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Open problems on structure
of positively curved projective varieties

Shin-ichi Matsumura (1)

Dedicated to Professor Ahmed Zeriahi on the occasion of his retirement

ABSTRACT. — We provide supplements and open problems related to structure
theorems for maximal rationally connected fibrations of certain positively curved
projective varieties, including smooth projective varieties with semi-positive holo-
morphic sectional curvature, pseudo-effective tangent bundle, and nef anti-canonical
divisor.

RÉSUMÉ. — Nous fournissons des suppléments et des problèmes ouverts liés aux
théorèmes de structure pour les fibrations maximales rationnellement connectées de
certaines variétés projectives à courbure positive, y compris les variétés projectives
lisses avec une courbure de section holomorphe semi-positive, un faisceau tangent
pseudo-efficace et un diviseur anticanonique nef.

1. Introduction

Certain “positively curved” varieties, which are often formulated to have
positive holomorphic bisectional curvatures, tangent bundles, or anti-
canonical divisors, have occupied an important place in the classification
theory of projective varieties. The Frankel conjecture in differential geome-
try and the Hartshorne conjecture in algebraic geometry, proved by Siu-Yau
in [47] and Mori in [42], have given a beautiful characterization of projective
spaces, respectively, in terms of positive holomorphic bisectional curvatures
and ample tangent bundles. Since that time, it has become clear that struc-
tures of positively curved varieties are closely related to the geometry of
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rational curves and more restricted than those of negatively curved varieties
(i.e., they have a certain rigidity); for example, Fano manifolds are always
rationally connected (i.e., any two points can be connected by a rational
curve), and also the Albanese map of compact Kähler manifolds with semi-
positive holomorphic bisectional curvature is locally trivial (i.e., all the fibers
are isomorphic each other). One of the central problems in this field is to
understand structures reflecting rational curves and rigidities, by using nat-
urally associated fibrations, such as Albanese maps, Iitaka fibrations, and
maximal rationally connected fibrations.

In this paper, we mainly study maximal rationally connected fibrations
(MRC fibrations for short) of projective varieties. An MRC fibration ϕ :
X 99K Y of a projective variety X, introduced in [7, 37], is a rational map to
a certain negatively curved variety Y whose general fiber F is compact and
rationally connected (see Section 2 for the precise definition and properties).
The crucial structure theorems have been established for MRC fibrations of
a smooth projective variety X with semi-positive holomorphic bisectional
curvature (resp. nef tangent bundle, nef anti-canonical divisor) in [36, 41]
(resp. [16], [12, 14]); for example, under the above positivity assumption,
the variety X admits a holomorphic and locally trivial MRC fibration ϕ :
X → Y onto a certain flat manifold Y , from which X can be decomposed
into the rationally connected fiber F and the certain flat base Y . In this
paper, we give supplements and open problems related to structure theorems
for MRC fibrations, reviewing recent generalizations of the results in [36,
41] (resp. [16], [12, 14]) to holomorphic sectional curvatures (resp. pseudo-
effective tangent bundles, nef anti-log canonical divisors of klt pairs).

The remainder of this paper is organized as follows: In Section 2, we
recall the notions and properties of rationally connected varieties and MRC
fibrations. Moreover, we explain a technique in the theory of (holomorphic)
foliations to take a holomorphic MRC fibration, which is one of the key
points in establishing structure theorems for MRC fibrations. In Section 3,
we consider results for holomorphic sectional curvatures in [39, 40], which
generalize the results of [36, 41] and Yau’s conjecture on positive holomorphic
sectional curvature. In Section 4, we focus on studies of pseudo-effective
tangent bundles initiated in [35], explaining differences from the structure
theorem for nef tangent bundles in [16]. In Section 5, we introduce results
for projective klt pairs with nef anti-log canonical divisor in [10], with the
goal of generalizing the results in [12, 14] to log pairs.
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2. Maximal Rationally Connected Fibrations

In this section, we review the basic notions and their properties related
to the geometry of rational curves, including uniruled varieties, rationally
connected varieties, and MRC fibrations.

A curve is called a rational curve if its normalization is the one-dimens-
ional projective space P1. A projective variety X is said to be uniruled if
X is covered by rationals curves. In the case of X being smooth, it follows
from [6] that X is uniruled if and only if the canonical divisor KX is not
pseudo-effective. A projective variety X is said to be rationally connected
(resp. rationally chain connected) if any two points can be connected by one
rational curve (resp. a chain of rational curves). In the case of X having at
worst dlt singularities, it follows from [27, Corollary 1.5] that the rational
connectedness is equivalent to the rational chain connectedness.

MRC fibrations of projective varieties, introduced in [7, 37], interpolate
the rational connectedness and uniruledness. We recall that the definition of
MRC fibrations of a projective variety X with mild singularities (e.g., with
klt singularities). A rational map ϕ : X 99K Y is called an RC fibration (resp.
MRC fibration) if it satisfies the first two conditions (resp. all the conditions)
below:

• ϕ : X 99K Y is an almost holomorphic map to a projective variety
Y (i.e., a rational map whose general fibers are compact).

• General fibers of ϕ : X 99K Y are rationally connected.
• There is no horizontal rational curve (i.e., no rational curve whose

image under ϕ is not one point) passing through a very general point
in X.

MRC fibrations are trivial in extreme cases; the identity map idX : X → X
of X is an MRC fibration if and only if X is not uniruled, and also the
constant map X → {1pt} is an MRC fibration if and only if X is rationally
connected. MRC fibrations are not uniquely determined by a given projective
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variety X; there is an ambiguity in the choices of the birational models of
its image Y . Thanks to this ambiguity, we may assume that the base Y is
smooth by taking a resolution of the singularities of Y .

A typical example of RC fibrations is the projective space bundle P(E) →
Y associated with a (holomorphic) vector bundle E on a smooth projective
variety Y . For example, when Y is an abelian variety, the total space P(E)
has no horizontal rational curve, and thus P(E) → Y is an MRC fibration.
However, when Y is the projective space Pk, the morphism P(E) → Y is not
an MRC fibration. In general, for an RC fibration ϕ : X 99K Y , any rational
curves in Y can be lifted into X by [24], and hence the third condition in the
above definition can be rephrased as follows: the image Y is not uniruled;
equivalently, the canonical divisor KY of Y is pseudo-effective by [6] when
Y is smooth.

MRC fibrations are almost holomorphic by definition, but they are not
necessarily represented by holomorphic maps. In fact, there is a projective
variety Z with Picard number one, such that Z is uniruled but not ratio-
nally connected, which was constructed by Fujita (see [22, Example 6.5] for
details). The variety Z admits no non-trivial fibrations (in particular, no
holomorphic MRC fibrations) since the Picard number of Z is one. Note
that Z has bad singularities: Z is neither log canonical nor Q-factorial. The
author does not know an example of smooth projective varieties (or varieties
with mild singularities) admitting no holomorphic MRC fibration. Now we
suggest the following problem:

Problem 2.1. — When do we choose an MRC fibration to be holomor-
phic from the ambiguities in the choices of Y ?

This fundamental problem plays a crucial role when we study structure
theorems for MRC fibrations. The following lemma, based on the Reeb sta-
bility, gives a useful sufficient condition to represent MRC fibrations by a
holomorphic and smooth morphism.

Lemma 2.2 ([32, Corollary 2.11]). — Let X be a compact Kähler mani-
fold and W ⊂ TX be an integrable subbundle of X. If the foliation W has at
least one compact and rationally connected leaf, then there exists a smooth
morphism X → Z such that W coincides with the relative tangent bundle
TX/Z .

When X is a smooth projective variety, we can take a non-empty Zariski
open set Y0 ⊂ Y , so that an MRC fibration ϕ : X 99K Y is a smooth
morphism over Y0 since ϕ : X 99K Y is almost holomorphic. Then, the
relative tangent bundle TX/Y can be defined as a subbundle of TX on the
inverse image X0 := ϕ−1(Y0). A general leaf of TX/Y (defined only on X0) is
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compact and rationally connected by definition. Therefore, if this subbundle
on X0 can be extended to a subbundle W ⊂ TX on X, then the smooth
morphism X → Z obtained from the lemma gives a holomorphic MRC
fibration of X. This strategy actually works in the proof of the structure
theorems introduced in Section 3, 4, and 5, interestingly enough for different
reasons.

3. Semi-Positive Holomorphic Sectional Curvature

The Frankel conjecture proved by Siu-Yau in [47] says that any smooth
projective varieties admitting a Kähler metric with positive holomorphic bi-
sectional curvature are isomorphic to the projective space. As one of the ex-
tensions of the Frankel conjecture, Howard–Smyth–Wu and Mok established
the structure theorem for compact Kähler manifolds M with semi-positive
holomorphic bisectional curvature; Howard–Smyth–Wu in [36] proved that
M admits a locally trivial morphism f : M → B, so that the image B has
the flat tangent bundle and that the fiber F admits a Kähler metric whose
holomorphic bisectional curvature is semi-positive and whose Ricci curva-
ture is quasi-positive. This implies that the fiber F is a Fano manifold (in
particular, rationally connected), and thus f : M → B is automatically an
MRC fibration of M . Moreover, Mok in [41] proved that F satisfying the
above conditions is a Hermitian symmetric manifold.

This subsection is devoted to explaining some recent progresses of semi-
positive holomorphic sectional curvature. The holomorphic bisectional cur-
vature BSCg and sectional curvature HSCg of a Kähler metric g are defined
to be

BSCg(v, w) := Rg(v, v̄, w, w̄)
|v|2g|w|2g

and HSCg(v) := Rg(v, v̄, v, v̄)
|v|4g

for (non-zero) tangent vectors v, w ∈ TX , where Rg is the curvature tensor
associated with g. The holomorphic sectional curvature HSCg determines the
curvature tensor Rg (which means that, if HSCg = HSCh for Kähler metrics
g and h, then we have Rg = Rh), but there is no explicit relation between
HSCg and BSCg. Hence it is interesting to pursue an analogy or a difference
between holomorphic sectional curvature and bisectional curvature.

The positivity of holomorphic sectional curvatures is much weaker than
that of holomorphic bisectional curvature. In fact, it follows from Hitchin’s
result in [31] that the Hirzebruch surfaces have positive holomorphic sec-
tional curvature (see [1] for a generalization of Hitchin’s result). This tells us
that smooth projective varieties with positive holomorphic sectional curva-
ture is not necessarily Hermitian symmetric and not even Fano. This example
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is in contrast to the case of semi-positive bisectional curvature or negative
holomorphic sectional curvature. In fact, if a compact Kähler manifold X
has semi-positive bisectional curvature (more generally, the nef tangent bun-
dle), then X contains no submanifold Z with negative normal bundle, which
easily follows from the standard exact sequence:

0 → TZ → TX |Z → NX/Z → 0.

In particular, when dim X = 2, the surface X has no negative curves.
Yau’s conjecture on negative holomorphic sectional curvature and its so-
lution in [17, 48, 50] asserts that smooth projective varieties with negative
holomorphic sectional curvature have the ample canonical divisor. Neverthe-
less, the Hirzebruch surfaces except for P1 × P1 have a negative curve and
are not Fano.

The following conjecture posed by Yau can be regarded as an analogy of
Mok’s result for holomorphic sectional curvature.

Conjecture 3.1 (Yau’s conjecture, [54, Problem 47]). — If a compact
Kähler manifold X has positive holomorphic sectional curvature, then X is
projective and rationally connected.

Yang in [51] solved Yau’s conjecture by introducing the notion of the RC
positivity (see also [38, 52, 53] and references therein for the RC positiv-
ity). In the additional assumption of X being projective, Heier–Wong in [30]
generalized Yau’s conjecture to quasi-positive holomorphic sectional curva-
tures. Yau’s conjecture was further generalized in [39], by using the invariant
ntf(X, g) defined by

ntf(X, g) := dim X − inf
p∈X

dim Vflat,p,

where Vflat,p is the subspace of the tangent space TX,p at p consisting of all
the truly flat tangent vectors v introduced in [29]. Here a tangent vector
v ∈ TX,p at a point p ∈ X is said to be truly flat if it satisfies that

Rg(v, x̄, y, z̄) = 0

for any x, y, z ∈ TX,p. The invariant ntf(X, g) can be seen as an analog of
the numerical Kodaira dimension (see [43] for the definition) and measures
the positivity of holomorphic sectional curvatures.

Theorem 3.2 ([39, Theorem 1.2]). — Let X be a smooth projective va-
riety and g be a Kähler metric with semi-positive holomorphic sectional cur-
vature. Let ϕ : X 99K Y be an MRC fibration of X. Then we obtain

dim X − dim Y ⩾ ntf(X, g).
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If the holomorphic sectional curvature is quasi-positive, it can be seen
that ntf(X, g) = dim X, and thus dim Y = 0 by the above theorem, which
means that X is rationally connected. This theorem is expected to still hold
in the case where X is a compact Kähler manifold. In fact, when a com-
pact Kähler manifold X has positive holomorphic sectional curvature, Yang
proved that h0(X, Ωq

X) = 0 for any q > 0, and thus X is automatically pro-
jective (see [51, Theorem 1.7]). Then, the following problem naturally arises
as a generalization of Yang’s criteria for projectivity.

Problem 3.3 ([39, Problem 5.1]). — Let (X, g) be a compact Kähler
manifold with semi-positive holomorphic sectional curvature. Assume that
ntf(X, g) = dim X.

• Does it hold that h0(X, Ωq
X) = 0 for any q > 0?

• Is X automatically projective?

By combining a technique in the proof of Theorem 3.2 with the theory
of foliations, we can obtain the following structure theorem for semi-positive
holomorphic sectional curvatures.

Theorem 3.4 ([39, Theorem 1.3]). — Let X be a smooth projective va-
riety and g be a Kähler metric with semi-positive holomorphic sectional cur-
vature. Then we obtain:

• There exists a surjective morphism ϕ : X → Y to a smooth projec-
tive variety Y with the following properties:

– The morphism ϕ : X → Y is a locally trivial morphism.
– The image Y is a smooth projective variety with a flat metric.

In particular, there exists a finite étale cover A → Y by an
abelian variety A.

– The fiber F is a rationally connected manifold. In particular,
the morphism ϕ : X → Y is an MRC fibration of X.

In particular, the fiber product X∗ := A ×Y X admits the locally
trivial Albanese map X∗ → A to the abelian variety A with the
rationally connected fiber F .

• We obtain an isomorphism
Xuniv ∼= Cm × F,

where Xuniv is the universal cover of X, and F is the rationally con-
nected fiber of ϕ. Moreover, there exists a representation ρ : π1(Y ) →
Aut(F ) such that X is isomorphic to Cm × F/π1(Y ).

• In particular, the fundamental group of X is an extension of a finite
group by Z⊕2m.

• There exist a Kähler metric gF on the fiber F and a Kähler metric
gY on Y with the following properties:
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– The holomorphic sectional curvature of gF is semi-positive.
– The Kähler metric gY is flat.
– The above isomorphism Xuniv ∼= Cm ×F is not only biholomor-

phic but also isometric with respect to the Kähler metrics µ∗g,
π∗gY , and gF .

Here π and µ respectively denote the universal cover π : Cm → Y
of Y and the universal cover µ : Xuniv → X of X.

We have the following commutative diagram:

Xuniv ∼= Cm × F //

��

X∗ := A ×Y X

��

// X

ϕ

��
Cm // A // Y.

The morphism ϕ : X → Y in the theorem can be obtained from the
isomorphism Xuniv ∼= Cm × F and the representation ρ : π1(Y ) → Aut(F )
as mentioned above, which is a stronger property than the local triviality
of ϕ. This implies that the projective space bundle over an elliptic curve
does not necessarily admit semi-positive holomorphic sectional curvature,
whereas, if a smooth projective variety Y has positive holomorphic sectional
curvature, then any projective space bundles over Y does so by [1]. Indeed,
the projective space bundle associated with the vector bundle OY ⊕ OY (np)
is not constructed by the representation of the fundamental group π1(Y ) ∼=
Z⊕2, where Y is an elliptic curve, p ∈ Y , and n ∈ Z. This negatively answers
a question posed in [1].

It is an attractive problem to generalize the above structure theorem to
compact Kähler manifolds.

Problem 3.5. — Can we generalize Theorem 3.4 to compact Kähler
manifolds?

The fundamental group plays an important role when we consider such a
structure theorem. For a smooth projective variety X with semi-positive
holomorphic sectional curvature, we can conclude that the fundamental
group of X is an extension of a finite group by a free abelian group by
the structure theorem. The same conclusion can be expected even when X
is a compact Kähler manifold, but it is still an open problem.

We now suggest a strategy to solve Problem 3.5. Let us consider the
Albanese map of X (or an étale covering space of X) instead of MRC fibra-
tions. It is not so difficult to check the same conclusion as in Theorem 3.4
for the Albanese map except for the rational connectedness of fibers. Then,
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the fiber (F, gF ) can be expected to satisfy a certain quasi-positivity (e.g.,
ntf(F, gF ) = dim F ), compared to the structure theorem of Howard–Smyth–
Wu and Mok. Together with Problem 3.3, we can expect that the fiber F is
projective and rationally connected. We summarize the above problems in
the following form:

Problem 3.6 (cf. [39, Problem 5.2]). — Let (X, g) be a compact Kähler
manifold with semi-positive holomorphic sectional curvature.

• Is the fundamental group of X is an extension of a finite group by
Z⊕2m?

For an appropriate finite étale cover X∗ → X, we consider its Albanese map
α : X∗ → Alb(X∗).

• Does the fiber F admit a Kähler metric gF such that ntf(F, gF ) =
dim F?

• Is the fiber F projective and rationally connected?

Let us observe the proof of Theorem 3.4 in detail. It is shown in the proof
that the tangent bundle TX splits into the direct sum:

TX
∼= TX/Y ⊕ ϕ∗TY .

Moreover, it is also shown that the subbundle ϕ∗TY ⊂ TX is integrable and
all the tangent vectors in ϕ∗TY ⊂ TX are truly flat. For compact Kähler man-
ifolds with semi-positive holomorphic sectional curvature, it is quite interest-
ing to ask whether the converse implication holds, more specifically, whether
truly flat tangent vectors determine a foliation and its foliation induces an
MRC fibration. Such a question is also interesting when we consider semi-
negative holomorphic sectional curvatures. Indeed, Heier–Lu–Wong–Zheng
in [29] proved that the abundance conjecture leads to the structure theorem
for the Iitaka fibration of smooth projective varieties with semi-negative
holomorphic sectional curvature. Further, in their proof, a similar splitting
theorem of the tangent bundle was obtained. Hence, if the same strategy
works (i.e., truly flat tangent vectors determine a foliation), then its foli-
ation may directly construct the Iitaka fibration and solve the abundance
conjecture in the case of semi-negative holomorphic sectional curvatures.

Problem 3.7. — Let (X, g) be a compact Kähler manifold with semi-
positive (or semi-negative) holomorphic sectional curvature. Let V ⊂ TX be
the set of “appropriate” truly flat tangent vectors.

• Does V determine an integrable subbundle of TX?
• Can we find a subbundle W ⊂ TX such that TX

∼= W ⊕ V ?
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• In the case of semi-positive holomorphic sectional curvatures, can
we construct an MRC fibration f : X → Y such that W = TX/Y ?

• In the case of semi-negative holomorphic sectional curvatures, can
we construct the Iitaka fibration f : X → Z associated with the
canonical bundle KX such that V = TX/Z?

The notion of nef tangent bundles is an analog in algebraic geometry of
semi-positive holomorphic bisectional curvatures (see [16] and Section 4 for
nef tangent bundles). Hence, it is of interest to ask what an analog of semi-
positive holomorphic sectional curvature is. It is also a fundamental prob-
lem to classify all the varieties of fixed dimension admitting (semi-)positive
holomorphic sectional curvature, by applying Theorem 3.4. The complete
classification is not known even in the case of surfaces. One of the difficulties
is the existence of negative curves. When the tangent bundle TX of X is
nef, there is no negative curve in X, and hence the blow-ups of varieties can
be excluded. When we consider the positive holomorphic sectional curva-
ture, we can not exclude the case of X having a negative curve; indeed, the
Hirzebruch surfaces have positive sectional curvature. It is not even obvi-
ous whether the blow-up of Hirzebruch surfaces has a positive holomorphic
sectional curvature.

Problem 3.8 (cf. [39, Problem 5.3]). —

• Does the blow-up of Hirzebruch surfaces admit a positive holomor-
phic sectional curvature?

• Can we classify all the varieties of fixed dimension (e.g., dimension
two or three) with semi-positive (or positive) holomorphic sectional
curvature?

• Can we find an analog of semi-positive (or positive) holomorphic
sectional curvatures in algebraic geometry?

4. Pseudo-Effective Tangent Bundle

Demailly–Peternell–Schenider in [16] established the structure theorem
for compact Käher manifolds with nef tangent bundle. The nefness is general-
ized to the pseudo-effectivity in terms of singular hermitian metrics. The the-
ory of singular hermitian metrics on vector bundles, which has been rapidly
developed, gives a useful tool to study the pseudo-effectivity.

This subsection is devoted to studying smooth projective varieties with
pseudo-effective tangent bundle. We first recall our definition of pseudo-
effective vector bundles and their characterizations. A vector bundle E on a
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smooth projective variety X is said to be positively curved if E admits a sin-
gular hermitian metric h such that log |u|h∨ is a plurisubharmonic function
for any local section u of E∨, where E∨ is the dual vector bundle of E and h∨

is the induced metric on E∨. See [HPS18, Definition 16.1] for the definition
of singular hermitian metrics. Further E is said to be pseudo-effective if it
satisfies one of the equivalent conditions in the following proposition:

Proposition 4.1 ([2, Proposition 3.1, Proposition 5.3], [46, Subsec-
tion 2.3]). — Let E be a vector bundle on a smooth projective variety X.
Then the following conditions are equivalent:

(1) For any positive integer m ∈ Z+, there exists a singular hermitian
metric hm on Symm E such that

√
−1∂∂ log |u|2h∨

m
⩾ −ω

for any local section u of the m-th symmetric power Symm E∨. Here
ω is a fixed hermitian form on X and h∨

m is the induced metric on
Symm E∨.

(2) There exists an ample line bundle A such that A⊗Symm E is gener-
ically globally generated for any integer m > 0 (i.e., A ⊗ Symm E is
generated by global sections at a general point).

(3) Let OP(E)(1) be the hyperplane bundle on the projective space bundle
P(E) → X. The non-nef locus of OP(E)(1) is not dominant over X.

Our definition requires that the image of the non-nef locus of OP(E)(1)
is properly contained in X, which is stronger than the pseudo-effectivity
of OP(E)(1). Note that a smooth projective variety X is isomorphic to the
projective space if the tangent bundle TX is big in the following sense: the
non-ample locus of OP(E)(1) is not dominant over X (see [23, Corollary 6.7]).
See [19], [20], and [5] for non-nef loci and non-ample loci.

The following theorem is a structure theorem of smooth projective vari-
eties with pseudo-effective tangent bundle:

Theorem 4.2 ([35, Theorem 1.1]). — Let X be a smooth projective va-
riety with pseudo-effective tangent bundle. Then X admits a holomorphic
MRC fibration ϕ : X → Y to a smooth projective variety Y with the follow-
ing properties:

• The morphism ϕ : X → Y is smooth.
• The image Y admits a finite étale cover A → Y by an abelian vari-

ety A.
• A very general fiber F of ϕ also has the pseudo-effective tangent

bundle.

Moreover, if TX is positively curved, then we obtain:
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• The tangent bundle TX is decomposed into TX
∼= TX/Y ⊕ ϕ∗TY .

• The morphism ϕ : X → Y is locally trivial.

Our structure theorem contains two essential differences from the case of
nef tangent bundles in [16]. The first difference concerns a splitting of the
tangent bundle. In the case of TX being nef, the tangent bundle TX splits
into TX

∼= TX/Y ⊕ ϕ∗TY and the subbundle ϕ∗TY ⊂ TX is integrable. In
particular, the splitting of TX implies that ϕ : X → Y is locally trivial
by [32, Lemma 3.19]. Under the weaker assumption of TX being pseudo-
effective, the tangent bundle does not always split. Indeed, it follows from [35,
Proposition 4.2] that the tangent bundle TX of the projective space bundle
X := P(E) → C over an elliptic curve C is pseudo-effective, but does not
split into the direct sum (in particular, it is not positively curved by the
above theorem), where E = OC ⊕OC(np), p ∈ C, and n ∈ Z+. Nevertheless,
as of this moment, we have no counter-example to the local triviality of
ϕ : X → Y . We suggest the following problem:

Problem 4.3. — Let X be a smooth projective variety with pseudo-
effective tangent bundle. Then is the MRC fibration ϕ : X → Y locally
trivial?

The second difference concerns the positivity of fibers F of ϕ : X → Y .
It was proved in [16] that rationally connected manifolds with nef tangent
bundle are always Fano manifolds. However, the same conclusion does not
hold for pseudo-effective tangent bundles, since the tangent bundle of the
Hirzebruch surfaces is pseudo-effective (see [35, Proposition 4.5]). Then we
suggest the following problem:

Problem 4.4 ([35, Problem 3.13]). — Let X be a rationally connected
manifold with pseudo-effective tangent bundle. Then is the anti-canonical
divisor −KX big?

Toward structure theorems for compact Kähler manifolds X with pseudo-
effective tangent bundle, it was proved in [35, Theorem 3.12] that the Al-
banese map X → Alb(X) satisfies a similar conclusion to Theorem 4.2. The
next problem is to prove the projectivity of fibers.

Problem 4.5. — Let X be a compact Kähler manifold with pseudo-
effective tangent bundle. After we replace X with an appropriate finite étale
covering of X, we consider the Albanese map X → Alb(X).

• Can we prove that the anti-canonical divisor −KF is big or F is
projective?

• Is the Albanese map X → Alb(X) an MRC fibration of X?
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It is not so easy to find examples of pseudo-effective tangent bundles.
In [35], we investigated surfaces with pseudo-effective tangent bundle by us-
ing the condition of Proposition 4.1(2). In [44], examples of pseudo-effective
tangent bundles are constructed in a similar way. On the other hand, Höring–
Liu–Shao in [33] also found examples of pseudo-effective tangent bundles by
a different method based on VMRT (varieties of minimal rational tangents).
Note that the definition of pseudo-effective vector bundles in [33] is weaker
than our definition of Proposition 4.1. The remaining problem in the classi-
fication of surfaces is as follows:

Problem 4.6. —

• Does the blow-up of Hirzebruch surfaces at general four points have
the pseudo-effective tangent bundle?

• What can we say for the blow-up of Hirzebruch surfaces at special
points?

5. Nef Anti-Canonical divisor

This subsection is devoted to studying nef anti-canonical divisors. The
recent breakthrough in this direction is the structure theorem for smooth pro-
jective varieties with nef anti-canonical divisor by the works of [12, 14, 45, 55,
56], which can bee seen as an extension of the classical Beauville–Bogomolov
decomposition to nef anti-canonical divisors. The structure theorem was
proved even for compact Kähler manifolds by a generalized holonomy prin-
ciple when the anti-canonical divisor admits a smooth hermitian metric with
semi-positive curvature (see [11]). On the other hand, from the viewpoint of
the minimal model program, the Beauville–Bogomolov decomposition was
generalized to klt projective varieties by the works of [18, 25, 26, 34].

The most important remaining problem is to establish the structure the-
orem for klt pairs (X, ∆) with nef anti-canonical divisor −(KX + ∆). Wang
in [49] partially solved this problem when the regular locus Xreg of X is
simply connected and reduced the problem in the general case to some con-
jectures on fundamental groups of Xreg. In the case X being smooth, this
problem was solved by [10] in the following form:

Theorem 5.1 ([10, Theorem 1.3]). — Let (X, ∆) be a klt pair with nef
anti-canonical divisor −(KX + ∆). Assume that X is a smooth projective
variety. Then there exists a holomorphic MRC fibration ϕ : X → Y with the
following properties:

(1) Y is a smooth projective variety with numerically trivial canonical
divisor.
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(2) ϕ is locally trivial with respect to (X, ∆), i.e., for any small open
set U ⊂ Y , we have the isomorphism

(ϕ−1(U), ∆) ∼= U × (Xy, ∆Xy )

over U ⊂ Y . Here Xy is the typical fiber of ϕ. More strongly, there
exits an isomorphism

(Xuniv, ∆univ) ∼= Yuniv × (Xy, ∆Xy
)

over Yuniv and a representation ρ : π1(Y ) → Aut(Xy) such that
(X, ∆) is isomorphic to the quotient of the right hand side by π1(Y ).
Here Xuniv (resp. Yuniv) is the universal covers of X (resp. Y ) and
∆univ is the pull-back of ∆ to Xuniv.

Moreover, together with the Beauville–Bogomolov decomposition, the uni-
versal cover Xuniv of X can be decomposed into the product of rationally
connected manifolds, Cm, Calabi–Yau manifolds, hyperkähler manifolds.

The above structure theorem in the case of ∆ = 0 was established by the
works of [12, 14, 45, 55, 56] via the following steps:

(1) [45]: The fundamental group of X is shown to have a polynomial
growth by using the theory of Cheeger–Colding (see [15]).

(2) [12]: The problem is reduced to the case of X being simply connected
by studying of the Albanese map of X.

(3) [14]: The problem is solved for simply connected X by studying
MRC fibrations of X.

It seems to be difficult to show that the fundamental group of X have a
polynomial growth directly for klt pairs in Theorem 5.1. Now we explain
a more direct approach suggested in [10]. The key point in the second and
third steps is to show that the direct image sheaf ϕ∗(Â) satisfies a certain
flatness, by applying the theory of positivity of direct images developed
by [3, 4, 28, 46], where ϕ is the Albanese map (or an MRC fibration) of
X and Â is an appropriate relatively ample divisor. The direct image ϕ∗(Â)
can be shown to be a trivial vector bundle when X is simply connected.
In [10], without any assumptions on fundamental groups, we showed that
ϕ∗(Â) admits a flat connection on a Zariski open set of Y and it leads to the
desired structure theorem.

It was revealed in [10] that almost all the arguments work for the nef
relative anti-canonical divisor −KX/Y rather than the nef anti-canonical di-
visor −KX . For example, when we consider a surjective morphism ϕ : X → Y
with nef relative anti-canonical divisor −KX/Y , we can compare the Kodaira
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dimension and numerical Kodaira dimension of −KX/Y and −KF by apply-
ing positivity of direct images and the extension theorem in [13]. This study
is motivated by Hacon–McKernan’s question in [27, Question 3.1] (see [22,
Subsection 1.4] and [21] for more details). Hence a structure theorem can
also be expected under the assumption for relative anti-canonical divisors.

To explain that, let ϕ : X 99K Y be an almost holomorphic map (not
necessarily an MRC fibration) between smooth projective varieties, and let
π : Γ → X be a resolution of the indeterminacy locus of ϕ : X 99K Y with
the corresponding morphism φ : Γ → Y in the following diagram:

Γ

φ ��

π // X

ϕ~~
Y.

Assume that there exists an effective divisor D on Γ such that (Γ, D) is a
klt pair and −π∗(KΓ/Y + D) is a nef Q-divisor. Note that this assumption is
automatically satisfied when (X, ∆) is a klt pair with the nef anti-canonical
divisor −(KX +∆) and ϕ : X 99K Y is an MRC fibrations of X. Then, under
this assumption, it can be shown that a direct image sheaf of the form

φ∗(−m(KΓ/Y + D) + E + Â)

satisfies a certain flatness if X is Q-factorial (see [10, Proposition 3.9] for the
precise statement), where E (resp. Â) is an appropriate exceptional (resp.
relatively ample) divisor. This leads to the splitting TX = V1 ⊕ V2 such that
V1 coincides with π∗TΓ/Y , if general fibers of ϕ : X 99K Y are rationally
connected (see [10, Theorem 4.3]). Further, in this case, we can choose a
holomorphic morphism X → Y ′ by replacing Y with its another smooth
birational model Y ′. However, when ϕ : X 99K Y is not an RC fibration, we
do not know whether the same conclusion holds. Then we have the following
problem:

Problem 5.2. — Under the above assumption for the relative anti-
canonical divisor, can we obtain a structure theorem? Specifically, can we
choose a holomorphic morphism X → Y ′ that is birationally equivalent to
the original ϕ : X 99K Y ?

As explained in Section 4, the structure theorem for nef tangent bundles
in [16] is partially generalized to pseudo-effective tangent bundles. In the
same spirit, it is natural and of interest to ask the following problem:

Proposition 5.3. — What can we say for (smooth) projective varieties
with pseudo-effective anti-canonical divisor?
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Toward the above problem, it seems to be the first step to consider a
surjective morphism ϕ : X → Y with the pseudo-effective relative anti-
canonical −KX/Y . We in [22] systematically studied a relation between the
geometric structure of ϕ and positivity conditions on −KX/Y . As a result,
we showed that the non-nef locus B−(−KX/Y ) is empty or dominant over
Y (see [22] for more details). This implies that the structure of ϕ : X → Y
is restricted even when −KX/Y is pseudo-effective.

The MRC fibration is defined only by X, and thus it does not reflect
information on the boundary ∆. On the other hand, the slope rationally
connected quotient (sRC quotient for short), introduced in [9], gives a gen-
eralization of MRC fibrations reflecting the boundary ∆ (see [8, 9]). The
following conjecture concerns a structure theorem for sRC quotients. This
conjecture was solved when (X, ∆) is a log smooth surface in [10, Theo-
rem 1.6], but it is still open in the general case.

Conjecture 5.4 ([10, Conjecture 1.5]). — Let (X, ∆) be a klt pair such
that X is smooth and −(KX + ∆) is nef. Then there exists an orbifold mor-
phism ρ : (X, ∆) → (R, ∆R) with the following properties:

• (R, ∆R) is a klt pair such that R is smooth and c1(KR + ∆R) = 0.
• General orbifold fibers (Xr, ∆r) are slope rationally connected.
• The fibration is locally trivial with respect to pairs, namely, for any

small open set U ⊂ R, we have the isomorphism over U ⊂ Y :
(ρ−1(U), ∆) ∼= (U, ∆R|U ) × (Xr, ∆Xr

), where Xr is a general fiber
of ρ.
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