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Orthogonal polynomials and diffusion operators (∗)

Dominique Bakry (1), Stepan Orevkov (2) and Marguerite Zani (3)

ABSTRACT. — We study the following problem: describe the triplets (Ω, g, µ)
where g = (gij(x)) is the (co)metric associated with the symmetric second order
differential operator L(f) = 1

ρ

∑
ij
∂i(gijρ∂jf) defined on a domain Ω of Rd (that

is L is a diffusion operator with reversible measure µ(dx) = ρ(x)dx) and such that
there exists an orthonormal basis of L2(µ) made of polynomials which are at the
same time eigenvectors of L, where the polynomials are ranked according to their
natural degree. We reduce this problem to a certain algebraic problem (for any d) and
we find all solutions for d = 2 when Ω is compact. Namely, in dimension d = 2, and
up to affine transformations, we find 10 compact domains Ω plus a one-parameter
family. The proof that this list is exhaustive relies on the Plücker-like formulas for
the projective dual curves applied to the complexification of ∂Ω. We then describe
some geometric origins for these various models. We also give some description of
the non-compact cases in this dimension.

RÉSUMÉ. — Nous considérons le problème suivant: décrire les triplets (Ω, g, µ) où
g = (gij(x)) est la (co)métrique associée à l’opérateur différentiel du second ordre
symétrique L(f) = 1

ρ

∑
ij
∂i(gijρ∂jf) défini sur un domaine Ω de Rd (i.e. L est un

opérateur de diffusion de mesure réversible µ(dx) = ρ(x)dx) et tels qu’il existe une
base orthonormale de polynômes de L2(µ) qui sont également vecteurs propres de L,
les polynômes étant classés par ordre croissant de leur degré naturel. Nous réduisons
ce problème à un problème algébrique (pour tout d) et décrivons les solutions pour
d = 2 et Ω compact. Nous montrons que pour d = 2, et à transformations affines
près, il y a 10 domaines compacts Ω et une famille à un paramètre. La preuve de l’ex-
haustivité de ce classement repose sur des formules de type Plücker pour les courbes
duales projectives appliquées à la complexification de ∂Ω. Nous présentons alors une
interprétation géométrique de ces différents modèles. Nous donnons également une
description des cas non-compacts en dimension d = 2.
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1. Introduction

1.1. Content of the paper

In this paper, we investigate the following question: for a given set Ω ⊂
Rd, when does there exist a probability measure µ(dx) on Ω, absolutely
continuous with respect to the Lebesgue measure, and an elliptic diffusion
operator

L(f) =
∑
ij

gij(x)∂ijf +
∑
i

bi(x)∂if,

defined on Ω such that there exists an orthonormal basis for L2(µ), formed
by orthogonal polynomials ordered according to the total degree(1) , which
are eigenvectors of the operator L. Moreover, can we describe the sets, the
operators and the measures?

In dimension 1, given the measure µ, there is a unique family of asso-
ciated orthogonal polynomials, up to a choice of sign. Some of them share
extra properties, and as such are widely used in many areas. This is in par-
ticular the case of Hermite, Laguerre, and Jacobi polynomials, which corre-
spond respectively to the measures with density Ce−x2/2 on R, Caxa−1e−x,
a > 0, on [0,∞) and Ca,b(1 − x)a−1(1 + x)b−1, a, b > 0, on [−1, 1] (where
C,Ca, Ca,b are normalizing constants which play no role here). In those three
cases, and only in those ones, the associated polynomials are eigenvectors
of some second order differential operator L: see [6, 9, 54]. Those families

(1) This means that the space of polynomials of degree 6 n is L-invariant for any n
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have been extensively studied, since they play a central role in probability,
analysis, partial differential equations, geometry, mathematical physics, etc.
(see e.g. [2, 26, 29, 30, 31, 70, 72, 73, 76], see also [33, 61] and references
therein).

The differential operator L may be replaced by some other generator
of a Markov semigroup (finite difference, or q-difference operators) and the
orthogonal polynomial eigenfunctions are Hahn, Krawtchouk, Charlier,
Meixner (see [58]). In dimension 1, a classification had been done for such
families, see [32, 74], but there are very few such classification results beyond
the dimension 1 case.

The main motivation for this study lies in probability theory, where such
models for diffusion operators are the easiest ones where one may check
various quantities relating properties of the generator (curvature, diameter,
spectral gap, etc.) to the best possible estimation for the various constants
in functional inequalities (e.g. logarithmic Sobolev inequalities, Sobolev in-
equalities, isoperimetric inequalities, estimates on the heat kernel). It turns
out that the dimension 1 models, where most of the computations may be
done explicitly, provide good models for testing various conjectures. How-
ever, there are too few dimension 1 models to really explore all the various
questions arising in this area. It seems therefore natural to try to describe
more families where such computations may be made. Beyond this, those
families provide natural bases into which computations may be made in ap-
proximation theory, partial differential equations, etc.

The aim of this paper is then to extend the dimension 1 classification for
differential operators to higher dimensions, and in particular in dimension 2,
to give a precise description of the differential operators, the measures and
the domains concerned.

In Rd, in order to properly define an orthonormal polynomial basis, we
first have to agree on a way of ordering the polynomials, and this is done ac-
cording to the choice of a degree. Choosing some positive integers w1, . . . , wd,
a monomial xp1

1 x
p2
2 · · ·x

pd

d will have a degree w1p1 + · · ·+wdpd, and the de-
gree of a polynomial is the maximum degree of its monomials (we may of
course reduce to the case where those integers wi have no common factor).
When all the wi are equal to 1, this is the usual degree. According to this,
one defines the finite dimensional vector space Pdn of polynomials with to-
tal degree less than n, and a polynomial orthogonal basis is defined by the
choice for each n of an orthonormal basis of the orthogonal complement of
Pdn−1 in Pdn.
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Although many of the results of this paper, in particular in Section 2.2,
could be extended to the general degree case, we stick in this paper to the
usual degree.

Given the choice of the degree, for bounded sets Ω ⊂ Rd, one may reduce
the problem to some algebraic question about the boundary. In dimension 2,
and for the usual degree, this problem may be entirely solved (Theorem 3.1):
we provide the complete list of 10 different bounded sets Ω ⊂ R2 together
with a one parameter family of domains (coaxial parabolas) which, up to
affine transformations, are the only ones on which this problem have a solu-
tion. We also provide in Section 4 a complete description of the associated
measures and operators. Under stronger requirements on the sets, we also
provide a list of the 7 non compact models which solve the problem in di-
mension 2. Let us mention that this choice of natural degree is not done
for simplicity. There are many other bounded models in dimension 2 with
associated orthogonal polynomials according to other choices for the de-
gree, but the techniques developed below for classification may not be easily
adapted the general situation. In particular, in dimension 2, one may con-
struct orthogonal polynomials from root systems (Heckman–Opdam polyno-
mials, see [36, 37, 38, 39, 59]) or finite subgroups of O(3) (see [4, 21, 55] for
the construction of such orthogonal polynomial families). Indeed, we recover
in our list the Heckman–Opdam polynomials associated with the root sys-
tems B2 (Section 4.7) and A2 (Section 4.12), but not the family associated
with G2, which corresponds to a degree of xpyq equal to 2p + q (see Sec-
tion 4.12 for details). Many other models in dimension 2 arising from finite
subgroups of O(3) do not appear either in our classification, due again to
another degree in the choice of the degree of the polynomials. However, even
with the usual degree, the example of Section 4.8 shows that root systems
and finite subgroups of O(3) do not provide all the possible models.

Further extension to higher dimensional models are also given, although
a classification seems out of reach with the methods of the 2-dimensional
analysis, even with the usual degree.

1.2. The general problem

Orthogonal polynomials are a long standing subject of investigation in
mathematics. They yield natural Hilbert bases in L2(µ) spaces, where µ is a
probability measure on some measurable set Ω in Rd for which polynomials
are dense. As a way to describe functions f : Ω 7→ R, they are used in many
problems in analysis, for example in partial differential equations, especially
when they present some quadratic nonlinearities: since products are in gen-
eral easy to compute in such polynomial bases, approximation schemes which
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consist in restricting the approximation of functions to a finite number of
components in those bases are easy to implement in practice.

In higher dimension, there are several choices for a basis of orthogonal
polynomials, and no canonical choice may be proposed in general. However,
many families have been described in various settings. In particular, mul-
tivariate analogues of the classical families, in particular those which are
eigenvectors of differential operators, have been put forward by many au-
thors: see [25, 37, 38, 43, 44, 45, 46, 47, 48, 49, 62]); see also [57] for a
generalization of the Rodrigues formula. For a general overview on orthogo-
nal polynomials of several variables, we refer to Suetin [69] and to the book
of Dunkl and Xu [23].

As mentioned above, in dimension d > 2, one orders in general polynomi-
als by their total degree: if Pdn denotes the set of polynomials in d variables
of degree not greater than n, we are looking for a Hilbert basis of L2(µ)
such that for each n, we get a finite-dimensional basis of Pdn. This basis is
not unique in general. This is what we call a polynomial orthogonal basis,
and is the object of our study. As already mentioned, we stick in this paper
with the natural degree, but most of the general considerations developed in
Section 2 remain valid in the general case.

On the other hand, these polynomial bases are not always the best choice
to expand functions or to obtain good approximation schemes. This is in
particular the case in probability theory, when one is concerned with sym-
metric diffusion processes as they naturally appear as solutions of stochastic
differential equations. Indeed, a Markov diffusion process (Xt)t>0, with con-
tinuous trajectories on an open set of Rd or a manifold, has a law entirely
characterized by the family of Markov kernels (Pt)t>0:

Pt(f)(x) = E(f(Xt)/X0 = x) , x ∈ Rd ,

where f is in a suitable class of functions. The infinitesimal generator L
associated with (Pt)t>0 is defined by

Lf = lim
t→0

Ptf − f
t

,

whenever this limit exists.

This operator governs the semigroup in the sense that if F (x,t)=Pt(f)(x),
then F is the solution of the heat equation

∂tF = LF, F (x, 0) = f(x).

It is quite difficult in general to obtain a complete description of Pt in terms
of the operator L, which is in general the only datum that one has at hand
from the description of (Xt), for example as the solution of a stochastic
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differential equation. This operator L is a second order differential operator
with no zero order component, moreover semi-elliptic, of the form

L(f) =
∑
ij

gij(x)∂ijf +
∑
i

bi(x)∂if . (1.1)

Although not easy to compute explicitly, the operator Pt, which describes
the law of the random variable Xt, has a nice expression at least when L
is self-adjoint with respect to some measure µ (µ is then said to be the
reversible measure for (Xt)), and when the spectrum is discrete. When µ
has a density ρ which is C1 with respect to the Lebesgue measure, and if
the coefficients gij are also assumed to be at least C1, then this latter case
amounts to look for operators L of the form

L(f) = 1
ρ

∑
ij

∂i(gijρ ∂jf). (1.2)

In this paper, we shall restrict our attention to operators which are elliptic
in the interior of the support of µ. Such an operator described in (1.2) will
be called a symmetric diffusion operator. Notice however that the ellipticity
assumption is never used in the paper and all our results remain true for any
non-degenerate (co)metric (gij). Moreover, in dimension 2, where we give
a complete classification, we see a posteriori that L appears to be elliptic
(without this a priori assumption) each time when gij is unique up to scalar
factor.

In the case under study, the spectral decomposition leads to some more
or less explicit representation. Namely, if there is an orthonormal basis (en)
of L2(µ) composed of eigenvectors of L,

Len = −λnen,

then one has
Pt(f)(x) =

∫
f(y)pt(x, y)dµ(y),

where
pt(x, y) =

∑
n

e−λnten(x)en(y).

For fixed x, the function pt(x, y) represents the density with respect to µ(dy)
of the law of Xt when X0 = x. Of course, this representation is a bit for-
mal, since one has to insure first that this series converges, which requires
Pt to be trace class, or Hilbert–Schmidt. However, even if it is quite rare
that the eigenvalues λn and the eigenvectors en are explicitly known, it can
be of great help to know that such a decomposition exists: it provides a
good approximation of Pt when t goes to infinity, and as such allows to
control convergence to equilibrium. But even when one explicitly knows the
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eigenvectors and eigenvalues, it is not always easy to extract many useful
information from the previous description. It is even not immediate to check
in general that the previous expansion leads to nonnegative functions.

Even when L is elliptic and symmetric, its knowledge, given on say
smooth function compactly supported in Ω, is not enough to describe the
associated semigroup Pt or any self-adjoint extension of L. One requires in
general some boundary conditions. This requirement will be useless in our
context, since we shall impose the eigenvectors to be polynomials. As a coun-
terpart, this will impose some boundary condition on the operator itself.

As mentioned earlier, we are interested in the description of the situa-
tion when the eigenvector expansion coincides with a family of orthogonal
polynomials associated with the reversible measure. Although the situation
is well known and described in dimension 1, such description is not known
in higher dimension, apart from some generic families. At least when the set
Ω is relatively compact, and when the reversible measure µ has a C1 density
with respect to the Lebesgue measure, we may turn the complete descrip-
tion of this situation into a problem of algebraic nature: the operators and
the measures can be completely recovered from the boundary of Ω, which
is some algebraic surface of degree at most 2d in dimension d. Then, we
completely solve this problem in dimension 2, leading, up to affine trans-
formations, to the 11 different possible boundaries: the square, the circle,
the triangle, the coaxial parabolas, the parabola with one tangent and one
secant, the parabola with two tangents, the nodal cubic, the cuspidal cubic
with one secant line, the cuspidal cubic with one tangent, the swallow tail
and the deltoid.

Once the boundary is known, the possible measures are completely de-
scribed. They depend on some parameters (as many parameters as irre-
ducible components in the minimal equation of the boundary of Ω). It turns
out that in many situations, for some half integer values of these parameters,
the associated operator has a natural geometric interpretation in terms of
Lie group action on symmetric spaces. We then provide explicitly many of
these interpretations whenever they are at hand.

We also show that when Ω = R2 (that is when the density ρ of µ is
everywhere positive), the only possible measures are Gaussian. Under some
extra hypothesis, we also provide some classification of the non compact
models. Further extensions to higher dimension are also provided.

The paper is organized as follows. In Section 2, after some rapid overview
of the dimension 1 case, we describe the general setting in any dimension,
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and, when the set Ω is relatively compact, we show how to reduce the descrip-
tion to the classification of some algebraic surfaces in Rd. We also describe
the various associated measures from the description of the boundary of Ω.

Then, Section 3 is devoted to the classification of the compact 2-dimens-
ional models, which leads to 11 different cases up to affine transformations.
Section 4 provides a more detailed description of the 11 models, with some
insight on their geometric content for various values of the parameters. Sec-
tion 5 describes the case where no boundary is present, and the main result
of this section is that the only possible measures are Gaussian ones. Section 6
describes the non compact cases under some extra assumption which extends
the natural condition of the compact case. Finally, Section 7 provides some
way of constructing 3-dimensional models from 2-dimensional ones.

2. Diffusions associated with orthogonal polynomials

2.1. Dimension 1

As mentioned previously, the one-dimensional case has been completely
described for a long time (see e.g. [6, 9, 54]). We recall here briefly the
framework and results.

Let µ be a finite measure absolutely continuous with respect to the
Lebesgue measure on an open interval I of R with C1 density ρ (we may
assume µ is a probability measure), for which polynomials are dense in L2(µ)
(this is automatic when I is bounded, but in general it is enough to demand
that

∫
exp(ε|x|)dµ < ∞ for some ε > 0, see [8, 24]). Let (Qn)n>0 be the

family of orthogonal polynomials obtained from the sequence (xn)n>0 by
orthonormalization, e.g. by the Gram–Schmidt process (the normalization
of Qn plays no role in what follows). Assume furthermore that some elliptic
diffusion operator L of type (1.2) exists on I (and therefore µ(dx) = ρ(x) dx
is its reversible measure, that is L is symmetric in L2(µ), at least on the
set of smooth compactly supported functions), such that for some sequence
(λn) of real numbers,

LQn = −λnQn .

Then up to affine transformations, I, µ and L may be reduced to one of
the three following cases:

(1) The Ornstein–Uhlenbeck operator on I = R

H = d2

dx2 − x
d

dx ,
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the measure µ is Gaussian centered: µ(dx) = e−x2/2
√

2π dx. The family
(Qn)n are the Hermite polynomials, denoted Hn(x) or Hn(x/

√
2)

in the literature, and λn = n.
(2) The Laguerre operator (or squared radial generalized Ornstein–

Uhlenbeck operator) on I = R∗+

La = x
d2

dx2 + (a− x) d
dx , a > 0,

the measure µa(dx) = Cax
a−1e−x dx. The family (Qn)n are the

Laguerre polynomials, often denoted La−1
n (x), and λn = n.

(3) The Jacobi operator on I = (−1, 1)

Ja,b = (1− x2) d2

dx2 −
(
a(x+ 1) + b(x− 1)

) d
dx , a, b > 0,

the measure µa,b(dx) = Ca,b(1 − x)a−1(1 + x)b−1 dx, the family
(Qn)n are the Jacobi polynomials, often denoted P a−1,b−1

n (x), and
λn = n(n+ a+ b− 1).

The first two families appear as limits of the Jacobi case. For example, when
we chose a = b and let then a go to ∞, and scale the space variable x
into x/

√
a, the measure µa,a converges to the Gauss measure, the Jacobi

polynomials converge to the Hermite ones, and 2
aJa,a converges to H.

In the same way, the Laguerre setting is obtained from the Jacobi one
fixing b, changing x into 2x

a − 1, and letting a go to infinity. Then µa,b
converges to µb, and 1

aJa,b converges to Lb.

Also, when a is a half-integer, the Laguerre operator may be seen as the
image of the Ornstein–Uhlenbeck operator in dimension d. Indeed, as the
product of one-dimensional Ornstein–Uhlenbeck operators, the latter has
generator Hd = ∆ − x.∇. Its reversible measure is e−|x|2/2dx/(2π)d/2, its
eigenvectors are the products Qk1(x1) · · ·Qkd

(xd), and its associated process
Xt = (X1

t , . . . , X
d
t ), is formed of independent one dimensional Ornstein–

Uhlenbeck processes, see [5]. Then, if one sets R(x) = |x|2, then one may
observe that, for any smooth function F : R+ 7→ R,

Hd

(
F (R)

)
= 2La(F )(R),

where a = d/2. In the probabilist interpretation, this amounts to observe
that if Xt is a d-dimensional Ornstein–Uhlenbeck process, then |Xt/2|2 is
a Laguerre process with parameter a = d/2. This coincides with the fact
that the image measure of the Gaussian measure under this map is the
measure µd/2.
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In the same way, when a = b = d/2, Ja,a may be seen as the Laplace
operator ∆Sd on the unit sphere Sd in Rd+1 acting on functions depend-
ing only on the first coordinate (or equivalently on functions invariant un-
der the rotations leaving (1, 0, . . . , 0) invariant), which may be interpreted
as the fact that the first coordinate of a Brownian motion on the unit
sphere is a diffusion process with generator Jd/2,d/2. A similar interpreta-
tion is valid for Jp/2,q/2 for some integers p and q. Namely, let us consider
functions on Sp+q−1 depending only on X = x2

1 + · · · + x2
p. Then, setting

Y = 2X − 1 : Sp+q−1 7→ [−1, 1], for any smooth function f : [−1, 1] 7→ R,
∆Sp+q−1f(Y ) = 4Jq/2,p/2(f)(Y ). Once again, the associated Jacobi pro-
cess may be seen as the image of a Brownian motion on the (p + q − 1)-
dimensional sphere through the function Y = 2X − 1. This interpretation
comes from Zernike and Brinkman [12] and Braaksma and Meulenbeld [10]
(see also [18, 42]). As in the previous case, these interpretations are com-
patible with the fact that the images of the uniform measure on the sphere
under these various projections are the corresponding reversible measures
of our operators. We shall come back to such interpretations of models as
images of other ones in paragraph 4.1.

Let us mention that Jacobi polynomials also play a central role in the
analysis on compact Lie groups. Indeed, for (a, b) taking the various values of
(q/2, q/2), ((q−1)/2, 1), (q−1, 2), (2(q−1), 4) and (4, 8) the Jacobi operator
Ja,b appears as the radial part of the Laplace–Beltrami (or Casimir) operator
on the compact rank 1 symmetric spaces, that is spheres, real, complex and
quaternionic projective spaces, and the special case of the projective Cayley
plane (see Sherman [64]).

2.2. General setting

We now state our problem in full generality, and describe the framework
we are looking for. In this section, we describe the general problem (DOP,
Definition 2.4) as stated above, and we further consider a more constrained
one (SDOP, Definition 2.8). It turns out that they are equivalent whenever
the domain Ω is bounded, and that the latter is much easier to handle. To
start with, we restrict the domains we are considering.

Definition 2.1. — We call a natural domain an open connected set in
Rd which is the interior of its closure.

Definition 2.2. — Let Ω be a natural domain. A diffusion operator on
Ω with smooth coefficients is a differential operator L, acting on smooth
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compactly supported function in Ω, which writes

L(f) =
∑
ij

gij(x)∂ijf +
∑
i

bi(x)∂if, (2.1)

where gij and bi are smooth functions (that is C∞) on Ω, and the matrix
(gij) is symmetric, positive definite for any x ∈ Ω.

The ellipticity assumption (i.e. the matrix (g) is positive definite on Ω)
could be relaxed to the weaker one of hypoellipticity. However, it would
change a lot of arguments since most of the paper rely in an essential way on
it. So, the non-degeneracy of the quadratic form (gij) is crucial. In contrast,
as we already mentioned in the introduction, its positive definiteness (i.e. the
ellipticity of L) is never used in the proofs (except, of course, the negativity of
the eigenvalues). However, by miracle (which deserves to be explained), our
classification in dimension two gives only elliptic solutions when the metric is
determined by Ω up to rescaling. Notice that diffusion operators (operators
such that the associated semigroups are Markov operators) require at least
that L is semi-elliptic, that is the matrices (gij) are non-negative.

In the sequel, we shall make a constant use of the square field operator
(see [5])

Γ(f1, f2) =
∑
ij

gij∂if1∂jf2 = 1
2

(
L(f1f2)− f1L(f2)− f2L(f1)

)
, (2.2)

and observe that for any smooth function Φ : Rk 7→ R and any k-tuple of
smooth functions f = (f1, . . . , fk) fi : Ω 7→ R, one has

L
(
Φ(f1, . . . , fk)

)
=

k∑
i,j=1

(∂ijΦ)(f)Γ(fi, fj) +
k∑
i=1

(∂iΦ)(f)L(fi). (2.3)

We also consider some probability measure µ(dx) = ρ(x)dx with smooth
density ρ on Ω for which polynomials are dense in L2(µ). This last assump-
tion is automatic as soon as Ω is relatively compact (in which case polyno-
mials are even dense in any Lp(µ), 1 6 p <∞). It would require some extra-
assumption on µ in the general case. For example, it is enough for this to hold
to require that µ has some exponential moment, that is

∫
Ω e

ε‖x‖dµ(x) <∞
for some ε > 0, in which case polynomials are also dense in every Lp(µ),
1 6 p <∞ (see [24]).

The fundamental question is to study whether there exists a polynomial
orthonormal basis of L2(µ), say (Pk), for which the polynomials Pk are
eigenvectors for L, that is that there exist some real numbers (λ(Pk)) with
LPk = −λ(Pk)Pk. Such eigenvalues (λ(Pk)) turn out to be necessarily non
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negative (this is a general property of symmetric diffusion operators, as a
direct consequence on the non-negativity of Γ).

In dimension d, where d > 2, one should be precise about the notion of
polynomial orthogonal basis, as mentioned in the introduction.

Definition 2.3. — Let Ω be a natural domain and µ a probability mea-
sure on Ω for which the polynomials are dense in L2(µ). Let Pdn be the finite
dimensional space of polynomials with natural degree less than n. A polyno-
mial orthonormal basis for L2(µ) is a choice, for each n, of an orthonormal
basis in the orthogonal complement of Pdn−1 in Pdn.

As mentioned earlier, one could consider more general situations with
weighted degrees. Although this general situation with integer weights may
appear in many situations (see [4] for example), our paper depends in a
crucial way on the fact that the weights here are chosen to be 1, that is the
polynomials are ranked according to their natural degree.

Denote by Hdn the space of polynomials of total degree n, orthogonal to
Pdn−1 in Pdn. Then

dimPdn =
(
n+ d

d

)
, and dimHdn =

(
n+ d− 1
d− 1

)
.

As mentioned above, the choice of a polynomial orthonormal basis in L2(µ)
amounts to the choice of a basis for Hdn, for any n. We are interested in the
case where those polynomials are eigenvectors of the diffusion operator L
given by L(P ) = −λ(P )P , for any polynomial P in the orthonormal basis,
and for some real parameter λ(P ).

This leads us to state the following problem.

Definition 2.4 (DOP problem). — Let Ω be a natural domain, µ(dx) =
ρ(x)dx a probability measure with smooth positive density on Ω, such that
polynomials are dense in L2(µ), and let L be a diffusion operator (2.1) on Ω.
We say that (Ω,L, µ) is a solution to the Diffusion Orthogonal Polynomials
problem (in short DOP problem) if there exists an orthonormal polynomial
basis of L2(µ) (see Definition 2.3) whose elements are at the same time
eigenvectors of the operator L.

Let us start with few elementary remarks. Let (Ω,L, µ) be a solution of
the DOP problem.

The hypothesis on eigenbases in the subspaces Pdn implies that L maps Pdn
into Pdn and Hdn into Hdn. Therefore, when P ∈ Pdn and Q ∈ Pdm, Γ(P,Q) ∈
Pdn+m.
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The restriction of L to Pdn is symmetric for any n (because it is so on an
orthogonal eigenbasis), i.e., for any pair (P,Q) of polynomials one has∫

Ω
PL(Q) dµ =

∫
Ω
QL(P ) dµ. (2.4)

Using (2.4) with Q = 1 leads to
∫

Ω L(P ) dµ = 0 for any polynomial.
Applying this to PQ together with the definition of the operator Γ, one
gets, for any pair (P,Q) of polynomials∫

Ω
L(PQ) dµ =

∫
Ω
PL(Q) dµ+

∫
Ω
QL(P ) dµ+ 2

∫
Ω

Γ(P,Q) dµ = 0,

whence, using (2.4), we obtain∫
Ω
PL(Q) dµ =

∫
Ω
QL(P ) dµ = −

∫
Ω

Γ(P,Q) dµ. (2.5)

Applying when P = Q is an element of the basis, since Γ(P, P ) > 0, one sees
that λ(P ) > 0.

From equation (2.5), we see that the restriction of L to polynomials
is entirely determined by Γ (hence by the matrices (gij(x))x∈Ω), and the
measure µ.

Next, the following important observation, relying on the choice of the
natural degree, shows that the DOP problem is invariant under affine trans-
formations:

Proposition 2.5. — If (Ω,L, µ) is a solution to the DOP problem, and
if A is an affine invertible transformation of Rd, so is (Ω1,L1, µ1), where
Ω1 = A(Ω), µ1 is the image measure through A of µ and

L1(f) = L(f ◦A) ◦ (A−1).

Proof. — Affine transformations map polynomials onto polynomials with
the same degree. It suffices then to see that the associated operator L1(f) =
L(f ◦A)◦A−1 is again a diffusion operator, which has a family of orthogonal
polynomials as eigenvectors: if Pk is an eigenvector for L, then Pk ◦ A−1 is
an eigenvector of L1. Moreover, orthogonality for the measure µ is carried
to orthogonality for the measure µ1. �

Moreover, the following Proposition shows that solutions to the DOP
problem are stable under products

Proposition 2.6. — If (Ω1,L1, µ1) and (Ω2,L2, µ2) are solutions to the
DOP problem in Rd1 and Rd2 respectively, then (Ω1 ×Ω2,L1 ⊗ Id + Id⊗L2,
µ1 ⊗ µ2) is also a solution.
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Proof. — Here L = L1 ⊗ Id + Id⊗L2 denotes the operator acting sepa-
rately on x and y: Lf(x, y) = Lxf + Lyf . Similarly, µ1 ⊗ µ2 is the product
measure. The proof is then immediate: if (P (1)

k ) and (P (2)
q ) are the associated

families of orthogonal polynomials, with eigenvalues −λk and −µq, the poly-
nomials associated with L are Pk,q(x, y) = P

(1)
k (x)P (2)

q (y), with associated
eigenvalues −λk − µq. �

Next, we describe the general form of the coefficients of the operator L.

Proposition 2.7. — Let L be a diffusion operator in a natural domain
Ω and µ be a probability measure in Ω for which the polynomials are dense
in L2(µ). Then (Ω,L, µ) is a solution of the DOP problem if and only if

(1) In the representation (2.1) of L, for any i = 1, . . . , d, bi(x) ∈ Pd1
and for any i, j = 1, . . . , d, one has gij(x) ∈ Pd2 .

(2) For any pair (P,Q) of polynomials, equality (2.4) holds.

Proof. — Assume that (Ω,L, µ) is a solution of the DOP problem. Since
L maps Pdn into Pdn for any n ∈ N, we have bi(x) = L(xi) ∈ Pd1 and gij(x) =
Γ(xi, xj) ∈ Pd2 . Moreover, writing any pair of polynomials (P,Q) in the basis
of orthogonal polynomials, we immediately obtain equation (2.4).

Conversely, if bi(x) ∈ Pd1 , i = 1, . . . , d and gij(x) ∈ Pd2 , i, j = 1, . . . , d,
then L maps Pdn into Pdn for any n ∈ N. Then, when moreover equation (2.4)
holds, L is a symmetric operator on the finite dimensional space Pdn, endowed
with the scalar product inherited from the L2(µ) metric. As such, we may
find a basis of eigenvectors for it, and so we construct an L2(µ) orthonormal
basis made of eigenvectors for L. �

Only for polynomials the integration by parts formula (2.5) is a conse-
quence of L being a solution of the DOP problem. It may be interesting
(and crucial) to extend it to any smooth compactly supported functions.
This leads us to the Strong Diffusion Orthogonal Polynomials problem.

Definition 2.8 (SDOP problem). — The triple (Ω,L, µ) is a solution
to the Strong Diffusion Orthogonal Polynomial problem (SDOP in short) if
it is a solution to the DOP problem (Definition 2.4) and in addition, for any
f1 and f2 smooth and compactly supported in Rd, one has∫

Ω
f1L(f2) dµ =

∫
Ω
f2L(f1) dµ. (2.6)

If (Ω,L, µ) is a solution to the SDOP problem, then, writing µ(dx) =
ρ(x) dx, we may define L(f) by formula

L(f) = 1
ρ

∑
ij

∂i

(
gijρ ∂jf

)
(2.7)
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(see Proposition 2.11 below) and therefore L is entirely determined from the
(co)metric g = (gij) and the measure density ρ(x). We therefore talk about
the triple (Ω, g, ρ) as a solution of the SDOP problem.

Notice that L admits a presentation in the form (2.7) under assumptions
weaker than those in Definition 2.8. In Proposition 2.11 we do not demand
that (2.6) holds for all compactly supported functions but only for those
whose support is contained in Ω.

The equation (2.7) allows us to identify bi from gij and ρ as

bi =
∑
j

∂jg
ij +

∑
j

gij∂j log ρ. (2.8)

To justify (2.7), we start with the following two lemmas which will be
used again and again.

Lemma 2.9. — Let (Ω, µ) be any domain in Rd and a measure on it.
Let F be either the algebra of smooth functions compactly supported in Rd,
or its subalgebra consisting of functions compactly supported in Ω. Let L be
of the form (2.1) with smooth coefficients. Then the following conditions are
equivalent:

(1) The equation (2.6) holds for any f1, f2 ∈ F .
(2) The following equation (2.9) holds for any f1, f2 ∈ F :∫

Ω

(
f1L(f2) + Γ(f1, f2)

)
dµ = 0. (2.9)

Proof. — Equation (2.9) is derived from (2.6) in the same way as (2.5)
was derived from (2.4) (to justify the symmetry condition (2.9) in the case
when f1 = 1, we replace f1 by a function from F which is equal to 1 on
the support of f2). The converse implication (2.9) ⇒ (2.6) follows from the
symmetry of Γ. �

Let dx∗j = ∗(dxj) be the differential (d− 1)-form Hodge dual to dxj , i.e.,

dx∗j = (−1)j−1 dx1 ∧ . . . ∧ydxj ∧ . . . ∧ dxd.
We set also

ωf =
∑
ij

ρgij∂if dx∗j . (2.10)

Lemma 2.10. — Let Ω be a relatively compact natural domain with piece-
wise smooth boundary, µ = ρdx with a smooth ρ, and L is given by (2.7).
Let f1 and f2 be smooth functions such that f1ρ extends continuously to Ω,
the closure of Ω. Then the equation (2.9) is equivalent to∫

∂Ω
f1 ωf2 = 0. (2.11)
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The latter equation can be equivalently rewritten as∫
∂Ω
f1
∑
ij

gij(∂if2)njρ dσ = 0

where (n1, . . . , nd) is the normal vector to the boundary and σ the surface
measure.

Proof. — A straightforward computation shows that
d(f1 ωf2) =

(
f1L(f2) + Γ(f1, f2)

)
ρdx, (2.12)

thus the equivalence of (2.9) and (2.11) follows from Stokes’ formula. �

Proposition 2.11. — Let L be defined by (2.1) on a domain Ω ∈ Rd,
and µ = ρdx be a probability measure on Ω with a smooth density ρ. Suppose
that (2.6) holds for any pair of smooth functions compactly supported in Ω.
Then L is of the form (2.7).

Proof. — Let us temporarily denote the right hand side of (2.7) by pL,
and the corresponding square field operator by pΓ. Then pL is of the form (2.1)
with the same (gij) but with the bi’s given by (2.8). So, we have pΓ = Γ.

Let f1 and f2 be functions compactly supported in Ω. Let Ω0 be a
bounded domain with piecewise smooth boundary such that supp(f1) ⊂ Ω0
and Ω0 ⊂ Ω. Then (2.11) holds for pL and Ω0, hence (2.9) holds for pL and Ω.
On the other hand, by Lemma 2.9, we have (2.9) for L as well. Since pΓ = Γ,
we deduce that∫

Ω
f1L(f2) dµ = −

∫
Ω

Γ(f1, f2) dµ =
∫

Ω
f1pL(f2) dµ

for any f1, f2 compactly supported in Ω whence L = pL. �

The next proposition shows that the distinction between DOP and SDOP
solution is relevant in the non compact case only.

Proposition 2.12. — Whenever Ω is relatively compact, any solution
of the DOP problem is a solution of the SDOP problem.

Proof. — (See also [71, p. 155, Cor. 2].) We just have to show that for
relatively compact sets Ω, equation (2.6) is satisfied for any pair (f1, f2)
of smooth compactly supported functions. Since Ω is relatively compact,
for any f smooth and compactly supported in Rd (and not necessarily in
Ω), we first choose some compact K which contains both the support of f
and Ω, and which is a hyper-rectangle oriented parallel to the coordinate
axes. Then, there exists a polynomial sequence (Rn) converging uniformly
on K to ∂11···ddf . Then, repeated integrals of Rn converge uniformly on K
to the corresponding derivatives of f . Finally, we obtain a sequence (Pn)
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of polynomials such that Pn and all its partial derivatives of order 1 and
2 converge uniformly on K to the corresponding derivatives of f . Choose
such sequences (Pn) and (Qn) for f1 and f2 respectively. The functions
gij and bi being polynomials, are bounded on K. Therefore, (Pn), (Qn),
L(Pn), and L(Qn) converge uniformly on K to f1,f2, L(f1), and L(f2) re-
spectively. Then, it is clear that formula (2.4) extends immediately to the
pair (f1, f2). �

Proposition 2.13. — If (Ω, g, ρ) is a solution to the SDOP problem,
then there exist polynomials Li ∈ Pd1 , i = 1, . . . , d (that is polynomials of
degree at most 1) such that, for any x ∈ Ω and any i = 1, . . . , d,∑

j

gij∂j log(ρ(x)) = Li(x). (2.13)

Proof. — Combine (2.8) with the fact that deg gij = 2 and deg bi = 1. �

As a consequence of Proposition 2.13, we get the following general de-
scription of the admissible measures (Proposition 2.15). We start with the
following fact.

Lemma 2.14. — Let C and ∆ = ∆m1
1 . . .∆ms

s be polynomials in one
complex variable where m1, . . . ,ms are positive integers. Assume that all
roots of the product ∆1 . . .∆s are simple. Let F be a holomorphic function
on the complement of the roots of ∆ such that F ′ = C/∆. Then F

∏
q ∆mq−1

q

extends to a polynomial of degree at most max
(
0, 1 + degC −

∑
q deg ∆q

)
.

Proof. — The function F is univalued and F ′ is rational, hence F is
rational. The multiplicity of poles of F at the zeros of ∆k is at most mk− 1,
hence F

∏
q ∆mq−1

q extends to a polynomial. For a rational function f = p/q
where p and q are polynomials, we set deg∞ f = deg p− deg q. It remains to
observe that deg∞ f ′ 6 max(0,deg∞ f − 1). �

Notice that if a real polynomial is irreducible over R but reducible over
C, then it factors over C as (R+ iI)(R− iI) with R and I irreducible over
C, and thus it is equal to R2 + I2.

Proposition 2.15 (General form of the measure). — Let (Ω, g, ρ) be
a solution of the SDOP problem. Suppose that the determinant ∆ of (gij)
writes ∆ = ∆m1

1 · · ·∆mp
p , where ∆k are irreducible over the reals. Let J be

the set of indices j ∈ {1, . . . , p} such that ∆j is reducible over C, written
∆j = R2

j + I2
j . Then there exist real constants (αk)k=1,...,p and (βj)j∈J , and

a polynomial Q such that

deg(Q) 6 2d−
p∑
k=1

deg ∆k, degxi
(Q) 6 2d−

p∑
k=1

degxi
∆k, i = 1, . . . , d,

(2.14)
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and(2)

ρ = exp
(

Q

∆m1−1
1 · · ·∆mp−1

p

+
∑
j∈J

βj arctan Ij
Rj

)
p∏
k=1
|∆k|αk (2.15)

Proof. — With h = log ρ, one has from equation (2.13)

∂jh =
∑
i

gijL
i, (2.16)

where g(−1) = (gij) is the inverse matrix of (gij) and Li ∈ Pd1 . But g(−1) =
∆−1

pg, where pg is the matrix of co-factors of g. Then each pgij is a polynomial
of degree at most 2d− 2, and therefore ∂ih = Ci/∆ where Ci ∈ Pd2d−1.

Let us extend the differential form dh to a closed holomorphic form ω in
the complex domain Cd \ {∆ = 0}. By Alexander duality (see [1, 51, 60]),
the De Rham cohomology group H1

DR(Cd \ {∆ = 0}) is generated by the
1-forms d log p∆q where p∆1, . . . , p∆s, s = p + |J |, are the irreducible over
C factors of ∆. Hence there exist complex numbers γ1, . . . , γs such that
ω −

∑
q γqd log( p∆q) = dF0 is exact. From the definition of ω we know that

∂iF0 = Ci
∆ −

∑
q

γq
∂i p∆q

p∆q

=
pCi
∆

with deg pCi 6 2d− 1.

By Lemma 2.14, when fixing generically all variables xj for j 6= i, then
Q = F0

∏
q

p∆mq−1
q is a polynomial in xi of degree at most

ni = 2d−
s∑
q=1

degxi

p∆q = 2d−
p∑
k=1

degxi
∆k.

Therefore ∂n1
1 · · · ∂

nd

d Q= 0. Hence Q is a polynomial, and its xi-degrees are as
in (2.14). Moreover, since the same remains true for any coordinate system,
the total degree of Q is also as in (2.14).(3) Thus we obtain (2.14) and

log ρ = h = Q

p∆m1−1
1 · · · p∆ms−1

s

+
∑
q

γq log p∆q . (2.17)

We now deal with the real form of ρ. Whenever there is an irreducible over
R factor ∆k of ∆ which is reducible over C, its irreducible decomposition

(2) By arctan(Ij/Rj) we mean here a continuous single-valued branch of the argument
of Rj + iIj . So, formally speaking, one should replace arctan(Ij/Rj) by arctan(Ij/Rj)+
c(x) where c(x) is a locally constant function on Ω \ {Rj = 0} which jumps by ±π when
crossing {Rj = 0}.

(3) The anonymous referee pointed out that similar relations between exact meromor-
phic p-forms and their primitives are found in [19, 28] for any p.
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over C writes ∆k = (Rk + iIk)(Rk − iIk), and the corresponding summand
in log ρ must be of the form

γq log(Rk + iIk) + γ̄q log(Rk − iIk) ,

which writes in real form αk log ∆k + βk arctan(Ik/Rk). �

Remark 2.16. — In the case where Ω is bounded, we did not observe up
to now any model where the admissible measures has the exponential factor
in (2.15). Moreover, only components of the reduced boundary equation (see
Definition 2.20) appear in all known examples. In the unbounded case the
exponential term must be present (otherwise the measure would not integrate
all the polynomial functions), however, the fraction in (2.15) reduces to a
polynomial after cancellation in all known examples.

As we see in the proof of Proposition 2.15, the real 1-form d log ρ ex-
tends to a meromorphic 1-form in C2 which may have poles only on the
algebraic curve det(gij) = 0. By abusing notation, we shall still denote this
meromorphic form by d log ρ.

Proposition 2.17. — In the setting of Proposition 2.15, assume that
d log ρ has pole along the hypersurface ∆k = 0 (this means that either αk 6= 0
for k 6∈ J , or (αj , βj) 6= (0, 0) for k ∈ J , or mk > 2 and ∆mk−1

k does not
divide Q). Then there exist polynomials Sik ∈ Pd1 , i = 1, . . . , d, such that∑

j

gij∂j∆k = Sik∆k for any i = 1, . . . , d. (2.18)

Proof. — From the point of view of the geometric intuition, this fact
is almost obvious. Indeed, the condition (2.13) means that for any i, the
derivative of log ρ along the vector field

∑
j g

ij∂j is bounded. Therefore it is
clear that this vector field should be tangent to the hypersurface log ρ =∞.

Let us give however a more formal proof. We shall use the notation in-
troduced in the proof of Proposition 2.15. Let us differentiate (2.17) with
respect to xj . Our assumption about k implies that we obtain

∂j log ρ = P∂j p∆k +Rj p∆k

p∆n
k∆̃

(2.19)

where n > 0, P is a polynomial coprime with p∆k (which does not depend
on j), ∆̃ is a product of some powers of the p∆q’s with q 6= k. After plug-
ging (2.19) into (2.13) and multiplying by the denominator, we obtain

P

(∑
j

gij∂j p∆k

)
+ p∆k

(∑
j

gijRj

)
= Li p∆n

k∆̃

– 1003 –



Dominique Bakry, Stepan Orevkov and Marguerite Zani

Since P is coprime with p∆k, we deduce that p∆k divides
∑
j g

ij∂j p∆k and we
denote the quotient by Sik. Since the degree of the left hand side of (2.18) is
at most 1 + deg p∆k, we conclude that Sik ∈ Pd1 . �

Corollary 2.18. — In the setting of Proposition 2.15, the estimate for
degxi

Q in (2.14) can be improved by replacing 2d with 2 + maxj degxi
pgij

where (pgij) is the co-matrix of g, i.e., pgij is the complementary minor of the
entry gij.

Proof. — Let F0 = Q
∏
k ∆1−mk

k and let Li0 =
∑
j g

ij∂jF0. By combining
equations (2.13), (2.17), and (2.18), we obtain

Li0 =
∑
j

gij
(
∂j log ρ−

∑
k

γk∂j log p∆k

)
= Li −

∑
k

γkS
i
k ∈ Pd1 .

The rest of the proof is similar to the proof of (2.14). Namely, the definition
of Li0 implies that ∆∂jF0 =

∑
i pgijL

i
0, and the required estimate for degQ

follows from Lemma 2.14. When applying Lemma 2.14, we may get rid of
max(0, . . . ) because∑

k

degxj
∆k 6 degxj

∆ = degxj

∑
i

gijpgij 6 2 + max
i

degxj
pgij �

Corollary 2.19. — Let (Ω, g, ρ) be a solution to the SDOP problem.
Suppose that Ω contains a half-cylinder, i.e., a domain Ω1 ⊂ Ω given in
some affine coordinates by x1 > 0 and x2

2 + · · ·+ x2
d < 1. Then

degx1 det(g) < 2 + max
j

degx1 pg1j .

Proof. — Let notation be as in Proposition 2.15. Then ρ is given by (2.15).
Let F = ∆m1−1

1 . . .∆mp−1
p be the denominator of the fraction in (2.15).

We may assume that the sign of each ∆k is chosen so that ∆k > 0 on Ω.
Write Q =

∑n
j=0Qjx

j
1 and F =

∑m
j=0 Fjx

j
1 with Qj , Fj ∈ R[x2, . . . , xn] and

n = degx1 Q, m = degx1 ∆. Let Bd−1
r = {(x2, . . . , xd) | x2

2 + · · · + x2
d < r2}

with 0 < r < 1. We have F > 0 in Ω, hence Fm > 0 in the unit (d− 1)-ball.
Therefore Fm > C1 in Bd−1

r for some constant C1 > 0. Let C2 be a constant
such that |Qj(x)| < C2, j = 0, . . . ,m − 1 and |Fj(x)| < C2, j = 0, . . . , n,
when x ∈ Bd−1

r . Then, for some constants A and C depending on C1, C2,
we have |Q/F | < Cxn−m1 on Ω2 = [A,∞) × Bd−1

r . Thus, n > m because
otherwise we would have exp(Q/F ) > − exp(C) on Ω2 which contradicts
the integrability of polynomials on Ω. �

Definition 2.20. — Given a natural domain Ω in Rd not coinciding
with the whole Rd, let I(∂Ω) be the ideal of C[x1, . . . , xd] consisting of poly-
nomials identically vanishing on ∂Ω. If I(∂Ω) 6= {0}, then the condition that
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Ω is the interior of its closure implies that I(∂Ω) is a principal ideal gener-
ated by a single real polynomial p∆ which is, evidently, reduced (i.e., does not
have multiple factors). In this case we say that p∆ is the reduced equation of
∂Ω. Each irreducible factor of p∆ vanishes on some open subset of the set of
smooth points of ∂Ω.

We can now state the main result of this section.

Theorem 2.21. — Let Ω be a natural domain in Rd, ρ a smooth function
in Ω and g = (gij) a positive definite (co)metric in Ω. Let ∆ = det(g). Then
(Ω, g, ρ) is a solution to the SDOP problem (recall that it is the same as
DOP problem when Ω is bounded) if and only if there exists a reduced (i.e.,
without multiple factors) real polynomial p∆ such that p∆ divides ∆ and the
following conditions hold:

(1) For any (i, j), gij(x) ∈ Pd2 ;
(2) ∂Ω is contained in the algebraic hypersurface {p∆ = 0}.
(3) For any i = 1, . . . , d, for some Si ∈ Pd1 one has∑

j

gij∂j p∆ = p∆Si (2.20)

(4) ρ is of the form (2.15) (with the ingredients explained in Proposi-
tion 2.15), and polynomials are dense in L2(ρdx) (if Ω is bounded,
the last condition is equivalent to

∫
Ω ρ dx <∞).

(5)
∑
j g

ij∂j log ρ ∈ Pd1 for any i = 1, . . . , d.

Remark 2.22. — Condition (3) can be equivalently reformulated as fol-
lows. Let ∆1 . . .∆r be a factorization (not important, over R or over C) of
p∆. Then, for any k = 1, . . . , r and for any i = 1, . . . , d, there are Sik ∈ Pd1
such that ∑

j

gij∂j∆k = ∆kS
i
k (2.21)

This is also equivalent to the fact that for any i, the differential (d− 1)-
form

∑
j g

ij dx∗j restricted to (the smooth part of) ∂Ω identically vanishes.

Remark 2.23. — Equation (2.21) may be rewritten in a more intrinsic
way as

Γ(log ∆k, xi) = Sik,

and similarly for equation (2.20).
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Proof. —

Necessity. — Suppose that (Ω, g, ρ) is a solution to the SDOP problem
and let us prove conditions (1)–(5). The last two of them and the first one
are just a rephrasing of Propositions 2.7, 2.13. and 2.15.

Let us prove that ∆ vanishes on ∂Ω. Let x0 be a smooth point of ∂Ω. If
log ρ(x0) = ±∞, then ∆(x0) = 0 by Proposition 2.17. Indeed, in this case
∆k(x0) = 0 for some ∆k satisfying the hypothesis of that lemma. Hence
(∂j∆k(x0))dj=1 is a non-zero solution of a system of linear equations with the
coefficient matrix (gij(x0)) whence ∆(x0) = det g(x0) = 0.

Suppose now that 0 < ρ(x0) < ∞. Assume first that ∂Ω is piecewise
smooth. Let us choose a neighborhood B(x0, r) of x0 on which ρ < ∞. Let
ωi = ωxi (in the notation of (2.10)). Then, for any function f smooth and
compactly supported in B(x0, r), for any i, one has by Lemmas 2.9 and 2.10
that

∫
∂Ω f ω

i = 0. The last equality can by rewritten in the form∫
∂Ω
f
∑
j

gijnjρdσ = 0

(in the notation of Lemma 2.10). This equality holds for any f supported in
B(x0, r). Hence, for any i we have∑

j

gij(x0)nj(x0) = 0 (2.22)

and once again we obtain a non-zero solution to a system of linear equations
with coefficients gij(x0) whence ∆(x0)=0. So, we proved that ∂Ω⊂{∆=0}.
For the case when ∂Ω is not a priori assumed to be piecewise smooth, see
Lemma 2.26 below. In its proof we use more or less the same arguments
(basically, integration by parts) but some additional tricks are needed since
the Stokes formula cannot be applied in this case.

Let p∆ be the reduced equation of ∂Ω, i.e., the generator of the ideal I(∂Ω)
(see Definition 2.20). We have ∆ ∈ I(∂Ω), hence p∆ divides ∆. So, we proved
condition (2).

To prove (3), notice that (2.22), which holds when 0 < ρ(x0) < ∞,
combined with Proposition 2.17 imply that, for any i, the left hand side
of (2.20) identically vanishes on ∂Ω, i.e., belongs to I(∂Ω). Hence it is equal
to p∆Si for some polynomial Si. By comparing the degrees, we conclude that
Si ∈ Pd1 .

Sufficiency. —

Step 1. — Suppose that conditions (1)–(5) hold. Let us write ρ as in (2.15)
but with the fraction Q/(. . .) replaced by its reduced form R/

∏
∆nk

k where
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∆k does not divide R unless nk = 0. Since none of ∆k vanishes in Ω, we may
assume that 0 < ∆k < 1 on Ω for each k.

Assume first that ρ extends up to a continuous function on the closure
of Ω which vanishes at any smooth point of Ω. This means that for each k
such that ∆k is a factor of p∆, we have αk > 0 when nk = 0, and(4)

R|Ω < 0 near {∆k = 0} when nk > 0. (2.23)

In this case the result immediately follows from Proposition 2.7 combined
with Lemmas 2.9 and 2.10.

Step 2. — Now we turn to the general case. According to Proposition 2.7,
it is enough to prove that equation (2.4) holds for any two polynomials P1
and P2. So, we fix P1 and P2 and we are going to vary the coefficients
αk in (2.15). Namely, up to renumbering the factors of ∆, we may assume
that p∆ = ∆1 . . .∆r. So, for any a = (a1, . . . , ar) ∈ Cr, we define ρa by
formula (2.15) where α1, . . . , αr are replaced with a1, . . . , ar. We set also
α = (α1, . . . , αr). Define La by (2.7) with ρa standing for ρ. Condition (3)
ensures that each La has the form (2.1) with some bia standing for the bi and,
moreover, a 7→ bia, i = 1, . . . , d, are affine linear functions on Cr. Indeed, by
equations (2.8) and (2.21), for any i we have:

bia − biα =
∑
i

gij∂j log ρa
ρ

=
∑
i,k

(ak − αk)gij ∂j∆k

∆k
=
∑
k

(ak − αk)Sik .

A similar computation shows that g and ρa satisfy condition (5).

For fixed polynomials P1 and P2, we set

F (a) =
∫

Ω

(
P1 La(P2)− P1 La(P2)

)
ρa dx .

Let U0 = {a ∈ Cr | Re ak > αk for all k = 1, . . . , r }. Since ρa =
ρ
∏
k6r ∆ak−αk

k 6 ρ on U0 (recall that 0 < ∆k < 1 on Ω), the function
F is defined (and is finite) in some domain U containing U0. Moreover, it
has the form

F (a) =
∫

Ω
G(x, a) dx

where G(x, a) is an integrable function on Ω× U which is complex analytic
with respect to a for any fixed x. Hence F is an analytic function of a.
Indeed, if we fix all variables except some ak and let ak vary in the half-
plane Re z > αk− ε, 0 < ε� 1, then the integral of this function along each
closed path is zero by Fubini theorem.

(4) However at some “corners” of Ω where some ∆q not included in p∆ vanishes, a priori
ρ may be discontinuous if nq > 0 and R|Ω > 0 somewhere near this “corner”.
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The above arguments show that (Ω, g, ρa) satisfies all the conditions (1)–
(5). Furthermore, the condition (2.23) is also satisfied because otherwise∫

Ω ρdx would not be finite. Therefore, by the result of Step 1, we have
F (a) = 0 when ak > 0 for all k = 1, . . . , r. Hence F = 0 on the whole U
which completes the proof. �

Corollary 2.24. — Let Ω be a natural bounded domain and g a smooth
(co)-metric in it. A solution of the DOP problem with given Ω and g exists if
and only if Conditions (1)–(3) of Theorem 2.21 hold for some reduced factor
p∆ of det(g).

In this case one can choose any measure µ = ρ dx of the form ∆a1
1 . . .∆ap

p ,
where ∆1 . . .∆p = p∆, under condition that µ(Ω) <∞, for example, one can
choose for the ak any non-negative real numbers.

Corollary 2.25. — Let (Ω, g, ρ) be a solution of the SDOP problem in
Rd, and let ∆ = det(g). If deg ∆ = 2d and ∆ does not have multiple factors,
then Ω is bounded.

Proof. — By Theorem 2.21, the boundary of Ω is contained in an alge-
braic hypersurface. On the other hand, the condition that ∆ is square-free
and deg ∆ = 2d combined with Proposition 2.15 imply that ρ = ∆α1

1 . . .∆αp
p

with polynomials ∆1, . . . ,∆p. Thus the unboundedness of Ω contradicts the
integrability condition for polynomials. �

The following lemma is needed in the proof of Theorem 2.21 only in the
case when it is not a priori assumed that the boundary of Ω is piecewise
smooth.

Lemma 2.26. — Let (Ω, g, ρ) be a solution of the SDOP problem. Let p0
be a point on ∂Ω such that ρ(p0) 6= 0. Then ∆(p0) = 0.

Proof. — Suppose that ∆(p0) 6= 0, i.e., g(p0) is non-degenerate. Let us
choose coordinates so that gij(p0) = δij . For a unit vector v, we consider
the linear function lv : x 7→ v · x and the derivation f 7→ Γ(lv, f) which we
denote by ∂v.

Using standard properties of submersions, it is easy to show that there is
a sufficiently small ball U centered at the origin such that for any two points
p, q ∈ U , there exists a unit vector v such that q lies on the trajectory of
the vector field ∂v starting at p. Let us fix a ball U with this properties and
choose points p ∈ U ∩Ω and q ∈ U ∩ Int(Rd \Ω) (this is possible because Ω
coincides with the interior of its closure). Let us choose v as explained above
(so that q is on the trajectory of ∂v starting at p). Let us choose curvilinear
coordinates (x1, . . . , xd) in U so that ∂v = ∂1 := ∂/∂x1, p = (a, 0, . . . , 0),
and q = (b, 0, . . . , 0) with a < b. We may assume that U is small enough,
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so that ∆|U 6= 0, hence by Proposition 2.15 we may extend ρ to a non-zero
analytic function in U .

a1 a+ r b1 b+ r

Figure 2.1. The graph of fε(t, 0). Bold black: Ω2ε; grey: Ω \ Ω2ε.

Let r > 0 be such that B1
r (a) × Bd−1

r ⊂ Ω and B1
r (b) × Bd−1

r ⊂ Rd \ Ω.
Let ϕ (a smoothing kernel) be a smooth non-negative function supported in
the unit ball such that

∫
ϕdx = 1. For ε > 0 we set ϕε(x) = ϕ(x/ε)/εd, i.e.

supp(ϕε) = Bdε and
∫
ϕε dx = 1. Let Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε} and

let hε = (1 − 1Ωε) ∗ ϕε where 1Ωε is the characteristic function of Ωε and
∗ denotes the convolution. Let F0 be the finitely supported function such
that ∂1F0(x) = ϕr(x − p) − ϕr(x − q) and, finally, we set fε = F0hε (see
Figure 2.1).

Observe that Ω∩ supp(∂1fε) = V ∩ supp(∂1fε) where V = [a1, b1]×Bd−1
r

with a1 = a− r and b1 = b− r. Notice also that for any y = (x2, . . . , xd) we
have

fε(a1, y) = 0, fε(b1, y) = F0(b1, y) =
∫
R
ϕr(t, y) dt,

and by the choice of coordinates we have Γ(lv, f) = ∂1f . Hence∫
Ω

Γ(lv, fε)ρdx =
∫
V

(∂1fε)ρdx =
∫
Bd−1

r

dy
∫ b1

a1

∂1fε(t, y)ρ(t, y) dt

=
∫
Bd−1

r

(
fε(b1, y)ρ(b1, y)−

∫ b1

a1

fε(t, y)∂1ρ(t, y) dt
)

dy

=
(∫

Bd−1
r

ρ(b1, y) dy
∫
R
ϕr(t, y) dt

)
−
∫
V

fε∂1ρ dx

> min
|y|<r

ρ(b1, y)−
∫
V

fε∂1ρdx.

On the other hand, we have 0 6 fε 6 r−d, Ω ∩ supp(fε) ⊂ (Ω \ Ω2ε) ∩ V ,
and the Lebesgue measure of this set tends to 0 as ε→ 0. Hence∣∣∣∣∫

Ω
fε
(
L(lv)− ∂1ρ

)
dx
∣∣∣∣ 6 r−d ∫

(Ω\Ω2ε)∩V

∣∣L(lv)− ∂1ρ
∣∣dx→ 0 as ε→ 0,
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thus, setting C = min|y|<r ρ(b1, y), we obtain∫
Ω

(
fεL(lv) + Γ(fε, lv)

)
ρdx >

∫
Ω
fεL(lv)ρ dx+ C −

∫
Ω
fε∂1ρdx →

ε→0
C

which contradicts Lemma 2.9 because C > 0. �

Remark 2.27. — The equation p∆ = 0 of the boundary being given, the
problem of finding a symmetric matrix (gij)(x) formed with second degree
polynomials and first degree polynomial Si such that∑

j

gij∂j p∆ = Si p∆

is a linear problem in the coefficients of gij and Si (there are d(d+ 1)2(d+
2)/4 + d(d+ 1) such coefficients) which can be easily solved for small d.

In the case when each ∆k = 0 is a rational hypersurface, i.e., it can
be parametrized by rational functions (this is the case in all known so far
solutions of the DOP problem), it could be more convenient to compute the
coefficients of the gij from the boundary condition rewritten in the form∑

j

gij dx∗j = 0 on {p∆k = 0}

(cf. Remark 2.22). This is also a system of linear equations on the coefficients
of the gij . For example, when d = 2 and x1 = ξ1(t), x2 = ξ2(t) is a rational
parametrization of ∆k = 0, we need to equate to zero the coefficients of all
powers of t in the numerators of

g11ξ̇2(t)− g12ξ̇1(t) and g21ξ̇2(t)− g22ξ̇1(t).

Remark 2.28. — As soon as the matrix (gij) is known, all the admissible
measure densities ρ can be found as follows.The conditions (2.13) yield a
system of linear equations for the unknown parameters in (2.17) (the coeffi-
cients of Q and the numbers γq). Then it remains to select those solutions
which satisfy the integrability conditions. In dimension 2, if Ω and ρ are given
in some local curvilinear coordinates by xp > y2 and (xp−y2)αf(x, y) (with
f(0, 0) 6= 0) respectively, then the integrability condition reads α > − 1

2 −
1
p .

If Ω and ρ are given locally by 0 < y < xp and yα(xp − y)βf(x, y) respec-
tively, then it reads α+β > −1− 1

p . Note that only these singularities occur
in our classification in dimension 2.

Remark 2.29. — When the boundary equation has maximal degree 2d,
then it is proportional to the determinant of the metric ∆. In this case,
if ∆−1/2 is integrable on the domain, then the Laplace–Beltrami operator
associated with the co-metric g is a solution of the DOP problem on Ω. It
turns out that in any example where it is the case, the associated curvature
(in dimension 2 the scalar curvature) is constant, and even either 0 either
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positive. Lev Soukhanov recently proved that in the general case, whenever
the boundary has maximal degree 2d, the associated metric is the product
of Einstein metrics [65], and it is locally homogeneous, i. e., any two points
have isometric neighbourhoods [66]. The latter fact is proven in [66] when
polynomials are ordered by any weighted degree.

3. The bounded solutions in dimension 2

In this section, we concentrate on the DOP problem in dimension 2 for
bounded domains. The central result of this section is the following

Theorem 3.1. — In R2, up to affine transformations, there are exactly
10 relatively compact sets and a one-parameter family for which there exists a
solution for the DOP problem: the triangle, the square, the disk, and the areas
bounded by two co-axial parabolas, by one parabola and two tangent lines, by
one parabola, its axis, and a tangent line, by the nodal cubic y2 = x2 + x3,
by the cuspidal cubic y2 = x3 and one tangent, by the cuspidal cubic y2 = x3

and the vertical line x = 1, by a swallow tail, or by a deltoid curve (see
Section 4 for more details).

This theorem is an immediate consequence from Propositions 3.12, 3.16,
3.19, 3.20, and 3.24. Since we look at bounded domains, we may therefore
reduce to the SDOP problem, and we solve the algebraic problem described
in Section 2.2 in the particular case of dimension 2. For basic references on
plane algebraic curves and their singularities, see [11], [27, Ch. I, §3], [75].

In the following definition we restrict ourselves by dimension 2, but it can
be obviously extended to any dimension.

Definition 3.2 (AlgDOP problem). — Let K be R or C and let a, b, c, p∆
be polynomials in K[x, y]. We say that (a, b, c, p∆) is a solution of the Algebraic
counterpart of the DOP problem over K (K-AlgDOP problem for short), if
a, b, and c are of degree at most 2, the polynomial ∆ := ac − b2 is not
identically zero, and p∆ is a square-free polynomial which divides each of the
following three polynomials:

∆, a∂1 p∆ + b∂2 p∆, b∂1 p∆ + c∂2 p∆.

Due to Theorem 2.21, if (Ω, g, ρ) is a solution to the DOP problem and
with a bounded Ω, then (g11, g12, g22, p∆) is a solution to the R-AlgDOP
problem where p∆ = 0 is the minimal equation of ∂Ω. So, our strategy is to
find all solutions to the C-AlgDOP problem up to affine linear transforma-
tions of C2, then to find all solutions to the R-AlgDOP problem such that
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R2 \ {p∆ = 0} has a bounded component, and eventually to find all possible
mesures ρ.

It is clear that the condition that p∆ divides a∂1 p∆+b∂2 p∆ and b∂1 p∆+c∂2 p∆
is equivalent to the condition that for each irreducible factor ∆1 of p∆ one has

a∂1∆1 + b∂2∆1 = L1∆1 (3.1)
b∂1∆1 + c∂2∆1 = L2∆1 (3.2)

where degLi 6 1, i = 1, 2. The equations (3.1)–(3.2), in their turn, being
equivalent to

a(ξ, η)η̇ = b(ξ, η)ξ̇, b(ξ, η)η̇ = c(ξ, η)ξ̇ (3.3)

for any local analytic branch x = ξ(t), y = η(t) of the curve ∆1 = 0 (since
∆1 is irreducible, the equalities (3.3) for an arbitrary local branch of ∆1 = 0
imply the same equalities for all local branches of ∆1 = 0).

The proof of Theorem 3.1 is divided in many parts. In Section 3.1, we
prove that the curves {p∆ = 0} may have flex or planar points at infinity only
(Lemma 3.6), unless ∆ is reducible. We also describe the various singularities
which may occur at finite distance (Corollary 3.5) and the behavior at infinity
(Lemma 3.7). Section 3.2 studies the case where ∆ is irreducible of degree 4,
while the Sections 3.3–3.5 concentrate on the reducible case.

3.1. A preliminary study of Newton polygons of a, b, c and ∆

Let (a, b, c, p∆) be a solution to the C-AlgDOP problem, ∆ = ac− b2, and
∆1 be an irreducible factor of p∆ which is not a common factor of a, b, and
c. Note that the last condition is always satisfied when ∆ has an irreducible
component of degree > 3.

We shall use projective coordinates (X : Y : Z) such that x = X/Z, y =
Y/Z and denote L∞ the line Z = 0 in CP2. Let γ be an analytic branch
of the curve ∆1 = 0 at some finite or infinite point, i.e. γ is a germ at
0 of a non-constant meromorphic mapping C → C2, t 7→ (ξ(t), η(t)) such
that ∆1(ξ(t), η(t)) = 0. Let vγ : C[x, y] → Z ∪ {∞} be the corresponding
valuation, i.e. vγ(f) = ordt f

(
ξ(t), η(t)

)
where

ordt u(t) =
{
n if u(t) =

∑
k>n ukt

k and un 6= 0,
∞ if u(t) = 0

We denote p = vγ(x) = ord ξ and q = vγ(y) = ord η.
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Lemma 3.3. —

(a) Suppose that none of ξ(t), η(t) is constant. Then

vγ(a)− vγ(b) = vγ(b)− vγ(c) = ordt ξ̇ − ordt η̇. (3.4)

(b) Suppose that η(t) is constant. Then vγ(b) = vγ(c) = ∞, i.e., b and
c vanish identically on γ.

Proof. —

(a). — By (3.3), both (a, b) and (b, c) are proportional to (ξ̇, η̇). Then,
let us show that no one of the coefficients a, b and c vanishes identically along
γ. Indeed if one vanishes then so will do the other ones because of this pro-
portionality. Then ∆1 divides a, b, and c which contradicts our assumption
about ∆1.

Then, again by (3.3), we have

vγ(a) + ord η̇ = vγ(b) + ord ξ̇, vγ(b) + ord η̇ = vγ(c) + ord ξ̇.

(b). — Straightforward from the proportionality of (a, b) and (b, c) to
(ξ̇, 0). �

As usually, for a polynomial u =
∑
uklx

kyl, we define its Newton polygon
N (u) as the convex hull in R2 of the set {(k, l) |ukl 6= 0}.

Recall that p = vγ(x), q = vγ(y). We have vγ(xkyl) = Lγ(k, l) where Lγ
is the linear form Lγ(r, s) = pr + qs. Thus, for any polynomial u(x, y) we
have vγ(u) > minN (u) Lγ and if the minimum of Lγ is attained at a single
vertex of N (u), then vγ(u) = minN (u) Lγ

The notation of the style b =
[•◦••◦◦] (any combination of ◦ and •) means

that b is a linear combination of monomials corresponding to the •’s. For
example, b =

[•◦••◦◦] means that b01 = b10 = b20 = 0 (the coefficients of y, x,
and x2) and the other coefficients may or may not be zero.

In the following lemma, we look for restrictions on Newton polygons of
a, b, and c imposed by the fact that (ξ, η) has a given valuation (p, q). The
cases p or q negative correspond to points at infinity.

Lemma 3.4. —

(a) If (p, q) = (1, 2), then b =
[•••◦••] and c =

[•••◦◦•].
(b) If (p, q) = (1, 3), then b =

[•••◦◦•] and c =
[•◦•◦◦◦], in particular,

mult(0,0) ∆ > 2.
(c) (p, q) = (1, 4) is impossible.
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(d) If (p, q) = (−1, 0), then b =
[•••••◦], c =

[•••••◦], and c10 + c11 = 0.

(e) If (p, q) = (−1, 1), then b =
[••••◦◦], c =

[••••◦◦], and c00 + c01 = 0.
(f) p = −1 and 2 6 q <∞ is impossible.
(g) If (p, q) ∈ {(−2,−1), (−3,−2), (−4,−3)}, then b =

[•••••◦] and

c =
[••◦••◦].

(h) If (p, q) = (−2, 1), then b =
[••••◦◦] and c =

[•◦◦◦◦◦].
(i) (p, q) = (3, 4) is impossible.

Proof. —

(a). — If (p, q) = (1, 2), then vγ(ξ̇) = 0 and vγ(η̇) = 1. Hence, by (3.4)
we have vγ(b) = vγ(a) + 1 > 1 and vγ(c) = vγ(a) + 2 > 2 and the result
follows from the fact that vγ(1) = 0, vγ(x) = 1, and vγ(xkyl) > 2 when
(k, l) 6∈ {(0, 0), (0, 1)}.

(b). — If (p, q) = (1, 3), then vγ(ξ̇) = 0 and vγ(η̇) = 2. Hence, by (3.4)
we have vγ(b) = vγ(a) + 2 > 2 and vγ(c) = vγ(b) + 2 = vγ(a) + 4 > 4. The
values of vγ on the monomials of degree 6 2 are:
vγ(1) = 0, vγ(x) = 1, vγ(x2) = 2, vγ(y) = 3, vγ(xy) = 4, vγ(y2) = 6.

(3.5)
Thus, vγ(b) > 2 implies b00 = b01 = 0 and vγ(c) > 4 implies c00 = c10 =
c20 = c01 = 0. In particular, mult(0,0) b > 1 and mult(0,0) c > 2. Hence,
mult(0,0)(b2 − ac) > 2

(c). — If (p, q) = (1, 4), then vγ(ξ̇) = 0 and vγ(η̇) = 3. Hence, by (3.4)
we have

vγ(c)− vγ(b) = vγ(b)− vγ(a) = 3 (3.6)
The values of vγ on the monomials of degree 6 2 are:
vγ(1) = 0, vγ(x) = 1, vγ(x2) = 2, vγ(y) = 4, vγ(xy) = 5, vγ(y2) = 8.

Hence, we have {vγ(a), vγ(b), vγ(c)} ⊂ {0, 1, 2, 4, 5, 8}. Under this condition,
(3.6) is possible only for vγ(a) = 2, vγ(b) = 5, vγ(c) = 8, hence a =

[•••◦◦•],
b =

[•◦•◦◦◦], and c =
[•◦◦◦◦◦]. It follows that ∆ = y2f(x, y). This is impossible

because γ cannot be a branch of a polynomial of degree 6 2.

(d). — (p, q) = (−1, 0). If η̇ = 0, we use Lemma 3.3(b). Otherwise the
proof is similar to (a)–(c). Indeed, we have ordt ξ̇ = −2 and ordt η̇ > 0, thus
vγ(c) − vγ(b) = vγ(b) − vγ(a) > 2 by (3.6). We have vγ(xkyl) = −k, thus
vγ(a) > −2, hence vγ(c) > vγ(b) = vγ(a) + 2 > 0. Therefore b20 = c20 =
0 (otherwise vγ(b) or vγ(c) would be −2) and b10 + b11 = c10 + c11 = 0
(otherwise vγ(b) or vγ(c) would be −1).
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(e). — If (p, q) = (−1, 1), then by (3.4) we have vγ(c)− vγ(b) = vγ(b)−
vγ(a) = 2, hence vγ(a) > −2, vγ(b) > 0, vγ(c) > 2 and the result follows (as
in point (d), c00 + c11 = 0 because otherwise we would have vγ(c) = 0).

(f). — We have vγ(c) − vγ(b) = vγ(b) − vγ(a) = q + 1 and vγ(x2, x, 1,
xy, y, y2) = (−2,−1, 0, q − 1, q, 2q). Thus, vγ(a, b, c) = (−2, q − 1, 2q), i.e.
b =

[•••◦◦◦] and c =
[•◦◦◦◦◦], Therefore, ∆ = y2f(x, y). This is impossible

because γ cannot be a branch of a polynomial of degree 6 2.

(g,h). — The proof is similar to the previous cases.

(i). — We have vγ{a, b, c} ⊂ vγ{1, x, y, x2, xy, y2} = {0, 3, 4, 6, 7, 8}.
Combining this with vγ(c) − vγ(b) = vγ(b) − vγ(a) = ordt η̇ − ordt ξ̇ =
3 − 2 = 1, we obtain vγ(a) = 6, vγ(b) = 7, vγ(c) = 8, i.e. a =

[•◦•◦◦•],
b =

[•◦•◦◦◦], c =
[•◦◦◦◦◦]. Thus, mult0(∆) = 4, i.e., ∆ = 0 is a union of four

lines which contradicts the condition (p, q) = (3, 4). �

According to the standard terminology (see, e.g. [27, Ch. I, §2.4]), we
say that an analytic branch β of an algebraic curve in CP2 is generic, flex,
planar, or has singularity of type A2 (called also cusp) or E6 if there exists
an affine coordinate chart (u, v) such that the pair (p, q) := vγ(u, v) is as in
the second column of Table 3.1 in Section 3.2.

Corollary 3.5. —

(a) ∆ cannot have a singularity of type E6 at a finite point.
(b) Suppose that γ is a singular branch of ∆1 of type A2 at a point

P ∈ L∞ and L∞ is not tangent to γ at P . Then there is another
branch of ∆ at P , or deg ∆ = 3.

Proof. —

(a). — Follows from Lemma 3.4(i).

(b). — That corresponds to (p, q) = (−2, 1) for a suitable choice of the
coordinates (whereas (−3,−1) corresponds to a cusp on L∞ tangent to L∞).
We are therefore in case Lemma 3.4(h). Hence b(x, 0) = b00 (a constant) and
c(x, 0) = 0 whence ∆(x, 0) = b200. This means that the local intersection of
the line {y = 0} with {∆ = 0} at P is equal to deg ∆. On the other hand,
the local intersection of this line with γ at P is 3, thus either ∆ has another
branch at P or deg ∆ = 3. �

Lemma 3.6. — Let γ be a flex or planar branch of ∆1 at P . Then

(a) if P ∈ L∞, then γ is tangent to L∞.
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(b) if P 6∈ L∞, then γ is not planar and multP (∆) > multP ( p∆), in
particular, this is impossible when ∆ is irreducible.

Proof. —

(a). — Follows from Lemma 3.4(f).

(b). — The fact that γ is not planar follows from Lemma 3.4(c). Let
us choose affine coordinates so that P is the origin and the axis y = 0 is
tangent to γ. Thus, ordt γ = (1, 3). By Lemma 3.4(b), we have mult(0,0) ∆ >
2, i.e., there is another branch β of ∆ passing through the origin. Since
degx ∆(x, 0) 6 4 the multiplicities of the intersection of the axis y = 0 with
γ and β are 3 (i.e., q = 3) and 1 respectively.

It remains to prove that β cannot be a branch of p∆. Suppose it is. Let
us choose coordinates so that the axis x = 0 is tangent to β. Then Lem-
mas 3.3(b) and 3.4(a,b) applied to β imply

a00 = a01 = 0. (3.7)
(we swap x ↔ y and a ↔ c in Lemma 3.4). Hence, vγ(a) > 1. By (3.4), we
have

vγ(c)− vγ(b) = vγ(b)− vγ(a) = 2 (3.8)
(see the proof of Lemma 3.4(b)). Recall that the values of vγ on monomials
are given by (3.5). Hence, {vγ(a), vγ(b), vγ(c)} ⊂ {0, 1, 2, 3, 4, 6}. Combining
this with (3.8) and vγ(a) > 1, we obtain vγ(a) = 2, vγ(b) = 4, vγ(c) = 6.
By (3.7), this implies mult(0,0)(a) = mult(0,0)(b) = mult(0,0)(c) = 2, hence
mult(0,0)(∆) = 4. This means that ∆ is a union of four lines passing through
the origin. Contradiction. �

Lemma 3.7. — Let γ be a smooth branch of ∆1 at P ∈ L∞. Suppose
that there exists a line L passing through P which is tangent to a branch β
of p∆ at a finite point Q. Suppose also that β, γ 6⊂ L. Then

(a) β is smooth at Q.
(b) multP (∆) > 2 or deg ∆ 6 3.

Proof. — Let us choose coordinates so that L is the axis y = 0 and β
is tangent to L at the origin. Then all possibilities for γ are covered by
Lemma 3.4(d)–(g) and in all these cases we have b, c =

[•••••◦], i.e., b20 =
c20 = 0.

(a). — Let β = (ξ, η) and (p, q) = ordt(ξ, η). Suppose that β is singular.
Then min(p, q) > 2. We have also q > p (because L is tangent to β) and
q = (L.β) 6 3 (because (L.β) + (L.γ) 6 4). Thus, (p, q) = (2, 3) hence,
by (3.4), we have vβ(c) − vβ(b) = vβ(b) − vβ(a) = 1. Combining this fact
with vβ(1, x, y, x2, xy, y2) = (0, 2, 3, 4, 5, 6) and b20 = c20 = 0, we obtain
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vβ(a, b, c) = (4, 5, 6), i.e., a =
[•◦•◦◦•], b =

[•◦•◦◦◦], c =
[•◦◦◦◦◦]. Thus, ∆ is

homogeneous. A contradiction.

(b). — Combining b20 = c20 = 0 with Lemma 3.4(a) applied to β, we
obtain b =

[•••◦•◦], c =
[•••◦◦◦]. Thus, it is enough to show that c11 = 0. Indeed,

if γ is tangent to L∞, this is already proven in Lemma 3.4(g). Otherwise by
Lemma 3.4(d)–(f) we have c00 + c11 = 0 or c10 + c11 = 0 and we know that
c00 = c10 = 0. �

3.2. The duals of quartic curves

Let C be an irreducible algebraic curve in P2 of degree d > 2. Let qC be
the dual curve in qP2, that is qP2 is the set of all lines in P2 endowed with the
natural structure of the projective plane, and qC is the set of all lines in P2

which are tangent to C.

If t 7→ γ(t) is a local analytic branch of C, then we denote the dual branch
of qC by qγ. It is defined by t 7→ qγ(t) where qγ(t) is the line which is tangent
to C at γ(t).

Let γ be a local branch of C. Let us choose affine coordinates (X,Y ) so
that γ is given by X = ξ(t), Y = η(t), ξ(0) = η(0) = 0. Then the equation of
the line qγ(t) is (X− ξ)η̇− (Y − η)ξ̇ = 0. Thus, in the standard homogeneous
coordinates on qP2 corresponding to the coordinate chart (X,Y ), the dual
branch qγ has a parametrization of the form

t 7→ (η̇ : −ξ̇ : ξ̇η − ξη̇) (3.9)
and we obtain the following fact.

Lemma 3.8. — Let γ be a local branch of C and qγ the dual branch of qC.
Let (X,Y ) be an affine chart such that γ has the form X = ξ(t), Y = η(t)
with 0 < p < q where p = ordt ξ and q = ordt η. Then, in suitable affine
coordinates ( qX, qY ) on qP2, the branch qγ has the form qX = qξ(t), qY = qη(t)
with ordt qξ = q − p and ordt qη = q.

For a point P ∈ C, we denote the delta-invariant of (C,P ) by δP or δP (C)
(see [27, p. 206]). Informally speaking, δP is the number of double points of
C concentrated in P . We have (see [56, Thm. 10.2] or [27, Ch. I, Prop. 3.34])

2δP = µ+ r − 1 =
∑

mi(mi − 1)

where µ is the Milnor number and r is the number of local branches of C at
P , and m = [m1,m2, . . . ] is the sequence of the multiplicities of all infinitely
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near points of P . If P is a non-singular point of C, then δP = 0. It easily
follows from the definition (see also [27, Ch. I, Lem. 3.32]) that

δP = δ0
P +

r∑
i=1

δ(γi) where δ0
P =

∑
16i<j6r

(γi · γj), (3.10)

γ1, . . . , γr are local branches of C at P , and (γi ·γj) is the intersection number
of γi and γj at P .

Let g be the genus of C. By the genus formula (see [11, p. 624, Thm. 7]
or [56, §10, Eq. (1)]), we have

2g + 2
∑
P∈C

δP = (d− 1)(d− 2). (3.11)

Combining (3.10) and (3.11), we obtain

2g + 2n+ 2
∑
γ

δ(γ) = (d− 1)(d− 2) (3.12)

where γ runs over all local branches of C at all points and n =
∑
P∈C δ

0
P

(only a finite number of terms in the both sums are non-zero).

For a local branch γ of a curve C at a point P , we denote the multiplicity
of γ at P by m(γ). If γ is parametrized by X = ξ(t), Y = η(t) in some
local coordinates X,Y , then m(γ) = min(ordt ξ, ordt η). We set also ε(γ) =
2δ(γ)+m(γ)−1. Let qd be the degree of qC. In this notation, the first Plücker
formula (the class formula) takes the form (see [50, Thm. 1.3])

qd = d(d− 1)− 2n−
∑
γ

ε(γ) (3.13)

and the second Plücker formula (the Riemann–Hurwitz formula for a generic
projection of qC onto a line) is

2− 2g = 2 qd− d−
∑
γ

(m(qγ)− 1). (3.14)

In the both formulas γ runs over all local branches of C.

If d = 4, then
∑
δ(γ) 6 3 by (3.12) which is possible for the sequences

of multiplicities [2], [2, 2], [2, 2, 2], and [3] only, hence all singular branches
are of the types A2, A4, A6 and E6 (recall that Ak and E6 are given by
v2 = uk+1 and v3 = u4 is suitable curvilinear local coordinates). In Table 1,
we list all types of local branches γ(t) = (ξ(t), η(t)), ordt ξ = p, ordt η = q,
p < q, and their invariants contributing to (3.12), (3.13), and (3.14) (we use
Lemma 3.8 to compute qp = ordt qξ and qq = ordt qη).
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Table 3.1.

m (p, q) (qp, qq) δ(γ) ε(γ) m(qγ)− 1
generic point – (1,2) (1,2) 0 0 0
flex point – (1,3) (2,3) 0 0 1

planar point – (1,4) (3,4) 0 0 2
A2 [2] (2,3) (1,3) 1 3 0
A4 [2,2] (2,4) (2,4) 2 5 1
A6 [2,2,2] (2,4) (2,4) 3 7 1
E6 [3] (3,4) (1,4) 3 8 0

Thus, denoting the number of branches of the respective types by f (flex),
p (planar), a2, a4, a6, and e6, we rewrite (3.12)–(3.14) as

g + n+ a2 + 2a4 + 3a6 + 3e6 = 3,
qd = 12− 2n− 3a2 − 5a4 − 7a6 − 8e6,

2− 2g = 2 qd− 4− f − 2p− a4 − a6.

Eliminating g and qd, we obtain
f + 2p = 24− 8a2 − 15a4 − 21a6 − 22e6 − 6n. (3.15)

Since all the ingredients (including g) are non-negative, we obtain the fol-
lowing fact.

Lemma 3.9. — Suppose that C is an irreducible quartic curve in P2

which has at most one smooth non-generic (i.e., flex or planar) local branch.
Then C is rational (i.e., g = 0) and one of the following cases occurs:

(i) (tricuspidal quartic) C has three singular points of type A2 and no
smooth non-generic branches (i.e., f = p = 0). The dual curve qC is
a nodal cubic.

(ii) (swallow tail) C has two singular points of type A2, one planar point,
and one ordinary double point (i.e., f = 0, p = n = 1). The degree
of qC is 4, it has one singular point of type E6 and two flex points.
The equation of qC in suitable affine coordinates is y = x4 − x2.

(iii) Each of C and qC has two singular points of types A2 and A4 and
one flex point (i.e., f = 1, p = 0), the degree of qC is 4,

(iv) Each of C and qC has one singular point of type E6 and one planar
point (i.e., f = 0, p = 1). The degree of qC is 4. The equation of qC
in suitable affine coordinates is y = x4.

In each of the cases (i)–(iv) the formulated conditions uniquely determine
the curve C up to automorphism of CP2.
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Proof. — By (3.12) we have g+n+a2 +2a4 +3a6 +3e6 = 3. Substituting
each nonnegative solution of this equation into (3.15), we see that the only
cases when f + p 6 1 are:

(i) qd = 3, a2 = 3;
(ii) qd = 4, a2 = 2, p = n = 1,
(iii) qd = 4, a2 = a4 = 1, f = 1,
(iv) qd = 4, e6 = p = 1.

Let us show that these cases are uniquely realizable. In cases (ii) and (iv)
this follows from the fact that qC has the singularity E6, hence it has the
equation y = f(x), degx f = 4, in suitable coordinates. By affine changes of
coordinates, this equation reduces to y = x4 or y = x4 − x2.

In case (i), the dual curve is a nodal cubic. It is unique up to projective
transformation, thus C is also unique.

In case (iii), let us choose homogeneous coordinates (X : Y : Z) so that
A2 and A4 are at (0 : 0 : 1) and (0 : 1 : 0) respectively and the lines Y = 0
and Z = 0 are tangent to C at these points. (These are two distinct lines.
Indeed, the local intersection of C with the tangent lines at A2 and A4 is 3
and 4 respectively, thus it cannot be a single line by Bezout’s theorem.) Let
F (X,Y, Z) = 0 be the equation of C. Let us consider the Newton polygon
of the polynomial F (X,Y, 1). The choice of the coordinates near A2 ensures
that it is placed above the segment [(0, 2), (3, 0)]. The choice of the coordi-
nates near A4 ensures that the segment [(0, 2), (4, 0)] is an edge of the Newton
polygon. Hence F = u30X

3Z+G where G = u40X
4 +u21X

2Y Z+u02Y
2Z2.

Moreover, the fact that F has a single branch at (0 : 1 : 0) implies that
G is a complete square. Hence, rescaling the coordinate, we can obtain
u30 = u40 = u02 = 1, u11 = 2, whence the uniqueness up to projective
change of coordinates. �

Corollary 3.10. — Suppose that C is an irreducible quartic curve
in C2 which satisfies the restrictions imposed by Lemmas 3.4(h,i), 3.6
and 3.7, i.e.:

(i) any smooth non-generic branch of C is tangent to the infinite
line L∞;

(ii) if C meets L∞ transversally at a point P and C is smooth at P , then
there is no line through P (except, maybe, L∞) which is tangent to
C at a smooth or singular point;

(iii) if C has a cusp A2 at a point P ∈ L∞, and L∞ is not the tangent
to C at P , then C has another branch through P ;

(iv) C does not have a singularity of type E6 at a finite point.
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Then one of the cases (i) or (ii) of Lemma 3.9 occurs and the position of C
with respect to the infinite line L∞ is one of:

(i1) (deltoid or (1, 3)-hypocycloid) L∞ is the bitangent of C.
(i2) L∞ is the tangent at a cusp.
(ii) (swallow tail) L∞ is the tangent at the planar point.

In each of the cases (i1) and (ii) the affine curve C is unique up to affine
transformation of C2. In suitable affine coordinates, C is parametrized by

(i1) x = 2 cos θ + cos 2θ, y = 2 sin θ − sin 2θ;
(i2) x = t3 − 2t+ t−1, y = 3t− t−1;
(ii) x = 2t(2t2 − 1), y = t2(3t2 − 1).

8

8

P

L

L

A4 A2

Figure 3.1. The real quartic with A2 and A4

Proof. — Since degC = 4, there is no room for more than one non-generic
tangency with L∞. Thus one of the cases (i)–(iv) of Lemma 3.9 occurs. We
consider them separately.

(i). — Let P be a smooth point of C. Riemann–Hurwitz formula for
the projection from P implies that there exists a unique line LP through P
tangent to C at another (smooth or singular) point.

Suppose that (i2) does not hold. Then by Corollary 3.5(b) all infinite
points of C are smooth. Let P be one of them. Let Q be the point where LP
is tangent to C. Lemma 3.7 implies LP = L∞, i.e., Q ∈ L∞. Then, again by
Lemma 3.7, we have LQ = L∞, thus (i1) takes place.

In Case (i2), there are three cusps. However different choices of the tan-
gent to L∞ lead to the same result because the cusps are interchangeable by a
projective automorphism of CP2 (one can see it, e.g., from the trigonometric
parametrization).
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(ii). — No other choice for L∞.

(iii). — Let P be the flex point. Then L∞ is tangent to C at P by
Lemma 3.6. Applying Riemann–Hurwitz formula to the projection from P ,
we see that there exists a line L through P which is tangent to C at a smooth
point. Contradiction with Lemma 3.7.

Remark. — The existence of such L can be also derived from the unique-
ness of C up to projective transformations. Indeed, we can realize C as
a real curve in R2 obtained by a small perturbation of a double circle:
(x2 + y2)2 = εy3(x+ 1), 0 < ε� 1. Then L is clearly visible in Figure 3.1.

(iv). — Impossible by Lemma 3.6 and Lemma 3.5(a). �

Thus there are only three candidates for solutions of the C-AlgDOP prob-
lem. It remains to check that the linear equations for the metric (see Re-
mark 2.27) have non-zero solutions, and then to select the real forms corre-
sponding to bounded domains.

Proposition 3.11. — Up to affine transformations of C2 and rescaling
of (a, b, c), there are exactly three solutions to the C-AlgDOP problem under
condition that p∆ is irreducible of degree 4. The curve C = {p∆ = 0} is
as in Corollary 3.10. In Cases (i1) and (ii) the formulas for (a, b, c) are
given in Sections 4.11 and 4.12 respectively. In Case (i2), a = 9x2 + 8xy,
b = 2y2 + 3xy − 8, c = y2 − 12.

Proposition 3.12. — Up to affine transformations of R2 and rescal-
ing of (a, b, c), there are exactly six solutions to the R-AlgDOP problem un-
der condition that p∆ is irreducible of degree 4: the three solutions given in
Proposition 3.11 and those obtained from them by the change of coordinates
(x, y) 7→ (ix, y). Only two among these solutions (those discussed in Sec-
tions 4.11 and 4.12) correspond to bounded domains in R2 and thus provide
a solution to the DOP problem.

Proof. — First let us show that each projective curve (i) and (ii) of
Lemma 3.10 has two real forms. It is easier to check this fact for the dual
curves. Indeed, for the nodal cubic (Case (i)) these are y2 = x3 ± x, and in
Case (ii) these are y = x4 ± x2.

The choice of the line at infinity is unique in all the six cases. Indeed, for
(i1) and (ii) it is unique even over C. In Case (i1) the curve C has one or
three real cusps, and if it has three cusps, they are interchangeable by an
automorphism of RP2. Let us show that {p∆ 6= 0} does not have bounded
components except the two cases.

(i). — If C has three real cusps, it looks as shown in Section 4.12. So,
it is clear that a tangent at a cusp is adjacent to each component of the
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complement of C. If C has one real cusp, it can be realized as the (1, 1)-
hypercycloid x = 2 cos θ+cos 2θ, y = 2 sin θ+sin 2θ in some affine chart (see
Figure 3.2). So, in both cases (i1) and (i2), the line L∞ meets the closure of
each component of the complement of C.

Figure 3.2. (1, 1)-hypercycloid: an irrelevant solution to AlgDOP problem

(ii). — If qC is y = x4 + x2, it is convex in some affine chart, hence so is
C. Since L∞ is tangent to C, the affine part of C is homeomorphic to a line
dividing R2 into two unbounded components. �

3.3. Cubic factor of p∆

In this section we suppose that ∆ = ∆3∆1 where ∆3 is an irreducible
cubic factor of p∆ (As above, (a, b, c, p∆) is a solution to the C-AlgDOP prob-
lem ∆ = ac− b2). By the genus formula (3.12), an irreducible cubic curve in
CP2 is either smooth of genus one (and then depends of one parameter up
to projective transformations), or rational with a single singularity of type
A1 (node) or A2 (cusp). In the latter case the curve is projectively rigid.

Let C be the quartic curve defined by ∆ = 0 and let C3 and C1 be the
respective irreducible components of C (if deg ∆ = 3, then C1 = L∞).

Lemma 3.13. — C3 is rational.

Proof. — Otherwise C3 has nine flex points. They cannot all be on C1 ∪
L∞. So, this contradicts to Lemma 3.6. �

By an isomorphism of CP2, any rational cubic can by identified either
with the nodal cubic y2 = x3 − x2 or with the cuspidal cubic y2 = x3. The
nodal cubic has three flex points lying on the same line and interchangeable
by automorphisms of CP2. The cuspidal cubic has a single flex point.

Lemma 3.14. — Suppose that C3 is a nodal cubic. Then p∆ = ∆3, the
line L∞ is tangent to C3 at a flex point, and C1 is the line passing through
all the three flex points of C3.
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Proof. — Let L0 be the line passing through all the flex points of C3.
Then L0 6= L∞ by Lemma 3.6(a). Thus, at least two flex points are not
on L∞, hence Lemma 3.6(b) implies that a non-trivial component of ∆/p∆
passes through them. Hence, C1 = L0. and p∆ = ∆3.

Suppose that C3 has more than one point at infinity. Then there is a
point P such that (C3.L∞)P = 1. Then P is not a flex point by Lemma 3.6.
Hence, Riemann–Hurwitz formula for the projection from P implies that
there exists a line L through P which is tangent to C at some other point
Q. If Q were finite, then Lemma 3.7(b) would imply that C1 passes through
P . This is impossible by Bezout’s theorem because C1 has already three
intersections with C3 at the flex points. Thus, Q ∈ L∞. Applying the same
arguments to Q, we obtain a contradiction.

Thus, C3 has a single point P at the infinity. It remains to show that
P is not the node of C3. Suppose it is. Choose coordinates (X : Y : Z),
x = X/Z,y = Y/Z, so that P = (1 : 0 : 0), the axis X = 0 is the tangent
at a flex point, and the tangents at P are L∞ and the axis Y = 0. Then,
up to rescaling of the coordinates, C3 admits a parametrization x = ξ(t) =
(t− 1)3/t, y = η(t) = t.

So, we have an explicit parametric equation of a component of p∆. As we
pointed out in Remark 2.27, then we have a system of linear equations on
the coefficients of (a, b, c). The rest of the proof is just checking by hand that
this system does not have any nonzero solution.

Applying Lemma 3.4(e,g) to the branches of C3 at P , we obtain b =
[••••◦◦]

and c =
[••◦•◦◦]. Let γ be the branch of p∆ at P tangent to the axis Y = 0. We

have vγ(x, y) = (−1, 1), hence by Lemma 3.3, vγ(c)− vγ(b) = 2. The values
of vγ on the monomials involved in b and c are vγ(1, xy, y, y2) = (0, 0, 1, 2).
Hence c00 = c01 = 0, i.e., c = c02y

2. It follows that c02 6= 0 (otherwise ∆
would be equal to b2), so we can assume that c02 = 1.

Thus, the identity b(ξ, η)η̇ = c(ξ, η)ξ̇ takes the form

b00 + b01t+ b02t
2 + b11(t3 − 3t2 + 3t− 1) = t2(2t− 3 + t−2).

Equating the coefficients of t3, t2, t, 1, we find b11 = 2, b02 = 3, b01 = −6,
b00 = 3, i.e., b = 3(y−1)2+2xy and hence b(ξ, η) = 2t3−3t2+1. Substituting
all these into a(ξ, η)η̇ = b(ξ, η)ξ̇, we obtain

a20(t4 + · · ·+ t−2) = (2t3 − 3t2 + 1)(2t− 3 + t−2) = 4t4 + · · ·+ t−2.

A contradiction. �
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Lemma 3.15. — Suppose that C3 is a cuspidal cubic. Then L∞ is tan-
gent to C3 at some point P . Let F be the flex point of C3. Then:

(a) If P is the cusp, then p∆ = ∆3 and F ∈ C1.
(b) If P = F , then C1 is any line. If, moreover, p∆ = ∆, then either

F ∈ C1 or C1 is tangent to C3.
(c) If P is not as above, then p∆ = ∆3 and C1 is the line (PF ).

Proof. — Let us prove that L∞ is tangent to C3. Suppose, it is not. Let us
show that in this case C3∩L∞ ⊂ C1. Indeed, let Q ∈ C3∩L∞. If Q is the cusp
of C3, then Q ∈ C1 by Corollary 3.5(b). If Q is a smooth point of C3, then
Q 6= F by Lemma 3.6(a) and Riemann–Hurwitz formula for the projection
from Q implies that there is a line through Q tangent to C3, hence Q ∈ C1
by Lemma 3.7(b). Thus, we have shown that C3 ∩ L∞ ⊂ C1. Then, since
C3 ∩ L∞ contains at least two points, we conclude that C1 = L∞. However
this is impossible because F 6∈ L∞ by Lemma 3.6(a) and then F ∈ C1 by
Lemma 3.6(b). The obtained contradiction shows that C3 is tangent to L∞.
So, let P be the point where C3 is tangent to L∞.

(a). — Follows from Lemma 3.6(b).

(b). — Suppose that p∆ = ∆ and F 6∈ C1. Let Q = C1 ∩ L∞. Let
L be a line through Q tangent to C3 at a finite point. Then L = C1 by
Lemma 3.7(b).

(c). — By Lemma 3.6(b), we have F ∈ C1 and p∆ 6= ∆3. Moreover,
Riemann–Hurwitz formula for the projection from P implies that there is a
line through P tangent to C3, hence P ∈ C1 by Lemma 3.7(b). �

By combining Lemmas 3.14 and 3.15 and computing (a, b, c) from linear
equations (see Remark 2.27), we summarize as follows.

Proposition 3.16. — Each solution of the C-AlgDOP problem where
p∆ has an irreducible cubic factor is determined by p∆ and ∆ := ac− b2 up to
rescaling of (a, b, c) except the case (ii5). Up to affine transformation of C2,
all realizable pairs (∆, p∆) are:

(i) (nodal cubic; see Section 4.8) p∆ = x3 + x2 − y2, ∆ = (3x+ 4) p∆;
(ii1) (see Section 4.9) p∆ = ∆ = (x− 1)(y2 − x3);
(ii2) (see Section 4.10) p∆ = ∆ = (2y − 3x+ 1)(y2 − x3);
(ii3) p∆ = ∆ = y(y2 − x3);
(ii4) p∆ = ∆ = y2 − x3;
(ii5) p∆ = y2 − x3, ∆ = (αx+ βy + γ) p∆, (α, β, γ) 6= (0, 0, 0);
(ii6) (Lemma 3.15(c)) p∆ = ∆ = (1 + 2x− 2y)(x3 − y2 − 3xy2 + 2y3);
(ii7) p∆ = y − x3, ∆ = (αx+ βy) p∆, (α, β) 6= (0, 0).
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The solution (i) has two real forms. Only one of them provides a bounded
solution to the DOP problem. Each of the other solutions has one real form.
Only (ii1) and (ii2) provide bounded solutions to the DOP problem.

Remark 3.17. — The cusp at infinity (Case (ii7)) leads to a non compact
domain. Moreover, because of the form of the measure, it is not possible even
in the non compact case.

3.4. Quadratic factor of p∆

In this section we suppose that ∆ = ∆2∆̃2 where ∆2 is an irreducible
quadratic factor of p∆. As above, (a, b, c, p∆) is a solution to the C-AlgDOP
problem and ∆ = det g = ac − b2. Let C, C2 and C̃2 be the corresponding
curves in CP2, Up to an affine linear transformation of C2 there are two
cases for C2: a hyperbola xy − 1 and a parabola y − x2.

Proposition 3.18. — Let ∆ = ac−b2 = ∆2∆̃2 with ∆2 = xy−1 and let
∆2 be a factor of p∆. Then (a, b, c, p∆) is a solution of the C-AlgDOP problem
if and only if (

a b
b c

)
= ∆2

(
α β
β γ

)
+ r

(
x2 −xy
−xy y2

)
,

with (r, αγ − β2) 6= (0, 0) and (α, β, γ) 6= (0, 0, 0), and one of the following
cases occurs up to rescaling and exchange of x and y:

(1) p∆ = ∆2.
(2) α = β = 0 and p∆ = x∆2; in this case ∆ = γrx2∆2.

Furthermore, deg ∆ = 2 if and only if α = γ = 0 and β = 2r (then (a, b, c) =
r(x2, xy − 2, y2)). Otherwise deg ∆ = 4.

Proof. — By solving the linear equations (3.3) for the coefficients of a, b,
and c, we find the announced form of g. Then we have

∆̃2 = (αγ − β2)∆2 + r(γx2 + 2βxy + αy2)
whence the non-vanishing conditions (r, αγ − β2) 6= (0, 0) and (α, β, γ) 6=
(0, 0, 0). We also see that deg ∆ = 4 unless α = γ = 0 and β = 2r in which
case deg ∆ = 2.

If r = 0, then ∆ = ∆2
2, hence p∆ = ∆2 (recall that p∆ does not have

multiple factors). So, from now on we assume that r 6= 0.

Case 1: αγ − β2 6= 0 and (γ, α) 6= (0, 0). — Then C̃2 is a nonsingular
conic such that C2 ∩ C̃2 ∩ L∞ = ∅, thus p∆ = ∆2 by Lemma 3.7 applied to
the tangent to C2 passing through a point from C̃2 ∩ L∞.
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Case 2: α = γ = 0 (and hence β 6= 0). — Then we have p∆2 = β(β −
(β − 2r)xy). If β = 2r, we have ∆2 = const, hence p∆ = ∆2. Otherwise,
plugging the parametrization x = ξ(t) = t, y = η(t) = β/((β − 2r)t) of C̃2
into bη̇− cξ̇, we obtain −2βr/(β − 2r), i.e., the relation (3.3) is not satisfied
for C̃2. Thus ∆̃2 is not a factor of p∆.

Case 3: αγ − β2 = 0. — Up to exchange of x and y, we may set γ = 1,
α = β2. Then ∆̃2 = r(x+ βy)2. Plugging ξ(t) = βt, η(t) = −t into (3.3), we
obtain aη̇ − bξ̇ = β(bη̇ − cξ̇) = −2β2(1 + (β − r)t)2. Thus x + βy can be a
factor of p∆ if and only if β = 0. �

Up to affine change of coordinates there are three real forms of xy − 1:
a circle (the only one which gives a bounded solution to the DOP problem;
see Section 4.3), a hyperbola, and a purely imaginary conic 1 +x2 + y2. The
latter real solution will be used in the study of the SDOP problem in the
case Ω = R2 (Section 5).

Proposition 3.19. — Let ∆ = ac− b2 = ∆2∆̃2 with ∆2 = 1− x2 − y2

and let ∆2 be a factor of p∆. Then (a, b, c, p∆) is a solution of the R-AlgDOP
problem if and only if p∆ = ∆2 (up to a constant factor) and, up to rotation,(

a b
b c

)
= ∆2

(
α 0
0 γ

)
+ r

(
1− x2 −xy
−xy 1− y2

)
.

where at most one of the numbers r, α + r, γ + r is zero. Furthermore,
deg ∆ = 2 if and only if α = γ = 0 and r 6= 0. Otherwise deg ∆ = 4.

Proof. — By solving the linear equations (3.3) for the coefficients of a, b,
and c, we find the announced form of g but with a matrix

( α β
β γ

)
. However

by rotation we may reduce to the case β = 0. The rest can be easily derived
from Proposition 3.18 after a suitable change of variables. �

Proposition 3.20. — Let p∆ = ∆2∆̃2 where ∆2 = y − x2. Then a
solution of C-AlgDOP problem with this p∆ exists if and only if one of the
following cases occurs up to affine linear change of coordinates:

(1) (coaxial parabolas; see Section 4.5) ∆̃2 = y − αx2 − 1, α 6= 1;
(2) (parabola with a tangent and the axis; see Section 4.6) ∆̃2=y(x−1);
(3) (parabola with two tangents; see Section 4.7) ∆̃2 = (y + 1)2 − 4x2;
(4) ∆̃2 is 1, x, or y.

The real forms are evident (in Case (3) the tangents may be either real
or complex conjugate). The only bounded solutions to the DOP problem are
the first three cases
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Proof. — If deg ∆̃2 < 2, everything is realizable. Indeed, by a change of
coordinates preserving the parabola, any line can be transformed to one of
x = 0, y = 0, or y = 1 (which is (3) with α = 0), and the system of equations
can be easily solved in all the three cases.

Let then deg ∆̃2 = 2. By Lemma 3.7 we know that if P ∈ C̃2 ∩ L∞ but
P 6= (0 : 1 : 0), then C̃2 contains the line passing through P and tangent to
C2. Thus, if ∆̃2 is not as required, it can be transformed to one of: y(y− 1),
x(x− 1), y − x2 − 1, y − 2x2. One easily checks that there are no solutions
in these cases. �

The following proposition is not needed for the classification of compact
solutions but it will be helpful in the study of the non-compact case in
Section 6.

Proposition 3.21. — Let (a, b, c, p∆) be a solution of the R-AlgDOP
problem. Suppose that y − x2 is a factor of p∆. Then, for some α, β, γ, r,
µ, ν ∈ R,

g = (y − x2)
(
α β
β γ

)
+ r

(
x 2y
2y 4xy

)
+ (λ+ µy)

(
1 2x

2x 4y

)
(3.16)

Up to change of variables, we may suppose that either r = 0, or λ = µ =
0. Moreover, up to scaling and change of variables, we have:

(1) ∆ = C(y − x2)2 if and only if one of the following cases occurs
(1i) r = λ = µ = 0, αγ − β2 6= 0;
(1ii) α = γ = λ = µ = 0, r = −β = 1.
(1iii) r = β = 0, −α = µ = ±1, −γ = 4λ = 4.
In these cases g is, respectively,

(y − x2)
(
α β
β γ

)
,

(
x y + x2

y + x2 4xy

)
,

(
1 2x

2x 4x2

)
±
(
x2 2xy

2xy 4y2

)
.

(2) deg ∆ = 3 if and only if one of the following cases occurs
(2i) β = γ = r = 0, µ = −α = 1, λ = ±1;
(2ii) α = β = λ = µ = 0, r = 1, γ ∈ {0, 1};
(2iii) β = γ = µ = r = 0, λ = 1, α = ±1.

(3) ∆ = y − x2 if and only if α = β = r = µ = 0, λ = 1, γ 6= −4;

Proof. — By solving the system of linear equations (3.3), we find (3.16).
The change of variables x′ = x+q, y′ = y+2qx+q2 transforms the parameters
(r, λ, β) into

r′ = r − 2qµ, λ′ = λ− qr + q2µ, β′ = β + (2α+ 4µ)q. (3.17)
Thus if µ 6= 0, we may assume that r = 0, and if µ = 0 but r 6= 0, we
may assume that λ = 0. The rest of the proof is a straightforward case
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by case computation (in Case (2iii), when r = µ = 0 and α 6= 0, we kill β
using (3.17)). At the final stage we use the variable change (x, y) 7→ (px, p2y)
to normalize the coefficients. �

3.5. All factors of p∆ are linear

Lemma 3.22. — Let (a, b, c, p∆), ∆ = ac − b2, be a solution of the C-
AlgDOP problem such that p∆ = (1 − x2)∆̃2. Then, up to an affine linear
transformation, we have

g =
(
a b
b c

)
=
(
α(1− x2) β(1− x2)
β(1− x2) c(x, y)

)
where either α = 0 and then ∆ = β2(1 − x2)2, or β = 0 and then ∆ =
α(1− x2)c(x, y).

Moreover, p∆ cannot have a factor x− x0 with x0 6= ±1.

Proof. — By solving the linear equations (3.3) for the coefficients of a, b,
and c, we find the announced form of g but with arbitrary α and β. However,
if α 6= 0, then the change of variables x′ = x, y′ = αy − βx kills β.

Suppose that x − x0 is a factor of p∆. If α = 0, then x0 = ±1 because
∆ = (1 − x2)2. If β = 0, then for (ξ(t), η(t)) = (x0, t) we have a(ξ, η)η̇ −
b(ξ, η)ξ̇ = 1− x2

0 whence x0 = ±1 by (3.3). �

The following lemma is very similar to Proposition 3.19. We shall see in
Section 4.3 that there is a deep reason for this.

Lemma 3.23. — Let (a, b, c, p∆), ∆ = ac − b2, be a solution of the C-
AlgDOP problem such that ∆3 := xy(1−x− y) divides p∆. Then p∆ = ∆3 up
to constant factor, and

g =
(
a b
b c

)
= (1− x− y)

(
αx 0
0 γy

)
+ r

(
x(1− x) −xy
−xy y(1− y)

)
.

where at most one of the numbers r, α+ r, γ + r is zero. Furthermore,

(1) ∆ = ∆3 if and only if α = γ = 0 and r = 1;
(2) ∆ = x∆3 if and only if γ + r = 0 and r(α+ r) = 1;
(3) ∆ = y∆3 if and only if α+ r = 0 and r(γ + r) = 1;
(4) ∆ = (1− x− y)∆3 if and only if r = 0 and αγ = 1;

Proof. — By solving (3.3) for parametrizations of the three lines x = 0,
y = 0, and x + y = 1, we find the required form of g. Hence ∆ = ∆3∆1
where

∆1 = (α+ r)(γ + r)− γ(α+ r)x− α(γ + r)y
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and we easily derive the assertions (1)–(4) as well as the fact that at most
one of r, α+ r, γ + r is zero.

Let us show that p∆ = ∆3 up to constant factor. If α = γ = 0 or one of
r, α + r, γ + r is zero, this follows from the assertions (1)–(4) (recall that
p∆ does not have multiple factors). So, we assume that r(α + r)(γ + r) 6= 0
and (α, γ) 6= (0, 0). Let us show that in this case a parametrization (x, y) =
(ξ(t), η(t)) of the line ∆1 = 0 does not satisfy condition (3.3).

Indeed, if α 6= 0 and γ = 0 (the case α = 0 and γ 6= 0 is similar), then
ξ = t, η = (α+r)/α, hence a(ξ, η)η̇−b(ξ, η)ξ̇ = r

α (α+r)t and the coefficient
of t in non-zero. If α 6= 0 and γ 6= 0, then ξ = (1 + r

γ )t, η = (1 + r
α )(1 − t)

and
a(ξ, η)η̇ − b(ξ, η)ξ̇ = αC

(
(γ + r)t+ (α− γ)t2

)
with C = r(α+r)(γ+r)/(αγ2) and again the coefficient of t is non-zero. �

Proposition 3.24. — Let p∆ be a product of linear factors. Then a so-
lution of C-AlgDOP problem with this p∆ exists if and only if one of the
following cases occurs up to affine linear change of coordinates:

(1) (square; see Section 4.2) p∆ = (x2 − 1)(y2 − 1);
(2) (triangle; see Section 4.4) p∆ = xy(1− x− y);
(3) p∆ is one of xy(x+ y), y(x2 − 1), xy, x2 − 1, x, or 1.
Proof. — Follows from Lemmas 3.22 and 3.23 (to exclude four concurrent

lines, one should slightly modify Lemma 3.23). �

By combining Propositions 3.12, 3.16, 3.19, 3.20, and 3.24, we get a proof
of Theorem 3.1.

4. The bounded 2-dimensional models

4.1. Generalities

In this section, we will explore separately the various 2 dimensional com-
pact models. It turns out that for some values (in general half-integer) of
the parameters appearing in the measure, one may produce a geometric in-
terpretation, coming in general from Lie groups or symmetric spaces, as it
is the case for the one dimensional Jacobi operator (Section 2.1). We do
not pretend to present all the possible origins of the various models, but we
provide some insight whenever they are at hand and relatively easy to pro-
duce. Moreover, these geometric interpretations may lead to natural higher
dimensional models for the DOP problem.
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Recall that the boundary of Ω is an algebraic curve of degree at most 4.
When the degree is 4, this boundary is {∆ = 0} where ∆ is the determinant
of the matrix (gij). Among the admissible measures, one may chose ρ(x) =
∆−1/2, which corresponds to the Laplace–Beltrami operator associated with
the (co-)metric g. It turns out that in every such example, this Laplace–
Beltrami operator has constant curvature, either 0 or positive. We did not
succeed in proving this fact in the general setting (and we do not even know
if it is true in higher dimension; see Remark 2.29 where we also mention
a result of Soukhanov [65] in this direction). However, when the boundary
has degree less than 4, it is not always true that the curvature is constant
(see Section 4.8). But even in this latter case, when the measure has density
∆−1/2

1 , where ∆1 is the irreducible equation of the boundary (while in this
model ∆ has degree 4 and ∆1 degree 3), there exists a natural interpretation
coming from a 4-dimensional sphere.

Then, one may interpret the associated model as some quotient of the
Euclidean or spherical Laplace operator through some discrete or contin-
uous symmetry subgroups. When the curvature is 0 (Section 4.7 and Sec-
tion 4.12), this shows some relation with root systems and the associated
Hall polynomials [52], with connection to Hecke algebras. See also Araki [3]
and Harish-Chandra [34, 35]. Many other natural geometric interpretations
come from spherical functions on rank 2 symmetric spaces (see Helgason [41],
Heckman et al. [36, 39, 40, 59]). For references on Dunkl operators, we also
refer to Dunkl [22] or to a more recent paper by Rösler [63].

From a general point of view, there is a dictionary linking the angles of
the reflection associated with the symmetries and the type of singularities
of the boundary of Ω: double points, cusps and tangency points correspond
respectively to angles π/2, π/3, π/4.

It turns out that many of the models described above have some nice geo-
metric interpretation in terms of compact homogeneous spaces M = G/H:
we try to interpret the given operator as the Laplace–Beltrami operator ∆G

on G acting on some specific functions (X,Y ) : G 7→ R2.

In this whole section, the identification will be made with the Laplace
operator acting on the n-dimensional sphere, on the n-dimensional Euclidean
space or on some classical Lie group such as SO(n) and SU(n). For the
sake of clarity, we recall here some well known formulas and facts on these
operators. The general principle is the following. When L is a Laplace–
Beltrami operator (or more generally any second order differential operator
with no 0-order term) on some model space E, recall that the associated
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carré du champ is defined by

ΓL(f, g) = 1
2

(
L(fg)− fL(g)− gL(f)

)
,

and L satisfies the change of variable formula (2.3). Then, we are looking
for pairs (X1, X2) of real functions E → R such that L(Xi) = Li(X1, X2),
and Γ(Xi, Xj) = Gij(X1, X2), where Li are some degree 1 polynomials and
Gij are degree 2 polynomials in the two variables (X1, X2). Then, from the
change of variable formula (2.3), for any smooth function Φ : R2 → R, one
has L

(
Φ(X1, X2)

)
= L1(Φ)(X1, X2), where

L1(f) =
∑
ij

Gij(x)∂ijf +
∑
i

Li(x)∂if.

We shall say that such an operator L1 is the image measure of L through
(X1, X2). Moreover, it is immediate that, if µ is the reversible measure for
L, then L1 has reversible measure the image of µ through (X1, X2).

Indeed, what is immediate from the study of the various models is the
knowledge of Γ(Xi, Xj) = gij and the density measure ρ. From (1.2), it is
then immediate that

Li(x) =
∑
j

∂jg
ij + gij∂j log ρ. (4.1)

Through an affine change of coordinates, one is reduced to find two eigen-
vectors X1 and X2 of L for which Γ(Xi, Xj) satisfy a quadratic relation
Γ(Xi, Xj) = Gij(Xi, Xj). In this respect, similar problems are studied (al-
though mainly in dimension 1) in the study of isoparametric surfaces (see
Cartan [13, 14, 15, 16]).

It can be quite hard to find from which model space a given model comes
from. Spectral analysis can be useful: indeed, for any polynomial P (x, y)
and whenever P (X1, X2) ∈ L2(µ), the spectrum of L1 is embedded in the
discrete spectrum of L. But, as it happens in Section 4.7 and Section 4.12, it
could be that the reversible measure µ for L has infinite mass, and that X1

and X2 are eigenvectors for L which are not in L2(µ). However, whenever L1
is the image of some geometric operator L on some compact model space E,
the spectrum of L1 is imbedded in the spectrum of L. Nevertheless, this could
be misleading in some specific situation. For example, on the unit sphere
Sn imbedded in Rn+1 with the induced Riemannian metric, the spectrum
of the associated Laplace–Beltrami operator ∆Sn is {−k(k + n − 1), k ∈
N}. But then, for any integer p, the spectrum of p2∆Sn is included into
{−k(k + p(n − 1), k ∈ N}, which is the spectrum of a sphere of dimension
p(n − 1) + 1, and therefore, since in general we know L1 only up to some
scaling factor, we are not even able to determine the dimension of the sphere
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it may come from (if ever). We already saw this phenomenon in the case
of Jacobi operators with parameter (p, p) for which we have two distinct
geometric interpretation, one coming from Sp and another one coming from
S2p−1 (Section 2.1).

As mentioned above, for the purpose of the description of our 11 models,
we shall mainly use a few model spaces, namely Euclidean, spheres, SO(n)
and SU(n). In order to be able to carry the identification described above
from these models, it is worth to describe the Laplace–Beltrami (or Casimir)
operators for those models, in a simple way leading to the further interpre-
tations. In some cases, it is also useful to extend the operators L and Γ to
complex valued functions, and we shall do that without further notice.

If En is an n-dimensional Euclidean space, and xi the coordinates in some
orthonormal basis, one has for the Euclidean Laplace operator ∆En :

∆En
(xi) = 0, ΓEn

(xi, xj) = δij ,

and the dimension does not appear in these relations, hence we can omit
the subscript n. These descriptions of course do no depend of the chosen
orthonormal basis in En.

On the unit sphere Sn imbedded into Rn+1, and for the restriction to Sn
of the same Euclidean coordinates xi, one has for the Laplace operator ∆Sn

∆Sn(xi) = −nxi, ΓSn(xi, xj) = δij − xixj . (4.2)

For complex coordinates zj = xj + ixj+n, j = 1, . . . , n, on R2n (here i =√
−1), one easily derives from (4.2) that

ΓS2n−1(zj , zk) = −zjzk, ΓS2n−1(zj , z̄k) = 2δjk − zj z̄k. (4.3)

As previously, we can write ΓS since it does not depend on the dimen-
sion. When F is the restriction to the unit sphere in Rn+1 of some smooth
function in the Euclidean space, ∆Sn(F ) and ΓS(F ) may be computed from
the related quantities ∆E and ΓE in the ambient Euclidean space, since they
are the restriction to the sphere of the quantities

∆Sn(F ) = ∆E(F )− (r∂r)2F − (n− 1)r∂rF,
ΓS(F,G) = ΓE(F,G)− (r∂rF )(r∂rG)

(4.4)

where r∂rF =
∑
i x

i∂iF . Hence, if F and G are homogeneous of degree a
and b respectively, we have

∆Sn(F ) = ∆E(F )− a(a+ n− 1)F, ΓS(F,G) = ΓE(F,G)− abFG. (4.5)

As mentioned above the spectrum of −∆Sn is {k(k + n − 1), k ∈ N}.
The eigenspace associated with −k(k + n − 1) consists of the restriction to
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the sphere of degree k harmonic homogeneous polynomials (see Stein and
Weiss [68]).

Beyond the case of spheres, we shall also use Casimir operators on the
semi-simple groups SU(n) and SO(n). Once again, in order to describe them,
we consider the entries xij (SO(n) case) and zij (SU(n) case) as functions
on the group (complex valued in the latter case) and describe the operators
through the action of L and Γ on them.

For SO(n), up to some constant, we have,
∆SO(n)(xij) = −(n− 1)xij , ΓSO(n)(xkl, xpq) = δkpδlq − xkqxpl. (4.6)

For SU(n) the formulas are similar:

∆SU(n)(zij) = −2(n− 1)(n+ 1)
n

zij , (4.7)

and also
ΓSU(n)(zkl, zpq) = −2zkqzpl + 2

n
zklzpq,

ΓSU(n)(zkl, z̄pq) = 2δkpδlq − 2
n
zklz̄pq.

(4.8)

In order not to get confused in the notation, we shall use upper case
letters (X,Y ) instead of (X1, X2) for the coordinate system in the different
2-dimensional models Ω, and lower case letters (xi) for the coordinates on
the geometric model it comes from (we switch also to lower indices because
we will not use much summation over repeated indices whereas polynomial
expressions will be widely used).

To conclude this subsection, we give an example of computation of the
coefficients of ∆Sn , n = p + q − 1, pushed down to R through the function
X = x2

1 + · · ·+ x2
p. We shall obtain the Jacobi operator (Section 2.1).

By (2.2) we have
∆Sn(x2

i ) = 2xi∆Sn(xi) + 2Γ(xi, xi),
hence ∆Sn(x2

i ) = 2−2(p+q)x2
i (by (4.2)) whence ∆Sn(X) = 2p−2(p+q)X

by linearity. Further, Γ is a derivation with respect to each argument, i.e.,
Γ(fg, h) = Γ(h, fg) = fΓ(g, h) + gΓ(f, h) whence

ΓS(x2
i , x

2
j ) = 4xixjΓS(xi, xj) = 4xixj(δij − xixj)

(see (4.2)). Hence

ΓS(X,X) =
∑
i,j

ΓS(x2
i , x

2
j ) = 4

∑
i

x2
i − 4

∑
i,j

x2
ix

2
j = 4X − 4X2 (4.9)

This means that the obtained one-dimensional operator L reads
L(f(X)) = 4X(1−X)f ′′(X) +

(
2p− 2(p+ q)X

)
f ′(X).
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After the change of variable Y = 2X − 1 we obtain 4Jq/2,p/2. All the pro-
jections of Laplace operators presented in this section are computed by this
scheme.

4.2. The square or rectangle

This is the simplest model. By affine transformation, we may chose the
square to be [−1, 1]× [−1, 1]. The metric is

G =
(

1−X2 0
0 1− Y 2

)
and the density of the measure is

ρ(X,Y ) = C(1−X)a−1(1 +X)b−1(1− Y )c−1(1 + Y )d−1.

This corresponds to the products of dimension 1 Jacobi polynomials. We
recall that for any positive half-integer p and q, the one-dimensional Jacobi
operator Jp,q with reversible measure (1−X)p−1(1 +X)q−1 can be realized
on a (2p + 2q − 1)-dimensional sphere {x2

1 + · · · + x2
p+q = 1} through the

function X = 2
(
x2

1 + · · ·+ x2
2p
)
− 1. Hence we have

∆S2p+2q−1
(
h(X)

)
= 4Jp,q(h)(X).

Since the boundary is degree four, among the admissible density measures is
det(G)−1/2, and the metric is then the Euclidean metric, through the change
of coordinates X = cos(x1), Y = cos(x2). Then, the operator is nothing else
than the Laplace operator on R2, acting on functions which are invariant
under the reflections with respect to the lines {x1 = kπ}, {x2 = k′π}, which
is the square lattice in R2. Of course, this is covered by the first case since
when p = q = 1/2, the sphere is nothing else than the 1-dimensional torus.

Therefore, this square model for half integer values of the coefficients
(a, b, c, d) may be seen as images of products of spheres. We already men-
tioned also the various interpretations coming from compact rank 1 sym-
metric spaces.
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4.3. The circle

We may chose Ω to be the unit disk in R2. In this case, the metric is
not unique, and, up to scaling, depends on 2 free parameters. Up to some
rotation,

Ga,b,c = (1−X2 − Y 2)
(
a 0
0 b

)
+ c

(
1−X2 −XY
−XY 1− Y 2

)
.

Ellipticity imposes c > 0 (otherwise G11
a,b,c(0, 1) < 0), and whenever c 6= 0,

we may reduce by homogeneity to c = 1. We concentrate only on this case.

Ellipticity condition also imposes a > −1, b > −1. When a, b 6= 0, the
determinant of Ga,b,c writes (1−X2 − Y 2)P2(X,Y ), where P2 has degree 2
and is irreducible (and is constant whenever a = b = 0). Comparing Propo-
sition 2.15 and formula (2.13) with the value of the determinant, it is easily
seen (see Remark 2.28) that the only admissible measures have density

ρp(X,Y ) = C(1−X2 − Y 2)p−1 .

This remains the case even when ab = 0 (or c = 0), although in these cases
P2 is real reducible (resp. P2 = 1 − X2 − Y 2). In complex notation, with
Z = X + iY , the operator associated with c = 1 and measure with density
C(1−X2 − Y 2)p−1 may be described from

Lp,a,b,1(X) = −(1 + 2p+ 2ap)X,
Lp,a,b,1(Y ) = −(1 + 2p+ 2bp)Y,
Lp,a,b,1(Z) = −

(
1 + 2p+ (a+ b)p

)
Z − (a− b)pZ̄,

Γa,b,1(Z,Z) = (a− b)(1− ZZ̄)− Z2,

Γa,b,1(Z, Z̄) = (a+ b+ 2)− (a+ b+ 1)ZZ̄,

with of course the conjugate values for Lp,a,b,1(Z̄) and Γa,b,1(Z̄, Z̄).

When a = b = 0, the metric has constant curvature 2c. This model is
well known. For p = 1/2, the operator corresponds to the Laplace operator
on S2 = {x2

1 + x2
2 + x2

3 = 1}, acting on functions which are invariant under
the symmetry x3 7→ −x3. If one considers the unit disk as a local chart for
the upper half-sphere, this is nothing else than the Laplace operator acting
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on functions of (x1, x2). The spectrum is then the spectrum of the sphere.
The eigenvalues are λk = −k(k + 1).

When p = (n − 1)/2, n ∈ N, n > 3, a = b = 0, this still corresponds
to a Laplace operator on the sphere Sn. More precisely, if one considers the
Laplace operator ∆Sn on the unit sphere Sn = {x2

1 + · · · + x2
n+1 = 1}, and

a function depending only on (x1, x2) = (X,Y ), one gets

∆Sn

(
f(x1, x2)

)
= L(n−1)/2,0,0,1(f)(x1, x2).

It is therefore the image of ∆Sn through the projection x 7→ (x1, x2).

In this case, one may also get some other interpretation, from spheres
S2n−1: on the unit sphere S2n−1 ⊂ R2n, n > 2, let zk be the complex
functions which are the restrictions to the sphere of the linear forms zk(x) =
xk + ixn+k. Then, consider the complex function Z = z2

1 + · · ·+ z2
n. One can

see that

∆S2n−1(Z) = −4nZ, ΓS(Z,Z) = −4Z2, ΓS(Z, Z̄) = 8− 4ZZ̄.

Therefore, passing to the real forms Z = X + iY , one has

ΓS(X,X) = 4(1−X2), ΓS(Y, Y ) = 4(1− Y 2), ΓS(X,Y ) = −4XY.

This corresponds to the operator 4L(n−1)/2,0,0,1.

One may also obtain similar forms using Z =
∑
i ziz

′
i, where zi and z′i are

defined in a similar way but on the product of two spheresM = S2n−1×S2n−1

endowed with the product metric, which leads to 2Ln−1,0,0,1. Indeed,

∆M (Z) = (2− 4n)Z, ΓM (Z,Z) = −2Z2, ΓM (Z, Z̄) = 4− 2ZZ̄.

For the other metrics, the situation is more complicated. Still restricting
to c = 1, the condition for the metric to be non-negative on the disk is
a > −1 and b > −1. Even in the case a = b, the Laplace operator associated
with the metric is no longer a solution to our problem, and one may check
that the metric has not constant curvature.

If we restrict our attention to the diagonal case a = b, then the equation
simplifies. Up to some scaling, the operator may be considered as the sum of
the previous operator with a = b = 0 and γ(x∂y − y∂x)2, which corresponds
to a circular Brownian motion in the plane. But we may construct this in
a more geometric way as follows. For −1 < a < 0, and density measure
(1 − X2 − Y 2)p−1, one may consider a sphere Snr of radius r, where a =
−r2/(1+r2), and dimension n = 2p+1. Then, we chose e1 and e2 two vectors
in Rn+1 which are orthogonal and of norm 1, and consider the complex linear
forms Z1(x) = 〈e1, x〉+i〈e2, x〉, that we restrict on the sphere Snr . It satisfies,
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for the Laplace operator on the sphere,

∆Sn
r
(Z1) = − n

r2Z1, ΓSr
(Z1, Z1) = − 1

r2Z
2
1 , ΓSr

(Z1, Z̄1) = 1
r2 (2− Z1Z̄1).

Consider now the product S1×Snr , with the product structure and Lapla-
cian L. With the function z = eiθ on S1, we look at the function Z = zZ1.
We have, for the product structure

L(Z) = −
( n
r2 +1

)
Z, Γ(Z,Z) = −

(
1+ 1

r2

)
Z2, Γ(Z, Z̄) = 2

r2 +
(

1− 1
r2

)
ZZ̄.

Then, the image of r2

1+r2 L through Z is Lp,a,a,1 for a = −r2/(r2 + 1) and
p = (n− 1)/2. However, the case a 6= b remains mysterious.

This model has an immediate d-dimensional generalization. On the unit
ball in Rn, one may consider the operator corresponding to the co-metric

(1− |x|2)D(a1, . . . , an) + (gij0 (x)), (4.10)

where |x| denotes the Euclidean norm, (gij0 ) = (δij−xixj) corresponds to the
projection of the spherical metric of Sn onto a hyperplane, and D(a1, . . . , an)
is any diagonal matrix. In fact, it is quite easy to check with this co-metric
the boundary condition

∑
j g

ij∂jP = −2(ai + 1)xiP , where P = 1 − |x|2
is the equation of the boundary. The condition for the metric to be non
negative on the unit ball is again that ai > −1 for any i. Again, when
D(a1, . . . , an) = 0, the choice of the measure (1 − |x|2)(q−1)/2 corresponds
to a Laplace operator on the (n + q)-sphere. Furthermore, adding squares
of infinitesimal rotations in various directions with different coefficients pro-
vides a larger class of matrices (gij) solutions of the DOP problem for the
boundary |x|2 = 1.

4.4. The triangle

By affine transformation, one may reduce to the case where the triangle
is delimited by the lines X = 0, X + Y = 1, Y = 0, such that the domain Ω
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is the 2-dimensional simplex {X > 0, Y > 0, X + Y 6 1}. Then,the metric
depends again on three parameters

Ga,b,c = (1−X − Y )
(
aX 0
0 bY

)
+ c

(
X(1−X) −XY
−XY Y (1− Y )

)
.

The density of the measure also depends on three parameters
ρp,q,r(X,Y ) = CXp−1Y q−1(1−X − Y )r−1 ,

which leads to a family of operators Lp,q,ra,b,c , for which

Lp,q,ra,b,c(X) = −
(
(a+ c)(r + p) + cq

)
X − apY + (a+ c)p

and a similar form for Y but exchanging X with Y , p with q, and a with b.

One can check that the affine linear symmetries of the triangle correspond
to simultaneous permutations of (p, q, r) and (b+c, a+c, c) (cf. Lemma 3.23),
for example, the mapping (X,Y ) 7→ (1 − X − Y, Y ) transforms Lp,q,ra,b,c into
Lr,q,pa−b,−b,b+c which is Lp1,q1,r1

a1,b1,c1
with (b1 + c1, a1 + c1, c1) = (c, a+ c, b+ c) and

(p1, q1, r1) = (r, q, p) .

This model is closely related to the circle one. We first observe that if
we take the circle model in R2 with coordinates (x, y), and let the operator
(divided by 4) act on functions of X = x2, Y = y2, we find the operator on
the triangle acting on the variable (X,Y ) (the simplex is clearly the image of
the disk under (x, y) 7→ (x2, y2)). We obtain in this way the complete family
of metrics, but only the measures ρ1/2, 1/2, r which are the image measures
of the measures on the unit disk with density (1−X2 − Y 2)r−1.

For other measures ρp,q,r, provided p, q are half-integer numbers, one may
use the n-dimensional model on the unit ball (4.10). As for the circle case,
we restrict our study to c = 1. Setting m = 2p and n = 2p+ 2q, consider the
operator LB

p,q,r,a,b on the unit ball in Rn given by the metric (4.10) and the
measure (1 − |x|2)r−1 where a1 = · · · = am = a and am+1 = · · · = an = b.
Let X =

∑m
i=1 x

2
i , Y =

∑n
i=m+1 x

2
i . Then its image of LB

p,q,r,a,b through
(X,Y ) is 4Lp,q,ra,b,1, as easily checked comparing for both cases L(X), L(Y ),
Γ(X,X), Γ(X,Y ), and Γ(Y, Y ).

Therefore, we see that the triangle case may be interpreted, at least for
half integers values of the measure parameters, as images of the unit ball
operators, in exactly the same way that one dimensional non symmetric
Jacobi operators may be obtained from spheres.

Once again, those operators have an immediate n-dimensional extension
on the d-dimensional simplex {xi > 0, i = 1, . . . , n,

∑
i xi 6 1}, with the

(co)-metric

Gij = δij

(
αixi

(
1− x1 − · · · − xn

)
+ 1
)
− xixj
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where αi are constants.

For half-integers p, q, r, let us consider the unit sphere in Rn, n = 2p+2q+
2r, where a point in Rn is represented as (x1,x2,x3) ∈ R2p×R2q×R2r. Then,
as we mentioned in Section 4.3, the operator LB

p,q,r,0,0 is the image of ∆Sn−1

under the projection on the first 2p+2q coordinates. By composing it with the
mapping of B2p+2q onto the triangle, we obtain an interpretation of 4Lp,q,r0,0,1
as the image of ∆Sn−1 through (X,Y ) = (‖x1‖2, ‖x2‖2). In particular, for
p = q = r = 1/2 this is the quotient of S2 by the reflections in the three
coordinate planes. See also Remark 4.3 in Section 4.5.

Remark 4.1. — In the same way that we gave another interpretation on
the circle coming from complex representations, one may give other interpre-
tations on the triangle in some particular case. For example, on S5, consider
the complex linear forms z1 = x1+ix2, z2 = x3+ix4, z3 = x5+ix6 restricted
to the sphere, and the function

Z = z1z̄2 + z2z̄3 + z3z̄1.

which maps S5 onto the triangle in C with vertices 1, ω, ω2 where ω = e2πi/3.
One may check that, for the Laplace operator ∆S5 on the sphere, one has

∆S5(Z) = −12Z, ΓS(Z,Z) = 4Z̄ − 4Z2, ΓS(Z, Z̄) = 4− 4ZZ̄,

which corresponds to the change of variables Z = 1− 3
2 (X+Y )+i

√
3

2 (Y −X),
i.e., X = 1

3 (1 +ωZ +ω2Z̄), Y = 1
3 (1 +ω2Z +ωZ̄). Then the image of 1

4∆S5

under (X,Y ) is L1,1,1
0,0,1.

4.5. The coaxial parabolas

Up to affine transforms, the domain may be bounded by the two parabolas
Y = X2 − 1 and Y = a(1 −X2) with a > −1. This forms a one-parameter
family up to affine transformations, but may be reduced to a single model
via some non-linear transformation.

The (co)-metric is

Ga =
(

1−X2 −2XY
−2XY −4Y (1 + Y )

)
+ 4a

(
0 0
0 1−X2 + Y

)
.
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If a 6= 0, it is unique up to rescaling but if a = 0, it extends to a one-
parameter family that we present at the end of this subsection.

When a 6= 0, the boundary has degree 4, and therefore the Laplace op-
erator associated with the metric is an admissible solution, corresponding
to the measure det(Ga)−1/2. It turns out that the associated metric has
scalar curvature equal to 2, and therefore the operator is locally a spherical
Laplacian.

In fact, the (non-affine) change of coordinates X = X1, Y = (a+ 1)Y1 +
a(1−X2

1 ), allows us to reduce, up to a scaling parameter, to the case a = 0,
and then Ω = {X2 − 1 < Y < 0} – the domain is bounded by the parabola
Y = X2 − 1 and the axis Y = 0.

Even though the boundary has no longer degree 4 in this case, the Laplace
operator is still an admissible solution. In fact, the determinant of the metric
is still equal to the reduced equation of the boundary even in this case. This
particular model is known in the literature as the parabolic biangle (see
Koornwinder and Schwartz [48]).

For symmetry reasons, we prefer to consider the case a = 1, in which case

G1 =
(

1−X2 −2XY
−2XY 4(1−X2 − Y 2)

)
.

When the density of the measure is det(G1)−1/2, the operator may be
directly seen as the image of the Laplace operator on S2 = {x2

1 + x2
2 + x2

3 =
1} ⊂ R3 through (X,Y ), whereX = x3 and Y = 2x1x2. Then, the associated
operator is nothing else than the spherical Laplace operator acting on func-
tions which are invariant under the reflections in the hyperplanes {x1 = x2}
and {x1 = −x2} (the angle between them is π/2, which corresponds to the
ordinary double points of the boundary of the domain).

One easily checks (see Remark 2.28) that all admissible measure densities
are

ρ = (1−X2 + Y )p−1(a(1−X2)− Y )q−1. (4.11)

Then we obtain an operator Lp,q,a for which we have

Lp,q,a(X) = −2(p+ q)X, Lp,q,a(Y ) = −(2 + 4(p+ q))Y + 4(ap− q),

When p and q are half-integer and a = 1, this operator is an image of the
Laplace operator on a sphere Sn ⊂ Rn+1, n = 2p + 2q, by the functions
X = xn+1, Y = x2

1 + · · · + x2
m − x2

m+1 − · · · − x2
n where m = 2p. Using

formulae (4.2), it is easily checked that they give the required values for
Lp,q,1(X),Lp,q,1(Y ), Γ1(X,X), Γ1(X,Y ), and Γ1(Y, Y ).
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Although the general case may be reduced to a = 0, this latter case offers
a more general admissible family of (co)-metrics, namely

G′α = G0 + α

(
1−X2 + Y 0

0 0

)
which is positive definite in the domain X2 − 1 < Y < 0 for α > −1. In the
special case α = −1 we have

G′−1 = −Y
(

1 2X
2X 4(1 + Y )

)
.

The curvature of the metric associated with G′α is 2(1 + α+ 2αY )/(1 + α+
αY )2, so it is non-constant for α 6= 0. For the measure density (4.11) (with
a = 0), we obtain the operator L′p,q,α with

L′p,q,α(X) = −2((1 + α)p+ q)X, L′p,q,α(Y ) = −(2 + 4(p+ q))Y − 4q.

Remark 4.2. — When q = 1/2, the operator L′p, 1/2, α is the image of
the operator Lp,α,0,1 on the unit disk (see Section 4.3) under the mapping
(X,Y ) 7→ (X,−Y 2). However, as we already pointed out in Section 4.3, we
do not know any geometric interpretation for this operator when α 6= 0, and
when α = 0 we get the same models as above up to change of coordinates.

Remark 4.3. — The mapping (X,Y ) 7→ (X2,−Y ) transforms L′p,q,α to
the operator 4L1/2, q,p

α,0,1 on the triangle (cf. Section 4.4).

4.6. The parabola with the axis and a tangent

Notice that the axis cuts the line at infinity at the same point that the
parabola. Then, up to affine transformation, we may chose the domain Ω
delimited by the curves

Y = X2, Y = 0, X = 1.
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Up to scaling, there is just one (co)-metric which is a solution of the problem:

G = 4
(
X(1−X) 2Y (1−X)
2Y (1−X) 4Y (X − Y )

)
.

Once again, the boundary has degree 4, and the Laplace operator correspond-
ing to the associated metric is a solution, which corresponds to a metric with
constant scalar curvature equal to 2 (that is why we chosed this normaliza-
tion of the metric), and therefore it may be realized on a unit sphere S2 ⊂ R3.
In the general case the measure density is (X2 − Y )p−1Y q−1(1 − X)r−1,
p, q, r > 0, p+ q > 1/2. It provides a family of operators Lp,q,r for which

Lp,q,r(X) = 4(2p+ 2q − 1)− 4(2p+ 2q + r − 1)X,
Lp,q,r(Y ) = 16qX − 8(2p+ 2q + r)Y.

The Laplace operator corresponds to L1/2,1/2,1/2, and is the image of ∆S2 =
{x2

1 +x2
2 +x2

3} = 1 through (X,Y ) where X = x2
1 +x2

2 and Y = 4x2
1x

2
2. These

are functions on the sphere invariant under the symmetries with respect to
the hyperplanes {x1 = 0}, {x2 = 0}, {x3 = 0}, and {x1 = ±x2}. The
fundamental domain on the sphere for this group action is a triangle with
two π/2 angles, and one π/4 angle, which corresponds to the two nodes and
one tacnode of ∂Ω.

One can check that L1/2, q,r is the image of the operator 4
a+cL

q,q,r
a,a,c on the

triangle (see Section 4.4) under the mapping (x, y) 7→ (X,Y ) = (x+ y, 4xy).
Thus each model for Lq,q,ra,a,c yields a model on Ω with p = 1/2. In particular,
L1/2, q,r is the image of the Laplace orerator on the unit sphere in R2q ×
R2q × R2r under the composition

(x1,x2,x3) 7→
(
‖x1‖2, ‖x2‖2

)
7→
(
‖x1‖2 + ‖x1‖2, 4 ‖x1‖2 ‖x2‖2

)
.

For m > 2 and c ∈ {1, 2, 4, 8}, we may construct the operator as an
image of a sphere of an appropriate dimension, namely, of the unit sphere
in R2cm+2r. For those values of c, we may construct c orthogonal transfor-
mations `i on Rc such that `1(u), . . . , `c(u) form an orthonormal basis for
any u ∈ Rc, with ‖u‖ = 1. This is done through the complex, quaternionic
or octionionic multiplications (say from the left) by the basis elements of
the algebra, which provides orthonormal transformations of the space which
satisfy the required conditions (although in the octonionic case it is not just
a simple application of the algebra rule due to the non-associativity of the
product), see Conway and Smith [17]. Indeed, this property fails for higher
order Cayley–Dickson algebras. For any m, the operators `i lift to Rm ⊗Rc
into orthogonal transformations such that `1(x), . . . , `c(x) are pairwise or-
thogonal for any x ∈ Rm ⊗ Rc.
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Let n = 2cm+2r. We consider a point in Rn as a triple of vectors (x,y, z)
with x,y ∈ Rm ⊗ Rc and z ∈ R2r. Then we consider X = ‖x‖2 + ‖y‖2 and

Y = 4
(
‖x‖2‖y‖2 −

c∑
i=1

(x · `i(y))2
)

where x · y denotes the usual scalar product in Rcm, and ‖x‖2 = x · x (if
m = 1,then Y = 0; this is why we imposed the restriction m > 2).

It may be checked that the restriction of the functions X and Y to the
unit sphere in Rn satisfy the relations required for Γ(X,X), Γ(X,Y ) and
Γ(Y, Y ). Indeed, once we have remarked that X and Y are homogeneous
with degree respectively 2 and 4 in Rn, and for this value of X, by (4.5)
everything boils down to verify that, for the Euclidean operator ΓE in Rn,
one has ΓE(Y, Y ) = 16XY , which is quite easy to check. Then, one also
checks that

∆Sn−1(X) = 4cm− 2nX,
∆Sn−1(Y ) = 8c(m− 1)X − 4(n+ 2)Y,

wich corresponds to Lp,q,r with 2p = c + 1 and 2q = c(m − 1) (recall that
n = 2cm+ 2r).

4.7. The parabola with two tangents

Here, the domain Ω is delimited by the equations

Y = X2, Y = 2X − 1, Y = −2X − 1.

With this boundary, up to scaling, the (co)-metric is unique and is

G =
(
Y + 1− 2X2 2X(1− Y )
2X(1− Y ) 4(2X2 − Y − Y 2)

)
.

Once again, the boundary has degree 4, the Laplace operator corresponding
to this (co)-metric is a solution, and has constant curvature 0. The general
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density measure is (X2−Y )p−1(Y −2X+1)q−1(Y +2X+1)r−1 with p, q, r >
0, p+ q > 1/2, p+ r > 1/2. For such measure we get an operator Lp,q,r with

Lp,q,r(X) = 2(r − q)− 2(2p+ q + r − 1)X,
Lp,q,r(Y ) = −2(2p− 1) + 4(r − q)X − 2(2p+ 2q + 2r − 1)Y.

When p = q = r = 1/2, this corresponds to the image of a 2-dimensional
Euclidean Laplacian, constructed from the root system B2 as follows. Con-
sider in R2, with canonical basis (e1, e2), the 4 roots λj = ±

√
2ei, and the 4

roots µj = ±
√

2ei ±
√

2ej (the factor
√

2 is there to fit with the final values
of X and Y ). Then, let

X(x, y) = 1
4

4∑
j=1

exp(iλj · (x, y)) =
(

cos(
√

2x) + cos(
√

2y)
)
/2,

Y (x, y) = 1
4

4∑
j=1

exp(iµj · (x, y)) = cos(
√

2x) cos(
√

2y).

Then, it is directly checked that ΓR2(X,X), ΓR2(X,Y ), ΓR2(Y, Y ), ∆R2(X),
∆R2(Y ) satisfy the relations required for L1/2, 1/2, 1/2. This is just one ex-
ample of the family of Jack polynomials associated with root systems (see
MacDonald [53]). Following Koornwinder [43, 44], one may find other rep-
resentations for symmetric rank 2 spaces with restricted root systems B2
(which include for example SO(5) and SO(n + 2)/SO(n)). For a reference
on this model, see also Sprinkhuizen-Kuyper [67]. For the sake of complete-
ness, we give below some naive representations of those models coming from
the Laplace–Beltrami operator on SO(n) described in (4.6). One may find
more complete descriptions of those models in Doumerc’s thesis [20]. More-
over, this allows us to show how to deal in a convenient way with matrix
operators.

For a given operator on square matrices in dimension n, such as the one
described in (4.6) or (4.7) and (4.8), one may consider the image of the
operator on the spectrum, determined by the coefficients a0, . . . , an−1 of the
characteristic polynomial P (λ) = det(M − λ Id). Of course, for small values
of n, one may perform computations by hand, but it is perhaps worth to
describe general methods.

The first task is to compute the various derivatives with respect to the
entries Mij of M of the various coefficients of P (λ). One may start from
the comatrix xM = xM ij for which xM t = det(M)M−1 (where M t is the
transposed of M) and satisfies ∂Mij

xM ik = 0. Together with ∂Mij
M−1
kl =

−M−1
ki M

−1
jl , we get ∂Mij log det(M) = M−1

ji (which is valid on the dense
domain where det(M) 6= 0).
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Now, for an operator on matrices satisfying L(Mij) = −µMij and
Γ(Mij ,Mkl) = δikδjl−MilMkj , denotingM(λ) the matrixM−λ Id, the pre-
vious formulae combined with the change of variable formula (2.3) leads to

L
(

logP (λ)
)

= −µ trace
(
M(0)M(λ)−1)− trace

(
M(λ)−1M t(λ)−1)

+
(

trace
(
M(0)M(λ)−1))2

Γ
(

log
(
P (λ1)

)
, log

(
P (λ2)

))
= trace

(
M t(λ1)−1M(λ2)−1)

− trace
(
M(λ1)−1M(0)M(λ2)−1M(0)

)
.

For the special case of SO(n) where µ = n− 1 and M t = M−1, denoting
a1, . . . , an the eigenvalues of M , one has

trace
(
M(0)M(λ)−1) =

∑ ai
ai − λ

=
∑(

1 + λ

ai − λ

)
= n− λP

′(λ)
P (λ) ,

trace
(
M(λ)−1M t(λ)−1) =

∑ 1
(ai − λ)(a−1

i − λ)

= 1
1− λ2

∑(
1 + λ

ai − λ
+ λ

a−1
i − λ

)
= 1

1− λ2

(
n− 2λP

′(λ)
P (λ)

)
.

Putting this into the previous formula, we obtain

∆SO(n)
(

logP (λ)
)

= − nλ2

1− λ2 + λ
P ′(λ)
P (λ)

(
1 + λ2

1− λ2 − n
)

+
(
λ
P ′(λ)
P (λ)

)2
.

Similarly,

ΓSO(n)
(

logP (λ1), logP (λ2)
)

= 1
1− λ1λ2

(
nλ1λ2 − λ1

P ′(λ1)
P (λ1) − λ2

P ′(λ2)
P (λ2)

)
+ 1
λ1 − λ2

(
λ2

1
P ′(λ1)
P (λ1) − λ

2
2
P ′(λ2)
P (λ2)

)
(if λ1 = λ2 = λ, the second term is ∂λ(λ2P ′/P )). Using (2.3) with Φ = exp,
this leads to the very simple formulas

∆SO(n)
(
P (λ)

)
= −(n− 1)λP ′ + λ2P ′′,

ΓSO(n)
(
P (λ), P (λ)

)
= λ2((nP 2− 2λPP ′

)
/(1−λ2) +PP ′′− (P ′)2). (4.12)

For n = 4, we write P (λ) = λ4 + Xλ3 + Y λ2 + Xλ + 1. Plugging this
expression to the right hand side of (4.12) and comparing the coefficients of
powers of λ with those in the expansions

∆(P ) = ∆(X)λ+ ∆(Y )λ2 + · · · ,
Γ(P, P ) = Γ(X,X)λ2 + 2Γ(X,Y )λ3 +

(
2Γ(X,X) + Γ(Y, Y )

)
λ4 + · · ·
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one gets
∆SO(4)(X) = −3X, ∆SO(4)(Y ) = −4Y.

and
ΓSO(4)(X,X) = 4−X2 + 2Y,
ΓSO(4)(X,Y ) = 6X −XY,
ΓSO(4)(Y, Y ) = 8 + 4X2 − 2Y.

From this, we see that L3/2, 1/2, 1/2 is the image of 2∆SO(4) through (X1, Y1)
where 4X1 = X and 4Y1 = Y − 2.

For SO(5), setting P (λ) = λ5 + Xλ4 + Y λ3 + Y λ2 + Xλ + 1, and X =
4X2 + 1, Y = 4X2 + 4Y2 + 2, one sees with the same method that the image
of 2∆SO(5) through (X2, Y2) is L3/2, 3/2, 1/2.

One may also project ∆SO(n) on any m × s submatrix xM (it is obvious
from formulae (4.6) that the operator projects). It is less obvious a priori
(but still easy to check using (4.6)) that it also projects on the square s× s
matrices N = xM t

xM , and produces on the entries Nij of those matrices the
operator defined by ∆SO(n)(Nij) = 2mδij − 2nNij and

ΓSO(n)(Nij , Nkl) = Nikδjl +Nilδjk +Njkδil +Njlδik − 2
(
NikNjl +NilNjk

)
.

Again, this projects on the spectrum of such matrices. In particular, when
s = 2, m = 2r + 1, and n = 2q + 2r + 2 for positive half-integers p and q,
one may chose as variables trace(N) = X + 1 and 4 det(N) = Y + 2X + 1,
and then the image of 1

2∆SO(n) through (X,Y ) is L1,q,r. For r = 0 (thus
m = 1), the image is obviously degenerate, and concentrated on the bound-
ary {Y + 2X + 1 = 0}, while for q = 0 (thus n = m+ 1), it concentrates on
{Y − 2X + 1 = 0}, as would do the image measure when r → 0 or q → 0
respectively.

Remark 4.4. — The singularities of Ω correspond to the angles (π2 ,
π
4 ,

π
4 ).

This is a Euclidean triangle which can be obtained by folding a square
along the diagonal. This corresponds to the mapping [−1, 1]2 → Ω given by
(X,Y ) 7→

( 1
2 (X + Y ), XY

)
which maps the lines X ± 1 = 0 and Y ± 1 = 0

to the line Y ± 2X + 1 and the diagonal X = Y to Y = X2. This map-
ping transforms the product of Jacobi operators Jq,r × Jq,r (see Section 4.2)
to 1

2L1/2, q,r. In particular, L1/2, q,r can be interpreted in this way as an
appropriate projection of ∆Sn×Sn .

Similarly, if we fold the triangle with angles (π2 ,
π
4 ,

π
4 ) along its axis of

symmetry, we obtain a triangle with the same angles. This corresponds to
the 2-to-1 mapping Ω→ Ω given by (X,Y ) 7→ (Y, 4X2−2Y −1). Under this
mapping, the parabola {Y = X2} is mapped to the line {Y − 2X + 1 = 0},
the both lines {Y ±2X+1 = 0} are mapped to the parabola {Y = X2}, and
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the axis {X = 0} is mapped to the line {Y + 2X + 1 = 0}. This mapping
transforms Lp,q,q into 2Lq,p,1/2. In particular, the above model on SU(4) is
transformed into L1/2, 3/2, 1/2, the model of L1,q,q via SU(4q + 2) is trans-
formed into Lq, 1, 1/2, and the model coming from Jp,p × Jp,p is transformed
into Lp, 1/2, 1/2.

4.8. The nodal cubic

In this situation, we may choose the equation of the boundary to be
Y 2 = X2(1−X). There is a unique metric up to scaling

G =
(

4X(1−X) 2Y (2− 3X)
2Y (2− 3X) 4X − 3X2 − 9Y 2

)
.

The boundary has degree 3, and in this situation the measure density ρ(x) =
det(G)−1/2 is not an admissible measure (it does not satisfy equationı (2.13),
as one may check directly). Also, the metric has a non constant curvature.
The general form of the density measure is ρp(X,Y ) =

(
X2(1−X)−Y 2)p−1,

for which we have
L(X) = −2(6p+ 1)X + 8p , L(Y ) = −6(3p+ 1)Y .

It turns out that for p = 1/2, the operator may be interpreted from a
3-dimensional sphere, through a projection which is very close to the Hopf
fibration. Indeed, on the unit sphere S3 = {x2

1+x2
2+x2

3+x2
4 = 1}, consider the

functionsX = x2
1+x2

2 and Y =
(
x2

1−x2
2
)
x3+2x1x2x4. We may check directly

that they satisfy the required equations on ∆S3(X), ∆S3(Y ), ΓS3(X,X),
ΓS3(X,Y ), and ΓS3(Y, Y ).

To understand which functions on the sphere are of the form f(X,Y ),
one may represent the sphere in complex notation as {|z1|2 + |z2|2 = 1},
where (z1, z2) ∈ C2, that we write in polar coordinates as zj = ρj exp(iθj).
We then see that

(X,Y ) =
(
|z1|2, Re(z2

1 z̄2)
)

=
(
ρ2

1, ρ
2
1ρ2 cos(2θ1 − θ2)

)
.

Then (X,Y ) is invariant under

(z1, z2) 7→ (eiθz1, e
2iθz2).
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Moreover, the quotient of the sphere under this action can be identified with
the image Ω1 = F (S3) of the sphere under the mapping F : S3 → R+ × C,
(z1, z2) 7→ (|z1|2, z2

1 z̄2) = (t, z). The functions t = ρ2
1 and r = |z| = ρ2

1ρ2
satisfy the relation r2 = t2(1−t), and therefore Ω1 is the surface of revolution,
with axis R×{0} ⊂ R×C, whose meridional section is ∂Ω placed in the real
half-plane {(t, z) | Im z = 0}; see Figure 4.1. So, Ω is the quotient of Ω1 by
the symmetry (t, z) 7→ (t, z̄).

t

z

z

Re

Im

Figure 4.1. The surface of revolution over the nodal cubic

This construction admits the following generalization for some other val-
ues of the measure parameter. Namely, for p = c/2 where c ∈ {1, 2, 4, 8}
(with c = 1 corresponding to the considered model on S3). We shall use an
interpretation similar to the one described in Section 4.6. Let us write a point
in R3c+1 as (u,v,w), with u,v ∈ Rc and w = (w0, w1, . . . , wc) ∈ Rc+1. Con-
sider then X = ‖u‖2 + ‖v‖2. For these values of c, as seen above, there exist
c orthogonal transformations `k in Rc such that {`1(v), `2(v), . . . , `c(v)} is
an orthonormal basis for any unit vector v ∈ Rc. Then, on R2c, one consid-
ers the bilinear functions Bk(u,v) = 2u · `k(v), k = 1, . . . , c, for which it is
immediate that

∑c
j=1B

2
j = 4‖u‖2‖v‖2. Let also B0(u,v) = ‖u‖2 − ‖v‖2.

Then
∑c
i=0B

2
i = X2. For the Euclidean Laplacian on R2c, one has

∆EBi = 0, ΓE(Bi, Bj) = 4δij(‖u‖2 + ‖v‖2), i, j = 0, . . . , c.

We then consider the function Y =
∑c
i=0 wiBi. For the Euclidean Laplace

operator in R3c+1, one easily checks that ΓE(X,Y ) = 4Y and that
ΓE(Y, Y ) = X2 + 4X‖w‖2 = X2 + 4X(1−X).

The comparison (4.5) of spherical Laplace operator and the Euclidean one
shows that the restrictions of X, Y , and the Laplace operator on the unit
sphere in R3c+1 satisfy the required relations for Lp with 2p = c.

It is perhaps worth to observe that in the above construction, the bilinear
functions B0, B1, . . . , Bc, considered as functions on R2c are harmonic and
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satisfy ΓE(Bi, Bi) = 4δij(‖u‖2 + ‖v‖2), and
∑
iB

2
i = (‖u‖2 + ‖v‖2)2. Their

restriction to S2c−1 satisfy then the same relations (up to some factor 4)
than the coordinates on a unit sphere Sc. Any construction performed on
those spheres may be then carried to S2c−1, just replacing Xi by Bi.

4.9. The cuspidal cubic with one secant line

We may choose the boundary equation to be (X3 − Y 2)(X − 1) = 0. Up
to scaling, the associated metric is unique and we have

G =
(

4X(1−X) 6Y (1−X)
6Y (1−X) 9(X2 − Y 2)

)
.

Since the boundary has degree 4, the Laplace operator associated with this
metric belongs to the admissible solutions and we may check that the asso-
ciated metric has constant scalar curvature 2 and therefore may be realized
from the unit sphere S2.

The general density measure is ρp,q = (X3−Y 2)p−1(1−X)q−1, p > 1/6,
for which we have for the associated operator Lp,q

Lp,q(X) = −2(6p+ 2q − 1)X + 2(6p− 1), Lp,q(Y ) = −3(6p+ 2q)Y.
For the Laplacian case, L1/2, 1/2 is the image of ∆S2 through

X = x2
1 + x2

2, Y = x1
(
x2

1 − 3x2
2
)
.

The functions F (X,Y ) are the functions on the unit sphere which are in-
variant under x3 7→ −x3 and such that the projection z = x1 + ix2 = ρeiθ

on the hyperplane {x3 = 0} depend only on ρ and cos(3θ). These are the
functions which are invariant under symmetries through the hyperplanes
H = {x2 = 0} and the two hyperplanes having an angle ±π/3 with H. The
fundamental domain for these symmetries on the sphere is a triangle with
angles (π/3, π/2, π/2), which correspond to one cusp and two double points.

For the other density measures, we may consider the unit sphere in
R3c+2 × R2q where 2p = c + 1. For a point (u,v) ∈ R3c+2 × R2q, we set
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X = ‖u‖2 and we chose for Y some homogeneous degree 3 harmonic poly-
nomial P (u). Then, the required formulae for Lp,q(X), Lp,q(Y ), Γ(X,X),
Γ(X,Y ) and Γ(Y, Y ) are satisfied as soon as ΓE(Y, Y ) = 9‖u‖4, where ΓE
denotes the Euclidean operator Γ.

This problem has been studied by Cartan [14] where he proved that such
polynomials exist only for c = 0, 1, 2, 4, 8. Beyond the case c = 0 (the above
example), this corresponds respectively to real, complex, quaternionic and
octonionic structures. Such a function (for c = 1, 2, 4, 8) may be for example
represented as follows: consider a Hermitian 3 × 3 matrix with trace 0 and
respectively real, complex, quaternionic, or octonionic entries. On this space
of matrices, one may consider the Euclidean structure given by X = ‖M‖2 =
trace(M∗M), and, for this structure, the function Y : M 7→ 3

√
6 det(M),

satisfies ‖M‖2 = trace(M2), as one may check by direct computation. The
case p = 0 corresponds to diagonal matrices.

Remark 4.5. — The determinant of a 3×3 Hermitian matrix over H or O,
in fact, does not make much troubles. Indeed, only two terms of its expansion
depend on the order of multiplication:M12M23M31 andM13M32M21. So, we
can choose any order for one of them and take the conjugate value for the
other one.

4.10. The cuspidal cubic with one tangent

We may choose the boundary equation to be

(X3 − Y 2)(2Y − 3X + 1)) = 0

(one can write the second factor in the form 2(Y − 1) − 3(X − 1) ). Then,
up to scaling, there is a unique solution

G = 2
(

4(X + Y − 2X2) 6(Y − 2XY +X2)
6(Y − 2XY +X2) 9(X − Y )(X + 2Y )

)
.
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The boundary having degree 4, the density measure det(G)−1/2 belongs
to the admissible solutions. Therefore, the Laplace operator associated with
this (co)-metric is an admissible solution. The scalar curvature is 2, and
therefore we may realize this Laplace operator as an image of the spherical
Laplacian ∆S2 .

The general density measure is ρ = (X3 − Y 2)p−1(2Y − 3X + 1)q−1,
p > 1/6, q > 0, p+ q > 1/2. For this measure we have

Lp,q(X) = −8(6p+ 3q − 2)X + 4(6p− 1),
Lp,q(Y ) = −12(6p+ 3q − 1)Y + 6(6p+ 1)X.

In the case p = q = 1/2, which corresponds to the Laplace operator, one may
see that the operator is the image of a two-dimensional sphere, where X is
a degree 4 polynomial and Y has degree 6. Indeed, it is worth to represent
X and Y as

X = −1
3(t1t2 + t2t3 + t3t1) and Y = 1

2 t1t2t3 (4.13)

with t1 + t2 + t3 = 0, which reflects the fact that X3 − Y 2 (up to scaling) is
the discriminant of the polynomial T 3 − 3XT + 2Y .

A solution is given by ti = 3x2
i − 1, and one may check that all the re-

lations concerning L1/2, 1/2(X), L1/2, 1/2(Y ), Γ(X,X), Γ(X,Y ) and Γ(Y, Y )
are satisfied for this choice (on the 2-sphere x2

1 + x2
2 + x2

3 = 1).

From this representation, it is clear that X and Y are invariant under the
symmetries through the hyperplanes {xi = 0} and {xi = xj}. The fundamen-
tal domain for those reflexions is a triangle on the sphere, defined by the hy-
perplane coordinates, cut along its three medians, with angles π/2, π/3, π/4.
This corresponds to one double point, one cusp and one tangency point.

In the case when p = 1/2 and q is a positive half-integer, we may take a
unit sphere in Rn, n = 6q, whose elements we represent by triples (x1,x2,x3)
with xj ∈ R2q. and consider X and Y given by (4.13) but with tj = 3‖xj‖2−
1, j = 1, 2, 3. Then, for the spherical Laplace operator on Sn−1 one can
check that Γ(X,X), Γ(X,Y ) and Γ(Y, Y ), Lp,q(X) and Lp,q(Y ) satisfy the
required equations. It is certainly worth to mention that this model may
also be seen as the image of the triangle model (Section 4.4) on the triangle
{(s1, s2, s3) ∈ R3 | s1 + s2 + s3 = 1, si > 0} through the transformation
X = s1s2 + s2s3 + s3s1, Y = s1s2s3.

For p = 1 and a positive half-integer q, one may consider the following
model. For (x1,x2,x3) ∈ Rn, n = 6 + 6q, xj ∈ R2+2q, we consider the 3× 3
symmetric matrix Mij = (xi ·xj)− 1

3δij . Then the restriction of this matrix
to the unit sphere in Rn has trace 0, and one considers its characteristic
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polynomial P (λ) = det(λ Id−M). Write P (λ) = λ3− 1
3λX −

2
27Y . Then the

image of the operator ∆Sn−1 is Lp,q.

This is case c = 1 of a construction which works for c = dimR K where K is
R, C, orH. In each of these three cases we consider (x1,x2,x3) with xj ∈ Km,
m > 3, and define M , X, and Y as above but with x · y understood as the
Hermitiant product

∑m
j=1 xiȳi (see also Remark 4.5). Then the projection

of ∆Sn−1 , n = 3cm, yields Lp,q with 2p = c + 1 and 2q = c(m − 2) (recall
that c ∈ {1, 2, 4} and m > 3). It could be interesting to generalize this
construction for the octonions. A computation shows that literally the same
formulas do not lead to the desired result.

4.11. The swallow tail

This is a degree 4 algebraic curve, whose, up to affine transformations,
we may chose the equation to be

4X2 − 27X4 + 16Y − 128Y 2 − 144X2Y + 256Y 3 = 0.

This is the discriminant in T of the polynomial T 4−T 2 +XT +Y . Once
again, the metric is unique up to scaling, and we have

G =
(

2− 8Y − 9X2 −X(12Y + 1)
−X(12Y + 1) 3

2X
2 − 16Y 2 + 4Y

)
.

The boundary having degree 4, the measure density det(G)−1/2 is an admis-
sible solution, and for this measure, the corresponding Laplace operator has
constant scalar curvature 2, and therefore the operator may be represented
on the unit sphere S2.

The general measure density is ρ = det(G)p−1, p > 1/6. For it we have
Lp(X) = −6(6p− 1)X, Lp(Y ) = −4(12p− 1)Y + 4p− 1.

In the Laplace–Beltrami case
L1/2(X) = −12X, L1/2Y = 1− 20Y,

which corresponds for X to be an eigenvector of degree 3 and Y − 1 to be
an eigenvector of degree 4.
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Taking in account that the boundary is a discriminant, we should look
for

−X = t1t2t3 + t2t3t4 + t3t4t1 + t4t1t2, Y = t1t2t3t4,

on the variety given by

t1 + t2 + t3 + t4 = 0,
∑
i<j

titj = −1.

Since
∑
t2i =

(∑
ti
)2 − 2

∑
titj , this variety is the intersection of a sphere

S3 of radius
√

2 with the hyperplane {
∑
ti = 0}, which is again a sphere

with radius
√

2 which we denote by Σ.

To compute the image of ∆Σ through (X,Y ), we introduce the following
orthogonal coordinates on the plane

∑
ti = 0:

t1 = (x1 + x2 + x3)/
√

2 , t3 = (−x1 + x2 − x3)/
√

2 ,

t2 = (x1 − x2 − x3)/
√

2 , t4 = (−x1 − x2 + x3)/
√

2

where the scaling factor
√

2 is chosen so that the unit 2-sphere S2 in R3 with
coordinates x = (x1, x2, x3) is mapped onto Σ. In these coordinates we have
X = 2

√
2x1x2x3 and Y = 1

2 (x4
1 + x4

2 + x4
3) − 1

4‖x‖
4, thus the restriction of

Y to S2 is 1
2 (x4

1 + x4
2 + x4

3)− 1
4 . Then the image of ∆S2 through (X,Y ) can

be easily computed using (4.5) and the result will be L1/2.

For other values of p, the discriminant form of the boundary suggests that
one looks at Hermitian 4× 4 matrices M with vanishing trace, restricted on
the sphere trace(M∗M) = 2, embedded with the induced spherical structure,
in the real and complex cases, and look at the induced operator on the
characteristic polynomial(5) P (λ) = λ4 − λ2 + λX + Y . Then the image of
∆S2+6c (c = 1 for R and c = 2 for C) through (X,Y ) is Lp with 2p = c+ 1.
The quaternionic case is left to the reader as an exercise ([7] can be used as
a hint).

Observe also that the mapping (X,Y ) 7→ (X2, Y ) transforms all these
models into some models for the cuspidal cubic with tangent (indeed, the
spherical triangle with angles (π2 ,

π
3 ,

π
3 ) folded along its axis of symmetry

yields a triangle with the angles (π2 ,
π
3 ,

π
4 )).

(5) The coefficient of λn−2 in det(λI −M) is equal to 1
2 (trace M)2 − 1

2 trace(M2) for
any Hermitian n× n matrix M .
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4.12. The deltoid

In this case, up to affine transformation, we may choose the boundary
equation to be

(X2 + Y 2)2 + 18(X2 + Y 2)− 8X3 + 24XY 2 − 27 = 0.

There is a unique metric g up to scaling, which is

G =
(

9 + 6X + Y 2 − 3X2 −2Y (2X + 3)
−2Y (2X + 3) 9− 6X +X2 − 3Y 2

)
.

For the density measure ρ = det(G)p−1, p > 1/6, we have

Lp(X) = −2(6p− 1)X, Lp(Y ) = −2(6p− 1)Y.

The operator looks simpler in complex variables: setting Z = X + iY , one
gets

Γ(Z,Z) = 12Z̄ − 4Z2, Γ(Z, Z̄) = 18− 2ZZ̄, Γ(Z̄, Z̄) = 12Z − 4Z̄2,

and
Lp(Z) = −2(6p− 1)Z, Lp(Z̄) = −2(6p− 1)Z̄.

Under this form, it is easier to check the eigenvalues for Lp, since the action
of the operator on the highest degree term of a polynomial is diagonal, and
we see that, for any degree p, the highest degree part of any eigenvector is
a monomial, say ZqZ̄r, and the same use of complex variables gives that
the eigenvalue corresponding to a polynomial whose highest degree term is
ZpZ̄q is −3(q + r)(q + r + 4p+ 2)− (q − r)2.

Once again, as it is the case whenever the boundary is degree 4, the
density measure det(G)−1/2 is an admissible solution, and this corresponds
to a Laplace operator for a metric which has zero scalar curvature. We may
represent this operator from a Euclidean Laplacian in dimension 2. For this
choice of the measure, one has L1/2(Z) = −4Z, and if we identify R2 with
the complex plane C, one may represent this using

Z = e2i(1·z) + e2i(ω·z) + e2i(ω̄·z),
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where z = x + iy ∈ C, 1, ω, ω̄ are the three third roots of unity (solution
of z3 = 1) and z1 · z2 is the Euclidean scalar product Re(z1z̄2). One may
directly check the L1/2 is the image of ∆R2 through Z. (The interior of the
deltoid is indeed the image of R2 through Z.) Moreover, the function Z is
invariant under the symmetries with respect to the lines

D1 = {Im(z) = 0}, D2 = {teiπ/3, t ∈ R}, D3 = {aeiπ/6 + te2iπ/3},

with a = π/
√

3. Those three lines determine a equilateral triangle (ABC)
in the plane, and any function which has those symmetries is also invariant
under all the symmetries with respect to the lines of the triangular lattice
generated by A,B,C (that is all the lines parallel to D1, D2, D3 which are
distant from ka, k ∈ N). This group of symmetries is the affine Weyl group
associated with the root system A2.

The deltoid is then the image of the boundary of the triangle (ABC)
through Z, and it is not hard to see that the restriction of Z to (ABC) is
injective. Then, the functions of the form F (Z) are nothing else than the
functions which are invariant under the symmetries of the triangular lattice,
and L1/2 is just ∆ acting on functions invariant under the affine Weyl group
associated with A2.

As usual, this model extends to rank 2 symmetric spaces with restricted
root system A2. For a study of this case, see also Koornwinder [45, 46].
Indeed, it is perhaps worth to notice that the boundary equation is the dis-
criminant of the polynomial T 3−ZT 2 + Z̄T +1, putting forward the interest
of representing Z as λ1 + λ2 + λ3 where |λi| = 1 and λ1λ2λ3 = 1. In partic-
ular, one may consider the Casimir operator on SU(3). Indeed, if Z denotes
the trace of a SU(3) matrix, due to the fact that eigenvalues (λ1, λ2, λ3) sat-
isfy |λi| = 1, λ1λ2λ3 = 1, one sees that the characteristic polynomial P (λ)
writes P (λ) = −λ3 + Zλ2 − λZ̄ + 1. Then, using formulae (4.7) and (4.8),
one sees that

∆SU(3)Z = −16
3 Z, ∆SU(3)Z̄ = −16

3 Z̄,

and

ΓSU(3)(Z,Z) = 4
3(3Z̄ − Z2), ΓSU(3)(Z̄, Z̄) = 4

3(3Z − Z̄2),

ΓSU(3)(Z, Z̄) = 2
3(ZZ̄ − 9),

which shows that L3/2 is the image of 3∆SU(3) through Z.

It is worth to observe that this operator preserves the functions which are
symmetric under the conjugacy Z 7→ Z̄. Indeed, choosing as new variables
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X = Z + Z̄ and Y = ZZ̄, one gets for the cometric Γ in those variables(
1 +X −X2 + Y 1

2X +X2 − 2Y − 3
2XY1

2X +X2 − 2Y − 3
2XY Y − 3XY − 3Y 2 +X3

)
with

LX = −λX, L(Y ) = 1− (2λ+ 1)Y.

The determinant of this matrix is, up to some constant, (4X−Y 2)(4X3−
3Y 2 − 12XY − 6Y + 1), which corresponds to a domain delimited by a
parabola and a cuspidal cubic which have a double tangent at their intersec-
tion points (and is a degree 5 curve). This domain is the image of the deltoid
domain through the map (X,Y ). We may now describe a two parameters
family of orthogonal polynomials associated with this domain, but with a
weighted degree deg(XpY q) = 2p + q. For the associated Laplace operator,
this corresponds to the 2 dimensional Euclidean Laplacian associated with
the symmetries of the root system G2.

5. The full R2 case

In this Section, we consider the case where Ω = R2, and concentrate on
the SDOP problem. From the one dimensional models and the tensorization
procedure, we already know that Gaussian measures provide such orthogo-
nal polynomials, with the two-dimensional Ornstein–Uhlenbeck operator as
associated diffusion operator. We shall prove in this section the following

Theorem 5.1. — If (R2, G, ρdx) is a solution of the SDOP problem,
then one has ρ = 1

2π exp(− 1
2 (X2+Y 2)) up to an affine change of coordinates,

and

G =
(
a+ µX2 −µXY
−µXY c+ µY 2

)
,

where a and c are positive real numbers. The corresponding operator L is a
sum of the general Ornstein–Uhlenbeck operator

La,c = a(∂2
X −X∂X) + c(∂2

Y − Y ∂Y )

and a squared rotation µ(Y ∂X −X∂Y )2.

In this situation, we do not have boundary equation to restrict the analy-
sis of the (co-)metric (Gij). We therefore look for 3 polynomialsG11, G12, G22

of degree at most 2 in the variables (X,Y ) with ∆ = G11G22 − (G12)2 > 0
on R2 and for a function h such that for the measure dρ = ehdXdY , the
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polynomials of (X,Y ) are dense in L2(ρ,R2). From (2.16), there exists LX
and LY affine forms in R2 such that

∂Xh = G22LX −G12LY
∆ , ∂Y h = −G

12LX +G11LY
∆ (5.1)

Let us first show that ∆ has degree at most 2. If ∆ is of degree 4, and
since ∆ > 0 on R2, there is at least a cone in which, for some constant c,
∆ > c(X2 +Y 2)2 at infinity and dρ cannot integrate any polynomial. Hence
∆ is of degree at most 3 and since it is positive on R2, ∆ is of an even degree,
thus of degree 2 or zero.

5.1. Case where ∆ is degree 2

Let us first consider the case where ∆ is complex irreducible. From the
form of the measure (Proposition 2.15), we know that

h = log ρ = −P − α log ∆, (5.2)

where P is a polynomial with degree at most 2. The terms of highest degrees
in P is a positive definite quadratic form. Indeed, otherwise the measure ρdx
would not integrate the polynomials. Thus degP = 2.

Let us show that α = 0. Indeed, suppose that α 6= 0. Then by Propo-
sition 2.17 (G11, G12, G22,∆) is a solution of the R-AlgDOP problem (see
Definition 3.2). Since deg ∆ = 2 and ∆ 6= 0 on R2, up to affine linear
transformation, we have either ∆ = X2 + Y 2 + 1 or ∆ = X2 + 1. Then
Proposition 3.19 and Lemma 3.22 imply that

G =
(

1 +X2 XY
XY 1 + Y 2

)
or G =

(
1 +X2 0

0 1

)
(we do the change of coordinates X = ix, Y = iy in the corresponding
solution in Proposition 3.19 and Lemma 3.22). Thus condition (2.13) takes
the form

(1 +X2) ∂XP +XY ∂Y P = LX , XY ∂XP + (1 + Y 2) ∂Y P = LY ,

or, respectively,

(1 +X2) ∂XP = LX , ∂Y P = LY ,

with degLX 6 1 and degLY 6 1. One easily checks that in both cases
this is possible only when P is a constant which contradicts the condition
degP = 2. Thus α = 0.
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Recall that the highest order homogeneous component of P is a positive
definite quadratic form. Hence by an affine change of coordinates we may
reduce to the case P = (X2 + Y 2)/2. Then condition (2.13) reads

G11X +G12Y = LX , G21X +G22Y = LY ,

with degLX 6 1 and degLY 6 1. This is a linear system on the coefficients
of Gij . By solving it, we obtain, up to a scalar factor,

G =
(
a+ Y 2 b−XY
b−XY c+X2

)
,

with some constant positive definite matrix
(
a b
b c

)
and the associated operator

is the sum of the general Ornstein–Uhlenbeck operator
La,b,c = a∂2

X + 2b ∂X∂Y + c∂2
Y − (aX + bY )∂X − (bX + cY )∂Y

and a plane squared rotation (Y ∂X −X∂Y )2.

With a further rotation, one may reduce to the case where b = 0.

5.2. ∆ is constant

We can boil down to ∆ = 1. Our aim is to prove in this section thatGij are
constant – in this case (5.1) implies that P is of degree 2 which corresponds
to Ornstein–Uhlenbeck operators. Suppose that G is non-constant. Then one
of G11, G22 is non-constant. Let it be G11.

Since ∆ = 1, we have G11G22 = (G12 − i)(G12 + i). If G11 is irreducible,
then G11 = λ(G12 ± i), which is impossible since G11 is real. Therefore,
G11 = l1l2 with deg l1 = deg l2 = 1. Since G11 > 0 on R2, the only solution
is G11 = (la + α)(la + ᾱ) where la is a nonzero real linear form and α is
a non-real complex number. Similarly, G22 = (lc + γ)(lc + γ̄), where lc is a
real linear form, and if lc is nonzero, then γ is a non-real complex number.
Hence, changing if necessary the sign of lc + γ, we have

G12 + i = (la + α)(lc + γ), G12 − i = (la + ᾱ)(lc + γ̄).

We know that (la + α)(lc + γ) ± i is a real polynomial. Hence all its
homogeneous forms are real, in particular, its linear form is real, that is,
αlc + γla = ᾱlc + γ̄la whence

(α− ᾱ)lc = (γ̄ − γ)la.
Since α is non-real, we obtain lc = νla for some real number ν. From now
on we denote la just by l. So, we have(

G11 G12

G12 G22

)
=
(
l2 + (α+ ᾱ)l + αᾱ νl2 + c l + b

νl2 + c l + b ν2l2 + ν(γ + γ̄)l + γγ̄

)
,
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where l is some real non zero linear form, ν, c = (αν + γ), b = αγ − i are
real numbers whereas α and γ some non-real complex numbers.

Assume first that ν 6= 0. Then one may reduce to the case c = 0 through
a translation, and eventually to the case that ν = αᾱ = γγ̄ = 1, b = 0,
through a linear change of coordinates. In this case, the determinant is easy
to compute and the only solution, up to a change of Y into −Y and an
exchange of X and Y , is(

G11 G12

G12 G22

)
=
(
l2 +
√

2 l + 1 l2

l2 l2 −
√

2 l + 1

)
.

Let us show that then the measure ρdx cannot be integrable.

We know from Proposition 2.15 that ρ = exp(P )dx, where P is some
polynomial of degree at most 4. By (2.16) we have(

G11 G12

G12 G22

)(
∂XP
∂Y P

)
=
(
lX + cX
lY + cY

)
,

where lX and lY are linear forms, and cX and cY are constants.

From this, we get(
∂XP
∂Y P

)
=
(
G22 −G12

−G12 G11

)(
lX + cX
lY + cY

)
.

Writing P = P4 +P3 +P2 +P1 +P0 where Pk is homogeneous of degree k,
one sees from this equation that (∂X + ∂Y )P4 = 0. Since the measure has to
be integrable, this also requires that (∂X +∂Y )P3 = 0. But, looking precisely
at (∂X + ∂Y )P3, we see that it is equal to −

√
2 l(lX − lY ), thus lX − lY = 0.

From this, one sees that ∂XP4 = ∂Y P4 = 0, and hence P4 = 0. This implies
that P3 = 0 too (since once again the measure has to be finite). We have

∂XP3 = (cX − cY )l2 −
√

2 l lX , −∂Y P3 = (cX − cY )l2 −
√

2 l lY ,

thus P3 = 0 implies lX = lY =
√

2
2 (cX−cY )l. Since ∂XP2 = lX−

√
2 cX l and

∂Y P2 = lY +
√

2 cY l, we obtain ∂XP2 = −∂Y P = −
√

2
2 (cX + CY )l whence

(∂X + ∂Y )P2 = 0. Therefore P2 is a degenerate quadratic form, and exp(P )
is non integrable on R2.

In the case where ν = 0 with the same argument, we boil down to(
G11 G12

G12 G22

)
=
(
l2 + 1 l
l 1

)
.

The same reasoning shows that the measure may not be integrable on R2.
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6. Non compact cases with boundaries

(1) (2) (3) (4) (5) (6) (7)

In this section, we again consider the SDOP problem, which is perhaps
not enough to describe all the possible solutions of the general DOP problem
(although we have no example of solution of the latter beyond the cases
described here).

We describe all the possible models, but we do not give any geometric
interpretation, and do not detail for which values of the parameters appear-
ing in the measure the polynomials are dense in L2(µ). However, in all the
cases described below, it is indeed the case for at least some values of these
parameters. Moreover, one could give a geometric construction for many
models as images of Ornstein–Uhlenbeck operators in some Euclidean space,
associated with Gaussian measures.

Following the results of Section 2, we reduce to the cases where every fac-
tor ∆p appearing in the boundary satisfies the fundamental equations (2.20).
We also need, for the measure dµ = ehdx, that L2(µ) contains every poly-
nomial. Hence in any case, we have to look for the existence of such a mea-
sure, which will turn out to be the main restriction. We indeed require more,
namely that polynomials are dense in L2(µ). We know from Proposition 2.15
the general form of the measure. In addition to the boundary terms, there
appear in h a polynomial term P which will be crucial when integrating
the polynomials on the domain (see previous section). This constraint will
help us to restrict the number of cases for the metric (G). Moreover, if the
determinant ∆ of (G) has no multiple factors and the domain contains an
open cone, the degree of ∆ is at most 3. When there are multiple factors,
the same kind of analysis can be undergone.

The algebraic analysis undergone in Section 3 still holds, and produces
the following list of possible boundaries.

(1) ∂Ω = {Y 2 −X3 = 0}. In this case, the general metric is given by

G = α

(
4X2 6XY
6XY 9Y 2

)
+ β

(
4X 6Y
6Y 9X2

)
+ γ

(
4Y 6X2

6X2 9XY

)
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Here, the determinant ∆ is 36(X3 − Y 2)
(
(αβ − γ2)X −αγY + β2).

By Corollary 2.25 we have deg ∆ 6 3, hence α = γ = 0, and by
homogeneity we may restrict to β = 1. Since ∆ > 0 in the interior
of the domain Ω, one sees that the domain must be X3 > Y 2. This
leads to measures on the domain X3 > Y 2 of the form

dµa,b = Ca,b(X3 − Y 2)a−1 exp(−bX) dXdY, a > 1/6, b > 0.

(2) ∂Ω = {Y − X2 = 0}. Then ∆ = (Y − X2)∆1 where, by Corol-
lary 2.25, either ∆1 is proportional to (Y −X2), or deg ∆1 6 1.
(2i) ∆ = c(Y − X2)2. In this case, the general metric is given in

Proposition 3.21(1). We may show that there is no finite mea-
sure solution for the problem.

(2ii) deg ∆ = 3 (cf. Proposition 3.21(2)). The metric for which there
exist a measure solution for the problem may be written as

G =
(

1 + α(Y −X2) 2X
2X 4Y

)
, α > 0. (6.1)

We have detG = 4(Y − X2)(1 + αY ), this is why we impose
the condition α > 0. By a change of coordinates X 7→ cX, Y 7→
c2Y , we may reduce to α = 1. The existence of a finite measure
solution imposes Ω = {Y > X2} and measures to be

(Y −X2)a−1 exp
(
− bY

)
dXdY, a, b > 0.

(2iii) ∆ has degree 2. The only metric for which there exists a
measure solution is (6.1) with α = 0. This is a limit case
of the previous one. Notice that any measure of the form
(Y −X2)a−1 exp

(
− bY + cY

)
dXdY with a, b > 0 is admissible

in this case. However we may reduce to c = 0 by (X,Y ) 7→
(X + q, Y + 2qX + q2) which is an isometry of (Ω, g).

(3) Ω is bounded by {Y − X2 = 0} and a line. Up to an affine linear
transformation, it is enough to consider the following three cases for
the line.
(3i) ∂Ω ⊂ {Y (Y − X2) = 0}. Then the metric is (3.16) with β =

γ = λ = 0. If ∆ has a multiple factor, then r = 0. One can
check that a finite admissible measure does not exist.
If there are no multiple factors of ∆, then the integrability
condition implies deg ∆ = 3 (see Corollary 2.25). This occurs
only for α = µ = 0, hence

G = r

(
X 2Y
2Y 4XY

)
.
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This matrix is positive definite in Ω = {rX > 0 and 0 < Y <
X2}. The admissible measures for r > 0 are

C Y a−1(X2 − Y )b−1 exp(−cX), a, b, c > 0, a+ b > 1/2.

(3ii) ∂Ω ⊂ {X(Y − X2) = 0}. The metric is (3.16) with λ = 0,
α = −µ, β = −2r. We have always deg ∆ = 4, and a multiple
factor X2 appears only if α = µ = 0. One can check that a
finite admissible measure does not exist.

(3iii) ∂Ω ⊂ {Y (Y − X2 + ε) = 0}, ε = ±1. In the case ε = 1, the
metric is G′α computed in Section 4.5. We have deg ∆ = 3 only
for α = 0, and a multiple factor Y 2 appears only for α = −1.
One can check that a finite admissible measure does not exist
when Ω is unbounded. The case ε = −1 is similar.

(4) ∂Ω = {X = 0}. In this case, G11 and G12 are multiples of X. The
integrability condition implies that degQ > 2 in (2.15). Then (2.14)
implies the sum of the degrees of distinct irreducible factors of ∆ is
at most 2. SinceX divides ∆, the other factor (if exists) is linear, and
the non-vanishing of ∆ on Ω implies that it is a function of X. Thus
degY ∆ = 0. Then (2.14) implies deg ∆ = degX ∆ 6 3. Let us write
G11 = (a1 + a0Y )X, G12 = (b1 + b0Y )X, G22 = c2 + c1Y + c0Y

2

where ak, bk, ck are polynomials in X of degree 6 k. Since G is
positive definite on Ω, we have a1 + a0Y > 0 when x > 0, whence
a0 = 0 and a1 6= 0. Further, degY ∆ = 0 implies Xa1c0 −X2b20 = 0
(the coefficient of Y 2).
(4i) b0 6= 0. Then a1c0 = Xb20, hence up to scaling, we have a1 = X

and c0 = b20. By equating the coefficient of Y to zero, we deduce
that G22 = c̃2 + (b1 + b0Y )2 where c̃2 is a polynomial in X of
degree 6 2. The change (X,Y ) 7→ (X,Y + pX + q) transforms
b1 into b1−qb0 +p(1−b0)X, thus we may reduce to G11 = X2,
G12 = Xlb, G22 = c̃2l

2
b where degY c̃2 = 0, and lb = Y or

lb = βX + Y . Then ∆ = X2c̃2(X). Since deg ∆ 6 3, we have
deg c̃2 6 1. The case lb = βY contradicts Corollary 2.19, thus
lb = βX+Y with β 6= 0. One checks that there is no integrable
measure solution.

(4ii) b0 = 0. Then, since a1 6= 0 and degY ∆ = 0, we have c0 =
c1 = 0, thus G depends on X only. Note that the change of
coordinates (X,Y ) 7→ (X,Y + pX) transforms b1 into b1 + pa1.
(a) deg a1 = 1. Then, up to change of coordinates and rescal-

ing, we may assume a1 = X + α0 and b1 = const, hence
deg ∆ 6 3 implies deg c2 6 1 but then Corollary 2.19
implies deg ∆ 6 2, i.e., c2 = const. One checks that there
is no integrable measure solution.
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(b) deg a1 = 0. Then, by the aforementioned change of coor-
dinates and rescaling, we may achieve that a1 = 1 and
b1 = β1X. Then the condition deg ∆ 6 3 implies b1 = 0.
One easily checks that the only measure solution is the
product of Laguerre and Hermite polynomials.

(5) ∂Ω ⊂ {XY = 0}. The boundary equations imply G11 and G12 are
multiples of X while G12 and G22 are multiples of Y . Hence the
metric is

G =
(

Xla −βXY
−βXY Y lc

)
, la, lc ∈ P2

1 ,

thus ∆ = XY (lalc−β2XY ). By Corollary 2.19 we have degX ∆ 6 2
and degY ∆ 6 2, whence degX lalc 6 1 and degY lalc 6 1. The
integrability condition combined with (2.14) implies that the sum
of the degrees of the irreducible factors of ∆ is at most 3. Therefore,
since lalc − βXY cannot be a square of a polynomial of degree 1,
it is either affine linear or divisible by X or by Y . The ellipticity
also implies that la and lc cannot be identically zero. Hence, up to
scaling and exchange of X and Y , one of the following cases occurs:
(5i) la = 1, β = 0. A computation shows that a measure solution

exists only when lc = const. This corresponds to the product
of Laguerre polynomials.

(5ii) la = α+ α1X, lc = γ + γ1Y , and:
(a) α1γ1 − β2 = 0. If β = 0, then α1γ1 = 0, thus we fall into

Case (5i). So, we may assume that α1 = 1 and γ1 = β2.
Then a long but routine case-by-case consideration shows
that there is no measure solution.

(b) la = X: no measure solution.
(5iii) la = α+ α1Y , lc = γ + γ1X, and:

(a) α1γ1 − β2 = 0. As in (5ii a), we may assume (α1, γ1) =
(1, β2), thus

G =
(
X(α+ Y ) −βXY
−βXY (γ + β2X)Y

)
, α, γ > 0, (α, γ) 6= (0, 0).

A measure solution exists when β > 0, Ω = (R+)2. It is

CXp−1Y q−1 exp(−λβX − λY ), C, p, q, λ > 0.

The curvature is non-constant.
(b) la = Y : no measure solution.

(6) ∂Ω = {X2 = 1}. Lemma 3.22 combined with the condition that
G11 > 0 on Ω (since L is elliptic) implies that, up to scaling and
change of coordinates, we may assume G11 = 1−X2 and G12 = 0.
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Then (2.13) reads G22∂Y log ρ ∈ P2
1 . Hence the integrability condi-

tion implies that degY G22 = 0. We also see from (2.14) that the
sum of the degrees of the irreducible factors of ∆ is 6 2, hence
G22 = (X − 1)r(X + 1)s with r + s 6 2. One easily checks that a
measure solution exists only when G22 is constant, and it is a prod-
uct of Hermite and Jacobi polynomials. Notice however that the
coordinate change (X,Y ) 7→ (X,Y +βX) transforms the (co)metric
into

(1−X2)
(

1 β
β β2

)
+
(

0 0
0 γ

)
.

(7) ∂Ω ⊂ {XY (1 −X) = 0}. The metric solution is (up to homothety
and affine change)

G =
(
X(1−X) 0

0 Y (αX + βY + γ)

)
.

Except in the case α = 0, the curvature is non constant, and the
additional factor in ∆: αX + βY + γ does not satisfy the boundary
equation. The only case when there is a measure solution on the
domain is α = β = 0, which is a product of Jacobi and Laguerre
polynomials.

(8) ∂Ω ⊂ {XY − 1}. We see from Proposition 3.18 that deg ∆ < 4 only
when (G11, G12, G22) = (X2, XY − 2, Y 2). One easily checks that
there is no measure solution.

7. Two fold covers, surfaces of revolution, etc.

7.1. Simple double covers

For many examples in dimension 2, with domain Ω described by the
equation P (X,Y ) > 0, one may look at models in dimension 3 given by the
equation Z2 6 P (X,Y ). It turns out that, in every case where no cusp or
double tangent appears in ∂Ω, this provides a new domain in dimension 3
which is again a solution of the problem. This is therefore the case for the
circle, the triangle, the double parabola and the double point cubic.

Those new three dimensional models present the same pathology than
the circle and triangle models in dimension 2: the metric is not in general
unique up to scaling, the curvature is not constant (except for specific values
of the parameters). In fact, in those models, the boundary of the domain has
degree at most 4, whereas the maximal degree of the boundary in general
is 6. The Laplace operator associated with the metric does not in general
belong to the admissible operators.
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For example, if one starts with the nodal cubic described in Section 4.8,
one gets for the metric, up to scaling,

G =

 4X(1−X) 2Y (2− 3X) 2Z(2− 3X)
2Y (2− 3X) 4X−3X2−9Y 2−(9+a)Z2 aY Z
2Z(2− 3X) aY Z 4X−3X2−(9+a)Y 2−9Z2

.
For the double cover of the triangle, however, one gets a unique metric up
to scaling,

G =

 4X(1−X) −4XY 2Z(1− 3X)
−4XY 4Y (1− Y ) 2Z(1− 3Y )

2Z(1− 3X) 2Z(1− 3Y ) X + Y −X2 −XY − Y 2 − 9Z2

 ,

which has no constant curvature. For the double cover of the square [−1, 1]×
[−1, 1] we get

G =

a(1−X2) 0 −aXZ
0 b(1− Y 2) −bY Z

−aXZ −bY Z b(X2 − Z2 − 1) + a(Y 2 − Z2 − 1)

 .

We did not try to push the analysis of these models any further, but
this shows that one may construct in higher dimension some models which
are not direct extensions of the 2 dimensional models, and that the higher
dimension analysis of the problem seems much more complex.

7.2. Weighted double covers

One can observe that in all bounded solutions in dimension 2 except four
of them, the domain Ω is of the form y2−xr(1−x)s = 0, or (ay2−xr)(by2−
(1− x)s) = 0. We may consider the domains in Rd+1 of the form∏

k

(
akz

2 −
∏
l

Fk,l(x1, . . . , xd)pk,l

)
= 0. (7.1)

An easy consequence of Theorem 2.21 is that if such a domain admits a
solution to the SDOP problem, then its intersection with the hyperplane
z = 0 admits at least a solution of the algebraic counterpart of the DOP
problem (the R-AlgDOP problem according to the terminology of Section 3).

The following is a complete list of all bounded domains in R3 of the
form (7.1) which admit a solution of the DOP problem. We do not include the
direct products of plane domains by a segment (in these cases all admissible
metrics are also direct products). In the angular brackets we indicate the
dimension of the set G of admissible metrics (by Theorem 2.21 it is always
an open cone in a linear subspace of the space of metrics); “S.R.” means
“surface of revolution”.
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(1a) 〈2〉: xy(1− x)(1− y)− z2;
(1b) 〈3〉: (xy − z2)(1− x)(1− y) (same as (3j));
(1c) 〈2〉: (xy2 − z2)(1− x)(1− y);
(1d) 〈2〉: (xy(1− x)− z2)(1− y);
(1e) 〈4〉: (xy − z2)

(
(1− x)(1− y)− z2) (S.R.);

(2a) 〈12〉: 1− x2 − y2 − z2 (S.R.),
(2b) 〈2〉: (1− x2 − y2)2 − z2 (S.R., same as (4j) with a = c and b = d);

(3a) 〈1〉: xy(1− x− y)− z2;
(3b) 〈4〉: xy(1− x− y − z2) (same as (4f));
(3c) 〈6〉: xy((1− x− y)2 − z2) (tetrahedron);
(3d) 〈2〉: xy((1− x− y)3 − z2) (same as (8c));
(3e) 〈7〉: (xy − z2)(1− x− y) (S.R.);
(3f) 〈1〉: (xy2 − z2)(1− x− y);
(3g) 〈1〉: (x−z2)(y−az2)(1−x−y), a 6=0, a>−1 (a=1⇒ same as (4d));
(3h) 〈1〉: x(y2 − 4z2)(1− x− y + z2);
(3i) 〈3〉: (xy − z2)(1− x− y + z2) (same as (6d));
(3j) 〈3〉: (xy − z2)((1− x− y)2 − 4z2) (same as (1b));
(3k) 〈1〉: (x− az2)(y − bz2)(1− x− y − z2), ab 6= 0, a+ b > −1;

(4a) 〈1〉: (x− y2)(1− x− ay2)− z2, a 6= 0, a > −1 (a = 1 ⇒ dimG = 2);
(4b) 〈2〉: x(1− x− y2)− z2;
(4c) 〈5〉: x(1− x− y2 − z2) (S.R.);
(4d) 〈1〉: x((1− x− y2)2 − z2) (same as (3g) with a = 1);
(4e) 〈3〉: (x− z2)(1− x− y2);
(4f) 〈4〉: (x2 − z2)(1− x− y2) (same as (3b));
(4g) 〈2〉: (x3 − z2)(1− x− y2) (same as (8b));
(4h) 〈2〉: (x− az2)(1− x− y2 − z2), a 6= 0, a > −1;
(4i) 〈3〉: (x2 − 4z2)(1− x− y2 + z2) (same as (6c));
(4j) 〈1〉: (x−ay2− cz2)(1−x− by2−dz2), abcd 6= 0, a+ b > 0, c+d > 0

(if a = b and c = d, then dimG = 2, same as (2b), and S.R.);

(5a) 〈2〉: y(x2 − y)(1− x− z2);
(5b) 〈2〉: y(x2 − y)((1− x)2 − z2);
(5c) 〈1〉: y(x2 − y)((1− x)3 − z2);
(5d) 〈2〉: (x2 − y)(1− x)(y − z2);
(5e) 〈2〉: (x2 − y)(1− x)(y2 − z2);
(5f) 〈2〉: y(1− x)(x2 − y − z2);
(5g) 〈2〉: (x2 − y)(y(1− x)− z2);
(5h) 〈1〉: y

(
(x2 − y)(1− x)− z2);

(5i) 〈1〉: y
(
(x2 − y)(1− x)2 − z2);

(5j) 〈2〉: y((1− x)2 − z2)(x2 − y − z2);
(5k) 〈1〉: (x2 − y − z2)((x− 1)2 − z2)(y + z2);
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(6a) 〈2〉: (1 + y − 2x)(1 + y + 2x− z2)(x2 − y);
(6b) 〈2〉: (1 + y − 2x)((1 + y + 2x)2 − z2)(x2 − y);
(6c) 〈3〉: (1 + y − 2x)(1 + y + 2x)(x2 − y − z2) (same as (4i));
(6d) 〈3〉:

(
(1 + y − 2x)(1 + y + 2x)− z2)(x2 − y) (same as (3i));

(6e) 〈1〉: (1 + y − 2x)(1 + y + 2x+ z2)(x2 − y − z2);
(6f) 〈2〉:

(
(1 + y − 2x)(1 + y + 2x)− 4z2)(x2 − y + z2) (S.R.);

(7a) 〈2〉: x2 − x3 − y2 − z2 (S.R.);

(8a) 〈2〉: (x3 − y2 − z2)(1− x) (S.R.);
(8b) 〈2〉: (x3 − y2)(1− x− z2) (same as (4g));
(8c) 〈2〉: (x3 − y2)((1− x)2 − z2) (same as (3d));
(8d) 〈1〉: (x3 − y2)((1− x)3 − z2);

(9a) 〈1〉: (x3 − y2 − z2)(2y − 3x+ 1);
(9b) 〈2〉: (x3 − y2)(2y − 3x+ 1− z2);
(9c) 〈2〉: (x3 − y2)((2y − 3x+ 1)2 − z2);

7.3. Surfaces of revolution

Each bounded two-dimensional solution admitting an axial symmetry
(thus all of them except the cubic with a tangent and the parabola with
the axis and a tangent) provides a three-dimensional solution obtained by
rotation around the axis of symmetry. This observation has the following
higher-dimensional generalization.

Proposition 7.1. — Let Ω be a domain in Rn which is symmetric with
respect to the coordinate hyperplanes xi = 0, i = 1, . . . ,m, and let Ω̃ ∈
Rd1 × · · · × Rdm × Rn−m be given by

Ω̃ =
{

(x1, . . . ,xm,y)
∣∣ (‖x1‖, . . . , ‖xm‖,y

)
∈ Ω

}
.

Then Ω̃ admits a solution of the SDOP problem if and only if so does Ω.

Proof. — The “only if” statement easily follows from Theorem 2.21. Let
us prove the “if” statement. By induction, it is enough to do it for m = 1.
Let (Ω, g, ρ) be a solution to the SDOP problem. We may assume that g
is invariant under the symmetry because otherwise we replace g by its sum
with its image under the symmetry (here the positive definiteness of g is
crusial). Then gij is even (resp. odd) with respect to x1 if 1 occurs even
(resp. odd) number of times in the pair (i, j), i. e., gij = hij(x2

1, x2, . . . , xd)
when i = j = 1 or 2 6 i 6 j, and g1j = x1h

1j(x2, . . . , xd) for j > 2. To
simplify the notation, we assume that n = 3 and d1 = 2, and we denote the
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coordinates in R3 and in R2×R2 by (x, y1, y2) and (x1, x2, y1, y2) respectively.
The general case is similar. So, we have

g(x, y1, y2) =

h11(x2, y1, y2) xh12(y1, y2) xh13(y1, y2)
∗ h22(x2, y1, y2) h23(x2, y1, y2)
∗ ∗ h33(x2, y1, y2)

 .

Let us set

g̃(x1, x2, y1, y2) =


h11 0 x1h

12 x1h
13

0 h11 x2h
12 x2h

13

∗ ∗ h22 h23

∗ ∗ ∗ h33

 .

where the x2 in the arguments of hij is replaced by x2
1 + x2

2. Since ∂Ω is
symmetric, its reduced equation is of the form F (x2, y1, y2) = 0. By (2.20)
we have

x
(

2h11∂1F + h12∂2F + h13∂3F
)

= S1F

2x2hi1∂1F + hi2∂2F + hi3∂3F = SiF, i = 2, 3,

where the arguments of F and ∂jF are (x2, y1, y2). The domain Ω is con-
nected and symmetric with respect to the plane x = 0. Hence Ω ∩ {x = 0}
is non-empty. Therefore x cannot divide F because F is a factor of det(g)
and g is non-degenerate on Ω. It follows that S1 = cx for some constant c,
hence we can cancel the both sides of the first equation by x. Then the result
follows from Theorem 2.21 because the left hand sides of (2.20) for g̃ are the
same as for g except that the first equation is replaced by two equations with
x1 or x2 standing instead of the factor x, and the arguments of F and ∂jF
in all the equations are (x2

1 + x2
2, y1, y2). �
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