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Weighted local Weyl laws for elliptic operators (∗)

Alejandro Rivera (1)

ABSTRACT. — Let A be an elliptic pseudo-differential operator of order m on a
closed manifold X of dimension n > 0, self-ajdoint with respect to some positive
smooth density X . Then, the spectrum of A is made up of a sequence of eigenvalues
(λk)k>1 whose corresponding (orthogonal) eigenfunctions (ek)k>1 are C∞. Fix s ∈ R
and define the following integral kernel on X

Ks
L(x, y) =

∑
0<λk6L

λ−s
k
ek(x)ek(y) .

We derive asymptotic formulae near the diagonal for the kernels Ks
L(x, y) when

L→ +∞ with fixed s. For s = 0, K0
L is the kernel of the spectral projector of A on

the energy levels ]0, L], studied by Hörmander in [11]. In the present work we build
on Hörmander’s result to study the kernels Ks

L for s ∈ R fixed. If s < n
m
, uniformly

in x ∈ X , Ks
L(x, x) � L−s+n/m and, at distance L−1/m around the diagonal, the

rescaled leading term behaves like the Fourier transform of an explicit function of the
symbol of A. If s = n

m
, under some explicit generic condition on the principal symbol

of A, which holds if A is a differential operator, the integral kernel has a logarithmic
divergence near the diagonal smoothed at scale L−1/m, so that on the diagonal it
is pointwise of order ln(L). Our results also hold when A is an elliptic differential
operator on a compact open subset of Rn and Dirichlet boundary conditions are
imposed on the ek.

1. Introduction

1.1. Context and presentation of the results

The purpose of the present work is to compute pointwise asymptotics of
the integral kernels of certain operators defined by functional calculus from
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either elliptic self-adjoint pseudo-differential operators on a closed manifold
or on a compact manifold with boundary, with Dirichlet boundary condi-
tions. Stating the results in full generality requires some vocabulary from
microlocal analysis and some additional definitions. For this reason, we start
by stating our results in the simpler case of elliptic self-adjoint differential
operators on a closed manifold. The general case is presented in Section 2.
This, of course, leads to some redundancy between different statements which
we accept for the sake of accessibility and transparency of the main results.

Let X be a smooth compact manifold without boundary, of positive di-
mension n > 0 and equipped with a smooth positive density dµX . Let A
be an elliptic differential operator on X of positive order m. By this we
mean that in any local coordinate system x = (x1, . . . , xn) on X defined on
U ⊂ Rn, A, acts on C∞c (U) as∑

06|α|6m

aα(x)(−i∂)α

where α ∈ Nn and aα ∈ C∞(Rn) and for each ξ ∈ Rn \ {0}, we have

σA(x, ξ) :=
∑
|α|=m

aα(x)ξα > 0 .

The function σA is called the principal symbol of A in these coordinates. It
is well known (and easy to check) that the principal symbol of A defines a
smooth function on the complement of the zero section of T ∗X independent
of the choice of coordinates. We assume that A is symmetric with respect
to the L2-scalar product on (X ,dµX ). Then one can show (see Section 2.1)
that A has a unique self-adjoint extension whose spectrum is made up of
a sequence (λk)k∈N of real eigenvalues diverging to +∞ with smooth L2-
normalized eigenfunctions (ek)k∈N forming a Hilbert basis for L2(X ,dµX ).
For each L > 0, let ΠL be the L2 orthogonal projector on the space spanned
by the eigenfunctions ek such that 0 < λk 6 L. Since this space is finite-
dimensional, ΠL has a smooth integral kernel EL ∈ C∞(X × X ). More
explicitely,

∀ (x, y) ∈ X × X , EL(x, y) =
∑

0<λk6L
ek(x)ek(y) .

In [11], Hörmander studied the behavior of this kernel(1) on a neigh-
borhood of the diagonal as L → +∞. Integrating EL over the diagonal he

(1) Actually, Hörmander considered eigenvalues λk 6 L without requiring λk > 0, but
this only adds a bounded error term to the estimates.
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recovered the following estimate, also known as Weyl’s law:

Card{k ∈ N | λk 6 L} ∼
1

(2π)n

∫
X

∫
σA(x,ξ)61

dxdξ × L n
m

Hörmander’s result is stronger than the above estimates in two respects.
First because the error term obtained is smaller than the ones known before
and is sharp in all generality. Secondly, the result actually provides local in-
formation concerning the behavior of the kernel EL near the diagonal, which
is why is sometimes called the local Weyl law. We will state this theorem in
Section 2.2 (see Theorem 2.4).

In recent years, Hörmander’s local Weyl law has received a lot of attention
because EL turns out to be the covariance of a certain Gaussian field on X
defined as a random linear combination of eigenfunctions of A. Following
the early work [1], more recently, several authors have studied the average
length of the zero set of these functions, the average number of connected
components with given topologies, as well as concentration in probability of
these quantities (see for instance [4, 6, 7, 10, 15, 18, 19, 20, 24, 30]). Indeed,
if (Zk)k>0 is a sequence of i.i.d. real random variables with law N (0, 1),
then, the one parameter family (fL)L>0 of Gaussian fields defined at each
x ∈ X as

fL(x) =
∑

0<λk6L
Zkek(x)

is such that for each x, y ∈ X , E[fL(x)fL(y)] = EL(x, y). In particular,
Hörmander’s pointwise Weyl law implies that

Var(fL(x)) = EL(x, x) = 1
(2π)n

∫
σA(x,ξ)61

d̃xµ(ξ)× L n
m +O(L

n−1
m )

where d̃xµX (ξ) is the density induced(2) on T ∗xX by dµX . In particular,
dµX (x)d̃xµX (ξ) equals dxdξ, the Lebesgue measure on R2n. In [22] we stud-
ied a natural variation of this random linear combination of eigenfunctions
in dimension n = 2 and observed a very different asymptotic behavior of the
covariance function. More precisely, in the case where A is the Laplacian on
a closed surface, we studied the random fields

gL =
∑

0<λk6L
λ
−1/2
k Zkek .

(2) More precisely, if (x1, . . . , xn) are local coordinates on X such that dµX (x) =
g(x)dx in these coordinates, dx1, . . . , dxn defines a basis of T ∗xX for each x = (x1, . . . , xn)
and we define d̃xµX (ξ) as 1

g(x) times the Lebesgue measure defined by declaring this basis
to be orthonormal. This definition is invariant by measure preserving coordinate changes
so d̃xµX (ξ) is indeed induced by dµX independently of the choice of coordinates.
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Unlike for the previous case, we found that for any x ∈ X ,

Var(gL(x)) = 1
4π ln(L) +O(1) .

Following this work, we are interested in studying more general random
linear combinations of these eigenfunctions. To this end, it is essential to
gather some information about the corresponding covariance function. The
purpose of this article is to provide an asymptotic for these kernels similar
to the one we have for EL. For each s ∈ R we consider the kernel

Ks
L(x, y) =

∑
0<λk6L

λ−sk ek(x)ek(y) .

These kernels converge in distribution to the integral kernels of A−s as
L → +∞ but diverge on the diagonal for small or negative values of s.
The pointwise behavior of the limiting kernel on the diagonal, which is well
defined for large values of s, has been studied for instance in [25] and [26].
In [25], the author proved that, as a function of s, the limit admitted a
meromorphic extension to the whole complex plane. We focus instead on a
fixed s for which the kernel diverges and study its pointwise divergence near
the diagonal. We call these results weighted local Weyl laws by analogy with
EL (which is just K0

L) because of the weights λ−sk on the terms of the sum
defining Ks

L. As we shall see, the kernels Ks
L experience a sudden change in

their asymptotic behavior between the phases s < n
m and s = n

m . All our
results will be local so we take the liberty of omitting the composition with
the chart when writing functions on X in local coordinates. Our first result
provides information when s < n

m .

Theorem 1.1 (Kernel asymptotics when s < n
m ). — Recall that A is

an elliptic differential operator on X of order m > 0. Assume that s < n
m .

Fix x0 ∈ X and consider local coordinates x = (x1, . . . , xn) for X centered
at x0 and defined on an open subset U ⊂ Rn such that dµX agrees with the
Lebesgue measure in these coordinates(3) . Then, there exists V ⊂ U an open
neighborhood of 0 such that, in these coordinates, for each α, β ∈ Nn, we
have the following estimates.

(3) Such coordinates always exist by [17].
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(1) Uniformly for L > 1, x ∈ V and X,Y ∈ Rn such that x+L−1/mX,
x+ L−1/mY ∈ V

Ls−(n+|α|+|β|)/m ∂αx ∂
β
yK

s
L

(
x+ L−1/mX,x+ L−1/mY

)
= 1

(2π)n

∫
σA(x,ξ)61

ei〈ξ,X−Y 〉
(iξ)α(−iξ)β

σA(x, ξ)s dξ

+O
(
Ls−(n+|α|+|β|)/m + L−1/m ln (L)η

)
where η = 1 if s = (n+ |α|+ |β| − 1)/m and 0 otherwise.

(2) Let ε > 0. Then, uniformly for x, y ∈ V such that |x − y| > ε and
L > 1,

Ls−(n+|α|+|β|)/m ∂αx ∂
β
yK

s
L(x, y) = O

(
Ls−(n+|α|+|β|)/m + L−1/m ln (L)η

)
where η = 1 if s = (n+ |α|+ |β| − 1)/m and 0 otherwise.

Here |α| = α1 + · · ·+ αn and 〈 · , · 〉 is the Euclidean scalar product.

Note that the case where s = 0 and α = β = 0 is Theorem 5.1 of [11]
(see Theorem 2.4 and the discussion below for more details about this case).
Let us say a few words about the two error terms appearing in both points
one and two of the theorem. The first term, Ls−(n+|α|+|β|)/m, corresponds to
the O(1) error in ∂αx ∂βyKs

L(x, y), coming from the low eigenvalues, which we
never try to control. In the second term, L−1/m ln(L)η, the factor L−1/m is
analogous (and directly linked to) Hörmander’s error term (see Theorem 2.4
below), while the ln(L)η appears in an integration by parts made to deal with
the λ−sk powers in the expansion. Depending on the values of s, n, m and
d = |α|+|β| either one of the two error terms could dominate. More precisely,
Hörmander’s error L−1/m ln(L)η always dominates the low frequency error
Ls−(n+|α|+|β|)/m, except when α = β = 0 and (n − 1)/m < s < n/m, in
which case it is the low frequency term that dominates.

We prove Theorem 1.1 at the end of Section 2. Before stating the second
result, we introduce the following notation. Firstly, for each x ∈ X , the
density dxµX on TxX defines a canonical dual density d̃xµX on T ∗xX . For
each x ∈ X , let

SAx = {ξ ∈ T ∗xX |σA(x, ξ) = 1} .
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Since σA is m-homogeneous, SAx is a smooth compact hypersurface of T ∗xX
strictly star-shaped(4) around the origin and the map

F : SAx × ]0,+∞[ −→ T ∗xX \ {0}
(ω, t) 7−→ tω

is a diffeomorphism. If dt is the Lebesgue measure on ]0,+∞[, we define a
smooth density dxν on SAx by

dxν(ω)tn−1dt = F ∗d̃xµX (ξ) .
In particular, for each u ∈ C∞c (T ∗xX ),∫

T∗xX
u(ξ)d̃xµX (ξ) =

∫ +∞

0

∫
SAx

u(tξ)dxν(ξ)tn−1dt . (1.1)

This implies in turn that

νx(SAx ) :=
∫
SAx

dxν = n

∫
{σA(x,ξ)61}

d̃xµX (ξ) . (1.2)

Our second result deals with the case where s = n
m . While Theorem 1.1

proves that Ks
L grows at rate Ln/m−s for s < n/m, and that the main

term depends continuously on s, the following result shows that this is not
true for s = n/m. Indeed, while the first point is analogous to the results
of Theorem 1.1, the second point is quite different (and requires additional
tools).

Theorem 1.2 (Kernel asymptotics when s = n
m ). — Recall that A is

an elliptic differential operator on X of order m > 0. Assume that s = n
m .

Fix x0 ∈ X and consider local coordinates x = (x1, . . . , xn) for X centered
at x0 and defined on an open subset U ⊂ Rn such that dµX agrees with the
Lebesgue measure in these coordinates. Then, there exists an open neighbor-
hood V ⊂ U of 0 such that, for each α, β ∈ Nn, the following holds.

(1) • Assume that (α, β) 6= (0, 0). In these coordinates, uniformly for
L>1, x∈V and X,Y ∈Rn such that x+L−1/mX,x+L−1/mY ∈V

L−(|α|+|β|)/m ∂αx ∂
β
yK

n/m
L

(
x+ L−1/mX,x+ L−1/mY

)
= 1

(2π)n

∫
σA(x,ξ)61

ei〈ξ,X−Y 〉
(iξ)α(−iξ)β

σA(x, ξ)n/m
dξ

+O
(
L−1/m ln (L)η

)
.

where η = 1 if 1 = |α|+ |β| and 0 otherwise.

(4) More precisely, for each ξ ∈ T ∗xX \ {0}, the ray {tξ | t > 0} intersects SAx exactly
at σA(x, ξ)−1/mξ and does so transversally.
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• Assume (α, β) 6= (0, 0) and let ε > 0. Then, uniformly for x, y ∈ V
such that |x− y| > ε,

L−(|α|+|β|)/m ∂αx ∂
β
yK

n/m
L (x, y) = O

(
L−1/m ln (L)η

)
where η = 1 if 1 = |α|+ |β| and 0 otherwise.

(2) • Uniformly for x, y ∈ V and L > 1, in these coordinates,

K
n/m
L (x, y) = gA(x, y)

[
ln
(
L1/m)− ln+

(
L1/m|x− y|

)]
+O(1)

where

gA(x, y) = n

2(2π)n × (|{σA(x, ξ) 6 1}|+ |{σA(y, ξ) 6 1}|)

where ln+(t) = ln(t)∨0 and where |{σA(x, ξ) 6 1}| =
∫
σA(x,ξ)61 dξ.

• There exists a symmetric bounded function Q : U × U → R such
that, uniformly for κ > 1, L > 1 and x, y ∈ V such that |x− y| >
κL−1/m, in these coordinates,

K
n/m
L (x, y) = −gA(x, y) ln(|x− y|) +Q(x, y) +O

(
κ−1/k

)
where, if n = 1 then k = 1 and if n > 2 then k = m.

Here |α| = α1 + · · ·+ αn and 〈 · , · 〉 is the Euclidean scalar product.

This theorem (especially the second point) generalizes Theorem 3 of [22],
which proved the second point in the case where s = 1, X was a closed
surface (so n = 2) with a Riemannian metric and A was the associated
Laplacian (so m = 2). The main challenge in the extension comes from the
need to apply a generalized stationary phase formula on the level sets of the
symbol. In [22], this is Proposition 23, where the traditional stationary phase
formula applies directly. This general setting requires tools from singularity
theory that are deployed in Section 7. The second point of Theorem 1.2 will
follow from Theorem 2.8 below. As is apparent, in Figure 3.1, the proof of
this result is more complex than that of the others. We prove Theorem 1.2
at the end of Section 2.

Corollary 1.3. — The Schwartz kernel K ∈ D′(X × X ) of A−n/m
belongs to L1(X ×X ). Moreover, for each smooth distance function d : X ×
X → R on X there exists a bounded symmetric function QA,d : X × X →
R, smooth on the complement of the diagonal, such that, for any distinct
x, y ∈ X ,

K(x, y) = −gA(x, y) ln (d (x, y)) +QA,d(x, y) .

We prove Corollary 1.3 at the end of Section 2.
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1.2. An important example: the Laplacian

As explained above, this work is motivated by recent interest in the kernel
K0
L as the covariance function of a Gaussian field. In further work, we wish

to study certain Gaussian fields arising naturally in geometry and statistical
mechanics with covariance Ks

L. One such field is the Gaussian Free Field,
which is a central object in statistical mechanics today. In Corollaries 1.4
and 1.5 we detail our main results in this special case.

Let (X , g) be a closed Riemannian manifold of dimension n > 2. Let
∆ = −div ◦∇ be the Laplace operator on X and let |dVg| be the Riemannian
volume density on X . Then, ∆ is an elliptic differential operator with prin-
cipal symbol σ(x, ξ) = g−1

x (ξ, ξ) where g−1
x is the scalar product induced on

T ∗xX by gx. Moreover, ∆ is symmetric with respect to the L2-scalar product
induced by the density |dVg| on X . Let (λk)k∈N be the sequence of eigenval-
ues of ∆ (counted with multiplicity) and arranged in increasing order. Let
(ek)k∈N be a Hilbert basis of L2 (X , |dVg|) made up of real valued functions,
such that for each k ∈ N, ∆ek = λkek. For each L > 0, each s > 0 and each
(x, y) ∈ X × X , let

Ks
L(x, y) =

∑
0<λk6L

λ−sk ek(x)ek(y) .

Moreover, consider (Zk)k∈N a family of independent standard normals and
for each s ∈ R and L > 0 define

fsL(x) =
∑

0<λk6L
λ
−s/2
k Zkek(x) .

Then, fsL is an a.s. smooth, centered Gaussian field on X with covariance
Ks
L. In the case s = 1, K1

L converges in distribution as L→ +∞ to Green’s
function on X which is the (generalized) covariance function for the Gaussian
Free Field (see for instance [27]). Equivalently, as L → +∞, fsL converges
a.s. in the space of distributions to the Gaussian Free Field. We have the
following results. In the case where s < n/2, Ks

L converges at scale L−1/2 to
a non-trivial function after rescaling by a polynomial factor.

Corollary 1.4 (The Laplacian: s < n/2). — Assume that s < n/2. Fix
x0 ∈ X and consider local coordinates x = (x1, . . . , xn) for X centered at x0
such that |dVg| agrees with the Lebesgue measure in these coordinates. Then,
there exists V ⊂ U an open neighborhood of 0 such that, in these coordinates,
for each α, β ∈ Nn, we have the following estimates.
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(1) In these coordinates, uniformly for L > 1, x ∈ V and X,Y ∈ Rn
such that x+ L−1/mX,x+ L−1/mY ∈ V

Ls−(n+|α|+|β|)/2 ∂αx ∂
β
yK

s
L

(
x+ L−1/2X,x+ L−1/2Y

)
= 1

(2π)n

∫
|ξ|2x61

ei〈ξ,X−Y 〉
(iξ)α(−iξ)β

|ξ|2sx
dξ

+O
(
Ls−(n+|α|+|β|)/2 + L−1/2 ln (L)η

)
where η = 1 if s = (n + |α| + |β| − 1)/2 and 0 otherwise. Here
|ξ|2x = g−1

x (ξ, ξ).
(2) Let ε > 0. Then, uniformly for x, y ∈ V such that |x − y| > ε and

for L > 1,

∂αx ∂
β
yK

s
L (x, y) = O

(
1 + L(n+|α|+|β|−2s−1)/2 ln (L)η

)
where η = 1 if s = (n+ |α|+ |β| − 1)/2 and 0 otherwise.

Proof. — This follows directly from Theorem 1.1 with m = 2, s < n/2,
A = ∆ and σA(x, ξ) = |ξ|2x. �

A direct consequence of Corollary 1.4 is that, for s < n/2, in the same
coordinates as in the corollary, for each x ∈ V , the random field

X 7→ L−s/2fsL(x+ L−1/2X)

converges in distribution as L→ +∞ to a smooth stationary Gaussian field
on Rn with covariance

(X,Y ) 7→ 1
(2π)n

∫
|ξ|2x61

ei〈ξ,X−Y 〉
dξ
|ξ|2s

at a rate uniform in x. On the other hand, if s = n/2, although the derivatives
of Ks

L also have non-trivial local limits at scale L−1/2, Ks
L itself converges

pointwise to a distribution with a logarithmic singularity on the diagonal.
Note that when s = 1, the first part of the second point of Corollary 1.5
below yields Theorem 3 of [22].

Corollary 1.5 (The Laplacian: s = n/2). — Assume that s = n/2.
Fix x0 ∈ X and consider local coordinates x = (x1, x2) for X centered at x0
defined on an open subset U ⊂ R2 such that |dVg| agrees with the Lebesgue
measure in these coordinates. Then, there exists an open neighborhood V ⊂ U
of 0 such that, for each α, β ∈ Nn, the following holds.
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(1) • In these coordinates, uniformly for L > 1, x ∈ V and X,Y ∈ Rn
such that x+ L−1/mX,x+ L−1/mY ∈ V

L−(|α|+|β|)/2 ∂αx ∂
β
yK

n/2
L

(
x+ L−1/2X,x+ L−1/2Y

)
= 1

(2π)n

∫
|ξ|2x61

ei〈ξ,X−Y 〉
(iξ)α(−iξ)β

|ξ|nx
dξ

+O
(
Ls−(n+|α|+|β|)/2 + L−1/2 ln(L)η

)
where η = 1 if 1 = |α|+ |β| and 0 otherwise. Here |ξ|2x = g−1

x (ξ, ξ)
and dξ is the Lebesgue measure.

• Let ε > 0. Then, uniformly for x, y ∈ V such that |x− y| > ε and
for L > 1,

∂αx ∂
β
yK

s
L (x, y) = O

(
1 + L(|α|+|β|−1)/2 ln (L)η

)
where η = 1 if 1 = |α|+ |β| and 0 otherwise.

(2) • Uniformly for x, y ∈ V and L > 1, in these coordinates,

K
n/2
L (x, y) =

∣∣Sn−1
∣∣

(2π)n
[
ln
(
L1/2

)
− ln+

(
L1/2|x− y|

)]
+O(1)

where ln+(t) = ln(t) ∨ 0.
• There exists a symmetric bounded function Q : U × U → R such
that, uniformly for κ > 1, L > 1 and x, y ∈ V such that |x− y| >
κL−1/2, in these coordinates,

K
n/2
L (x, y) =

∣∣Sn−1
∣∣

(2π)n ln(|x− y|) +Q(x, y) +O
(
κ−1/2

)
.

Proof. — This follows directly from Theorem 1.2 with m = 2, s = n/2,
A = ∆ and σA(x, ξ) = |ξ|2x. We simply use that if Bn is the n-dimensional
euclidean ball, n|Bn| = |Sn−1|. �

In the case s = n/2, Corollary 1.5 implies that the family (fsL)L>0 defines
a family of log-correlated fields. More precisely, the pointwise variance of fsL
is equivalent to Cn ln(L1/2) as L→ +∞ where Cn = |Sn−1|/(2π)n, and the
correlations decay logarithmically until they reach order O(1). This behavior
was observed in [22] for n = 2 and is consistent with the behavior of the two-
dimensional discrete Gaussian Free Field, whose covariance is the Green’s
function for the 2D simple random walk (see for instance [5, Chapter 8]).
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2. Statement of the main results

In this section, we present the main objects of study and state our results
in full generality. In Section 2.1 we present the general framework of the
article. In Section 2.2 we state Hörmander’s local Weyl law. In Section 2.3
we state the generalizations of the local Weyl law proved in this paper. We
finish off by deducing Theorems 1.1 and 1.2 as well as Corollary 1.3.

2.1. General setting

In this article, we consider simultaneously two different elliptic eigenvalue
problems. Since our arguments hold indifferently for the two cases, we present
them in this section using the same notations. The first case is a closed
eigenvalue problem. In this case we will follow [11, 13, 14]. In the second case,
we consider a Dirichlet eigenvalue problem, for which our main references
will be [16] and [29].

Setting 1. — In this setting we follow [13] and [14]. Here X is a compact
manifold without boundary. We will consider symbols and classical symbols
on open subsets of Rn defined as in Definitions 18.1.1 and 18.1.5 of [13] or
Definition 2.2 below. To any such symbol we associate a pseudo-differential
operator by left quantization as in Chapter XVIII of [13]. Pseudo-differential
operators on X are defined, as in [13], to be operators on X which, when
read in local charts, are pseudo-differential operators modulo operators with
smooth kernel (see [13, Definition 18.1.20]).

We consider an elliptic pseudo-differential operator A of positive order m
acting on C∞(X ). We assume A is symmetric for the L2-scalar product on
(X ,dµX ). This implies that the principal symbol σA of A is a real valued
positive C∞ m-homogeneous function on the complement of the zero section
of T ∗X . Under these assumptions, A has a unique self-adjoint extension
in L2(X ,dµX ) whose spectrum forms a discrete sequence (λk)k∈N of real
numbers diverging to +∞ and whose corresponding eigenfunctions ek are of
class C∞ (see for instance of [14, Section 29.1]). For each L > 0, set

∀ x, y ∈ X , EL(x, y) =
∑

0<λj6L
ej(x)ej(y) .
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Finally, we assume that the symbol of A is a classical symbol (see Defini-
tion 2.2 below).

Setting 2. — In this setting, we follow [16]. Here X is a bounded open
subset of Rn with smooth boundary ∂X and dµX is the Lebesgue measure.
We consider the Dirichlet eigenvalue problem

Au = λu on X ;
u = 0 on ∂X

where A is an elliptic differential operator of even orderm > 1 with principal
symbol σA and λ ∈ C. We assume that the following conditions (from [16,
Chapter 2, Section 1.4]) are satisfied

• For each u, v ∈ C∞c (X ),
∫
u(x)Av(x)dµX (x) =

∫
Au(x)v(x)dµX (x).

In other words, A is symmetric in L2(X ).
• The operator A is properly elliptic in X in the sense of Definition 1.2
of [16, Chapter 2, Section 1.4].

As explained in the appendix (see Proposition B.1 in Appendix B), there
exists a sequence (λk)k of real numbers going to infinity and a sequence
(ek)k of smooth functions such that for each k,

∫
X |ek(x)|2dµX (x) = 1, such

that the linear span of the ek is dense in L2(X ,dµX ) and such that ek solves
the aforementioned eigenvalue problem with λ = λk. For each L > 0, set

∀ x, y ∈ X , EL(x, y) =
∑

0<λj6L
ej(x)ej(y) .

Remark 2.1. — For simplicity of reference we have chosen to restrict Set-
ting 2 to bounded open subsets of Rn. We find it very likely that similar
results hold for manifolds with boundary. In any case, our results will hold
as long as one can find an analog of Lemma A.1, which is the only input
we really use. In particular, [29], which we use as a reference below, works
on manifolds with boundary, but cites as a reference, Chapter 2 of [16], in
which X is an open subset of Rn.

2.2. Hörmander’s local Weyl law

We begin by stating Hörmander’s local Weyl law, for which we need the
following definitions. First we define a family of symbol classes

Definition 2.2.

• Fix m ∈ R. Let U ⊂ Rp be an open subset and let σ ∈ C∞(U ×Rn).
We say that σ is a symbol of order m and write σ ∈ Sm(U ;Rn)
(or just σ ∈ Sm when no confusion is possible), if, for each compact
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subset K ⊂ U and each α ∈ Nn and β ∈ Np, there exists CK,α,β
such that

sup
x∈K,ξ∈Rn

|∂αξ ∂βxσ(x, ξ)| 6 CK,α,β(1 + |ξ|)m−|α| .

• If σ(x, ξ) is a polynomial of degree m in ξ with coefficients varying
smoothly with x, then σ ∈ Sm.
• If there exists R < +∞ such that |ξ| > R implies that σ(x, ξ) is
m-homogeneous in ξ, then σ ∈ Sm.
• Let σ ∈ Sm(U ;Rn). We say that σ is a classical symbol if there exist
symbols (σk)k∈N such that for each k ∈ N, there exists Rk < +∞
such that σk(x, ξ) is (m − k)-homogeneous in ξ for |ξ| > Rk. and
such that for each N ∈ N,

σ −
N∑
k=0

σk ∈ Sm−N−1(U ;Rn) .

We define the principal symbol of the classical symbol σ as the func-
tion on U × (Rn \ {0}) (x, ξ) 7→ limt→+∞ t−mσ(x, tξ).

We then define a class of phase functions(5) as follows.

Definition 2.3. — Given an open subset U ⊂ Rn, we will say that a
function ψ ∈ C∞(U × U × Rn) is a proper phase function if it satisfies the
following conditions.

(1) The function ψ is a symbol of order one in its third variable.
(2) For each (x, y, ξ) ∈ U × U × Rn, 〈x − y, ξ〉 = 0 implies that

ψ(x, y, ξ) = 0.
(3) For each x ∈ U and ξ ∈ Rn, ∂xψ(x, y, ξ)|y=x = ξ.
(4) There exists ψ∞ ∈ C∞(U × U × Rn) satisfying all of the above

properties and 1-homogeneous in ξ such that
t−1ψ(x, y, tξ) −−−−→

t→+∞
ψ∞(x, y, ξ)

where the convergence takes place in C∞(U × U × Rn).

An important example of proper phase function to have in mind is the
phase function ψ(x, y, ξ) = 〈x − y, ξ〉. Hörmander’s local Weyl law may
be stated as follows. Let us consider an operator A from either of the two
settings presented in Section 2.1. In Setting 2 we also fix a family of boundary
operators (Bj)j satisfying the assumptions required therein. In both settings

(5) This definition is inspired by Definition 2.3 of [11]. However, our notion of proper
phase function is more restrictive than Hörmander’s. Namely, Hörmander does not require
condition 4.
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we deduce the existence of a sequence (λk)k of (real) eigenvalues, diverging
to +∞ and (ek)k a sequence of smooth, L2-normalized eigenfunctions (either
of A or of the boundary value problem) associated to them. We then define,
in either setting

EL(x, y) =
∑

0<λj6L
ej(x)ej(y) .

Recall that σA is the principal symbol of A, which we assumed to be positive
homogeneous of order m > 0 in the second variable.

Theorem 2.4 (Local Weyl law [11, Theorem 5.1] for P = Id). — Fix
a point in X and consider local coordinates (x1, . . . , xn) around it. Suppose
further that the density dµX agrees with the Lebesgue measure in these co-
ordinates. Let σA be the principal symbol of A in these coordinates. Then,
there exists an open neighborhood U of 0 ∈ Rn, a proper phase function
ψ ∈ C∞(U × U × Rn) such that the following holds. Let P be a differential
operator of order d with constant coefficients acting on C∞(Rn × Rn) with
principal symbol σP : T ∗R2n → C (a homogeneous polynomial of degree d
in the momentum variables). Then, there exists a constant C < +∞, such
that, in these coordinates, for each x, y ∈ U and L > 0,∣∣∣∣∣PEL(x, y)− 1

(2π)n

∫
σA(y,ξ)6L

eiψ(x,y,ξ)σP (∂x,yψ(x, y, ξ))dξ

∣∣∣∣∣
6 C(1 + L)(n+d−1)/m .

Here ∂x,yψ(x, y, ξ) ∈ T ∗(x,y)(U×U) ' R2n denotes the derivative of ψ with
respect to the variables (x, y). Moreover, for each neighborhood W ⊂ U × U
of the diagonal there exists C > 0 such that in local coordinates, for each
(x, y) ∈ (U × U) \W and L > 0,∣∣PEL(x, y)

∣∣ 6 C(1 + L)(n+d−1)/m .

Finally, there exist a symbol(6) σ ∈ S1 and a constant R < +∞ such
that σ = σ

1/m
A outside of a compact set and for each x, y ∈ U and ξ ∈ Rn

such that |ξ| > R,
σ(x, ∂xψ(x, y, ξ)) = σ(y, ξ) . (2.1)

Here ∂x,yψ denotes the partial derivative of ψ with respect to the couple
(x, y).

(6) If σ1/m
A is smooth then we can actually take σ = σ

1/m
A .
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Remark 2.5.

• Recall that in Setting 2 (the Dirichlet case), the notation X denotes
an open subset of Rn. Therefore, Theorem 2.4 is an estimate of PEL
away from the boundary ∂X .
• Since σA is m-homogeneous, by Definition 2.3, Theorem 2.4 implies
that

PEL(x, x) = 1
(2π)n

∫
σA(x,ξ)61

σP (ξ,−ξ)dξ × L(n+d)/m(1 +O(L−1/m)) .

In particular, on the diagonal, the main term grows like L(n+d)/m.
Moreover, the change of variables ξ = L1/mη reveals that, taking
x = x0 + L−1/mX and y = x0 + L−1/mY the integral expression
converges – after rescaling by L−(n+d)/m – to a smooth function in
(X,Y ) and x.
• The approximation for PEL(x, y) given in Theorem 2.4 may seem
asymmetric with respect to x and y because of the integration do-
main {ξ ∈ Rn : σA(x, ξ) 6 L}. However, unless |x− y| = O(L1/m),
the main term is no longer greater than the error term. On the
other hand, if |x − y| = O(L1/m), replacing σA(y, ξ) by σA(x, ξ) in
the integration domain yields a negligible error.

• The asymptotic provided by Theorem 2.4 is coordinate dependent
since the notion of proper phase function is not invariant.

• Given σ ∈ S1, equation (2.1), satisfied by ψ is called the eikonal
equation. As explained in [11, Section 3], it has a unique solution
satisfying the properties required in Definition 2.3. The statement
about the eikonal equation is not usually stated as part of the local
Weyl law but the function ψ provided by the theorem does satisfy
this property and it will be useful in our proofs.

• The case where P = Id and was proved by Hörmander in [11]. The
case where x = y and X is a closed manifold was treated in [23] with
some restrictions on P . Finally, Gayet and Welschinger extended
this result to a general P (see [7, Theorem 2.3]) on a closed manifold.
While in their statement, x = y, their proof yields the off-diagonal
case with only minor modifications.

• Hörmander manages to lift the compactness assumption using re-
sults on the local nature of the propagator eitA1/m , in the case of
P = Id. We believe that similar arguments would work for general P
but focus on the compact case for simplicity. Note however that the
only input from Hörmander’s work used here is Theorem 2.4. Ob-
taining such a result in the non-compact case with the appropriate
functional analysis setting would immediately extend our results.

– 437 –



Alejandro Rivera

• One recent result closely related to this theorem is Canzani and
Hanin’s asymptotics for the monochromatic spectral projector of
the Laplacian under some dynamical assumption on the geodesic
flow (see [2] and [3]).

For the convenience of the reader, in Appendix A we provide a proof of
the full result relying on the wave kernel asymptotics provided in [11].

2.3. Weighted local Weyl laws

In the present article, we generalize Theorem 2.4 in the following way.
Consider A and P as in Theorem 2.4 and take U , and ψ as provided by this
theorem. Recall that in the coordinates on U , the measure dµX (x)d̃xµX (ξ)
agrees with the Lebesgue measure dxdξ on R2n. In particular, Theorems 2.6
and 2.8 below hold in both settings presented in Section 2.1. We stress that
in Setting 2, however, X denotes an bounded open subset of Rn, so the
results only hold away from the boundary ∂X .

We derive an asymptotic expression for the kernel of the operator (AΠL)z,
as L → +∞ for z in a certain half-plane of C. More precisely, we always
assume that n + d + mz1 > 0. This generalized Hörmander’s result which
corresponds to z = 0.

Interestingly, the behavior will differ between the case n+ d+mz1 > 0,
which we call subcritical, and the case where n+ d+mz = 0 which we call
critical. We do not cover the case {n+ d+mz1 = 0, z2 6= 0}. In particular,
this distinction, and the fact that it depends on d, means that a kernel
wich corresponds to the critical case for d = 0, is subcritical for d > 0. In
particular, this kernel and its derivatives have very different behaviors when
L→ +∞.

Theorem 2.6 (Generalized Weyl law: subcritical case). — Fix z = z1 +
iz2 ∈ C. Let f ∈ C∞(R) such that f(t) = tz for t large enough. Let KL be
the Schwartz kernel of ΠLf(A). Suppose that n + d + mz1 > 0. For each
x, y ∈ U and L > 1, let

RL(x, y) = L−z1−(n+d)/m
[
PKL(x, y)

− 1
(2π)n

∫
σA(y,ξ)61

ei〈ξ,x−y〉L
1/m

σA(y, ξ)zσP (ξ,−ξ)dξ
]
.

Then, for each open neighborhood V of 0 ∈ U such that V ⊂ U is compact,
the following holds.
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(1) Uniformly for L > 1, x ∈ V and X,Y ∈ Rn such that x+L−1/mX,
x+ L−1/mY ∈ V

RL

(
x+ L−1/mX,x+ L−1/mY

)
= O

(
L−z1−(n+d)/m + L−1/m ln(L)η

)
where η = 1 if n+ d+mz = 1 and 0 otherwise.

(2) Let W ⊂ U × U be a neighborhood of the diagonal. Uniformly for
L > 1 and (x, y) ∈ V × V \W ,

PKL(x, y) = O
(
L−z1−(n+d)/m + Lz1+(n+d−1)/m ln(L)η

)
where η = 1 if n+ d+mz = 1 and 0 otherwise.

The two error terms appearing in both points of the theorem are analo-
gous to those in Theorem 1.1. Below said theorem, we discuss the interpreta-
tion and relative size of these error terms. We prove Theorem 2.6 in Section 5.
As we will see below, Theorem 1.1 and the first assertion of Theorem 1.2 are
both direct consequences of Theorem 2.6. Before stating Theorem 2.8 below,
we must introduce some more terminology. One key ingredient of the proof
will be the decay of certain oscillatory integrals depending on the level sets
of σA. To observe this behavior we must impose certain condition on σA.
This is the object of Definition 2.7.

Definition 2.7 (Admissible homogeneous symbols).

• Fix n ∈ N, n > 1 and m ∈ ]0; +∞[. For each U ⊂ Rn, let Smh (U) ⊂
C∞(U×(Rn\{0})) be the set of smooth functions m-homogeneous in
the second variable. We write Smh,+(U) for the set of positive valued
functions in Smh (U). The map

Smh (U)→ C∞(U × Sn−1) ,

restricting the second variable to the unit sphere, is a bijection. We
endow Smh (U) with the topology induced by the Whitney topology on
C∞(U × Sn−1) (see Definition 3.1 of Chapter II of [9]). Although
elements of Smh are not smooth at U × {0} we call them homoge-
neous symbols since they coincide with symbols outside of a small
neighborhood of U × {0}.
• Fix m ∈ R, m > 0 and k0 ∈ N, k0 > 2. We say that a function
σ ∈ Smh,+(U) is k0-admissible if

∀ (x, ξ) ∈ U × (Rn \ {0}), ∃ k ∈ {2, . . . , k0},

σ(x, ξ)k−1∂kξ σ(x, ξ) 6= m(m− 1) . . . (m− k + 1)
mk

(∂ξσ(x, ξ))⊗k. (2.2)
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This condition is invariant if we see σ as a function on T ∗X because
coordinate changes act linearly on the fibers of T ∗X . It is stable and generic
for k0 large enough, as explained in Proposition 7.6.

Theorem 2.8 (Generalized Weyl law: critical case). — We use the same
notations as in Theorem 2.6. Suppose that n + d + mz = 0 and that either
n = 1 or σA is k0-admissible for some k0 > 2. For each x, y ∈ U let

YP (y) =
∫
SAy

σP (ξ,−ξ) dyν(ξ) .

Then, there exists V ⊂ U an open neighborhood of 0 such that the following
holds.

(1) Uniformly for (x, y) ∈ V × V and L > 1,

PKL(x, y) = 1
(2π)nYP (y)

[
ln
(
L1/m)− ln+

(
L1/m|x− y|

)]
+O(1) .

(2) There exists Q ∈ L∞(V × V ) such that, uniformly for κ > 1, L > 1
and (x, y) ∈ V × V such that |x− y| > κL−1/m,

PKL(x, y) = − 1
(2π)nYP (y) ln(|x− y|) +Q(x, y) +O

(
κ−1/k0

)
.

Here, if n = 1 we set k0 = 1.

We prove Theorem 2.8 in Section 6. As we will see below, the second
point of Theorem 1.2 follows directly from this theorem.

Remark 2.9.

• The critical case, n+ d+mz = 0 depends not only on the order m
of the operator A or the power z, but also on the order d of P . In
particular, if z is critical for A with P = Id, it becomes sub-critical
for any choice of differential operator P of positive order.
• The quantity YP (y) is smooth in y by definition, but it is obviously
not symmetric in x and y, even for P = Id. This may seem counter-
intuitive. Notice however that, in the main term of the expression of
PKL given in Theorem 2.8, replacing YP (y) by YP (x) only yields an
error of order O(1). In the first point, this does not change the esti-
mate. In the second point, replacing YP (y) by YP (x) would simply
amount to adding 1

2π (YP (y)− YP (x)) ln(|x − y|) to Q(x, y), which
is bounded.
• From (1.1) we get the following alternate expression for YP :

YP (y) = (n+ d)
∫
{σA(y,ξ)61}

σP (ξ,−ξ)dξ .
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Here we are assuming, as in the rest of the subsection, that d̃xµX (ξ)
agrees with the Lebesgue measure dξ on Rn.

Remark 2.10. — The admissibility condition on the symbol of A may
appear to be unfamiliar. However, in practice, it is often satisfied. Here are
two important examples of families of admissible homogeneous symbols:

• If n > 2 and the level sets SAx = {ξ ∈ Rn : σA(x, ξ) = 1} are
strictly convex, ∂2

ξσA is positive when restricted to their tangent
spaces. Therefore, it cannot be a multiple of (∂ξσ)⊗2 so Theorem 2.8
applies with k0 = 2.
• If σA is a positive homogeneous polynomial of degree m ∈ N
in ξ, m > 1, then it is m-admissible. Indeed, otherwise, taking
k = k0 = m, we would have, for some (x, ξ) ∈ U × (Rn \ {0}),
σA(x, ξ)m−1∂mξ σA(x, ξ) = 0. But since σA(x, ξ) > 0 we have
∂mξ σA(x, ξ) = 0 which implies that all the coefficients of σA(x, · )
vanish. This contradicts the fact that σA(x, ξ) > 0. In particular,
Theorem 2.8 applies for all differential operators, and in particular
to the situation of Theorem 1.2.

As we shall see in Section 7, admissibility is equivalent to the fact that there
is no linear map Rn → R whose restriction to SAx has a critical point of
infinite order. For instance, it rules out the case where SAx contains an open
subset of an affine hyperplane.

In addition to the two examples of the last remark, we prove the following
theorem.

Theorem 2.11 (Admissible homogeneous symbols are generic). — Fix
n ∈ N, n > 2 and let U ⊂ Rn be an open subset. There exists k0 = k0(n) ∈
N such that for each m > 0, the set of elements of Smh,+(U) that are k0-
admissible (see Definition 2.7), is open and dense in Smh,+(U).

Theorem 2.11 follows immediately from Proposition 7.6, which is proved
Section 7.2. The integer k0 is explicit (see Proposition 7.6).

Finally, though we do not use this in the proof of Theorems 1.1 and 1.2,
we prove the following result, which might be useful in further applications.

Theorem 2.12 (Super-critical case). — We use the same notations as
in Theorem 2.6. Suppose that n + d + mz1 < 0. Then, there exists and a
function K∞ ∈ Cd(U × U) such that the following holds. For each compact
subset Ω ⊂ U × U , uniformly for (x, y) ∈ Ω,

PKL(x, y) = PK∞(x, y) +O
(
Lz1+(n+d)/m

)
.
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Remark 2.13. — In Theorems 2.6, 2.8 and 2.12, the setting provided in
Section 2.1 only comes into play through Theorem 2.4. Therefore, if one could
weaken the hypotheses for this theorem, one would automatically extend
Theorems 2.6 and 2.8 as a corollary. In particular, since Hörmander proves
Theorem 2.4 for P = Id without any compactness assumption or boundary
condition, both of these results remain valid in this case.

Let us check that Theorems 2.6 and 2.8 imply the results presented in
the introduction.

Proof of Theorem 1.1. — Both results follow from Theorem 2.6 applied
to the first setting of Section 2.1 with z = −s by taking P = ∂αx ∂

β
y . In this

case, the order of P is d = |α|+ |β| and we have, for any ξ ∈ Rn,
σP (ξ,−ξ) = (iξ)α(−iξ)β . �

Proof of Theorem 1.2. — Set z = −s = −n/m. For the first part, set
P = ∂αx ∂

β
y near 0 and proceed as in the proof of Theorem 1.1. Indeed,

since (α, β) 6= (0, 0), we have n + d + mz1 = |α| + |β| > 0. For the second
part, since by Remark 2.10 σA is m-admissible, and since n+ d+mz1 = 0,
we apply Theorem 2.8 instead. In our case, P = Id so for each x, y ∈ U ,
YP (y) = νy

(
SAy
)
so

Ks
L(x, y) = 1

(2π)n νy
(
SAy
) [

ln
(
L1/m)− ln+

(
L1/m|x− y|

)]
+O(1) .

By (1.2), νy(SAy ) = n|{σA(y, ξ) 6 1}|. But since Ks
L(x, y) = Ks

L(y, x),
we may replace νy(SAy ) = n|{σA(y, ξ) 6 1}| in the above expression by
n|{σA(x,ξ)61}|+n|{σA(y,ξ)61}|

2 as announced(7) . �

Proof of Corollary 1.3. — We use the notations of Theorem 2.8. First
of all, by definition, as L → +∞, Ks

L → K in distribution. Moreover, by
Theorem 1.2, any point in X has a neighborhood V such that the sequence
(Ks

L)L>1 is uniformly bounded on V × V by a locally integrable function
and converge pointwise towards −gA(x, y) ln(|x − y|) + Q(x, y) where Q ∈
L∞(V ×V ) on the complement of the diagonal in V ×V . In particular, they
converge in distribution to this function. This implies that when restricted
to C∞(V × V ),

K(x, y) = −gA(x, y) ln(|x− y|) +Q(x, y) .
Now, given any smooth distance d on X , for each x, y distinct,

ln(|x− y|) = ln(d(x, y)) + ln
(
|x− y|
d(x, y)

)
(7) As explained in Remark 2.9, replacing the former by the latter in the expression of

Ks
L(x, y) creates a change of order O(1).
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and the second term is bounded so, on V × V ,

K(x, y) = −gA(x, y) ln(d(x, y)) +QA(x, y)

for some QA ∈ L∞(V × V ). But K is the integral kernel of As which is a
self-adjoint pseudo-differential operator (see [26] or [14, Proposition 29.1.9]).
In particular, it is smooth and symmetric outside the diagonal (see for
instance [13, Theorem 18.1.16]). Hence, QA must also be symmetric and
smooth outside the diagonal. �

Remark 2.14. — Theorems 2.6 and 2.8 hold in both Setting 1 and Set-
ting 2 of Section 2.1. Since the proofs of Theorems 1.1 and 1.2 and Corol-
lary 1.3 are purely local once one admits Theorems 2.6 and 2.8, these results
also hold in Setting 2.

3. Heuristics and proof outline

In this section we provide a heuristic justification for Theorems 2.6 and 2.8
and an outline of the skeleton of the proof. At the end of this section, we
also provide a proof map to highlight the dependencies between intermediate
results leading to the proofs of Theorems 2.6, 2.8 and 2.12, see Figure 3.1.

3.1. Heuristics

In order to get a sense of the kind of calculations we will carry out in the
rest of the article, let us present a simple example, with few non-rigorous
steps in order to shorten the argument. We assume that X is a closed Rie-
mannian manifold and that A denotes the associated Laplacian(8) . Then, A
is indeed elliptic of order m = 2 and self-adjoint with respect to the Rie-
mannian volume density dµ. Moreover the symbol of A is σA(x, ξ) = ‖ξ‖2x
where ‖ · ‖x is the norm induced by the Riemannian metric on T ∗xX . Thus,
in orthonormal coordinates SAx = Sn−1. Finally, we take P = Id. Now, if
s 6 n

2 ,

Ks
L(x, y) =

∫ L

1
λ−sE′λ(x, y)dλ+O(1)

= L−sEL(x, y) +
∫ L

1
sλ−s−1Eλ(x, y)dλ+O(1) . (3.1)

(8) Here we use the convention that ∆ = − div ◦∇ so that the operator is non-negative.
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Here, we artificially cut-off the first eigenvalues since, in the sum defining
Ks
L, they contribute by a term independent of L. By Theorem 2.4,

EL(x, y) = 1
(2π)n

∫
|ξ|26L

eiψ(x,y,ξ)dξ +O(L(n−1)/2) (3.2)

where ψ is a phase function. To simplify the computations(9) , we take

ψ(x, y, ξ) = 〈x− y, ξ〉 . (3.3)

Replacing Eλ in Equation (3.1) the expression given by Equations (3.2)
and (3.3) we get

Ks
L(x, y) = 1

(2π)n

[
L−s

∫
‖ξ‖26L

ei〈x−y,ξ〉dξ

+
∫ L

1
sλ−s−1

∫
‖ξ‖26λ

ei〈x−y,ξ〉dξdλ
]

+O(L(n−1)/2−s) .

Integrating by parts in λ, the boundary term λ = L cancels out the first
term. The case λ = 1 is independent of L and can be absorbed in an O(1)
error. We obtain

Ks
L(x, y) = 1

(2π)n

∫ L

1
(1/2)λ(n−2)/2−sJ(|x− y|λ1/2)dλ+O(1 + L(n−1)/2−s)

where J(t) =
∫
Sn−1

eitω1dω .

Here the radius of the ball {‖ξ‖2 6 λ} is λ1/2 which accounts for a factor of
(1/2)λ−1/2 in the resulting expression. Note that J(t)=(t)−(n−2)/2J(n−2)/2(t)
where Jν is the ν-th Bessel function of the first kind (see e.g. [8, p. 198]).
Making the change of variables η = λ1/2 yields

Ks
L(x, y) = 1

(2π)n

∫ L1/2

1
ηn−1−2sJ(|x− y|η)dη +O(1 + L(n−1)/2−s) . (3.4)

Here we see the two error terms from Theorem 1.1 appear. The 1 comes
from the low frequency region while the L(n−1)/2−s comes from the high
frequency cut-off. At this point we distinguish between s < n

2 and s = n
2 . In

the former case, assume that |x − y| = hL−1/2 for some fixed h. This new
information on s implies that the integrand in (3.4) is integrable at zero so

(9) As explained in the following section, it is not obvious at all that this approximation
is valid. Suffice to say for now that our estimates are interesting near the diagonal, around
which ψ shares many properties with the function 〈x− y, ξ〉 by Definition 2.3.
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we can extend the integral up to an O(1) error. We obtain

Ks
L(x, y) = 1

(2π)n

∫ L1/2

0
ηn−1−2sJ(hL−1/2η)dη +O(1 + L(n−1)/2−s)

= 1
(2π)n

∫ 1

0
η̃n−1−2sJ(|h|η̃)dη̃ × Ln/2−s +O(1 + L(n−1)/2−s)

= 1
(2π)n

∫
‖ξ‖261

ei〈h,ξ〉dξ × Ln/2−s +O(1 + L(n−1)/2−s) .

This is the conclusion of Theorem 1.1 for A = ∆ and P = Id.

Assume now that s = n
2 and x 6= y. Starting off from Equation (3.4) and

writing ζ = |x− y|η,

Ks
L(x, y) ∼ 1

(2π)n

∫ |x−y|L1/2

|x−y|
ζ−1J(ζ)dζ . (3.5)

Note that, by the stationary phase method (or standard Bessel function
estimates),

J(t) = O(t−(n−1)/2) (3.6)
for t > 1 and J(0) = |Sn−1|. Therefore, in dimensions n > 2, the integrand
is L1 away from zero, and equivalent to |Sn−1|ζ−1 at 0. This crucial obser-
vation basically allows us to replace expression (3.5) by the following ansatz,
allowing for O(1) errors:

Ks
L(x, y) = |S

n−1|
(2π)n

∫ |x−y|L1/2

|x−y|
1
[
ζ 6 1

]dζ
ζ

+O(1)

= |S
n−1|

(2π)n
[
ln
(
L1/2)− ln+

(
L1/2|x− y|

)]
+O(1) .

This is the essential statement of Theorem 1.2. The case n = 1 is similar in
spirit but requires a trick to replace the stationary phase method.

3.2. Proof strategy

There are two main obstacles to carry out the above calculation rigor-
ously in the general case and Sections 4 and 7 are devoted to dealing with
them. The first is to justify Equation (3.3). This is the role of Lemmas 4.1,
4.2 and 4.3 that roughly state that ψ behaves like 〈x − y, ξ〉. The second
difficulty is to obtain an analog of Equation (3.6) when Sn−1 is replaced by
SAx = {ξ , σA(x, ξ) = 1} for a general symbol σA. Indeed, in this case, the
standard stationary phase method need not apply and we must use more
general results on oscillatory integrals. This requires the assumption that
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σA be admissible (see Definition 2.7). To make this point more precise, let
us introduce some notation.

As in the previous section, we fix once and for all a point in X and
consider a local chart centered at this point defined on U ⊂ Rn given by
Theorem 2.4. We also take P with principal symbol σP , W ⊂ U × U and
ψ ∈ C∞(U × U × Rn) as in this theorem.

The following quantity will be central in our proofs. For any t > 0,
x, y ∈ U and ξ ∈ Rn let

HP (x, y, ξ, t) = eiψ(x,y,tξ)σP
(
t−1∂x,yψ(x, y, tξ)

)
(3.7)

and
JA(x, y, t) =

∫
SAy

HP (x, y, ξ, t)dyν(ξ). (3.8)

The function JA(x, y, t) specializes to the function J of the previous sub-
section when σP = 1, ψ(x, y, ξ) = 〈x − y, ξ〉 and SAy = Sn−1. Since σP
is d-homogeneous, HP satisfies the following equation. For any s, t > 0,
x, y ∈ U and ξ ∈ Rn,

HP (x, y, sξ, t) = sdHP (x, y, ξ, st). (3.9)
We will prove the following proposition.

Proposition 3.1 (Decay of JA). — Assume that σA is k0-admissible.
Then, there exists V ⊂ U an open neighborhood of 0 and C < +∞ such
that, uniformly for distinct x, y ∈ V and t > 0

|JA(x, y, t)| 6 C(t|x− y|)−
1
k0 .

The proof of Proposition 3.1 is divided into two steps. First, we will prove
that the admissibility condition on σA implies a property governing the decay
of certain oscillatory integrals over the level sets of σA that we define below
in Definition 3.2. Next, we prove that this property implies the required
behavior of JA. More precisely, we introduce the following terminology.

Definition 3.2 (Deformations of height functions and non-degenerate
level sets). — Let ε > 0, m > 0, E ⊂ Rp a neighborhood of 0 and let U ⊂ Rn
be an open subset. Let σ ∈ C∞(U × Rn \ {0}) be homogeneous of degree m
in the second variable. For each x ∈ U let SAx = {ξ ∈ Rn | σ(x, ξ) = 1} and
dxµ be the area measure on SAx . Let S∗U = {(x, ξ) ∈ U × Rn | ξ ∈ SAx }.

(1) Given a compact subset Ω ⊂ U × (Rn \ {0}) let X = {(x, τ, ξ) ∈ Ω ×
Rn | ξ ∈ SAx }. We call a deformation of the height function for σ over Ω
any family (fη)η∈E of continuous, real-valued functions on X, smooth
in the third variable ξ, with the following properties:
• for each (x, τ, ξ) ∈ Ω× Rn such that ξ ∈ SAx , f0(x, τ, ξ) = 〈τ, ξ〉
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• for each α ∈ Nn, the map η 7→ ∂αξ fη is continuous for the topology
of uniform convergence on compact sets.

(2) We say that σ has ε-non-degenerate level sets if, for any compact subset
Ω of U × (Rn \ {0}) and any deformation of the height function (fη)η
for σ over Ω there exists V ⊂ Rp a neighborhood of 0 depending only on
Ω (and ε) such that for each γ ∈ C∞(S∗U) and each continuous family
of smooth functions on (uη)η ∈ (C∞ (Rn))E, there exists C < +∞ such
that for each η ∈ V , each (x, τ) ∈ Ω and each λ > 0,∣∣∣∣∫

SAx

eiλfη(x,τ,ξ)uη(ξ)γ(x, ξ)dxν(ξ)
∣∣∣∣ 6 Cλ−ε . (3.10)

We say that σ has non-degenerate level sets if it has ε-non-degenerate
level sets for some ε > 0.

(3) Let ε > 0. We say that a homogeneous symbol on a manifold has non-
degenerate (resp. ε-non-degenerate) level sets if it has this property
when written in any local coordinate system.

Remark 3.3.

• In Definition 3.2, Equation (3.10) will be used to bound JA(x, y, t)
for the proof of Proposition 3.1.

• Since, by Definition 2.3, as in Section 3.1, we want to take
“ψ(x, y, ξ) = 〈x − y, ξ〉”, we will see the former as a deformation
of the latter. In other words, ψ will be realized as a deformation of
the height function.

• The notion of ε-non-degenerate level sets expresses the “non-flatness”
of these level sets. Indeed, for instance, in the worse case scenario, if
SAx contains an open subset of an affine hyperplane, say of the form
{x1 = h} for some fixed h ∈ R, and is otherwise strictly convex, the
following integral does not decay to zero as λ→ +∞∫

SAx

eiλξ1dxν(ξ) .

Proposition 3.1 will then be a consequence of the following results. Recall
the definition of admissible homogeneous symbols (Definition 2.7). On the
one hand, we will prove:

Proposition 3.4 (Admissible homogeneous symbols have non-degener-
ate level sets). — Fix n, k0 ∈ N, n > 1, k0 > 2. Let U ⊂ Rn be an open sub-
set and let σ ∈ Smh,+(U). If σ is k0-admissible, then it has 1

k0
-non-degenerate

level sets.

The proof of this proposition, which is presented in Section 7.1, is entirely
independent of the rest of the present text and uses different techniques. It
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is followed by Section 7.2, in which we prove that the admissibility condition
is generic in a suitable sense.

On the other hand, in Section 4.2, we will prove the following result.

Lemma 3.5. — Fix ε > 0. Suppose that the principal symbol σA has
ε-non-degenerate level sets (see Definition 3.2). Then, there exists V ⊂ U
an open neighborhood of 0 and C < +∞ such that, uniformly for distinct
x, y ∈ V and t > 0

|JA(x, y, t)| 6 C(t|x− y|)−ε .

Remark 3.6.

• Lemma 3.5 corresponds to Proposition 23 of [22] for ε = 1
2 although,

in that setting, the non-degeneracy condition was always satisfied.
• In the one dimensional case, Lemma 3.5 is replaced by Lemma 4.5.
• The proof of Lemma 3.5 relies on a control of t−1∂x,yψ(x, y, tξ) uni-
form in t ∈ ]0,+∞[. These estimates are carried out in Section 4.1.
We deal with the region t� 1 by hand. The region t� 1 comes by
assumption in ψ from the fourth point of Definition 2.3.

After proving all of these results, we carry out the calculation sketched
in Section 3.1 in Sections 5 and 6 as we will now explain in more detail.
We therefore suggest that the reader have Section 3.1 in mind for what
follows. The integration by parts is of course valid in a general setting. This
allows us to obtain an expression like Equation (3.1) where the map λ−s is
replaced by f(λ) for some adequate function f . More explicitely, in Section 5,
we derive the following result. We start by introducing a suitable function
f : ]0,+∞[ 7→ C and studying the asymptotics of the following kernel:

Kf
L : (x, y) 7−→

∑
0<λk6L

f(λk)ek(x)ek(y) .

This is again a smooth function. Since all of our results are local, we fix once
and for all a point in X and consider x = (x1, . . . , xn) the local coordinate
system in which this point has coordinates x = (0, . . . , 0), provided by The-
orem 2.4 and defined on an open neighborhood U of 0 in Rn. Recall that in
Theorem 2.4, W was a neighborhood of the diagonal. With some abuse of
notation, we will write W for this neighborhood read in the present chart so
that W ⊂ U × U .
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Proposition 3.7 (Integral expression for PKf
L). — Take f : R → C,

continuously differentiable, with support in ]0,+∞[. Then, in local coordi-
nates, uniformly for each x, y ∈ U , for each L > 0,

PKf
L(x, y) = 1

(2π)n

∫
σA(y,ξ)6L

eiψ(x,y,ξ)σP (∂x,yψ(x, y, ξ))f(σA(y, ξ))dξ

+O
(
f(L)L(n+d−1)/m

)
+O

(∫ L

0
f ′(λ)λ(n+d−1)/mdλ

)
.

In addition, if W ⊂ U×U is a neighborhood of the diagonal, then, uniformly
for any (x, y) ∈ (U × U) \W , for each L > 1,

PKf
L(x, y) = O

(
f(L)L(n+d−1)/m

)
+O

(∫ L

0
f ′(λ)λ(n+d−1)/mdλ

)
.

Finally, the constants implied by the O’s do not depend on f .

We prove Proposition 3.7 in Section 5. Then, we consider the case where
f is of the form f(t) = χ(t)tz where z = z1 + iz2 ∈ C and χ is some smooth
function with support in ]0,+∞[ equal to 1 for t large enough. In Section 5,
we prove Theorem 2.12 using only a crude estimate from Theorem 2.4, and
we also deduce Theorem 2.6 from Proposition 3.7 and results from Section 4.
Next, in Section 6 we prove Theorem 2.8 using again Proposition 3.7 but
also Proposition 3.1. We end this section with a diagram detailing the de-
pendencies between different results involved in the proofs of Theorems 2.6,
2.8 and 2.12.

4. Preliminary results

As before, in this section we fix once and for all a point in X and consider
a local chart centered at this point defined on U ⊂ Rn given by Theorem 2.4.
We also take P with principal symbol σP , W ⊂ U ×U and ψ ∈ C∞(U ×U ×
Rn) as in this theorem. The object of this section is to estimate the behavior
of the phase ψ near the diagonal and to prove Lemma 4.3.

4.1. Basic properties of the phase ψ

The phase ψ from Theorem 2.4 will frequently appear in the calculations
below. We begin by deducing a list of properties of ψ from those given in
Definition 2.3. We gather these properties in Lemma 4.1. It is easy to check
that all these properties are satisfied by the function ψ(x, y, ξ) = 〈x− y, ξ〉.
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Thm. 2.12

Thm. 2.4Lem. 5.1

Thm. 2.6

Prop. 3.7

Lem. 5.1Thm. 2.4 Lem. 4.1

Thm. 2.8

Lem. 6.2Prop. 3.7 Lem. 6.1

Lem. 4.3 Lem. 3.5 Lem. 4.5

Lem. 4.1

Thm. 2.4Lem. 5.1 Prop. 3.4

Lem. 4.2 Lem. 7.1

Figure 3.1. A map of the proofs of Theorems 2.6, 2.8 and 2.12. The
result at the origin of each arrow is used in the proof of the result at
its target.

Next, we present an additional lemma, Lemma 4.2, for the case n = 1.
Finally, we use Lemma 4.1 to deduce some properties of the function HP

defined in Equation (3.7). For each x, y ∈ U and ξ ∈ Rn, let

ψ0(x, y, ξ) = ∂ξψ(x, y, 0)ξ =
m∑
j=1

∂ξjψ(x, y, 0)ξj . (4.1)

Lemma 4.1. — Let U ⊂ Rn and let ψ ∈ C∞(U × U × Rn) be a proper
phase function. For each t > 0, let ψt = t−1ψ( · , · , t ·). Then,

(1) For each x, y ∈ U and each t > 0, ψt(x, y, 0) = 0.
(2) For each x ∈ U , each t > 0 and each ξ ∈ Rn, ψt(x, x, ξ) = 0.
(3) For each x ∈ U , each t > 0 and each ξ ∈ Rn, ∂x,yψt(x, x, ξ) =

(ξ,−ξ).
(4) The sequence (ψt)t>0 converges in C∞(U × U × Rn) as t → 0 to

the function ψ0 defined in (4.1). In other words, for each compact
subset Ω ⊂ U , each R < +∞ and each α, β, γ ∈ Rn,
lim
t→0

sup
x,y∈Ω, |ξ|6R

∣∣∂αξ ∂βx∂γyψt(x, y, ξ)− ∂αξ ∂βx∂γyψ0(x, y, ξ)
∣∣ = 0.

(5) The sequence (ψt)t>0 is bounded in C∞(U × U × Rn).
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Proof of Lemma 4.1. — Let t > 0, x, y ∈ U and ξ ∈ Rn. Then,
〈x− y, 0〉 = 〈x − x, tξ〉 = 0 so ψt(x, x, ξ) = ψt(x, y, 0) = 0 by the second
point of Definition 2.3. This proves the first two points of Lemma 4.1. By
point 3 of Definition 2.3, for each x ∈ U and ξ ∈ Rn, ∂xψ(x, x, ξ) = ξ, so
∂xψt(x, x, ξ) = t−1(tξ) = ξ. Next, by differentiating the following equality

ψt(x+ sv, x+ sv, ξ) = 0

with respect to s ∈ R, at s = 0, where x ∈ U , ξ ∈ Rn and v ∈ Rn, we get

∂xψt(x, x, ξ) + ∂yψt(x, x, ξ) = 0.

This proves the third point of Lemma 4.1.

To prove the fourth point, first, fix β, γ ∈ Nn and let Ω ⊂ U be a compact
subset and R < +∞. Then, for each x, y ∈ Ω and ξ ∈ Rn such that |ξ| 6 R,

∂βx∂
γ
yψt(x, y, ξ) = t−1∂βx∂

γ
yψ(x, y, tξ).

By the first point, of Lemma 4.1, ∂βx∂γyψ(x, y, 0) = 0. We apply Taylor’s
formula to t 7→ ∂βx∂

γ
yψ(x, y, tξ) uniformly for t 6 1, x, y ∈ Ω and ξ ∈ Rn

such that |ξ| 6 R and get

t−1∂βx∂
γ
yψ(x, y, tξ) = 0 + ∂βx∂

γ
y (∂ξψ0(x, y, ξ)) +O(t) .

In particular, as t → 0, ∂βx∂γyψt → ∂βx∂
γ
yψ0 uniformly for x, y ∈ Ω and

ξ ∈ Rn, |ξ| 6 R. Next, fix α ∈ N and suppose |α| > 1. Then, for each
x, y ∈ K, ξ ∈ Rn, |ξ| 6 R and t > 0,

∂αξ ∂
β
x∂

γ
yψt(x, y, ξ) = t|α|−1∂αξ ∂

β
x∂

γ
yψ(x, y, tξ).

If |α| = 1, as t → 0 the right hand side converges uniformly to
∂αξ ∂

β
x∂

γ
yψ(x, y, 0) = ∂αξ ∂

β
x∂

γ
y (∂ξψ0(x, y, ξ)). On the other hand, if |α| > 1,

as t → 0 it converges uniformly to 0 = ∂αξ ∂
β
x∂

γ
y (∂ξψ0(x, y, ξ)). This proves

the fourth point of Lemma 4.1. Lastly, the family (ψt)t>0 is obviously con-
tinuous into C∞(U × U × Rn) for t > 0. By the fourth point of Lemma 4.1
we may extend it by continuity to t = 0. On the other hand, by the fifth
point of Definition 2.3, it also converges as t→∞. In particular, the family
(ψt)t>0 is uniformly bounded in C∞(U×U×Rn). This proves the fifth point
of Lemma 4.1. �

We use the following lemma to prove Lemma 4.5 below, which is the
analog of Proposition 3.1 we use in dimension n = 1. It is the only place
where we use the fact that ψ satisfies the eikonal equation (2.1).

Lemma 4.2. — Assume that n = 1. For each segment I ⊂ U there exists
c ∈ ]0,+∞[ such that for each x, y ∈ I and ξ ∈ R, 1

c |x−y| 6 |∂ξψ(x, y, ξ)| 6
c|x− y| and |∂2

ξψ(x, y, ξ)| 6 c|x− y|(1 + |ξ|)−1.
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Proof of Lemma 4.2. — Let us fix I ⊂ U a compact interval. Since
the symbol σA is m-homogeneous and dim(X ) = 1 there exists a positive
function % ∈ C∞(U) such that σA(x, ξ) = %(x)m|ξ|m for ξ 6= 0 and x ∈ U .
By construction of ψ there exist C1 < +∞ and symbols τ ∈ S0(U ×R) and
σ ∈ S1(U × R) such that σ(x, ξ) = %(x)|ξ|+ τ(x, ξ) for |ξ| > C1 and x ∈ U
and such that

∀ ξ ∈ R \ [−C1, C1], ∀ x, y ∈ U, σ(x, ∂xψ(x, y, ξ)) = σ(y, ξ).
Since τ ∈ S0 and since %, being positive and continuous, is bounded from
below on I, there exists C2 ∈ [max(C1, 1),+∞[ such that for any x ∈ I and
ξ ∈ R such that |ξ| > C2,

1
2%(x)|ξ| 6 σ(x, ξ) 6 2%(x)|ξ| ;

C−1
2 6 sign(ξ)∂ξσ(x, ξ) 6 C2.

Let (σ−1)(x, · ) be the inverse of σ(x, · ) : [C2,+∞[→ [σ(x,C2) +∞[. Let us
fix x0 ∈ I. Then, for any x ∈ I,

∂xψ(x, x0, ξ) = (σ−1)(x, σ(x0, ξ)). (4.2)
Differentiating this Equation with respect to ξ we obtain the following ex-
pression for ∂ξ∂xψ.

∂ξ∂xψ(x, x0, ξ) = ∂ξ(σ−1)(x, σ(x0, ξ))∂ξσ(x0, ξ) .
Now, by definition of σ−1, we have, for x ∈ I and ξ ∈ R such that ξ > C3 =
maxy∈I σ(y, C2),

∂ξ(σ−1)(x, ξ) =
(
∂ξσ(x, σ−1(x, ξ))

)−1 =
(
%(x) + ∂ξτ(x, σ−1(x, ξ))

)−1
,

where %(x) is bounded on I from above and below by positive constants and
∂ξτ(x, σ−1(x, ξ)) is O(|σ−1(x, ξ)|−1) uniformly for x ∈ I. Since

σ−1(x, ξ) −−−−−→
ξ→+∞

+∞

then there exists C4 > 0 such that for any x ∈ I and any ξ > C4 >
max(C3, C2),

C−1
4 6 ∂ξ(σ−1)(x, ξ) 6 C4. (4.3)

Therefore,
C−1

2 C−1
4 6 ∂x∂ξψ(x, x0, ξ) 6 C2C4 .

Recall that, by the first point of Lemma 4.1, ψ(x, x, ξ) = 0 for any x ∈ U
and any ξ ∈ R. Thus, for any x ∈ I, ξ > C4,

|∂ξψ(x, x0, ξ)| =
∣∣∣∣∫ x

x0

∂ξ∂xψ(y, x0, ξ)dy
∣∣∣∣ ∈ [C−1

5 |x− x0|, C5|x− x0|
]

where C5 = C2C4 is independent of the choice of x0. The case where ξ < 0
is symmetric and this proves the first identity announced in the lemma. For
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the second identity, we start by differentiating Equation (4.2) with respect
to ξ to obtain

∂2
ξ∂xψ(x, x0, ξ) = ∂2

ξ (σ−1)(x, σ(x0, ξ))(∂ξσ(x0, ξ))2

+ ∂ξ(σ−1)(x, σ(x0, ξ))σ2
ξ (x0, ξ) . (4.4)

To deal with the second term of the right hand side, observe that, since σ is a
symbol of order one and by Equation (4.3), there exists a constant C6 < +∞
such that for any x, x0 ∈ I and any ξ ∈ R,∣∣∂ξ(σ−1)(x, σ(x0, ξ))σ2

ξ (x0, ξ)
∣∣ 6 C6(1 + |ξ|)−1. (4.5)

For the first term we proceed as follows. By definition of σ−1, we have, for
any x ∈ I and ξ > C3,
∂2
ξσ(x, σ−1(x, ξ))(∂ξ(σ−1)(x, ξ))2 + ∂ξσ(x, σ−1(x, ξ))∂2

ξ (σ−1)(x, ξ) = 0.

By Equation (4.3), since σ is a symbol of order one and since ∂ξσ is bounded
from below on [C2,+∞[, there exists C7 < +∞ such that for each x, x0 ∈ I
and ξ > C3, ∣∣∂2

ξ (σ−1)(x, σ(x0, ξ))(∂ξσ(x0, ξ))2∣∣ 6 C7(1 + |ξ|)−1 . (4.6)

We use Equations (4.5) and (4.6) on the right hand side of Equation (4.4)
and get, for each x, x0 ∈ I and ξ > C3,∣∣∂x∂2

ξψ(x, x0, ξ)
∣∣ 6 (C6 + C7)(1 + |ξ|)−1 .

As before, since for all x ∈ I and ξ ∈ R, ψ(x, x, ξ) = 0, we have∣∣∂2
ξψ(x, x0, ξ)

∣∣ 6 ∫ x

x0

∣∣∂x∂2
ξψ(y, x0, ξ)

∣∣ dy 6 C8|x− x0|(1 + |ξ|)−1

where C8 = C6 + C7. The case ξ < 0 is symmetric. �

From Lemma 4.1, we deduce the following properties of the function HP

defined in Equation (3.7).

Lemma 4.3. — The function HP satisfies the following properties.

(1) The function t 7→ HP ( · , · , · , t) extends continuously to t = 0 as a
function from R+ to C∞(U × U × Rn) and

HP (x, y, ξ, 0) = σP (∂x,yψ0(x, y, ξ))
where ψ0 is defined as in Equation (4.1).

(2) Uniformly for t > 0 and x, y in compact subsets of U and ξ ∈ Rn,

HP (x, y, ξ, t)−HP (x, y, ξ, 0) = O
(
t|x− y||ξ|d+1) .

Note that the assertions are both easy to check for the prototype
HP (x, y, t) = eit〈x−y,ξ〉σP (ξ,−ξ).
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Remark 4.4. — Lemma 4.3 implies that the function t 7→ JA( · , · , t) ex-
tends continuously to t = 0 as a function from R+ to C∞(U × U) and

JA(x, y, 0) =
∫
SAy

σP (∂x,yψ0(x, y, ξ))dyν(ξ). (4.7)

Proof. — The first statement follows from the fourth point of Lemma 4.1.
For the second statement, by Equation (3.9), we may therefore restrict our
attention to the case where ξ ∈ SAy . Next, we observe that by the second
point of Lemma 4.1,HP (y, y, ξ, t) = HP (y, y, ξ, 0). The functionHP is clearly
C1 with respect to its first variable so that |HP (x, y, ξ, t)−HP (x, y, ξ, 0)| is
no greater than

|x− y| sup
s∈[0,1]

|∂xHP (sx+ (1− s)y, y, ξ, t)− ∂xHP (sx+ (1− s)y, y, ξ, 0)| .

Let us fix Ω ⊂ U a compact set. Then by Taylor’s inequality, there exists
C1 < +∞ such that for each x, y ∈ Ω, ξ ∈ SAy and each t > 0,

|∂x,yψ(x, y, tξ)− ∂x,yψ(x, y, 0)− ∂x,yψ0(x, y, ξ)t| 6 C1t
2 .

By the first point of Lemma 4.1, ∂x,yψ(x, y, 0) = 0, so that

∂x,yψt(x, y, ξ) = ∂x,yψ0(x, y, ξ) +O(t) (4.8)

uniformly in x, y ∈ Ω and ξ ∈ SAy . On the other hand by the fifth point of
Lemma 4.1, (ψt)t>0 is bounded in C∞. In particular, there exists a constant
C2 < +∞ such that for each t > 0, each x, y ∈ K and each ξ ∈ SAy ,
|ψt(x, y, ξ)| 6 C2. In other words

ψ(x, y, tξ) = O(t) (4.9)

uniformly in x, y ∈ Ω and ξ ∈ SAy . Applying estimates (4.8) and (4.9) to each
occurrence of ψ in HP , we see that uniformly for x, y in compact subsets of
U and ξ ∈ SAy ,

∂xHP (x, y, ξ, t) = ∂xHP (x, y, ξ, 0) +O(t) ,

which completes the proof. �

4.2. Decay of JA: Proof of Lemma 3.5 and its analogue in dimen-
sion one

In this subsection, we use the results of the previous subsection to prove
Lemma 3.5. We will use this lemma in the proof of the multi-dimensional
case of Theorem 2.8 (see Section 6). In the one dimensional case, we will use
Lemma 4.5 presented below.
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Proof of Lemma 3.5. — To prove this lemma, we interpret JA as an
oscillatory integral whose phase is a deformation of (ω, τ) 7→ 〈ω, τ〉. First,
fix Ω ⊂ U a compact neighborhood of 0. Let r0 > 0 be such that Ω0 = {x ∈
Rn | ∃ y ∈ Ω, |y − x| 6 r0} ⊂ U . By the fourth point of Lemma 4.1 the
family (ψt)t>0 extends by continuity to t = 0 in C∞. For each t > 0, y ∈ U ,
0 < r 6 r0 and ξ, τ ∈ Rn such that |τ | 6 1, let

ft,r(y, ξ, τ) = r−1ψt((y + rτ), y, ξ).
Let α ∈ Nn. The Taylor expansion of ∂αξ ψt(y + rτ, y, ξ) along r yields, for
each y ∈ Ω, |τ | 6 1, 0 < r 6 r0, t > 0 and ξ ∈ SAy ,∣∣∂αξ ψt(y + rτ, y, ξ)− ∂αξ 〈ξ, τ〉

∣∣ 6 1
2C1r

where
C1 = sup

{
|∂x∂ξψs(w′, w, ξ)|

∣∣w ∈ Ω, w′ ∈ Ω0, ξ ∈ SAw , s > 0
}
.

The constant C1 is finite by the fifth point of Lemma 4.1. In particular,
lim
r→0

ft,r(y, ξ, τ) = 〈ξ, τ〉

smoothly in ξ, uniformly in t > 0, y ∈ Ω and τ ∈ Rn such that |τ | 6 1. In
particular, we have proved first that ft,r(y, ξ, τ) −−−−→

t,r→0
〈ξ, τ〉 in this same

topology, and second that for each α ∈ Nn, the map (t, r) → ∂αξ ft,r is
continuous at (t, 0) for any t > 0 for the topology of uniform convergence.
Since this map is obviously continuous as long as r > 0 we have proved that
the family (ft,r)t,r is a deformation of the height function in the sense of
Definition 3.2. Now let x ∈ U be such that 0 < r := |x − y| 6 r0 and let
τ = x−y

|x−y| . Then |τ | = 1 and

ψ(x, y, tξ) = t|x− y|ft,|x−y|(y, ξ, τ).
Moreover, by the fifth point of Lemma 4.1, the function

ξ 7→ σP (∂x,yψt(x, y, ξ))
is bounded in C∞(Rn) uniformly for x, y ∈ Ω and t > 1. Hence, the fact that
the function σA has ε-non-degenerate level sets (see Definition 3.2) implies
the existence an open neighborhood V ⊂ U of 0 and a constant C > 0 such
that, uniformly for x, y ∈ V and t > 0,∣∣∣∣∫

SAy

eiψ(x,y,tξ)σP (∂x,yψt(x, y, ξ))dyν(ξ)
∣∣∣∣ 6 C(t|x− y|)−ε.

Here we took λ = t|x− y| in Equation (3.10). �

In dimension n = 1, the symbol will never have non-degenerate level sets
(in fact they will be discrete). Instead of Lemma 3.5 we will use the following
result.
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Lemma 4.5. — Assume that n = 1. For each compact interval I ⊂ U ,
there exists C < +∞ such that for each 0 < a 6 b, each η ∈ {−1,+1} and
each x, y ∈ I∣∣∣∣∫ ηb

ηa

eiψ(x,y,|x−y|−1η)σP (|x− y|∂x,yψ(x, y, |x− y|−1η)σA(y, ξ)−(d+1)/mdη
∣∣∣∣

6 Ca−1 . (4.10)

Proof of Lemma 4.5. — Let I ⊂ U be a compact interval. First of all,
since σA is homogeneous of degree m and n = 1, there exists a positive
function % ∈ C∞(U) such that σA(x, η) = %(x)|η|m. Thus, we may replace
σA(x, η) by |η|m in Equation (4.10). Observe that for each t, λ > 0, x, y ∈ U
and η ∈ R,

ψt(x, y, λη) = λψλt(x, y, η) .
This Equation, combined with the fifth point of Lemma 4.1 implies that
there exists C < +∞ such that for each x, y ∈ I, each t > 0 and η ∈ R

|∂x,yψt(x, y, η)| 6 C|η| and |∂x,y∂ξψt(x, y, η)| 6 C .
Since moreover σP is homogeneous of degree d, we have, uniformly for x, y ∈
I and for non-zero η ∈ R \ {0},

σP (|x− y|∂x,yψ(x, y, |x− y|−1η))|η|−d−1

= σP (∂x,yψ|x−y|−1(x, y, η))|η|−d−1 = O(|η|−1)
∂η[σP (|x− y|∂x,yψ(x, y, |x− y|−1η))|η|−d−1]

= ∂η[σP (∂x,yψ|x−y|−1(x, y, η))|η|−d−1] = O(|η|−2).
In addition, again uniformly for x, y ∈ I and non-zero η ∈ R \ {0}, by
Lemma 4.2, ∂2

η [ψ(x, y, |x − y|−1η)] = O(|η|−1) and ∂η[ψ(x, y, |x − y|−1η)]
is bounded from above and below by a positive constant. Now, setting
momentarily u(η) := ψ(x, y, |x − y|−1η) and v(η) = σP (|x − y|∂x,yψ(x, y,
|x− y|−1η))|η|−d−1, we have, for any a, b > 0 such that a 6 b,∫ b

a

eiu(η)v(η)dη =
[

1
i
eiu(η) v(η)

u′(η)

]b
η=a
−
∫ b

a

1
i
eiu(η)

(
v′(η)
u′(η) −

v(η)u′′(η)
u′(η)2

)
dη.

The preceding observations show that, uniformly for x, y ∈ I, 0 < a 6 b

and η ∈ [a, b], we have v(a)
u′(a) = O(a−1), v(b)

u′(b) = O(b−1), v
′(η)
u′(η) = O(η−2) and

v(η)u′′(η)
u′(η)2 = O(η−2). Consequently, there exists C < +∞ such that for any

x, y ∈ Ω and any 0 < a 6 b,∣∣∣∣∫ b

a

eiψ(x,y,|x−y|−1η)σP (|x− y|∂x,yψ(x, y, |x− y|−1η))|η|−d−1dη
∣∣∣∣ 6 Ca−1.

The proof for
∫ −a
−b is identical. �
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5. The off-critical case: Proof of Theorem 2.12, Proposition 3.7
and Theorem 2.6

In this section, we prove Theorem 2.12, Proposition 3.7 and Theorem 2.6.
We use only Theorem 2.4 and Lemma 4.1.

Let f : R→ C, continuously differentiable, with support in ]0,+∞[. For
each L > 1, let Kf

L be the integral kernel of ΠLf(A). Later in this section
we will consider the case f(z) = tz for t large enough. We begin by linking
Kf
L with EL.

Lemma 5.1. — For any L ∈ R,

Kf
L = f(L)EL −

∫ L

0
f ′(λ)Eλdλ.

This lemma generalizes Proposition 21 of [22].

Proof. — The functions L 7→ EL and L 7→ Kf
L are locally constant and

define distributions on R with values in C∞(X×X ). We denote by ′ the weak
derivative with respect to L of these kernels. For all L > 0, and x, y ∈ X

EL(x, y) =
∑
λk6L

ek(x)ek(y); Kf
L =

∑
λk6L

f(λk)ek(x)ek(y) ,

so that

Kf
L(x, y)′ =

∑
k∈N

δλk(L)f(λk)ek(x)ek(y)

= f(L)
∑
k∈N

δλk(L)ek(x)ek(y) = f(L)E′L

and

Kf
L =

∫ L

0
f(λ)E′λdλ.

By integration by parts,

Kf
L = f(L)EL − f(0)E0 −

∫ L

0
f ′(λ)Eλdλ = f(L)EL −

∫ L

0
f ′(λ)Eλdλ

since f(0) = 0. �

We can now prove both Theorem 2.12 and Proposition 3.7 using Theo-
rem 2.4. We start with Theorem 2.12.

Proof of Theorem 2.12. — Throughout the proof we fix z = z1 + iz2 ∈ C
such that (n + d)/m < z1 and f : R → C continuously differentiable such
that f(t) = tz for t large enough. As in the statement of the theorem, we
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omit the superscript in Kf
L. Let L > 0. Then, by Lemma 5.1, we have, for

each t > L, if f : R→ C is continuously differentiable,

KL+t = f(L+ t)EL+t −
∫ L+t

0
f ′(λ)Eλdλ .

If we apply the operator P , then, for all large enough values of L > 0 and
all t > 0,

PKL+t − PKL = (L+ t)zPEL+t − LzPEL −
∫ L+t

L

zλz−1PEλdλ .

By Theorem 2.4, we have, uniformly for (x, y) ∈ U × U and t > 0,

(L+ t)zPEL+t(x, y) = O
(
Lz1+(n+d)/m

)
and∫ L+t

L

zλz−1Eλdλ = O

(∫ +∞

L

λ−1+z1+(n+d)/mdλ
)

= O
(
Lz1+(n+d)/m

)
.

In particular, uniformly for (x, y) ∈ U × U and t > 0,

PKL+t(x, y)− PKL(x, y) = O
(
Lz1+(n+d)/m

)
.

Since, (n+d)/m < z1, this last estimate implies that the sequence (PKL)L>0
is a Cauchy sequence in C0 (U × U). Therefore, it converges uniformly on
compact subsets of U ×U to some function KP

∞ ∈ C0 (U × U). Since this is
actually true for any differential operator of order at most d (indeed, if d′ 6 d,
we still have z1 + (n+ d′)/m < 0), all the derivatives of KL, of order up to
d, converge uniformly on compact sets. But this means that the limit K∞ of
(KL)L>0 is actually of class Cd and that the limits of the respective deriva-
tives converge to the derivatives of the limit. In particular,KP

∞ = PK∞. �

We now move on to Proposition 3.7.

Proof of Proposition 3.7. — By Theorem 2.4, uniformly for x, y ∈ U and
L > 1,

PEL(x, y) = 1
(2π)n

∫
σA(y,ξ)6L

eiψ(x,y,ξ)σP (∂x,yψ(x, y, ξ))dξ +O
(
L(n+d−1)/m

)
= 1

(2π)n

∫ L1/m

0
JA(x, y, t)tn+d−1dt+O

(
L(n+d−1)/m

)
.
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In the second equality we used the definition of dν (see (1.1)) and JA
(see (3.8)) as well as the fact that σP is d-homogeneous. Consequently, uni-
formly for any x, y ∈ U and L > 1,

−
∫ L

0
f ′(λ)PEλ(x, y)dλ = − 1

(2π)n

∫ L

0
f ′(λ)

∫ λ1/m

0
JA(x, y, t)tn+d−1dtdλ

+O

(∫ L

−∞
f ′(λ)λ(n+d−1)/mdλ

)
.

Integrating by parts along λ the first term in the right hand side, we get

− f(L)PEL(x, y) + 1
(2π)n

∫ L

0
f(λ) 1

m
λ

1
m−1JA(x, y, λ1/m)λ(n+d−1)/mdλ

+O
(
f(L)L(n+d−1)/m

)
.

Setting u = λ1/m we get∫ L

0
f(λ) 1

m
λ

1
m−1JA(x, y, λ1/m)λ(n+d−1)/mdλ

=
∫ L1/m

0
f(um)JA(x, y, u)un+d−1du

=
∫
σA(y,ξ)6L

eiψ(x,y,ξ)f(σA(y, ξ))σP (∂x,yψ(x, y, ξ))dξ.

By Lemma 5.1,

PKf
L = f(L)PEL −

∫ L

0
f ′(λ)PEλdλ.

Replacing the integral term by the expression derived above, we see that
the f(L)PEL terms cancel out, leaving the equation from the first result
of Proposition 3.7. For the case where (x, y) ∈ U × U \ W , W ⊂ U × U
a neighborhood of the diagonal, we just apply the corresponding estimate
from Theorem 2.4 and proceed accordingly. �

For the proof of Theorem 2.6, From now on, we assume that f(t) = tz

for large enough t > 0 and omit the superscript f in Kf
L.

Proof of Theorem 2.6. — Throughout the proof, we let η = 1 if n +
d + mz = 1 and 0 otherwise and set g(L) = 1 + L(n+d−1)/m+z1 ln(L)η. We
also fix a compact subset Ω ⊂ U which is a neighborhood of 0. Firstly,
changing f on a compact set affects PKL by adding a linear combination
of smooth functions (independent of L). On the other hand, it changes the
right-hand side of the equation from Proposition 3.7 by an O(1) term. Thus,
we may assume that f(t) = tz1

[
t > 1

]
. By Proposition 3.7, uniformly for
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x ∈ Ω, L > 1 and X,Y ∈ Rn such that x + L−1/mX,x + L−1/mY ∈ Ω,
PKL

(
x+ L−1/mX,x+ L−1/mY

)
equals

1
(2π)n

∫
16σA(x+L−1/mY,ξ)6L

σA(x+ L−1/mY, ξ)zeiψ(x+L−1/mX,x+L−1/mY,ξ)

× σP
(
∂x,yψ

(
x+ L−1/mX,x+ L−1/mY, ξ

))
dξ +O(g(L)) . (5.1)

We need to check that replacing each occurrence of x + L−1/mY or x +
L−1/mX by w in the integrand will produce an error of order O(g(L)). More
precisely, we make the following claim.

Claim 5.2. — Uniformly for x ∈ Ω, ξ ∈ Rn \{0}, L > 1 and X,Y ∈ Rn
such that x+L−1/mX,x+L−1/mY ∈ U such that 1 6 σA(x+L−1/mY, ξ) 6 L,
the quantity

σA(x+ L−1/mY, ξ)zeiψ(x+L−1/mX,x+L−1/mY,ξ)

× σP
(
∂x,yψ

(
x+ L−1/mX,x+ L−1/mY, ξ

))
(5.2)

equals

eiL
−1/m〈ξ,X−Y 〉σA(x, ξ)zσP (ξ,−ξ) +O

(
|ξ|mz1+dL−1/m

)
. (5.3)

The claim follows by Taylor expansion in the x, y variables and keeping
track of the homogeneity in ξ. The only subtlety lies in the linearization of
the phase.

Proof of Claim 5.2. — Throughout the proof we fix x ∈ Ω, L > 1,
X,Y ∈ Rn such that x + L−1/mX,x + L−1/mY ∈ Ω and ξ ∈ Rn \ {0} such
that σA(x + L−1/mY, ξ) 6 L. Unless otherwise stated, all the O estimates
will be uniform with respect to these parameters. First of all, since σA is a
positive m-homogeneous symbol in its second variable, σP is homogeneous
of order d and ∂x,yψ is a symbol of order 1 in its third variable, applying
Taylor’s inequality with respect to the L-dependent variables everywhere
except the exponential in the quantity (5.2) shows that it equals

σA(x, ξ)zeiψ(x+L−1/mX,x+L−1/mY,ξ)σP (∂x,yψ (x, x, ξ))

+O
(
|ξ|mz1+dL−1/m

)
. (5.4)

Here the |ξ|mz1 appears regardless of the sign of z1 because σA is positive
homogeneous. Since ψ is a symbol of order one in ξ and |ξ| = O

(
L1/m),

ψ(x+ L−1/mX,x+ L−1/mY, ξ)

= ψ(x, x, ξ) + ∂xψ(x, x, ξ)L−1/mx+ ∂yψ(x, x, ξ)L−1/my +O
(
L−1/m).
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By points two and three of Lemma 4.1 we get

ψ(x+ L−1/mX,x+ L−1/mY, ξ) = L−1/m〈X − Y, ξ〉+O
(
L−1/m).

Using this estimate in the exponential, together with the fact the rest of the
integrand is O

(
|ξ|mz1+d) we obtain that the quantity (5.4) equals

eiL
−1/m〈ξ,X−Y 〉σA(x, ξ)zσP (ξ,−ξ) +O

(
|ξ|mz1+dL−1/m

)
which is exactly (5.3). �

By Claim 5.2 and Equation (5.1) PKL(x+L−1/mX,x+L−1/mY ) equals

PKL

(
x+ L−1/mX,x+ L−1/mY

)
= 1

(2π)n

∫
16σA(x+L−1/mY,ξ)6L

eiL
−1/m〈ξ,X−Y 〉σA(x, ξ)zσP (ξ,−ξ)dξ

+O

(
L−1/m

∫
16σA(x+L−1/mY,ξ)6L

|ξ|mz1+ddξ
)
. (5.5)

But since mz1 + d + n > 0 and σA is m-homogeneous, the remainder is
O
(
Lz1+(n+d−1)/m) = O(g(L)). For each x ∈ U , Y ∈ Rn and each L > 1 let

∆(x, Y, L) be the symmetric difference of the sets {ξ ∈ Rn | 1 6 σA(x, ξ) 6
L} and {ξ ∈ Rn | 1 6 σA(x + L−1/mY, ξ) 6 L}, whenever x + L−1/mY ∈
Ω. Since σA is positive m-homogeneous in ξ and smooth in x, there exists
0 < C < +∞ such that for each L > 1, x ∈ Ω and Y ∈ Rn such that
x+L−1/mY ∈ Ω, Vol(∆(x, Y, L)) 6 CL(n−1)/m and for each ξ ∈ ∆(x, Y, L),
C−1L1/m 6 |ξ| 6 CL1/m. Consequently, in Equation (5.5) we can replace
the integration domain by {ξ ∈ Rn | 1 6 σA(x, ξ) 6 L} and produce an
error of order O

(
Lz1+(n+d−1)/m) = O(g(L)) uniformly for x ∈ Ω, L > 1 and

Y ∈ Rn such that x+ L−1/mY ∈ Ω. In other words,

PKL

(
x+ L−1/mX,x+ L−1/mY

)
= 1

(2π)n

∫
16σA(x,ξ)6L

eiL
−1/m〈ξ,X−Y 〉σA(x, ξ)zσP (ξ,−ξ)dξ +O(g(L)) .

Moreover, since mz1 + d + n > 0 and the integrand scales like |ξ|mz1+d

near 0, adding the region σA(x, ξ) 6 1 to the integration domain creates a
bounded error. Following this by the change of variable ξ = L1/mζ shows
that uniformly for x ∈ Ω, L > 1 and X,Y ∈ Rn such that x + L−1/mX,
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x+ L−1/mY ∈ Ω,

PKL

(
x+ L−1/mX,x+ L−1/mY

)
= 1

(2π)n

∫
σA(x,ζ)61

ei〈ζ,X−Y 〉σA(x, ζ)zσP (ζ,−ζ)dζLz+(n+d)/m +O(g(L)) .

This proves the first statement of the theorem for V = Ω̊. To prove the
second statement, observe that by Lemma 5.1, uniformly for L > 1 and
x, y ∈ Ω,

PKL(x, y) = f(L)PEL −
∫ L

0
f ′(λ)PEλ(x, y)dλ

= LzPEL(x, y)−
∫ L

1
λz−1PEλ(x, y)dλ+O(1)

Next, fix W ⊂ V × V a neighborhood of the diagonal. By Theorem 2.4,
there exists C ′ > 0 such that for any (x, y) ∈ (V × V ) \W and any L > 1,
|PEL(x, y)| 6 C ′L(n+d−1)/m, which implies

|PKL(x, y)| 6 C ′
(
Lz1+(n+d−1)/m +

∫ L

1
λz1−1+(n+d−1)/mdλ

)
= O(g(L)) .

This proves the second statement of Theorem 2.6. �

6. The critical case: Proof of Theorem 2.8

In this section we prove Theorem 2.8. We use the admissibility condition
through Proposition 3.4. Suppose that n + d + mz = 0, so that z = −d+n

m .
By Proposition 3.7, uniformly for x, y ∈ U ,
PKL(x, y)

= 1
(2π)n

∫
σA(y,ξ)6L

eiψ(x,y,ξ)σP (∂x,yψ(x, y, ξ))f(σA(y, ξ))dξ +O
(
L−1/m).

Let C < +∞ be such that f(t) = tz for t > C. Then,

PKL(x, y)

= 1
(2π)n

∫
C6σA(y,ξ)6L

eiψ(x,y,ξ)σP (∂x,yψ(x, y, ξ))σA(y, ξ)−(d+n)/mdξ

+Q1(x, y) +O
(
L−1/m)

where

Q1(x, y) = 1
(2π)n

∫
σA(y,ξ)6C

eiψ(x,y,ξ)σP (∂x,yψ(x, y, ξ))f(σA(y, ξ))dξ .
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We will split the first integral term in the last expression of PKL as follows.
For any x, y ∈ U , let

IL(x, y) = 1
(2π)n

∫
C6σA(y,ξ)6L

1
[
σA(y, ξ)|x− y|m > 1

]
eiψ(x,y,ξ)

× σP (∂x,yψ(x, y, ξ))σA(y, ξ)−(d+n)/mdξ

IIL(x, y) = 1
(2π)n

∫
C6σA(y,ξ)6L

1
[
σA(y, ξ)|x− y|m < 1

]
eiψ(x,y,ξ)

× σP (∂x,yψ(x, y, ξ))σA(y, ξ)−(d+n)/mdξ.

The integral IL represents the off-diagonal contributions while the IIL rep-
resents the near diagonal contributions, where the split occurs at |x − y| �
σA(y, ξ)−1/m. Then, uniformly for x, y ∈ U ,

PKL(x, y) = IL(x, y) + IIL(x, y) +Q1(x, y) +O
(
L−1/m). (6.1)

Theorem 2.8 is an easy consequence of the following two lemmas.

Lemma 6.1. — Let k0 ∈ N, k0 > 2. Suppose that either n = 1 or σA
is 1

k0
-admissible. There exist an open neighborhood V ⊂ U of 0 ∈ Rn, a

function Q2 ∈ L∞(V × V ) and a constant C < +∞ such that for any
x, y ∈ V and L > 1,∣∣∣IL(x, y)−Q2(x, y)

∣∣∣ 6 C min
(
L−1/k0m|x− y|−1/k0 , 1

)
.

In dimension one, we prove the lemma using Lemma 4.5 while in the case
of admissible σA we use Proposition 3.1. This proof is the only place where
we use these results.

Lemma 6.2. — For any open neighborhood V ⊂ U of 0 such that V ⊂ U
is compact, there exists a constant C < +∞ such that for all x, y ∈ V and
L > 1,∣∣∣∣IIL(x, y)− 1

(2π)nYP (y)
[
ln
(
L1/m)− ln+

(
L1/m|x− y|

)]∣∣∣∣ 6 C .
Moreover IIL(x, y) is independent of L as long as L > 1 and L|x− y|m > 1.

Let us first prove that these lemmas imply Theorem 2.8.

Proof of Theorem 2.8. — Let V be the intersection of the V ’s appearing
in Lemmas 6.1 and 6.2. Firstly, Lemma 6.1 implies that IL(x, y) is uniformly
bounded for x, y ∈ V and L > 1. Secondly, Lemma 6.2 implies that, uni-
formly for x, y ∈ V and L > 1,

IIL(x, y) = 1
(2π)nYP (y)

[
ln
(
L1/m)− ln+

(
L1/m|x− y|

)]
+O(1) .
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Plugging these two estimates in Equation (6.1) we get the first point of The-
orem 2.8. For the second point, we begin by observing that by Lemma 6.2,
there exists a bounded function Q3 ∈ L∞(V × V ) such that for each L >
|x− y|−m,

IIL(x, y) = − 1
(2π)nYP (y) ln(|x− y|) +Q3(x, y) .

Moreover, if L > |x− y|−m then L−1/k0 |x− y|−1/k0m 6 1 so by Lemma 6.1,
uniformly for any such x, y and L,

IL(x, y) = Q2(x, y) +O
(
L−1/k0 |x− y|−1/k0m

)
.

Applying these two estimates to Equation (6.1) we deduce that, uniformly
for x, y ∈ V and L > 1 such that |x− y| > L−1/m,

PKL(x, y) = − 1
(2π)nYP (y) ln(|x− y|) +Q(x, y) +O

(
L−1/k0 |x− y|−1/k0m

)
where Q = Q1 + Q2 + Q3 ∈ L∞(V × V ). This proves the estimate in the
second point of Theorem 2.8. �

Proof of Lemma 6.1. — Suppose first that X has dimension n = 1 and
fix Ω ⊂ U a compact neighborhood of 0. For x 6= y, setting η = |x− y|ξ, the
integral IL(x, y) equals

∫ b(x,y,L)

a(x,y)
eiψ(x,y,|x−y|−1η)σP

(
|x− y|∂x,yψ

(
x, y, |x− y|−1η

))
× σA(y, η)−(d+1)/mdη.

where a(x, y) and b(x, y, L) are the positive numbers defined by

σA(y, a(x, y)) = max(C|x− y|m, 1)
and σA(y, b(x, y, L)) = max(|x− y|mL, 1).

Since σA is elliptic positive homogeneous of degreem > 0 there exists C1 > 0
such that for each x, y ∈ Ω and L > 1,

b(x, y, L) > C1 min
(
|x− y|L−1/m).

By Lemma 4.5, IL(x, y) converges to some limit Q2(x, y) as L → +∞ in
such a way that the remainder term is O

(
min

(
|x− y|−1L−1/m, 1

))
. The

case where x = y follows by continuity and we have proved the lemma in the
one-dimensional case with V = Ω̊.

– 464 –



Weighted local Weyl laws for elliptic operators

Suppose now that n > 2 and σA is 1
k0
-admissible for some integer k0 > 2.

By Equations (1.1) and (3.8), for any L > 1 and x, y ∈ U ,

IL(x, y) = 1
(2π)n

∫ L1/m

C1/m
1
[
|x− y|t > 1

]
JA(x, y, t)dt

t

= 1
(2π)n

∫ L1/m|x−y|

C1/m|x−y|
1
[
s > 1

]
JA
(
x, y, |x− y|−1s

) ds
s

By Proposition 3.1, there exist an open neighborhood V ⊂ U of 0 and a
constant C3 > 0 such that, uniformly for distinct x, y ∈ V and t > 0,
|JA(x, y, t)| 6 C3 (|x− y|t)−1/k0 . Therefore, for each x, y ∈ V and L > 0,∣∣∣∣∣(2π)nIL(x, y)−

∫ +∞

C1/m|x−y|
1
[
s > 1

]
JA
(
x, y, |x− y|−1s

) ds
s

∣∣∣∣∣
6 C3

∫ +∞

max(|x−y|L
1
m ,1)

s−1−1/k0ds = C3

k0
min

(
1, L−1/k0m|x− y|−1/k0

)
.

By continuity, this stays true for x = y. This proves the lemma for σA
admissible with

Q2(x, y) =
∫ +∞

C1/m|x−y|
1
[
s > 1

]
JA
(
x, y, |x− y|−1s

) ds
s
. �

Proof of Lemma 6.2. — Let Ω ⊂ U be a compact neighborhood of the
origin. The indicator function in the integral defining IIL(x, y) changes the
integration domain from C 6 σA(y, ξ) 6 L to C 6 σA(y, ξ) 6 |x − y|−1/m

as long as L|x − y|m > 1. Hence, IIL(x, y) is independent of L whenever
L|x− y|m > 1. For each y ∈ U and each 0 6 r1 6 r2, we set

Ay(r1, r2) = {ξ ∈ Rn | r1 6 σA(y, ξ) 6 r2} .

Recall that

IIL(x, y) = 1
(2π)n

∫
Ay(C,L)

1
[
σA(y, ξ)|x− y|m < 1

]
eiψ(x,y,ξ)

× σP (∂x,yψ(x, y, ξ))σA(y, ξ)−(n+d)/mdξ .

By Equation (3.7), the integrand equals

1
[
σA(y, ξ)|x− y|m < 1

]
HP

(
x, y, σA(y, ξ)−1/mξ, σA(y, ξ)1/m

)
σA(y, ξ)−n/m .

Since σA is positive homogeneous of degree m, σA(y, ξ)−1/mξ is uniformly
bounded for y ∈ Ω and ξ ∈ Rn \ {0}. By the second point of Lemma 4.3,
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uniformly for x, y ∈ Ω and ξ ∈ Rn \ {0},

HP

(
x, y, σA(y, ξ)−1/mξ, σA(y, ξ)1/m

)
= HP

(
x, y, σA(y, ξ)−1/mξ, 0

)
+O

(
|x− y|σA(y, ξ)1/m

)
.

Again by m-homogeneity and positivity, |x − y|1
[
σA(y, ξ)|x − y|m < 1

]
×

σA(y, ξ)(1−n)/m is uniformly integrable in ξ for x, y ∈ Ω so

IIL(x, y) = 1
(2π)n

∫
Ay(C,L)

1
[
σA(y, ξ)|x− y|m < 1

]
×HP

(
x, y, σA(y, ξ)−1/mξ, 0

)
σA(y, η)−n/mdξ +O(1) .

Fix two distinct points x, y ∈ U . The change of variables η = |x− y|ξ in the
integral yields∫

|x−y|Ay(C,L)
1
[
σA(y, η) < 1

]
HP (x, y, |x− y|η, 0)σA(y, η)−n/mdη

which, by definition of JA (see Equation (3.8)), equals

JA(x, y, 0)
∫ L1/m|x−y|

C1/m|x−y|
1
[
|x− y|s < 1

]ds
s
.

Observe that for any 0 < a 6 b,∫ b

a

1
[
t < 1

]dt
t

= ln(b)− ln+(b)− ln(a) + ln+(a)

where ln+(s) = max(ln(s), 0). In our setting, uniformly for distinct x, y ∈ Ω,∫ L1/m

C1/m
1
[
|x− y|s < 1

]ds
s

=
∫ L1/m|x−y|

C1/m|x−y|
1
[
t < 1

]dt
t

= ln
(
L1/m)− ln+

(
L1/m|x− y|

)
+O(1) .

Hence, uniformly for any (x, y) ∈ Ω× Ω and L > 1,

IIL(x, y) = 1
(2π)n JA(x, y, 0)

[
ln
(
L1/m)− ln+

(
L1/m|x− y|

)]
+O(1).

Now, by Equation (4.7) and the second point of Definition 2.3, followed
by (1.1),

JA(x, y, 0) =
∫
SAy

σP (∂x,yψ(y, y, ξ))dyν(ξ) +O(|x− y|)

=
∫
SAy

σP (ξ,−ξ)dyν(ξ) +O(|x− y|) = YP (y) +O(|x− y|) .
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Since the quantity

|x− y|
[
ln
(
L1/m)− ln+

(
L1/m|x− y|

)]
is uniformly bounded in L > 0 and x, y ∈ Ω, we deduce that

IIL(x, y) = 1
(2π)nYP (y)

[
ln
(
L1/m)− ln+

(
L1/m|x− y|

)]
+O(1)

so the lemma is proved with V = Ω̊. �

7. Admissible homogeneous symbols

In this section, we deal with results concerning admissible homogeneous
symbols (see Definition 2.7). These results are useful in the proofs of The-
orems 2.11 and 2.8. More precisely, in Section 7.1 we prove Proposition 3.4
which says that admissible homogeneous symbols have non-degenerate level
sets and is used in the proof of Theorem 2.8. Then, in Proposition 7.6 of Sec-
tion 7.2 we prove that admissibility is both stable and generic in a suitable
topology. Theorem 2.11 follows directly from Proposition 7.6.

Throughout this section we will use the following notation. Let U ⊂ Rp
and V ⊂ Rq be two open subsets and f ∈ C∞(U × V ). For each k ∈ N
and (x, y) ∈ U × V , we denote by dkf(x, y) the k-th differential of f at
(x, y), which is a symmetric k-linear form on Rp+q. Moreover, we will denote
by dkxf(x, y) the k-th differential of f( · , y) at (x, y) and define dyfkf(x, y)
likewise. We nevertheless retain the notation ∂xf (resp. ∂yf) if p = 1 (resp.
q = 1).

We will also use Euler’s identity for homogeneous functions. Namely, if f :
Rp \ {0} → R is m-homogeneous, then, for each x ∈ Rp, df(x)(x) = mf(x).
We will actually apply this identity as follows. For each k ∈ N, dkf(x) is
k-homogeneous so

dk+1f(x)(x, . . . ) = (m− k)dkf(x) . (7.1)

7.1. Proof of Proposition 3.4

The object of this subsection is to prove Proposition 3.4. To prove this
result, we will use partitions of unity and local charts to carry the integral
onto Rn and then apply the following lemma, which we prove later in the
section.
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Lemma 7.1. — Let n ∈ N, n > 1. Let U ⊂ Rn be an open neighborhood
of 0 and (fη)η∈E be a continuous family of smooth functions on U indexed by
E ⊂ Rp, an open neighborhood of 0. Fix k > 1 and assume that dkf0(0) 6=
0. Then, there exist E′ ⊂ E and U ′ ⊂ U two open neighborhoods of the
origin in Rp and Rn respectively, such that for each u ∈ C∞c (U ′) there exists
C(u) < +∞ such that for each λ > 0 and each η ∈ E′,∣∣∣∣∫

U ′
eiλfη(x)u(x)dx

∣∣∣∣ 6 C(u)λ− 1
k .

Moreover, C(u) depends continuously on u in the C∞c (U ′) topology.

We now begin the proof of Proposition 3.4.

Proof of Proposition 3.4. — Take Ω, γ, (fη)η and (uη)η as in Defini-
tion 3.2. Recall that dxν is the measure on SAx defined in (1.1). By using
partitions of unity on Rn, we may fix ξ0 ∈ Rn \ {0} and assume that the
functions uη are supported near ξ0. Let ξ1, . . . , ξn−1 ∈ Rn be such that
(ξ0, ξ1, . . . , ξn−1) forms a basis for Rn. For any x ∈ U , let

βx : (t1, . . . , tn−1) ∈ Rn−1 7−→ σ(x, ξ0 + t1ξ1 + · · ·+ tn−1ξn−1)− 1
m

× (ξ0 + t1ξ1 + · · ·+ tn−1ξn−1) ∈ SAx .

The map βx defines a local coordinate system at σ(x, ξ0)− 1
m ξ0 ∈ SAx . More-

over, the map x 7→ βx ∈ C∞(Rn−1) is continuous. The density gx =
β∗x(γ(x,·)dxµ)

dt ∈ C∞(Rn−1) also depends continously on x ∈ U in C∞(Rn−1).
Now, for any λ > 0, η ∈ E and (x, τ) ∈ Ω, if uη is supported close enough
to ξ0,∫

SAx

eiλfη(x,τ,ξ)uη(ξ)γ(x, ξ)dxν(ξ) =
∫
Rn−1

eiλfη(x,τ,βx(t))uη(βx(t))gx(t)dt .

We now set Ẽ = U×Rn×E, for any η̃ = (x, τ, η) ∈ Ẽ, f̃ η̃ = fη(x, τ, βx( · )) ∈
C∞(Rn−1) and ũη̃ = uη(βx( · ))gx ∈ C∞(Rn−1). By compactness, it is
enough to fix (x0, τ0) ∈ Ω and prove estimate (3.10) for η̃ = (x, τ, η) close
enough to η̃0 = (x0, τ0, 0). Also, without loss of generality, we may assume
x0 = 0. Our task is therefore to find C > 0 such that for each η̃ close enough
to η̃0 and each λ > 0,∣∣∣∣∫

Rn−1
eiλf̃ η̃(t)ũη̃(t)dt

∣∣∣∣ 6 Cλ− 1
k0 .

We wish to apply Lemma 7.1. The estimate is obvious for λ 6 1 while, for
λ > 1, replacing k0 by some smaller integer would improve the estimate.
Thus, we need only to check that there exists k ∈ {1, . . . , k0} such that

dkf̃ η̃0(0) 6= 0 . (7.2)
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Let g = f̃ η̃0 . Since f0(x, τ0, ξ) = 〈τ0, ξ〉, we have, for all t ∈ Rn−1,

g(t) = (〈τ0, ξ1〉t1 + · · ·+ 〈τ0, ξn−1〉tn−1 + 〈τ0, ξ0〉)

× σ(0, ξ0 + t1ξ1 + · · ·+ tn−1ξn−1)− 1
m .

We proceed by contradiction and assume that djg(0) = 0 for each j ∈
{1, . . . , k}. To understand how this condition affects σ we use the following
claim which we prove at the end.

Claim 7.2. — Let U ⊂ Rp be an open neighborhood of 0 and f ∈ C∞(U)
be positive valued. Let α ∈ R \ {0} and k ∈ N such that k > 1. Assume that
there exist b ∈ R and τ ∈ Rp such that (τ, b) 6= (0, 0) such that, writing
h : x ∈ Rn 7→ 〈τ, x〉+ b ∈ R we have, for each j ∈ {1, . . . , k},

dj [hfα](0) = 0 . (7.3)

Then,

f(0)k−1dkf(0) = (α+ 1)(2α+ 1) . . . ((k − 1)α+ 1)(df(0))⊗k . (7.4)

We wish to use this claim with α = − 1
m , h(t) = 〈τ0, ξ1〉t1 + · · · +

〈τ0, ξn−1〉tn−1 + 〈τ0, ξ0〉 and f(t) = σ(0, ξ0 + t1ξ1 + · · · + tn−1ξn−1). In or-
der to apply it, the only thing to check is that h is not identically 0. But
h = 0 would imply that 〈τ0, ξ0〉 = · · · = 〈τ0, ξn−1〉 = 0. This cannot happen
since τ0 6= 0. Hence, by Claim 7.2 we have the following equality between
(symmetric) k-forms on the hyperplane H spanned by (ξ1, . . . , ξn−1),

σ(0, ξ0)k−1dkξσ(0, ξ0)|Hk = C(m, k)(dξσ(0, ξ0))⊗k|Hk (7.5)

where

C(m, k) =
(
− 1
m

+ 1
)
· · ·
(
−k − 1

m
+ 1
)

= m(m− 1) . . . (m− k + 1)
mk

.

Next, we make the following claim, which we prove at the end.

Claim 7.3. — Let m be a positive real number and let f ∈ C∞(Rp \{0})
be a real-valued m-homogeneous function. Then, for each x ∈ Rp \ {0}, each
hyperplane H ⊂ Rp not containing x and each k0 > 2,

∀ k ∈ {2, . . . , k0},

f(x)k−1dkf(x) = m(m− 1) . . . (m− k + 1)
mk

(df(x))⊗k (7.6)

is equivalent to

∀ k ∈ {2, . . . , k0},

f(x)k−1dkf(x)
∣∣
H

= m(m− 1) . . . (m− k + 1)
mk

(df(x))⊗k
∣∣
H
. (7.7)
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This claim implies that σ actually satisfies Equation (7.5) on the whole
of T ∗ξ Rn ' Rn. By the assumption on σ, this equation cannot be satisfied for
all k 6 k0. Hence, dkg(0) cannot vanish for each k ∈ {1, . . . , k0} (recall that
g(t) = f̃ η̃0(t) = f0(x0, τ0, βx0(t))). In particular, there exists k ∈ {1, . . . , k0}
for which f̃ η̃ satisfies Equation (7.2). Hence, Lemma 7.1 applies for this k
and we are done. All that remains is to prove Claims 7.2 and 7.3.

Proof of Claim 7.2. — Let f , τ , b, α, h and k be as in the statement of
the claim. Let g(x) = h(x)− 1

α . First of all, by Equation (7.3) with j = 1,
f(0)τ = −αbdf(0)

In particular, since (τ, b) 6= 0 and f(0) > 0, we actually have b 6= 0. Thus,
the function g : x 7→ h(x)− 1

α is well defined and positive near the origin.
Moreover, hgα = 1 so all of its derivatives vanish. Consequently, for each
j ∈ {1, . . . , k}, dj(fαg−α)(0) = 0 which in turn gives, for each j ∈ {1, . . . , k},
dj(fg−1)(0) = 0 (here we use the fact that fg−1 = (fαg−α)

1
α which is well

defined near 0). In particular, the Taylor expansions of f and g coincide to the
k-th order up to a multiplicative constant. By homogeneity of Equation (7.4)
we may assume that they agree up to order k. But

dkg(0) =
k−1∏
j=0

(
− 1
α
− j
)
× b− 1

α−kτ⊗k

=
(
b−

1
α

)1−k
(α+ 1)(2α+ 1) . . . ((k − 1)α+ 1)

(
−αb 1

α+1
)−k

τ⊗k

and g(0) = b−
1
α and dg(0) = (−αb 1

α+1)−1τ . Thus,

g(0)k−1dkg(0) = (α+ 1)(2α+ 1) . . . ((k − 1)α+ 1)(dg(0))⊗k .
Since f agrees with g up to order k, f satisfies Equation (7.4). �

Proof of Claim 7.3. — Equation (7.6) implies (7.7) by restriction to H.
Let us assume (7.7) and prove the converse. Since x /∈H, Rx⊕H generate Rp.
By multilinearity, it is enough to prove (7.6) when the k forms are evaluated
on families of the form (x, . . . , x, y1, . . . , yh) where y1, . . . , yh ∈ H and h ∈
{1, . . . , k}. Now, since f is homogeneous, by Euler’s Equation (see (7.1)), for
any h 6 k, and for any y1, . . . , yh ∈ H,

dkf(x)(x, . . . , x, y1, . . . , yh) = (m− h) . . . (m− k + 1)︸ ︷︷ ︸
1 if k=h

dhf(x)(y1, . . . , yh)

and
(df(x))⊗k(x, . . . , x, y1, . . . , yh) = mk−hfk−h(x)(df(x))⊗h(y1, . . . , yh).

Applying (7.7) to compare the right hand sides of each line we get Equa-
tion (7.6). �
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This concludes the proof of Proposition 3.4 �

The proof of Lemma 7.1 will combine two results from singularity theory
and oscillatory integral asymptotics which we state now.

The following theorem is a corollary of the Malgrange preparation theo-
rem presented in [12]. We give a slightly different formulation and add the
continuity with respect to smooth perturbations, which actually follows from
Hörmander’s original proof.

Theorem 7.4 ([12, Theorem 7.5.13]). — Let U ⊂ R×Rn (resp. E ⊂ Rp)
be an open neighborhood of 0 ∈ R × Rn (resp. 0 ∈ Rp) and (fη)η∈E be a
continuous family of smooth functions on U . We denote by (t, x) the elements
of U . Let k ∈ N, k > 2. Assume that for each η ∈ E and j ∈ {0, . . . , k − 1}

∂jt fη(0, 0) = 0
and that ∂kt fη(0, 0) > 0. Then, there exist W ⊂ R × Rn (resp. V ⊂ Rn) a
neighbohood of 0 ∈ R × Rn (resp. 0 ∈ Rn) with U ′ ⊂ R × V such that for
each η ∈ E, there exist φη ∈ C∞(W ) as well as a1

η, . . . , a
k−1
η ∈ C∞(V ),

satisfying, for any η ∈ E, (t, x) ∈W ,
φη(0, 0) = 0 ,

∂tφη(0, 0) > 0 ,
a1
η(0) = · · · = ak−1

η (0) = 0 ,

and fη(φη(t, x), x) = tk +
k−1∑
j=0

ajη(x)tj .

Moreover, one can choose these functions such that the maps η 7→ φη and
η 7→ ajη are continuous into C∞.

The Lemma 7.5 is a direct consequence of Van der Corput’s lemma.

Lemma 7.5 ([28, Chapter 8, Section 1.2]). — Let k ∈ N, k > 2. There
exist δ = δ(k) > 0, V ⊂ Rk an open neighborhood of 0 such that for all
u ∈ C∞c (]−δ, δ[) there exists C(u) < +∞ such that for all λ > 0 and
(a0, . . . , ak−1) ∈ V ,∣∣∣∣∫

R
eiλ(tk+ak−1t

k−1+···+a0)u(t)dt
∣∣∣∣ 6 C(u)λ− 1

k .

Moreover C(u) depends continuously on u ∈ C∞c (]−δ, δ[).

Proof of Lemma 7.1. — Let (fη)η and k > 1 be as in the statement of
the lemma. Assume that dkf0(0) 6= 0. Then, by the multilinear polarization
formula (see [21, Chapter 3, Section 2]), there exists v ∈ Rn \ {0} such
that dkf0(0)(v, v, . . . , v) 6= 0. Without loss of generality, we may assume
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that v = en := (0, . . . , 0, 1). We write x = (x̃, xn) ∈ Rn = Rn−1 × R. Let
u ∈ C∞c (U) be such that u(x̃, xn) 6= 0 implies that ‖x̃‖∞ 6 1. Then, for each
η ∈ E and λ > 0,∣∣∣∣∫

U

eiλfη(x)u(x)dx
∣∣∣∣ 6 max

x̃∈Rn−1

∣∣∣∣∫
R
eiλfη(x̃,xn)u(x̃, xn)dxn

∣∣∣∣ .
This way by replacing η by (η, x̃) and fη by fη(x̃, · ) we have reduced the
problem to the one dimensional case. From now on, we assume that n = 1,
so that U is an open subset of R.

For each η ∈ E, each x ∈ U , and q = (q0, . . . , qk−1) ∈ Rk, let

gη(x, q) = fη(x)− fη(0)− f ′η(0)x− · · · − 1
(k − 1)!f

(k−1)
η (0)xk−1

+ q0 + q1x+ · · ·+ qk−1x
k−1 .

We will first prove the desired bound where we replace fη by gη( · , q), uni-
formly for q close enough to 0 and then deduce the result for fη itself as a
phase.

The map η 7→ gη is continuous from E to C∞(U × Rk). Moreover, for
each η ∈ E close enough to 0 we have

∀ j ∈ {0, . . . , k − 1}, ∂jxgη(0, 0) = 0 ∂kxgη(0, 0) 6= 0.
Replacing fη by −fη does not change the estimate since it amounts to com-
plex conjugation of the integrand. With this in mind, we may assume that
∂kxgη(0, 0) > 0. By Theorem 7.4, there exist W ⊂ R × Rk and continuous
families of smooth functions (a1

η)η . . . , (ak−1
η )η, as well as (φη)η defined re-

spectively in a neighborhood of 0 ∈ Rk and a neighborhood of (0, 0) in U×Rk
such that for each η ∈ E and (x, q) close enough to 0 and (0, 0) respectively,

φη(0, 0) = 0 ,
∂tφη(0, 0) > 0 ,

a1
η(0) = · · · = ak−1

η (0) = 0 ,

and gη(φη(x, q), q) = xk +
k−1∑

0
ajη(q)xj .

Hence, if u ∈ C∞c (R) is supported close enough to 0, we have, for all η ∈ E
close enough to 0 and all q ∈ Rk,∫

R
eiλgη(y,q)u(y)dy

=
∫
R
eiλ(xk+ak−1

η (q)xk−1+···+a0
η(q))u(φη(x, q))

(
φ−1
η ( · , q)

)′ (x)dx .
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By Lemma 7.5, there exist W1 ⊂ Rk × E a neighborhood of 0 such that
δ > 0 such that for each (q, η) ∈ W1, for each v ∈ C∞c (]−δ, δ[), there exists
C ′(v) < +∞ such that for each λ > 0 and each (q, η) close enough to (0, 0),∣∣∣∣∫

R
eiλ(xk+ak−1

η (q)xk−1+···+a0
η(q))v(x)dx

∣∣∣∣ 6 C ′(v)λ− 1
k .

Moreover, Lemma 7.5 specifies that the map v ∈ C∞c (]−δ, δ[) 7→ C ′(v) ∈ R is
continuous. By continuity, there exist ε > 0 and W2 ⊂W1 a compact neigh-
borhood of 0 such that for any (q, η) ∈ W2 and any x ∈ R with |x| > δ/2,
|φη(x, q)| > ε. In particular, the map (q, η, u) ∈ W2 × C∞c (]−ε, ε[) 7→
u(φη( · , q))

(
φη( · , q)−1)′ ∈ C∞c (]−δ, δ[) is well defined and continuous. Con-

sequently, so is the map

W2 × C∞c (]−ε, ε[) −→ R

(q, η, u) 7−→ Cq,η(u) = C ′
(
u(φη( · , q))

(
φη( · , q)−1)′) .

By compactness, C(u) = sup(q,η)∈W2 Cq,η(u) is finite and continuous in u.
We have proved that for any (q, η) ∈W2, any λ > 0 and any u ∈ C∞c (]−ε, ε[),∣∣∣eiλgη(y,q)u(y)dy

∣∣∣ 6 C(u)λ− 1
k .

To obtain the corresponding estimate with fη instead of gη( · , q), we make
the following two observations. First, for each η ∈ E, and x ∈ U ,

gη(x, fη(0), . . . , f (k−1)
η (0)) = fη(x) .

Second, since f0(0) = · · · = f
(k−1)
0 (0) = 0, there exists E′ ⊂ E a neighbor-

hood of 0 such that for each η ∈ E′, (fη(0), . . . , f (k−1)
η (0), η) ∈ W2. Thus,

for each η ∈ E′ each u ∈ C∞c (]−ε, ε[) and each λ > 0,∣∣∣eiλfη(y)u(y)dy
∣∣∣ 6 C(u)λ− 1

k

and the proof is over. �

7.2. Genericity and stability of the non-degeneracy condition

The goal of this subsection is to prove Proposition 7.6 below, which says
roughly that admissible homogeneous symbols are stable and generic. To
give a precise meaning to this statement, use the topology we defined on
the space of homogeneous symbols Smh (U) (see Definition 2.7). We have the
following proposition.
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Proposition 7.6. — For all n ∈ N, n > 2 we define k0 = k0(n) ∈ N
as follows. We set k0(2) = 5, k0(3) = 3, k0(4) = 3 and ∀ n > 5, k0(n) = 2.
Fix n > 2 and m > 0. Let U ⊂ Rn be an open subset. Then, the set of σ ∈
Smh,+(U) such that for each (x, ξ) ∈ U×(Rn\{0}) there exists j ∈ {2, . . . , k0}
such that

σj−1(x, ξ)djξσ(x, ξ) 6= m(m− 1) . . . (m− j + 1)
mj

(dξσ(x, ξ))⊗j (7.8)

is open and dense in Smh,+(U).

To prove this proposition, we will apply Thom’s transversality theorem
(see [9, Theorem 4.9 of Chapter II]) to a well chosen submanifold of the jet
bundle of U×Sn−1 whose codimension grows with the degree of admissibility
we consider. Lemmas 7.7, 7.8, 7.9, 7.10 and 7.11 below are devoted to the
construction of this manifold. The proof of Proposition 7.6 is presented only
after these are stated and proved. Throughout the rest of the section we fix
n ∈ N, n > 2, U ⊂ Rn an open subset and m ∈ R, m > 0. We start by
introducing some notation.

Notation.

(1) For each j, p ∈ N, p > 1, let Symj
p be the space of symmetric j-

linear forms over Rp. This is a vector space of dimension
(
p+j−1
j

)
.

We adopt the convention that Sym0
p = R.

(2) Let Z be a smooth manifold. For each k > 0 we denote by J k(Z) the
k-th jet space of mappings from X to R, that is, the space Jk(Z,R)
introduced in [9, Definition 2.1 of Chapter II]. For any p ∈ N and any
open subset V ⊂ Rp, the space J k(V ) is canonically isomorphic to
V ×

⊕k
j=0 Symj

p. We will denote its elements by (ξ, ω) where ξ ∈ V
and ω = (ω0, . . . , ωk) ∈

⊕k
j=0 Symj

p.
(3) Let Z be a smooth manifold and k ∈ N. For each f ∈ C∞(Z), we

write jkf for the section of J k(Z) whose value at each point is the
k-jet of f at this point (see [9, paragraph below Definition 2.1 of
Chapter II]). At a point x ∈ Z, the k-jet jkf(x) is essentially the
Taylor expansion of order k of f at x. In fact, if Z = Rp, jkf(x) =
(x, f(x),df(x), . . . ,dkf(x)).

Since the jet bundle J k(Rn \ {0}) is quite explicit, we will make most
of our contructions inside it and them “push them down” onto the sphere.
In the following lemma, we build the map we need to “push down” our
constructions.
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Lemma 7.7. — Let ι : Sn−1 → Rn be the canonical injection. Then,
there exists a bundle morphism

ρ : ι∗J k(Rn \ {0})→ J k(Sn−1)
such that the following diagram commutes:

C∞(Rn \ {0}) C∞(Sn−1)

ι∗J k(Rn \ {0}) J k(Sn−1).

ι∗

ι∗(jk·) jk

ρ

Here the top arrow is the restriction map while the left arrow is the restriction
of the k-jet to the sphere.

Lemma 7.7 states that it is equivalent to restrict a function to the sphere
and consider its k-jet or to consider its k-jet and restrict it to the tensor
powers of the tangent space of the sphere.

Proof. — We construct ρ by defining its action on each fiber. Let ξ ∈
Sn−1 and let (V, φ) be a chart φ : V → Rn−1 of Sn−1 near ξ. Then, for
each f ∈ C∞(Rn), the k-th order Taylor expansion of f ◦ φ−1 at ξ depends
only on the k-th order Taylor expansion of f at ξ and the dependence is
linear. This defines a linear map ρ|ξ : ι∗J k(Rn \ {0})|ξ → J k(Sn−1)|ξ. The
corresponding fiberwise map ρ is clearly smooth and defines a morphism of
smooth vector bundles. Moreover, by construction, for each f ∈ C∞(Rn\{0})
and each ξ ∈ Sn−1, ρ|ξ

(
jkf(ξ)

)
= jk(f ◦ ι)(ξ) so the diagram does indeed

commute. �

Notation. — For each k ∈ N, each ξ ∈ Rn and each ω = (ω0, . . . , ωk) ∈⊕k
j=0 Symj

n we introduce the following notation. For each j ∈ {0, . . . , k},
ωj |ξ⊥ is the restriction of ωj to the orthogonal of ξ in Rn. Moreover, we set
ω|ξ⊥ = (ω0|ξ⊥ , . . . , ωk|ξ⊥).

In the following lemma, we check that the set of jets of homogeneous maps
is a smooth submanifold of ι∗J k(Rn\{0}) and give an explicit description of
it. Moreover, we show that the “push down” map ρ maps it diffeomorphically
on the space J k(Sn−1).

Lemma 7.8. — Fix k ∈ N. Let Hk
m be the subset of ι∗J k(Rn \ {0}) of

jets of m-homogeneous symbols. Then,

(1) The set Hk
m is characterized by the following equations:

Hk
m =

k−1⋂
j=0

{
(ξ, ω) ∈ ι∗J k(Rn \ {0})

∣∣∣ωj+1(ξ, . . . ) = (m− j)ωj
}
.
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(2) The set Hk
m is a submanifold of ι∗J k (U × Rn \ {0}) of the same

dimension as J k(Sn−1).
(3) The map ρ|Hkm : Hk

m → J k
(
U × Sn−1) is a diffeomorphism.

Proof. — We set

H̃k
m =

k−1⋂
j=0

{
(ξ, ω) ∈ ι∗J k(Rn \ {0})

∣∣∣ωj+1(ξ, . . . ) = (m− j)ωj
}
.

Firstly, each m-homogeneous f ∈ C∞(Rn \ {0}), satisfies Euler’s equation
(see (7.1)). Next, notice that if f is m-homogeneous, then, for each j ∈
{1, . . . , k}, ξ 7→ djf(ξ) is homogeneous of order m − j so that for each ξ ∈
Rn \{0}, dj+1f(ξ)(ξ, . . . ) = (m− j)djf(ξ). Therefore, for each ξ ∈ Rn \{0},
jkf(ξ) ∈ H̃k

m. We have shown that Hk
m ⊂ H̃k

m. Next, notice that for each
f ∈ C∞(Sn−1), the m-homogeneous function ξ 7→ |ξ|mf

(
ξ
|ξ|
)
restricts back

to f on Sn−1. Therefore, we have J k(Sn−1) = ρ(Hk
m) ⊂ ρ(H̃k

m) ⊂ J k(Sn−1).
So we have

ρ(Hk
m) = ρ

(
H̃k
m

)
= J k(Sn−1). (7.9)

Given this equation, in order to prove the lemma, it is enough to prove
points (2) and (3) with Hk

m replaced by H̃k
m, which we call (2′) and (3′)

respectively. Indeed, point (3′) will imply that ρ|
H̃km

is one-to-one so by

Equation (7.9), we will have Hk
m = H̃k

m which is point (1). Moreover, since
we will have already proved points (2) and (3) for H̃k

m we will have them for
Hk
m. Let us start by proving (2′). For each j ∈ {0, . . . , k − 1} set

F jm : (ξ, ω) 7→ ωj+1(ξ, . . . )− (m− j)ωj

so that H̃k
m = ∩k−1

j=0
(
F jm
)−1 (0). Let us prove that the map

Fm =
(
F 0
m, . . . , F

k−1
m

)
: ι∗J k(Rn \ {0})→

k−1⊕
j=0

Symj
n

is a submersion. Fix (ξ, ω)∈ ι∗J k(Rn\{0}). Let (η0, . . . , ηk−1)∈
⊕k−1

j=0 Symj
n'

TFm(ξ,ω)
⊕k−1

j=0 Symj
n. Then, for each j ∈ {0, . . . , k − 1},

dωj+1F
j
m(ξ, ω)

(
|ξ|−2〈ξ, · 〉 ⊗ ηj

)
= ηj .

In particular, d(ξ,ω)Fm is surjective. Therefore H̃k
m is a submanifold of

ι∗J k(Rn \ {0}) of codimension

codimι∗J k(Rn\{0})

(
H̃k
m

)
=
k−1∑
j=0

dim(Symj
n) =

k−1∑
j=0

(
n+ j − 1

j

)
.
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Indeed, recall that dim(Symj
n) =

(
n+j−1

j

)
. Using this identity, we also have:

dim
(
ι∗J k(Rn \ {0})

)
= (n− 1) +

k∑
j=0

(
n+ j − 1

j

)
;

dim
(
J k(Sn−1)

)
= (n− 1) +

k∑
j=0

(
n+ j − 2

j

)
.

Therefore, firstly dim(H̃k
m) = (n− 1) +

(
n+k−1

k

)
and secondly

dim
(
H̃k
m

)
− dim

(
J k(Sn−1)

)
=
(
n+ k − 1

k

)
−

k∑
j=0

(
n+ j − 2

j

)
= 0 . (7.10)

In the last equality we use a well known binomial formula which is easily
checked by induction on k. The conclusion here is that H̃k

m has the same
dimension as J k(Sn−1) so we have proved (2′). To prove (3′) observe that ρ
is linear on each fiber of ι∗J k(Rn \ {0}) so that its derivative dρ is constant
on each fiber. Moreover, it is equivariant with respect to the automorphisms
of the base space Sn−1 so its derivative must have the same rank on different
fibers. Since ρ is surjective (see Equation (7.9)) dρ must be of maximal rank.
This proves that ρ is a local diffeomorphism. But since it is a morphism of
vector bundles, it must be a diffeomorphism, which is the claim of (3′). This
concludes the proof of the lemma. �

In the following lemma, we build a submanifold of Hk
m that describes the

condition of non-admissibility and compute its codimension.

Lemma 7.9. — For each k ∈ N, k > 2, define

Y km =
k⋂
j=2

{
(ξ, ω) ∈ ι∗J k(Rn \ {0})

∣∣∣∣∣ω0 > 0, ωj−1
0 ωj |ξ⊥

= m(m−1)...(m−j+1)
mj

(
ω1|ξ⊥

)⊗j
}
.

Then, Y km∩Hk
m is a closed submanifold of Hk

m of codimension
∑k
j=2

(
n+j−2

j

)
.

Proof. — For each j ∈ {0, . . . , k−1}, each l ∈ {2, . . . , k} and each (ξ, ω) ∈
ι∗J k(Rn\{0}), let, as before, F jm(ξ, ω) = ωj+1(ξ, . . . )−(m− j)ωj ∈ Symj−1

n .
Moreover, let Syml

n |ξ⊥ be the set of symmetric l-linear forms acting on the
orthogonal of ξ in Rn and letGlm(ξ, ω) = ωl|ξ⊥−

m(m−1)...(m−l+1)
ml

(
ω1|ξ⊥

)⊗l∈
Syml

n |ξ⊥ . Then, Y km∩Hk
m is the intersection of the zero sets of the functions

F jm and Glm for j ∈ {0, . . . , k − 1} and l ∈ {2, . . . , k}. In particular, it is
closed. Note first that ∂ω0F

0
m = m 6= 0 ∈ Hom

(
Sym0

n,Sym0
n

)
' R. In par-

ticular this map is invertible. We will now prove that for each l ∈ {2, . . . , k},
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the map (dωlF l−1
m ,dωlGlm) is of maximal rank on Y km. For any (ξ, ω) ∈ Y km

and any l ∈ {2, . . . , k}, (dωlF l−1
m (ξ, ω),dωlGlm(ξ, ω)) acts as follows.

Syml
n −→ Syml−1

n

⊕
Syml

n |ξ⊥

ηl 7−→ (ηl(ξ, . . . ), ωl−1
0 ηl|ξ⊥) .

But this map is invertible. To see this, let pr∗ξ⊥ : Syml
n |ξ⊥ → Syml

n be
the pull-back map by the orthogonal projection onto the orthogonal of ξ.
Also, recall that on Y km, we have ω0 > 0. Then, the inverse of (dωlF l−1

m (ξ, ω),
dωlGlm(ξ, ω)) is

Syml−1
n

⊕
Syml

n |ξ⊥ −→ Syml
n

(ηl−1, η|⊥) 7−→ |ξ|−2〈ξ, · 〉 ⊗ ηl−1 + ω1−l
0 pr∗ξ⊥η⊥ .

All in all, we have shown so far that ∂ω0F
0
m is surjective and that for each

l ∈ {2, . . . , k}, (dωlF l−1
m ,dωlGlm) is of maximal rank. Therefore, Y km ∩Hk

m is
a submanifold of Hk

m of codimension

codimHkm
(Y km ∩Hk

m)
= codimι∗J k(Rn\{0})(Y km ∩Hk

m)− codimι∗J k(Rn\{0})(Hk
m)

= 1 +
k∑
l=2

(
n+ l − 1

l

)
−
k−1∑
j=0

(
n+ j − 1

j

)

=
(
n+ k − 1

k

)
−
(
n+ 1− 1

1

)
=

k∑
j=2

(
n+ j − 2

j

)

where in the last line we use the same binomial identity as in (7.10). �

So far we have neglected the U coordinate in the product U × Sn−1. To
take this coordinate into account, in the following lemma, we introduce a
submersion pr2 : J k

(
U × Sn−1) → J k(Sn−1) by which we will pull back

the submanifold ρ
(
Y km
)
.

Lemma 7.10. — Let k ∈ N. Let π : U × Sn−1 → Sn−1 be the map
(x, ξ) 7→ ξ. Also, for each x ∈ U , let ιx : Sn−1 → U × Sn−1 be the map
ξ 7→ (x, ξ). Then, there exists a surjective vector bundle morphism pr2 :
J k
(
U × Sn−1) → π∗J k(Sn−1) such that for each x ∈ U , the following
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diagram commutes:

C∞
(
U × Sn−1) C∞(Sn−1)

J k
(
U × Sn−1) π∗J k(Sn−1) J k(Sn−1).

ι∗x

jk jk

pr2 ι∗x

In particular, pr2 is a submersion.

Proof. — Given f ∈ C∞
(
U × Sn−1) and x ∈ U , the k-jet of f(x, · ) at

ξ ∈ Sn−1 depends only on the k-jet of f at (x, ξ). This allows us to define a
map pr2|(x,ξ) : J k

(
U × Sn−1) |(x,ξ) → π∗J k(Sn−1)(x,ξ). This defines a bun-

dle morphism pr2 : J k
(
U × Sn−1) → π∗J k (). The fact that the diagram

commutes follows by construction. Finally, since the composition of the top
and right arrows : jk ◦ ι∗x is onto, so is the composition of the left and bottom
arrows. But this implies that the composition of bottom arrows is onto. Since
π∗J k(Sn−1) and J k(Sn−1) have the same rank, then pr2 must also be onto.
In particular, it defines a submersion from the manifold J k

(
U × Sn−1) to

the manifold π∗J k(Sn−1). �

In this last lemma, we check that the previous construction does indeed
characterize non-admissibility of a symbol by the intersection of the k-jet
with the submanifold constructed in Lemma 7.9 and “pushed down” by ρ.

Lemma 7.11. — Let k ∈ N, k > 2. Let σ ∈ Smh,+(U). Then, the two
following statements are equivalent:

• There exists (x, ξ) ∈ U×(Rn \{0}) such that for each j ∈ {2, . . . , k}

σj−1(x, ξ)djξσ(x, ξ) = m(m− 1) . . . (m− j + 1)
mj

(dξσ(x, ξ))⊗j (7.11)

• The image pr2 ◦ jk (σ|U×Sn−1)
(
U × Sn−1) intersects ρ (Y km).

Proof. — Firstly, Equation (7.11) is homogeneous in ξ so there exists
a pair (x, ξ) ∈ U × (Rn \ {0}) satisfying it if and only if there exists
such a pair in U × Sn−1. Now, since σ is m-homogeneous, for each x ∈
U , jk(σ(x, · ))(Sn−1) ⊂ Hk

m. Therefore, (x, ξ) ∈ U × Sn−1 satisfy Equa-
tion (7.11) if and only if jk(σ(x, · ))(ξ) ∈ Y km ∩ Hk

m (here we use that
the symbols are positive, as well as m-homogeneous). Since, moreover, by
Lemma 7.9, ρ|Hkm is bijective, this is equivalent to ρ◦ jk(σ(x, · ))(ξ) ∈ ρ(Y km).
But, by Lemmas 7.7 and 7.10, ρ ◦ jk(σ(x, · )) = jk(σ(x, · )|Sn−1) = pr2 ◦
jk (σ|U×Sn−1) (x, · ). To conclude, we have proved that for any (x, ξ) ∈ U ×
Sn−1, (x, ξ) satisfies Equation (7.11) if and only if pr2 ◦ jk (σ|Sn−1) (x, ξ) ∈
ρ
(
Y km
)
. This concludes the proof of the lemma. �

We are now ready to prove Proposition 7.6.
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Proof of Proposition 7.6. — Firstly, by Lemma 7.11, Equation (7.8)
has solutions in U × (Rn \ {0}) if and only if jk (σ|U×Sn−1) (U × Sn−1) ∩
pr−1

2
(
ρ(Y km)

)
6= ∅. Now, by Lemmas 7.8 and 7.9, ρ

(
Y km
)
is a closed sub-

manifold of J k(Sn−1) of codimension
∑k
j=2

(
n+j−2

j

)
. Since moreover, by

Lemma 7.10, pr2 is a submersion, Zkm = pr−1
2
(
ρ(Y km)

)
has the same codi-

mension in J k
(
U × Sn−1). At this point, we apply Thom’s transversality

theorem ([9, Corollary 4.10 of Chapter II]). This theorem states that the set
of functions f ∈ C∞

(
U × Sn−1) such that jk(f)(U×Sn−1) is transverse(10)

to Zkm is open and dense. But jk(f)
(
U × Sn−1) has dimension at most 2n−1

so if k is such that

2n− 1 <
k∑
j=2

(
n+ j − 2

j

)
(7.12)

then such a transverse intersection must be empty. Inequality (7.12) is satis-
fied for instance for n = 2 and k = 5, for n ∈ {3, 4} and k = 3 and for n > 5
and k = 2. This ends the proof of the proposition. �

Appendix A. C∞ asymptotics for EL: Proof of Theorem 2.4

In this section, we prove Theorem 2.4 by following closely the approach
used in [11] and in [7]. As explained above, [7] contains all the essential
arguments for Theorem 2.4 despite the focus on the case where x = y and
X is closed. In this section we merely wish to confirm this by revisiting the
proof. We consider A, σA and EL indifferently as in any of the two settings
presented in Section 2.1.

A.1. Preliminaries

The following lemma summarizes the results proved in [11, Section 4] for
the closed manifold setting. For the Dirichlet boundary value problem, this
was proved in [29, Section 3]. We introduce the following notation. For each
T > 0, set eT = ETm . In [11], Hörmander studies the local spectral density
d

dT eT (x, y) via it’s Fourier transform in T , U(t) = FT [eT ](t), which is the
solution to the problem

(i∂t −A1/m)U(t) = 0

(10) See [9, Definition 4.1 of Chapter II] for a definition and general presentation of
transversality.
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with initial value U(0) = Id. The operator U(t) is estimated using the WKB
method leading to the results recorded in Lemma A.1 below. To estimate
eT , Hörmander takes the inverse Fourier transform and integrates in T . We
will follow a similar procedure in the following subsections, but we will keep
track of the derivatives of the kernel.

Lemma A.1 (see [11, Section 4] in Setting 1, and [29, Section 3] in(11)

Setting 2). — Firstly, the spectral function eT (x, y) defines a tempered dis-
tribution of the T variable with values in C∞(X ×X ). In addition, for each
set of local coordinates in which dµX coincides with the Lebesgue measure on
Rn, there is an open neighborhood U of 0 ∈ Rn such that there exist ε > 0,
a proper phase function ψ ∈ C∞(U × U × Rn), a symbol σ ∈ S1(U,Rn), a
function k ∈ C∞(U ×U × ]−ε, ε[) and a symbol q ∈ S0(U × ]−ε, ε[×U,Rn),
for which

FT [e′T (x, y)](t) = 1
(2π)n

∫
Rn
q(x, t, y, ξ)ei(ψ(x,y,ξ)−tσ(y,ξ))dξ + k(x, y, t).

Here FT (resp. ′) denotes the Fourier transform (resp. the derivative) with
respect to the variable T , in the sense of temperate distributions, and the
integral is to be understood in the sense of Fourier integral operators (see [11,
Theorem 2.4]). We have

(1) The function ψ satisfies the Equation

∀ x, y ∈ U, ξ ∈ Rn, σ(x, ∂xψ(x, y, ξ)) = σ(y, ξ).

(2) For each t ∈ ]−ε, ε[ and ξ ∈ Rn, the function q( · , t, · , ξ) has compact
support in U ×U uniformly in (t, ξ) and q(x, 0, y, ξ)− 1 is a symbol
of order −1 as long as x, y belong to some open neighborhood U0
of 0 in U .

(3) σ − σ
1
m

A has compact support.

We will also need the following classical lemma. Here and below, S(R)
will denote the space of Schwartz functions.

Lemma A.2. — For each ε > 0 there is a function ρ ∈ S(R) such that
F(ρ) has compact support contained in ]−ε, ε[, ρ > 0 and F(ρ)(0) = 1.

Proof. — Choose f ∈ S(R) whose Fourier transform has support in
]− ε2 ,

ε
2 [ and h(t) = e−

1
2 t

2 . Then it is easy to see that one can choose a
constant Z > 0 so that ρ = 1

Z f
2 ∗f2 ∗h satisfies the required properties. �

(11) To avoid any confusion, we stress once more that in Setting 2, X denotes a bounded
open subset of Rn. We do not obtain any results on the boundary of the domain in the
present work.
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Before we proceed, let us fix U , ψ, q, k and ρ as in Lemmas A.1 and A.2
(with the same ε) as well as a constant coefficient differential operator P
on Rn × Rn of order d with principal symbol σP which is a homogeneous
polynomial in 2n variables. Let eT,P = P eT . In order to estimate this eT,P ,
we will first convolve it with ρ in order to estimate it using Lemma A.1. Then,
we will compare eT,P to its convolution with ρ which we denote, somewhat
liberally, by

ρ ∗ eT,P =
∫
R
ρ(λ)eT−λ,Pdλ .

Thus, ρ is a function of the frequency variable T . Its Fourier transform will
be a function of the time variable t. The starting point of our calculations will
be Equation (A.1) below, which follows from Lemma A.1. In this equation
and later on in this section, the notation F−1

t will denote the inverse Fourier
transform acting on the variable t.

d
dλ (ρ ∗ eλ,P (x, y))|λ=T

= 1
(2π)n

∫
Rn
F−1
t

[
F(ρ)(t)P

(
q(x, t, y, ξ)ei(ψ(x,t,y,ξ)−tσ(y,ξ))

)]
(T )dξ

+ F−1
t

[
F(ρ)(t)Pk(x, t, y)

]
(T ). (A.1)

A.2. Estimating the convolved kernel

In this section we provide the following expression for ρ∗eT,P in the local
coordinates chosen in Lemma A.1.

Lemma A.3. — There is an open set V ⊂ U containing 0 such that, as
T →∞ and uniformly for (x, y) ∈ V × V ,

ρ ∗ eT,P (x, y) = 1
(2π)n

∫
σ(y,ξ)6T

σP (∂x,yψ(x, y, ξ))eiψ(x,y,ξ)dξ +O(Tn+d−1) .

In order to do so we use the three lemmas stated below, whose proofs
are given at the end of the section. To begin with, we use the information of
Lemma A.1 to give a first expression for ρ ∗ eT,P .

Lemma A.4. — The quantity
ρ ∗ eT,P (x, y)

−
∫ T

−∞

1
(2π)n

∫
T∗yM

F−1
t

[
F(ρ)P

(
q(x, t, y, ξ)ei(ψ(x,y,t,ξ)−tσ(y,ξ))

)]
(λ)dξdλ

is bounded uniformly for (x, y) ∈ U × U .
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Here and below F is the Fourier transform and the occasional subscript
indicates the variable on which the transform is taken. Let us now inves-
tigate the effect of the differential operator P on the right hand side of
this expression. By the Leibniz rule, there is a finite family of symbols
(σj)06j6d ∈ C∞(U × ]−ε, ε[ × U,Rn)d+1 such that for each j, σj is ho-
mogeneous of degree j, such that

P
[
q(x, t, y, ξ)ei(ψ(x,y,ξ)−tσ(y,ξ))

]
=
[

d∑
j=0

σj(x, t, y, ξ)
]
ei(ψ(x,y,ξ)−tσ(y,ξ))

and such that

σd(x, t, y, ξ) = q(x, t, y, ξ)σP (∂x,y(ψ(x, y, ξ)− tσ(y, ξ))) .

Now, for each j, let

Rj(x, y, T, ξ) = 1
(2π)n+1

∫
R
F(ρ)(t)σj(x, t, y, ξ)eitTdt

and

Sj(x, y, T ) =
∫ T

−∞

∫
Rn
Rj(x, y, λ− σ(y, ξ), ξ)eiψ(x,y,ξ)dξdλ .

Then,∫ T

−∞

1
(2π)n

∫
Rn
F−1
t

[
F(ρ)P

(
q(x, t, y, ξ)ei(ψ(x,y,ξ)−tσ(y,ξ))

)]
(λ)dξdλ

=
d∑
j=0

Sj(x, y, T ) .

Each Sj will grow at an order corresponding to the degree of the associated
symbol. This is shown in the following lemma.

Lemma A.5. — There is an open set V ⊂ U containing 0 such that, as
T →∞ and uniformly for (x, y) ∈ V × V ,

Sj(x, y, T ) = 1
(2π)n

∫
σ(y,ξ)6T

σj(x, 0, y, ξ)eiψ(x,y,ξ)dξ +O(Tn+j−1) .

Similarly since q(x, 0, y, ξ) − 1 ∈ S−1(U0 × U0,Rn), from a computation
analogous to the proof of Lemma A.5 and left to the reader, replacing σd by

(q(x, 0, y, ξ)− 1)σP (∂x,y(ψ(x, y, ξ)− tσ(y, ξ))) ∈ Sd−1

one can remove q from the main term, which results in the following.
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Lemma A.6. — There is an open set V ⊂ U containing 0 such that, as
T →∞ and uniformly for (x, y) ∈ V × V ,

Sd(x, y, T ) = 1
(2π)n

∫
σ(y,ξ)6T

σP (∂x,y(ψ(x, y, ξ)− tσ(y, ξ)))eiψ(x,y,ξ)dξ

+O(Tn+d−1) .

The juxtaposition of these results yields Lemma A.3.

Proof of Lemma A.4. — Since k ∈ C∞(U × U × ]−ε, ε[) and F(ρ) is
supported in ]−ε, ε[,

F−1
t

[
F(ρ)(t)Pk(x, t, y)

]
(T ) ∈ S(R) .

Therefore, by Equation (A.1),
ρ ∗ eT,P (x, y)

−
∫ T

−∞

1
(2π)n

∫
Rn
F−1
t

[
F(ρ)P

(
q(x, t, y, ξ)ei(ψ(x,y,ξ)−tσ(y,ξ))

)]
(λ)dξdλ

is bounded. �

Proof of Lemma A.5. — In this proof, all generic constants will be im-
plicitly uniform with respect to (x, y) ∈ V × V . Let us fix y ∈ V and define
the following three domains of integration.

D1 = {(λ, ξ) ∈ R× Rn | λ 6 T, σ(y, ξ) 6 T}
D2 = {(λ, ξ) ∈ R× Rn | λ 6 T, σ(y, ξ) > T}
D3 = {(λ, ξ) ∈ R× Rn | λ > T, σ(y, ξ) 6 T} .

Moreover, for l = 1, 2, 3, let Il =
∫
Dl
Rj(x, y, λ−σ(y, ξ), ξ)eiψ(x,y,ξ)dξdλ. We

will prove that I2 and I3 are O(Tn+j−1). The following calculation will then
yield the desired identity. Here we use Fubini’s theorem and the fact that
F(ρ)(0) =

∫
R ρ(λ)dλ = 1.

Sj(x, y, T ) = I1 + I2 = I1 + I3 +O(Tn+j−1)

=
∫
σ(y,ξ)6T

[∫
R
Rj(x, y, s, ξ)ds

]
eiψ(x,y,ξ)dξ +O(Tn+j−1)

= 1
(2π)n

∫
σ(y,ξ)6T

σj(x, 0, y, ξ)eiψ(x,y,ξ)dξ +O(Tn+j−1).

First of all, Rj is rapidly decreasing in the third variable and, since σ is
elliptic of degree 1, bounded by σ(y, ξ)j with respect to the last variable, ξ.
Therefore, for each N > 0 there is a constant C > 0 such that

|Rj(x, y, λ, ξ)| 6
Cσ(y, ξ)j

(1 + |λ|)N .
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Since σ is elliptic of order 1, the hypersurface T−1{σ(y, ξ) = T} ⊂ Rn
converges smoothly for T → ∞ uniformly in y to SAy = {σA(y, ξ) = 1} and
the volume of {σ(x, ξ) = β} ⊂ Rn is O(βn−1). Taking N = 2n + j + 1, we
deduce that

|I2| 6 C
∫ T

−∞

∫
σ(y,ξ)>T

σ(y, ξ)j

(1 + |λ− σ(y, ξ)|)2n+j+1 dξdλ

6 C
∫ T

−∞

∫ +∞

T

βn+j−1

(1 + |λ− β|)2n+j+1 dβdλ

6 C
∫ +∞

T

∫ T−β

−∞

βn+j−1

(1 + |s|)2n+j+1 dsdβ

6 C
∫ ∞
T

βn+j−1

(1 + β − T )2n+j dβ

6 C
∫ +∞

0

(γ + T )n+j−1

(1 + γ)2n+j dγ

6 CTn+j−1.

Here we applied first the change of variables s = λ− β and then γ = β − T .
The case of I3 is analogous and by a similar calculation we deduce that I1
is well defined. �

A.3. Comparison of the kernel and its convolution

In this section we set about proving that eT,P is close enough to its
convolution with ρ. This is encapsulated in the following lemma.

Lemma A.7. — There is an open set V ⊂ U containing 0 such that, as
T →∞ and uniformly for (x, y) ∈ V × V ,

ρ ∗ eT,P (x, y)− eT,P (x, y) = O(Tn+d−1) .

As before, the proofs are relegated to the end of the section. In order to
prove Lemma A.7 we first estimate the growth of the Rj as follows.

Lemma A.8. — There is an open set V ⊂ U containing 0 such that, as
T →∞ and uniformly for (x, y) ∈ V × V ,∫

Rn
Rj(x, y, T − σ(y, ξ), ξ)eiψ(x,y,ξ)dξ = O(Tn+j−1) .

This lemma follows from a computation analogous to the bound on I2
and I3 given in the proof of Lemma A.5 above and the details are left to
the reader. It allows us to prove a second intermediate result from which we
obtain Lemma A.7 directly.
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Lemma A.9. — There is an open set V ⊂ U containing 0 such that, as
T →∞ and uniformly for (x, y) ∈ V × V ,

eT+1,P (x, y)− eT,P (x, y) = O(Tn+d−1) .

Proof of Lemma A.9. — We begin with the case where x = y and P is
of the form P1 ⊗ P1. For brevity we define

u(T ) = eT,P (x, x) =
∑
λk6T

|(P1ek)(x)|2 .

Recall ρ > 0 so it stays greater than some constant a > 0 on the interval
[−1, 0]. Moreover u is increasing so by Equation (A.1) and Lemma A.8,

0 6 u(T + 1)− u(T ) =
∫ T+1

T

u′(λ)dλ 6 1
a

∫ T+1

T

ρ(T − λ)u′(λ)dλ

6
1
a

d
dT (ρ ∗ u) 6 1

a

d∑
j=0

∫
Rn
Rj(x, x, T − σ(x, ξ))dξ +O(Tn+d−1)

= O(Tn+d−1).
Now if P is of the form P1 ⊗ P2, and for any x and y, let

X = (P1ek(x))T<λk6T+1 and Y = (P2ek(y))T<λk6T+1

be two vectors in some Cq which we equip with the standard hermitian
product “?”. Then, eT+1,P (x, y)− eT,P (x, y) = X ? Y so

|eT+1,P (x, y)− eT,P (x, y)|2 6 |X|2|Y |2 6 CT 2n+2d−2

using first, Cauchy–Schwarz and second, the above estimate. In general P is
a locally finite sum of operators of the form P1 ⊗ P2. �

Proof of Lemma A.7. — First of all, according to Lemma A.9 there is a
constant C such that for all T > 0 and λ,

|eT+λ,P (x, y)− eT,P (x, y)| 6 C(1 + |λ|+ T )n+d−1(1 + |λ|).
Consequently

|(ρ ∗ eT,P (x, y)− eT,P (x, y)| 6
∣∣∣∣∫ ρ(λ)eT+λ,P (x, y)dλ− eT,P (x, y)

∣∣∣∣
6
∫
ρ(λ)

∣∣eT+λ,P (x, y)− eT,P (x, y)
∣∣dλ

6 C
∫
ρ(λ)(1 + |λ|+ T )n+d−1(1 + |λ|)dλ

6 C ′Tn+d−1

for some C ′ > 0. Here we used that ρ > 0, ρ is rapidly decreasing and∫
R ρ(λ)dλ = F(ρ)(0) = 1. �
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A.4. Conclusion

Combining Lemmas A.3 and A.7 we obtain the following:

eT,P (x, y) = 1
(2π)n

∫
σ(y,ξ)6T

σP (∂x,yψ(x, y, ξ))eiψ(x,y,ξ)dξ +O(Tn+d−1) .

Since σ − σ
1
m

A has compact support, replacing one by the other adds only a
O(1) term. Therefore,

eT,P (x, y) = 1
(2π)n

∫
σA(y,ξ)1/m6T

σP (∂x,yψ(x, y, ξ))eiψ(x,y,ξ)dξ +O(Tn+d−1) .

This estimate is valid and uniform for x, y ∈ V . To conclude, notice that
σA(x, ξ)1/m 6 T is equivalent to σA(x, ξ) 6 Tm. Since eT,P = PETm , re-
placing T by L1/m in the last estimate we get

EL,P (x, y)

= 1
(2π)n

∫
σA(y,ξ)6L

σP (∂x,yψ(x, y, ξ))eiψ(x,y,ξ)dξ +O(L(n+d−1)/m)

as announced. Note that the only restriction on V is that it be chosen inside
U0 from Lemma A.1(2). In particular, it may be chosen independently of P .

Appendix B. Existence and regularity of eigenfunctions in
Setting 2

In the present section, we prove that, in Setting 2 of Section 2.1, the
spectrum of A is indeed a discrete sequence of real numbers diverging to
+∞, whose associated eigenfunctions are smooth.

We will use the notations of Setting 2. Recall in particular that X is a
bounded open subset of Rn with smooth boundary ∂X and that dµX (x)
is the Lebesgue measure dx. We will also denote by C∞(X ) the space of
C∞ functions on X whose derivatives all extend by continuity up to the
boundary. For any s ∈ N, we denote by Hs(X ) the L2 Sobolev space of order
s on X (see [16, Section 1.1, Chapter 1]). We will also denote by Hs

0(X ) the
completion of C∞c (X ) for the Hs topology and we will write C∞0 (X ) for the
space of smooth functions on X vanishing on ∂X .

– 487 –



Alejandro Rivera

Proposition B.1. — There exists a sequence of real numbers (λj)j∈N,
going to infinity, as well as a Hilbert basis (ej)j∈N of L2(X ) whose elements
belong to C∞0 (X ), such that for each j ∈ N, Aej = λjej.

Proof. — Let P = A + C for some large constant C > 0. Firstly, we
observe that there exists a choice of C ∈ ]0,+∞[ such that if u ∈ C∞(X )
satisfies Pu = 0 and u|∂X = 0 then, by Theorem 9.2 of [16, Chapter 2], u = 0.
Then, by Theorem 5.4 and Proposition 5.3 of [16, Chapter 2], P extends to
a topological isomorphism P0 : Hm

0 (X ) → L2(X ). In particular, since X
is compact, by Sobolev embeddings, P−1

0 defines a compact operator from
L2(X ) to L2(X ). Therefore, P0 has discrete spectrum, its eigenspaces are
finite dimensional and its eigenfunctions belong to Hm

0 (X ). Finally, applying
Theorem 5.4 of [16, Chapter 2] once again, we deduce by induction that these
eigenfunctions belong to ∩s>0H

s(X ) = C∞(X (using Sobolev embeddings
once more). In particular, they belong to the domain of P . Since they also
belong to Hm

0 (X ), they must vanish on ∂X . Applying Theorem 9.2 of [16,
Chapter 2] a second time, we deduce that the eigenvalues of P are positive. In
particular, these eigenfunctions form a Hilbert basis of L2(X ) whose elements
belong to C∞0 (X ). Moreover, the elements of this basis are also eigenfunctions
of A and the corresponding eigenvalues, counted with multiplicity, form a
sequence of real numbers diverging to +∞ as announced. �
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