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Dedicated to Ahmed Zeriahi on the occasion of his retirement

ABSTRACT. — We prove a version of Aubin’s “Hypothèse fondamentale” con-
cerning the existence of Moser–Trudinger type inequalities on any integral compact
Kähler manifold X. In the case of the anti-canonical class on a Fano manifold the
constants in the inequalities are shown to only depend on the dimension of X (but
there are counterexamples to the precise value proposed by Aubin). In the differ-
ent setting of pseudoconvex domains in complex space we also obtain a quasi-sharp
version of the inequalities and relate it to Brezis–Merle type inequalities for the com-
plex Monge–Ampère operator, recently considered by Demailly and Åhag–Cegrell–
Kołodziej–Pha.m–Zeriahi. The inequalities are shown to be sharp for S1-invariant
functions on the unit ball.

1. Introduction

As shown by Trudinger in the seminal work [62] there is a limiting expo-
nential version of the critical Sobolev inequalities which, in the case of the
plane, may be formulated as the existence of positive constants c and C such
that ∫

Ω
e
c
(

u
∥∇u∥Ω

)2

dV ⩽ C (1.1)

for any, say smooth, function u vanishing on the boundary of a domain Ω in
R2. Motivated by the Nirenberg problem for constructing conformal metrics
on a real surface with prescribed positive curvature, Moser [53] obtained
the sharp constant c = 4π in Trudinger’s inequality (1.1). The relation to
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the Nirenberg problem appears in the following consequence of the previous
inequality:

log
∫

Ω
e−udV ⩽ A ∥∇u∥2

Ω +B. (1.2)

Here e−u plays the role of the conformal factor of a metric on Ω. As shown
by Moser the inequalities also hold when the domain Ω is replaced by the
two-sphere - which is the setting for the Nirenberg problem - and then the
extremals u of the inequality correspond to metrics gu with constant pos-
itive curvature (with A = 1/16π, the sharp constant). Conversely, the lat-
ter inequality (1.2), with the sharp constant, implies an inequality of the
form (1.1), but only with quasi-sharp constants, i.e. the two inequalities are
equivalent “modulo ϵ”.

There has been a wealth of work on extending Moser–Trudinger inequal-
ities in various directions in real analysis and conformal geometry, as well as
CR-geometry (see for example [4, 5, 39] and references therein). However,
the present paper is concerned with a different complex variant of these in-
equalities first proposed by Aubin [3], motivated by the existence problem
for Kähler–Einstein metrics with positive Ricci curvature on complex (Fano)
manifolds; see also [36, 37, 54]. More precisely, we will consider two different
settings:

(1) compact complex (Kähler) manifolds
(2) pseudoconvex domains in Cn.

A characteristic feature of the complex setting is that it is considerably
more non-linear than the real one (when n > 1). Indeed, the corresponding
inequalities (see below) only hold for a convex subspace H0 of functions
u and moreover the Laplacian ∆ appearing in the Dirichlet energy ∥∇u∥2

Ω
(=

∫
Ω −u∆udV ) has to be replaced by fully non-linear complex Monge–

Ampère operators. Moreover, in the compact setting (1) the space H0 is
not even a cone and the corresponding Monge–Ampère operator is not n-
homogeneous (in contrast to the setting (2)).

Before turning to the precise formulation of our main results, it may
be worth emphasizing that the differences that appear in the two different
settings referred to above are not merely technical. Indeed, as we will show,
the optimal multiplicative constant for the Moser–Trudinger type inequalites
in the case of pseudoconvex domains is universal, i.e. the same one as in the
model case of the unit ball. Moreover, there is also a special role played by S1-
symmetry in this setting. However, the corresponding universality property
fails in the setting of compact Fano manifolds, where the role of the unit ball
is played by complex projective space Pn. The point is that on a compact
Fano manifoldX the optimal multiplicative constant in the Moser–Trudinger
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type inequality depends on the volume of X (i.e. the top intersection number
of the first Chern class of X); compare the discussion in Section 6. In fact, the
differences between the two settings can be exploited as the authors realized
during the revision of the first version of the present paper and it leads to a
sharp volume bound for Fano manifolds admitting a Kähler–Einstein and a
suitable S1-symmetry, saying that the volume is maximal on Pn [10]. Briefly,
the bound is obtained by studying Moser–Trudinger type inequalities on a
large pseudoconvex domain in X, containing an attractive fixed point.

1.1. Statement of the main results

1.1.1. The setting of a compact Kähler manifold

Let (X,ω) be a compact Kähler manifold without boundary of complex
dimension n and recall that a smooth function u on X is called a Kähler
potential if

ωu := ω + i

2π∂∂u := ω + ddcu > 0,

i.e. ωu is a Kähler metric in the cohomology class [ω] ∈ H2(X,R). We
will denote by H0(X,ω) the convex space of all such u normalized so that
supX u = 0 and we will consider the following well-known functional on
H0(X,ω) :

Eω(u) := 1
(n+ 1)!

n∑
j=0

∫
X

u(ωu)j ∧ (ω)n−j (1.3)

that we will refer to as (minus) the Monge–Ampère energy.

Theorem 1.1. — Let (X,ω) be a Kähler manifold such that [ω] is an
integral class and fix a volume form dV . Then the following Moser–Trudinger
type inequality holds for any function u in H0(X,ω) and positive number
k ⩾ k0 > 0 for a fixed k0 :

log
∫
X

e−kudV ⩽ Akn+1(−Eω(u)) +B (1.4)

for some positive constants A and B. More precisely, the constant A may be
replaced by (1 + C1/k) and B by (1 + C2/k) for certain invariants C1 and
C2 of ω (see (2.6)).

The first part of the theorem essentially establishes a conjecture of Aubin
(called “Hypothèse fondamentale” in [3]) under the assumption that the class
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[ω] be integral (see the discussion in Section 6). The inequalities (1.4) are
equivalent to the existence of positive constants c and C such that

∫
X

e
c

(
−u

(−Eω(u))1/(n+1)

)(n+1)/n

dV ⩽ C, (1.5)

providing a variant of Trudinger’s inequality (1.1) in the Kähler setting. It
appears to be new even in the case of two-dimensional projective space. In
particular we deduce the following “non-linear” Sobolev type inequalities of
independent interest: for any u in H0(X,ω)

∥u∥n+1
Lp(X) ⩽ Cpn(−Eω(u)) (1.6)

for all p in [1,∞[, for some constant C only depending on ω. Note that
one interesting feature of the constants in Theorem 1.1 is that the leading
asymptotics of the constants A and B is universal, i.e. independent of (X,ω)
and even the dimension n of X.

The starting point of the proof of the previous theorem is the basic fact
that, in the integral case when [ω] ∈ H2(X,Z), the space kH0(X,ω) may,
when k is a positive integer, be identified (modolo constants) with the space
H(kL) of all positively curved metrics on the kth tensor of an ample line
bundle L → X with Chern class c1(L) = [ω]. Moreover, it is clearly enough
to establish the theorem in the case when k is a positive integer. The proof
then exploits convexity properties along geodesics of certain functionals on
the space H(L) equipped with the Mabuchi metric (see Section 1.4 for an
outline of the proof).

As pointed out above Aubin’s main motivation for his conjecture came
from the existence problem for positively curved Kähler–Einstein metrics on
a Fano manifold where the Kähler class [ω] is the integral class c1(−KX),
i.e. the first Chern class of the anti-canonical line bundle −KX of X. In
this setting, which we will refer to as the Fano setting, he also conjectured
an explicit optimal value for A which only depends on the dimension n
of the Fano manifold. However, as explained in Section 6 there are simple
counter-examples to the explicit value proposed by Aubin. Still, combining
our arguments with previous work on finiteness properties of Fano mani-
folds [24, 48, 61] we deduce the following partial confirmation of Aubin’s
latter conjecture:

Theorem 1.2. — When X is an n-dimensional Fano manifold and [ω]
is the anti-canonical class the constant A can be taken to only depend on n
(if B is allowed to depend on k).
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Coming back to the general setting in Theorem 1.1 we note that an
immediate consequence of Theorem 1.1 is the first part of the following
corollary (see Section 5 for the volume estimate).

Corollary 1.3. — Let (X,ω) be a compact Kähler manifold such that
[ω] is an integral class. For any non-positive function u in PSH(X,ω) with
a uniform lower bound on its energy, i.e. Eω(u) ⩾ −A, there is a constant
B such that for any k ∈ [1,∞[∫

X

e−kudV ⩽ Bkn+1, (1.7)

where the constant B only depends on A. Equivalently, there is a positive
constant δ only depending on A such that

Volω{u < −s} ⩽ Ce−δs(n+1)/n

for any positive number s. In particular, it follows from (1.7) that any func-
tion u in PSH(X,ω) with finite (pluricomplex) energy has vanishing Lelong
numbers.

The notion of finite energy is recalled in the beginning of Section 1.6. The
vanishing of the Lelong numbers in the previous corollary was first obtained
by Guedj–Zeriahi [43] and the estimate∫

X

e−kudV ⩽ Ck,

which is not as quantiative as the inequality (1.7), was observed in [11]
(where it was used in the variational construction of Kähler–Einstein met-
rics on Fano manifolds). The main point of the present approach is thus that
it furnishes the sharp asymptotic growth in k and s (the sharpness can be
verified in simple examples). Of course, in the “local setting”, i.e. the Cn-
setting considered below, the growth in k and s comes for free, as it follows
immediately from homogenity. The point of the previous corollary is thus
that it reveals that, even if there is a lack of homogenity, the growth in k
and s in the global Kähler setting mimics the growth in the local setting.
Interestingly, this is in contrast to capacity estimates where there is a dis-
crepency between the growth behaviour in the Kähler setting and the local
setting (compare [11, 43]).

1.1.2. The setting of a pseudoconvex domain in Cn

Let now Ω be a pseudoconvex domain in Cn with smooth boundary (for
example the unit ball) and set ω := 0. In this setting we let H0(Ω) be
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the convex cone of all smooth plurisubharmonic functions, i.e. ddcu ⩾ 0,
vanishing on the boundary ∂Ω. Then the (n+ 1)-homogeneous functional

n!E0(u) = 1
(n+ 1)

∫
Ω
u(ddcu)n (1.8)

is the usual generalization to Cn of (minus) the squared Dirichlet norm in
the unit disc. In the paper [3] Aubin claims that the conjectured inequality
holds in the setting of the unit ball in Cn, but it appears that he only proved
this under radial symmetry ([4, Cor. 8.3]), and, in fact, with a non-optimal
constant (as explained in Section 6). Assuming only circular symmetry, i.e.
invariance under the diagonal S1-action on Cn, our method of proof of The-
orem 1.1 also yields the following generalization of Moser’s inequality on the
disc:

Theorem 1.4. — The following Moser–Trudinger inequality holds for
any S1-invariant function in H0(B), where B is the unit ball in Cn :

log
∫

B
e−udV ⩽

1
(n+ 1)(n+1)

∫
Ω

(−u)(ddcu)n + Cn (1.9)

for a constant Cn. Moreover the multiplicative constant in the inequality is
sharp.

Note that the sharp multiplicative constant in (1.9) coincides with the
well-known sharp multiplicative constant in the Fano setting when X = Pn,
[ω] = c1(−KX) and k = 1 (and our proof shows that this is no coincidence).
We conjecture that the symmetry assumption in the previous theorem may
be removed. In this direction we will prove the following quasi-sharp Moser–
Trudinger inequality for a general pseudoconvex domain (or more generally
a hyperconvex one):

Theorem 1.5. — Let Ω be a pseudoconvex domain in Cn with smooth
boundary. Then, for any δ > 0 there is a constant C (depending on δ) such

log
∫

Ω
e−udV ⩽

1 + δ

(n+ 1)(n+1)

∫
Ω

(−u)(ddcu)n − (n− 1) log δ + C (1.10)

for any function u in H0(Ω). Moreover, for any domain Ω the limiting mul-
tiplicative constant 1

(n+1)(n+1) is sharp. In particular, for any δ > 0 there is
a constant Cδ such that∫

Ω
e(1−δ)n(−u)(n+1)/n

dV ⩽ Cδ

for any u in H0(Ω) such that
∫

Ω(−u)(ddcu)n = 1.

The proof of the latter theorem is completely different than the previous
one. The starting point is the observation that if the sharp Moser–Trudinger
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inequality holds in dimension n− 1 then so does the following sharp Brezis–
Merle–Demailly type inequality (1) in dimension n :∫

Ω
e−udV ⩽ A

(
1 − 1

nn
M(u)

)−1
(1.11)

for any u in H0(Ω) such that M(u)1/n < n, where

M(u) :=
∫

Ω
(ddcu)n. (1.12)

We then show that, conversely, a quasi-sharp version of the Brezis–Merle–
Demailly inequality in dimension n implies the quasi-sharp Moser–Trudinger
inequality above in the same dimension n and Theorem 1.5 then follows
directly from induction over n. More precisely, the induction argument gives
the following quasi-sharp version of the conjectural Brezis–Merle–Demailly
type inequality above.

Theorem 1.6. — Let Ω be a pseudoconvex domain in Cn with smooth
boundary, where n > 1. Then there is a constant A such∫

Ω
e−udV ⩽ A

(
1 − 1

nn
M(u)

)−(n−1)
(1.13)

for any function in H0(Ω) such that M(u)1/n < n.

In particular, this proves the sharp inequality in the case when n = 2.

In Section 7 we consider the problem of finding extremals for Moser–
Trudinger type functionals that are parametrized by the multiplicative con-
stants in the corresponding inequalities. In particular, we obtain solutions
to the Euler–Lagrange equations for these functionals which are Monge–
Ampère equations with exponential non-linearities. We also establish a “con-
centration/compactness” principle for the case of pseudoconvex domains.

1.2. Relations to previous results

The Kähler setting

On the two-sphere the inequality in Theorem 1.1 was first shown by Moser
with the sharp constant A = 1/2. Subsequently, the general Riemann sur-
face case was settled by Fontana [39] with the same sharp constant. Strictly

(1) See [22] for the case when n = 1, where the inequalities were introduced in context
of blow-up analysis of PDEs - inequalities of a similar form for the complex Monge–Ampère
operator in higher dimensions were first obtained by Demailly [32] and accordingly we will
refer to such inequalities as Brezis–Merle–Demailly type inequalities (see Section 1.2 for
further references to previous work).
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speaking these latter inequalities were shown to hold for any smooth function
u, under the different (but equivalent) normalization condition

∫
X
uω = 0.

Then −Eω(u) coincides with the usual two-homogeneous Dirichlet energy
and the growth rate with respect to k can hence be reduced, by scaling, to
the case k = 1. It should however be emphasized that in higher dimensions
this reduction argument breaks down, since the space H0(X,ω) is not pre-
served under scaling with positive numbers k. The sharp form of the Sobolev
inequalities on the two-sphere in (1.6) was obtained by Beckner [5].

In the case whenX admits a Kähler–Einstein metric the Moser–Trudinger
inequality, for the anti-canonical class and for k = 1, was first shown by
Ding–Tian [37] with A = 1/V (X) equal to the inverse of the volume of
−KX . This is the sharp constant in case X admits holomorphic vector fields
(see Lemma 6.1). More precisely, they showed that any potential of a Kähler–
Einstein metric on X optimizes the corresponding Moser–Trudinger inequal-
ity (when dV is taken to depend on ω in a standard way). In case X has no
holomorphic vector field the constant A = 1/V (X) may be improved slightly
as shown in the coercivity estimate of Phong–Song–Sturm–Weinkove [54]
(confirming a previous conjecture of Tian).

In the case of a general Fano manifold Ding [36] obtained, using the Green
function estimate of Bando–Mabuchi, a Moser–Trudinger inequality for all u
in H0(X,ω) with a uniform positive lower bound ϵ on the Ricci curvature of
the corresponding Kähler metric ωu (for k = 1). The case of Theorem 1.1 for
the anti-canonical class (but possibly no Kähler–Einstein metric) and with
k = 1 was shown in [7], building on [17]. The approach in [7, 15] will be
further developed in the present paper.

The setting of domains

Demailly [32] originally showed that a weaker version of inequality (1.11)
is equivalent to a local algebra inequality previously obtained in [38] in the
context of the study of birational rigidity of Fano manifolds. This latter
inequality says that

lc(I) ⩾ n/(e(I))1/n, (1.14)
where lc(I) is the log canonical threshold of an ideal I of germs of holo-
morphic functions and e(I) is its Samuel multiplicity. A quasi-sharp version
of the Brezis–Merle–Demailly type inequality (1.11) was recently shown by
Åhag–Cegrell–Kołodziej–Pha.m–Zeriahi [2]. More precisely it was shown that
the inequality holds when raising the bracket in (1.11) to the power n. How-
ever the relation to the Moser–Trudinger inequality does not seem to have
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been noted before and we use it, among other things, to improve the inequal-
ity in [2] with one power. The proof uses the “thermodynamical formalism”
recently introduced in [8] (in the Kähler setting) and shows that the Moser–
Trudinger inequality is equivalent to yet another inequality, coinciding with
the classical logarithmic Hardy–Sobolev inequality when n = 1. As explained
in [8] the corresponding inequality in the Kähler setting amounts to the
boundedness from below of Mabuchi’s K-energy functional.

1.3. Added in the revision

In the first version of the present paper, as a preprint on ArXiv, the
vanishing of Lelong numbers in Corollary 1.3 was claimed to hold in the
more general setting when ω is only assumed to be semi-positive and big.
But as kindly pointed out to us by Sébastien Boucksom there was a gap in
our argument in the more general setting. However, recently the vanishing
in question has been established in [30] in an even more general setting. The
proof in [30] also uses weak geodesics, but in a rather different way than in
the present paper.

After the first appearence of the present paper there has also been several
other interesting developments. In the compact Kähler setting the sharp vol-
ume bound for Fano manifolds admitting Kähler–Einstein metrics, discussed
in Section 6.3, has been settled in [40] (improving on the result in [10], where
the existence of suitable S1-action was assumed). Moreover, very recently the
inequality in Theorem 1.1 was extended to general Kähler classes using an
elegant approach involving quasi-plurisubharmonic envelopes [35]. The lat-
ter proof does not, however, appear to give a universal asymptotic control
on the constants A and B. As for the setting of domains, Moser–Trudinger
inequalities in the case of pseudoconvex domains have also been obtained
independently in [42] (for non-sharp constants).

1.4. Outline of the proof of Theorems 1.1, 1.2

As is well-known a Kähler form ω is integral precisely when it can be
realized as the (normalized) curvature form of a metric h on an ample line
bundle L → X. Abusing notation slightly this means that

ω = ddcϕ0

where h = e−ϕ0 is the expression of the metric h wrt a local holomorphic
frame. Hence, ωu is the curvature form of the metric on L with weight
ϕ := ϕ0 + u. The proof of Theorem 1.1 follows the same outline as the
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proof of the Moser–Trudinger inequality in [7, 17] concerning the case when
L = −KX and ϕ0 is the weight of a Kähler–Einstein metric - with some
important modifications. The proof in [7, 17] is based on consideration of
the functional

G(ϕ) := log
∫
X

e−ϕ + 1
V

E(ϕ, ϕ0),

where we have used that e−ϕ defines a global volume form on X (since
L = KX) and where E(ϕ, ϕ0) := Eω(ϕ−ϕ0). The Moser–Trudinger inequality
says that G is negative on the space H(−KX) of positively curved metrics on
−KX . But G is geodesically concave on the space H(−KX) equipped with
the Mabuchi metric (see the next section) and the Kähler–Einstein condition
says that ϕ0 is a critical point of G. Moreover, by definition G vanishes at
ϕ = ϕ0 and that ends the proof.

At first glance, not much of this argument works in our situation of a
general line bundle L → X. The functional

ϕ 7→ log
∫
X

e−(ϕ−ϕ0)dV

has no obvious concavity properties and we have in general nothing that cor-
responds to the Kähler–Einstein condition. To handle the lack of concavity,
we use a different functional, defined for each point x in X :

ϕ 7→ log(Kϕ0(x)/Kϕ(x)),

where Kϕ is the restriction to the diagonal of the Bergman kernel for the
space of global sections H0(X,L+KX) of the adjoint line bundle L+KX ,
which is known to be concave by the results in [15, 16]. It then turns out
that we can replace the Kähler–Einstein condition by a standard estimate
for the Bergman kernel in terms of the volume form; see [7] where a similar
argument was used. The remaining problem is then to get from an estimate
of the Bergman kernel to an estimate of the metric on L itself. On a compact
manifold, this can be done using the basic formula∫

X

Kϕ(x)e−ϕ = N

where N is the dimension of H0(X,KX + L). The growth rate in k in the
inequality of the theorem is a consequence of a the Bergman kernel estimate,
using that kϕ is the weight of a metric on the k th tensor power of L, written
as kL in our additive notation.

As for Theorem 1.2 it is proved by noting that the Bergman kernel esti-
mate can be made to be uniform over all Fano manifolds of the same dimen-
sion by picking a reference metric ϕ0 such that the corresponding Kähler
metric ddcϕ0 has a universal lower bound on its Ricci curvature.
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1.6. Notation and preliminaries

Here we will briefly recall the notions of (quasi-) psh functions and finite
energy spaces in the setting of compact manifolds X and domains Ω. In
practice, it will, by approximation, be enough to prove the inequalities we
will be interested in for smooth (or bounded) functions.

The setting of a compact manifold X

Let X be a compact complex manifold and ω a smooth real closed (1, 1)-
form on X such that ω ⩾ 0. We will mainly be concerned with the case when
ω > 0, i.e. when (X,ω) is a Kähler manifold. Denote by PSH(X,ω) the space
of all ω-psh functions u on X, i.e. u ∈ L1(X) and u is upper-semicontinuous
(usc) and

ωu := ω + i

2π∂∂u := ω + ddcu ⩾ 0,

in the sense of currents (the normalizations are made so that ddc log |z|2 is a
probability measure when n = 1). We will write H(X,ω) for the interior of
PSH(X,ω) ∩ C∞(X) (called the space of Kähler potentials when ω > 0) and
H0(X,ω) for its subspace defined by the normalization supX u = 0. We will
also use the (non-standard) notion H(X,ω)b := PSH(X,ω) ∩L∞(X) for the
bounded functions in PSH(X,ω). By the local theory of Bedford–Taylor the
Monge–Ampère operator

MA(u) := ωnu/n!
is well-defined on H(X,ω)b and continuous under sequences decreasing to
elements in H(X,ω)b as are all powers ωpu. In particular, the functional Eω
(formula (1.3)) is well-defined and continuous in the previous sense. Follow-
ing [11, 21] Eω may be extended to all of PSH(X,ω) by setting

Eω(u) := inf
v∈H(X,ω)b, v⩾u

Eω(v) ∈ [−∞,∞[.

Now the space E1(X,ω) of all ω-psh functions of finite energy may be defined
as the set of all u such that Eω(u) > −∞. As explained in [11, 21] it coincides
with the space with the same name introduced in [44].
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Metrics/weights on a line bundle vs. ω-psh functions

In the integral case, i.e. when [ω] = c1(L) for an ample holomorphic
line bundle L → X, the space PSH(X,ω) may be identified with the space
of (singular) Hermitian metrics on L with positive curvature current. More
precisely, let s be a trivializing local holomorphic section of L, i.e. s is non-
vanishing in a given open set U in X. First we identify an Hermitian metric
h0 = ∥ · ∥ on L with its weight ϕ0, which is locally defined by the relation

∥s∥2 = e−ϕ0 .

The (normalized) curvature ω of the metric is the globally well-defined (1, 1)-
current defined by the following local expression:

ω = ddcϕ0.

The identification with PSH(X,ω) referred to above is now obtained by
fixing ϕ0 and letting ϕ 7→ u := ϕ− ϕ0 so that ddcϕ = ωu. We will denote by
H(L) the space of all metrics (/weights) on L with positive curvature form,
ddcϕ > 0.

The setting of a domain Ω in Cn

Let Ω be a bounded domain Cn (in this setting ω = 0) which is hy-
perconvex, i.e. it admits a negative continuous psh exhaustion function (for
example a pseudoconvex domain with Lipschitz continuous boundary). The
main reason that we will consider general hyperconvex domains (with possi-
bly non-smooth boundary) is that this property is preserved under Cartesian
products. When Ω has smooth boundary we let H0(Ω) be the subspace of
all smooth psh functions on Ω such that u = 0 on ∂Ω. Following [2, 25] (see
also [6] for a comparison with the Kähler setting) it will also be convenient
to use two singular versions of H0(Ω), namely F(Ω) and E1(Ω), where the
Monge–Ampère mass M(u) (1.12) and energy E0(:= E) (1.8) are well-defined
and finite, respectively. More precisely, let first H0(Ω)b be the space all u
in PSH(Ω) ∩ L∞(Ω) such that M(u) < ∞ and such that limζ→z u(z) = 0
for any z ∈ ∂Ω (called the space of psh “test-functions” E0(Ω) in [25]). Now
F(Ω) is defined as the space of all u such that there exists uj ∈ H0(Ω)b
decreasing to u with M(uj) ⩽ C. The Monge–Ampère operator extends to
E0(Ω) and is continuous under decreasing limits. As for the space E1(Ω) it
is defined in a similar manner, but by demanding that −E(uj) ⩽ C (instead
of M(uj) ⩽ C). There is also an alternative characterization of F(Ω) as the
set of all u in the “domain of definition of the Monge–Ampère operator”
such that u has finite total Monge–Ampère mass and with smallest maximal
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plurisubharmonic majorant equal to zero. For the purpose of the present
paper it will in practice be enough to know that if u ∈ PSH(Ω) ∩ L∞(Ω)
such that limζ→z u(z) = 0 for any z ∈ ∂Ω, then u ∈ F(Ω) if

∫
Ω(ddcu)n < ∞

and similarly u ∈ E1(Ω) if
∫

Ω(−u)(ddcu)n < ∞ (see [2, 25]).

It may also be convenient to recall (even if, strictly speaking, it will not
be needed) the approximation result in [26] saying that any negative psh
function u on a hyperconvex domain Ω can be written as decreasing limit of
“smooth test functions”, i.e. psh functions uj in C(Ω) ∩ C∞(Ω), vanishing on
the boundary and with finite Monge–Ampère mass. As a consequence one
may as well replace the space H0(Ω)b in the previous definitions with the
space of “smooth test functions” in the previous sense.

2. Moser–Trudinger inequalities on Kähler manifolds

Let X be an n-dimensional compact Kähler manifold and let L be ample
line bundle over X. We will use the noation introduced in Section 1.6 and
thus denote by H(L) the space of all metrics ϕ on L with positive curvature
form. We fix an element ϕ0 ∈ H(L) and set ω := ddcϕ0, which defines a
Kähler form on X. We also set

V =
∫
X

(ddcϕ)n/n! =
∫
X

ωn/n! > 0

Finally, note that if ϕ, ϕ0 are in H(L), then ϕ− ϕ0 is a globally well-defined
function on X.

2.1. Energy, geodesics and Bergman kernels (preliminaries)

Given ϕ and ϕ0 in H(L) we define (minus) the relative energy by

E(ϕ, ϕ0) = 1
(n+ 1)!

∫
X

(ϕ− ϕ0)
n∑
0

(ddcϕ0)k ∧ (ddcϕ)n−k

If t → ϕt is a smooth curve in the affine space H(L), in the sense that the
local time-derivatives

ϕ̇t := ∂ϕt
∂t

exist and define smooth functions on X, then [10, Prop. 4.1]
d
dtE(ϕt, ϕ0) =

∫
X

ϕ̇t(ddcϕt)n/n!.

This formula, together with the normalization E(ϕ0, ϕ0) = 0 can also be used
to define E .
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A basic property of E is that it is linear along geodesics in H(L) and
convex along subgeodesics defined wrt Mabuchi’s Riemannian metric on
H(L). For technical reasons we will work with the following weaker notion of
geodesics. Given two smooth metrics ϕ0 and ϕ1 the corresponding geodesic
ϕt is defined as the following envelope:

ϕt := Φ(z, t) := sup
ψ∈K

{Ψ(z, t)}

where we have extended t to the strip T =[0, 1] + iR in C and K is the set
of all continuous semi-positively curved metrics Ψ on the pull-back of L to
X × T such that ψ0 ⩽ ϕ0 and ψ1 ⩽ ϕ1. We will sometimes refer to a curve
ψt := Ψ( · , t) above as a subgeodesic. When L is ample it was shown in [13]
that Φ is a continuous solution to the Dirichlet problem for the Monge–
Ampère operator on M := X × T , i.e.

(ddcΦ)n+1 = 0

in the interior of M (in the usual sense of pluripotential theory) and on
the boundary ∂M the metric Φ coincides with the iR invariant boundary
data determined by ϕ0 and ϕ1. However, we will only need some very mod-
est regularity properties of Φ, namely that Φ is locally bounded and that
Φ(t, · ) = ϕt converges uniformly to the given boundary data as t approaches
∂T . As shown by a simple barrier argument this is always the case as long
as L is semi-positive (see [17]). Indeed,

χt := max{ϕ0 −Aℜt, ϕ1 −A(1 − ℜt)} (2.1)

gives a candidate for the sup defining ϕt converging uniformly towards the
right boundary values. Hence so does ϕt. Also note that, by imposing S1-
symmetry in the complex variable t we might as well replace T with an
annulus A.

Lemma 2.1. — Let ϕt be a (weak) geodesic as above. Then t 7→ E(ϕt, ϕ0)
is affine and continuous up to the boundary of [0, 1]. Moreover, if ϕ̇0 denotes
the right derivative of ϕt at t = 0 (which exists by convexity), then

d
dt t=0+

E(ϕt) ⩽
∫
X

ϕ̇0(ddcϕ0)n/n!,

As pointed out above this is well-known in the case when ϕt is smooth
and follows immediately from the formula

dtdctE(ϕt, ϕ0) =
∫
X

(ddcΦ)n+1/n!, (2.2)

where
∫
X
α denotes the push-forward (fiber-integral) of the top form α on

X × T under the projection from X × T to T .
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The general case is shown in [14, Prop. 3.1]; see also Lemma 2.4 for the
corresponding properties in the setting of domains.

Any element ϕ in H(L) defines an L2 metric on H0(X,KX + L),

∥u∥2
ϕ = in

2
∫
u ∧ ue−ϕ,

where we have identified u with a holomorphic (n, 0)-form with values in the
line bundle L. The Bergman kernel for this L2-metric is denoted Kϕ(x) is
defined by

Kϕ(x) = in
2 ∑

uj(x) ∧ uj(x)
where uj is an orthonormal basis for H0(X,KX + L). Alternatively,

Kϕ(x) = sup
H0(X,KX +L)

{|u(x)|2; ∥u∥ϕ ⩽ 1}. (2.3)

Here the expression |u(x)|2 depends on the choice of a trivialization of L near
x, but logKϕ is invariantly defined as the weight of a metric on KX +L. As
a consequence, the quotient of two Bergman kernels

Kϕ(x)/Kϕ0(x)
is a global function on X, smooth if the sections in H0(X,KX +L) have no
common zeros.

We will use a result from [15, 19] saying that the weight
t → logKϕt

(x)
is, for any x fixed, convex along (sub)geodesics ϕt. Equivalently, this means
that, for any fixed ϕ0, the logarithm of Kϕt

(x)/Kϕ0(x) is convex in t.

We will also have use for the following simple formula for the derivative
of the Bergman kernel along a curve (see for example [18] or the appendix
in [7]):

Lemma 2.2. — Let ϕt be a smooth curve in H(L). Then
d
dtKϕt(x) =

∫
X

ϕ̇t|Kϕt(x, y)|2e−ϕt

where the off-diagonal Bergman kernel is

Kϕt
(x, y) :=

∑
cnuj(x) ∧ uj(y)

for any orthonormal basis of H0(X,KX +L), defining a section over (KX +
L) ⊠ (KX + L).

More generally, the lemma above also holds (with the same proof) if one-
sided, say right, derivatives are used (as long as the right derivatives of ϕt
are assumed to exist).
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2.2. Moser–Trudinger type inequalities

The next proposition is the crux of the proof of the Moser–Trudinger
inequalities.

Proposition 2.3. — Let ϕ and ϕ0 be two metrics in H(L), satisfying
the normalizing condition

ϕ− ϕ0 ⩽ 0.
Assume that the Bergman kernel for ϕ0 satisfies

Kϕ0e
−ϕ0 ⩽ C1(ddcϕ0)n/n! (2.4)

Then
inf
X

(Kϕ/Kϕ0) ⩾ eC1E(ϕ,ϕ0)

Proof. — Join ϕ0 and ϕ with a geodesic ϕt such that ϕ1 = ϕ. By the
previous lemma

− d
dt

∣∣∣∣
t=0

logKϕt
(x) =

∫
X

−ϕ̇0
|Kϕ0(x, y)|2

Kϕ0(x) e−ϕ0 .

Since ϕt is a geodesic, ϕt is convex in t, so

ϕ̇0 ⩽ ϕ− ϕ0 ⩽ 0.

Hence, since by Cauchy’s inequality

|Kϕ0(x, y)|2 ⩽ Kϕ0(x)Kϕ0(y),

− d
dt

∣∣∣∣
t=0

logKϕt
(x) ⩽

∫
X

−ϕ̇0Kϕ0(y)e−ϕ0 ,

which in turn is dominated by

C1

∫
X

−ϕ̇0(ddcϕ0)n/n! ⩽ −C1
d
dt

∣∣∣∣
t=0

E(ϕt, ϕ0)

by the definition of C1 (formula (2.4)) and Lemma 2.1 which also gives
d
dt

∣∣∣∣
t=0

E(ϕt, ϕ0) = E(ϕ, ϕ0),

since E(ϕt, ϕ0) is affine in t. Now we use that f(t) := − logKϕt
is concave.

Therefore
f(1) − f(0) ⩽ f ′(0)

which means that

logKϕ0 − logKϕ ⩽ f ′(0) ⩽ −C1E(ϕ, ϕ0)

which completes the proof. □
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Now it only remains to convert this estimate of the Bergman kernel to
an estimate of the integral of e−ϕ. Here we use∫

X

Kϕe
−ϕ = N := dimH0(X,L+KX) (2.5)

for any locally bounded ϕ. Let C1 and C2 be constants satisfying

C2dV ⩽ Kϕ0e
−ϕ0 ⩽ C1(ddcϕ0)n/n! (2.6)

where dV is a fixed volume form on X (the same constant C1 appeared in
the previous proposition). Note that L+KX is basepoint free precisely when
C2 can be taken to be strictly positive.

By the previous proposition and (2.6) we have for any x in X

Kϕ ⩾ Kϕ0e
C1E(ϕ,ϕ0) ⩾ C2e

ϕ0dV eC1E(ϕ,ϕ0), (2.7)

so it follows that ∫
X

e−(ϕ−ϕ0)dV ⩽ C−1
2 Ne−C1E(ϕ,ϕ0).

We collect this in the next theorem which, as explained below, implies The-
orem 1.1 in the introduction.

Theorem 2.4. — Assume that the Bergman kernel for ϕ0 satisfies (2.6).
Then for any other ϕ ∈ H(L), satisfying

ϕ− ϕ0 ⩽ 0.

we have that

log
∫
X

e−(ϕ−ϕ0)dV ⩽ log(N/C2) − C1E(ϕ, ϕ0).

We say (cf [7, 16]) that the metric ϕ0 is balanced in the adjoint sense if
there is a constant C such that

Kϕ0e
−ϕ0 = C(ddcϕ0)n/n!.

When dV := (ddcϕ0)n/n! this amounts to saying that the constants C1 and
C2 in (2.6) can both be chosen to be equal to C and integrating over X we
see that in this case C = N/V . We thus immediately get the next corollary.

Corollary 2.5. — With assumptions as in Theorem 2.3, assume in
addition that ϕ0 is balanced in the adjoint sense. Then

log
∫
X

e−(ϕ−ϕ0)(ddcϕ0)n/n! ⩽ −N

V
E(ϕ, ϕ0) + log V
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As an example of this, let us look at the case L = −KX . Then
H0(X,KX + L) = C, i.e. N = 1, and

Kϕ0(x) = 1/
∫
X

e−ϕ0 .

Hence the condition that ϕ0 be balanced in the adjoint sense means that

(ddcϕ0)n/(V n!) =
(∫

X

e−ϕ0

)−1
e−ϕ0

which means that ϕ0 is the potential of a Kähler–Einstein metric. Then the
corollary becomes

log
∫
X

e−ϕ ⩽ log
∫
X

e−ϕ0 − E(ϕ, ϕ0)

since N = 1. This is the Moser–Trudinger inequality first proved in [37]
(using a different method). Note that the assumption that ϕ ⩽ ϕ0 is unnec-
essary here since both sides scale the same way if we subtract a constant
from ϕ.

2.2.1. Proof of Theorem 1.1

Next we consider asymptotic versions of Theorem 2.3, when we replace
L be kL, with k a large integer. Then it follows from well-known Bergman
kernel asymptotics due to Bouche and Tian (see [63] and references therein
for various refinements) that for any fixed smooth and strictly positively
curved ϕ0

Kkϕ0e
−kϕ0 = (ddckϕ0)n/n!(1 +O(k−1)) (2.8)

Hence in (2.6) we can take C1 equal to

1 +O(k−1)

and C2 = C2(k) equal to
kn(1 +O(k−1).

Integrating (2.8) we also get the well known formula

Nk = V kn + o(kn−1)

for the dimension of the space of global sections of KX+kL. Hence Nk/C2(k)
can be estimated by a constant independent of k. Altogether this finishes the
proof of Theorem 1.1 when k is a sufficently large integer. In fact, this implies
the case of a general k ∈ [1,∞[ by a simple comparison argument.
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2.3. Uniformity over all Fanos (proof of Theorem 1.2)

We start with the following essentially well-known lemma which is proved
using Moser iteration (see [51, Thm. 7] which is stated for eigenfunctions,
but the proof in general is the same):

Lemma 2.6. — Let (X, g) be a Riemannian manifold of real dimen-
sion 2n > 2 and let ag and bg be constants such that the following Sobolev
inequality holds for any function F on X such that F and its gradient are
in L2 :(∫

X

|F |2σdVg
)1/σ

⩽

(
ag

∫
X

|∇gF |2dVg) + bg

∫
X

|F |2dVg
)
, σ = n/(n−1)

For any positive function H such that ∆gH ⩾ −λH there is a constant Cg
only depending on ag and bg such that

∥H∥L∞(X) ⩽ Cgλ
n ∥H∥L1(X,g) (2.9)

Let us now assume that L → X is a an ample line bundle with a fixed
smooth positively curved weight ϕ0 such that the Kähler form ω0 := ddcϕ0
has a lower bound δ on its Ricci curvature:

Ricω0 ⩾ δω0 (2.10)
Then we claim that there is a constant Cδ only depending on δ such that
the Bergman kernel Kkϕ0(x) of the space H0(kL + KX) has the following
point-wise upper bound:

Kkϕ0 ⩽ Cδk
n(ddcϕ0)n/n! (2.11)

To see this let g be the Riemannian metric on X corresponding to ω0. By [46]
the corresponding constants ag and bg only depend on the lower bound δ of
the Ricci curvature of g and the lower bound on the volume V of g :

ag := 2n− 1
n(n− 1)δV 1/n , bg = 1

V 1/n

Let now fk be an element in H0(kL+KX) and write
H := |fk|2e−kϕ0/((ddcϕ0)n/n!)

Then it follows immediately from the definition of Ricci curvature and the
fact that log |fk|2 is locally psh that

ddc logH ⩾ −kω0 − δω0

and hence ddcH ⩾ −(k + δ)Hω0. Applying the previous Lemma to H with
λ := n(k + δ) now gives

|fk|2e−kϕ0 ⩽ Cδk
n (ddcϕ0)n

n!

∫
X

|fk|2e−kϕ0 .
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By the extremal definition of Kkϕ0 this finally proves the inequality (2.11).

Let us now assume that X is a Fano manifold and take L := −KX

so that V := c1(−KX)n/n!. As shown by Tian–Yau [61] one may always
choose ω := ω0 ∈ c1(−KX) so that 1/δ in (2.10) only depends on an upper
bound on V (since changing ϕ0 only changes the additive constant Bk we
are allowed to choose ϕ0 and dV ). As later shown in [24, 48] the volume V
of an n-dimensional Fano has a universal bound V ⩽ cn and hence ϕ0 may
be chosen so that the Bergman kernel estimate (2.11) holds with a constant
Cδ only depending on the dimension n. The proof of Theorem 1.2 is now
concluded by invoking Theorem 2.4.

Remark 2.7. — One may also ask whether there is universal lower bound
on infX(Kkϕe

−kϕ/(ddcϕ)n) in terms of a positive lower bound δ of the
Ricci curvature of ddcϕ and the dimension n of the Fano manifold? If
one instead considers the Bergman kernel K̃kϕ defined wrt the L2-norm∫
X

|f |2e−kϕ(ddcϕ)n on H0(X, kK) then a lower bound for K̃kϕe
−kϕ was

obtained by Tian [59] when n = 2, for all ϕ = ϕt appearing in Aubin’s
continuity path, and the case of a general dimension n was recently settled
in [56].

3. Moser–Trudinger inequality in the ball under S1-invariance

In this section we will look at estimates for integrals of e−ϕ, where ϕ
is plurisubharmonic in appropriate pseudoconvex domains Ω in Cn, even-
tually specializing to the case of the ball B. As in the previous section we
let Kϕ(x) be the Bergman kernel at the diagonal for the plurisubharmonic
weight function ϕ. It follows from the results in [15] that logKϕt

(x) is convex
in t if t → ϕt is a geodesic in the space of plurisubharmonic functions in Ω
(see below).

We say that a function f is S1-invariant if f(eiθz) = f(z). (Here eiθ acts
diagonally so that eiθ(z1, . . . , zn) := (eiθz1, . . . , e

iθzn)).

3.1. Bergman kernels and plurisubharmonic variations

Proposition 3.1. — Assume ϕ is plurisubharmonic in an S1-invariant
domain Ω that contains the origin in its interior and that ϕ is also S1-
invariant. Then

Kϕ(0, ζ) = 1/
∫
e−ϕ

for all ζ in Ω.
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Proof. — By definition, Kϕ(0, ζ) is antiholomorphic in ζ and by unique-
ness of Bergman kernels it must also be S1-invariant. Hence it is a constant,
and since ∫

Kϕ(0, · )e−ϕ = 1

the proposition follows. □

The next proposition then follows immediately from the plurisubhar-
monic variation of Bergman kernels (cf [15]).

Proposition 3.2. — Let ϕt be a subgeodesic of S1-invariant plurisub-
harmonic functions in an S1-invariant pseudoconvex domain Ω that contains
the origin in its interior. Then

t 7→ log
(∫

e−ϕt

)
is concave.

3.2. Energy and geodesics

In this section we will adapt the results about geodesics and energy in
the compact Kähler setting to the setting of domains. In principle all the
previous properties go through in this latter setting. The main technical
difference is that one has to be a bit careful when performing integration
by parts, due to the presence of the boundary. For this reason it will be
convenient to work in the singular setting of the finite energy class E(Ω)
(compare Section 1.6).

In a domain Ω we have a variant of the energy E , which in case ϕ0 and ϕ
are smooth is defined by

E(ϕ, ϕ0) = 1
(n+ 1)!

∫
Ω

(ϕ− ϕ0)
n∑
0

(ddcϕ0)k ∧ (ddcϕ)n−k

and when ϕ = ϕ0 = 0 on ∂Ω integration by parts show that E(ϕ, ϕ0) =
E(ϕ) − E(ϕ0) (compare the lemma below), where

E(ϕ) := E0(ϕ) := E(ϕ, 0)
so that

E(ϕ) = 1
(n+ 1)!

∫
Ω
ϕ(ddcϕ)n.

Moreover, integration by parts also give
d
dtE(ϕt, ϕ0) =

∫
B
ϕ̇t(ddcϕt)n/n!

We will need the following generalization:
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Lemma 3.3. — Let ϕ and ψ be in E1(Ω)). Then
d
dt t=0+

E(ϕ+ t(ψ − ϕ)) =
∫

Ω
(ψ − ϕ)(ddcϕ)n/n!

Moreover, the following cocycle relation holds E(ϕ) − E(ψ) = E(ϕ, ψ).

Proof. — Assume first that ϕ and ψ are in H0(Ω)b. In this class one may
integrate by parts just as in the smooth case (using the assumption on finite
Monge–Ampère mass; see [25] and references therein) and hence expanding
E(ϕ+ t(ψ − ϕ)) and integrating by parts gives

E(ϕ+ t(ψ − ϕ)) = t

∫
Ω

(ψ − ϕ)(ddcϕ)n +O(t2)I

where I is a sum of terms of the form
∫

(ψ − ϕ)(ddcϕ)n−j(ddcψ)j which are
finite since ϕ and ψ are in H(Ω)b. This finishes the proof in the case of the
class H0(Ω)b. Finally, given ϕ and ψ in E1(Ω)) we take sequences ϕj and ψk
in H(Ω)b, decreasing to ϕ and ψ respectively. By the previous case we have

E(ϕj+t(ψk−ϕj)) =
∫ t

0

∫
Ω

(ψk−ϕj)(ddc(ϕj+s(ψk−ϕj)))nds =:
∫ t

0
gk,j(s)ds

By well-known continuity properties [25] and the finite energy assumptions
letting first j and then k tend to infinity shows that the previous formula
holds with ϕj and ψk replaced with ϕ and ψ, respectively. Moreover, for the
same reason the corresponding density g(s) is continuous wrt s and that
ends the proof of the derivative formula in the general case. Finally, the
previous formula implies the cocycle relation by integrating along the line
t 7→ ϕ+ t(ψ−ϕ) (note that by a well-known Cauchy–Schwartz type estimate
all terms in E(ϕ, ψ) are finite). □

Next we turn to the definition of geodesic segments in the setting of do-
mains. Given, say ϕ0 and ϕ1 on Ω which are psh and smooth up to the
boundary, where they vanish, the corresponding geodesic ϕt is defined by re-
placing the space H(L)b with the space of all bounded psh functions tending
to zero at the boundary. More precisely, a geodesic is defined as the following
regularized envelope, where M := Ω × A (with A denoting an annulus):

ϕt := Φ(z, t) := sup
Ψ∈K

{Ψ(z, t)}∗

where K is the set of all psh functions Ψ ∈ PSH ∩L∞(M) such that Ψ∗ ⩽ f
on ∂M , where f is the function on ∂M defined as follows: decomposing
∂M := B1 ∪ B2 := ∂Ω × A∪Ω × ∂A we let f = 0 on B1 and f = ϕi for
i = 1, 2 on the two different components of B2. In particular, if ϕ0 and ϕ1
are continuous on Ω then so is the boundary data f . Just as in the setting of
compact Kähler manifolds we may as well, by symmetry, replace the bounded
domain A with a strip so that, for t real, ϕt gets identified with a function
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on Ω × [0, 1]. In this setting there is a similar construction of a barrier χt as
in the compact case, namely

χt := max{ϕ0 −Aℜt, ϕ1 −A(1 − ℜt), Aρ} (3.1)

where ρ is a psh defining function of Ω (e..g. ρ = |z|2 − 1 in the ball case).
The barrier induces, as before, an extension F of f such that F ∈ C0(M) ∩
PSH(M) and hence Φ is bounded on M and converges uniformly towards the
right boundary values. In fact, given the extension F above it follows from
Theorem 1.1 in [20] (since M is hyperconvex) that Φ ∈ C0(M) ∩ PSH(M)
with

(ddcΦ)n+1 = 0, in M

(but strictly speaking we will not need the continuity, only the boundedness
and the uniform boundary behavior as t → 0 and t → 1). In particular we
obtain a continuous curve ϕt in the space PSH ∩L∞(Ω).

Lemma 3.4. — Let ϕt be a geodesic segment as above.

• For any fixed t we have that ϕt ∈ E1(Ω) and if ϕ̇0 denotes the right
derivative of ϕt at t = 0 (which exists by convexity), then

d
dt t=0+

E(ϕt) ⩽
∫

B
ϕ̇0(ddcϕ0)n/n!,

• t 7→ E(ϕt) is affine and continuous on [0, 1].

Proof. — As explained above χt ⩽ ϕt ⩽ 0 where χt is a maximum of
functions in E1(Ω) and hence χt is also in the space E1(Ω) [25]. By Lemma 3.3
the functional E is increasing on E1(Ω) (since its differential is a positive
measure) and hence −∞ < E(χt) ⩽ E(ϕjt ) ⩽ 0 for any sequence ϕjt in
H0(Ω)b decreasing to ϕ, which proves the first claim. Next, we recall that
E is concave on E1(Ω) (wrt the usual affine structure) which for example
follows from the formula for dtdctE(ϕt) discussed below. In particular,

1
t
(E(ϕt) − E(ϕ0)) ⩽ 1

t

∫
Ω

(ϕt − ϕ)(ddcϕ0)n/n!,

so that letting t → 0+ proves the first point. As for the last point integration
by parts show that the formula (2.2) for dtdctE(ϕt) is still valid in the smooth
case. However, as we will need the formula in a singular setting we instead
refer to the result proved in [2] which implies that if Φ ∈ F(Ω × A) whose
slices ϕt are in E1(Ω) then the analogue of formula (2.2) holds (i.e. forX = Ω)
in the sense of currents. Finally, since ϕt → ϕ0 uniformly as t → 0 we have
that E(ϕt) → E(ϕ0) as t → 0 [25] and similarly for t → 1 and that ends the
proof. □
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3.3. The case of the ball and the proof of Theorem 1.4

We now take Ω to be the unit ball and make a special choice of reference
function ϕ0 as

ϕ0 = (n+ 1)[log(1 + |z|2) − log 2].
This is a potential of the Fubini–Study metric on Pn and satisfies the Kähler–
Einstein equation

(ddcϕ0)n/n! = ane
−ϕ0 (3.2)

We first prove an estimate for the Bergman kernel at the origin. By Proposi-
tion 3.1 this amounts to an estimate of the integral of e−ϕ in the S1-invariant
case, but we prefer to argue first in the general case, since we feel the estimate
for Bergman kernels has independent interest.

Proposition 3.5. — Let ϕ be a smooth plurisubharmonic function in
the ball B that vanishes on the boundary. Then

− logKϕ(0) ⩽ log
∫

B
e−ϕ0 − bnE(ϕ, ϕ0)

where bn = (an
∫
e−ϕ0)−1.

Proof. — As in the compact setting the proof uses geodesics. We connect
ϕ and ϕ0 by a geodesic ϕt such that ϕ1 = ϕ. Then

g(t) := logKϕt
− bnE(ϕt, ϕ0)

is a convex function of t. We claim that g′(0) ⩾ 0. For this we use the same
formula as before for the derivative of the Bergman kernel

d
dtKϕt(x) =

∫
B
ϕ̇t|Kϕt(x, y)|2e−ϕt .

Take x = 0 and t = 0. Then, since ϕ0 is S1-symmetric

Kϕ0(0, y) = 1/
∫

B
e−ϕ0

by Proposition 3.1. Therefore
d
dt

∣∣∣∣
t=0

logKϕt
(0) =

∫
B
ϕ̇0e

−ϕ0/

∫
B
e−ϕ0 .

Combining this with the Kähler–Einstein condition (3.2) we get, also using
Lemma 3.4, that

d
dt

∣∣∣∣
t=0

logKϕt
(0) = bn

∫
X

ϕ̇0(ddcϕ0)n/n! ⩾ bn
d
dt

∣∣∣∣
t=0

E(ϕt, ϕ).

so g′(0) ⩾ 0 as claimed. Since g is moreover convex we get g(1) ⩾ g(0) or
explicitly

logKϕ(0) − bnE(ϕ, ϕ0) ⩾ logKϕ0(0).

– 618 –



Moser–Trudinger type inequalities

Invoking Proposition 3.1 again the proposition follows. □

From here we can not continue as in the compact case since we have no
counterpart of (2.5). It seems plausible to conjecture that for any compact
K in the ball ∫

K

Kϕ(z, z)e−ϕ(z) ⩽ C(K,ϕ)

where the constant depends only on K and, say,∫
B

(ddc(ϕ+ |z|2))n.

If this were true we could follow a route similar to what we did in the case
of a compact manifold and obtain sharp estimates for∫

K

e−ϕ

for functions that are not necessarily S1-invariant. The most one could hope
for in this direction would be∫

B
(1 − |z|2)n+1Kϕ(z, z)e−ϕ(z) ⩽ C(ϕ)

with the same dependence on ϕ. We do not know if either of these estimates
hold.

Instead we now introduce the additional assumption that ϕ be S1-inv-
ariant. We then get, by Proposition 3.1, that

log
∫

B
e−ϕ ⩽ log

∫
B
e−ϕ0 − bnE(ϕ, ϕ0)

if ϕ is any smooth plurisubharmonic function in the ball, vanishing on the
boundary and S1-invariant.

As it stands the constant here is not optimal. An easy way to improve it
is to replace our “reference” ϕ0 by

ϕϵ0 := (n+ 1)[log(ϵ2 + |z|2) − log(ϵ2 + 1)]. (3.3)

This amounts to replacing the unit ball by a larger ball of radius 1/ϵ which
brings us closer and closer to all of Pn, where the same argument is known
to give an optimal constant. Then

(ddcϕϵ)n/n! = an(ϵ)e−ϕϵ ,

and as before we let

bn(ϵ) = 1/
(
an(ϵ)

∫
e−ϕϵ

)
.
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By the Kähler–Einstein equation for ϕϵ

bn(ϵ) = n!/
∫

(ddcϕϵ)n.

The integral here is easily computed using Stokes’ theorem∫
|z|<1

(ddcϕϵ)n =
∫

|z|=1
dcϕϵ ∧ (ddcϕϵ)n−1

= (n+ 1)n(1 + ϵ2)−n
∫

|z|=1
dc|z|2 ∧ (ddc|z|2)n−1

= (n+ 1)n(1 + ϵ2)−n
∫

|z|<1
(ddc|z|2)n

= (n+ 1)n(1 + ϵ2)−nn!π−n|Bn| = (n+ 1)n(1 + ϵ2)−n.

Hence bn(ϵ) is asymptotic to n!/(n + 1)n as ϵ goes to zero (coinciding with
the inverse of the volume of Pn, as it must). We have

E(ϕϵ) = (n+ 1)−1
∫

B
ϕϵ(ddcϕϵ)n/n!

which by the Kähler–Einstein equation equals

−an(ϵ)
∫

B
log(ϵ2 + |z|2)e−ϕϵ

plus a quantity tending to zero with ϵ. Thus

bnE(ϕϵ) = −
∫

B
log(ϵ2 + |z|2)e−ϕϵ/

∫
B
e−ϕϵ .

This is the integral of − log(ϵ2 + |z|2) against a sequence of measures that
tend to a Dirac unit mass at the origin, and it is easily seen to be asymptotic
to a constant plus − log ϵ2. On the other hand

− log
∫

B
e−ϕϵ

is also asymptotic to − log ϵ2 plus a constant. All in all this proves Theo-
rem 1.4 stated in the introduction.

Notice that there seems to be no extremal function for the inequality. For
any nonzero ϵ, ϕϵ0 is an extremal by construction, but these functions tend
to (n+ 1) log |z|2, which has infinite energy.

We do not know if Theorem 1.4 holds without our assumption of S1-
symmetry except for n = 1, see [53] where a symmetrization argument can
be used. Our methods also have bearings on symmetrization properties in
the present higher dimensional setting of domains in Cn [9]. In Section 4 we
shall use a different argument to prove the inequality “modulo ϵ” without
assuming S1-invariance.
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4. Moser–Trudinger and Brezis–Merle–Demailly type
inequalities on domains in Cn

Let Ω be a bounded hyperconvex domain in Cn (we will use the notation
introduced in Section 1.6 for the corresponding function spaces and func-
tionals). We may then set the reference form ω0 to be the zero-form: ω0 = 0
and use the notation

E(u) := Eω0(u) = 1
(n+ 1)!

∫
Ω
u(ddcu)n

It will also be convenient to write

M(u) :=
∫

Ω
(ddcu)n

We will say that the sharp Moser–Trudinger (M-T) inequality holds for
the domain Ω if there is a constant C such that

log
∫

Ω
e−udV ⩽ − n!

(n+ 1)n E(u) + C (M-T)

for any u ∈ E1(Ω). Similarly, the quasi-sharp M-T inequality is said to hold
on Ω if for any δ > 0 the previous inequality holds when the factor n+ 1 in
front of E(u) is replaced by n+ 1 − δ and the constant C by C− log(δ(n−1)).

The sharp Brezis–Merle–Demailly (B-M-D) inequality is said to hold for
the domain Ω if there is a constant A such that∫

Ω
e−udV ⩽ A

(
1 − 1

nn
M(u)

)−1
(B-M-D)

for any u ∈ F(Ω) such that M(u) :=
∫

Ω(ddcu)n < nn.

It will also be convenient to use the following equivalent formulations of
the quasi-sharp Moser–Trudinger and Brezis–Merle–Demailly inequalities:∫

Ω
e−(n+1−δ)udV ⩽ Cδ−(n−1)e−(n+1−δ)n!E(u) (M-T′)

for some positive constant C and (when n > 1) there is a positive constant
A such that ∫

Ω
e−(n−δ)udV ⩽ Aδ−(n−1) (B-M-D′)

for all u ∈ F(Ω) such that M(u) = 1
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4.1. M-T in Cn implies B-M-D in Cn+1

Proposition 4.1. — The (quasi-) sharp Moser–Trudinger inequality on
Ω ⊂ Cn implies the (quasi-) sharp Brezis–Merle–Demailly inequality on Ω ×
D ⊂ Cn+1. More generally, the (quasi-) sharp Moser–Trudinger inequality
on the ball in Cn implies the (quasi-) sharp Brezis–Merle–Demailly inequality
on any hyperconvex domain in Cn+1.

Proof. — Let us start with the sharp case. Given u ∈ F(Ωz ×Dt) we let
v(t) := E(u( · , t) and to fix ideas we first assume that u is smooth on the
closure of Ω × D. Applying the sharp M-T inequality to u( · , t) for t fixed
and integrating over t ∈ D gives∫

D

(∫
Ω
e−u(t,z)dV (z)

)
dV (t) ⩽

∫
D

exp
(

− n!
(n+ 1)n v(t)

)
dV (t),

By (2.2) the function v(t) is a subharmonic function on D with∫
D

dtdctv =
∫

Ω×D
(ddcu)n+1/(n+ 1)!.

Hence applying the sharp B-M-D inequality on the disc D for n = 1 (which
is follows from Green’s formula and Jensen’s inequality [22] or alternatively
from Polya’s inequality [2]) and using that n!

(n+1)n
1

(n+1)! = 1
(n+1)n+1 fin-

ishes the proof under the smoothness assumption above. The general case
is proved in a similar way, but using the singular variant of (2.2) proved
in [2] (Theorem 3.1); compare the proof of Lemma 3.4. To prove the last
statement we recall the subextension theorem [28] saying that given Ω and Ω̃
two hyperconvex domains such that Ω ⊂ Ω̃ and a function u ∈ F(Ω) there
is a function ũ ∈ F(Ω̃) such that ũ ⩽ u on Ω and

∫
Ω̃ MA(ũ) ⩽

∫
Ω MA(u)

(up to taking approximations ũ is obtained by solving the Dirichlet problem
MA(ũ) = 1Ω MA(u) on Ω̃). Applying subextension to Ω ⊂ r(B × D) for r
sufficiently large thus shows that the sharp B-M-D inequality holds on any
hyperconvex domain Ω. Finally, if we instead assume that the quasi-sharp
M-T holds in dimension n−1 and take u such that M(u) = 1 then repeating
the same argument gives, with v = (n+ 1 − δ)E(u( · , t) that∫

D

(∫
Ω
e−(n+1−δ)u(t,z)dV (z)

)
dV (t) ⩽ C ′δ−n

(
1 − (n+ 1 − δ)n

(n+ 1)n

)−1

and expanding 1 − tn = (1 − t)(1 + · · · + tn) then concludes the proof. □

– 622 –



Moser–Trudinger type inequalities

4.2. Quasi B-M-D in Cn implies quasi M-T in Cn and the free
energy functional

In this section it will be convenient to use a different normalization of E
obtained by multiplication by n!, i.e. we let

E(u) := 1
n+ 1 ⟨u, (ddcu)n⟩ , ⟨u, µ⟩ :=

∫
Ω
uµ

With this new normalization dE|u = (ddcu)n and the sharp M-T inequality
may be formulated as

∫
Ω e

−(n+1)udV ⩽ Ce−(n+1)E(u).

Proposition 4.2. — If the quasi-sharp Brezis–Merle–Demailly inequal-
ity holds on Ω ⊂ Cn than so does the quasi-sharp Moser–Trudinger inequal-
ity.

The proof uses the “thermodynamical formalism” recently introduced
in a the setting of compact Kähler manifolds in [8]. The key point is to
show that, by Legendre duality, the (sharp) Moser–Trudinger inequality is
equivalent to yet another inequality, namely one which coincides with the
classical logarithmic Hardy–Sobolev (LHS) inequality when n = 1. To make
this precise we first define, for any given positive number γ,

Gγ(u) := E(u) − Lγ(u), Lγ(u) = − 1
γ

log
∫

Ω
e−γudV,

where u ∈ E1(Ω) so that Gγ is bounded from above for γ = n + 1 precisely
when the sharp Moser–Trudinger inequality holds. As for the LHS type in-
equality referred to above it is said to hold when the following free energy
functional Fγ is bounded from above:

Fγ(µ) := E(µ) − 1
γ
D(µ)

where µ is a probability measure on Ω with E(µ) < ∞, where E(µ) is the
(pluricomplex) energy of µ and D(µ) is its relative entropy, whose definitions
we next recall. Following [25] a measure µ on Ω is said to have finite (pluri-
complex) energy E(µ) if it admits a finite energy potential uµ, i.e. uµ ∈ E1(Ω)
and

(ddcuµ)n = µ (4.1)
One may then define its energy by

E(µ) := − n

n+ 1 ⟨uµ, µ⟩

which is finite and non-negative (the reason for our normalization appears
in formula (4.3) below). If uµ does not exist one sets E(µ) = ∞. We also
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recall the classical notion of relative entropy: given a measure µ its relative
entropy (wrt dV ) is defined as

D(µ) :=
∫

Ω
log(µ/dV )µ

if µ is a measure which is absolutely continuous wrt dV (with density µ/dV )
and otherwise D(µ) := ∞. To see the relation to the Moser–Trudinger in-
equality we recall that E and 1

γD can be realized as Legendre type transforms
of the concave functionals E and Lγ , respectively. Indeed, it is a classical fact
(see [8] and references therein) that

1
γ
D(µ) = Lγ∗(µ) := sup

u∈C0(Ω)

(
− 1
γ

log
∫
X

e−γuµ0 − ⟨u, µ⟩
)

(4.2)

Moreover, it follows from the concavity of E and the solvability of equa-
tion (4.1) that (2)

E(µ) = sup
u∈E1(Ω)

(E(u) − ⟨u, µ⟩) . (4.3)

The idea is now to first show that
Fγ ⩽ Cγ =⇒ Gγ := E − Lγ ⩽ Cγ (4.4)

and then prove that Fγ ⩽ Cγ for γ < n+1, giving the desired M-T inequality.
If E were a proper Legendre transform of E (i.e. if the sup in (4.3) could
be taken over C0(Ω) then (4.4) would follow immediately from the fact that
the Legendre transform is involutive together with the trivial implication

f ⩽ g + C =⇒ f∗ ⩽ g∗ + C

In the Kähler setting it was explained in [8] how to use a certain projection
operator P to realize E the Legendre transform of E◦P , but here we give
a direct argument, relying on the solvability of (4.1). First observe that, by
approximation, it will be enough to prove the Moser–Trudinger inequality
in question for u ∈ H0(Ω). Now, by the concavity of E on E1(Ω) we have,
for any fixed measure µ,

E(u) ⩽ E(uµ) + ⟨u− uµ, µ⟩ = E(µ) + ⟨u, µ⟩

= Fγ(µ) +
(

1
γ
D(µ) + ⟨u, µ⟩

)
(4.5)

Next, we rewrite (4.2) as

inf
µ

(
1
γ
D(µ) + ⟨u, µ⟩

)
= Lγ(u)

(2) In fact, using a variational approach the potential uµ above may be obtained di-
rectly by maximizing the functional in the rhs of (4.3). This was recently shown in the
Kähler setting in [11] and in the setting of domains in [1].
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where the infimum is taken over all measures on Ω. Since we have as-
sumed that u is in H0(Ω) and, in particular, continuous, the measure µ =
e−γu/

∫
e−γudV realizes the inf in (4.5). Hence,

E(u) ⩽ Fγ

(
e−γu/

∫
e−γudV

)
+ Lγ(u),

which gives

Gγ(u) ⩽ Fγ

(
e−γu/

∫
e−γudV

)
,

proving (4.4).

Remark 4.3. — A similar argument also shows that Gγ ⩽ Cγ =⇒
Fγ ⩽ Cγ and hence the M-T inequality holds iff the LHS inequality holds.
Indeed, writing Fγ(µ) = (E(uµ) − ⟨uµ, µ⟩) − 1

γD(µ) one just uses that
1
γD(µ) ⩾ − ⟨uµ, µ⟩ + Lγ(uµ), since uµ is a candidate for the sup in (4.2)
(strictly speaking a simple approximation argument has to be used, since
uµis not continuous in general; compare [8]). Moreover, the argument also
shows that a probability measure µ is a maximizer of Fγ iff its potential uµ
is a maximizer of Gγ .

Finally, to estimate Fγ we next define the following general invariant of
a pair (Ω, µ0) where µ0 is a measure on Ω :

α := sup

t :
∃ Ct :

∫
Ω
e−tudµ0 ⩽ Ct

∀ u ∈ H0(Ω)b such that
∫

Ω
(ddcu)n = 1

 (4.6)

Lemma 4.4. — If γ < α (n+1)
n , then Fγ(µ) is bounded from above, i.e.

Fγ(µ) ⩽ Cγ . More precisely, for any t < α

Fγ(µ) ⩽
(
t

γ
− n

n+ 1

)
⟨uµ, µ⟩ + t

γ
Ct

where Ct is the minimum of Lt(u) over all u ∈ H0(Ω)b ∩ {
∫

Ω(ddcu)n = 1}.

Proof. — Given γ we fix t < α := α(Ω, µ0). By the definition of α we
have Lt(u) ⩾ −Ct if u ∈ H0(Ω) ∩ {

∫
Ω(ddcu)n = 1} and hence

1
t
D(µ) = L∗

t (µ) ⩾ Lt(uµ) − ⟨uµ, µ⟩ ⩾ − ⟨u, µµ⟩ − Ct

As a consequence

Fγ(µ) ⩽
(

− n

n+ 1 + t

γ

)
⟨uµ, µ⟩ + tCt
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Given γ such that γ < α (n+1)
n , we may now choose t sufficiently close to α

so that the multiplicative constant above is strictly positive, thus concluding
the proof. □

Assume now that the quasi-sharp BM-inequality holds in Ω. The point
is that this implies that α(Ω,dV ) = n and the previous Lemma then shows
that Fn+1−δ is bounded from above. We can actually be more precise wrt
the dependence on δ. Indeed, according to the formulation (B-M-D′) we have
that Cn−ϵ ⩽ C + log(1/ϵn−1) where Ct is defined as in the previous lemma
(with µ0 = dV ). Applying the previous lemma with γ = n + 1 − δ and
t = n− δ/2 hence gives

Fn+1−δ(µ) ⩽ Cn−δ/2 ⩽ C ′ + log(1/δn−1)
The proof of Proposition 4.2 is now concluded by using (4.4).

Remark 4.5. — When µ0 = dV is any volume form on Ω α := α(Ω,dV )
defines an invariant of a domain Ω which can be seen as a variant of Tian’s α-
invariant for a Kähler manifold (X,ω) (or rather the class [ω]). The difference
is that in the latter case the Monge–Ampère mass is determined by [ω] and
hence independent of u. Moreover, −γFγ(MA(u)) is a variant of Mabuchi’s
K-energy functional, which plays a key role in Kähler geometry (compare
the discussion in [8])

4.3. Proof of Theorem 1.5

The sharp Moser–Trudinger inequality holds when n = 1 in the disc
D [53]. Hence combining Proposition 4.1 and Proposition 4.1 simultaneously
prove the inequalities in Theorem 1.5 and Theorem 1.6.

As for the sharpness of the multiplicative constants in inequalities we
make the following remark which concludes the proof of Theorem 1.5.

Remark 4.6. — Let Ω := B be the unit ball in Cn and set u := log |z|2 so
that (ddcu)n = δ0. Letting ut := tu for t < 1 gives

∫
B
e−ut = 1

1−t/n ∼ 1
(1− tn

nn )
as t → 1−. Moreover, since MA(ut) = tn this shows that the sharp Brezis–
Merle–Demailly inequality cannot hold on B with a better coefficient than

1
nn , nor with a smaller power in the rhs. An application of the subextenstion
theorem (as in the proof of Proposition 4.1) gives the same conclusion for
any hyperconvex domain Ω (alternatively we can apply the same argument
as above with u replaced by the pluricomplex Green function gz with a pole
at any fixed point z in Ω). Finally, by Proposition 4.1 this also shows that
the coefficient n!/(n+ 1)n in the sharp M-T inequality cannot be improved
for any hyperconvex domain Ω.
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5. Relations between the various inequalities

Let (X,dV ) be a measure space and u ⩽ 0 a measurable function on X
in L1

loc(X,dV ). Set

E(t) :=
∫
e−tudV

and
V (s) := Vol{u < −s} :=

∫
{u<−s}

dV

Then E(t)/t and V (s) are (up to signs) related by Laplace transforms. In-
deed, by the push-forward formula and integration by parts

E(t) := t

∫ ∞

0
etsV (s)ds+ V (0), V (0) =

∫
X

dV

According to a well-known principle the Laplace transform is asymptotically
described by the Legendre transform:

E(t) ≲ ef(t) “ ⇐⇒ ” V (s) ≲ e−f∗(s)

(as t and s tend to infinity), where f is assumed convex and f∗(s) is its
Legendre transform:

f∗(s) := sup
t

(st− f(t))

There are various ways of formulating this principle precisely but for our
purposes the following basic lemma will be sufficient:

Lemma 5.1. — If E(t) ⩽ Cef(t), then V (s) ⩽ Ce−f∗(s). Conversely,
if V (s) ⩽ Ce−g(s) then for any δ > 0 there is a constant Cδ such that
E(t) ⩽ Cδe

g∗(t+δ).

Proof. — Fix t ∈ R. On the subset {u < −s} of X we have 1 < e−ste−tu

and hence V (s) ⩽ e−st ∫
X
e−tu ⩽ Ce−st+f(t). Taking the infimum over all t

then proves the first inequality. The second inequality follows immediately
from the definitions if we rewrite ts − g(s) = ((t+ δ)s− g(s)) − δs and let
Cδ = C

∫∞
0 e−δsds = C/δ. □

We will apply the previous lemma to the case when f(t) is homogeneous
and use the following basic relations (assuming p > 1)

f(t) = 1
a
tp/p ⇐⇒ f∗(s) := a(q−1)sq/q (5.1)

where 1/p + 1/q = 1 (the case a = 1 is immediate and implies the general
case by scaling). More precisely, in our case we will have p = (n+ 1)/n and
hence q = n+ 1 and vice versa.
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Corollary 5.2 (of Theorem 1.1). — Let (X,ω) be a compact Kähler
manifold and u ∈ H0(X,ω). Then there are constants A and B such that

Volω{u < −s} ⩽ Ce
−B 1

(−Eω(u))1/n
s(n+1)/n

More precisely, we may replace the exponent above by

− n

(−Eω(u))1/n(n+ 1)(1+1/n) s
(n+1)/n(1 + o(1))

as s → ∞.

From the first volume estimate in the previous corollary we see that the
Lp-norms of u may be estimated as∫
X

(−u)pdV =
∫ ∞

0
V (s)d(sp) ⩽ CΓ

(
n

n+ 1p
)(

1
B

)pn/(n+1)
(−Eω(u))p/(n+1)

(after setting x = s(n+1)/n and using Γ(x)x = Γ(x + 1), for Γ(x) :=∫∞
0 sx−1e−sds). Using that Γ(x) ⩽ Cnx

x (e.g. by Stirling’s approximation)
hence gives the Sobolev type inequality (1.6) from the introduction.

The inequality (1.5) can now be deduced from the previous Sobolev type
inequality (compare [62]). Indeed, assuming first that −Eω(u) = 1 gives∫

eB(1−δ)(−u)n+1/n

dV =
∞∑
p=1

Bj

j!

∫
X

(−u)j(n+1)/ndV

⩽
∑

p∈N(n+1)/n

1
p

(1 − δ)pn/(n+1)

which is finite for any δ > 0 and the general case then follows by scaling. Note
in particular, that when E(t) ⩽ eAt

n+1 with A = (n+ 1)−(n+1) then V (s) ⩽
e−Bs(n+1)/n with B = n which proves the last statement in Theorem 1.5.

6. Remarks on the optimal constants

In this section we will compare our results with Aubin’s conjectures [3, 4]
(and his partial results). To this end we first have to compare our notations,
which differ slightly. There are two reasons for the differences which come
from (1), the choice of energy functional and (2), the normalizations of the
energy functional. We therefore start with a discussion of the various energy
functionals involved.
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Given the functional Eω which we recall may be defined as a primitive of
the Monge–Ampère operator one defines

Jω(u) := −Eω(u) +
∫
uωn/n!

and
Iω(u) := 1

n!

∫
(−u) (ωun − ωn)

The functionals Jω and Iω are both invariant under addition of constants
and semi-positive [3] and when ω = 0 (as in the Cn-setting) they coincide.
In general, they are equivalent up to multiplicative factors [3]:

Jω ⩽ Iω ⩽ (n+ 1)Jω (6.1)

However, Aubin’s normalizations are slightly different and obtained by re-
placing the factor 1/n! above by (2π)n/(n− 1)!. We will denote by I(A)

ω and
J

(A)
ω the corresponding functionals with Aubin’s normalizations, so that

Jω = dnJ
(A)
ω , Iω = dnI

(A)
ω , where dn := 1

n

1
(2π)n (6.2)

In this notation Aubin’s general “Hypothèse fondamentale” as formulated
in [3] asserts that there exist positive constants ξ and C such that the fol-
lowing Moser–Trudinger type inequality holds for a given smooth volume
form dV and Kähler metric ω :

log
∫
e−kudV ⩽ ξkn+1I(A)

ω (u)) + C (6.3)

for all k ⩾ 1 and all u ∈ H(X,ω) normalized such that
∫
X
uωn = 0. Of

course, if the inequality holds for some fixed volume form dV (for example
ωn) then it also holds for any other volume form dV , but with a different
additive constant C. Anyway, here we will focus on the (limiting) optimal
multiplicative constant ξ.

To see that Theorem 1.1 essentially confirms Aubin’s conjecture (in the
case when [ω] is an integral class) we recall that there is a constant C ′ such
that

supu ⩽
1
V

∫
uωn + C ′, (6.4)

if u ∈ H(X,ω). Now, Theorem 1.1 applied to u− supu gives

log
∫
e−k(u−supu)dV ⩽ Akn+1 (−Eω(u)) +A(supu)kn+1 +B).

If ∫
uωn = 0,
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then 0 ⩽ supu ⩽ C ′ and −Eω(u) = Jω(u) = dnJ
(A)
ω (u). Therefore, under

this assumption,

log
∫
e−kudV ⩽ Akn+1Jω(u) + (AC ′kn+1 +B)

= Akn+1dnJ
(A)
ω (u) + (AC ′kn+1 +B).

Thus, since J
(A)
ω ⩽ I

(A)
ω , (6.3) holds with ξ = Adn and C = Ck :=

AC ′kn+1 +B. This means that the constant Ck depends on k while Aubin’s
hypothesis, strictly speaking, says that it should be independent of k. Any-
way, in applications to existence problems for PDEs the precise value of Ck
is immaterial, it is only the independence of ξ of k that is important ([3,
§V]).

6.1. Counter-example to Aubin’s explicit conjecture in the Fano
case

In his paper Aubin also conjectured that in the Fano setting (with [ω] =
c1(−KX)) the limiting optimal (multiplicative) constant ξ(A)(X) for the
Moser–Trudinger type inequality (6.3) (with respect to the functional I(A)

ω ),
i.e. the infimum over all constants ξ satisfying (6.3) for some Cξ, is explicitly
given by

ξ(A)(X) = ξn := π−n(n− 1)!nn(n+ 1)−(2n+1)

= π−n(n− 1)!
(

1 + 1
n

)−n

(n+ 1)−(n+1). (6.5)

A counter-example to this conjecture has been found by Y. Sano (thanks
to Y. Odaka for informing us about this). For completeness and in order to
illustrate the relation to volume bounds we will here provide a simple way
to produce counter-examples.

First, we denote by η(A) the limiting constant in (6.3), if we replace the
functional I(A)

ω by J (A)
ω , and by η the limiting constant when I(A)

ω is replaced
by Jω. Then η(A) ⩽ (n + 1)ξ(A), so Aubin’s explicit conjecture in the Fano
setting implies that

η(A)(X) ⩽ (n+ 1)ξn, (6.6)
and η(A)(X) = dnη(X). We will now give a counter example to (6.6) for
k = 1. The main idea is (see the lemma below) that η(X) ⩾ 1/V (X), unless
the Ding functional for X is coercive, and the Ding functional cannot be
coercive e. g. if X has non trivial holomorphic vector fields. Thus, all we
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need to contradict (6.6) is to find a Fano manifold of small volume and non
trivial holomorphic vector fields.

Lemma 6.1. — Let X be a Fano manifold and ω ∈ c1(−KX). If one
replaces the functional Iω in (6.3) by the functional Jω then the corresponding
limiting optimal (multiplicative) constant η(X) satisfies (when specializing to
the case k = 1)

η(X) ⩾ 1/V (X)
if X admits non-trivial holomorphic vector fields, i.e. if H0(TX) ̸= {0}.
(By (6.4), η(X) coincides with the limiting optimal constant obtained for
the functional −Eω together with the normalization condition supX u = 0).

Proof. — This follows from [36, Prop. 6], but here we provide a different
proof using geodesics (our η(X) differs from the one in [36, Prop. 6] by the
factor 1/V (X)). First observe that since the optimal constants in question
are independent of the choice of volume form we may as well take dV to
be the metric on −KX induced by the reference metric ϕ0 on −KX with
curvature form ω, i.e. the local density of dV is represented by e−ϕ0 . We
then define the Ding functional by

D(u) := − 1
V

Eω(u) − log
∫
X

e−udV,

which is invariant under the R-action u 7→ u + c (and hence insensitive to
the different normalization conditions for u). By definition, D(u) is bounded
from below iff the Moser–Trudinger inequality for the functional (−Eω) holds
with a multiplicative constant 1/V (X). Now assume that the corresponding
limiting optimal constant η(X) is strictly smaller than 1/V (X), i.e. η(X) =
1/V (X) − δ for some δ > 0. This equivalently means that D is coercive in
the following sense: there exist positive constants δ and C such that, for all
u ∈ Hω(X), normalized so that supX u = 0,

D(u) ⩾ δ (−Eω(u)) − C

Equivalently (by (6.4)), for all u ∈ Hω(X),

D(u) ⩾ δJω(u) − C ′ (6.7)

for a (possibly different) constant C ′. Next, we show that this leads to a
contradiction if X admits a non-trivial holomorphic vector field W . Indeed,
fix u0 in Hω(X) and denote by uWt the curve in Hω(X) obtained by acting
on u0 with the flow of the given holomorphic vector field (the action may be
obtained by identifying Hω(X) with the space of positiely curved metrics on
−KX). Now on one hand,

lim
t→∞

Jω(uWt ) = ∞
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and on the other
D(uWt ) = aW t+ D(uW0 )

where a−W = −aW ∈ R. This is well-known and follows form the fact that
uWt defines a geodesic in Hω(X), using that Eω is affine along geodesics (while∫
X
e−uW

t dV is independent of t, by invariance under automorphisms). Ac-
cordingly, after perhaps replacing W with −W we may assume that D(uWt )
is bounded from above as t → ∞. But this contradicts the coercivity in-
equality (6.7). □

It follows from the lemma that if X has non trivial holomorphic vector
fields and (6.6) holds, then

dn
V (X) ⩽ dnη(X) = η(A)(X) ⩽ (n+ 1)ξn.

To get a contradiction it will hence be enough to exhibit an n-dimensional
Fano manifold X with H0(TX) ̸= {0} such that

V (X) < 1
(n+ 1)

dn
ξn
,

where dn is the constant appearing in formula (6.2). Using that n!V (X)
equals the top-intersection number (−KX)n this means that

(−KX)n < ((n+ 1)2/2n)n := Cn (6.8)

To find such Fano manifold X we simply start with a Fano manifold Y
with very small volume and form the product with P1, to ensure the exis-
tence of holomorphic vector fields (using the basic formula (−KY×P1)n+1 =
2(n + 1)(−KY )n)). For example, since C3 > 18 can take Y = Sd for
d = 6, 7, 8, where Sd denotes the blow-up of P2 in d generic points (us-
ing (−KSd

)2 = 9 − d). Similarly, since C4 > 95 we can for n = 4 take Y as
a general smooth hypersurface of degree 6 in the weighted projective space
P(1, 1, 1, 1, 3), which has (−KY )3 = 2, according, to the “big table” in [29],
where Y appears first in the list.

6.2. Comparison with Aubin’s constant for the ball

Let us now turn to the setting of the unit ball, where ω = 0 and consider
the corresponding functional I(A)

0 (called J with the same normalizations
in [4]), i.e.

I
(A)
0 (u) := 1

(n− 1)!

∫
(−u)

(
i∂∂u

)n
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In the case of a radial psh function u in the ball Aubin showed [4] that

log
∫
e−udV ⩽ anI

(A)
0 (u) + C, an = 2nn(n+ 1)−(2n+1)σ−1

2n−1, (6.9)

where σp denotes the volume of the unit p-sphere, giving an = ξn (for-
mula (6.5)). Moreover, in [3, §3] Aubin claims that he has proved that the
optimal constant in the setting of the ball is indeed given by formula (6.5).
But by Theorem 1.5 the (limiting) optimal constant cn in the equality (6.9)
is equal to

cn = 1
(2π)n

(n− 1)!
(n+ 1)!

n!
(n+ 1)n = (n− 1)!

(2π)n
1

(n+ 1)n+1

which satisfies an ⩾ cn with strict inequality when n > 1. Indeed,

cn =
(

1
2(1 + 1/n)

)n
an,

Accordingly, Aubin’s constant an is not optimal for n > 1 (moreover Aubin,
in fact, only proved his inequality in the radial case, but, of course, his
constant cannot be optimal in the subclass of radial functions either).

6.3. Discussion

It is natural to ask why Aubin expected that the particular value in
formula (6.5) gives the optimal constant in the Fano case? We can only
speculate on this. But it seems that Aubin was expecting that the optimal
constant in the Fano case coincides with the optimal constant in the setting
of the ball. Unfortunately, as pointed out in the previous section the constant
found in the setting of the ball by Aubin is, however, not the optimal one (in
contrast to Aubin’s claim). Anyway, as we next explain (using an argument
which has the virtue of avoiding comparing normalizations) it is not the
case that the optimal constant in the Fano case coincides with the (correct!)
optimal constant in the setting of the ball. Indeed, if the optimal constant
coincided with the one in the setting of the ball, then, by Lemma 6.1, this
would force

V (X) ⩾ V (Pn)
for any Fano X such that H0(TX) ̸= {0}. But this bound is violated by
many Fano manifolds and as explained in the previos section we can even
arrange that V (X) is sufficently small to compensate for Aubin’s mistake
concerning the optimal constant in the case of the ball. In fact, according to
various conjectures in complex geometry one expects that the volume V (X)
is maximized on Pn for large classes of Fano manifolds, for example (1) all
Fano n-folds with Picard number equal to one (see [45] for a proof when
n ⩽ 4) and (2) among all Kähler–Einstein Fano manifolds.
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Remark 6.2. — Building on the results in the present paper the authors
established a generalized form of the latter conjecture (2) in [10] in the toric
case and the general case of (2) was then settled in [40], using a different
algebro-geometric argument.

7. Existence of extremals and applications to Monge–Ampère
equations

7.1. The Kähler setting

Let (X,ω) be an integral Kähler manifold and fix a smooth volume form
dV on X with unit total volume. For a given sequence ak ∈ R we consider
the following Moser–Trudinger type functional on H(X,ω) :

Gak
(u) := 1

k
log
∫
e−kudV + 1

V

∫
u
ωn

n! − kn

ak
Jω(u)

which is R-invariant (and hence descends to a functional on space of all
Kähler metrics in [ω]). We let ak(X) be the supremum over all ak such
that the functional above is bounded from above. By Theorem 1.1 (and the
discussion in the beginning of Section 6) ak(X) ⩾ 1/A or more precisely
lim infk ak(X) ⩾ 1.

In this section we will be concerned with the question of existence of max-
imizers for Gak

and solutions to the corresponding Euler–Lagrange equation

0 = (dGak
)|u = − e−kudV∫

e−kudV
+ 1
V

ωn

n! + kn

ak

(
ωu
n! − ωn

n!

)
(7.1)

Breaking the R-invariance (i.e. the invariance under u 7→ u + c) by the
introducing the normalization

∫
X
e−kudV = V , the previous equation can

hence be written as the following PDE:
ωnu
n! = ak

V kn
e−kudV +

(
1 − ak

V kn

) ωn
n! (7.2)

for u ∈ H(X,ω).

Theorem 7.1. — Assume that ak < ak(X) and ak < V kn (for example,
this is the case if ak < max{A−1, V kn}, where A is the constant appearing
in Theorem 1.1). Then there is a solution to (7.2) in H(X,ω). Moreover,
the solution can be taken to maximize the functional Gak

. In particular, if
ak < 1 then there is such a solution for all k sufficiently large.
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Given the Moser–Trudinger inequalities in Theorem 1.1 the proof of the
previous theorem follows from the variational approach to complex Monge–
Ampère equation introduced in [11]. We outline the argument and refer
to [11] for further details.

Existence of a maximizer u∗ in E1(X,ω)

We proceed in two steps. The first step amounts to the following coercivity
estimate: there exists δ, C > 0 such that

Gak
⩽ δEω + C (7.3)

on the space E1
0 (X,ω) := E1(X,ω) ∩ {supX = 0} (which we equip with the

L1-topology). This follows directly from the assumption that ak < ak(X)
and the inequality (6.4). The second step is to establish the following semi-
continuity property: for any constant C the functional Gak

is upper semi-
continuous (usc) on {−Eω ⩽ C} in E1

0 (X,ω) (wrt the L1-topology). To this
end first recall that Eω is usc on PSH(X,ω) (in particular it follows from
weak compactness that {−Eω ⩽ C} is compact) [11, 21]. All that remains is
then to prove that u 7→

∫
e−kudV is usc on {−Eω ⩽ C}. To this end it is

enough to establish a uniform bound∫
e−(k+δ)u ⩽ Cδ (7.4)

for some δ > 0 (compare the proof of Lemma 6.4 in [11] or Lemma 3.6
in [8]). But since we have assumed that −Eω(u) ⩽ C} this is an immediate
consequence of the Moser–Trudinger inequality in Theorem 1.1 (which shows
that any δ > 0 will do). The existence of a maximizer u∗ is now rather
immediate: take uj in E1

0 (X,ω) such that
Gak

(uj) → sup
E1(X,ω)

Gak
,

(note that, by the scale invariance of Gak
we may indeed assume that

supX uj = 0). By the coercivity estimate the sup is finite and moreover
(uj) ⊂ {−Eω ⩽ C} for some C > 0. But then it follows from the upper semi-
continuity that the sup is attained on any accumulation point u∗ of (uj)
(which exists by compactness). This concludes the proof of the existence of
a maximizer.

The maximizer u∗ is a weak solution of equation (7.2)

We will use the projection argument in [11] to see that u∗ is a weak so-
lution in E1

0 (X,ω) to the variational equation (7.1), in the sense of pluripo-
tential theory [11, 21] (shifting u∗ by a constant hence gives a solution to
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the equation (7.2)). To this end we first decompose

Gak
(u) = kn

ak
Eω + Iak

, Iak
(u) = 1

k
log
∫
e−kudV +

(
1 − kn

V ak

)∫
uωn/n!

Fixing v ∈ C∞(X) let f(t) := knEω(Pω(u∗ + tv)) + Iak
(u∗ + tv), where

Pω(u)(x) := sup{v(x) : v ⩽ u, v ∈ PSH(X,ω)}∗ ∈ PSH(X,ω)
where the star denotes the upper semi-continuous regularization. By the
assumption ak ⩽ knV the functional Iak

(u) is decreasing in u and hence the
sup of f(t) on R is attained for t = 0 :

sup
t∈R

f(t) = f(0) (7.5)

Indeed, for any u ∈ E1(X,ω) + C∞(X)
knEω(Pω(u)) + Iak

(u) ⩽ knEω(Pω(u)) + Iak
(Pω(u)),

using that Pωu ⩽ u a.e. dV and that I is decreasing. Since Pωu is in E1(X,ω)
the right hand side above is bounded from above by the sup of Gak

(u) i.e.
by f(0), which proves (7.5). Next we recall that the functional Eω ◦ Pω is
Gateaux differentiable with differential MA(Pωu) at u [11]. Hence, the con-
dition df/dt = 0 for t = 0 gives that the variational equation (7.1) holds
when integrated against any v ∈ C∞(X).

Regularity

Now, by the previous estimate (7.4), ωnu∗
has a density in Lp for some

p > 1 (or even all p > 1) and hence it follows from Kolodziejs L∞-estimate [49]
that u∗ is in L∞(X) (and is even continuous). Finally the higher order regu-
larity u ∈ C∞(X) then follows from [57], using that the rhs in equation (7.2)
is of the form F (u) for F (t) smooth and strictly positive (using the assump-
tion ak < knV ).

7.2. Remarks on the Fano setting

Let now X be Fano with [ω] = c1(−KX). In the case when k = 1 and
ak := V the functional Gak

above becomes

Gak
:= GV (u) := log

∫
e−udV + 1

V
Eω(u)

with Euler–Lagrange equation
ωnu/n! = V e−udV

– 636 –



Moser–Trudinger type inequalities

In particular, if dV is taken as e−hωωn/n! where hω is the Ricci potential of ω
then the previous equation may be written as the Kähler–Einstein equation

(ddcϕ)n/n! = V e−ϕdz ∧ dz

for the local weight ϕ of the metric ω, saying that Ricω = ω. In this setting it
is well-known that the corresponding coercivity estimate (7.3) is equivalent
to the existence of a Kähler–Einstein metric, which in turn is equivalent
to X being “analytically K-stable” in the sense of Tian (which means that
Mabuchi’s K-energy functional is proper); see [60, Thm. 7.13] and [54].

Now, the coercivity estimate holds for GV precisely when a Moser–
Trudinger inequality holds for some ak := a (i.e. Ga ⩽ C) satisfying

V < a (7.6)

In other words, if a could be chosen uniformly over all Fano manifolds X of
dimension n then the previous inequality would give an existence criterion
for Kähler–Einstein metrics on a Fano manifold X, in terms of the volume
of X. This follows for example from the variational approach above, but a
proof using the continuity method already appears in Aubin’s paper [3] (see
also [36] where the functional GV seems to first have appeared explicitly).
As explained in Section 6 Aubin also proposed an explicit value for a, which
however cannot be correct.

Unfortunately, it can be shown that the uniform constant provided by
Theorem 1.2 (at least in its present form) is not useful for this kind of appli-
cation. On the other hand the existence of Moser–Trudinger type inequalities
established in Theorems 1.1 and 1.2 are very useful in other regards, for ex-
ample for establishing semi-continuity properties and uniform estimates as
in the proof of Theorem 7.1. In particular, it plays an important role in [12]
in the construction of Kähler–Einstein metrics on “analytically K-stable”
log-Fano varieties.

7.2.1. Relations to the α-invariant

Before turning to the setting of domains in Cn we briefly recall Tian’s [58]
existence criterion for Kähler–Einstein metrics which has proved to be very
useful:

α(X) > n/(n+ 1), (7.7)
where

α(X) := sup
{
t : ∃ Ct :

∫
X

e−t(u−supX )dV ⩽ Ct, ∀ u ∈ PSH(X,ω)
}
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As is well-known it is enough to consider u with analytic singularities in
the sup above (and hence α(X) coincides with the algebraically defined log
canonical threshold lc(X)). Now, if it would be enough to take the sup
above over all u with isolated singularities, then it would follow from the
inequality (1.14) (see also below) that

α(X) > n/(n!V )1/n

and hence Tian’s criterion (7.7) would be satisfied if n!V < (n+1)n. However,
this latter condition is satisfied for any Fano manifold when n = 2 (i.e. Del
Pezzo surfaces) and in particular for those which do not admit a Kähler–
Einstein metric (like P2 blown-up in one point). Still, as we will see next
a similar approach turns out to be very fruitful in the setting of domains.
At least on a heuristic level this could perhaps be expected as all analytic
singularities are indeed isolated in this setting.

7.3. The setting of domains in Cn and Mean Field Equations

Let now Ω be a hyperconvex domain in Cn with dV the Euclidean volume
form and recall (see Section 4.2) that

Gγ(u) := 1
γ

log
∫

Ω
e−γudV + 1

n+ 1

∫
(−u)(ddcu)n

so that the corresponding Euler–Lagrange equation reads

(ddcu)n = e−γudV∫
Ω e

−γudV
(7.8)

with the boundary condition u = 0. Equivalently setting v = γu gives the
Euler–Lagrange equation corresponding to the non-scaled Moser–Trudinger
inequality (M − T ) in the beginning of Section 4 (it is obtained by setting
γ = 1 and inserting a multiplicative constant a = γn in the rhs). Ideally, we
would like to look for smooth solutions (in H0(Ω)) to the previous equation,
but as the corresponding higher order regularity theory does not seem to be
sufficiently developed we will merely be able to produce continuous solutions
(vanishing on the boundary). Note that in this setting there is no invariance
under additive scalings of u (due to the boundary conditions u = 0).

In the case when n = 1 the previous equation is often referred to as the
mean field equation as it appears in a statistical model of mean field type,
with γ playing the role of (minus) the temperature [23, 47]. In the one-
dimensional case it is well-known [23, 47] that γ = 2 appears as a critical
value (the value is 8π when ddc is replaced by the usual non-normalized
Laplacian in the plane). It should be emphasized that from the statistical
mechanical point of view only the solutions u such that (ddcu)n maximizes
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the corresponding free energy functional Fγ are relevant (which is equivalent
to u maximizing Gγ ; see Remark 4.3).

Theorem 7.2. — Let Ω be a hyperconvex domain and assume that γ <
n+ 1. Then there exists uγ ∈ C0(Ω) solving equation (7.8) in Ω with uγ = 0
on ∂Ω and which maximizes the corresponding functional Gγ .

Proof. — Assume that γ < n+1. By Theorem 1.5 the coercivity estimate
corresponding to (7.3) still holds for Gγ and it is well-known that E is usc
and its sub-level sets {E ⩾−C} are compact (wrt the L1

loc-topology); see [1]
and references therein. Hence, all the previous arguments still apply in the
present setting of domains to give the existence of a maximizer uγ for Gγ
on the space E1(Ω). To see that uγ satisfies the equation (7.8) one applies
a projection argument as in the Kähler setting above (see [1] where the
projection argument from [11] was adapted to the setting of hyperconvex
domains). Finally, by the M-T inequality MA(u) has an Lp-density for p > 1
and hence when Ω is strictly pseudoconvex the continuity statement follows
from [49]. As for the general hyperconvex case it follows from [20]. □

Remark 7.3. — After the first preprint version of the present paper had
appeared it was shown in [42] that uγ above can be taken to be smooth in
the case when Ω has a smooth and strictly pseudoconvex boundary.

Next we will establish a “concentration/compactness principle” for the
behavior of the solutions above when γ approaches the critical value n+ 1.
We firs recall, following standard terminilogy in the PDE-litterature [22],
that a point z0 ∈ Ω is said to be a blow up-point for a sequence uj of non-
negative functions in Ω if there exists a sequence of points zj ∈ Ω converging
to z0 such that

lim
j→∞

u(zj) = −∞

Theorem 7.4. — Let γj be a sequence increasing to n+1 and uj := uγj

a sequence of solutions of equation (7.8) as in the previous theorem such that
uj has no blow-up point at the boundary and uj converges to u ∈ F(Ω)) in
the L1

loc-topology. Then, precisely one of the following two alternatives holds:

(1) The limit u is a solution of equation (7.8) for γ = n+1, maximizing
the functional Gn+1 (and uj converges uniformly to u).

(2) The limit u is the pluricomplex Green function with a logarithmic
pole at some point z0 ∈ Ω, i.e.

(ddcu)n = δz0 , u(z) = log |z − z0|2 +O(1)

Proof. — Let us first show that if there exists δ > 0 such that∫
Ω
e−(n+δ)uj dV ⩽ Cδ, (7.9)
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then alternative 1 in the theorem holds. We will use the notation from Sec-
tion 4.2. First note that since γ 7→ Lγ is decreasing we have that Gγ ⩽ Gγ∗ if
γ < γ∗ and in particular sup Gγ ⩽ sup Gγ∗ . Hence, for γ1 < γi < n+1 we get

−C := Gγ1(u1) ⩽ Gγ
i
(ui) ⩽ Gn+1(ui) (7.10)

Now if the bound (7.9) holds then Lemma 4.4 shows that there exists δ such
that the free energy functional Fn+1+δ is uniformly bounded from above
along (uj) and hence so are the functionals Gn+1+δ (as explained in con-
nection to Lemma 4.4). Combined with the lower bound (7.10) this means
that

E(uj) ⩾ −C.

Hence, the Moser–Trudinger inequality applied to a fixed γ1 < n+1 (i.e. the
bound Gγ1 ⩽ C) shows that

∫
e−puj ⩽ Cp for any p > 0. But then it follows

from general principles (for the same reasons as in the Kähler case) that∫
e−puj →

∫
e−pu, i.e. ∥e−uj ∥Lp(Ω) → ∥e−u∥Lp(Ω) and even more precisely

that
e−uj → e−u, in Lp(Ω). (7.11)

In particular Ln+1(uj) → Ln+1(u), as j → ∞. Moreover, a similar argument
shows that u is a maximizer of Gn+1 and hence the projection argument gives,
as above, that u solves the equation (7.8). Moreover, the convergence (7.11)
for p = 2 gives that the L2(Ω)-norm of MA(uj)/dV − MA(u)/dV tends to
zero and hence the stability result in [27] shows that uj → u in L∞(Ω).

We next consider the case when the bound (7.9) does not hold, i.e. for any
δ > 0 the sequence

∫
Ω e

−(n+δ)uj dV is unbounded. Since we have assumed
that there is no blow-up point in ∂Ω, there is a constant M and a compact
subset K of Ω such that u ⩾ −M on Ω−K and hence

∫
K
e−(n+δ)uγ dV is also

unbounded. By the semi-continuity of complex singularity exponents [33] it
follows that there is a neighborhood U of K (compactly contained in Ω) such
that ∫

U

e−(n+δ)u = ∞ (7.12)

for any δ > 0. Since, by assumption, uj → u in L1
loc, where

∫
Ω(ddcuj)n = 1

it also follows that ∫
Ω

(ddcu)n ⩽ 1 (7.13)

(see for example the appendix in [32]). We claim that (7.12) implies that
there exists a point z0 ∈ U such that∫

{z0}
(ddcu) ⩾ 1. (7.14)
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To see this first recall that if u is psh in a neighborhood of a point z0 then
its complex singularity exponent cz0(u) at z0 is defined as

cz0(u) := sup
{
t :
∫
U0

e−tudV < ∞
}
,

for U0 some neighborhood of z0. As shown in [2] (Thm 5.5) the Brezis–
Merle–Demailly type inequality proved there may be localized to give that

cz0(u) ⩾ n/

(∫
{z0}

(ddcu)n
)1/n

for any point z0 ∈ Ω and function u ∈ F(Ω) (more generally the bound-
ary conditions on u are not needed). Now, assume to get a contradiction
that (7.14) does not hold. Then it follows from the previous inequality and
the compactness of U that

∫
U
e−(n+δ)u < ∞, which contradicts (7.12). Now

combining the lower bound (7.14) with the upper bound (7.13) we deduce
that (ddcu)n = δz0 . Moreover, since

∫
Ω(ddcu)n ⩽ 1 we already know, by the

quasi-sharp B-M-D inequality that, for any δ > 0 e−(n−δ)ϕ is in L1(Ω) and
hence cz0(u) ⩾ n. All in all this means that u ∈ F(Ω) satisfies

(ddcu)n = δz0 , cz0(u) = n (7.15)
But, according to the results in [55], this can only happen if u is the pluri-
complex Green function with a logarithmic pole in z0. Indeed, according
to [55, Cor. 1.3], if u ∈ F(Ω) satisfies∫

Ω
(ddcu)n =

(
n

cz0(u)

)n
,

then u(z) = a log |z − z0|2 + O(1) as z → z0 for some positive number a.
In the present setting n/cz0(u) = 1 and hence it follows that a = 1, which
concludes the proof. □

Remark 7.5. — In the first preprint version of the present paper on ArXiv
a weaker form of the previous theorem appeared saying that, in the second
alternative, u satisfies the equations (7.15) and it was conjectured that this
implies that u is the pluricomplex Green function. We are grateful to Alexan-
der Rashkovskii for pointing out to us that the validity of this conjecture
follows from his recent results [55] (which use the results in [34]).

In the case when n = 1 it is well-known that there cannot be any blow-
points on ∂Ω (see [52, Prop. 4]) and we expect this to be true in general.
When n = 1 it is well-known that the question which of the two alterna-
tives in the previous theorem holds depends on the nature of the domain
Ω (see [23]). For example, for the disc the second alternative holds (with
z0 = 0), while the first alternative holds for an annulus (remarkably, there
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are convex domains for which the first alternative holds, for example any
sufficently “thin” rectangle).

In the case of a general dimension n the sharpness part of Theorem 1.5
gives that, in the super critical case γ > n + 1, the functional Ga is not
bounded from above and in particular it has no maximizers (i.e. the last part
of Theorem 7.2 cannot hold in this range). As for the critical case γ = n+ 1
one would expect that there is no solution of the equation (7.8) when Ω is
the ball. (3) For radial solutions this is straight-forward to check. Indeed, an
explicit calculation then reveals that, for any γ < n+ 1, a radial solution uγ
is uniquely determined and hence given by uγ = ϕϵ0 (formula (3.3)) for some
ϵ, where γ → n+ 1 corresponds to ϵ → 0. Moreover, when γ = n+ 1 there is
no radial solution and uγ → (n+1) log |z|2 as γ → n+1 where u has infinite
energy, i.e. it is not an element in E1(Ω). In fact, in the case n = 1 any
solution is radial, as follows from the method of moving planes [41] (which
also applies to the corresponding equation associated to the real Monge–
Ampère operator [31]). Accordingly, it seems natural to make the following

Conjecture 7.6. — In the case of the ball in Cn any solution to equa-
tion (7.8) is radial and hence given by uγ above.

If true the previous conjecture implies the validity of the sharp Moser–
Trudinger inequality (without assuming S1-invariance), i.e. that Gγ is
bounded in the critical case γ = n+ 1. Indeed, given u ∈ H0(B) we have

Gγ(u) = lim
ϵ→0

Gγ(ϵ)(u) ⩽ lim
ϵ→0

sup Gγ(ϵ)

But by the previous theorem the sup of Gγ(ϵ) is attained for some function
uγ(ϵ) satisfying the equation (7.8), which if the conjecture above is correct
has to be radial and thus coincides with ϕϵ0 above. Finally, as shown towards
the end in Section 3 Ga(ϕϵ0) → Cn and hence Ga(u) ⩽ Cn. Note also that by
Theorem 1.4 it would be enough to know that any solution is S1-invariant
in order to deduce the sharp Moser-inequality using the previous argument.
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