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Four-manifolds with shadow-complexity one (∗)

Yuya Koda (1), Bruno Martelli (2) and Hironobu Naoe (3)

ABSTRACT. — We study the set of all closed oriented smooth 4-manifolds exper-
imentally, according to a suitable complexity defined using Turaev’s shadows. This
complexity roughly measures how complicated the 2-skeleton of the 4-manifold is.

We characterise here all the closed oriented 4-manifolds that have complexity
at most one. They are generated by a certain set of 20 blocks, that are some basic
4-manifolds with boundary consisting of copies of S2 ×S1, plus connected sums with
some copies of CP2 with either orientation.

All the manifolds generated by these blocks are doubles. Many of these are
doubles of 2-handlebodies and are hence efficiently encoded using finite presentations
of groups. In contrast to the complexity zero case, in complexity one there are also
plenty of doubles that are not doubles of 2-handlebodies, like for instance RP3 × S1.

RÉSUMÉ. — Nous étudions expérimentalement l’ensemble de toutes les 4-variétés
lisses orientées fermées, selon une complexité définie à l’aide des ombres de Turaev.
Cette complexité mesure à peu près à quel point le 2-squelette de la 4-variété est
compliqué.

Nous caractérisons ici toutes les 4-variétés orientées fermées qui ont complexité
mineure ou égale à 1. Ces variétés sont engendrées par un certain ensemble de 20
blocs, qui sont des 4-variétés relativement simples avec un bord constitué de copies de
S2×S1, plus des sommes connexes avec des copies de CP2 avec orientation arbitraire.

Toutes les variétés générées par ces blocs sont des doubles. Beaucoup d’entre elles
sont des doubles de corps à 2-anses et sont donc efficacement codifiées en utilisant
des présentations finies de groupes. Contrairement au cas de complexité zéro, en
complexité 1 il y a aussi beaucoup de doubles qui ne sont pas doubles de corps à
2-anses, comme par exemple RP3 × S1.
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1. Introduction

As pointed out by Donaldson in 2008:

For 4-dimensional manifolds a great deal is now known in
the way of “examples of phenomena that can occur”, but
there is at present no kind of systematic picture, even at
the most conjectural level. [12]

Ten years later, a systematic picture is still missing. In the present situation,
it might be interesting to study the 4-dimensional smooth manifolds from
an experimental viewpoint. An experimental approach usually consists in
choosing a reasonable combinatorial description of the objects that we want
to study (here, all closed smooth 4-manifolds) and then trying to classify
them according to an increasing complexity, that is some natural number
that measures how complicated the combinatorial description is.

Historically, the experimental approach has been fundamental in the evo-
lution of low-dimensional topology. Knots in the 3-sphere have been listed ac-
cording to their crossing number since the very beginning of their study [19],
and analogously 3-manifolds have been tabulated according to the number
of tetrahedra in an (ideal) triangulation [4, 27]. These tables have been used
extensively to test conjectures and more generally to get an experimental
grasp on the subject, often via beautiful and sophisticated computer pro-
grams like SnapPy [11] or Regina [2]. Despite its success in dimension 3, the
experimental approach is almost absent from the literature in dimension 4.
The reason for that is, of course, that smooth 4-manifolds are combinatorially
much more complicated than 3-manifolds and knots. Some recent interesting
studies use crystallisations [5], triangulations [3], and trisections [28, 29, 34].

In this paper we pursue the experimentation started in [10, 23] via Tu-
raev’s shadows [35]. We stress the fact that we work in the smooth (equiva-
lently, piecewise linear) category. Every 4-manifold is tacitly assumed to be
smooth and oriented. Our main result is Theorem 2.3, that characterises all
the closed 4-manifolds with complexity at most 1.

1.1. Outline

We describe informally the main results of this paper. Let M denote a
closed smooth oriented 4-manifold. The complexity that we choose here is a
natural number c∗(M), called the connected shadow complexity of M , that
measures how complicated the 2-skeleton of M is. The notion of 2-skeleton
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Figure 1.1. A schematic picture that describes the irreducible ori-
entable 4-manifolds M with c∗(M) = 0 and 1 among all irreducible
orientable 4-manifolds. Here the “trivial” simply connected manifolds
are S4, S2 × S2, and CP2, and they all have c∗ = 0. The complex
projective plane CP2 is the only irreducible manifold with c∗ 6 1 that
is not a double. A 2-handlebody is a 4-manifold that decomposes into
0-, 1-, and 2-handles.

that we use is that of Turaev’s shadow [35] and the theory is heavily inspired
from Matveev’s complexity of 3-manifolds [27]. We postpone the rigorous
definition to Section 2.

The complexity c∗(M) has two nice features that are of fundamental
importance. The first is that there are plenty of closed smooth four-manifolds
M with low complexity, in particular with c∗(M) = 0 or 1. This holds
because there are many 2-skeleta with low complexity: for instance, any
plumbing of surfaces has complexity 0 after a little modification. We do not
have to wait long to find interesting manifolds: they are already there from
the very beginning, at complexity c∗ = 0 or 1.

The second nice feature is that there are many manifolds with c∗(M) = 0
or 1, but not too many: we discover a posteriori that a finite number of blocks
with boundary diffeomorphic to copies of S2 × S1 is enough to generate
precisely all of them. This allows us to study and to classify these manifolds
at least in some cases, for instance those with finite fundamental group.

We now describe the 4-manifolds that we have found. A summary of our
discoveries is drawn very schematically in Figure 1.1. We start by recalling a
simple and very productive technique to build many closed four-manifolds.
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1.2. From presentations to 4-manifolds

One of the simplest way to construct a closed four-manifold M is the
following: pick a finite presentation P of some group G, construct a CW-
complex X from it in the standard way, thicken it to a smooth 5-manifold
W , and take M = ∂W . By “thickening” here we always mean constructing
a compact 5-manifold W with boundary and a piecewise-linear embedding
X ↪→ int(W ) such that W collapses onto X. In this specific case, to thicken
X we only need to enlarge the vertex, the edges, and the faces of X to some
five-dimensional 0-, 1-, and 2-handles (there is of course some freedom to do
that). We denote by S(P) the set of all the four-manifolds M constructed
from P in this way, considered up to diffeomorphism (equivalenty, up to
piecewise-linear homeomorphism).

It is easy to see thatG = π1(W ) = π1(M) and that there are finitely many
ways to thicken X to W , naturally parametrised by the set H2(X,Z/2Z),
see [17, 23]. We get a spin manifold M precisely in correspondence with the
trivial element. In particular the set S(P) is finite and it contains exactly
one spin manifold. All the 4-manifolds in S(P) share the same 3-skeleton,
so their π1, π2, and all homology groups depend only on P. Moreover, if P
and P ′ are related by Andrews–Curtis moves, then S(P) = S(P ′). See [23,
Proposition 1.5] for a proof.

The manifolds in S(P) are also precisely the doubles of the 4-dimensional
thickenings of X. The 4-dimensional thickenings of X are infinite in num-
ber and much more complicated to classify, so it is easier to adopt a 5-
dimensional perspective here. See [23, Lemma 2.7]. All these manifolds are
mirrorable, so an orientation for them may be fixed arbitrarily.

A stabilisation of P is a move that consists of adding a new generator g
and two new relators g, g. We get a new presentation P ′ that is not Andrews–
Curtis equivalent to P since they have different deficiency. The new CW-
complex is of course X ′ = X ∨S2. The 4-manifolds in the new set S(P ′) are
those in S(P) plus a connected sum with either S2×S2 or S2 ×∼ S2 to each.

We can assign to any presentation P a connected complexity c∗(P) much
in the same way as we do for the 4-manifolds, by estimating the minimum
complexity of a 2-dimensional CW complex that represents P.

1.3. Complexity zero.

The closed smooth 4-manifolds M with c∗(M) = 0 were characterised
in [23]. These are precisely those of the form M = M ′#hCPn where:
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• M ′ is any manifold constructed from some presentation P with
c∗(P) = 0;
• h ∈ Z is any integer.

When h is negative, the symbol M ′#hCP2 indicates a connected sum with
|h| copies of CP2. In other wordsM is obtained fromM ′ via some topological
blow-ups.

To characterise M ′ we need to understand the presentations P with
c∗(P) = 0. Recall that these are actually important only up to Andrews–
Curtis moves. Consider the standard presentations of the cyclic and dihedral
groups:

Cn = 〈a | an〉, D2n = 〈a, b | a2, b2, (ab)n〉. (1.1)

The unique spin 4-manifold in S(Cn) is sometimes called the spun lens space
and is the boundary of the 5-manifold (L(n, 1) \ B3) ×D2. The sets S(Cn)
and S(D2n) contain between 1 and 6 distinct manifolds depending on n,
see [23, Proposition 1.6].

It is shown in [23] that the presentations P of a finite group G with
c∗(P) = 0 are precisely those that belong to the following three families:

C2k , C3·2k , D2k

and those obtained from them by stabilisation. Here k > 0 is any integer.
From this we deduce that the four-manifolds M with c∗(M) = 0 and finite
π1(M) are precisely those of the following type:

M = M ′#k(S2 × S2)#h(CP2)#k(CP2)

where M ′ is obtained by one of the three types of presentations just listed.
In particular, the simply connected ones are just those that we would expect,
namely:

S4, #h(S2 × S2), #hCP2#kCP
2
.

There are also many presentations P of infinite groups G with c∗(P) = 0.
For instance, we find all the standard presentations of the free groups Fn,
of the surface groups π1(Sg), and of the products Fn × Z and Z × Z/2nZ.
This list is far from being exhaustive. The first three presentations give rise
in particular to the following spin 4-manifolds:

#n(S3 × S1), Sg × S2,
(
#n(S2 × S1)

)
× S1.

All these 4-manifolds M have c∗(M) = 0. See Section 4.3.
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1.4. Complexity one.

The main result of this paper is a characterisation of all the 4-manifolds
M with c∗(M) = 1. This is stated below as Theorem 2.3.

We describe this result here informally: roughly speaking, the set of all
4-manifolds M with c∗(M) = 1 may be subdivided into expected and unex-
pected manifolds. The expected manifolds are constructed with the presenta-
tion technique like in the c∗ = 0 case, from presentations P with c∗(P) = 1.
These manifolds are all doubles of 2-handlebodies (plus possibly some topo-
logical blow-ups). The unexpected manifolds are of some new type: they are
still doubles of some 4-manifolds with boundary (plus possibly some topo-
logical blow-ups), but they are sometimes not doubles of 2-handlebodies.
Recall that a 2-handlebody is a 4-manifold that decomposes into 0-, 1-, and
2-handles. See the sketch in Figure 1.1.

We now describe these two sets of manifolds with more details.

1.5. The expected manifolds.

With the same techniques adopted in complexity zero, we can easily prove
that among the manifolds M with c∗(M) = 1 we find all those that may be
written as

M = M ′#hCPn

where M ′ ∈ S(P) for some presentation P with c∗(P) = 1. We show some
examples. Consider the Von Dyck groups:

D(l,m, n) = 〈a, b | al, bm, (ab)n〉 (1.2)
and also the following groups defined by Coxeter in [10]:

(l,m | n, k) = 〈a, b | al, bm, (ab)n, (ab−1)k〉. (1.3)
We easily prove in Section 4.3 that the following presentations P have
c∗(P) 6 1:

Cn, C5n, D2n, D(l,m, n), (l,m | n, k)
as soon as the numbers l,m, n, k are all of the type 2a3b, that is if they are
divisible only by 2 or 3. All the manifolds M ∈ S(P) for these presentations
P have c∗(M) 6 1.

In particular, the following presentations describe some finite groups:
D(2, 3, 3), D(2, 3, 4), (3, 3 | 4, 4), (4, 9 | 2, 3).

Coxeter showed in [10] that the last two groups are isomorphic to PSL(2, 7)
and PSL(2, 17), two simple groups of order 168 and 2448 respectively.
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Among the 4-manifolds M with c∗(M) = 1 there are some having these
two simple finite groups as fundamental groups. Their presence suggests that
a complete classification of all manifoldsM with finite π1(M) and c∗(M) = 1
is a more difficult goal to achieve than in complexity c∗ = 0. We do not
attempt to attack this problem here and leave this for future work.

1.6. The unexpected manifolds

Quite unexpectedly, there is much more than that. Among the mani-
folds M with c∗(M) = 1, we also find many boundaries of 5-dimensional
thickenings of 3-dimensional CW complexes, that are allowed to have some
3-dimensional strata of a very controlled nature.

Said with other words, we find some 4-manifolds M that are doubles
of compact 4-manifolds with boundary, but that are not doubles of any 2-
handlebody. The simplest example is the manifold

M = RP3 × S1

that has c∗(M) = 1. It is clearly the double of RP3 × [0, 1], but it cannot be
the double of a 2-handlebody, see Proposition 5.8.

Note the interesting fact that we already encountered some manifolds
with the same fundamental group as RP3 × S1 in complexity zero, since we
mentioned above that the presentation

P = 〈a, b | a2, [a, b]〉
has c∗(P) = 0. Since P is balanced, a 5-dimensional thickening W of P has
χ(W ) = 1 and hence its boundary M = ∂W has χ(M) = 2. By stabilising
k times we can construct manifolds M with π1(M) = Z× Z/2Z, c∗(M) = 0,
σ(M) = 0, and χ(M) = 2 + 2k for every k > 0. However the manifold
RP3 × S1 has χ = 0 and c∗ = 1 and clearly cannot be constructed in
this way.

1.7. Finitely many blocks

There are plenty of manifolds in complexity one: there are more than
we expected. Luckily, however, these manifolds still satisfy the same type
of finiteness property that holds in complexity zero: all the manifolds M
with c∗(M) 6 1 are obtained by gluing altogether some copies of finitely
many blocks along their boundaries, each diffeomorphic to S2 × S1. There
are 8 blocks with c∗ = 0 and 12 with c∗ = 1. Among the latter, eleven were
expected and one was not: this last one is responsible for all the unexpected
manifolds mentioned above. See Theorem 2.3.
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(1) (2) (3) (4)

Figure 1.2. Neighborhoods of points in a simple polyhedron with boundary.

2. Main results

We now expose more formally all the results proved in this paper. We
start with the definitions of simple polyhedron and shadow complexity. We
work in the piecewise-linear category.

2.1. Simple polyhedron

A 2-dimensional compact polyhedron X is simple if every point has a star
neighbourhood of one of the types shown in Figure 1.2. The boundary ∂X
is the union of all points of type (4), and is a union of circles. In this section
we consider implicitly only simple polyhedra without boundary, except when
mentioned otherwise.

The points of type (1) are called vertices. The points of type (2) and
(3) form respectively some manifolds of dimension 1 and 2: their connected
components are called respectively edges and regions. An edge is either an
open interval or a circle, and a region is the interior of a compact surface
with boundary. The singular part SX of X is the union of all points of type
(1) and (2). It is a 4-valent graph (possibly disconnected and/or with circular
components).

2.2. Shadow complexity

A shadow for a smooth closed orientable 4-manifold M is a locally flat
simple 2-dimensional polyhedron X ⊂ M such that M is obtained from a
regular neighbourhood of X by adding 3- and 4-handles. The polyhedron X
should be thought of as a 2-skeleton for M . This notion was introduced by
Turaev in [35] and is exposed with more details in Section 3.
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As defined by Costantino [7], the complexity c(X) of a shadow X is its
number of vertices, and the shadow complexity c(M) of a closed oriented
smooth 4-manifold M is the minimum complexity of a shadow X for M .
This definition is inspired by Matveev’s complexity of 3-manifolds [26].

The closed oriented 4-manifolds with shadow complexity zero were stud-
ied by the second author in [23]. The original goal of the present research
was to study those with complexity one. During the investigation we realised
that it is quite natural in this setting to study a larger set of 4-manifolds,
related to a more relaxed notion of complexity that we now introduce.

Definition 2.1. — The connected complexity c∗(X) of a simple poly-
hedron X is the maximum number of vertices that are contained in some
connected component of SX. The connected shadow complexity c∗(M) of
M is the minimum connected complexity of a shadow X for M .

In particular, for a simple polyhedron X we have:

• c∗(X) = 0 ⇐⇒ SX consists of disjoint circles;
• c∗(X) = 1 ⇐⇒ SX consists of disjoint circles and 8-shaped graphs.

We clearly have c∗(X) 6 c(X) and c∗(X) = 0 ⇐⇒ c(X) = 0, which
implies c∗(M) 6 c(M) and c∗(M) = 0 ⇐⇒ c(M) = 0 for every smooth
closed oriented 4-manifold M . In the rest of this introduction we work only
with c∗ and disregard c. In this paper we consider only oriented 4-manifolds,
although c∗(M) clearly does not depend on the orientation for M .

Roughly speaking, the complexity c∗(M) is a measure of how complicated
the 2-skeleton of M is.

It is easy to prove that the set of manifolds M with c∗(M) 6 n is closed
under connected sum, for any natural number n, see Proposition 6.8. This is
probably not the case for the manifolds with c(M) 6 n, and it is one reason
for preferring c∗ to c.

The main contribution of this paper is a characterisation of all the closed
orientable smooth 4-manifolds M with c∗(M) = 1. To introduce this re-
sult we first recall with some detail what is known about 4-manifolds with
c∗(M) = 0, previously studied in [23].

2.3. Complexity zero

Let a block be a compact oriented smooth 4-manifold, possibly with
boundary consisting of copies of S2 × S1. Let S be a finite set of blocks. A
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Figure 2.1. Some links in S2 × S1 ⊂ S3 × S1, drawn as Kirby diagrams.

graph manifold generated by S is any closed oriented 4-manifold obtained by
taking some copies of elements in S and glueing their boundaries in pairs,
via any pairing and any orientation-reversing diffeomorphisms. The name
is of course inspired from Waldhausen’s three-dimensional graph manifolds
that are defined similarly as the set of all 3-manifolds generated by D2×S1

and P × S1, where P is a pair-of-pants.

The following theorem was proved in [23].

Theorem 2.2. — A closed oriented 4-manifold M has c∗(M) = 0 if and
only if

M = M ′#hCP2

where h ∈ Z and M ′ is a graph manifold generated by the set

S0 =
{
M1,M11,M2,M111,M12,M3, N1, N2, N3

}
.

Moreover, if M ′ 6= #k(S3 × S1) the following facts are equivalent:

(1) M ′ is a graph manifold generated by S0;
(2) M ′ is the double of a 4-dimensional thickening of a X with

c∗(X) = 0;
(3) M ′ is the boundary of a 5-dimensional thickening of a X with

c∗(X) = 0.

The symbol X indicates a 2-dimensional simple polyhedron without boundary.

As we said above, when h is negative the symbol M ′#hCP2 indicates a
connected sum with |h| copies of CP2. The 9 manifolds in S0 are in some
vague sense among the simplest blocks one could reasonably construct: the
manifoldsM1,M11,M2,M111,M12,M3 are obtained from S3×S1 by drilling
the corresponding links in Figure 2.1, that are contained in S2×S1 ⊂ S3×S1.
In particular we getM1 = D3×S1 andM11 = S2×S1×[−1, 1]. The manifolds
N1, N2, N3 are:

N1 = S2 ×D2, N2 = S2 ×A, N3 = S2 × P.
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Here A and P are an annulus and a pair-of-pants. ActuallyM11 = N2, so
there are in fact 8 blocks in S0. Moreover N2 = N1∪N3 so we could actually
remove N2 from the list and 7 blocks would suffice: we keep N2 in S0 only
for aesthetic reasons.

All the blocks in S0 are mirrorable, so we can fix their orientations arbi-
trarily. In particular all the blocks in S0 have vanishing signature σ = 0 and
therefore σ(M ′) = 0, which gives σ(M) = h in Theorem 2.2.

The most relevant information contained in Theorem 2.2 is that finitely
many manifolds are enough to generate precisely all the manifolds M with
c∗(M) = 0. Given how wild 4-manifolds can be, this is a very satisfactory
picture: there are infinitely many manifolds with c∗(M) = 0, but they are
generated by finitely many ones.

Another important information is that every suchM is the boundary of a
five-dimensional thickening of some X with c∗(X) = 0. The five-dimensional
thickenings are better treated via presentations, as described in Section 1.2.
We can switch from polyhedra to presentations and back, thanks to the nice
1-1 correspondence:{

compact 2-dimensional polyhedra
up to 3-deformation

}
←→

{
finite presentations

up to Andrews–Curtis moves

}
.

A 3-deformation on a 2-dimensional polyhedronX is a simple homotopy that
is a composition of expansions and collapses that involve only simplexes of
dimension at most 3. See [18] for an introduction to this fascinating subject.

Following [23], we define the connected complexity of a presentation P as
the minimum connected complexity of a simple polyhedron X, possibly with
boundary, that represents P. All the presentations P of some finite group
G with c∗(P) = 0 were classified in [23] and the results were described in
Section 1.3.

We make some other observations concerning the signature and the Euler
characteristic of the manifolds with c∗ = 0. We note that the connected sum
with CP2 with either orientation is the only available tool for producing 4-
manifolds with non-zero signature when c∗ = 0. The Euler characteristic of
the blocks in S0 is always zero, except

χ(N1) = 2, χ(N3) = −2.

In Theorem 2.2, obviously χ(M ′) is the sum of the Euler characteristics
of the blocks involved to construct M ′, and χ(M) = χ(M ′) + |h|. The block
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N3 contributes negatively to the Euler characteristic, while N1 and CP2

contribute positively.

The set of all closed 4-manifolds with c∗(M) = 0 is closed under connected
sum and finite covering. A manifold with c∗(M) = 0 is never aspherical;
see [23].

2.4. Complexity one

We are now ready to expose the main result of the paper, that is a theorem
analogous to Theorem 2.2 for the case c∗(M) 6 1.

Theorem 2.3. — A closed oriented 4-manifold M has c∗(M) 6 1 if and
only if

M = M ′#hCP2

where h ∈ Z and M ′ is equivalently of one of these types:

(1) any graph manifold generated by the set
S1 = S0 ∪

{
M1

1 , . . . ,M
1
12
}

;

(2) the double of a 4-dimensional thickening of a X with c∗(X) 6 1.

The symbol X denotes a polyhedron of dimension 2 or 3, that consists of a
simple 2-dimensional one X with c∗ 6 1 that may have non-empty boundary,
plus some copies of RP3, each attached to a component of ∂X along any
projective line l ⊂ RP3.

We now describe the 12 additional blocks in S1. The blocks
M1

1 , . . . ,M
1
11

are obtained from #2(S3×S1) by drilling the corresponding links in #2(S2×
S1) ⊂ #2(S3 × S1) shown in Figure 2.2. The last block

M1
12

is the result of drilling RP3 × S1 along the curve l × {pt} where l ⊂ RP3 is
any projective line. The manifolds M1

i are mirrorable for all i = 1, . . . , 12,
so we choose any orientation for them. All the blocks in S1 have σ = 0, so
again we get σ(M ′) = 0 and σ(M) = h.

As in Theorem 2.2, the most relevant information contained in Theo-
rem 2.3(1) is that a finite set of blocks is enough to generate precisely all
the manifolds M with c∗(M) 6 1. We have thus discovered that this satis-
factory picture in complexity zero is also predominant in complexity one.
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Figure 2.2. Eleven links in #2(S2 × S1) ⊂ #2(S3 × S1).

We remark that the blocksM1
1 , . . . ,M

1
11 were somehow expected from the

beginning of our examination, but the last oneM1
12 was not, and the presence

of this additional block has some important consequences. It produces a more
involved statement in Theorem 2.3(2), where X is a polyhedron that may
contain both 2- and 3-dimensional strata. The manifold M ′ obtained as a
double of a thickening of X is still the double of a compact 4-manifold with
boundary as in complexity zero, but M ′ is not necessarily the double of a
2-handlebody. For instance, we discover that the manifold

M = RP3 × S1

has c∗(M) = 1, it is the double of RP3 × [0, 1], but it cannot be the double
of a 2-handlebody, see Proposition 5.8. This is the most important novelty
in complexity one that we could notice.

The manifolds generated by all the blocks in S1 \ {M12
1 } are precisely

those that are constructed from a presentation P with c∗(P) 6 1. Among
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these we find the examples already described in Section 1.5. If we use also
M12

1 we find more manifolds, like RP3×S1, that cannot be constructed from
any presentation.

We now study the Euler characteristic of M . We have χ(M1
i ) = −2 for

i = 1, . . . , 11, and χ(M1
12) = 0. As we pass from complexity zero to one we

seem to find a greater predominance of manifolds M with χ(M) < 0. Note
that the 4-manifolds M that have been studied most in the literature are
either simply connected, or aspherical, or symplectic, and in all the known
cases they have χ(M) > 0 (except some ruled surfaces blown up at some
points, that may be symplectic with χ < 0).

From Theorem 2.3(2) it is easy to deduce the following.

Theorem 2.4. — There are no aspherical closed 4-manifolds M with
c∗(M) 6 1.

2.5. Conclusions

The sketch in Figure 1.1 summarises our present knowledge. The ecosys-
tem formed by all the 4-manifolds with c∗ 6 1 is still dominated by doubles,
and the connected sum with some copies of CP2 with either orientation is
still the only available tool to construct manifolds with σ 6= 0. However, as
opposite to the c∗ = 0 case, there are many doubles in c∗ = 1 that are not
doubles of 2-handlebodies. The ecosystem has thus enlarged considerably,
although many important species are still missing. There are certainly no
manifolds of the following types among those with c∗ 6 1:

• manifolds with even intersection form and non-zero signature, in
other words with intersection form mE8 ⊕ nH with m 6= 0;
• manifolds with σ 6= 0 that are not of the form M ′#hCP2 with
σ(M ′) = 0;
• manifolds with σ = 0 that are not doubles;
• aspherical manifolds.

The techniques introduced here are quite general and could be used in prin-
ciple to attack the c∗ = 2 case; however it is impossible to predict how the
computational complexity will grow as we pass from c∗ = 1 to c∗ = 2. As
shown in this paper, to prove Theorem 2.3 we need to (1) understand the
exceptional Dehn fillings of 11 hyperbolic 3-manifolds, and (2) produce by
hand a considerable amount of combinatorial moves between shadows, that
are strictly necessary to simplify about 100 possible local configurations at
the very end of the paper. Unfortunately the second step was done entirely
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by hand and not by computer. A more computer-assisted strategy would
be very much desirable, but we do not know how to implement it for the
moment.

We also stress that we do not know if for every value of n there are only
finitely many blocks that generate all the closed manifolds M with c∗(M) 6
n. For the moment we only know the following, proved in Section 4.5 using
Freedman’s recent notion of group width [13].

Theorem 2.5. — There are closed 4-manifolds M with arbitrarily large
c∗(M).

Given the length of this paper and the high level of technicalities already
present, we concentrate ourselves here in proving Theorem 2.3 and postpone
the analysis of its consequences for future work. For instance, it would be
interesting to classify all manifolds with c∗ = 1 having trivial, or maybe
finite, fundamental group as it was done in [23]. This problem translates
into the classification of all the presentations P of some finite group G with
c∗(P) = 1, up to Andrews–Curtis moves. We do not do this here. In the
simply connected case we do not expect any new manifold, since all the
presentations involved should reasonably be Andrews–Curtis equivalent to
a bouquet of spheres (and of course we would have no clue on how to prove
the contrary).

2.6. Structure of the paper

We introduce shadows with more details in Section 3. In Section 4 we
describe a combinatorial way to encode any shadow X with c∗(X) 6 1
via some decorated graph. Theorem 2.3 is then restated again in Section 5.
The constructive part of the theorem consists of showing that every graph
manifold M generated by S1 has c∗(M) 6 1. This is the easy part of the
proof and is proved in Section 6.

The hard part in the proof of Theorem 2.3 is to show that, conversely,
every manifold M with c∗(M) 6 1 is generated by S1 plus some copies
of CP2. To show this, we first study in Section 7 how this relates to the
3-dimensional problem of studying some decompositions of #h(S2 × S1)
along tori. It is then crucial to examine the exceptional Dehn fillings of
11 hyperbolic manifolds in Section 8. Finally, we introduce many moves on
shadows in Section 9 and then use them to finally conclude the proof of
Theorem 2.3 via a long case-by-case analysis in Section 10.
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3. Shadows

We introduce here Turaev’s shadows, following [35].

3.1. Simple polyhedra

As stated in Section 2, we let a simple polyhedron be a compact poly-
hedron X where every point has a star neighborhood of one of the types
shown in Figure 1.2. We will henceforth allow the presence of boundary ∂X
except when it is forbidden explicitly. The terms vertex, edge, and region
were defined in Section 2.

3.2. Odd and even regions

Let f be a region of a simple polyhedron X. We denote by ∂f the bound-
ary of the abstract closure of f . The polyhedronX induces an interval bundle
on every component of ∂f that is not contained in ∂X. The interval bundle
may be either untwisted (an annulus) or twisted (a Möbius strip). The region
f is even or odd depending on the parity of the number of twisted bundles
on ∂f .

Remark 3.1. — If X is a spine of a 3-manifold, then all these bundles are
necessarily untwisted, and hence in particular all the regions are even. The
existence of a twisted bundle on some region is in fact a complete obstruction
for X to have a 3-dimensional thickening.

3.3. Shadows

Following Turaev [35], a shadow is a simple polyhedronX without bound-
ary decorated with gleams. A gleam is a half-integer gl(f) attached to each
region f of X, with the requirement that gl(f) is an integer if and only if f
is even.

As proved by Turaev, a shadow X determines a 4-dimensional thickening
N(X), that is an oriented smooth 4-manifold N(X) with boundary, that
contains X in its interior and that collapses onto X. Moreover, the gleams
of X are intrinsically determined by the embedding of X in N(X).

If X is a surface, then N(X) is a disc bundle over X and the gleam of
X is just the self-intersection number of X, that equals the Euler number of
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the bundle. In general, the gleam gl(f) is the self-intersection of f in some
precise sense.

Let a k-handlebody be an oriented 4-manifold made of handles of index
6 k. It turns out that N(X) is always a 2-handlebody and conversely every
2-handlebody is obtained from a (non-unique) shadow X in this way.

3.4. Homology

Homology computations with shadows are particularly simple. LetX be a
shadow and N(X) its thickening. The inclusion i : X ↪→ N(X) is a homotopy
equivalence and hence induces isomorphisms in homology.

As in every simple polyehdron, each class α ∈ H2
(
X,Z/2Z

)
is naturally

represented as a closed subsurface of X, and vice-versa. Moreover, the in-
tersection form 〈α, β〉 is the parity of the sum of the gleams of the regions
contained in the intersection of the two surfaces (this sum is always an
integer). The second Stiefel–Whitney class w2(N(X)) ∈ H2(N(X),Z/2Z

)
corresponds to the class i∗(w2(N(X))) ∈ H2(X,Z/2Z

)
that assigns to any

closed subsurface the parity of the sum of its gleams. The 4-manifold N(X)
is spin if and only if this sum is always even.

The homology with integer coefficients is read from X similarly. Every
class in H2(X,Z) is uniquely determined as a sum

∑
aifi of oriented regions

fi with integer weights ai which sum to zero at every edge e (if we change the
orientation of fi then ai changes its sign, and we sum the 3 regions adjacent
to e with matching orientations). The intersection form is easily calculated
using the formula 〈∑

aifi,
∑

bjfj

〉
=
∑

akbk gl(fk)

where gl(f) is the gleam of f .

3.5. Shadows of closed 4-manifolds

We denote by #h(S2×S1) the connected sum of h > 0 copies of S2×S1.
When h = 0 we mean S3.

Let X be a shadow and N(X) be its thickening. If ∂N(X) ∼= #h(S2×S1)
for some h > 0, we can add some 3- and 4-handles to N(X) and obtain an
oriented closed smooth 4-manifold M . By a famous theorem of Laudenbach
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and Poenaru [22] there is an essentially unique way to attach 3- and 4-
handles, so the closed oriented manifold M is fully determined by N(X),
and hence by the shadow X alone. We say that X is a shadow of M .

For instance, the 2-sphere X = S2 with gleam 0, 1, or −1 is a shadow
of S4, CP2, or CP2 respectively. In the first case ∂N(X) = S2 × S1 and we
attach a 3- and a 4-handle, in the two other cases ∂N(X) = S3 and we only
attach a 4-handle.

Every closed oriented 4-manifold M has a shadow X, which is however
not unique.

Remark 3.2. — A shadow complexity can also be defined on 4-manifolds
with boundary. This notion was investigated in [30, 31, 32]. We will not
study this version here.

4. Simple polyhedra with connected complexity one

We describe a combinatorial notation for treating simple polyhedra
with connected complexity one. This discussion is also useful to under-
stand the main theorem of this paper and in particular where do the blocks
M1

1 , . . . ,M
1
11 come from.

4.1. Decomposition of a simple polyhedron into pieces

Let X be a simple polyhedron, possibly with non-empty boundary, with
connected complexity one. Each component C of SX is either a circle or a
8-shaped graph. In the first case, the regular neighbourhood of C in X is a
simple polyhedron with boundary, homeomorphic to one of the pieces

Y111, Y12, Y3

shown in Figure 4.1. In particular Y111 ∼= Y ×S1, where Y is the cone over 3
points, the polyhedron Y12 is a Möbius strip with an annulus attached to its
core, and Y3 is an annulus that winds 3 times around a circle. The boundary
of the piece consists of 3, 2, or 1 circle, respectively.

If C is a 8-shaped graph, that is a bouquet of two circles, a simple analysis
shows that its regular neighbourhood is one of the types

X1, X2, . . . , X11

drawn in Figure 4.2. It is a simple polyhedron with boundary, and the bound-
ary consists of a number of circles that ranges from 1 to 4.
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Figure 4.1. The 3 possible regular neighbourhoods of circular compo-
nents of SX.

Figure 4.2. The 11 possible regular neighbourhoods of a 8-shaped
component of SX.

Every region in X is a surface and hence decomposes into discs, pairs-of-
pants, and Möbius strips. Summing up, we have discovered the following.

Proposition 4.1. — Every simple polyhedron X with connected com-
plexity one decomposes (along circles contained in some regions) into pieces
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Figure 4.3. These vertices encode respectively the boundary compo-
nents of X, and the pieces D,P, Y2, Y111, Y12, and Y3.

homeomorphic to:
D, P, Y2, Y111, Y12, Y3, X1, . . . , or X11.

Here D is a disc, P is a pair of pants, and Y2 a Möbius strip.

Each piece is a simple polyhedron with boundary. We use the notation
Y2 for the Möbius strip because it is somehow coherent with the symbols
Y111, Y12, Y3. Note that D,P, Y2 are surfaces, while all the regions in the
other pieces Y111, Y12, Y3, X1, . . . , X11 are annuli.

4.2. Encoding graph

A decomposition of X into pieces homeomorphic to
D, P, Y2, Y111, Y12, Y3, X1, . . . , X11

induces a graph G that has one vertex for every piece or boundary compo-
nent of X and one edge for every adjacency between pieces along common
boundary circles, or between a piece and a boundary component. The nota-
tion chosen for all the vertices involved is illustrated in Figures 4.3 and 4.4,
where B stands for a boundary component. The notation in Figure 4.3 was
introduced in [23] and then used also in [30] to show that every acyclic
polyhedron X with c∗(X) = 0 collapses onto a disc. That in Figure 4.4 is
new.

We now explain the various symbols present in the pictures. Let a vertex
v in G represent some piece W as in Figures 4.3 and 4.4. The vertex v has
one incident edge e for each boundary component γ of W . Suppose that
W 6= D,P, Y2, so that all regions in W are annuli. Let A be the annular
region of W adjacent to γ. The edge e is decorated near v with two symbols:

• Some k > 1 dashes, where k is the number of times that A run on
some edge of SW . The number k is the length of γ. When k = 1 the
dash is omitted.
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Figure 4.4. Eleven vertices that encode the pieces X1, . . . , X11.

• A red dot if A is an odd region.

The notation for the Möbius strip Y2 does not follow strictly these rules
since SY2 = ∅, but is chosen to be somehow more coherent with the other
pieces.

The decoration on the edges is useful because it carries some important
information and is also enough to determine γ unambiguously from e in all
cases, up to symmetries. We mean the following: two distinct edges e, e′ may
have identical decorations only in the pieces P, Y111, X8, and X11, but in
each of these cases there is a self-homeomorphism of W that interchanges
the two corresponding boundary components γ, γ′ while leaving all the other
boundary components of W fixed.

Does the graph G so constructed determineX unambiguously? Not quite,
because at every edge there are two possible gluings (up to isotopy) between
the adjacent pieces (there are two isotopy classes of self-diffeomorphisms of
S1) and we should indicate which one we use. We neglect this annoying issue
because in all the cases we will be interested either there will be no ambiguity
thanks to the symmetries of the pieces involved, or the choice will be clear
from the context.

For simplicity, we sometimes drop the numbers 1, . . . , 11 and the red
dots from the notation when they are not necessary (but we always keep the
dashes).
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Figure 4.5. Two simple polyhedra with complexity one.

= C

C

(1) (2)

(3) (4)

Figure 4.6. Some simple polyhedra with complexity zero.

4.3. Examples

Here are some examples.

Example 4.2. — The simple polyhedra A and B from Figure 4.5 are
homeomorphic to:

(A) A torus with two discs added to a meridian and a longitude.
(B) A projective plane RP2 with an annulus attached to two distinct

lines l1, l2 ⊂ RP2.

The polyhedron (B) plays an important role in this paper. As we men-
tioned in Section 1.3, there is a 1-1 correspondence between simple polyhedra
up to 3-deformation and presentations up to Andrews–Curtis moves, see [18].

Example 4.3. — The simple polyhedra described in Figure 4.6 have com-
plexity 0 and determine respectively the following presentations:

〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉,

〈a | a2n

〉, 〈a1, . . . , an, b | [a1, b], . . . , [an, b]〉, 〈a, b | b2n

, [a, b]〉.

The polyhedron in Figure 4.6(1) is simply a closed surface Sg of some
genus g. The presentations just listed have therefore complexity 0. By picking
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= D

(1)

7
D

D

DD

D

D

DD

(2)

(3) (4) (5)

def =
def

Figure 4.7. Some simple polyhedra with complexity one. In (1) and
(2) we define some new vertices. The new vertex (1) will be useful
next in this paper.

the spin 5-dimensional thickening W of the polyhedra (1) and (3) we find
the 4-manifolds ∂W = Sg×S2 and

(
#n(S2×S1)

)
×S1 listed in Section 1.3.

In Figure 4.7 we show some simple polyhedra that may have vertices,
with connected complexity at most one. The polyhedron in Figure 4.7(1)
has fundamental group 〈a | · 〉 = Z and we easily deduce from Figure 4.2(10)
that its two boundary components represent the elements a (on the left) and
a3 (on the right). It is somehow similar to Y12, that has π1(Y12) = 〈a | · 〉 = Z
and whose two boundary components represent a and a2. We denote this
useful polyhedron with a simpler notation as indicated in Figure 4.7(1).
Note that the singular part of the polyhedron D in Figure 4.7(2) contains
an arbitrary number of circles and 8-shaped graphs.

Example 4.4. — The simple polyhedra described in Figure 4.7(2, 3, 4, 5)
determine the following presentations, defined in (1.1), (1.2), and (1.3):

Cn, C5n, D(l,m, n), (l,m | n, k)
where l,m, n, k are all of some type 2a3b.

We have proved that the presentations P mentioned in Section 1.5 have
c∗(P) 6 1. Note that we may obtain the dihedral group as D2n = D(2, 2, n).

4.4. Encoding shadows

Having defined a way to encode every simple polyhedron X with con-
nected complexity 6 1, it is now straightforward to encode any shadow X
with connected complexity 6 1. It suffices to add some decoration that de-
termines the gleams of X.
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Figure 4.8. These graphs describe some shadows of S4, CP2, S2×S2,
S3 × S1, S4, and RP3 × S1 respectively.

We do this as follows. Let G be any graph that describes a simple poly-
hedron X. Every edge e of G is even or odd depending on the parity of red
dots colouring it from its sides (there can be 0, 1, or 2 red dots). The graph
G is decorated if every edge e is assigned a half-integer, with the requirement
that this half-integer should be an integer if and only if e is even.

The decoration on G induces some gleams on X in the obvious way.
Every edge e of G determines a simple closed curve in some region f , and we
assign the half-integer decorating e to f . It may happen that distinct edges
e1, . . . , ek determine curves that are contained in the same region f , and in
this case we just add their contributions. The parity convention ensures that
the resulting gleam of f is an integer if and only if f is an even region.

The following proposition displays some examples. The last example will
be important in this paper.

Proposition 4.5. — The decorated graphs in Figure 4.8 describe re-
spectively some shadows of the 4-manifolds

S4, CP2, S2 × S2, S3 × S1, S4, RP3 × S1.

Proof. — The first 3 examples were already described in [23]. The fourth
is a torus with a meridian attached, with gleams zero in both regions. Its 4-
dimensional thickening is a punctured D2×S1 times an interval. By adding
a 3-handle we get D3 × S1. By adding one more 3-handle and one 4-handle
we get S3 × S1.

The fifth is a torus with a meridian and a longitude attached, everything
with gleam zero. Its thickening is S2×D2, and by attaching a 3- and 4-handle
we get S4.

The last example X is less obvious and is a bit similar to the fourth. It
is a projective plane RP2 with an annulus attached to two distinct lines. It
has 3 regions, each with gleam zero. Its thickening N(X) is diffeomorphic to
the regular neighbourhood N(X ′) of

X ′ =
(
RP2 × {1}

)
∪
(
l × S1) ⊂ RP3 × S1
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inside RP3 × S1. Here l ⊂ RP2 ⊂ RP3 is any projective line. In fact X is
obtained from X ′ by a small perturbation.

Now it is easy to check that the complement of N(X ′) in RP3 × S1 is
a 1-handlebody, with one 0-handle and two 1-handles. Therefore RP3 × S1

is obtained from N(X ′) = N(X) by attaching two 3-handles and one 4-
handle. �

4.5. Manifolds with arbitrarily large complexity

We end this section by proving the following general fact.
Theorem 4.6. — There are closed 4-manifolds M with arbitrarily large

c∗(M).
Proof. — Every simple polyhedron X with bounded c∗(X) 6 n is con-

structed by attaching along their boundaries arbitrarily many simple poly-
hedra with boundary, that however belong only to finitely many topological
types since they each have at most n vertices. Since there are only finitely
many topological types, we deduce easily that the width of π1(X), as recently
defined by Freedman [13], is bounded by a number that depends only by n.

It is shown in [13] that there are groups with arbitrarily large width, for
instance Zn has width n− 1. Therefore if we bound c∗(X) we cannot get all
possible finitely presented fundamental groups for X, hence nor for M . �

5. The main theorem

We introduce here the main result proved in this paper, that is Theo-
rem 2.3(1). We prove here its equivalence with Theorem 2.3(2).

5.1. The complexity zero case

As we stated in Section 2, the following theorem was proved in [23]:
Theorem 5.1. — A closed oriented 4-manifold M has connected com-

plexity zero if and only if M = M ′#hCP2 for some integer h and some graph
manifold M ′ generated by S0.

Remark 5.2. — There are 4 possible ways to glue orientation-reversingly
two copies of S2 × S1. The group of orientation-preserving diffeomorphisms
of S2 × S1 up to isotopy is isomorphic to Z/2Z × Z/2Z and is generated by
the map (x, θ) 7→ (−x, θ) and the Gluck twist (x, θ) 7→ (rotθ(x), θ) where
rotθ is the rotation of angle θ around the z axis. See [15].
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5.2. The complexity one case

Here is the main result of this paper:

Theorem 5.3. — A closed oriented 4-manifold M has connected com-
plexity 6 1 if and only if

M = M ′#hCP2

for some integer h and some graph manifold M ′ generated by S1.

We start by noting the following.

Proposition 5.4. — The sets of all the closed 4-manifolds generated by
S0 or S1 are both closed under connected sum.

Proof. — The proof is very similar to the one that shows that Wald-
hausen’s 3-dimensional graph manifolds are closed under connected sum. By
attaching N3 = S2×P andM1 = D3×S1 we get the manifold #2(D3×S1).
By attaching two copies ofM111 to it we get #2

(
S2×S1× [0, 1]

)
that can be

inserted between any gluing of two blocks to perform connected sums. �

In Theorem 2.3(2) we also stated an alternative version of the theorem
that uses the thickenings of some particular polyhedra X. We now introduce
these polyhedra more formally: we will prove the equivalence of the two
versions of the theorem at the end of this section.

5.3. Simple polyhedra enriched with projective spaces

Given a simple polyhedron X with some k > 0 boundary components, we
denote by X the polyhedron obtained by attaching a projective space RP3

to each boundary component γ ⊂ ∂X via a homeomorphism that identifies
γ with a projective line l in RP3.

We call X an enriched simple polyhedron. The polyhedron X has di-
mension 2 if k = 0 and 3 if k > 0. If we assign some gleams to X, we
get a 4-dimensional thickening N(X) of X, where every RP3 thickens to a
RP3 × [−1, 1] and X thickens as prescribed by the gleams. (To be precise,
to interpret the gleams on the regions incident to ∂X we need to fix a line
bundle above every boundary component γ = l of X, and we choose the one
induced by any projective plane RP2 ⊂ RP3 containing l.) The 4-manifold
N(X) is oriented and with boundary. The boundary ∂N(X) has k + 1 con-
nected components, k of which are copies of RP3.

We also admit the degenerate case X = S1 and X = RP3. In this case
we get N(X) = RP3 × [−1, 1]. As another example, if X is an annulus with
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gleam zero, then X consists of two copies of RP3 connected by an annulus,
and it thickens to a 4-manifold N(X) with boundary consisting of two RP3

and one S2×S1. One may verify quite easily that N(X) is diffeomorphic to
RP3 × [−1, 1] with one line l × {0} drilled.

If k = 0 of course we get X = X.

5.4. Alternative version with doubles

Here is an alternative version of Theorem 5.3, already stated as Theo-
rem 2.3(2). Given an orientable manifold with boundary W we denote by
DW its double, equipped with any orientation (a double is always mir-
rorable).

Theorem 5.5. — A closed oriented 4-manifold M has connected com-
plexity 6 1 if and only if

M = M ′#hCP2

for some h ∈ Z and with M ′ = D(N(X)) for some simple polyhedron X
with c∗(X) 6 1.

The polyhedron X has some k > 0 boundary components; the polyhe-
dron X has dimension 2 if k = 0 and dimension 3 otherwise. This alternative
version of our main theorem furnishes immediately a relevant information:
the manifold M ′ is the double of some manifold with boundary. This im-
plies immediately that its signature vanishes, that is σ(M ′) = 0 and hence
σ(M) = h.

Example 5.6. — In the degenerate case X = S1 we get X = RP3 and
D(N(X)) = RP3 × S1.

Note that RP3 × S1 can also be obtained by glueing the blocks M12
and N1.

5.5. Doubles of 2-handlebodies

Recall that a 2-handlebody is any 4-manifoldW that decomposes with 0-,
1- and 2-handles only. Being a 2-handlebody is a quite restrictive condition:
for instance, the map π1(∂W ) → π1(W ) must be surjective. We now make
an important observation.

Proposition 5.7. — If X is a simple polyhedron without boundary, then
D(N(X)) is the double of a 2-handlebody.
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Proof. — The thickening N(X) is a 2-handlebody. �

It is clear that many closed 4-manifolds with vanishing signature are not
doubles of 2-handlebodies. The following is a relevant example for us.

Proposition 5.8. — The manifold RP3 × S1 is not the double of a 2-
handlebody.

Proof. — Suppose that RP3 × S1 = DW for some 2-handlebody W . We
get χ(W ) = 0, so W has a handle decomposition with h+1 one-handles and
h two-handles. This leads to a contradiction because the group π1(DW ) =
π1(W ) = Z× Z/2Z has deficiency zero, see [6, Chapter 5]. �

The manifold RP3×S1 has connected complexity one, it is the double of
RP3 × [−1, 1], but it is not the double of a 2-handlebody.

5.6. Asphericity

Here is another important topological information derived from Theo-
rem 5.5.

Theorem 5.9. — No closed oriented 4-manifold M with c∗(M) 6 1 is
aspherical.

Proof. — Every such manifold is diffeomorphic to M = M ′#hCP2 with
M ′ = D(N(X)) for some enriched simple polyhedron X. Suppose that M
is aspherical. Since π2(M) vanishes, we get h = 0 and M = M ′. If X is
2-dimensional, the retraction D(N(X)) → N(X) ⊂ D(N(X)) induces an
isomorphism on fundamental groups: since M ′ is aspherical, the retraction
is homotopic to the identity, a contradiction since it has degree zero.

If X contains k > 0 projective spaces, the map π3(X) → H3(X,Z) =
Zk has non-trivial image, so in particular π3(X) 6= {e}. The retractions
D(N(X))→ N(X)→ X imply that π3(D(N(X))) 6= {e}. �

5.7. How we can encode doubles

As noted in [23], the doubles of thickenings of simple 2-dimensional poly-
hedra are easily encoded by homological data. We extend this observation
to enriched simple polyhedra.

Let X be an enriched simple polyhedron. By varying the gleams on X
we get many different thickenings N(X). However, the following proposition
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shows that we get only finitely many doubles D(N(X)) up to diffeomor-
phisms, and these are easily classified by the elements in H2(X,Z/2Z

)
. For

every thickening N(X), the natural inclusion i : X ↪→ D(N(X)) = M ′ in-
duces a map i∗ : H2(M ′,Z/2Z

)
→ H2(X,Z/2Z

)
.

Proposition 5.10. — For every α ∈ H2(X,Z/2Z
)
there is (up to dif-

feomorphism) precisely one double M ′ = D(N(X)) whose second Stiefel–
Whitney class w2 satisfies i∗(w2) = α. The double is spin if and only if
α = 0.

We defer the proof of the proposition to Section 6.14. For the moment
we content ourselves with the following simple examples:

• If X = S2, thenM ′ equals S2×S2 or S2 ×∼ S2 = CP2#CP2 depend-
ing on the parity of the gleam on X.
• If X = ∅, then X = RP3 and M ′ = RP3 × S1.
• If X is an orientable surface with k > 0 boundary components, then
M ′ is the unique oriented manifold obtained by gluing X × S2 to k
copies of M1

12.
• If X = Y111, then M ′ is the unique oriented manifold obtained by
gluing P 3×S1 to 3 copies ofM12. Here P 3 is S3 minus 3 open balls.

All the manifolds listed are spin except S2 ×∼ S2.

6. The constructive part

We prove here the constructive part of Theorem 5.3, namely that every
manifoldM = M ′#hCP2 as stated there has connected complexity 6 1. The
other half of the theorem, which says that all the manifolds with connected
complexity 6 1 are of this kind, is harder and will be proved in the next
sections.

We also show the equivalence between Theorems 5.3 and 5.5, that is
between Theorem 2.3(1) and (2).

6.1. Shadows with boundary

In the definition that we gave in Section 3.3 a shadow is a simple polyhe-
dron without boundary decorated with gleams. We now relax this definition
by allowing the presence of some boundary component. We follow [9].
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From this point on, we let a shadow be a simple polyhedron X, possi-
bly with boundary, decorated with gleams; as usual, these are half-integers
attached to regions, that are integers precisely on the even regions.

A shadow X thickens to a compact oriented 4-manifold N(X) that fibres
over X via a map π : N(X) → X. The fibre over a point in ∂X or in some
region of X is a disc.

The boundary ∂N(X) decomposes into a vertical part ∂vN(X)=π−1(∂X)
and a horizontal part ∂hN(X) that is the closure of (π|∂N(X))−1(X \ ∂X).
The vertical part consists of solid tori V1, . . . , Vh above the components
γ1, . . . , γh of ∂X. The core γi of Vi is equipped with a framing, induced
by the gleam of the adjacent region. See [9, Section 3] for more details.

For instance, a surface with boundary X thickens to a disc bundle over
X, with its obvious vertical and horizontal boundary.

6.2. Blocks

Recall that a block is a compact oriented 4-manifold M with (possibly
empty) boundary made of some copies of S2 × S1. For instance, all the
manifolds in S1 are blocks.

A framed block is a pair (M,L) where M is a block and L ⊂ ∂M is a
framed link that consists of one framed fiber {pt} × S1 on each boundary
component. The framing has only an auxiliary role, so we usually drop L
from the notation.

6.3. Shadow of a block

Let X be a shadow with boundary and N(X) its thickening. Suppose
that ∂N(X) ∼= #h(S2×S1) for some h > 0. In this case we can perform the
following construction, first defined in [23], that produces a framed block M
from X.

Let X have k boundary components γ1, . . . , γk, that are framed cores of
the vertical solid tori V1, . . . , Vk in ∂vN(X). As suggested by Figure 6.1, we
pick N(X) and we double each vertical solid torus Vi along its boundary,
thus adding another solid torus V ′i . Now Vi ∪ V ′i ∼= S2 × S1. Moreover we
thicken V ′i as in the figure.

We have thus enlarged N(X) to a bigger compact 4-manifoldW , that has
k+ 1 boundary components. Of these, we have that k are Vi∪V ′i ∼= S2×S1,
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Figure 6.1. How to construct a framed block M from X. Here X is
represented in black (as a graph) and N(X) is in yellow. Each vertical
solid torus Vi ⊂ ∂N(X) is doubled, so that Vi ∪ V ′i ∼= S2 × S1. (Here,
this is shown for i = 1 only.)

and the last one is still diffeomorphic to ∂N(X) ∼= #h(S2 × S1). We cap off
the last boundary component by attaching h 3-handles and one 4-handle,
and call M the resulting manifold.

We have constructed a blockM with k boundary components. The block
is framed as (M,L) with L = γ1 t · · · tγk. Recall that each γi has a framing
induced by the gleam of the adjacent region in X.

We say that X is a shadow of the block M . When ∂X = ∅ then ∂M = ∅
and we recover here the original definition of shadow of a closed 4-manifold.

Example 6.1. — Let X be a surface with non-empty boundary equipped
with some gleam. The thickening N(X) is a disc bundle over X and is also
a 1-handlebody. Therefore ∂N(X) ∼= #h(S2 × S1). We deduce that X is a
shadow of some framed block M , uniquely determined by X. We can see
easily that M is the unique oriented S2-bundle over X.

Remark 6.2. — Alternatively, we can say that a shadow for a block
(M,L) is a locally flat simple polyhedron X ⊂ M such that ∂X = L =
X∩∂M andM \ int(N(X∪∂M)) is a 1-handlebody. The embedding X ⊂M
induces the appropriate gleams on X. See [23].

6.4. Important examples

Here are some examples that are fundamental for us.
Proposition 6.3. — The simple polyhedra

D, A, P, Y2, Y111, Y12, Y3, X1, . . . , X11

equipped with arbitrary gleams are shadows of the blocks
N1, N2, N3, M2, M111, M12, M3, M

1
1 , . . . , M

1
11.
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Proof. — Same proof as in [23, Proposition 3.16]. Each polyhedron X
in the list, equipped with arbitrary gleams, thickens to a 4-manifold N(X)
which is in fact a 1-handlebody. ThereforeX is a shadow of some blockM . To
see that M is as stated, note that the candidate M is obtained by mirroring
N(X) along its horizontal boundary ∂hN(X), so M \ int(N(X ∪ ∂M)) ∼=
int(N(X)) is also an open 1-handlebody, that is it is made of 3- and 4-
handles. �

The regions of all the simple polyhedra involved in the previous proposi-
tion are incident to the boundary, so by varying their gleams we only change
the framing of the respective block.

6.5. Complexity of blocks

The complexity c(M) of a block M is the minimum complexity of a
shadow X for M . The connected complexity c∗(M) is the minimum con-
nected complexity of a shadow X for M .

For instance, all the blocks listed in Proposition 6.3 have complexity zero
or one.

Remark 6.4. — The block M1 = D3 × S1 is a bit peculiar. A natural
shadow for it should be a 1-dimensional circle, since D3 × S1 is obtained by
adding a 3- and a 4-handle to its 4-dimensional thickening. We set c(M1) =
c∗(M1) = 0 by convention.

6.6. Connected sum and assembling

We now introduce some important manipulations on blocks and show how
these can be easily translated into manipulations of shadows and decorated
graphs.

We recall from [23, Sections 4.1 and 4.3] the crucial operations of con-
nected sum and assembling. Let M be a (possibly disconnected) framed
block. A connected sum consists as usual as the removal of the interior
of two 4-discs from the interior of M and the gluing of the two resulting
boundary 3-spheres via an orientation-reversing diffeomorphism. An assem-
bling consists of gluing altogether two boundary components of M via a
framing-preserving orientation-reversing diffeomorphism.

On shadows, connected sums and assemblings may be realized as in Fig-
ures 6.2 and 6.3, as proved in [23, Sections 4.1 and 4.3]. We may encode
these moves at the level of decorated graphs as in Figure 6.4.
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0

Figure 6.2. This move on shadows corresponds to a connected sum of
manifolds.

+1

-1

+1

Figure 6.3. This move on shadows represents an assembling of blocks.
Two boundary components are glued, and a bubble is added.

Figure 6.4. Connected sum and assemblings of blocks via decorated graphs.

A crucial observation is that both operations do not produce new ver-
tices and hence do not increase the (connected) complexity of the shadows.
Therefore the following holds.

Proposition 6.5. — If a block M ′ is obtained from M by assembling
or connected sum, then

c(M ′) 6 c(M), c∗(M ′) 6 c∗(M).

Strictly speaking, the previous discussion does not apply if we assemble
a block with D3 × S1 since the complexity of D3 × S1 has been set zero by
assumption. We now consider this peculiar assembling separately, and show
that Proposition 6.5 holds also in this case.
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6.7. Filling a block

Let M be a block. The filling of a boundary component of M is the
assembling of M with D3 × S1 along that component. Equivalently, this
operation consists of adding a 3- and a 4-handle. The result is a new block
M ′ with one boundary component less than M .

Proposition 6.6. — If a block M ′ is obtained by filling a boundary
component of M , then

c(M ′) 6 c(M), c∗(M ′) 6 c∗(M).

Proof. — If X is a shadow of M , a shadow X ′ for M ′ is constructed
simply by collapsing the region of X incident to that boundary component.
Since by collapsing we do not create any new vertex, we get the inequality.

More precisely, we collapse X starting from the region adjacent to the
filled boundary as much as possible. We end up with a shadow X ′′ plus
possibly a 1-dimensional part. The shadow X ′′ determines a block M ′′ and
M ′ is obtained from M ′′ via connected sums, possibly also with additional
copies of S3 × S1. Since c(S3 × S1) = 0 we get c(M ′) 6 c(M ′′) 6 c(M) and
c∗(M ′) 6 c∗(M ′′) 6 c∗(M). �

The proof of the proposition also shows how to construct a shadow X ′

for M ′ from one X of M : we only have to collapse X starting from that
component of ∂X contained in the boundary that we want to fill. We will
use this move quite often.

6.8. Drilling along a curve

The inverse operation of filling is of course drilling a block M along a
simple closed curve γ ⊂ int(M). The result is a new block M ′ with one
additional boundary component.

If X is a shadow of M , a shadow X ′ for M ′ is constructed by isotoping
γ to an immersed generic curve in X and then attaching an annulus to X
along γ, and modifying the gleams of the regions near γ in any way, provided
that whenever a region f of X is subdivided into some regions f ′1, . . . , f ′k of
X ′ the gleams of f ′1, . . . , f ′k sum to the original gleam of f . There is of course
some freedom here, but it has the only effect of modifying the framing of the
new boundary component of M ′.

This operation produces a shadow X ′ forM ′, that has more vertices than
X if γ has self-intersections or intersects SX. So drilling along a curve may
in principle increase arbitrarily the complexity of a manifold.
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Figure 6.5. Drilling along a curve determined by an edge of the dec-
orated graph.

Figure 6.6. A shadow X12 for the block M1
12. By our convention, the

signs + and − represent the gleams 1
2 and − 1

2 .

If γ is embedded and does not intersect SX, then X ′ has the same ver-
tices as X. For instance if X is described by a decorated graph G and γ
corresponds to an edge of the graph, this operation is easily encoded as
in Figure 6.5. The 3 edges of the new portion in Figure 6.5(right) can be
decorated with any half-integers, as long as the sum of the numbers on
the two horizontal edges equal the number decorating the original one in
Figure 6.5(left).

6.9. The additional block

We can finally exhibit a shadow for the additional blockM1
12. In Figure 6.6

and in the rest of the paper we will use the following convention:

We indicate the fraction ± 1
2 simply via the sign ±.

So in Figure 6.6 the edges decorated with + and − are actually decorated
with 1

2 and − 1
2 respectively.

Proposition 6.7. — The shadow X12 encoded in Figure 6.6 is a shadow
of M1

12.
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Proof. — We apply Figure 6.5 to the shadow of RP3 × S1 shown in Fig-
ure 4.8. This amounts to drilling RP3 × S1 along a curve that is isotopic to
a line l × {pt} ⊂ RP3 × S1. �

6.10. Properties of the connected complexity

We are now close to proving the constructive part of Theorem 5.3. We
make an important observation: one reason for preferring the connected com-
plexity in our investigation is that if we assemble an arbitrary number of
blocks in S1 we get as a result a new block M with c∗(M) 6 1, while c(M)
could be very large and hard to control. More generally, the following holds.

Proposition 6.8. — The set Bn of all blocks having connected com-
plexity 6 n is closed under disjoint union, connected sum, assembling, and
filling.

As we mentioned, the set Bn is not closed under drilling. This is quite
reasonable: if we drill along a complicated curve, we get a more complicated
manifold. Of course the closed oriented 4-manifolds with connected complex-
ity 6 n are precisely the blocks in Bn with empty boundary. Our aim here
is to understand B1.

6.11. The constructive part

We now prove the constructive part of Theorem 5.3.

Theorem 6.9. — Let M ′ be a graph manifold generated by S1 and h an
integer. We have

c∗
(
M ′#hCP2) 6 1.

Proof. — Connected sums and assemblings do not increase the connected
complexity. All the blocks in S1 and CP2 have connected complexity 6 1, so
we are done. �

6.12. Proof of the equivalence

We can finally show that the Theorems 5.3 and 5.5 are in fact equivalent.

Proposition 6.10. — A closed 4-manifold M ′ is generated by S1 if and
only if M ′ = D

(
N(X)

)
for some simple polyhedron X with c∗(X) 6 1.
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Proof. — Let X be a simple polyhedron with c∗(X) 6 1. It decomposes
into pieces homeomorphic to

D, A, P, Y2, Y111, Y12, Y3, X1, . . . , X11.

The enriched polyhedron X decomposes into pieces of this kind, plus pieces
homeomorphic to RP3 with an annulus attached to a projective line. The
double D

(
N(X)

)
decomposes accordingly into blocks diffeomorphic to

N1, N2, N3, M2, M111, M12, M3, M
1
1 , . . . , M

1
11

plus some blocks obtained by doubling RP3× [−1, 1] and then drilling a line.
These latter blocks are just copies of M1

12. Therefore D(N(X)) is generated
by S1.

The converse is proved using the same argument in the opposite direction.
The block D3 × S1 is treated separately as in the proof of Proposition 6.6,
noting that #h(S3 × S1) is the double of a 1-handlebody, and every 1-
handlebody has a shadow X with c∗(X) 6 1. �

Remark 6.11. — With similar techniques we can easily see that if we
allow to enrich a simple polyhedron X via copies of S3 or S2 × S1 instead
of RP3, attached to ∂X along their Heegaard cores, we do not get any new
manifold. In some sense RP3 is the simplest 3-dimensional stratum that,
when attached to a 2-dimensional simple polyhedron, may contribute in
creating new manifolds like RP3 × S1 (in fact, note that we already met
S3 × S1 and S2 × S1 × S1 in complexity zero).

6.13. Explicit shadows

It is now worth exhibiting an explicit shadow for any closed manifold M
with c∗(M) 6 1. Let M = D(N(X))#hCP2 be a manifold with connected
complexity 6 1, as described in Theorem 5.5. HereX is any shadow (possibly
with boundary) with connected complexity 6 1 and h ∈ Z.

Proposition 6.12. — A shadow X∗ for M can be constructed from X
as follows:

(1) Add one bubble as in Figure 6.7(1) to each region of X.
(2) Add |h| bubbles as in Figure 6.7(2) with signs coherent with h to

any region of X.
(3) Attach one portion X12 as in Figure 6.6 at every boundary compo-

nent of X.
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Figure 6.7. Two bubble moves with different effects. The first one is
useful to construct doubles, the second represents a connected sum
with ±CP2.

Proof. — The shadow X∗ arises when we assemble and connect-sum the
shadows of the different blocks and CP2, as prescribed by Figures 6.3 and 6.4.
If this construction produces more than one bubble as in Figure 6.7(1) on
a single region, actually one bubble suffices (there are canceling pairs of 2-
and 3-handles otherwise).

In other words, with (1) we construct a shadow for the double of N(X)
along its horizontal boundary, with (2) we add #h(CP2), and with (3) we
attach the blocks M1

12 to the doubled vertical boundary. �

6.14. Proof of Proposition 5.10

LetX be a shadow with c∗(X) 6 1. Proposition 6.12 shows that a shadow
X∗ for M ′ = D(N(X)) is constructed from X by adding bubbles to regions
and copies of X12 to ∂X. (We mean here the bubble in Figure 6.7(1).)

We will next prove that the move shown in Figure 9.6 modifies X∗ into
another shadow of the same manifoldM ′. Since a bubble is attached to each
region of X, this easily implies that the following moves modify the gleams
of X without affecting the double M ′:

• Change the gleam at some region of X by adding ±2.
• At some edge of X, modify the gleams of the 3 adjacent regions by
adding +1 on each.
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Moreover, we will also prove the move in Figure 9.17(4), and when applied
to X12 it shows that we can also do the following without affecting the
double M ′:

• At every region adjacent to ∂X, modify the gleam by adding ±1.

In other words, the manifold M ′ only depends on the cocycle α in Z/2Z
induced by the gleams, considered up to coboundaries: this is precisely the
canonical class α ∈ H2(X,Z/2Z

)
of X, which is the pull-back of the Stiefel–

Whitney class w2(M ′) along the inclusions X ↪→ X∗ ↪→ N(X∗) ↪→M ′.

If α = 0 then w2(N(X∗)) = 0 because the canonical class of X12 also
vanish. Then w2(M ′) = 0 since M ′ is obtained from N(X∗) by adding 3-
and 4-handles: so M ′ is spin.

7. Decompositions of #h(S2 × S1) along tori

Having proved the constructive part of Theorem 5.3, we are left to com-
plete the harder task: proving that every closed 4-manifoldM with c∗(M) 6
1 is of the type described by the theorem. This will occupy the rest of the
paper.

We show here that this problem leads us naturally to study some decom-
positions of #h(S2 × S1) along tori.

7.1. Decomposition along tori

Let X be a shadow of a block M . By hypothesis we have ∂N(X) ∼=
#h(S2 × S1) for some h > 0.

We know that X decomposes into pieces homeomorphic to
D, A, P, Y2, Y111, Y12, Y3, X1, . . . , X11.

The horizontal boundary ∂hN(X) fibers over X and decomposes accordingly
into 3-manifolds bounded by tori, one 3-manifold lying above each piece.

The 3-manifolds fibering above the first seven pieces D, A, P , Y2, Y111,
Y12, Y3 are all Seifert manifolds. As shown in [23, Table 1] these seven man-
ifolds are respectively:

D × S1, A× S1, P × S1, (D, 2, 2), P × S1, (A, 2), (D, 3, 3).
Here (D,n, n) is the Seifert manifold with parameters (D, (n, 1), (n,−1)),
and (A, 2) is the Seifert manifold with parameters (A, (2, 1)). The last four
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Seifert manifolds are the complements in S2×S1 of the corresponding links
in Figure 2.1.

On the other hand, the 3-manifolds fibering above X1, . . . , X11 are 11
cusped hyperbolic manifoldsW1, . . . ,W11. This fact was originally proved by
Costantino and Thurston in a more general setting [9]. Hyperbolic manifolds
of this kind were also studied in [8]. Each Wi decomposes into two regular
ideal octahedra.

If G is a decorated graph that describes X, the same graph also describes
a decomposition of ∂N(X) ∼= #h(S2×S1) into 3-manifolds along tori. Every
boundary vertex (B) contributes with a vertical solid torus in ∂hN(X).

Example 7.1. — The six graphs in Figure 4.8 describe decompositions of
S2 × S1, S3, S3, #2(S2 × S1), S2 × S1, and #2(S2 × S1). In the last two
examples the central vertex represents a cusped hyperbolic manifold.

7.2. Compressing discs

We make the following simple but crucial observation.
Proposition 7.2. — Every torus T ⊂ #h(S2 × S1) has a compressing

disc.
Proof. — The induced map π1(T ) → π1

(
#h(S2 × S1)

)
cannot be injec-

tive, so the Dehn Lemma applies. �

Let G be a decorated graph that encodes a shadow X of some block M .
Every edge e of G determines a simple closed curve γ in some region of
X and hence a torus T = (π|∂N(X))−1(γ) in the decomposition of ∂N(X)
described above. Here π : N(X)→ X is the projection.

By the proposition just stated, the torus T has a compressing disc D ⊂
∂N(X∪∂M) ∼= #h(S2×S1). We now show that we can addD toX. To do so,
we enlarge D to a disc D′ ⊃ D by adding a vertical annulus contained in the
vertical solid torus π−1(γ), so that ∂D′ ⊂ X. Moreover, we slightly perturb
D′ so that ∂D′ is a generic closed curve in X contained in a neighbourhood
of γ, to ensure that X ′ = X ∪D′ is a simple polyhedron.

Proposition 7.3. — The shadow X ′ = X ∪D′, equipped with appropri-
ate gleams near D′, is again a shadow of M .

Proof. — The complement of N(X ∪ ∂M) in M is a 1-handlebody, and
D′ is parallel to its boundary by construction. Therefore adding D′ is like
adding a trivial 2-handle that cancels with some 3-handle. The complement
of N(X ′ ∪ ∂M) is still a 1-handlebody, with one 1-handle more. So X ′ is a
shadow for M . �
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Figure 7.1. How to add a disc D′ that winds p = 0, 1, and 2 times
respectively. The move is also shown below using graphs. Note the
piece X11 on the right. On the right, a 0-gleamed disc D′ is attached
to the blue curve.

(1) (2)

n -n

Figure 7.2. If the torus T above γ has a vertical or horizontal com-
pressing disc we can perform respectively the move (1) and (2).

The closed curve ∂D ⊂ T projects to a curve in γ that winds some p > 0
times around γ. The cases p = 0, 1, and 2 are of particular interest for us:
the modification from X to X ′ is shown in Figure 7.1 in these cases. The
half-integer n is determined by how many times ∂D winds along the fiber of
the fibration T → γ.

If p = 0 or p = 1 we say that the compressing disc D is vertical or
horizontal respectively. Both these cases were studied in [23].

Proposition 7.4 ([23, Proposition 7.6]). — If D is horizontal or verti-
cal, the corresponding move in Figure 7.2 transforms X into a new shadow
X∗ of a new block M∗. The block M is obtained from M∗ by connected sum
or assembling.

Proof. — Apply the converse of Figure 6.4 to X ′ to get X∗. �

When D is horizontal or vertical, we can cut the graph G along the edge
e as shown in the figure. This leads to a simplification that will allow us to
proceed by induction in many cases.
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7.3. Submanifolds of #h(S2 × S1)

Along the proof, we will use as a crucial tool the following lemma, which
is peculiar of the manifolds of type #h(S2 × S1). Here h > 0 is any non-
negative integer. Recall that a slope in a torus is a non oriented non-trivial
simple closed curve.

Lemma 7.5. — LetM ⊂ #h(S2×S1) be any connected submanifold with
∂M consisting of tori T1, . . . , Tk. Each Ti contains a slope si that bounds a
disc in #h(S2 × S1), such that by Dehn filling M along s1, . . . , sk we get
#h′(S2 × S1) for some h′ > 0.

Proof. — We prove the lemma by induction on k. The case k = 0 is void,
so we look at the generic case.

Every Ti has a slope si that bounds a compressing disc in #h(S2 × S1).
By an innermost argument there is one slope, say s1, that bounds a disc D
entirely contained in M or entirely outside M . By surgering T1 along D we
get a sphere S that lies inside or outside M .

Suppose that S lies outside M . After surgering #h(S2 × S1) along S
(that is, cutting along S and capping the two new boundary components
with balls: this operation transforms #h(S2×S1) into one or two manifolds
that are again of type #h′(S2 × S1)) we may suppose that S bounds a ball
outside. Now T1 bounds a solid torus outside M . We add the solid torus to
M , to get a new M ′ with one boundary component less, and we conclude by
induction on k.

Suppose that S is inside M . Then M = M ′#(D2 × S1). We surger
#h(S2 × S1) along S. The ambient manifold is still #h′(S2 × S1) for some
h′, and M has changed into M ′, with one boundary torus less. We conclude
by induction on k. �

Remark 7.6. — In the statement of Lemma 7.5, it may occur that the
complement of M in #h(S2 × S1) consists of solid tori: in this simple case
the curves si are the meridians of these solid tori and h′ = h.

However, more complicated cases may also arise. It may be that h′ > h
and some of the discs bounded by si lie inside M . For instance, if M ⊂ S3

is a knotted solid torus, then the slope s is the meridian of the solid torus
(there is no other choice) and by Dehn filling M along s we get S2 × S1.

8. Exceptional fillings on the hyperbolic manifolds W1, . . . ,W11

We now study the hyperbolic manifoldsW1, . . . ,W11 that fiber above the
piecesX1, . . . , X11. In light of Lemma 7.5, we are interested in understanding
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when a Dehn filling of these manifolds gives rise to #h(S2 × S1). We solve
this problem completely in this section.

8.1. Link surgery description

A presentation ofWi as a link complement in #2(S2×S1) is given in Fig-
ure 2.2 for all i = 1, . . . , 11. One important tool here is of course SnapPy [11].
We have a fibration Wi → Xi. We think of Wi as a compact manifold
bounded by tori, but sometimes we call Wi also its hyperbolic interior for
simplicity.

On every boundary torus T of Wi we will always use the meridian/
longitude coordinates that are induced by this link diagram description.
With this convention, the slope ∞ denotes the vertical simple closed curve
(that is, the fibre of the fibration T → γ where γ ⊂ ∂Xi is the boundary
component corresponding to T ) and all the horizontal curves (that is, the
sections of the fibration T → γ) will be integers.

8.2. Cusp shapes

As shown in [9], each of the hyperbolic manifolds Wi decomposes into
two ideal regular octahedra and has volume 7.32772 . . . It fibers over the
corresponding piece Xi, with one cusp for each boundary component γ ⊂
∂X. Therefore Wi has between 1 and 4 cusps, depending on i = 1, . . . , 11.

As shown in [8, 9], the hyperbolic manifold Wi has a maximal cusp sec-
tion, obtained simply by matching the maximal (unit square) sections of the
two regular ideal octahedra. The component of this maximal cusp section
corresponding to the cusp lying above γ is a flat torus T as in Figure 8.1. The
flat torus T is determined by two parameters: the length q of γ and whether
the adjacent annulus A is an even region or not. Both parameters can be
found by looking at the vertex representing Xi in Figure 4.4, see Section 4.2.

The vertical curve (that is, the fibre of the fibration T → γ) is the length-2
vertical one in the picture, and the horizontal curves (that is, the sections of
the fibration T → γ) are those that intersect the vertical curve in one point.
In Figure 8.1(left) there is a single shortest horizontal curve of length q. In
Figure 8.1(right) there are two shortest horizontal curves, both of length√

1 + q2. There is also a curve of length 2q, that despite being horizontal in
the picture it is not horizontal according to our definition, since it intersects
the vertical curve in two points: indeed this curve winds twice along γ.
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2
2

2q
q

Figure 8.1. The component T of the maximal cusp above a boundary
curve γ of ∂Xi of length q. The case depends on whether the adjacent
annular region is even (left) or odd (right). In both cases opposite
edges must be identified via a translation to get a flat torus.

Figure 8.2. The manifolds W8 and W11 are diffeomorphic to the com-
plements of two notable links in S3 shown here: the Borromean rings
and the minimally twisted chain link L4 with 4 components.

Recall that a Dehn filling on a hyperbolic manifold is exceptional if the
resulting manifold is not hyperbolic. The manifold #h(S2 × S1) is of course
not hyperbolic.

8.3. Two notable manifolds

It is shown in [20] that the manifolds W8 and W11 are diffeomorphic to
the complements of two notable links in S3, the Borromean link and the
minimally twisted chain link with 4 components drawn in Figure 8.2.

Note that all the 3 cusp shapes in W8 are similar to a 1 × 2 rectangle,
while the 4 cusp shapes in W11 are all squares.

Armed with patience, we now start to classify all the Dehn fillings of
W1, . . . ,W11 that produce a manifold diffeomorphic to #h(S2 × S1).
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8.4. The manifolds W1 and W2

The piecesX1 andX2 have each one boundary component, and determine
two hyperbolic manifoldsW1,W2 with one cusp. A Dehn filling is determined
by a slope α ∈ Q ∪ {∞}.

Proposition 8.1. — A Dehn filling α on W1 or W2 gives #h(S2×S1)
if and only if α =∞ and h = 2.

Proof. — If α 6= 0,∞ the slope length in the Euclidean maximal
cusp section is > 6 and hence the Dehn filling cannot be #h(S2 × S1) by
the “6 Theorem” of Agol and Lackenby [1, 21]. If α = 0 we get a Haken
manifold [8]. �

8.5. The manifolds W3 and W4

The pieces X3 and X4 have two boundary components, of length 1 and 5.
ThereforeW3 andW4 have each two cusps. A Dehn filling is determined by a
pair (α, β) of slopes α, β ∈ Q∪{∞}. Let α and β be the slopes corresponding
respectively to the boundary components of length 1 and 5.

Proposition 8.2. — A Dehn filling (α, β) on W3 or W4 gives
#h(S2 × S1) if and only if one of the following holds:

• α =∞, β =∞, and h = 2, or
• α ∈ Z, β =∞, and h = 1, or
• α = 0, β ∈ Z, and h = 0.

Proof. — From the surgery description, we can compute the first homol-
ogy groups of the Dehn fillings on W3 and W4. In both cases, these are
(Z/q1Z) ⊕ (Z/q2Z) where we write α = p1

q1
and β = p2

q2
as irreducible frac-

tions. This group has no torsion if and only if α, β ∈ Z ∪ {∞}. The case
α, β ∈ Z was proved in [10]. Suppose α = ∞ and β ∈ Z. We see that the
Dehn fillings on W3 and W4 are obtained by knot surgeries as shown in Fig-
ures 8.3 and 8.4, respectively. Those knots are not the unknot for any β ∈ Z
(as one can see by calculating their Alexander polynomial) and thus they do
not produce #h(S2×S1) by the celebrated theorems of Gordon–Luecke and
Gabai [14, 16]. �

8.6. The manifolds W5 and W6

The piece X5 has two boundary components, of length 1 and 5, while
X6 has two boundary components of length 2 and 4. Therefore W5 and W6
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(a)

β

0 0

0

β

0

canceling pair

(b)

β

0

Figure 8.3. We modify the diagram by isotopy (a) and deleting a
cancelling pair (b)

(a)

β

0 0

0

β

0

canceling pair

(b)

β + 1

0

Figure 8.4. We modify the diagram by isotopy (a) and deleting a
cancelling pair (b)

have each two cusps. A Dehn filling is determined by a pair (α, β) of slopes
α, β ∈ Q∪{∞}. Let α and β be the slopes corresponding respectively to the
boundary components of length 1 (2) and 5 (4).

Proposition 8.3. — A Dehn filling (α, β) on W5 or W6 gives
#h(S2 × S1) if and only if one of the following holds:

• α =∞, β =∞, and h = 2, or
• α ∈ Z, β =∞, and h = 1.

Proof. — Let us consider the 4-component link in S3 shown in Fig-
ure 2.2(5,6) and let W 0

i be the complement of this link. Set α = p1
q1

and
β = p2

q2
.

The first homology group of the Dehn filling on W5 is isomorphic to
Z4/Im f5 , for some linear map f5 : Z4 → H1(W 0

5 ,Z) ∼= Z4 (the isomorphism
is obtained by taking the meridians as a basis) that one can infer from the
diagram. The map f5 is represented by the following matrix, which changes
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by elementary transformations as indicated:
p1 0 1 0
0 p2 0 3
q1 0 0 0
0 3q2 0 0

→


0 0 1 0
0 p2 0 3
q1 0 0 0
0 3q2 0 0

 .

Suppose that the homology group of the Dehn filling on W5 is torsion free.
Then 3 and p2 are coprime and hence p2 ≡ ±1 (mod 3). The matrix further
transforms as follows.

0 0 1 0
0 ±1 0 3
q1 0 0 0
0 3q2 0 0

→


0 0 1 0
0 ±1 0 1
q1 0 0 0
0 3q2 0 ∓6q2



→


0 0 1 0
0 0 0 1
q1 0 0 0
0 9q2 0 ∓6q2

→


0 0 1 0
0 0 0 1
q1 0 0 0
0 9q2 0 0


We have (q1, q2) = (0, 0) or (1, 0), that is, α =∞, β =∞ or α ∈ Z, β =∞.

We next turn to the case W6. Similarly, the first homology group of the
Dehn filling on W6 is Z4/Im f6 , where f6 is represented by the matrix

p1 0 −1 1
0 p2 2 2
−q1 2q2 0 0
q1 2q2 0 0

 .

The determinant of this matrix is 16q1q2. Suppose that the homology has
no torsion. Then we have q1q2 = 0. In the case p1 = 1, q1 = 0, the matrix
changes as follows

1 0 −1 1
0 p2 2 2
0 2q2 0 0
0 2q2 0 0

→


1 0 0 0
0 p2 2 0
0 2q2 0 0
0 0 0 0

 .

Thus p2 and 2 are coprime.
1 0 0 0
0 1 2 0
0 2q2 0 0
0 0 0 0

→


1 0 0 0
0 1 0 0
0 2q2 −4q2 0
0 0 0 0

→


1 0 0 0
0 1 0 0
0 0 −4q2 0
0 0 0 0


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Then q2 is also 0. Hence α =∞, β =∞. In the case p2 = 1, q2 = 0, we have
p1 0 −1 1
0 1 2 2
−q1 0 0 0
q1 0 0 0

→


0 0 −1 0
0 1 0 0
−q1 0 0 0

0 0 0 0

 .

Then q1 is 0 or 1. Hence α =∞, β =∞, or α ∈ Z, β =∞.

Conversely, in all the cases listed we easily check that the Dehn filled
manifold is indeed homeomorphic to #h(S2 × S1) as stated. �

8.7. The manifold W7

The piece X7 has two boundary components, both of length 3, and a sym-
metry that interchanges them. ThereforeW7 has two cusps, and an isometry
that interchanges them. A Dehn filling is determined by a pair (α, β) of slopes
α, β ∈ Q ∪ {∞}. The order does not matter.

Proposition 8.4. — A Dehn filling (α, β) on W7 gives #h(S2 × S1) if
and only if one of the following holds:

• α =∞, β =∞, and h = 2, or
• α ∈ Z, β =∞, and h = 1, or
• α =∞, β ∈ Z, and h = 1.

Proof. — Set α = p1
q1

and β = p2
q2
. As in the proof of Proposition 8.3, it

is easy to check that the first homology group of the Dehn filling (α, β) on
W7 is isomorphic to Z4/Im f where f : Z4 → Z4 is encoded by the matrix

p1 −q2 1 2
−q1 p2 2 −1
q1 2q2 0 0
2q1 −q2 0 0

 .

This matrix has determinant 25q1q2. If this homology group has no torsion,
then q1q2 = 0. Up to symmetry we may suppose that p1 = 1, q1 = 0. The
matrix changes as follows:

1 −q2 1 2
0 p2 2 −1
0 2q2 0 0
0 −q2 0 0

→


1 0 0 0
0 0 0 −1
0 0 0 0
0 −q2 0 0

 .

Thus we have q2 = 0 or 1. Conversely, in all the cases listed we easily check
that the Dehn filled manifold is indeed homeomorphic to #h(S2 × S1) as
stated. �
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γ

−l

−m

Figure 8.5. The double twist knot with −l and −m full twists.

8.8. The manifold W8

As already mentioned, the manifold W8 is diffeomorphic to the comple-
ment of the Borromean rings shown in Figure 8.2(left). We therefore study
its Dehn surgeries.

Proposition 8.5. — A Dehn surgery (α, β, γ) of the Borromean rings
produces #h(S2 × S1) if and only if up to interchanging α, β and γ one of
the following holds:

• α =∞, β = 0, γ = 0, and h = 2, or
• α =∞, β = 1

m ,m ∈ Z, γ = 0, and h = 1, or
• α =∞, β = 1

m , γ = 1
n ,m, n ∈ Z, and h = 0.

Proof. — Assume that a Dehn surgery (α, β, γ) of the Borromean rings
produces #h(S2 × S1) for some h. Its first homology group has no torsion.
Since the pairwise linking numbers of the Borromean rings are 0, the coeffi-
cients α, β, γ are in {0} ∪ { 1

n | n ∈ Z}.

If α = β = γ = 0, the Dehn surgery is the 3-torus.

In the case α = 1
n , n ∈ Z, β = 0, γ = 0, the Dehn surgery is diffeomorphic

to the Seifert manifold
(
T, (n,−1)

)
except for n = 0. If n = 0, the Dehn

surgery is actually (S2 × S1)#(S2 × S1).

Suppose that at least two of α, β, γ are in { 1
n | n ∈ Z}. Up to symmetry

we may suppose α = 1
l and β = 1

m for l,m ∈ Z. By performing two Rolfsen
twists along the components with coefficients α and β, we see that the result-
ing manifold is obtained by a knot surgery as shown in Figure 8.5. This knot
must be the unknot, because this is the only knot that can yield #h(S2×S1)
by the celebrated theorems of Gordon–Luecke and Gabai [14, 16]. Hence we
have l = 0 or m = 0. If γ = 0 it gives S2 × S1, and S3 otherwise. �

We now turn back to W8 with the usual meridian/longitude basis de-
scribed in Section 8.1. The piece X8 has 3 boundary components, of order 1,
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β

00

α

γ

− 1
β− 1

α

γ

Figure 8.6. This figure shows slam-dunk operations on the compo-
nents with coefficients α and β. The link pictured in the right part is
the Borromean rings. The manifold W8 is diffeomorphic to the com-
plement of the Borromean rings.

1, and 4, and a symmetry that interchanges the first two. Therefore W8 has
3 cusps, and an isometry that interchanges the first two (it has also more
isometries that are not apparent from this description). A Dehn filling is
determined by a triple (α, β, γ) of slopes α, β, γ ∈ Q ∪ {∞} where α and β
correspond to the boundary components of order 1.

As already mentioned, we can regard this Dehn filling as a Dehn surgery
of the Borromean rings by performing slam-dunks as in Figure 8.6.

Corollary 8.6. — A Dehn filling (α, β, γ) on W8 gives #h(S2×S1) if
and only if up to interchanging α and β one of the following holds:

• α =∞, β =∞, γ =∞, and h = 2, or
• α = 0, β =∞, γ = 0, and h = 2, or
• α = 0, β ∈ Z, γ = 0, and h = 1, or
• α = 0, β =∞, γ = 1

n , n ∈ Z, and h = 1, or
• α ∈ Z, β =∞, γ =∞, and h = 1, or
• α = 0, β ∈ Z, γ = 1

n , n ∈ Z, and h = 0, or
• α, β ∈ Z, γ =∞, and h = 0.

Proof. — A Dehn filling (α, β, γ) on W8 is the same as a Dehn surgery
(− 1

α ,−
1
β , γ) of the Borromean rings as shown in Figure 8.6. �

8.9. The manifold W9

The pieceX9 has 3 boundary components, of length 1, 1, and 4, where the
first is adjacent to an even region and the second to an odd one. Therefore
W9 has 3 cusps. A Dehn filling is determined by a triple (α, β, γ) of slopes
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β

00

α

γ

− 1
β− 1

α

γ

− 1
β

− 1
α γ

Figure 8.7. The Dehn filling (α, β, γ) on W9.

α, β, γ ∈ Q ∪ {∞} where α and β correspond to the boundary components
of length 1, with α to the one adjacent to the even region.

Proposition 8.7. — A Dehn filling (α, β, γ) on W9 gives #h(S2 × S1)
if and only if one of the following holds:

• α = 0, β =∞, γ = 0 and h = 2, or
• α =∞, β =∞, γ =∞ and h = 2, or
• α = 0, β ∈ Z, γ = 0 and h = 1, or
• α =∞, β ∈ Z, γ =∞ and h = 1, or
• α = 0, β =∞, γ = 1

n , n ∈ Z and h = 1, or
• α ∈ Z, β =∞, γ =∞ and h = 1, or
• α = 0, β ∈ Z, γ = 1

n , n ∈ Z and h = 0, or
• α ∈ Z, β ∈ Z, γ =∞ and h = 0.

Proof. — The Dehn filling (α, β, γ) on W9 is described in Figure 8.7, and
it is equivalent to a Dehn surgery along a 3-component link as shown in the
rightmost figure. Set α = p1

q1
, β = p2

q2
and γ = p3

q3
. From the surgery diagram,

it is easy to check that the first homology of the Dehn filling (α, β, γ) on W9
is Z3/Im f with f represented by the matrix q1 0 2q3

0 q2 0
−2p1 0 p3

 .

This matrix has determinant q2(4p1q3 + q1p3). If the homology group has no
torsion, then one of the following holds:

(1) |q2| = 1 and 4p1q3 + q1p3 = 0, or
(2) |q2| = 1 and |4p1q3 + q1p3| = 1, or
(3) q2 = 0 and 4p1q3 + q1p3 = 0, or
(4) q2 = 0 and |4p1q3 + q1p3| = 1.

In the cases (1) and (2), we have |q2| = 1 and the Dehn filling (α, β, γ)
on W9 is obtained by a Dehn surgery (− 1

α , γ) along a 2-bridge link. By Wu’s
result [36, Theorem 5.1], the resulting manifold is a laminar 3-manifold if
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− 1
α and γ are both different from ∞. Assume 1

α = ∞, that is α = 0. Then
we have γ = 1

n , n ∈ Z in case (1), and γ = 0 in case (2). In these cases, the
Dehn filling is actually S3 or S2×S1. Assume γ =∞. Then we have α =∞
if (1), and α ∈ Z if (2). Also in these cases, the Dehn filling is S3 or S2×S1.

In the cases (3) and (4), we have q2 = 0. The fundamental group G of
the Dehn filling (α, β, γ) on W9 is presented as

G ∼=
〈
x, y, z

∣∣∣∣xyx−1y−1, xz−1yzx−1z−1y−1z,
x−q1(y−1z−1y−1z)p1 , yp3(x−1zx−1z−1)q3

〉
.

If (3), then p1 = p3, and q1 = −4q3 or q3 = −4q1. Suppose q1 = −4q3. The
induced map a∗ : ZG→ Z[s±1, t±1] of the abelianization of G sends x 7→ sp3 ,
y 7→ s2q3 and z → t. By computing the first elementary ideal of G from the
above presentation, we notice that it contains (1−sp3)2(1−s2q3), for example.
If the Dehn filling is #2(S2 × S1), we have p1 = p3 = 0 or q1 = q3 = 0 since
the first elementary ideal of #2(S2×S1) is trivial. Conversely, if p1 = p3 = 0
or q1 = q3 = 0, the Dehn filling is indeed #2(S2 × S1).

If (4), then a∗ : ZG → Z[t±1] sends x 7→ 1, y 7→ 1 and z → t. From
the above presentation of G, we can compute the first elementary ideal as(
|p3q1| − |p1q3|(t−1 + 2 + t)

)
. If the Dehn filling is S2×S1, we have |p3q1| = 1

and p1q3 = 0. The converse is actually true. �

8.10. The manifold W10

Using SnapPy we see that W10 is diffeomorphic to the manifold shown in
Figure 8.8, namely the complement of the minimally twisted chain link L5
with 5 components, two of which are surgered with coefficients −2 and − 1

2 .

The exceptional Dehn surgeries on L5 have been completely classified
in [25], so to understand which fillings of W10 give #h(S2 × S1) we only
need to apply carefully the results stated there. We discover the following.
The components in L5 are oriented in clockwise order, and so are the Dehn
filling coefficients.

Proposition 8.8. — If a Dehn surgery (−2,− 1
2 , α, β, γ) of L5 produces

#h(S2 × S1), then at least one of the following 3 conditions holds:
α ∈ {0, 1,∞}, β ∈ {0, 1, 2,∞}, γ ∈ {0, 1,∞}.

Moreover:

• if β = 0 we either get α =∞ and γ ∈ Z, or α ∈ Z and γ =∞,
• if γ =∞ we either get α =∞ and β ∈ Z, or α ∈ Z and β =∞.
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Figure 8.8. The manifold W10 is diffeomorphic to the complement of
the minimally twisted chain link L5 with 5 components, two of which
are surgered as shown.

Proof. — We first note from [25, Theorem 0.1] that an isometry of W10
induces the following symmetry on Dehn fillings:(

− 2,− 1
2 , α, β, γ

)
7−→

(
− 2,− 1

2 , 1− α,
β
β−1 , 1− γ

)
. (8.1)

Theorem 4.2 in [25] furnishes a complete list of exceptional surgeries on L5 up
to the action of the isometry group of its complement. By analysing carefully
this list we find that every exceptional surgery of type (−2,− 1

2 , α, β, γ) fulfills
one of the following requirements, up to applying the symmetry (8.1):

α ∈ {0, 1,∞}, β ∈ {0, 1, 2,∞}, γ ∈ {0, 1,∞},
(α, γ) ∈

{
(−3, 2), (−2, 2), (−1, 2), (−1, 3

2 ), ( 1
2 ,

1
2 )
}
.

(α, β) ∈
{

(−1,−1)
}
, (β, γ) ∈

{
(−2,−1), (−1,−1)

}
,

(8.2)

or (α, β, γ) belongs to a list of 15 triples. Using SnapPy we see that of these 15
triples, only two produce a closed manifold whose homology has no torsion,
namely:

(α, β, γ) ∈
{

(−3,−1,−2), (−2,−1,−2)
}
.

To conclude, it remains to show that in these cases we never get #h(S2×S1)
unless any of the conditions in (8.2) is satisfied.

If γ = −1, the surgery (−2,− 1
2 , α, β,−1) on L5 is equivalent to the

surgery ( 1
2 , α, β + 2) on the chain link L3 with 3 components. We prove this

in two steps:

L5
(
− 2,− 1

2 , α, β,−1
)

= L4
(
− 1,− 1

2 , α, β + 1
)

= L3
( 1

2 , α, β + 2
)
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where L4 is the minimally twisted chain link with 4 components. Here we use
two Fenn–Rourke moves, see [25, Figure 5]. The complement S3 \ L3 is the
magic manifold and its exceptional Dehn filling are fully described in [24].
By looking at [24, Tables 2 and 3] we deduce that we never get #h(S2×S1)
unless α or β equals ∞. (Note that all signs must be reversed when looking
at the tables in [24] because the mirrored chain link is considered there.)
Using (8.1), the previous discussion applies also to the case γ = 2.

If α = −1, the surgery (−2,− 1
2 ,−1, β, γ) is equivalent to the surgery

(5, 2− β, γ
γ−1 ) on L3. We prove this as follows:

L5
(
− 2,− 1

2 ,−1, β, γ
)

= L4
(
− 2, 1

2 , β + 1, γ
)

= L4
(
4,−1, 1− β, γ

γ−1
)

= L3
(
5, 2− β, γ

γ−1
)

where in the middle equality we use the symmetry [25, Equation (3.15)]. We
are only interested in the cases (α, β) = (−1,−1) and (α, γ) = (−1, 3

2 ) and
they both lead to L3(5, 3, δ) for δ = 1− α or β

β−1 . Again from [24, Tables 2
and 3] we see that we do not get #h(S2 × S1) unless δ =∞, that is α =∞
or β = 1.

If (α, γ) = ( 1
2 ,

1
2 ), we get

L5
(
− 2,− 1

2 ,
1
2 , β,

1
2
)

= L5
(
− 1

2 , 2,
3
2 ,−1, 1− β

)
= L4

(
− 1

2 , 2,
5
2 , 2− β

)
= L4

( 5
3 , 0,

1
3 ,

β
β−1

)
where we have used [25, Theorem 0.1 and Equation (3.15)]. The manifold
L4
( 5

3 , 0,
1
3 ,

α
α−1

)
is a graph manifold and [25, Corollary 3.6] easily implies

that it is not #h(S2 × S1).

Finally, if (α, β, γ) ∈ {(−3,−1,−2), (−2,−1,−2)} we can use the same
techniques to show that the filled manifold is not #h(S2 × S1).

We now turn to the last assertion. If β = 0, and α = p
q , γ = r

s , we get

L5
(
− 2,− 1

2 ,
p
q , 0,

r
s

)
= L5

(
3, 1

3 ,
q−p
q , sr ,∞

)
=
(
D, (3,−1), (3, 1)

) ⋃
(

0 1
1 0
)
(
D, (q, q − p), (s,−r)

)
where we have used [25, Equation (1.3) and Corollary 1.3]. To get #h(S2×S1)
here we must either have α =∞ and γ ∈ Z, or α ∈ Z and γ =∞. Similarly,
if γ =∞, and α = p

q , β = r
s , we get

L5
(
− 2,− 1

2 ,
p
q ,

r
s ,∞

)
=
(
D, (2, 1), (2,−1)

) ⋃
(

0 1
1 0
)
(
D, (q, p), (r,−s)

)
and we conclude analogously. �
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We now turn back to W10 with the usual meridian/longitude basis de-
scribed in Section 8.1. A Dehn filling is determined by a triple (α, β, γ) of
slopes α, β, γ ∈ Q ∪ {∞} where α, β, and γ correspond to the boundary
components of X10 of length 1, 2, and 3.

Corollary 8.9. — If a Dehn filling (α, β, γ) on W10 gives #h(S2×S1)
then one of the following 3 conditions holds:

α ∈
{
∞, 0, 1

2 , 1
}
, β ∈

{
∞,−1, 0

}
, γ ∈

{
∞,−3,−2

}
.

Moreover:

• if α =∞ we either get β =∞ and γ ∈ Z, or β ∈ Z and γ =∞,
• if β =∞ we either get α =∞ and γ ∈ Z, or α ∈ Z and γ =∞.

Proof. — Use SnapPy to figure out the correct change of basis. �

8.11. The manifold W11

Using SnapPy we discover that W11 is diffeomorphic to the complement
of the minimally twisted chain link L4 with 4 components, shown in Fig-
ure 8.2(right). This is the smallest orientable hyperbolic manifold with 4
cusps [37], and its exceptional fillings have already been classified in [25].

All the cusp shapes are squares. Therefore at every cusp we have two
shortest slopes and two second shortest slopes. These are respectively (∞, 1)
and (0, 2).

Proposition 8.10. — If a Dehn surgery along L4 gives #h(S2 × S1)
for some h > 0, then at least one of the 4 Dehn surgery coefficients is in the
set {0, 1, 2,∞}. Moreover:

• if α = 0 one of the following holds:

β ∈ Z, δ ∈ Z, γ ∈ {1,∞}, or β = δ =∞.

• if α =∞ one of the following holds:
1
β ∈ Z ∪ {∞}, γ ∈ Z ∪ {∞}, or 1

δ ∈ Z ∪ {∞},

Proof. — It is shown in [25, Section 3.5] that the isometries of the hy-
perbolic manifold S3 \ L4 permute the cusps and the slopes {0, 1, 2,∞} in
them.

Let α = (α1, α2, α3, α4) be 4 coefficients that yield #h(S2 × S1). This
manifold is not hyperbolic, so the discussion in [25, Section 3.5] shows that,
up to isometries of S3 \ L4, either α = (2, 2, 2, 2) or αi ∈ {−1, 0, 1, 2,∞} for
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some i, say i = 1. Moreover (2, 2, 2, 2) does not yield #h(S2 × S1), so it can
be discarded.

It remains to consider the case α1 = −1. It is shown in [25, Section 3.5]
that the (−1, α2, α3, α4)-Dehn surgery on L4 is diffeomorphic to the
(β1, β2, β3)-Dehn surgery on the chain link L3 ⊂ S3 with 3 components,
where (β1, β2, β3) = (α2 + 1, α3, α4 + 1). The tables in [24, Theorem 1.3]
easily show that to get #h(S2 × S1) we must have βi ∈ {1, 2,∞} for some
i. (Note that all signs must be reversed in these tables because the mirrored
link is considered there.) Therefore we are done.

The last assertions are easy consequences of [25, Corollary 3.6]. �

We now turn back to W11 with the usual meridian/longitude basis de-
scribed in Section 8.1. A Dehn filling is determined by a 4-tuple (α, β, γ, δ)
of slopes α, β, γ, δ ∈ Q ∪ {∞} where α, β, and γ, δ correspond to boundary
components of X11 of length 1 and 2 respectively.

Corollary 8.11. — If a Dehn filling (α, β, γ, δ) on W11 gives
#h(S2 × S1) then one of the following 4 conditions holds:

α ∈
{
∞,−1,− 1

2 , 0
}
, β ∈

{
∞,−1,− 1

2 , 0
}
,

γ ∈
{
∞, 0, 1, 2

}
, δ ∈

{
∞, 0, 1, 2

}
.

Moreover:

• if α =∞ one of the following holds:
γ ∈ Z, δ ∈ Z, β ∈ {−1, 0}, or γ = δ =∞,

• if γ =∞ one of the following holds:
α ∈ Z ∪ {∞}, β ∈ Z ∪ {∞}, or δ ∈ Z ∪ {∞}.

Proof. — Use SnapPy to figure out the correct change of basis. �

9. Moves on shadows

Every block M has infinitely many different shadows. As is customary in
low-dimensional topology, whenever we have a combinatorial representation
of an object (like a knot in S3 or a manifold), there are some local moves that
one can use to transform the combinatorial representation without varying
the object.

We introduce here a number of moves that transform a shadow X into
another shadow X ′ of the same block. These will be used in the subsequent
sections to prove Theorem 5.3. Maybe in contrast with other contexts, we
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are forced here to consider more than 30 different moves: we consider this to
be a manifestation of the intrinsic difficulty one has to manipulate smooth
4-manifolds.

We are particularly interested in the moves that involve the pieces X10
and X11, for a reason that will be clarified in the next section, related to the
fact that W10 and W11 have many Dehn fillings that yield #h(S2 × S1), as
discovered in Section 8.

9.1. Basic moves

A move is an operation that modifies only a portion of a shadow X
leaving the rest unaltered, thus transforming it into another shadow X ′. A
move may modify the topological structure of X and/or its gleams.

As proved by Turaev [35], the moves in Figure 9.1 transform a shadow X
of a framed block M into another shadow X ′ of the same block M . We will
use these 5 “basic moves” to construct more complicated moves in the next
pages. As a start, the construction of the slightly more elaborated moves
shown in Figure 9.2 is left as an exercise.

9.2. Collapsing regions

Four-manifolds are intrinsically more complicated than 3-manifolds, so
it is not surprising that we are forced to discover many different kinds of
moves to prove our main theorem, and quite frustratingly different moves
often require different proofs. We try in our exposition to select whenever
possible a few number of moves that somehow “generate” all the others.

A simple way to generate more moves from a given one is by collapsing
some regions. Whenever a move transforms a portionX∗ into another portion
X ′∗, more moves can be found by collapsing (that is, removing) a disc region
of X∗, when possible. For instance, in Figure 9.1 the move (3) is generated
by (4) after collapsing the bottom-right region. In Figure 9.2, move (5) is
obtained from (4). We will employ this technique quite often.

9.3. Moves without vertices

A table of moves that involve portions of shadow without vertices is shown
in Figure 9.3 using the decorated graph notation. Each of the moves shown
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Figure 9.1. Five “basic moves” that transform a shadow X into an-
other shadow X ′ of the same framed block. A disc is attached along
each red arc. Moves (1) and (2) can be embedded in a 3-dimensional
slice, while the moves (3) and (4) cannot. In moves (3) and (4), the
gleam of the red region is modified after the move respectively by
adding 1 and 1

2 (the number is pictured in red). In (3), (4), (5) we can
also apply the same move with all signs reversed. Move (5) is obtained
by composing multiple times the moves (1), (2), (4) and their inverses.
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Figure 9.2. These moves transform a shadow X into another shadow
X ′ of the same block. They can be easily obtained by composing a few
of the basic moves of Figure 9.1 and their inverses. A region is attached
to each coloured arc. Where a coloured number appears, that is the
green −1 in (1) and the red 1 in (4) and (5), the region attached to
the coloured arc changes its gleam by adding this number. The moves
also hold with all signs reversed.

there transforms a shadow X into another shadow X ′ of the same block M .
These were proved in [23] and used there as important tools to classify the
manifolds with complexity zero.

Note that (3) generates (4) by collapsing the right edge.

9.4. New moves with few vertices

We now add more moves that involve portions with a small number of
vertices. In the first two moves in Figures 9.4 and 9.5 we have two adja-
cent bigons with some particular gleams. In Figures 9.7 and 9.8 the dashed
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0

(1)

0

(2)

1
+

1+

1+

1
2

+ 1
2

+

2+

1
+

(3)

2
+

(4)

0

0

1
+

1

(5) (6)

1
2

+ 1
2

+ 1
+

1
+ 1

2
+

0

1

(7)

-1 -1

-1

1 1

(8)

-1 1

-1

1
-1

Figure 9.3. Some moves on portions without vertices. They transform
a shadow X into another shadow X ′ of the same block. Similar moves
hold if we reverse all the signs.

Figure 9.4. A move that transforms a shadow X into another shadow
X ′ of the same block. A region f is attached along the red curve, and
the gleam of f changes by adding −1 after the move, as suggested by
the red −1 in the right figure. A similar move holds by reversing all
signs.
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Figure 9.5. A move that transforms a shadow X into another shadow
X ′ of the same block. The picture in the left shows two adjacent bigons
with gleams −1 and + 1

2 , that are eliminated in the move. In X ′ the
gleams of the 3 regions change as shown (by adding −2, 1, or zero).
A similar move holds by reversing all signs.

Figure 9.6. A move that transforms a shadow X into another shadow
X ′ of the same block. A similar move holds by reversing all signs.

opposite sides should be identified via a translation, so that squares and
rectangles represent annuli.

Proposition 9.1. — The moves in Figures 9.4, 9.5, 9.6, 9.7, and 9.8
modify a shadow X into another shadow X ′ of the same block.

Proof. — The move in Figure 9.4 is proved in Figure 9.9. The move in
Figure 9.5 is obtained by performing the opposite of Figure 9.1(4) and (3).
The move in Figure 9.6 is obtained from Figure 9.4 and the inverse of Fig-
ure 9.1(2).

We now turn to Figure 9.7. Move (1) is obtained from Figure 9.1(2, 5).
Move (2) is obtained from (1) using the inverse of Figure 9.1(2). Move (3) is
obtained using the moves in Figure 9.1(1,2) multiple times to slide the blue
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Figure 9.7. Some moves that transform a shadow X into another
shadow X ′ of the same block. In all the pictures the dashed oppo-
site sides should be identified via a translation, so that squares and
rectangles represent annuli. In (3), . . . , (8) the arrow indicates that a
disc or a more complicated portion should be attached as indicated.
The blue number ±1 in (4) and (8) must be added to the gleam of the
region attached to the blue curve. Similar moves hold by reversing all
signs.
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Figure 9.8. Some moves that transform a shadow X into another
shadow X ′ of the same block. In all the pictures the dashed oppo-
site sides should be identified via a translation, so that squares and
rectangles represent annuli. The blue number −1 in (3) and (8) must
be added to the region attached to the blue curve. Similar moves hold
by reversing all signs.
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Figure 9.9. We apply Figure 9.1(4) (with reversed signs), its inverse,
and the inverse of Figure 9.1(2). The red gleams − 1

2 and −1 are
assigned to the region attached to the red closed curve.

Figure 9.10. A proof of Figure 9.7(3).

curve over the red disc as in Figure 9.10. Move (4) is proved in Figure 9.11
using (3). Move (5) is obtained by composing (1) (with reversed signs) and
(3). Move (6) is obtained by sliding completely the blue curve above the red,
similarly as in (3). Moves (7) and (8) are proved in Figures 9.12 and 9.13.

We now consider Figure 9.8. Moves (1) and (2) are proved in Figures 9.14
and 9.15. Moves (3) and (4) follow from (2) respectively by adding a disc
and by collapsing a region. Move (5) is proved in Figure 9.16. Move (6) is
then obtained by collapsing the left region. Move (7) is obtained by sliding
entirely the red curve onto the blue region and is left as an exercise. Move (8)
is proved with Figure 9.7(5) plus Figure 9.2(1). �
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Figure 9.11. A proof of Figure 9.7(4).

Figure 9.12. A proof of Figure 9.7(7).

Figure 9.13. A proof of Figure 9.7(8).

Figure 9.14. A proof of Figure 9.8(1).
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Figure 9.15. A proof of Figure 9.8(2).

Figure 9.16. A proof of Figure 9.8(5).

9.5. Moves that involve X11

We now use the many moves of the previous section to build a table of
moves that involve X11 and are described using the decorated graph lan-
guage. We will use these moves to prove Theorem 5.3.

Proposition 9.2. — The moves in Figure 9.17 modify a shadow X into
another shadow X ′ of the same block.

Proof. — Move (1) is proved using Figure 9.1(3), and (2) follows from
Figure 9.7(2) by collapsing the left region. Move (3) is proved in Figure 9.18,
where we use Figures 9.2(5) and 9.4. Move (4) is Figure 9.7(4).

Move (5) is Figure 9.7(6) and move (6) is obtained by collapsing one
region. Move (7) is Figure 9.7(7) and (8) is obtained by collapsing. Move (9)
is Figure 9.7(8) and (10) is again obtained by collapsing (and we use Fig-
ure 9.3(7)). �

9.6. Moves that involve X10

We now build a table of moves that involve X10. The moves are described
using the decorated graph language. We will use these moves to prove The-
orem 5.3.
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Figure 9.17. These moves transform a shadow X into another shadow
X ′ of the same block. Analogous moves hold with all signs reversed.
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Figure 9.18. Proof of Figure 9.17(3). There is a disc with gleam zero
attached to the green curve; the gleam becomes 1 after the first move,
as indicated. In the final position the gleam of the region attached to
the blue curve changes by − 1

2 , as indicated.

Proposition 9.3. — The moves in Figure 9.19 modify a shadow X into
another shadow X ′ of the same block.

Proof. — Move (1) is obtained by applying Figure 9.1(3). Move (2) is
proved in Figure 9.20, where we use Figures 9.2(5) and 9.5. Move (3) is
obtained from the inverse of Figure 9.8(4) by collapsing the right region.
Move (4) is the inverse of (3) plus (1). Moves (5) and (6) are consequences
of the inverse of (3). Move (7) is Figure 9.8(7) after collapsing the left and
right regions. �

9.7. Moves that involve X10 and X11

We now build a table of moves that involve both X10 and X11. The moves
are described using the decorated graph language. We will use these moves
to prove Theorem 5.3.

Proposition 9.4. — The moves in Figures 9.21 and 9.22 modify a
shadow X into another shadow X ′ of the same block.

Proof. — Move (1) is Figure 9.8(8) with the left region collapsed.
Move (2) follows from Figure 9.7(3). Move (3) is proved in Figure 9.23,
followed by Figure 9.17(2). Move (4) follows from (3). To get (5) we first
apply Figure 9.8(4), then Figure 9.7(3) and finally Figure 9.17(2).

To get (6), we apply Figure 9.8(6), the inverse of Figure 9.8(5), the inverse
of Figure 9.8(6), and finally (5). Move (7) is proved in Figure 9.24; in that
picture, we start like in Figure 9.10, then we apply Figures 9.2(4,1) and 9.4.

The proof of move (8) is more elaborated: we first use Figure 9.8(6) to
transform the portion as in Figure 9.25(left) with the left region collapsed.
Then we conclude as shown there, using Figures 9.7(2) and 9.26. In Fig-
ure 9.26 we use Figure 9.8(2) and conclude via basic moves.
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Figure 9.19. These moves transform a shadow X into another shadow
X ′ of the same block. Analogous moves hold with all signs reversed.

Figure 9.20. Proof of Figure 9.19(2). There is a disc with gleam − 1
2

attached to the green curve, as indicated; the gleam becomes 1
2 after

the first move. In the final position the gleam of the region attached
to the red curve changes by −2.
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Finally, Figure 9.22 is proved by combining Figures 9.8(6, 7, 1) and Fig-
ure 9.6. Details are left as an exercise. �

9.8. Moves with the vertex B

Recall that the vertex B represents a boundary component of X. This
vertex has a peculiar behaviour.

Proposition 9.5. — The moves in Figure 9.27 modify a shadow X into
another shadow X ′ of the same block.

Proof. — The moves (1) and (2) are drawn more explicitly in Figure 9.28.
In each move, both pieces are the result of drilling along homotopic (and
hence isotopic) closed curves in M , so they are the same block. Move (3) is
obtained from (2) by collapsing a region. In move (4), both pieces represent
a thickened annulus drilled along a simple closed curve that runs twice along
the annulus. �

10. Proof of Theorem 5.3 I: elimination of pieces.

Having prepared all the necessary ingredients, we can now finally enter
into the proof of Theorem 5.3.

10.1. The theorem

Our aim is to prove the following half of Theorem 5.3, that we state in
the larger context of blocks.

Theorem 10.1. — Let X be a shadow of some block M with c∗(X) 6 1.
Then M = M ′#hCP2 for some h ∈ Z and M ′ generated by S1.

The rest of this paper is devoted to the proof of this theorem.

10.2. Outline of the proof

By hypothesis X decomposes into pieces
D, P, Y2, Y111, Y12, Y3, X1, . . . , X11

– 1180 –



Four-manifolds with shadow-complexity one

Figure 9.21. These moves transform a shadow X into another shadow
X ′ of the same block. Analogous moves hold with all signs reversed.
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Figure 9.22. This move transforms a shadow X into another shadow
X ′ of the same block.

Figure 9.23. Proof of Figure 9.21(3).

and can be described by a graph G with vertices as explained in Section 4.2.
The horizontal boundary ∂hN(X) decomposes accordingly along tori into
the 3-manifolds

D × S1, P × S1, (D, 2, 2), P × S1, (A, 2), (D, 3, 3), W1, . . . , W11.

Recall that the first 6 manifolds are Seifert while W1, . . . ,W11 are hyper-
bolic. We know that ∂N(X) ∼= #h(S2×S1). We are guided by the following
optimistic guess, that was already successfull in [33] in the much simpler
context of plumbing of spheres, and then in [23] in complexity zero:

Optimistic guess 10.2. — Since #h(S2 × S1) is a “very degenerate”
type of 3-manifold, some kind of simplification move should be possible at
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Figure 9.24. Proof of Figure 9.21(7).

Figure 9.25. Proof of Figure 9.21(8). The second move is proved in
Figure 9.26.

Figure 9.26. Proof of the second move in Figure 9.25.
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Figure 9.27. These moves transform a shadow X into another shadow
X ′ of the same block.

Figure 9.28. The moves in Figures 9.27(1, 2). The black curve indi-
cates a component of ∂X.

some vertex or edge of G, that simplifies the decomposition of #h(S2 × S1)
into 3-manifolds bounded by tori. Most likely, this simplification move has a
corresponding 4-dimensional simplification move on X.

As a general principle, this optimistic guess works, but unfortunately
much effort is needed to transform it into a rigorous proof. We will need
more than 100 different 4-dimensional simplification moves!

Here is a quick description of the arguments that will follow. With mod-
erate effort in Proposition 10.3 we prove that we may restrict ourselves to
the case where X decomposes into the following pieces:

D, Y111, Y12, X10, X11.

The reason for this lucky reduction is that, in accordance with the optimistic
guess, if some of the excluded pieces is present, then a local simplification
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can be performed near it. This local simplification is due to the presence of
a horizontal or vertical compressing disc.

This is a very good start, but unfortunately we need many more pages
to deal with the few remaining pieces. The reason for that is that the 3-
manifolds D × S1, P × S1, (D, 2, 2), W10, and W11 have some Dehn fillings
giving #h(S2 × S1) that do not induce neither a horizontal nor a vertical
compressing disc.

We can restrict the possible shapes of the graph G. We may suppose
that every vertex representing X10 and X11 is attached to a disc D as in
Figures 10.1 and 10.3. This is proved in Propositions 10.4 and 10.6. In Fig-
ure 11.1 we introduce some new convenient symbols for these two pieces with
D attached.

In the next section we restrict to the case where G is a tree, equipped
with a “level structure”. Then we patiently extend the arguments of [33]
and [23] to prove that (again, in accordance with our optimistic guess) this
tree must simplify somewhere, and a 4-dimensional simplification move for
X is discovered in each case. Unfortunately, there will be many cases to
consider.

Finally, by induction on some complexity of G, we can simplify X until
it becomes one of the pieces

D, P, Y2, Y111, Y12, Y3, X1, . . . , X11, X12.

Here X12 is the “unexpected piece” shown in Figure 6.6, which of course
cannot be simplified; in some sense, X12 is the unique exception to our
optimistic guess in this context. This concludes the proof.

10.3. Elimination of most pieces

In the first step of the proof we quickly eliminate many of the possible
pieces.

Proposition 10.3. — We can suppose that X decomposes only in the
following pieces:

D, Y111, Y12, X10, X11.

Proof. — We extend the proof of [23, Propositions 7.7 and 7.8] to this
context. As shown there, every piece P , Y2, or Y3 has some boundary com-
ponent γ whose fibre torus T → γ has either a vertical or a horizontal
compressing disc (the latter case only with P ). If the disc is horizontal we
apply to G the corresponding move in Figure 7.2(2) and eliminate P . If it is
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vertical, then all the boundary components of the piece have vertical com-
pressing discs, so we apply Figure 7.2(1) to each and then remove the piece
from X. In both cases we obtain a shadow X ′ of a block M ′ such that M
is obtained from M ′ by connected sum and assembling. After finitely many
steps we have eliminated all the pieces P, Y2, and Y3.

Let now X contain a piece Xi with i = 1, . . . , 9. Therefore ∂N(X) =
#h(S2 × S1) contains a hyperbolic manifold Wi. By Lemma 7.5 the tori of
Wi have slopes si that bound discs in ∂N(X) and give #h′(S2 × S1).

Propositions 8.1, 8.2, 8.3, 8.4, 8.5, and 8.7 show that one of the following
holds:

(1) We have sj =∞ for all j,
(2) We have sj = 0 for some sj that corresponds to an even component

of ∂Xi of length 1,
(3) We have sj = ∞ for some sj that corresponds to a component of

∂Xi of length > 3.

The slope ∞ corresponds to a vertical compressing disc. In case (1) all
the boundary components have vertical compressing discs; therefore we can
apply Figure 7.2(1) to all of them and we discard Xi from X.

In case (2) we get a horizontal disc. We apply the move in Figure 7.2(2).
After this move the length-1 component of ∂Xi bounds a disc with gleam
sj = 0. Now we can apply the move in [10, Figure 6] that substitutes Xi

with a portion without vertices that should be further collapsed. After the
collapsing and the removal of 1-dimensional portions (that correspond to
removing S3 × S1 summands) we end up with a shadow with a smaller
number of vertices.

Case (3) is similar to (1) because of the following general propagation
principle: if two regions adjacent to an edge of SX ′ have a vertical com-
pressing disc, then also the third one has. This holds because there is a
vertical pair of pants lying above the edge, and if two boundary components
of this pair of pants bound a vertical compressing disc, the pair of pants with
the two discs form another vertical disc for the third boundary component.

Since the component having the vertical compressing disc sj = ∞ has
length > 3, it runs twice on some edge of SXi, and in a couple of steps we
deduce that all the boundary components of Xi have vertical compressing
discs, so we conclude as above.

In all cases after finitely many steps we eliminate all the pieces
X1, . . . , X9. �
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Figure 10.1. We may suppose that every vertex in G that represents
X11 is adjacent to a vertex representing a disc D as shown here, with
gleam ± 1

2 .

10.4. The piece X10.

We have happily eliminated most of the pieces and we are left with only
4 of them. From now on, and until the end of this paper, we suppose that
X is a shadow of some block M that decomposes into pieces homeomorphic
to D,Y111, Y12, X10, and X11. Let G be a graph representing X.

Proposition 10.4. — We can suppose that every vertex of G of type
X10 is adjacent to a vertex D as in Figure 10.1.

Proof. — Let a vertex of G denote a piece X10 ⊂ X. The manifold
∂N(X) = #h(S2 × S1) contains a hyperbolic manifold W10. By Lemma 7.5
the boundary tori of W10 have slopes α, β, γ that bound discs in ∂N(X) and
give #h′(S2 × S1). Corollary 8.9 shows that one of the following holds:

α ∈
{
∞, 0, 1

2 , 1
}
, β ∈

{
∞,−1, 0

}
, γ ∈

{
∞,−3,−2

}
.

The corollary also says that if either α or β equals to ∞, then some other
slope is also ∞. Therefore, if any of the slopes α, β, γ is ∞, the propagation
principle used in the proof of Proposition 10.3 shows that there are vertical
compressing discs everywhere and we can discard X10 from X. We are left
with the cases

α ∈
{

0, 1
2 , 1
}
, β ∈

{
−1, 0

}
, γ ∈

{
−3,−2

}
.

If α = 0 or 1, we get a horizontal disc. We apply the move in Figure 7.2(1).
After this move the first component of ∂X10 bounds a disc with gleam ± 1

2 .
Now we can apply Figure 9.19(1) that destroys X10.

If α = 1
2 , we can add the disc as in Figure 7.1(right). This operation

adds to G a new vertex X11 near X10, the two vertices being separated by
a 0-gleamed edge. Then we apply Figure 9.21(2) to destroy X10. Thus we
have substituted a X10 with a X11.

If β = −1 or 0 we can add the horizontal disc and apply the move in
Figure 7.2(2). After the move we get a portion as in Figure 10.1, as stated.
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Figure 10.2. The maximal cusp shape corresponding to a boundary
curve γ of length one is of one of these two types. The slopes of length
6 2 are indicated as a, b, c, d, e and have length 1, 2, 2, 2,

√
2,
√

2
respectively.

If γ = −3 or −2 we can add the horizontal disc and apply the move in
Figure 7.2(2). We get (up to reversing signs) a portion as in Figure 9.19(3)
and by applying the move there we transform it into a portion where X10 is
as stated. �

We will henceforth suppose that every vertex of G of type X10 is adjacent
to a vertex D as in Figure 10.1.

Remark 10.5. — When a piece Xi has a boundary curve γ of length 1,
its cusp shape is one of the two shown in Figure 10.2. The picture shows all
the slopes a, b, c, d, e, f of length 6 2 in both cases. In the previous proofs
we have shown that if either of a, b, c, d, e, f bounds a compressing disc, then
we can often construct a move that simplifies the shadow by destroying or
discarding Xi.

10.5. The piece X11

The piece X11 is the one with the maximum number of boundary com-
ponents. We prove a fact similar to Proposition 10.4.

Proposition 10.6. — We can suppose that every vertex of G of type
X11 is adjacent to a vertex D as in Figure 10.3.

Proof. — Let a vertex in G denote a piece X11 ⊂ X. The piece X11
determines a submanifold W11 ⊂ ∂N(X) ∼= #h(S2×S1). By Lemma 7.5 the
tori of W11 have slopes α, β, γ, δ that bound discs in ∂N(X) such that by
filling W11 along them we get #h′(S2 × S1). Corollary 8.11 shows that one
of the following 4 conditions holds:

α ∈
{
∞,−1,− 1

2 , 0
}
, β ∈

{
∞,−1,− 1

2 , 0
}
,

γ ∈
{
∞, 0, 1, 2

}
, δ ∈

{
∞, 0, 1, 2

}
.
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Figure 10.3. We may suppose that every vertex in G that represents
X11 is adjacent to a vertex representing a disc D as shown here, with
gleam 0.

If α or β is equal to −1 or 0 we add a horizontal disc as in Figure 7.2(2)
and we simplify using Figure 9.17(1). If it is equal to − 1

2 we add the disc
as in Figure 7.1(right). This operation adds to G a new vertex X ′11 near the
original one X11, the two vertices being separated by a 0-gleamed edge. Then
we apply Figure 9.7(3) to destroy the original X10. Thus we have substituted
an old X10 with a new X ′10 that has the advantage of being adjacent to a
couple of 0-gleamed discs, so it is as in Figure 10.3.

If γ or δ equals to x = 0, 1, 2 we add the horizontal disc and apply
Figure 7.2(2). Now the piece X11 is adjacent to a disc with gleam x − 1 =
−1, 0, 1. If the gleam is zero we get Figure 10.3 and we are done. If it is ±1
we destroy X11 using Figure 9.17(2).

If α or β equals ∞, we get a vertical disc and we apply Figure 7.2(1).
Corollary 8.11 says that either γ ∈ Z, or δ ∈ Z, or β ∈ {−1, 0}, or γ =
δ = ∞. In the first (or second) case, we also add a horizontal disc to the
boundary component corresponding to γ (or δ), apply Figure 7.2(2) and get a
portion as in Figure 9.27(3). That move destroys the vertex X11. The third
case has already been considered, and in the fourth case the propagation
principle used in the proof of Proposition 10.3 shows that there are vertical
compressing discs everywhere and we can discard X11 from X.

If γ or δ (say γ) equals ∞, we get a vertical disc and we apply Fig-
ure 7.2(1). Corollary 8.11 says that either α, β, or δ belongs to Z∪{∞}. If it
is ∞, we conclude by the propagation principle as above. If it is an integer,
we add a horizontal disc and apply Figure 7.2(2). We get a portion that
describes an annulus drilled along a simple closed curve that runs either one
or twice along the annulus. If it runs once we may substitute everything with
a portion without vertices. If it runs twice we apply Figure 9.27(4). �

We will henceforth suppose that every vertex of G of type X11 is adjacent
to a vertex D as in Figure 10.3.
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Figure 10.4. These portions of graph contribute the same to ∂N(X).

Figure 10.5. Proof of Figure 10.4.

10.6. Boundary contributions

Now that every X10 and X11 is adjacent to a disc, it is important to
understand the contribution that the two pieces altogether give to ∂N(X) =
#h(S2 × S1).

Proposition 10.7. — Each pair of pieces in Figure 10.4 contributes the
same to ∂N(X).

Proof. — This is proved in Figure 10.5. These portions contribute the
same to ∂N(X). In (1) we use [23, Figure 71(4)] and Figure 9.17(3). In (2)
we use Figure 9.19(2). �

We have just discovered that the two portions in Figure 10.4 contribute
to ∂N(X) with submanifolds diffeomorphic respectively to P×S1 and (A, 3),
where the latter denotes the Seifert manifold with parameters (A, (3, 1)).

Another piece that plays an important role in our proof is shown in
Figure 10.6(left).

Proposition 10.8. — The two pieces in Figure 10.6 contribute the same
to ∂N(X).
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Figure 10.6. These portions of graph contribute the same to ∂N(X).
There is a connected sum between the two components that is not
indicated, so the manifold is in fact a connected sum of two solid tori.

Figure 10.7. Proof of Figure 10.6.

Proof. — This is proved in Figure 10.7. On (1) we use Figure 10.4
and then apply the opposite of Figure 6.2. To get (2) we use [23, Fig-
ure 71(3)]. �

The piece shown in Figure 10.6 contributes with a connected sum of two
solid tori, obtained from P × S1 by a fiber-parallel Dehn filling.

11. Proof of Theorem 5.3 II: decorated tree with levels.

We conclude in this section the proof of Theorem 5.3.

11.1. Conditions on the shadow X

Let X be a shadow with c∗(X) 6 1. As proved in the previous section,
we may suppose that X decomposes only into pieces homeomorphic to

D, Y111, Y12, X10, or X11.

Moreover, each piece X10 or X11 is adjacent to a disc as in Figures 10.1
and 10.3.
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Figure 11.1. How to transform G into G′.

11.2. The decorated graphs G and G′

Let G be a decorated graph that represents X, with vertices of type
D,Y111, Y12, X10, and X11. We now construct a new graph G′ from G as
shown in Figure 11.1. Every time we find a vertex X10 together with a ±-
gleamed disc as in (1), we substitute it with a new type of vertex as shown
there. When we find a vertex X11 that is attached to two 0-gleamed discs
along its length-2 boundaries as in (2), we substitute it with two new vertices
as shown. If it is adjacent to only one, we substitute it with one new vertex
as in (3).

The graph G′ may be disconnected because of (2). Each connected com-
ponent G′i determines a decomposition of #h(S2 × S1) along tori, where
h depends on i. The new vertices created in Figure 11.1 represent portions
homeomorphic to (A, 3), solid tori, and P×S1, as prescribed by Figures 10.4
and 10.6. We now study this decomposition in detail.

Summing up, the graph G′ contains vertices of these types:

Each 1-valent vertex contributes to the decomposition of #h(S2 × S1)
with a solid torus; the 2-valent vertices contribute with the Seifert manifolds
(A, 2) and (A, 3); each 3-valent vertex contributes with P × S1.

A flat vertex is a vertex v if type .

Proposition 11.1. — We may require that every flat vertex is adjacent
to a vertex .

Proof. — If the flat vertex is adjacent to some other vertex v, it furnishes
a vertical compressing disc. The arguments already used in the proofs of
Proposition 10.4 and 10.6 show that v can be either discarded or simplified
in all cases except . �
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The proof now pursues as follows: we have a decomposition of #h(S2×S1)
into Seifert manifolds of 4 types D × S1, P × S1, (A, 2), and (A, 3). Such
a decomposition must simplify somewhere (in a sense that we need to state
precisely) and in all cases this simplification translates into a simplification
move on X, so we conclude by iteration.

To apply rigorously this idea we unfortunately need to face some tech-
nicalities. The first is to equip G with the structure of a tree with levels,
as in [23]. This structure will allow us to identify a simplification of the 3-
dimensional boundary. The second technical part is the translation of this
3-dimensional simplification into a simplification of the shadow X. Unfortu-
nately, there will be many cases to consider. All the moves in Figures 9.17,
9.19, 9.21, and 9.22 will be needed.

11.3. Decorated trees with levels

We now need to recall a more technical notion from [23]. Recall that G′
has some connected components G′i. A level function on G′i is a function that
assigns a non-negative integer l(v) (the level) to every vertex v of G′i, such
that the following holds:

(1) There are k > 2 vertices with level zero, which form a path v1, . . . , vk
called root.

(2) Every vertex v of valence 2 or 3 is adjacent to precisely one vertex
v′ of strictly higher level l(v′) > l(v);

(3) For every L > 0 the portion of vertices v with bounded level l(v) 6 L
form a (connected) subtree.

In particular, the graph G′i is a tree. One example is shown in Figure 11.2.
There is also a fourth condition related to the induced decomposition of
#h(S2 × S1) that we state soon. For every vertex v, let Sv be the set of all
vertices v′ such that there is a path

v = v1, . . . , vk = v′

with k > 2 and l(v2) > l(v1).

The set Sv is non-empty if and only if v has valence 2 or 3. When non-
empty, the set Sv contains precisely one vertex adjacent to v, and possibly
more; the set Sv forms a subtree of G′i. The vertex v is the only one in G′i\Sv
which is adjacent to some vertex in Sv. We say that Sv is the branch that
starts from v. The vertex v is the base of the branch.

Remark 11.2. — We note that this terminology differs from that used
in [23], where we distinguished between branches, leaves, and fruits. The
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Figure 11.2. A tree with levels. The level function may be deduced
from the picture, with the convention that vertices at the same height
have the same level, and vertices lying below have higher level than
those lying above. There are three vertices at level 0 (the root), five
vertices at level 1, three at level 2, and one at level 3.

presence of additional kinds of vertices here would complicate too much the
terminology, so we prefer to use the term branch in all the possible cases.

Every vertex v in G′i determines a submanifold Mv ⊂ #h(S2 × S1)
bounded by tori. If S is a set of vertices of G′i, we write MS = ∪v∈SMv.

For every v ∈ G′i of valence 2 or 3, the submanifoldMSv
is connected and

has only one boundary torus, attached to one boundary torus of Mv. The
piece Mv is a Seifert manifold, homeomorphic to either P 2 × S1, (A, 2), or
(A, 3). In all cases, the Seifert fibration is unique up to isotopy and induces
a fibration on the boundary tori. We can now state the fourth and last
requirement for our level function l.

(4) For every v of valence 2 or 3, the manifold MSv
should be a solid

torus, whose meridian is attached to a section of the fibration ofMv.

11.4. Reduction to decorated trees with levels

We now adapt [23, Theorem 8.1] to our context.

Proposition 11.3. — We may suppose that each graph G′i has a struc-
ture of decorated tree with levels.

Proof. — The claim in the proof of [23, Theorem 8.1] holds also here with
the same proof, and it says that either a piece P × S1 has a fibre-parallel
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Figure 11.3. This simplifying move applies when the fiber of the
P 2 × S1 lying above the vertex bounds a compressing disc (which
is horizontal with respect to the 3 incident regions in the shadow).

compressing disc, or G′i has a structure of decorated tree with levels. In the
latter case we are done, so we investigate the former. The piece P × S1 is
determined by some 3-valent vertex v of G′.

If v is the move in Figure 11.3 applies and simplifies X. If v is ,
we can attach a horizontal compressing disc and apply Figure 7.2(2) to
transform the vertex into one as in Figure 10.6(left). After the move G′
contains one 3-valent vertex less and we conclude by induction on their
number. �

We will henceforth suppose that each decorated graph G′i has a structure
of decorated tree with levels. A decorated tree with levels describes a 3-
manifold that is either S3 or S2 × S1, see [23, Proposition 8.6].

11.5. Symmetries

We will henceforth consider only trees with vertices representing the
pieces B,D, Y111, Y12, X10, or X11. We note that each of these pieces has
a symmetry that fixes each boundary component and reverses its orienta-
tion. Therefore, as anticipated in Section 4.2, there will be no need to write
explicitly how two adjacent pieces are glued.

11.6. Nice flat vertices

A flat vertex v in G′i is nice if it is adjacent to a of strictly lower level,
and moreover v should not be contained in a portion as in Figure 11.4.

Proposition 11.4. — We may suppose that every flat leaf in G′i is nice.

Proof. — As in [23, Proposition 9.6], this is done using the moves in [23,
Figure 53]. �

We will henceforth suppose that every flat leaf in G′i is nice. The moves
in Figure 11.5 modify a shadow into another shadow of the same block.
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n

k

Figure 11.4. A flat vertex that is not nice.

+1

-1 -1

-1

+1 +1 nm nm

(1) (2)

Figure 11.5. These moves related different decorated tree with levels
of the same block M .

11.7. Torsion of branches

We are particularly interested in the 3 types of branches shown in Fig-
ure 11.6. Each such branch has a torsion q ∈ Z, defined in [23, Section 9.6]
as follows.

Let v be the base of the branch. It defines a block Mv diffeomorphic to
the Seifert manifold P×S1, (A, 2), or (A, 3). The branch defines a solid torus
MSv attached to a boundary torus T of Mv. The torus T has a preferred
homology basis (µ, λ). The meridian µ is the vertical fiber π−1(x) of a point
in X along the natural projection π : ∂N(X) → X. The longitude λ is the
fiber of the (unique) Seifert fibration of Mv, that is indeed horizontal here.
The blockMv is oriented, so T also is, and we orient the pair (µ, λ) positively.

The meridian of the solid torus MSv is attached to a section of the fibra-
tion, that is to a curve µ + qλ for some q ∈ Z. The integer q is the torsion
of the branch.

Proposition 11.5. — At every branch as in Figure 11.6 we may sup-
pose that:

• If v is , then |q| > 2.
• If v is or , either |q| > 2, or |q| = 1 and the branch is
as in Figure 11.7.

Proof. — If q = 0, there is a vertical compressing disc, so we conclude by
Figure 7.2 and Proposition 11.1.
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Figure 11.6. Three particular types of branches.

Figure 11.7. Three particular types of branches with torsion |q| = 1.
We have q = 1 if and only if the sign of the gleam ±1,±,± 3

2 is positive
(regardless of the sign of the small ± contained in the white vertex).

Figure 11.8. If q = 2 this move transforms X into another shadow X ′

of the same block.

If q = ±1 there is a horizontal compressing disc, so after applying Fig-
ure 7.2 the branch Sv becomes a single vertex with the appropriate
gleam that depends on the sign of q. If v is , we get a portion as in Fig-
ure 9.17(2) that may be simplified. In the other cases we get a branch as in
Figure 11.7. �

We will henceforth suppose that the conclusion of Proposition 11.5 holds.
If the torsion is q = ±2, there is yet something that we can do.

Proposition 11.6. — If q = 2 the move in Figure 11.8 transforms the
shadow X into another shadow X ′ of the same block M .
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Proof. — The compressing disc winds twice and we add it as in Fig-
ure 7.1. �

11.8. Plumbing lines

The core of our arguments is a strengthened version of a theorem of
Neumann and Weintraub [33], which deals with plumbings of spheres.

Recall that a plumbing line of spheres is determined by a sequence
(e1, . . . , en) of Euler numbers ei ∈ Z. The following lemma is proved in [23,
Lemma 10.2].

Lemma 11.7. — Let (e1, . . . , en) be a plumbing line, whose boundary is
homeomorphic to either S3 or S2×S1. Up to reversing the sequence and/or
changing all signs, one of the following holds.

• e1 = 0,
• e1 = 1 and n = 1,
• e1 = 1 and e2 ∈ {0, 1, 2, 3},
• ei = 0 for some i 6∈ {1, n} and ei−1ei+1 6 0,
• ei = 1 for some i 6∈ {1, n} and ei−1 ∈ {0, 1, 2, 3}, ei+1 > 0.

The following moves modify the plumbing line while preserving its bound-
ary:

(. . . , ei−1, 0, ei+1, . . .) −→ (. . . , ei−1 + ei+1, . . .),
(0, e2, e3, . . .) −→ (e3, . . .),

(. . . , ei−1, 1, ei+1, . . .) −→ (. . . , ei−1 − 1, ei+1 − 1, . . .),
(1, e2, . . .) −→ (e2 − 1, . . .).

Analogous moves hold with all the signs reversed.

11.9. A particular portion

We are approaching the conclusion of the proof of Theorem 10.1. By
the results proved in the last pages, we may suppose that each G′i is a
decorated tree with levels, that every flat leaf there is nice, and also that
Proposition 11.5 holds.

Our goal is to show that X simplifies somewhere, and to this purpose
we now prove the existence of a particular portion H of G′i wherein this
simplification will be guaranteed to take place.
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Figure 11.9. The tree G′i contains a portion H as in (1) for some
k > 0, where A,B, and each Ci is of one of the types shown in (2).
(If A is of type (a), (d), or (h) the portion H is actually the whole
tree H = G′i.) The (half-)integers ni decorate the horizontal edges and
are arbitrary. There are two possible instances J1 and J2 of the same
portion J depending on left-right orientation.

Proposition 11.8. — The graph G′i contains a portion H as in Fig-
ure 11.9(1) for some k > 0, where the various possibilities for the subpor-
tions A, B, Ci are shown in Figure 11.9(2). Moreover, the portion H is not
equal to (L), (T ), (F ), (D) nor (J).
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1 1

e -11 e -22

1

e -23 e -1ne -2n-1

Figure 11.10. A tree H ′ with one level, that may be obtained as the
perturbation of a plumbing line with Euler numbers (e1, . . . , en).

Proof. — Let v be a vertex in G′i with the highest level among those such
that the branch Sv is non-empty, and such that:

(1) the rooted branch {v} ∪ Sv is not as in Figure 11.6, and
(2) the rooted branch {v}∪Sv is not equal to (L), (T ), (F ), (D), nor (J).

If such a vertex v exists, the rooted branch {v} ∪ Sv is our H and we are
done. If v does not exist, the whole H = G′i is as required. �

We now construct from H a tree H ′ as in Figure 11.10. We do this by
substituting each piece A, B, and Ci as prescribed by Figure 11.11. The
resulting graph still describes a decomposition of S3 or S2 × S1 because of
the following.

Proposition 11.9. — The moves in Figure 11.11 transform G′i into
another decorated tree with levels, that still encode a manifold S3 or S2 ×
S1. If one of the moves (b), (c), (g), or (i) is performed, the manifold is
necessarily S3.

Proof. — Concerning (b), (c), (d), (f), (T), and (F), this was already
proved in [23, Figure 67]. Moves (g) and (i) follow from Figure 10.4 and (b).
Moves (h), and (k) follow from Figure 10.6. Moves (j), (l), (E), and (J) are
proved like in [23, Proposition 9.10], using Figure 10.4. Move (D) is obtained
from Figure 10.6 by sliding an edge as in Figure 9.3(1). �

We note that H ′ is just the perturbation of a plumbing line of spheres
with labels (e1, . . . , en). The encoded 3-manifold is either S3 or S2×S1 and
Lemma 11.7 applies.

11.10. Conclusion of the proof

The proof ends as in [23]. Lemma 11.7 furnishes a list of possibilities,
and we prove that each determines a portion in G that may be simplified.
Unfortunately, there are around 100 configurations to analyze by hand.
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Figure 11.11. These moves produce a graph for #h(S2 × S1). Here q
is the torsion of the branch. Everything holds also with all signs re-
versed.

To preserve clarity, we first suppose that Z does not contain any flat
leaves. The portions A, B, Ci contribute to the plumbing line (e1, . . . , en) as
shown in Table 11.1, following Figure 11.11.
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Table 11.1. Contribution of each piece to the plumbing line (e1, . . . , en).

(c), (g), (h) (k) (d) (f) (j) (l)

(2, . . .) (. . . , 2) (2,−q,−2, . . .) (. . . ,−2,−q, 2) (3,−q,−3, . . .) (. . . ,−3,−q, 3)

(i) (F) (D) (E) (J1) (J2)

(−3, . . .) (. . . , 4, . . .) (. . . , 2, . . .) (. . . , 2,−q,−2, . . .) (. . . , 4,−2, . . .) (. . . ,−2, 4, . . .)

We recall from Proposition 11.5 that in (d), (f), (j), and (l) we have |q| > 1
and in (E) we have |q| > 2. Moreover, if |q| = 1 then the portion is as in
Figure 11.7.

11.11. The case k = 0

We consider first the case k = 0, i.e. there is no Ci. The portion Z thus
consists of the pieces A and B glued together. The various possibilities,
considered only up to reversing all signs, are shown in Figure 11.12. The
cases in the grey box were already covered in [23]: in each case either the
shadow X can be simplified, or we can do some move that decreases the level
on some vertex in G′i and we conclude by induction on the sum of the levels
of the vertices, see the end of [23, Theorem 11.3].

We analyze each of the remaining cases separately. We apply Lemma 11.7
throughout the discussion.

(eg) The sequence is (2, x+ 1
2 ), so x = ± 1

2 . The graph G hence contains
a portion as in Figure 9.17(1) and can be simplified.

(eh) Same as above.
(ei) The sequence is (−3, x− 1

2 ), so x = 1
2 . The graph contains a portion

as in Figure 9.19(1) and can be simplified.
(ej) The sequence is (3,−q,−3, x − 1

2 ) with |q| > 1, and it never gives
S3 nor S2 × S1.

(fg) The sequence is (2, x,−2,−q, 2) with |q| > 1, and it never gives S3

nor S2 × S1.
(fh) Same as above.
(fi) The sequence is (−3, x− 1,−2,−q, 2) with |q| > 1. This gives x = 0

and q ∈ {1, 2}. If q = 1 we get a portion as in Figure 11.7 and
everything simplifies using Figure 9.19(4). If q = 2 we perform the
move in Figure 11.8, then the inverse of Figure 9.19(3) and finally
Figure 9.21(2). As a result we have substituted a vertex X10 with
a vertex X11 and we conclude by induction on the number of ver-
tices X10.
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Figure 11.12. When k = 0, the portion Z consists of A and B glued
together and thus looks like one of the pictures listed here (up to
changing simultaneously all signs).

(fj) The sequence is (3,−q,−3, x − 1,−2,−q′, 2) with |q|, |q′| > 1. We
get x = 0 and the sequence is equivalent to (3,−q+1,−q′+2, 2). We
get either q = 1, or q′ = 1, or q′ = 2. In the first case we simplify
the shadow using Figure 9.19(5). In the two subsequent cases we
conclude as above.

(ka) = (eh).
(kb) The sequence is (x + 1

2 , 2), so x = ± 1
2 However, this is excluded

since H 6= (D).
(kc) The sequence is (2, x+ 1, 2) and it never gives S3.
(kd) = (fh).
(kg) We conclude as in (kc).
(kh) The sequence is (2, x + 1, 2) and hence x = 0. If the two vertices

represent the same X11 then G is as in Figure 4.8(right), so M =
RP3 × S1 and we are done. If they represent two different X11 then
we simplify using Figure 9.17(5).

(ki) The sequence is (−3, x, 2). Therefore x = 0 and Figure 9.21(2) ap-
plies.

(kj) The sequence is (3,−q,−3, x, 2). Therefore x = 0 and we conclude
as above.

(la) = (ej).
(lb) The sequence is (x − 1

2 ,−3,−q, 3) with |q| > 1, and it never gives
S3 nor S2 × S1.
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(lc) The sequence is (2, x,−3,−q, 3), so x = 0 and q = 1. We use Fig-
ure 9.19(5).

(ld) = (fj).
(lg) The sequence is (2, x,−3,−q, 3), so x = 0 and q = 1. This is excluded

since H 6= (J).
(lh) = (ej)
(li) There are two cases corresponding to the sign ±. If positive, we get

the sequence (−3, x, 3, q,−3) that never gives S3. If negative, we get
(−3, x− 1,−3,−q, 3) that never gives S3 neither.

(lj) There are two cases corresponding to the sign ±. If positive, we get
the sequence (3,−q,−3, x, 3, q′,−3), so x = 0 and Figure 9.19(7)
applies. If negative, we get (3,−q,−3, x − 1,−3, q′, 3) that never
gives S3 nor S2 × S1.

11.12. The case k > 1

We now turn to the case k > 1. We first consider a portion formed by
A and C1 as in Figure 11.13. We use implicitly Figure 11.5(1) at various
points.

The cases in the grey box were already covered in [23], and we analyze
each of the remaining cases separately.

(Lg) The sequence starts as (2, x + 3
2 , . . .). If x + 3

2 ∈ {0, 1} then x ∈{
− 3

2 ,−
1
2
}
and the shadow simplifies as in Figure 9.17(3).

(Lh) Same as above.
(Li) The sequence starts as (−3, x + 1

2 , . . .). If x + 1
2 = 0 then x = − 1

2
and we use Figure 9.19(2). If x+ 1

2 = −1 the sequence must simplify
also somewhere else.

(Lj) The sequence starts as (3,−q,−3, x + 1
2 , . . .) with |q| > 1 and we

conclude as above.
(Fg) The sequence starts as (2, x+ 1

2 , 4, . . .). If x+ 1
2 = 1 then x = 1

2 and
the shadow simplifies as in Figure 9.17(8).

(Fh) Same as above.
(Fi) There are two cases to consider depending on the sign ±. In the

positive case, the sequence starts as (3, x + 1
2 , 4, . . .). If x + 1

2 = 1
the sequence must simplify somewhere else. In the negative case, it
starts as (−3, x − 1

2 , 4, . . .). If x −
1
2 = 0 then x = 1

2 and we use
Figure 9.21(4).

(Fj) Similar as above.
(Da) The sequence starts as (x + 1, 2, . . . , ). If x + 1 ∈ {0, 1} then x ∈

{−1, 0}. If x = 0 we simplify as in Figure 6.2. If x = −1 we simplify
as in Figure 9.17(3).
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Figure 11.13. Portions obtained as the union of A and C1 (up to
changing simultaneously all signs).

(Db) As above we conclude that x ∈ {−1, 0}. If x = 0 we may slide the
edge as in [23, Figure 71(5)] and we conclude by induction on the
sum of the levels of all vertices. If x = −1 we use Figure 9.17(4) to
get x = 0.

(Dc) The sequence starts as (2, x + 3
2 , 2, . . .). If x + 3

2 = 1 then x = − 1
2

and we simplify X as in Figure 9.17(10).
(Dd) The sequence starts as (2,−q,−2, x + 1

2 , 2, . . .). If x + 1
2 = 0 we

conclude as above.
(Dg) The sequence starts as (2, x + 3

2 , 2, . . .). If x + 3
2 = 1 then x = − 1

2
and we simplify X as in Figure 9.17(9).

(Dh) Same as above.

– 1205 –



Yuya Koda, Bruno Martelli and Hironobu Naoe

(Di) The sequence starts as (−3, x+ 1
2 , 2, . . .). If x+ 1

2 = 0 then x = − 1
2

and we simplify as in Figure 9.21(1) after applying Figure 9.17(4).
(Dj) The sequence starts as (3,−q,−3, x + 1

2 , 2, . . .) and we conclude as
above.

(Ea) The sequence starts as (x + 1
2 , 2,−q,−2, . . .) with |q| > 2. If x = 1

2
we use Figure 9.17(1).

(Eb) The sequence starts as (x+ 1
2 , 2,−q,−2, . . .) with |q| > 2. If x = 1

2 ,
we may replace this initial sequence with (−q − 1,−2, . . .). Now
−q − 1 6= −1, 0 and hence the sequence must simplify somewhere
else by Lemma 11.7.

(Ec) The sequence starts as (2, x+1, 2,−q,−2, . . .) with |q| > 2. If x = 0,
we use Figure 9.17(6).

(Ed) The sequence starts as (2,−q,−2, x, 2,−q′,−2, . . .) with |q| > 1 and
|q′| > 2. If x = 0 we simplify the graph as in Figure 9.17(6).

(Eg) The sequence starts as (2, x+ 1, 2,−q,−2, . . .) with |q| > 2. If x = 0
we use Figure 9.17(5).

(Eh) We conclude as above.
(Ei) The sequence starts as (−3, x, 2,−q,−2, . . .) with |q| > 2. If x = 0

this is eqivalent to (−q + 1,−2, . . .). If −q + 1 = −1 then q = 2 and
we can apply Figure 11.8. Now we use Figure 9.21(5).

(Ej) The sequence starts as (3,−q,−3, x, 2,−q′,−2, . . .) with |q| > 1 and
|q′| > 2. If x = 0 the sequence is equivalent to (3,−q + 1,−q′ +
1,−2, . . .). There are two cases to consider:
• If −q + 1 = 0 the sequence is equivalent to (4 − q′,−2, . . .).
Then, if q′ = 4 or q′ = 5 we deduce that there is a horizontal
disc as in Figure 11.14 and then we simplify using Figure 7.2
and 9.17(1).

• If −q′ + 1 = −1 then q′ = 2 and we conclude as in (Ei).
(J1a) The sequence starts as (x, 4,−2, . . .) and it must simplify somewhere

else.
(J1b) Same as above.
(J1c) The sequence starts as (2, x + 1

2 , 4,−2, . . .) and it must simplify
somewhere else.

(J1d) The sequence starts as (2,−q,−2, x − 1
2 , 4,−2, . . .) with |q| > 1.

If x = 1
2 this is equivalent to (2,−q, 2,−2, . . .). If q = −1 we use

Figure 9.21(8).
(J1g) The sequence starts as (2, x + 1

2 , 4,−2, . . .) and it must simplify
somewhere else.

(J1h) Same as above.
(J1i) There are two cases to consider depending on the sign ±. If positive,

the sequence starts as (3, x + 1
2 , 4,−2, . . .). If negative, it starts as

(−3, x− 1
2 , 4,−2, . . .). In both cases it must simplify somewhere else.
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Figure 11.14. In (Ej) if (q, q′) = (1, 4) or (1, 5) we can attach a hori-
zontal disc as shown here.

(J1j) There are two cases to consider depending on the sign ±.
• If positive, the sequence starts as (−3,−q, 3, x + 1

2 , 4,−2, . . .)
with |q| > 1 and it must simplify somewhere else.
• If negative, it starts as (3,−q,−3, x− 1

2 , 4,−2, . . .) with |q| > 1.
If x − 1

2 = 0 it is equivalent to (3,−q, 1,−2, . . .) and hence
(3,−q − 1,−3, . . .). If q = −1 we get (0, . . .). We deduce that
there is a vertical disc and after Figure 7.2 we get a portion as
in Figure 11.15. We conclude as in Proposition 11.1.

(J2a) The sequence starts as (x− 1
2 ,−2, 4, . . .) and it must simplify some-

where else.
(J2b) Same as above.
(J2c) The sequence starts as (2, x,−2,4, . . .). If x=0 we use Figure 9.17(6).
(J2d) Similar as above.
(J2g) The sequence starts as (2, x,−2,4, . . .). If x=0 we use Figure 9.17(5).
(J2h) Same as above.
(J2i) There are two cases to consider depending on the sign ±. If posi-

tive, the sequence starts as (3, x,−2, 4, . . .). If negative, it starts as
(−3, x−1,−2, 4, . . .). In both cases it must simplify somewhere else.

(J2j) There are two cases to consider depending on the sign ±.
• If positive, the sequence starts as (−3,−q, 3, x,−2, 4, . . .) with
|q| > 1. If x = 0 we get (−3,−q − 1, 3, . . .). If q = −1 we get
(0, . . .) and a vertical disc, so we conclude as in (J1j).

• If negative, it starts as (3,−q,−3, x−1,−2, 4, . . .) with |q| > 1.
If x = 0 we get (3,−q,−2,−1, 4, . . .) and hence (3,−q+1, 6, . . .)
that simplifies somewhere else.

The portion comprising Ck and B is treated analogously. We now in-
vestigate a portion involving Ci and Ci+1 as in Figure 11.16. We use Fig-
ures 11.5(1) and 9.17(4) at various points (sometimes implicitly) to modify
the sign of the portions (L) and (D). The cases in the grey box were already
covered in [23], and we analyse each of the remaining cases separately.

(DL) The sequence contains (. . . , 2, x + 2, . . .). If x + 2 ∈ {0, 1} then
x ∈ {−2,−1}. In both cases we can use Figures 11.5(1) and 9.17(4)
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Figure 11.15. In (Ej) if q = −1 there is a vertical disc.

Figure 11.16. Portions obtained as the union of Ci and Ci+1 (up to
changing simultaneously all signs).
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to get a configuration where actually x = 0, so that we can slide (L)
above (D) and then simplify using Figure 9.17(3).

(DF) The sequence contains (. . . , 2, x + 1, 4, . . .). If x + 1 = 1, then x =
0 and we can slide (D) above (F), and then simplify using Fig-
ure 9.17(8).

(DD) The sequence contains (. . . , 2, x+2, 2, . . .). If x+2 = 1 then x = −1
and after Figure 9.17(4) we can slide one (D) above the other and
apply Figure 9.17(9).

(EL) The sequence contains (. . . , 2,−q,−2, x + 1
2 , . . .) with |q| > 2. If

x + 1
2 ∈ {−1, 0}, then x ∈

{
− 3

2 ,−
1
2
}

and we simplify using Fig-
ure 9.17(3).

(EF) The sequence contains (. . . , 2,−q,−2, x − 1
2 , 4, . . .) with |q| > 2. If

x− 1
2 = 0, then x = 1

2 and we simplify using Figure 9.17(8).
(ED) The sequence contains (. . . , 2,−q,−2, x + 1

2 , 2, . . .) with |q| > 2. If
x+ 1

2 = 0, then x = − 1
2 and we simplify as in Figure 9.17(9).

(EE) The sequence contains (. . . , 2,−q,−2, x − 1,−2,−q′, 2, . . .) with
|q|, |q′| > 2. If x − 1 = −1, then x = 0 and we simplify via Fig-
ure 9.17(5).

(J1L) The sequence contains (. . . , 4,−2, x+ 1
2 , . . .). If x+ 1

2 ∈ {−1, 0} then
x ∈ {− 3

2 ,−
1
2} and we simplify using Figure 9.17(3).

(J1F) There are two cases depending on the sign ±1.
– If positive, the sequence contains (. . . , 4,−2, x − 1

2 , 4, . . .). If
x− 1

2 = 0 we simplify using Figure 9.17(8).
– If negative, the sequence contains (. . . , 4,−2, x− 1

2 ,−4, . . .). If
x− 1

2 = −1 we simplify using Figure 9.17(8) again.
(J1D) The sequence contains (. . . , 4,−2, x+ 1

2 , 2, . . .). If x+ 1
2 = 0 we use

Figure 9.17(9).
(J1E) The sequence contains (. . . , 4,−2, x, 2,−q,−2, . . .) with |q| > 2. If

x = 0 we use Figure 9.17(5).
(J1J1) There are two cases depending on the sign ±. If positive, the se-

quence contains (. . . , 4,−2, x− 1
2 ,−4, 2, . . .), and if negative it con-

tains (. . . , 4,−2, x − 1
2 , 4,−2, . . .). In both cases it simplifies some-

where else.
(J1J2) There are two cases depending on the sign ±.

– If positive, the sequence contains (. . . , 4,−2, x, 2,−4, . . .). If
x = 0 we simplify using Figure 9.17(5).

– If negative, it contains (. . . , 4,−2, x−1,−2, 4, . . .). If x−1 = −1
it is equivalent to (. . . ,4,−1,−1,4, . . .) and hence to (. . . , 9, . . .).
The sequence simplifies somewhere else.

(J2L) The sequence contains (. . . ,−2, 4, x + 1, . . .). If x = −1 we apply
Figure 9.21(7).

(J2F) There are two cases depending on the sign of ±1.
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– If positive, the sequence contains (. . . ,−2, 4, x, 4, . . .) and the
sequence simplifies somewhere else.

– If negative, the sequence contains (. . . ,−2, 4, x,−4, . . .). If x =
0 we simplify using Figure 9.21(8).

(J2D) The sequence contains (. . . ,−2, 4, x+ 1, 2, . . .). If x = 0 we simplify
using Figure 9.21(6).

(J2E) The sequence contains (. . . ,−2, 4, x+ 1
2 , 2,−q,−2, . . .) with |q| > 2.

If x = 1
2 this is equivalent to (. . . ,−2, 3, 1,−q,−2, . . .) and hence

(. . . ,−2, 2,−q− 1,−2, . . .). The sequence simplifies somewhere else.
(J2J1) There are two cases depending on the sign ±. If positive, the se-

quence contains (. . . ,−2, 4, x,−4, 2, . . .), and if negative it contains
(. . . ,−2, 4, x, 4,−2, . . .). In the positive case, if x = 0 we simplify
using Figure 9.22. In the negative case it simplifies somewhere else.

We are left to consider the presence of flat vertices. A flat vertex is just
a drilling along some simple closed curve γ and does not affect the sequence
(e1, . . . , en), so each simplification move X → X ′ as those described above
holds, provided that we priorly remove the flat vertex. In all the cases one
can verify that we can afterwards regenerate a flat vertex in X ′ that drill a
curve γ′ homotopic (and hence isotopic) to γ and disjoint from SX ′, so we
are done. This holds for all the moves in Figures 9.17, 9.19, 9.21, and 9.22.
The only exception is the case (kh) where with an additional flat vertex we
get the shadow X12 shown in Figure 6.6.

The proof of Theorem 5.3 is now complete.
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