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Homogenization of Maxwell’s equations and related
scalar problems with sign-changing coefficients *)

RENATA Bunoru (U, Lucas CHESNEL (2,
KARIM RAMDANI () AND MAHRAN RIHANT ()

ABSTRACT. — In this work, we are interested in the homogenization of time-
harmonic Maxwell’s equations in a composite medium with periodically distributed
small inclusions of a negative material. Here a negative material is a material mod-
elled by negative permittivity and permeability. Due to the sign-changing coefficients
in the equations, it is not straightforward to obtain uniform energy estimates to ap-
ply the usual homogenization techniques. The goal of this article is to explain how
to proceed in this context. The analysis of Maxwell’s equations is based on a precise
study of two associated scalar problems: one involving the sign-changing permittivity
with Dirichlet boundary conditions, another involving the sign-changing permeabil-
ity with Neumann boundary conditions. For both problems, we obtain a criterion
on the physical parameters ensuring uniform invertibility of the corresponding oper-
ators as the size of the inclusions tends to zero. In the process, we explain the link
existing with the so-called Neumann—Poincaré operator complementing the existing
literature on this topic. Then we use the results obtained for the scalar problems to
derive uniform energy estimates for Maxwell’s system. At this stage, an additional
difficulty comes from the fact that Maxwell’s equations are also sign-indefinite due to
the term involving the frequency. To cope with it, we establish some sort of uniform
compactness result.

RESUME. — Dans ce travail, nous nous intéressons a I’homogénéisation des équa-
tions de Maxwell harmoniques dans un milieu composite contenant une distribution
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périodique de petites inclusions de matériau négatif. On désigne ici par matériau né-
gatif un matériau décrit par une permittivité et une perméabilité négatives. En raison
du changement de signe des coefficients intervenant dans les équations, il n’est pas
évident d’obtenir des estimations d’énergie uniformes et d’appliquer les techniques
d’homogénéisation classiques. Le but de cet article est d’indiquer comment on peut
néanmoins procéder dans ce contexte. L’analyse des équations de Maxwell est basée
sur une étude précise de deux problémes scalaires : 'un faisant intervenir la permit-
tivité changeant de signe avec des conditions aux limites de Dirichlet, et 'autre la
perméabilité changeant de signe avec des conditions aux limites de Neumann. Pour
chacun de ces deux problémes, on obtient un critére portant sur les parameétres phy-
siques garantissant l'inversibilité uniforme des opérateurs associés lorsque la taille
des inclusions tend vers zéro. Incidemment, nous expliquons le lien existant avec
Popérateur de Neumann—Poincaré, complétant la littérature existant sur le sujet.
Les résultats obtenus pour les problémes scalaires sont ensuite utilisés pour obtenir
des estimations d’énergie uniforme pour le systéme de Maxwell. A ce stade, il faut
contourner une difficulté supplémentaire liée au caractére indéfini induit par le terme
fréquentiel. Ceci est réalisé en établissant un résultat de type compacité uniforme.

1. Introduction

Negative index materials (also called left-handed materials) are artificially
structured composite materials whose dielectric permittivity € and magnetic
permeability p are simultaneously negative in some frequency ranges [40].
In the last two decades, these metamaterials have been the subject of a
large number of studies in physics and engineering due to their potential use
for several existing applications [23] such as sub-wavelength imaging and
focusing, cloaking, sensing or data storage.

Besides their practical applications, negative index materials are also in-
teresting from a mathematical point of view. The reason is that they are
usually used in applications jointly with classical (positive) materials so that
their mathematical modelling leads to consider operators with coefficients
whose sign changes in the domain of interest. Establishing well-posedness
results for such problems requires to develop a specific theory and this has
been investigated by several authors. In particular, it has been shown in [10]
(see also the recent work [33]) that Maxwell’s equations with sign-changing
electromagnetic coefficients €, p are uniquely solvable (except for a discrete
set of frequencies) when two associated scalar problems, one involving € with
Dirichlet boundary conditions, another involving p with Neumann boundary
conditions, are well-posed.

The goal of this article is to study the homogenization process for time
harmonic Maxwell’s equations in the presence of j—periodically distributed
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inclusions of negative material embedded into a dielectric material (see Fig-
ure 2.1 for a typical configuration). The main objective is to clarify if the
homogenization process is doable in this context and if so, to determine
whether the corresponding homogenized material behaves like a positive or
negative material as § tends to zero. For scalar problems, the first homoge-
nization results have been obtained in [18] using the T-coercivity approach
of [12]. More precisely, it is proved therein that for negative contrasts close
to 0 (the contrast being defined here as the ratio between the interior and
exterior values, see (2.1)), the scalar problem with Dirichlet boundary con-
ditions can be homogenized. In other words, it is proved that under this
assumption on the contrast, the solution of the problem in the composite
material is well-defined for § small enough (this is not obvious due to the
loss of coercivity due to the sign-changing coefficient) and that it two-scale
converges (see Definition 5.1 below) to the solution of a well-posed problem
set in a homogeneous material. These results have been extended in [14],
through the analysis of the spectrum of the Neumann—Poincaré operator.
In particular, the authors show that the homogenization process is possible
provided the contrast between the two media (defined using the same con-
vention as above) belongs to (—oo; —1/a) or (—«;0), a > 0 (see Remark 3.1
below). The proof of this result is based on an elegant continuity argument
(see [14, Corollary 5.1]). However, it does not provide a precise value for a.

The paper is organized as follows. Section 2 provides the mathematical
setting of the problem and necessary notation. Before studying Maxwell’s
system, we collect in Section 3 some useful results concerning two associated
scalar problems, a Dirichlet and a Neumann one. In particular, we prove the
uniform invertibility of these operators as § tends to zero, for small or large
values of the contrast, i.e. for contrasts in (—oo;—1/m) U (—1/M;0), with
0 < m < M (see Subsections 3.1 to 3.3). A variational characterization of
the bounds m and M is also obtained (see (3.35)). Next, inspired by [14], we
discuss in Section 3.4 the connection with the Neumann—Poincaré operator
and the optimality of the obtained conditions. In Section 4, we study the
cell problems appearing in the homogenization of Maxwell’s equations. We
prove that they are well-posed under the same assumptions as the scalar
problems investigated in Section 3. This allows us to define homogenized
tensors and we show that they are positive definite under the same assump-
tion on the contrasts, that is for contrasts in (—oo; —1/m)U(—1/M;0). This
is also an improvement of the results obtained in [14] and [18]. In Section 5,
we finally tackle the homogenization process for Maxwell’s equations with
sign-changing coefficients. Combining results from [21] and [43] obtained for
classical (positive) electromagnetic materials, we first derive in Section 5.1
a homogenization result under a uniform energy estimate condition. At this
stage, the sign-changing of the physical parameters does not play any role.
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Related to this part of the work, let us mention the seminal book [6] as well
as [5, 46] for the study of the time-dependent Maxwell equations. For the
time harmonic case, we refer to [3, 6, 17, 19, 24, 28, 39, 43, 47, 48]. Then, in
Section 5.2, we establish the needed uniform energy estimates for Maxwell’s
equations. This is done by using the results obtained for the scalar prob-
lems as well as the T -coercivity approach presented in [10] and a uniform
compactness property. The final homogenization result for Maxwell’s system
with sign-changing coefficients is stated in Theorem 5.6. For the reader’s con-
venience, the list of functional spaces used throughout the paper is collected
in the Appendix.

2. Setting of the problem

o

Figure 2.1. Example of a periodic material and the corresponding
reference cell Y.

Let Q be an open, connected and bounded subset of R? with a Lipschitz-
continuous boundary 0. Once and for all, we make the following assump-
tion:

ASSUMPTION. — The domain ) is simply connected and 02 is con-
nected.

When this assumption is not satisfied, the analysis below must be adapted
(see some preliminary ideas in [10, Section 8.2]). We consider a situation
where € is filled with a composite electromagnetic material constituted of
periodically distributed inhomogeneous cells of small size 6 > 0. More pre-
cisely, let Y = (0;1)3 denote the reference cell and assume that Y contains
two materials:
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e a metamaterial with negative dielectric permittivity ¢; < 0 and
magnetic permeability p; < 0 located inside a connected domain
Y; C Y with Lipschitz boundary dY; such that Y; C Y;

e a dielectric material with positive dielectric permittivity . > 0 and
magnetic permeability p. > 0 filling the region Y, := Y \ Y;.

We emphasize that the assumption Y; C Y is important. When the inclusion
Y; meets the boundary of the cell dY, phenomena different from the ones
described below can appear. We refer the reader to [14, Appendix A] for
more details concerning the scalar problem in this case. To simplify the
presentation, we assume that ¢;, €., u; and p. are constant. However, we
could also consider physical parameters which are elements of L>°(, R3%3),
the variational techniques we use below would work in a similar way. In our

analysis, the following dielectric and magnetic contrasts
i Hi
Ke : = — <0, Ky :=—<0 2.1
= s (2.1)

will play a key role. Let us stress that the four constants ., €;, e, p; are fixed
once for all in the article. And when we make assumptions on the contrasts
in the statements below (see in particular the final Theorem 5.6), they must
be understood as “Assume that €., €;, e, pt; are such that ., k,,...". We
define on the reference cell the two real-valued functions e, u € L>°(Y") such
that

ey) =ecly.(y) +eily,(y),  py) =pely,(v) +pilyi(y), (22)

where for a set S, 1g( ) stands for the indicator function of S. For any 6 > 0
and any integer vector k € Z3, we define the shifted and scaled sets Yi‘,i, Ye‘sk,
Y,f such that

Yi = {z € R®|(z —k)/d € i}
Yy ={zeR3|(z—k)/d €Y.} (2.3)
VY ={xeR3|(z—k)/S €Y}

We denote by K? the set of k € Z3 such that Y,f C Q. We assume that the
metamaterial fills the region

)= vi

keK?

while the complementary set in
2l =0\

is occupied by the dielectric. We denote by Q° the interior of | J REK? YTC‘S and
we set U° := Q\ Q9. We define the macroscopic dielectric permittivity £’
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and the magnetic permeability p® on Q such that
(2) = e Los(a) + i Lgs (@), 10(2) = pre Los (@) + i Ls (). (24)

For a given frequency w # 0 (w € R), we study time harmonic Maxwell’s
equations

curl E° —iwp’H =0 and curl H® +iwe’E° =J in Q. (2.5)

Above E° and H® are respectively the electric and magnetic components
of the electromagnetic field. The source term J is the current density. We
suppose that the medium 2 is surrounded by a perfect conductor and we
impose the boundary conditions

E°xn=0 and p’H’ -n=0 on o, (2.6)

where n denotes the unit outward normal vector field to 9€2. For an introduc-
tion to the mathematical setting of Maxwell’s equations, we refer the reader
to the classical monographs by Monk [30] or Nédélec [31]. We introduce
some functional spaces classically used in the study of Maxwell’s equations,
namely, for £ € L>°(Q),

L*(Q) := (L*(2))°
1) :={H € L*(Q) | curl H € L*(Q)}

H(curl) :=
1) :={FE € H(curl) | E x n =0 on 90}
):
) =

Hy (cur
V(¢
V(€

For an open set O C R?, the inner products in L2(O) and L*(0) are denoted

indistinctly by (-, )o and the corresponding norm by || - ||o. To simplify, in

L2(Q) and L%(Q), we just denote (-,-) and || - ||. The space H(curl) and its

subspaces Hy (curl), Vn(§), V(&) are endowed with the inner product
('u')curl = (7) + (Cl.lI'l'7Cl].I‘].-)7

and the corresponding norm is denoted || - ||cur1- We have the classical Green’s
formula for the curl operator (see for instance [30, Theorem 3.1]):

={H € H(curl) | div(¢H) =0, £¢H -n =0 on 90},
={FE € H(curl) | div(¢E) =0, E x n =0 on 00}.

(u, curlv) — (curlu,v) =0, Vu € Hy(curl), v € H(curl).

Let us recall a well-known property for the particular spaces V(1) and
V(1) (cf. [4, 44]).

PROPOSITION 2.1. — The embeddings of V(1) in L2(Q) and of V(1)
in L2(Q) are compact. Moreover, there is a constant C' > 0 such that

lu|| < Clcurly|, Vue Vp(l)uUVy(l).
Therefore, in V(1) and in V (1), ||curl - ||q is a norm which is equivalent

to [ || cur1-
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Classically, one proves that if (E°, H®) satisfies (2.5)-(2.6), then E° and
H? are respectively solutions of the problems

Find E° € H(curl) such that:
curl((u9) "' curl B°) — w2’ E® = iwJ in Q (2.7)
E% xn =0 on 012,

Find H° € H(curl) such that:

curl((e®) ! curl H®) — w20 H® = curl((¢®)~'J) in Q
,uéH‘s ‘n =0 on 02
(€)Y curl H — J) x n =0 on 0N.

(2.8)

We emphasize that in (2.7), (2.8), the boundary conditions are the usual ones
one should impose to be able to prove well-posedness of the systems. In the
following, we will focus our attention on the problem (2.7) for the electric
field. The analysis for the magnetic field is quite similar. The variational
formulation of (2.7) writes

(2% {Find E° € Hy(curl) such that for all E' € Hy(curl):

((1®)~! curl E‘S,curlE’) — wz(s‘;Eé, E')=iw(J,E. (2.9)

Before studying the behaviour of solutions of (%) as § tends to zero, we
must clarify the properties of this problem for a fixed § > 0. With the Riesz
representation theorem, define the linear and continuous operator &7y (w) :
Hny (curl) — Hy(curl) such that for all w € C,

(A (W)E, E ) eur1 = (1°) "t curl E, curl E') — w*(¢°E, E'),
V E,E" € Hy(curl). (2.10)

The features of &7} (w) are strongly related to the ones of two scalar operators
that we define now. Set

Hy(Q) := {p € H'(Q) | = 0 on 89}
HL(Q) := {(p c HY(Q) ‘ /ngdx = 0} :

In H}(Q) and in H#(Q) (since Q is connected), ||V - || is & norm which
is equivalent to the usual norm of H!(Q2). We define the two linear and
continuous operators A2 : H{(Q) — H{(Q2) and Bi : H#(Q) — H#(Q) such
that

(V(A20),V¢') = £V, V), V¢ € Hy()

(V(BSp), V') = (1°Ve, V'), Vo,¢ € HL(Q).

With these notations, Theorem 6.1 of [10] writes as follows.
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THEOREM 2.2. — Assume that the scalar operators A2 : H{(Q) — HE(Q)
and Bi : H%E(Q) — HL(Q) are isomorphisms. Then % (w) : Hy(curl) —
Hy (curl) is an isomorphism for all w € C\ . where . is a discrete set
with no accumulation point.

Note that in this statement, the set . depends on the contrasts k.,
k, but also on the geometry and hence on 4. In the next section, we give
conditions ensuring that Ag and Bi are isomorphisms.

3. Uniform invertibility of the two scalar problems

We shall say that the operators A2 : Hj(Q2) — H§(Q) and B, : HL(Q) —
H, () are uniformly invertible as § tends to zero if there is §y > 0 such that
Al Bi are invertible for all § € (0; dg] together with the estimate

IAD~H+ B~ <

where C' > 0 is a constant which is independent of § € (0; dp]. In this section,
our goal is to find criteria on k., k, guaranteeing the uniform invertibility
of A2, BZ. The uniform invertibility of A has been considered in the arti-
cles [14, 18]. Below we combine the approaches presented in these two articles
and we adapt the analysis in order to obtain a criterion ensuring the uniform
invertibility of Bg.

Remark 3.1. — The result of uniform invertibility of [14, Theorem 5.2] is
based on the result of Theorem 4.3 of the same article. However, its domain
of validity is not completely satisfactory because the constant m defined in
Theorem 4.3 is in fact equal to zero. This has been corrected by the authors
and a new proof can be found in the erratum [13].

3.1. First /-dependent criteria

In a pedagogical aim, we first derive some criteria ensuring the invert-
ibility of AZ, Bg that are valid only for fixed §, and hence which are not
uniform.

3.1.1. Criterion of invertibility for the operator A’

In order to get a criterion on the contrast k. ensuring that A% : H}(Q) —
H}(£2) is an isomorphism, we start by presenting a well-chosen decomposition
of the space H}(2) which has been introduced in [14]. We recall that H}(€2)
is endowed with the inner product (V-,V-).
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L
LEMMA 3.2. — We have the decomposition H(Q) = H$, & H(Q2 U Q)
where HSy == {p € HY(Q) | Ap =0 in Q3 UQJ}.

Remark 3.3. — The index p in the notation H% stands for Dirichlet and
refers to the homogeneous Dirichlet boundary condition imposed on 9f2 to
the elements of HJ,. We emphasize that the functions of H§(Q2 UQ?) vanish
on 0.

Proof. — Let ¢ be a given element of H}(Q). Introduce $ € H§(Q2 UQ?)
the function such that Ag = Ay in Q2 UQ?. Then we have ¢ = (¢ — @) + @
and clearly ¢ — ¢ € H$. Now if ¢; and ¢y are elements of H$, and
HY(Q2 U Q?), a direct integration by parts gives

01 0
(V1, Vi) =/ Ap1po dx+/ i, do+/ Ple oy do = 0.
Y o0 Oni oas One

Here and below, n, = —n; stands for the unit normal vector to 92 pointing
to Q2. Moreover for z € 90, Oppi(x) = lim; o+ Vip(z — tn;) - n(x) and
One() = limy_o+ Vip(z — tn.) - n(x). This gives the desired result. O

In what follows, some particular elements of H‘SD will play a key role. For
k € K°, define the function ¢% € H9, such that

1 inY?
k ik
= 3.1
oD {o inY3, fork #k. (3.1)

Then set

HY ={p e H) | (Ve,Vh) =0, VkeK} (3.2)
so that we have, as in [14, Proposition 3.2],

PO I

Hy(2) = Hp @ spange s {9} & Hy(20 U Q). (3.3)
Finally, we define the constants

Vel IV,

b= i o TR bi= e T, Y

Before proceeding, let us discuss a few features of the constants m$,, M.
First, observe that the functions %, satisfy

IVeblZ =0 and  [Vehl3s £0.

As a consequence, the infimum of (3.4) considered over H$, \ {0} is zero.
On the other hand, the next lemma guarantees that the supremum of (3.4)
considered over H9, \ {0} coincides with M.
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LEMMA 3.4. — The constant M, defined in (3.4) satisfies

5 Vel
Mp = sup o—5- (3.5)
peM\{0} vangg
Proof. — Since ﬁ‘SD C MY, clearly we have
5 Vel
Mp < sup ! (3.6)

pers oy IVellSs

Now we establish the other inequality. If ¢ € H$, \ {0}, we have the de-
composition ¢ = @ + ® with § € HY, and ® € spanyxs{%}. Since ® is
constant in each of the Yi‘]i, k € K9, there holds

IVl = IVBls. (3.7)

As a consequence, if § = 0, then 0 = ||V80H?26/||V90H?zg <M. IfQ #0,
from (3.7) and the identity |V¢||3 = V3|3 +[ V|3 (see (3.2)), we deduce
that
IVelgs = IV@IEs + IVl > VEas-
This implies
IV@IEs Vel
M > oot > o
IVEIlGs ~ IVellgs
Taking the supremum over all ¢ € HJ, \ {0} in (3.8), we deduce that (3.6)
is also true with “<” replaced by “>”. This shows (3.5). O

(3.8)

Finally, we prove the following additional result.
LEMMA 3.5. — The constants m%,, M9, satisfy 0 < m%, < M3 < +oc.

Proof. — By definition of m9,, M, clearly we have m%, < M. On the
other hand, working by contradiction, thanks to the orthogonality condi-
tions imposed to the elements of ﬁ‘fj, one can show the Poincaré-Wirtinger
inequality

3C°>0 suchthat ||l < C|Velgs, VeeH,  (3.9)
For ¢ € 9, since there holds Ap = 0 in 2, from (3.9), we obtain the
estimate
IV¢llas < Colllnnsaons)-
Here the constant C° may change from one line to another. Then the con-

tinuity of the trace from H(Q?) into HY/2(9Q¢) yields the existence of a
constant C¢ > 0 such that

IVellas < C3lIVellos, Vo€ H. (3.10)
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Similarly, using the continuity of the trace from H'(Q?) into H'/2(92), we
obtain that there is C§ > 0 such that

IVellos < C2lIVellas, Vo eHp. (3.11)

Estimates (3.10) and (3.11) allow one to conclude to the result of the lemma.
U

After these considerations, we can now establish the following criterion
concerning the invertibility of A2. To proceed, we work with the T -coercivity
approach introduced in [12] (see also [20]). We emphasize however that we
work with a different operator T allowing us to obtain a sharper result.

PROPOSITION 3.6. — Assume that k. € (—o0;—1/m$,) U (—1/MP);0)
where m%, and MY are defined in (3.4). Then A : H{(Q) — HE(Q) is an
isomorphism.

Proof. — Define the operator TS : Hj(Q2) — HJ(2) such that for ¢ =
Bn + ®p, + @ with 3, € HS,, @, € spangc s {eh} and ¢ € H{(Q2 U QF),
there holds

(3.12)

+ oh+®n+¢ inQl
Tpp=49 . ~ . 5
P+ P, —¢ in Q9.

Note that since @ = 0 on 992, the operator T}, is indeed valued in H}(€2).
Moreover we have TE o TE = Id which shows that TJ[S is an isomorphism of
H{ (). For all ¢ € H}(£2), we find

(V(AL(TH), Vo)
= o (V(@n+ 1 +8), V(@ + B+ B +:(V(Bn — D),

V(@ +9),, (3.13)
Integrating by parts and using that @ = 0 on 9902 U992, we get

Besides, using again that ®j, is constant in each of the Y,3, from the orthog-
onal decomposition (3.3), we infer that

(V@h, VQh)Qg = (v(ﬁ}H V(I)h) =0. (315)
Inserting (3.14), (3.15) in (3.13), we obtain

(V(AUTH9), Vi)
= (eVPnh, Von) + (£cVPh, VOh)as + ([€]VE, V). (3.16)
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For the first term of the right hand side of (3.16), we can write
(eV@n, V&n) = ecl VEnllgs — leil V@G
> (e — el Mg))HV@hHsQ)g (3.17)

> 5 (e — leal MP)(IV@nllgs + (MD) IV EhlBs)-

N | —

Using this estimate in (3.16), we deduce that when e, > |g;| M) & k. =
gi/ee > —1/M2, the bilinear form (V(AS(TS-)),V-) is coercive in H}(9)
(note that Lemma 3.5 guarantees that MY < +00). With the Lax—Milgram
theorem, we infer that when k. > —1 /Mg, the operator Ag o TE is an
isomorphism of H}(£2) and so is A2.

To address the case k. < —1/m$, let us work with the operator T, :
H{(2) — H}(S2) such that

O o 73 3 Qé
TB(,O:{ on+ P+ m g (318)

~Ph+®r—¢ in Q.

We also have T}, o T, = Id which guarantees that T}, is an isomorphism of
H{ (). For all ¢ € H(Q), we find

(V(AUTH9)), Vi)
= —(eVPh, VOn) + (€eVPh, Vi)qs + (I€|Ve, V). (3.19)

This time, we can write
~(eVh, V&n) = —€cl|VPnllgs + leil IV@hllgs > (—ec + leil mp)IVEhl

that is

—(eVn, V) = 5 (=ce + leil mp) (IVERIGs + (MD) T IVER[Gs)- (3.20)

N

As a consequence, we see from (3.19) that when |g;|m$, > e., or equiv-
alently for k. = g;/ec < —1/mJ,, the bilinear form (V(A2(T,")),V-) is
coercive in H}(2) (here we used once again the result of Lemma 3.5 en-
suring that 0 < m$, < MY, < +00). We can conclude as above that when
ke < —1/m$, the operator A is an isomorphism of H}(€2). O
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3.1.2. Criterion of invertibility for the operator Bg

Now we show similar results for the operator BS : HL(Q) — HL(Q).

First, define the space
/ pdo=0,.
Qs

i
LEMMA 3.7. — We have the decomposition H(Q) = HS @ H(l) o0 ()

where HY, = {p € HLQ)|Ap = 0in QU Q2, d,p = 0 on 0N} and

1} s () = {0 € H'() | = 0 on 90} C HL(9).

HL(Q) := {gp c H'(Q)

Remark 8.8. — This time, the index n in the notation ’H?\, stands for
Neumann and refers to the homogeneous Neumann boundary condition im-
posed on 0 to the elements of H.

Proof. — For ¢ given in H{ (), introduce ¢ € H| ,,5(€2) the function
such that L
(V& V') = (Vo,Vy'), V' €Hy os ().

Note that since the Poincaré inequality holds in the space H(l) 095(9)’ the

Lax—Milgram theorem indeed guarantees that this variational problem ad-
mits a unique solution. Then we have ¢ = (¢ — @) + ¢ and one can check
that ¢ — @ belongs to H‘;N Finally if ¢ and @9 are elements of ’H‘;N and

Hé, o0 (Q), a direct integration by parts gives (V1, Vi) = 0. O

In what follows, some particular elements of ’H‘ISV will play a key role. Let
ko be an arbitrary given element of K° and for k € K° \ {ko}, define the
function % € HY such that

1 inYQ
ok =¢-1 inY3
0 inY], fork'eK®\ {ko,k}.
Then set
Hy = {p e HY | (Vo, V) =0, VkeK°\ {k}}
so that we have
1 56 & kLo
Hy(Q) =Hy © SpankeKé\{ko}{QON} @ Hy, 092 ().

We emphasize that the choice of ky above does not affect this decomposition.
We simply consider one particular basis for the space spanyc s\ {ko}{@]fv}-
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Finally, we define the constants

5 . HVWH?)f s HV@”?);S
mQy =  inf ‘= sup

i , - — N (3.21)
peri\ {0} IVeolls e A Y

Working as in the proof of Lemma 3.5, in particular establishing by contra-
diction the Poincaré-Wirtinger inequality

3C° >0 suchthat |¢llgs < C°Velqs, Ve HS,

one can show that there holds 0 < mj), < M} < +oo. As in (3.4), the
functions ¢¥; satisfy

IVoK I3 =0 and [V #0

so that the infimum of (3.21) considered over H% \ {0} is zero. Working
exactly as in the proof of Lemma 3.4, we get the following result.

LEMMA 3.9. — The constant M, defined in (3.21) satisfies

IVells
M3 = sup :

% (3.22)
peri o3 Vel

Now, we give our criterion of invertibility for the operator B,‘i.

PROPOSITION 3.10. — Assume that k,, € (—o0; —1/m%) U (—=1/M2;0)
where m% and MY, are defined in (3.21). Then Bi tHL(Q) — HL(Q) is an
isomorphism.

Proof. — Introduce the mappings £, : H, () — H{(Q) and £ : Hy(Q) —
H, () such that

1 1
ZOW):SD_M/@W@dU’ g#(‘ﬂ):@—m/ﬂwdx-

Here and in what follows, for an open set O C R?, we denote by |O] = [, 1dz
and 00| = [, 1do. Then define the operators T3 : HY(Q) — HL(Q) such
that for ¢ = @y, + @5, + @ with @, € 7T£5N, o, € spankeKs\{ko}{go’fV} and

@ € H) ,5(€2), there holds

~ +0, + @, +% in QS
Tﬁsﬁ{ ont Ot (3.23)

i@h + &y, — (:5 in Q?
Finally, we define the operators

TE =Ly o TE o L.
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For ¢ € HL(Q), we set ¢ := £,(¢) € Hi(2) and we use the notation ¢ =
on + @ + @ with @y, € ﬁjsv, b, € spankeKs\{ko}{gaﬂcv} and ¢ € Htl),am (Q).
Observing that Vi = Vi (¢ and @ differ from each other by an additive
constant) and working as in (3.16), we find
(V(B(TN)), V)
— (4G VE) + (1B V)0 + (1IVE VE). (3.24)

For the first term of the right hand side of (3.24), we can write
(HV@r, VPh) = nel VERIZs — il IV PnlIGs
> (pte = |psl MRV @h1 s

[t

> 5 (e =l M)V @ligs + (MR)HIVER[Gs)

[\]

and
—(WVh, V&) = —pellVhllgs + |l [VPuI3s

> (—pe + || my) | V@[5 (3.25)
%( e + il M) IV @rllgs + (MR)HIVER[Gs)-

Using again that Vi = V4, we deduce from the first estimate of (3.24)
that when pe > |w;|M% & kK, = pi/pe > —1/MY, the bilinear form
(V(Bi(T?{,o)),VJ is coercive in H%E(Q) With the Lax-Milgram theorem,
we infer that when x, > —1 /M]‘i,, the operator Bi OTE is an isomorphism of
H, (Q). Since Bg is selfadjoint (because it is bounded and symmetric), this
implies that Bi is an isomorphism. Working similarly with T}, from (3.25)
one finds that when |u;|m% > pe < Kk, = p1;/pe < —1/m3, the operator Bi
is an isomorphism. Note that with additional few lines, one can check that
we have Tﬁ o T]iv =1Id. |

3.2. Comparison between the criteria of invertibility

In this section, we compare the constants involved in the criteria ensuring
the invertibility of the operators A% (Dirichlet) and Bg (Neumann).

PROPOSITION 3.11. — For all § > 0, the constants m%,, M2, defined
in (3.4) and the constants m%, M3 defined in (3.21) satisfy

ms, < my and M, < MY, (3.26)
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Proof. — We start by proving the second inequality of (3.26). Let ¢ be
an element of HJ, \ {0}. Define the function ¢ € HS such that ¢ = ¢ — ¢
on 99 where ¢ = |[9Q2|7! [, s ¢ do. In other words, ¢ is the function such

that AC =0in QS UQ?, ( = p —c on I and 9,( = 0 on JQ. Note that
necessarily, there holds ¢ # 0. Then we have ( = ¢ — ¢ in Q¢ and so

IVCllas = [IVellqs- (3.27)
On the other hand, integrating by parts, we find

_ [ 9
[ G- te-opdo+
=0.

9¢e

0! ane

€= (p—0¢))do

We deduce that
IVCI2s < IVl (3.28)
Gathering (3.27), (3.28) and using Lemma 3.9, we infer that

IVelZ, VeI,
L g L MY 3.29
Vol S e, SN (329)

Taking the supremum over all ¢ € ﬁ% \ {0} in (3.29), we obtain that M9 <
My,

Now we show the first inequality of (3.26). Let ¢ be an element of ’;Q?V \
{0}. Define the function ¢ € H$, such that ¢ = ¢ on 992. In particular, we
have A¢ = 0in Q3 UQ? and ¢ = 0 on 99Q. Then decompose ¢ as ¢ = Z—i— A
with ¢ € H3, and Z € spangejes {@%}. Since Z is constant in each of the
Y;‘,i, k € K°, we have

19C)as = IV¢llgs- (3.30)

On the other hand, integrating by parts, we find

- _ [ 9 Ope >
(Veo, V(¢ = 9))as 7/8Q 5, &~ ¥) dUJr/mS O, (C—¢)do
0pe
o 6neZda. (3.31)

Since the function ¢ is in 7:2‘]5\,, for all k € K\ {ko}, we have (Vo, Vik,) = 0.
Integrating by parts, this implies

/ e 15— / %e 4o
aYs 3ne Y9 3ne ’
ik ik
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But we also have [, 909 On.pedo = 0. As a consequence, we must have, for

all k € K9,
/ % do = 0.
ovg, One

Since Z is constant on each of the aYi‘,i, we deduce that the terms of the
equalities of (3.31) are equal to zero. Hence, there holds

IVells < V<] (3.32)
Gathering (3.30) and (3.32) leads to

_ V3 IVely

g <
N ~ ~ .
IvCl2s — IVelds

md, (3.33)

Taking the infimum over all ¢ € H, \ {0} in (3.33), we obtain that m%, <
]

s
my.

3.3. Uniform criterion of invertibility

The bounds on the contrasts ., k, that we obtained in Propositions 3.6,
3.10 which ensure the invertibility of the scalar operators Ag and Bg, depend
on §. In this paragraph, we wish to get bounds which are uniform with respect
to 4.

Introduce the Hilbert spaces of functions defined in the reference cell Y
Ho:={p e H}(Y)|Ap =0in Y, UY;}
Ho :={p e HL{(Y)|Ap =01in Y, UY;}

where H}(Y) := {¢ € H(Y)| [,y ¢ do = 0}. Define the function ¢p € Ho
such that ¢op =1 in Y; and set

Ho = {p € Ho | (V,Viop) = 0}

~ (3.34)
HQ = {Sﬁ € Ho | 811%0 = 0 on aY}.
Then we introduce the constants
Vo2 Vo2
m:= inf IVe ;/1, M:= sup IVe ;/1 (3.35)
pEeH\{0} HV‘JDHYe peHN\{0} ”V(PHYE

We emphasize that m and M are independent of §.
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LEMMA 3.12. — The constant M defined in (3.35) satisfies

V|2
. IV, 56)
vero\{0} IVelly,
(here the sup is considered over Ho \ {0} and not H, \ {0}).
Proof. — Since there holds ﬁo C H.,, it suffices to show that
Vol
IVell, (3.37)

sup X
verafor IVell3.

Let ¢ be a non zero element of H,,. We have the decomposition ¢ = p+(p—p)
where ¢ € H, is the function such that = p inY;, Ap=0in Y., § = ¢
on 9Y; and 9, = 0 on JY. Observing that ||[Vell3. = ||[VP|3. and that

IVelly, = IVEIF, + IV(e - D)5, = VS, ,
we can write

IVely, = IVally, < MIVEIT, < M|Vels,.

Taking the supremum over all ¢ € H, \ {0} leads to (3.37). O
LEMMA 3.13. — For all 6 > 0, we have the relations
m < m9, <md and MY < M§ < M, (3.38)

where m$,, M, are defined in (3.4), m%, M3 are defined in (3.21) and m,
M are defined in (3.35).

Proof. — From Proposition 3.11, we know that we have m$, < m%, and
M2, < M$. Now we show that we have M < M. Let ¢ be a non zero

element of ﬁ?v For all k € K°, we define the function ¢ € H!(Y') such that
o (y) = o(6(k +y)) for y € Y and we set ¢ := |9Y|7! [, ¢ do. Since
L,Oz — ¢, € Ho, using Lemma 3.12, we can write
IV0l2; = oIVedli3, = SV (el — )l < 60 V(e — ),
SOM VRl < M|[Vel3s . (3.39)

Summing these estimates over all k € K°, we get (recall that U° = Q \ Q9)

I96l3s < MIVeI2, i < M IVl (3.40)

Taking the supremum in (3.40) over all ¢ € 7—7‘]5\,, we deduce that Mg < M.
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To establish (3.38), it remains to show that m < m9,. For ¢ given in ﬁ‘fj,
introduce the function v € H}(Q) such that for all k € K°,
v=1¢ in Yz‘z
Av=0 inY}
v=0 on JY},.
We also impose v = 0 in U = Q\ Q3. For all k € K?, define the function
ok, € HY(2) such that
Hh=1 v
Agky=0 inY}S
=0 inQ\Y.
Then set
vi=v— Z ardh) with ay, := (Vo, Véh) /|| Ve .
keK?

Integrating by parts, we find

~ _ de - 0, ~
(Voo Mo = | GEe-Ddo+ | Fp—n)ao
=> ak/ Ope K do. (3.41)
wers  Jovg One

Since the function ¢ is in ﬁf}), for all k € K?, we have (Vip, Vik) = 0.
Integrating by parts, this implies

/ Ope do = 0.
8Y.‘§C 8”6

Using that ¢% is constant on the 9Y}5,, we deduce from (3.41) that
(Vp, V(e —1))qs = 0. Hence, we have

2 ~112 ~12
IVelgs <IValgs = > IVollys - (3.42)
keK?®

For k € K°, define the function 99 € H'(Y') such that 93 (y) = 9(5(k + y))
for y € Y. Observe that we have Ei € Ho so that we can write

VT35, = olIVaRIE, < dm™" VTR,
<Im~H[Verlly, <m ™[ Vel - (3.43)
As a consequence, inserting (3.43) in (3.42), we obtain
IVl < m™" [Vl (3.4

Taking the infimum in (3.44) over all ¢ € ﬁ‘sjy we deduce that m < m%,. O
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Finally, we deduce a criterion of uniform invertibility for the operators
A? and Bi.

THEOREM 3.14. — Let m, M be the constants defined in (3.35).

When k. € (—oo; —1/m) U (—=1/M;0), AS: HA(Q) — H{(Q) is uniformly
invertible as 6 — 0.

When k,, € (—oo; —1/m)J(—1/M;0), Bi :HL(Q) — HL(Q) is uniformly
invertible as § — 0.

Proof. — Let us show the result for A2, the proof is completely simi-
lar for BY. From the decomposition of the space Hj(Q) in (3.3), one ob-
serves that the operators T5 = (T5)~! defined in (3.12) and (3.18) are
uniformly continuous. From the estimate (3.17) (resp. (3.20)) together with
the result of Lemma 3.13, one infers that as 6 — 0, (V(A42(T}-)), V+) (resp.
(V(AS(T5)), V) is uniformly coercive in H}(Q2) when k. > —1/M (resp.
when k. < —1/m). Since A? is also uniformly continuous, this is enough to
guarantee that A% is uniformly invertible as § tends to zero. O

3.4. Optimality of the criterion and connection to the Neumann—
Poincaré operator

Let us discuss the criterion we have obtained above. We focus our at-
tention on the analysis for the operator A2, similar comments can be made
for the operator Bz. We assume in this paragraph that 0Y;, and so 9§,
is of class C2. Note that this assumption is important to ensure that the
spectrum of Problem (3.46) below is discrete. It has been proved in [9] that
in this case, A% is Fredholm of index zero when k. # —1. Therefore when
ke # —1, the operator A? is an isomorphism if and only if it is injective.
As it has been observed in different works (see in particular [14]), and as we
recall below, the question of the injectivity of A? is directly linked to the
spectrum of the so-called Neumann—Poincaré operator. The latter has been
widely studied when € is the whole space R¢. For this problem, among the
references, let us cite [1, 15, 16, 25, 26, 27, 29, 35, 36, 37, 38]. Below, we use
a symmetrization argument similar to the one used in [29]. We work with
Dirichlet-to-Neumann maps following the approach of [25].

3.4.1. Spectrum of the Neumann—Poincaré operator

Set ¥° := 9Q% and introduce the two Dirichlet-to-Neumann operators
A, HY2(29) — H-V2(X%), A; : HY/2(X%) — H~/2(2%) such that for
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all o € HY/2(X%), we have Ao = Op,te, Nip = On,u; where u., u; solve
respectively the problems

Aue=0 in B A
ue=0 on 90 {A“l =0 i@y (3.45)
ue=¢ onX?’ ui=@ on X%

Define also the lifting operator R : H'/2(29) — H}(Q) such that Ry = u,
in Q% Ry = u; in Q2, where u,, u; are the solutions to (3.45).

If u belongs to ker A% \ {0}, then ¢ := uls,s € HY/2(X%)\ {0} satisfies
Aep = —k A;p. By a straightforward computation, we find that the pair
(o, ), with @ := (k. +1)/(k. — 1) € (—1;1), is a solution to the generalized
eigenvalue problem

{Find (o, ) € R x (HY/2(3%)\ {0}) such that:

Ao oheg (3.46)

with Ay := A, £ A;. Reciprocally, assume that (a, ¢) is a solution to (3.46)
with a € (—=1;1). Then, Ry € H}(Q) is an element of ker A2 \ {0} for
ke = (a+1)/(a—1) € (—00;0). This shows that it is sufficient to determine
the eigenvalues of problem (3.46) to study the injectivity of A%. Note that the
spectrum of (3.46) coincides with the spectrum of the so called Neumann—
Poincaré operator studied for example in [29].

THEOREM 3.15. — The spectrum of the generalized eigenvalue prob-
lem (3.46) is discrete and coincides with two sequences of real numbers

~1<a; <a; <---<0

and

—nft — ... = 5t +
1= Qp == acard(K5) > acard(K5)+1 > 20

such that lim,_, o oz?l: = 0. Here card(K?) is the cardinal of the set K°
defined after (2.3).

Proof. — First, we show that Ay : H/2(2%) — H~1/2(%?%) is an isomor-
phism. Consider some 1 € H™Y/2(X%). If p € H/2(X?) verifies A o = 9,
then R is a solution to

Find u € H}(Q) such that (3.47)
(Vu, Vo) = (¢, v)5s , Vv e H(Q). :
Reciprocally, assume that u is a solution to (3.47). Then the function ¢ :=
u|xs satisfies Ayp = 1. According to the Lax—Milgram theorem, Prob-
lem (3.47) admits a unique solution for all 1 € H=1/2(%%). We infer that

Ay HY?(2%) = H-1/2(%9) is indeed an isomorphism.

Now, remarking that A., A; have the same principal symbol and using
standard arguments of pseudo-differential operators theory (work as in the
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proof of [26, Theorem 1]), we can show that A_ = A, — A; : H/2(29) —
H~1/2(3%) is compact. We emphasize that the assumption of smoothness of
Y9 here is important.

Using the Riesz representation theorem, define the operator
K : HY2(29) - HY?(29)
such that
(Ko, )ss = (A, ¢)ss forall p,¢' € H/?(Z?), (3.48)

Here, we use the notation (-, )sis := (A4 -, )xs. Note that according to the
features of Ay, the latter form is an inner product in H'/2(X?) equivalent
to the usual one. Remark that («,¢) is an eigenpair for (3.46) if and only
if we have K¢ = ag. But due to the properties of A_, K is a selfadjoint
and compact operator. Therefore, the spectrum of (3.46) coincides with a
sequence of eigenvalues which accumulate at zero. We can use the min-mazx
principle (see [45, Chapter 3]) to characterize these eigenvalues. We have
af = sup M (3.49)
pet/2(no)\ {0} (A+p; P)ws
By the min-maz principle, we know that this sup is attained for some gaf.
By induction, for k > 2, we define
of = sup Ay p)ws
peHY/2(2)\ {0}, (Arp, p)ss
eL{ef el 1}

(3.50)

Here, if ¢, ¢’ are two elements of HY/2(2%), we write ¢ L ¢’ when (¢, ¢')s5s =
(Aro, @ Yss = (V(Ry), V(Ry¢')) = 0. Similarly, we define

(A_p,Q)ss

o = in , 3.51
b pen2mon oy (Mg, p)us (351
and, by induction, for k > 2,
A_
a = inf A9, p)zs (3.52)

mn .
peHY/2(=9)\{0}, Ay, 0)5e
e Ll{py 1}

Observing that for all ¢ € H/2(29) \ {0} we have
(A, p)ss _1-a
<A+<P>@>25 1+a’

we deduce that there holds aff € [~1;1] for all k € N* := {1,2,...}. Tak-

ing ¢ = k|55 with % defined in (3.1), we find @ = 0 and consequently

(A_p, p)ss /(AL p,p)ss = 1. This allows one to prove that af = -+ =
a;rd(KJ) = 1. Now, if a;rd( 41 = 1, then there is ¢ € HY2(x%)\ {0}

with a = (Aip, ©)ss /{(Aep, )56 > 0,

K9)
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such that (A;p, @) =0 and Ry € ’}Q‘B \ {0}. This is impossible and there-

fore there holds a;rd(K5)+1 < 1. Similarly, if a; = —1, then there exists
© € HY/2(x2%)\ {0} such that (A.p,)ss = 0. This can not happen, which
implies that a; > —1. g

3.4.2. Optimality of the invertibility conditions

From the discussion preceding the statement of Theorem 3.15, we deduce
the following result.

THEOREM 3.16. — For k. € (—00;0)\ {—1}, the operator A2 : H{(Q) —
H}(2) is an isomorphism if and only if

r 1 1
ke & {ali l,kkl}u{oﬁl,kZ(zard(K‘s)—ﬁ—l},

oy — Q

where the aif are defined in (3.50)(3.52).

Observing that the map o — (a+1)/(a — 1) is decreasing on (—1;1), we
deduce in particular from Theorem 3.16 that A? is an isomorphism for

+ _
aCar + 1 a + 1

ke € | —o0; —crdEH ul 2L 0. (3.53)
acard(K‘s)Jrl -1 = 1

But one can verify that we have

+ —
acar +1 @ +1
&:_1/771% and L = —1/M},
-1 o] —1

+
X ard(K)+1

where m,, M, are the constants defined in (3.4). As a consequence, the in-
vertibility condition for A2 obtained in Proposition 3.6 is the same as (3.53).
This shows that the result of Proposition 3.6 is optimal in a certain sense.
This is the first remark of this section.

3.4.3. Comparison with existing literature

In previous articles (see in particular [12] and [18]), authors have worked
with the operator T : H}(Q) — H(Q) such that

. Q‘s
Tp=1{7% e (3.54)
—p+2Pp in
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where, setting H} 5,(0) := {¢las, ¢ € H§(Q)}, P : Hj 5 (Q22) — H(Q?)
denotes the harmonic extension operator, i.e. the operator such that Py
solves the problem

{A(Pcp) =0 in (3.55)

Po=¢ on 090.
We have T o T = Id which shows that T is an isomorphism of H}(€2). On the
other hand, for all ¢ € H}(Q), we find
(V(A2(T9)), Vo) = ec|Vepllds + leil IV ollgs + 26i(V(Pg), Vio)gs. (3.56)
Set )
_ IV (PRI,
My = sup e
ettt o@nfoy  1Vellgs

0,00

(3.57)

Using Young’s inequality, from (3.56) we infer that for all 7 > 0, there holds
(V(A2(T9)), V)| = (ec = el MD) [ Vpllds + leil (1 =7) [ Vil (3.58)

As a consequence, we deduce that when e, > |51|M5D & ke = gi/€c >
—1/M 9, the operator A% is an isomorphism of H}(f2). Let us compare this
operator T introduced in (3.54) with the T}, defined in (3.12). Clearly in
%, we have Ty = The. In QJ, for ¢ = @), + @5 + @ with @), € 7-76,37
®), € spanyc s {oh} and ¢ € HE(Q2 U Q?), we have
THe = Pn+ ®n — @.
But one observes that
Po =P(on+ On+¢) = P(Pn + Pn) = &n + .

Therefore, we have —p + 2Pp = @ + @, — ¢ = Thp in QF which shows
that the operator T defined in (3.54) coincides with T},. Moreover, using

Lemma 3.4, it is an exercise to prove that M’ %) is equal to the constant M9
defined in (3.4). Therefore, the simple operator T in (3.54) is already very
efficient. This is the second remark of this section.

3.4.4. T-coercivity operator in the general case

Finally, we explain how to construct an operator of T-coercivity for con-
trasts k. as in the statement of Theorem 3.16, in particular for contrasts in
(—1/m$y; —1/M%) \ {—1}, this case being not covered by Proposition 3.6.
First, we reindex the eigenvalues {o, }n>1, {0} }n>cara(xsy+1 and denote
them {an}n>1. Let (vy) be a family of eigenfunctions of the operator K
introduced in (3.48) associated with the eigenvalues «,,. We choose them so
that the functions R, n > 1, form an orthonormal basis of 7—7‘5D. Now we
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define the operator Tp : H§(Q) — H{(2) such that for ¢ = @, + @5 + @

with &, = 3, ey 1 Ren € HY, P € spangc s {0} and ¢ € HY(Q2UQ?),
there holds

Y Rpn + @ + @ in QO

Tpyp = D onens tnmRpn + Pn + gf Tn ‘ (3.59)
Y onens tn ¥ Rn + @1 — @ in Q5.

Here we take t,, = 1 for n such that k. > k,, := (a,+1)/(a,—1) and t,, = —1

otherwise. The operator Tp is valued in H}(2) and we have Tp o Tp = Id
which guarantees that Tp is an isomorphism of H}(€2).

PROPOSITION 3.17. — Assume that k. # —1 is such that for alln € N*,
we have ke # Ky, with
op +1
o, — 1
Let Tp : H{(Q) — H}(Q) denote the isomorphism defined in (3.59). Then
(V(AY(Tp)), V") is coercive in H(Q). As a consequence, A2 : H{(Q) —
H}(2) is an isomorphism.

Proof. — For all p € H}(Q2), we find

eV, V(Tpp) = Y tn1ml*(eV(Ren), V(Ren))

neN*

(3.60)

Rp =

+ (€eVP, VOi)qs + (Ie]VE, VE).  (3.61)
But by the definition of the k,,, we have, for all n € N*|
(V(Rﬂﬁn)vv(R‘Pn))Qg = _Kn(v(R<Pn)»v(R‘Pn))Qf~
This allows us to write

Z ln |7n|2(5v(R@n)v V(Ren))
neN*

= Ee Z tn [l (ke = £2) (V(Repn), V(R‘Pn))ﬂf
neN*
=& Z Yol = £l (V(Repn), V(R@n))ﬂf (3.62)
neN*
Observing that we have ||[V(Rep,)[3s = infmens [km| HIV(Ren) 35 (note
that the sequence (|ky,|) is bounded), from (3.62) we obtain

Y ol (eV(Ren), V(Rew))

neN*
> C inf |re — k) > aPlIVRen) . (3.63)
neN*

Using (3.63) into (3.61), we get (eV, V(Tpyp)) > C inf,en-
for all ¢ € H{ ().

Ke—Fn| ||Vg0||2
O
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Remark 3.18. — In the following, we will not work with the operator Tp
defined in (3.59) to investigate what happens for contrasts in (—1/m; —1/M)\
{—=1}. The reason is that the value of the &,, defined in (3.60) depends on
6 and the operator Tp is useful to prove a result of uniform invertibility of
A? only if we know that there is a segment of (—1/m; —1/M)\ {—1} of non
empty interior which is uniformly free of the k,, as ¢ tends to zero. It is an
open question to find conditions on the geometry such that this occurs.

4. Analysis of the cell problem and properties of the
homogenized tensors

In this section, we study a scalar problem set in the reference cell (supple-
mented with periodic boundary conditions) and the associated homogenized
tensor. These quantities, which appear in the homogenization of Maxwell’s
equations considered in Section 5, are the same as the ones in [14] and [18§],
so that the results below complement and improve those obtained therein.

4.1. Cell problem

Denote by 425.(Y) the subset of functions of ¥'>°(Y) satisfying periodic

boundary conditions on Y. Let H._ (Y') be the closure of €5, (Y) for the
norm of H'(Y'). Then set

1) i= { € B )| [ pao o},

We endow this space with the inner product (V-,V-)y. For n equal to € or
w as defined in (2.2), the problem we are interested in writes

{Find p € HL, (V) such that:

per,o
(WVQOv VQD/)Y = E(@/)’ v %0/ € Héer,o(y)7
where £ is a continuous linear functional on Héer’o(Y). In order to study this

problem, we introduce the closed subspace of Hl .. ,(Y)

H%)er,O,BY,i (V) :={peH,(Y)|¢=0ondY;}.

per,o

(4.1)

Then we define the space ﬁb such that
~ 1
Héer,o(Y) = Hb S5 Hll:;er, 0, 9Y; (Y) (42)

We will not look for an exact characterization of ﬁ.,. Let us simply remark
that if ¢ € H,, then for all ( € €5°(Y. UY;) C Héer,O,BYi(Y)’ we have
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0 = (Vip, V()y. This implies that the elements of ﬁb are harmonic in Y, UY;.
Then we introduce the constants

(4.3)

my = inf CH M, =

we#,\{0} ||V‘P||§/E .

THEOREM 4.1. — Assume that k. (resp. k) € (—oo; —1/m)U(—1/M;0)
where m, M are defined in (3.35). Then the problem (4.1) with n =& (resp.
1 = p) admits a unique solution which depends continuously on €.

Proof. — To set ideas, we take 1 = ¢, the proof is the same for n = pu.
With the Riesz representation theorem, define the operator D, : H} ., (Y) —
H}., .(Y) such that

(V(D.9), V' )y = (eVe,Ve')y,  Vo,¢ € H, (V). (4.4)
Let us show that D, is an isomorphism when k. = ¢;/e. € (—o0; —1/m) U
(=1/M;0). For ¢ € H} . (Y), consider the decomposition ¢ = ¢}, + @ with
Yn € 'qu and ¢ € Hper,o,an (Y). With this decomposition, we define the
operators Tbi such that

T, _ {iwh +@ Y,
b P = ~ .

top—F Y
Working as in the proof of Proposition 3.6 with the operators T+ replaced
by Tbi, one establishes that D, is an isomorphism when k. € (—oo; —1/m;,)U
(=1/M,;0). To obtain the desired result, it remains to show that m < m,
and M, < M. Since ’Hb C ’HO, from Lemma 3.12, we clearly have M, < M.
Now let ¢ be an element of 7, \ {0}. Denote ¢ € Ho the function such that
¢ = ¢ on 9Y;. The function ¢ decomposes as ( = C—i— app with C € 7-[0
and o € R (¢p is defined before (3.34)). Note that ¢ # 0 otherwise we
would have o = 0 (because ¢p = 1 on 9Y; and fBYi ¢do =0) and so ¢ =0.
Observing that ¢ — E— aisin Hll)m 0,0y, (Y), due to the decomposition (4.2),
we can write

(Ve V(e =)y = (Vo, V(g —C—a))y =0. (4.5)

But on the other hand, since we have Vo = VE = V( in Y;, so that in
particular there holds

(4.6)
we infer from (4.5) that
(Ve V(g = )y, = 0. (4.7)
This implies
IVell3, < (4.8)
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Gathering (4.6) and (4.8), we deduce that

IVoll3,
SvClz, T IVells,

Taking the infimum over all ¢ € H,\ {0} in (4.9), we obtain that m < m;,. O

(4.9)

2. Homogenized tensors

Assume that the contrasts . and k, are located in (—oo;—1/m) U
(~=1/M;0). For n = € or p and j = 1,2,3, we define the function xj €
H!_ .(Y) such that

per,o
(VX VEy = (\Vy;, VEy, V&€ Hp o(Y). (4.10)
Note that the right hand side of (4.10) simply writes
23
(nVy;, VE)y = / n5—dy
! y 0y;
and that Theorem 4.1 ensures that the functions x are well-defined. It is also
worth noticing that by setting x” := (x7, x4, x1)T, we have for all XA € R3:

mwxxmﬂay:mvuxmvayzﬂnxvam

VEeHL (V). (4.11)

per,o

Denoting by Vx" the jacobian matrix of x":

Yl
8yk 1<5,k<3

the homogenized tensor associated with 7 is classically defined as the 3 x 3
symmetric matrix J£(n) = (545 (n))1<;, k<3 given by (see, for instance, iden-
tity (6.35) in [22])

1
A0 = 157 [ 0w 10 =(Tx)7] dy, (4.12)
or equivalently (see (6.37) in [22]):
Hr(n |Y|/ NV (y; ) - Vye — x7) dy. (4.13)
PROPOSITION 4.2. — Assume that k. (resp. k,) € (—oo;—1/m) U

(—1/M;0) where m, M are defined in (3.35). Then the matriz 7€ () (resp.
A (1)) is positive definite.
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Proof. — The proofs for 5 (e) and 5 (u) are the same and to set ideas,
we choose to work with €. According to formula (6.44) in [22], for all £ =
(51752353)1— € RB? we have

A€ € = /Y eIVl dy

where the function ¢ is defined by

3
pe(y) = ij(yj — X5 ().

Note that if ¢¢ is constant in Y, then evaluating ¢¢ on 0Y and using the
fact that the functions xj satisfy periodic boundary conditions, we find that
¢ = 0 and so ¢ = 0. Now, we assume that £ # 0. Subtracting the mean
value of the test functions on 9Y;, we see from (4.10) that x5 satisfy the
slightly more general variational equality (the variational space is not the
same as in (4.10))

(eVX5, Ve )y = (eVy;, V¢ )y, V' e H;er(Y).
Taking ¢’ € €5°(Y), this implies that we have
div(eVge) =0 in Y. (4.14)
(¢). — Introduce the function ¢ such that

1
B¢ = g — —— d HL(Y).
Pe = ¢ |3Y2_|/8Yi@g o € Hy(Y)

From (4.14), we deduce that @¢ is harmonic in Y, UY;. Therefore, we have
¢ € Ho and from Lemma 3.12, we can write

IVeells, = IV@ells, < M [|[VPe
This allows us to write
H(€) € - € = ecl|Veelly, — leil IVeelly; = (ec — leil M) Ve

Hence, for e, > |6;| M & ke = ¢;/ee > —1/M, the matrix 5 (¢) is definite-
positive. Note that we have V¢ # 0 in Y, otherwise we would have Vi, = 0
in Y (because ¢ € H'(Y) is harmonic in Y,) which is impossible when £ # 0
(see the discussion above).

V. = M|Vl

2
Ye-

(#4). — Now, we consider the case k. € (—o0; —1/m). The proof is a bit
less straightforward and we divide it into two steps. Define the quadratic
form q.(-) : R® — R such that
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Step 1. — First, we prove the following result.

LEMMA 4.3. — Assume that k. € (—oo0;—1/m). Then the form q. is
definite (q-(§) =0=¢=0).

Proof of the lemma. — A bit more generally (this will serve in the proof
of Lemma 4.4 below), assume that £ € R?\ {0} is such that

q:(£) <0 — / 5|Vg05\2dy <0
Yy

Then from identity (4.14), we infer that we must have

Dpe
€e =—wedo < 0. (4.15)

Now, introduce ¢ € Hg the function such that ¢ = ¢¢ on 9Y;. The function
¢ decomposes as ( = C—i— app with C € HO and a € R (pp is defined
before (3.34)). Observe that we have ¢ # 0. Indeed, otherwise e would
be constant in Y;. And then (4.14) together with the unique continuation
principle would imply that ¢ be constant in Y. (because we would have
that Ape = 01in Ye, ¢ = cste on 9Y; and 9,z = 0 on 9Y;) and so in Y.
According to the discussion above, this is impossible when £ # 0. Observing
that e — (Z + a) = 0 on 9Y;, integrating by parts, we can write

(Veoe, Vi(ge — O))v. (V%V(sos —(C+a))y.

= / 905 ado
oY 671 Y 871 (416)
Dpe
= —pedo <0

The last equality above has been obtained using (4.15) and identity (4.14)
multiplied by «. From (4.16) and the Cauchy—Schwarz inequality, we infer
that

7. < IVCIR,.
Since on the other hand there holds Vi, = V(¢ in Y; so that Veelly, =
HVEH%G’ we deduce that

m< —t . (4.17)
Ivelz, — IVels,

But then, when k. = ¢;/e. < —m ™! & &, < |g;|m, we can write

(&) = ()¢ € = /Y eV|pel? dy = el Viel2. — [es] [Vige 12

< (ee = ledlm)IVeell3, <0.
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In particular we obtain a contradiction if £ # 0 is such that ¢.(£) = 0. This
proves that ¢. is definite. O

From classical results concerning quadratic forms, we deduce from Lem-
ma 4.3 that for each k. € (—oo;—1/m), ge(-) is either positive definite or
negative definite.

Step 2. — Now consider some ¢ € R3 \ {0}. Corollary 5.6 of [14] or
Lemma 4.4 below guarantee that ¢.(§) is positive for k. tending to —oo.
Using the fact that ke — ¢ () is continuous and that g.( - ) is always definite
for k. € (—oo0;—1/m), we infer that g.(-) is positive definite for all k. €
(—o0; —1/m). This achieves the proof of Proposition 4.2. O

Below, for the sake of completeness, we present an alternative proof to
Corollary 5.6 of [14] which is a bit more direct.

LEMMA 4.4. — For any given & € R3\ {0}, we have q-(&) > 0 for k.
tending to —oo.

Proof. — Impose that k. € (—oo;—1/m) and for £ € R3\ {0}, assume
that we have ¢-(£) < 0. Define the function

1
De = - — do.
Pe = $¢ |8Y|/ay% o

From (4.14), we can write

lesl IVeells, = lesl IV@ell3, = el Vel

Dpe

2 v

_ o3 d

Y. /@Y8 an 77 )
< Ce|Veelly, = Cee [Vl -

The last inequality in (4.18) is a consequence of the continuity of the map-
pings ¢ — play and ¢ — d,ploy from {p € HY(Y.)|Ap = 0in Y.} to
H'Y/2(9Y) and H71/2(9Y’) respectively. Note that since the mean of ¢ over
dY is null, a classical Poincaré type inequality allows one to prove that the
H'! norm of ¢¢ in Y. is controlled by ||[V¢|ly,. From (4.18), we get

2
IVeel}, _ C o)
IVeelly, Ikl

where C' > 0 is independent of k.. Taking the limit k. — —oo in (4.19),
we obtain a contradiction with (4.17) (here we use that ¢.(§) < 0) because
m > 0 is independent of k.. Therefore we must have ¢.(£) > 0 for contrasts
tending to —oo. O
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4.3. Numerical illustrations

Proposition 4.2 guarantees that if k., k, € (—oo0;—1/m) U (=1/M;0),
the matrices J€(¢), € (u) are positive definite. This may seem a bit sur-
prising and when one looks at the definition in (4.13), this is far from being
obvious. The goal of this paragraph is to present some numerics to illustrate
this property. To set ideas we compute 5 (¢) and to simplify we work in 2D.
In this case, J#(¢) is a 2 X 2 symmetric matrix. We do not expect partic-
ular differences between 2D and 3D settings. Numerically, we approximate
the solutions of the problems (4.10) using a P2 finite element method. To
proceed, we use the library FreeFem++(") to compute the matrix () us-
ing formula (4.13). The mesh size is chosen equal to 0.02. Admittedly the
numerical analysis of problems (4.10) is not standard because of the sign-
changing . However in general, at least for contrasts k. “not too close” to
—1 when 9Y; is smooth, we obtain a reasonable numerical solution. We refer
the reader to [8, 20, 34] for more details concerning these aspects. In Fig-
ures 4.1 and 4.2 below, we display the two real eigenvalues of 57 (¢) with
respect to the contrast . € (—10;0) (we take ¢; = —1 and e, varies) for
two different geometries of Y;. For the numerics of Figure 4.1, the inclusion
Y; is an ellipse while for Figure 4.2, it is a rectangle. We emphasize that in
the latter case, problem (4.10) is not well-posed in the Fredholm sense for
ke € (—=3,—1/3) (see [7, 11]). As a consequence, for this range of contrasts,
our numerical solutions have no sense. But for both settings, we observe
that for contrasts large enough or small enough, the matrix () is positive
definite as expected. Interestingly, at least in the case of the ellipse where
we know that the numerical solution is meaningful except for k. # —1, we
also note that .## () is not positive definite for all contrasts. We emphasize
however that we do not investigate these regimes in our analysis below.

5. Homogenization of Maxwell’s equations

We come back to Maxwell’s problem (%) for the electric field (see (2.9)).
We define the bilinear form ad (-,-) associated with (2.9) such that
A (E,E") = (1) ‘curl E,curl E') —w?(°E, E'), VY E,E’ € Hy(curl).

Let m, M be the constants defined in (3.35). When k., £, € (—oo0; —1/m)U
(—1/M;0), the matrices 7 (¢) and ¢ (u) are well-defined according to The-
orem 4.1. Moreover, according to Proposition 4.2, these matrices are positive

(1) FreeFem++, http://wuw.freefem.org/ff++/.
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Figure 4.1. Representation of the two eigenvalues of J#(¢) with re-
spect to k. varying in (—10;—1) (left) and (—1;0) (right). Here
the inclusion Y; coincides with the interior of the ellipse {(z =
0.540.4cos0,y =0.54+0.2cosh), 6 € [0;27)}.

20

- T T 10 T
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N *
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Figure 4.2. Representation of the two eigenvalues of J#(¢) with re-
spect to ke varying in (—10; —1) (left) and (—1;0) (right). Here the
inclusion Y; coincides with the rectangle (0.1;0.9) x (0.3;0.7).

definite. Hence, we can introduce the homogenized problem

(e Find E*T € Hy (curl) such that (5.1)
curl((p) ! curl E®) — w2 (e) BT = iwJ '
whose variational formulation writes
Find E°® € Hy(curl) such that for all E’ € Hy/(curl) (5.2)
(BT B =iw(J,E). '

eff

Here ag,

(-,-) is the bilinear form defined on the space Hy (curl) such that
o (E,E') = (# ()" curl E,curl E') — (' (e)E, E').

It is worth noticing that the above homogenized problem (which has exactly
the same form as the one obtained for classical (positive) Maxwell’s equa-
tions) involves the homogenized tensors of the scalar problems studied in
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the previous sections. This fact will be used in a crucial way in the sequel to
prove our homogenization result for Maxwell’s system. Classically, one can
easily prove that (22°f) admits a unique solution for all

w? e C\ At (5.3)
where AT is a discrete subset of [0; +00).

The proof of a homogenization result for Maxwell’s equations without
sign-changing coeflicients is by now quite classical (see for instance [6, 21,
43, 48]). It may be achieved by using, for instance, a notion of convergence
specific to the periodic homogenization, namely the two-scale convergence,
which was introduced by G. Nguetseng in [32] and further developed by
G. Allaire [2]. Using this notion, a typical proof for such a homogenization
result relies on three main ingredients. First, a uniform energy estimate is
obtained for the sequence of solutions of (£2?). Next, one shows that this
uniformly bounded sequence has a (two-scale) limit that solves a two-scale
limit problem. Finally, this limit problem is decoupled, yielding the homog-
enized problem which is proved to be well-posed. Due to the sign-changing
coefficients and the presence of the non sign-definite L? term involving w?,
proving the first ingredient is far from being obvious. In particular, the strat-
egy proposed for instance in [21] does not apply anymore (as the spectral
decomposition available in the strongly elliptic case fails). Instead, we pro-
ceed as follows. First, we prove a homogenization result for solutions of (£2?)
under a uniform energy estimate condition. Using this result, we prove by
contradiction the needed uniform energy estimate for the solutions (£?).
This leads to the main result of the paper (Theorem 5.6), namely the ho-
mogenization result for sign-changing Maxwell’s equations.

5.1. Homogenization result under uniform energy estimate condi-
tion

Let J be a given field of L?(Q). The aim of this section is to obtain a
homogenization result for a sequence of functions (E°) solving (£?) and
satisfying the uniform energy estimate

3C>0,¥0e(0;1], |E)?+ |curl E°|2 < C||J|>. (5.4)

As it was already observed in [18] in the analysis of the homogenization
process for the Dirichlet scalar operator Ag, the presence of sign-changing
coeflicients does not affect the two-scale convergence result. However, for
the sake of completeness, we give here a proof of this convergence result
following [6, 43, 48] and in particular [21]. We start by recalling the definition
of the two-scale convergence (see [2]). Here we set €. (V) := (€°2.(Y))3.

per per
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DEFINITION 5.1. — A sequence (E°) in L2(Q) two-scale converges to
E° ¢ L2(Q x Y) if we have

§—0

lim (E°, v(-,-/8)) = /Q(Eo(x, ), v(z, )y do

for allv € 65°(Q; €55, (Y)). Then we denote E° 2, E°

per

The notion of two-scale convergence is interesting due to the following
compactness result (see for instance [43, Proposition 2.5]). It was first ob-
tained by N. Wellander in [46] and then by V. Tiep Chu and V.H. Hoang
in [43]. Here, Hpe (curl;Y) denotes the closure of €5c,(Y) for the norm
(I 13 + lleurl - [[3)1/2.

PROPOSITION 5.2. — Let (E°) be a bounded sequence in H(curl). Then,

there exist a sub-sequence, still denoted (E‘S), and functions BT ¢ H(curl),
0 c LA (O HL (Y)), E' € L2(Q; Hyer(curl,Y)) such that the following two-

per
scale convergence results hold as § — 0:

E° 2% Eef 4 V,0, curl E° 2% curl BT + curl, E'.
Moreover, we also have the following weak convergence results in L?(Q):
E° —~ BT in L2(Q), curl E° — curl E°T  in L2(Q).
We are now in position to prove the main result of this section, namely

the convergence of a sequence of solutions of problem (429) satisfying the
energy estimate (5.4) to a solution of (#2°%) when § — 0.

PROPOSITION 5.3. — Assume that k., Kk, € (—oo;—1/m) U (—1/M;0)
where m, M are defined in (3.35). Let (E°) be a sequence of solutions of
(22°) satisfying the uniform estimate (5.4). Then as 6 — 0, we have

E° —~ E°ff and curl E° — curl E°f in L2(Q)
where E°T solves the homogenized problem (22°%).

Proof. — We take in (£29) (see (2.9)) a test function of the form

)=t 36 (1. 2) £ (0 ().

with ¢ € €L(Q), ¢! € €L (LER(Y)), v € €5°(Q;€5.(Y)). By taking

per per

the limit as § — 0 thanks to Proposition 5.2, we get as in [43, Proposition 2.5]
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the following two-scale limit problem:

| )™ (curl B () + curl, B (2.1)

- (curlp(z) + curly, ' (z,9)) dzdy

[ el (B@) 4 V,0000) - (o) + i) dody
QXY

:iw/ J-godx+iw/ J(z) - Vy(z,y)dedy. (5.5)
Q axy

Since ¥(z,-) is Y —periodic, the second integral of the right hand side van-
ishes and hence, setting

R(z,y) i= (u(y)) " (curl B (z) + curl, B'(z,y)) (5.6)
and
S(z,y) == e(y) (Eeff + vy@) : (5.7)

relation (5.5) reads

R(z,y) - (curlp(z) + curl, @' (z,y)) dzdy
QxYy

— w2/ S(z,y) - (p(z) + Vyo(z,y)) dedy = z’w/ J-pdz. (5.8)
axy o)

In order to prove that E° solves the homogenized problem (2°%), it suffices
to show that the two terms of the left hand side in the above equation can
also be written as follows:

R(z,y) - (curlp(z) + curl, @' (z,y)) dzdy
QXY

:/(%(N))_lcurlEeﬂwurledx (5.9)
Q

| S tpla) + Vylaw) dedy = [ AT pds. (5.10)
QxYy Q

Indeed, once these two last relations proved, the conclusion follows immedi-
ately since problem (5.8) writes then

/ (A (1))~ curl E°T - curl  dz — w? / H(e)ET . pdx = iw/ J - pde,
Q Q Q
which is exactly the weak formulation of the homogenized problem (Z2¢ff).
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Step 1: Proof of relation (5.9). — Taking in (5.8) test functions ¢ = 0
and 1 = 0, we obtain that

R(z,y) - curl, o' (z,y)dzdy =0, V' €€ (Y Coer(Y)). (5.11)
QxyY

The above relation implies the existence of a function p € L*(; H],, ,(Y))
such that (see for instance the proof of Proposition 1.14 of [2], and more
precisely the discussion following relation (1.19) therein)

R(z,y) = Vyo(z,y) + /Y R(z,7)dj. (5.12)

Now, we follow the ideas of [6] and [21}. From the definition (5.6) of R and
direct calculation, one has for £ € HY_ (Y):

| 1) R - Ve dy
= /Y (curl E°T(z) 4 curl, E'(z,y)) - VE(y)dy = 0. (5.13)
Combining (5.12) and (5.13) we get that
/ 1) Vyp(z,y) - VE(y) dy = / m(y)A - VE(y) dy,
Y Y

where we have set A = — [}, R(z,y)dy € R3 (here, x is fixed and can be
considered as a parameter). Comparing with (4.11), we immediately obtain
that p = A - x* = 2?21 Aj - X}, where x* = (XY xh s xE)T solve the cell
problems (4.10) with n = p. Consequently, we have V,p = Z?‘:1 Aj- VX =
(Vx*)TA, and hence

R(w.9) = Vypla) + | RGa.5)d5 = [10~(9x)"] | Ra.5) 5
Using the above formula and expression (4.12) of J#(u), we get that
/Yu(y) (z,y)dy = A /Rwydy
But on the other hand, we also have from definition (5.6) of R(z,y) that
/Y w(y)R(z,y)dy = /Y(curl E"(z) + curl, E'(z,y)) dy = curl E*%(z).

Since J(p) is positive definite for k,, € (—o0; —1/m)U(—1/M;0), we obtain
by combining the last two relations, that

/Y R(z.y) dy = (A())" curl B (z),
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which also reads (due to the definition of R)
/ (1(y)) " (curl E*(z) + curl, E*(x,y)) dy = (4 ()~ curl B (z).
1%

The claimed relation (5.9) simply follows by multiplying the above equation
by curl ¢, integrating over 2 and adding (5.11).

Step 2: Proof of relation (5.10). — Taking ¢ = ¢! = 0 in (5.8), we
obtain that (since w # 0):

/ S(z,y) - Vy(z,y)dedy = 0. (5.14)
QxYy
Since ¢ is arbitrary in €5°(2; 65, (Y)), this implies in particular that for

almost every x € (2 and for all £ € 655, (Y):
| ste - vewa

- /Y eW)(V,0(z,y) + B (2)) - Ve(y) dzdy = 0. (5.15)

Hence
/ £(y)V,0(z,y) - VE(y) dy = / ()N - VEW) dy,
Y Y

where we have set ' = —E*f(2) € R3 (for a fixed value of z). Comparing
the above relation with (4.11) for n = ¢, we get that ©(z,y) = A" - x and
hence V,0 = (Vx°)TX = —(Vx*)TE®®(z). Using expression (4.12) of the
homogenized matrix, we obtain that for every ¢ € €5°(2):

| s@ae@drdy= [ ) (B @)+ 9,000) - ola) dacy

= / H(e)ET . pdz. (5.16)
Q

Relation (5.10) follows immediately by adding (5.14) and (5.16). O

5.2. Proof of the uniform energy estimate

This section is devoted to the proof of the uniform estimate (5.4) for
solutions of (22?). More precisely, we have the following proposition.

PROPOSITION 5.4. — Assume that k., K, € (—oo;—1/m) U (=1/M;0)
where m, M are defined in (3.35). Assume that w? € C\ A°® where A%
appears in (5.3). Then, there exists &g > 0 such that for all § € (0;do],
problem (%) admits a unique solution E°. Moreover we have the estimate

1B + llcurl E°|| < C || J| (5.17)
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where C' > 0 is independent of 6 € (0; do].

Proof. — When k., k, € (—o0; —1/m) U (—1/M;0), according to Theo-
rem 3.14, we know that A2 : Hj(Q) — H§(Q) and B, : HL(Q) — HL(Q)
are isomorphisms. From the Theorem 6.1 of [10], we infer that /3 (w) :
Hpy(curl) — Hy(curl) is an isomorphism if it is injective. Therefore, we
have to prove that dﬁ(w) is injective for § small enough. To proceed we
work by contradiction. Slightly more generally, for a given J € L?(Q), as-
sume that there is a sequence of values of 0 denoted (d)ren, with 6 — 0,
such that if we set e, 1= €%, py = p*, By = E% € Hpy (curl), we have
for all E' € Hy(curl)

a®(Ey, E') := ((ux) "' curl Ey, curl E') — w? (exEy, E') =iw (J,E'),

as well as
| EL||? + ||curl Eg || > k.

Then set
Ey, = E/(| Ex|” + |[curl E|?)
and  Jy := J/(| Ex|]* + |[curl Ei|?).
We have _ B
a"(Ey, E') =iw(Jy, E'), VYV E €Hy(curl) (5.18)
and _ _
| Bl + lleurl By =1, Tim [Tyl =o0.

Since (E}) is bounded in Hy(curl), we can extract a subsequence, still
denoted (E}), such that (Ey) converges weakly in Hy (curl) to some E €
Hy (curl). Thanks to Proposition 5.3, we can pass to the limit in (5.18) to
get

By, E')=0, VE' €Hy(curl). (5.19)
Since w? € C\ Af, this implies that Eo = 0. In order to obtain a contradic-
tion, it remains to show that (E}) strongly converges to zero in Hy (curl).
To proceed, we have to establish some sort of compactness result using the
fact that when w # 0, we have div(exEx) = 0 in Q which implies that
Ej € V n(eg). For each k > 1, from Theorem 5.1 of [10], we know that when
ke € (—00;—1/m) U (=1/M;0), V(ex) is compactly embedded in L2(2).
But here we need some uniform result with respect to k. To proceed, we
will take in (5.18) a well-chosen test function. Let us mention that a simi-
lar difficulty appears in the justification of the approximation of Maxwell’s
equations with finite elements methods, the mesh size h replacing the pa-
rameter § (see [30, Section 7.3.2] and the references therein). First, introduce
the unique function v, € HJ, (Q) such that

(1 Vo, V') = (g, curl By, Vo), Vo' € HL(Q).
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When k, € (—o0;—1/m) U (—1/M;0), from Theorem 3.14, we know that
Y is well-defined. Moreover, we have |[Viy|| < C|curl Ex| < C where
C > 0 is independent of § (note that (p) is a bounded sequence of functions
of L>(2) and we have ||uy|p~Q) = max(ue,|us|) for all & € N). Then
Ltk (curl Ek — Vi) is divergence free in  and satisfies uy(curl Ek — Vi) -
n = 0 on 9. From [4, Theorem 3.17], we know that there exists a unique
IP’kEk € V(1) such that

curl(PLE}) = puy(curl Ej, — Vaby). (5.20)
Since in V5 (1), ||curl- o is a norm which is equivalent to || - |lcur1 (Propo-
sition 2.1), we infer that (P) is a sequence of operators which are uniformly

bounded from Hy (curl) to Vy(1). Testing in (5.18) with E' = P,E}, us-
ing (5.20) and integrating by parts, we get
iw(Jg, PrEy) + w* (ex By, Py Ey) = () ™" curl By, curl(P,Ey,))
= (curl E;, curl B, — Vi)

that is B B B B B

iw(J g, PrEy) + w?(er By, PLEy) = ||curl B2 (5.21)
Using that Py, : Hy (curl) — V (1) are uniformly bounded, (E}) converges
weakly to zero in Hy(curl) and V(1) is compactly embedded in L?(£2)
(Proposition 2.1), we deduce that we can extract a subsequence, still de-
noted (Ey), such that (PyE}) converges strongly to zero in L%(£2). Then
from (5.21), we deduce that the sequence (curl E}) converges strongly to
zero in L%(Q). Using the result of Proposition 5.5 below which guarantees
that ||Eg| < C||curl Ey|| with some C' > 0 which is independent of k, we
deduce that (E}) converges to zero in Hy(curl). This contradicts the ini-
tial assumption. As a consequence, taking first J = 0 above, we deduce that
(2°) is injective and so uniquely solvable for § small enough. Then for a given
non zero J € L2(€2), the above lines imply the uniform estimate (5.17). O

PROPOSITION 5.5. — Assume that k. € (—oo; —1/m)U(—1/M;0) where
m, M are defined in (3.35). Then there is a constant C > 0 independent of
& such that

|E|| < C|curlE||, VE e Vy(). (5.22)

Proof. — If E € Vy(g?), according to [4, Theorem 3.12], we know that
there is a unique u € V(1) such that E = (¢°)~! curlw. Then integrating
by parts, we find

((¢2)~! curlu, curlu’) = (curl E, '), Vu' € Vp(l). (5.23)
Introduce the function ¢ € H}(2) such that
(e°V,V¢') = (€° curlu, V'), V¢ € Hy(9).
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Since k. € (—o0;—1/m) U (=1/M;0), from Theorem 3.14, we know that
¢ is well-defined. Moreover, we have [|[Vy|| < C|curlu| where C' > 0 is
independent of § (note that [|&°||;,«(q) = max(e., |g;]) for all § > 0). Then
% (curlu — V) is divergence free in Q and again from [4, Theorem 3.12], we
know that there is a unique Tu € V(1) such that curl(Tu) = £°(curlu —
V). Since in Vp(1), |curl- || is a norm which is equivalent to || |lcurl
(Proposition 2.1), we infer that T: V(1) = V(1) is a uniformly bounded
operator. Choosing v’ = Tu in (5.23) and integrating by parts, we obtain

(curl E,Tu) = ((¢°) ! curl u, curl(Tu))
= |lcurlu||* — (curlu, Vi) = ||curl u|*.

Using the Cauchy—-Schwarz inequality, this gives |curlu| < C|curl E||
where C' > 0 is independent of . This yields the desired estimate (5.22). O

5.3. Final result

Gathering Propositions 5.3 and 5.4, we can state the final result of this
article.

THEOREM 5.6. — Assume that k., k,, € (—o0; —1/m)U(—1/M;0) where
m, M are defined in (3.35). Assume that w € C\ A°® where A% appears
n (5.3). Then, there exists 5 > 0 such that for § € (0,00], the solution E°
of problem (%), which is well-defined according to Proposition 5.4, satisfies

E° ~E"  and curl E° — curl E*" weakly in L*(Q)

where E° is the unique solution of problem (2°%) given by (5.1).

Let us conclude this paper with two comments. Firstly, in this work, we
only prove weak convergence results. Strong convergence results (using cor-
rectors) for Maxwell’s equations with positive materials have been obtained
in [41, 42]. It would be interesting to understand if we can adapt the ap-
proach proposed in these two articles to our setting. Secondly, the obtained
bounds for the contrasts (involving m and M) to ensure the homogeniza-
tion process are probably not optimal. Improving them would require a sharp
analysis of the asymptotic behavior of the critical contrasts given by (3.60) as
0 tends to zero (see Remark 3.18). Is it possible that the two scalar problems
with Dirichlet and Neumann boundary conditions be uniformly well-posed
as J tends to zero, even when some cell problems have a non zero kernel or
when the homogenized tensors are not positive definite? This has still to be
clarified.
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Appendix. Table of notation for the functional spaces

For the reader’s convenience, we list below the main functional spaces

used throughout the paper:

Cr(Q) = (65°(Q)°
Cra:(Y) = (Gra(Y))’
Hy(?) == {p € H'(Q)|¢ = 0 on 00}
HL(Q) = {p € HI(Q)| [, pdv =0}
Hp = {p € Hy(2) [ Ap =0 in Q) UQJ}
Hy = {p e HYL | (Vo,Veh) =0, VEke K’}
Hy(Q) = {p € H(Q)] [5qs ¢ do =0}
HY = {p € HL(Q)|Ap = 0in Q5 UQ?, O, = 0 on 9N}
Hy = {p € HX[(Vo, Vok) =0, Vh e K2\ {ko}}
Ho 895(9) = {p e HY(Q) | =0 on 90}
H3 0 (20) = {las € HA(Q)}
HA(Y) = {p € HA(Y)| [y, ¢do =0}
Ho = {p € Hy(Y) [Ap =0 in Y, UY}
Ho = {p € Hy(Y)|Ap =01in Y, UY}
Ho = {p € Ho|(Ve, Viop) = 0}
Ho = {p € Ho|Onp=00ndY}
Hécr(Y) = Closure of €35,(Y) for the norm of HY(Y)
Hy., oY) == {p € Hyo, (V)| [5y, pdo =0}
Hper,0,0v, (Y) = { € Hper o (Y) [ = 0 on 9Y;}
#, := Orthogonal complement of H%)cr,O, oy, (Y) in Hpcr +Y)
H(curl) := {H € L*(Q) | curl H € L*(Q)}
Hpy(curl) := {E € H(curl) | E x n =0 on 90}
H,.(curl;Y) := Closure of ‘ff)ir( ) for the norm (|| - ||%/ + ||curl - ||%/)1/2
L*(Q) = (L*(Q))°
Vr(€) = {H € H(cur)) | div(§H) =0, £H - n =0 on 08}
Vn(€) = {E € H(curl) | div(¢E) =0, E xn =0 on d0}.
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