My > 1 (independent of €) s.t. Card(J') < My.
(2) If B(x;,4+/2) is not a bad disk then |v| > 1/2 in B(z;,4/2).

The first claim is a direct consequence of (5.15) and B(xf,/e)NB(x5,/2) =
() for i # j.

The second claim is given by Proposition 8.1. Then |J;c ;, B(xi, 41/¢) is
covering of {|v|] < 1/2} and Card(J") < M.

Up to droping some disks, we may always assume that for i € J we
have B(x;,4v/) N{|jv| < 1/2} # (. Consequently using Corollary 8.2, for
i € J and 0 < ¢ < min{eg,e1/2} (€0 given by Corollary 8.2) we have
dist(x;, A) = O(|lne|~%°).

If |v| > 1/2 in Q then there is nothing to prove. We then assume J' # ().

Step 2. Separation process. — We replace the above bad disks with disks

having same centers and with a radius *. Let 6&1) > 0 bes.t. min{eg,e1/2} >

af}), for 0 <e< 5,(}) we have 4,/ < g and

1
. e <.
r;g})/( dist(B(x;,e"), A) < Infln |

In particular (J;. ; B(z;,€") is a covering of {|v] < 1/2}.

The goal of this step is to get a covering of {|v| < 1/2} with disks B(z;,e*)
whereic€ J=J.CJ s=5.=2"%y K=K. €{0,...,My— 1} and s.t.
for i,j € J, i # j, we have

v — x;] > /2 (G.1)
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If Card(J') = 1 or (G.1) is satisfied with s = p (i.e. K = 0) then we let
J = J' and we obtained the desired result of this step. Otherwise, there
are ig,jo € J' (with ig < jo) s.t. |2z, — x5| < /2. In this case we let
JM .= J"\ {ig} and we claim that Card(J)) = Card(J’) — 1.

If Card(J™M) =1 or Card(JM) > 1 with (G.1) holds with s = 2~y (i.e.
K =1) forall i,j € JY (i # j) then the goal of this step is done with
J=JN and s =27 1p.

Otherwise, there exists ig, jo € J) (with 49 < jo) s.t. |ziy — 25, | < %/2.

We then let J®?) := JM\ {ig} and thus Card(J®) = Card(JM)) — 1.

By noting that Card(J’) < My, the above process stops after at most
My — 1 iteration. We thus get the existence of K = K. € {0,..., My — 1}
and 0 £ JE) = J5) g st Card(J8)) = 1 or (G.1) is satisfied with
s=s. =2 pandi,je JE (i+#7).

We then denote J 1= JE) s = 2K and we fix 0 < e < i) s.t. for

0<e< sff) we have

1
dist(B(zs,e%/*), A) <
I?ea}( ist(B(z,% %), A) /i e]

< 107! dist(A, 09).
In particular B(z;,e%/4) c Q fori € J.

Step 3. Definition of r. — With Corollary 5.2 in [5], for a.e. t € Im(|v]|)
the set V(t) := {z € Q||v(x)| = ¢t} is a finite union of curve. Moreover if a
such curve is included in € then it is a Jordan curve.

Following the same strategy as in [2, Lemma V.1], we have the existence
of te € [l —2|lng|72,1 —|Ing|~2] s.t. V(t.) is a finite union of Jordan curves
s.t.

H'[V(t.)] < Cellngl® with C is independent of «. (G.2)
We fix 0 < 523) < 5&2) sit. for 0 <e < 5&3) we have Cel|lnel® < 1072¢°.
We denote for i € J
Ai = A5 = {p e e e®/%]||v] > t. on DB(xi, p)}. (G.3)
From the continuity of |v], it is clear that [¢%,2%/%] = A; U B; U C; where
B =B :={pe /3| 3z € dB(x4,p) sit. |v(x)| =t}
and

Ci=C:={pelee®?]||v| < t.on dB(z;,p)}.
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We first claim that, since the function p — p is increasing, we have

oe) = [ dp [ (-
C; OB (z;,p)

> 2m(1 —tﬁ)z/ pdp

Ci
H(Cs)
> 2m(1 — tﬁ)z/ pdp = 7(1 — t2)*H  (C;)%.
0

Then H'(C;) = O(e[lngl?/?).

On the other hand one may prove that if I is a connected components of
B;, then there is p1, p2 s.t. I = [p1, pa]. Since straight lines are geodesics, we
obviously get

HI (1) = pa — pr < H'[V(te) N B(zi, p2) \ B(wi, p1)]-
Moreover one may prove that if [p1, p2] and [p}, py] are distinct connected
component of B; and if I' is a connected component of V (t.) s.t. T'NB(z;, p2)\

B(x;,p1) # 0 then T' N B(x;, py) \ B(xi, p}) = 0 (here we used (G.2)). One
may conclude: H'(B;) < H'(V(t.)) < Ce|lnel>.
Consequently
Hl(.Az) 2 7‘[1([88,828/3]) _ HI(BZ) _ Hl(CZ)
> e/ — g5 —HY V(L)) — O(e|nel??).
Fix 0 < eV <l st for 0 < e < £ we have H1(A4;) > e25/3 — &5 — /2.

Define
A= Au,e = ﬂieJAi' <G4)
It is clear that H'(A) > e2%/3 — 5 — My /e

Since p — 1/p is decreasing we have

d
Omnel) > /”Z/ Vol + (1 o)
0B(zi,p)

£25/3

>/ 92 s i / Vol? + (1—|v\ )2,
e23/3_1(A) P I’GAZ OB (z;,p)

Consequently, there exist r =r, . € A, C, > 1 (C, is independent of €) and
0<s(5) (4)st f01‘0<€<5()

> P 9 R <G (@5)

We finally let J, := J, with (G.1) and (G.5) the result is proved.

we have
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Appendix H. Proof of Proposition 8.10

The proof is an adaptation of the proof of (VI.21) in [2].

Let & = a, € L®(Q,[82%,1]), (z.d) = (z,d)"™ € (Q¥)* x Z¥ and u =
un € H*(Q,C) be as in the proposition.

We first claim that up to considering u instead of © we may assume |u| < 1

in Q. Note also that if [, [Vul? > 72 [, Vw2, then there is nothing

to prove. We thus may assume

/ Vul? <5*2/ IVw'®D|2,
Q;» QT‘

Let w := u/|u| € H*(Q#,S'). From Lemma 1.1 in [4] we have w A Vw =
vie®d 4 VH with H = H. € H'(Q;,R) and

/Q IVH|? < (6‘1+1)2/Q Vo= 2, (H.1)

Let ®; be the unique solution of (D.1). We have [, VH -V+®z = 0. Then
letting p = |ul:

/ &p*VH - vie®d
Q=

= / @p? — )VH - v+a=? +/ VH- (Vie™Y — vie,).
Qp Qr
But, from (D.12), there exists C' > 1 s.t.

< C|VH| 20 VX

/ VH - (VoY — vig,)
Qp

where X is defined in (6.8).
Consequently, letting C = 4C? /B? we get
2 [ VH.-vio®d +/ ap?|VH|?
Qx Q7

:2/ VH-(Vicbiz’d)—VLd),:)—s—/ ap?|VH|?
Qi s

7

EZ
> VA0, (T IV HI 20— 20VX

> —-CX.

- 794 —



Pinned magnetic Ginzburg-Landau energy

Therefore

/ &p2|vw|2 > / |vq>iz,d)|2 _/ (1 _ ap2)|v¢£zﬁd)|2

7 Q7 Q7

_ 2/ (1—ap?)|VH||Vo&D | — 0(x).

T

On the other hand, using (6.7) and Corollary 6.6, we get
/ (1 _ &p2)|vq)5(z,d) 2 / (1 _ p2)|v¢iz,d)|2 + ’/ (1 . &)‘V(biz,d)'Q
7 Qr

<V Y || o () VO V| 120y (K + L)

<

and with (H.1):

\ | a-amwmves
Q5

< \ | a-wmvel)
Qr

+ ’/ 1-a)|vVH||ve®Y|
Qr

< IVl || ) VL2 (K + L) (287" +1).

The proposition is thus proved.

Appendix I. Proof of Proposition 9.6

We prove the first assertion and we assume Card(J,) > 2. We let x; :=
2h 0 hey, X2 i= = 2het/? In hey and Dy, =\ Upen B, x2)-

In order to get sufficiently sharp estimates to prove the proposition, we
decompose 2, in several subdomains. To this aim, we distinguish two cases

for p € A: either Card(J,(,y)) >2or Card(J;Ey)) € {0,1} where J,(,y) ={k e
JW |y, € B(p,x2)} (the y;’s are introduced in Definition 9.2).

If p € A is s.t. Card(Jjgy)) > 2, then with Lemma 8.9 (with P = 17 and

n = x1/2), there are k, =k, € {17°,...,17No~1} and J(y) C J;(,y) s.t.
U Bk xi/2) c U B(yk, kpx1/2)
keJ5Y ke

|y — yi| = 8kpx1 for k,l € jl(,y), k#1L

We then let Dy, := B(p, x2) \U,.c jo» B(yk, £px1) and, for k € jl(yy), we write
dy, := degyp(y, k1) (V). We denote also Dy, := Zkej;” dy.

- 795 —



Mickaél Dos Santos

IfpeAisst J¥ = {k}, then we let D, = B(p, x2) \ B(ys, £0) with &
given by Definition 9.2. We let also D, := dj, := degyp(y, xs)(V)-

Recall that we denoted (see Definition 9.2), for k € J®), dp =
degyp(y, ns)(v). Consequently, if I = {k}, then D, = d;, = dy.

If JZ(;”) = () then we denote D, = 0 and D, = B(p, x2).

The heart of the proof consists in proving that d;, = 1 for all k. Indeed, we
know that if i € J,, then degyp(., ) (v) = 1. Consequently dj, is the number
of points z; contained in a disk of radius at least y1.

We let:
o R:=Upesw Bk, k) \ UieJu B(zi,r), k given in Definition 9.2.
e For pe Ast. Card(Jlgy)) > 2 and for k € j,()y) we denote
Qp = B(yk, kpx1) \ U B(yi, k6).

1leJ®
YIEB(Yk,kpX1)

Moreover, by construction, we have (for sufficiently small )

U  B.sd)c U Bw.x1/2) € Blyk spxa/2)- (L1)

leJw 1eJW

Y1€EB(Yk,kpX1) YIE€EB(Yr,kpX1)
Thus
1
5/9 alVu|? > 7/a|Vv|2+Z /a\VU|2
" pEA
1
+ = v 2+f/ Vo2, (1.2
S X g, el [ awet a2
pEA ke J® X2

p

Card(J{¥))>2
From (9.11) and (9.12) we have

1
5/ ol Vo2 > dr [Pinr| + (1 - B)[InA| — Blnd]] + O(1).  (L3)
R
If JIS” = {k}, then with Corollary 8.8(1) we get
L 2y 2
5/9 a|Vef? > md} In (X2 - 2) + o). (1.4)
And if Card(Jz(,y)) > 2, still with Corollary 8.8(1):
1
7/ alVolP 27 > dy m( )+O( ). (1.5)
2 Jo, 7() X1
ke J§
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We continue by dealing with the case Card(Jz(,y)) > 2. From Corol-
lary 8.8(1) applied in Qy ), for k € Jz(,y) (with (I.1)) we get

Z*/ ovezx Y Y dm(3)+on) o)

kegw -7k keI 1egw
Y1EB(Ykskipx1)

In order to end the proof, using Propositions 6.4, 6.5 and 8.10, we get

1
f/ alVol2 > 7 3" D2{In x| + O(1). (L7)
2 Ja
X2 pEA
We let
Ae Y Y dr Y dmibe Y &
PEA st Lo JW) pEA s.t. keJw)
Card(JW)z2 " T ={k}

From (1.2), (1.3), (I.4), (1.5), (I.6) and (I.7) we get

1
f/ a|Vu|?
2 Ja,

> O(1) +dr [P?lnr] + (1 - 0%)[InA| - Pl + 7 > dPln ( )
pEA s.t.
J}Sy):{k}
7 X
+ Z Zd2 ( ) Z d?ln(%) +7TZD§|111X2|
peEA ke J(y) l€J<y) peEA
Card(J(¥))>2 Y1 €B(p,x2+Xd)
> dr [b[lnr|+ (1 - 0*)Im(A)[] + 7l xa| [ D D2~ A | + 7|lnd|(A - d)
pEA

+rlnxal Y S - Y & +o).

peEA k j;y) leg®
Card(J{¥))>2 Y €B(p,x2+X9)

Since d, d; > 1 for all k,l, from Lemma 9.5(1) we have ZpeA Dz2> >A>

A> > d and moreover
A=d<= (d, =1 forall k)
and

A=d< (d =1forall l).
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On the other hand since for p € A s.t. J,(,y) = {k} we have d;, = di, we get

A-A= Y Y &- > &

pEA keji,y) leJ
Card(J{¥))>2 Y E€B(p,x2+A9)

Then (9.6) gives

Z1(d)

I ey > ST D2— A ) Inxa|+(A—d)[lné|+(A—A)[n x| +O(1).

peEA

Since |ln x1| = In(hex) + Olln(In hex)] and [In xo| = In vVhex + O[In(ln hey )]
we obtain

(gl(d) + d— ZpeA D127> Inh
2 ex

™

> (A — A)In Vhex + (A — d)[In(6v/hex)| + Olln(In hex)].  (L8)
From Lemma 9.5(2) and the definition of .%;(d) (see Lemma 7.1), we

have )
Li(d) A= pen Dy
+
T 2

<o0. (L9)

Using (1.9) in (I1.8), (1.4), A—d>0and A—A >0 we get A—d=
A — A =0 and then A =d, i.e. d;, =1 for all k.

On the other hand, with the help of (1.8) we may write

0> (iﬂl(d) + d— deADg
T

> In hex = Olln(In hey)].

2

d— D
We may thus deduce ‘zlﬁ(d) + ZZEA ! = 0 and then, with Lem-
ma 9.5(2), for p € A we have D, € {|d/No];[d/No]}.
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