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On essential-selfadjointness of differential operators on
closed manifolds (∗)

Yves Colin de Verdière (1) and Corentin Le Bihan (2)

ABSTRACT. — The goal of this paper is to present some arguments leading to the
following conjecture: a formally self-adjoint differential operator on a closed manifold
is essentially self-adjoint if and only if the Hamiltonian flow of its symbol is com-
plete. This holds for differential operators of degree two on the circle, for differential
operators of degree one on any closed manifold and for Lorentzian Laplacians on
generic Lorentzian surfaces.

RÉSUMÉ. — Le but de cet article est de présenter des arguments conduisant à
la conjecture suivante : sur une variété compacte, un opérateur pseudo-différentiel
formellement symétrique est essentiellement auto-adjoint si et seulement si le flot
Hamiltonien du symbole est complet. Nous montrons cette conjecture pour les opé-
rateurs différentiels de degré 2 dans le cas du cercle, pour les opérateurs différentiels
de degré 1 et pour le laplacien lorentzien des surfaces Lorentziennes génériques.

1. Introduction

Let X be a compact smooth(1) manifold without boundary equipped
with a smooth density |dx|. We will often denote by L2 the Hilbert space
L2(X, |dx|). Let P be a differential operator of degree 2 on X with smooth
coefficients acting on complex valued functions. We assume in what follows
that P is symmetric, i.e., for any pair of smooth complex valued functions
f, g on X, we have

∫
X

Pf g|dx| =
∫

X
f Pg|dx|.
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The adjoint P ⋆ of P is then defined as follows: the domain D(P ⋆) is the
set of distributions f ∈ L2 so that Pf belongs to L2 and P ⋆ is the operator
P acting on such distributions.

Definition 1.1. — A symmetric linear differential operator with smooth
coefficients P is essentially self-adjoint (denoted ESA in what follows) if the
graph of P ⋆ in L2×L2 is the closure of the graph of P with domain the smooth
functions on X. More explicitely, for each v = Pu with u, v ∈ L2, there
exists a sequence (un, vn) with un smooth, vn = Pun and (un, vn) → (u, v)
in L2 × L2.

The ESA property is also called Quantum completeness because the evo-
lution equation du/dt = iPu with u(t = 0) = f , with f smooth, has then
an unique solution defined for t ∈ R and denoted u(t) = exp(itP )f (see [12,
§VIII]).

On the other hand, P admits a principal symbol and also a sub-principal
symbol: if one chooses local coordinates x = (x1, . . . , xn) so that |dx| =
|dx1 . . . dxn|, and if P =

∑
∂

∂xk
akl(x) ∂

∂xl
+

∑
bk(x) ∂

∂xk
+ c(x), the princi-

pal symbol is p2 := −
∑

akl(x)ξkξl and the sub-principal symbol is p1 :=
i
∑

bk(x)ξk (see [7, §3]). Note that, if P is symmetric, p1 and p2 are real
valued. We denote p = p2 + p1 and call it the symbol of P . Note that p is
real valued if P is formally symmetric. The symbol p is independent of the
choice of local coordinates as soon as interpreted as a function on the cotan-
gent space T ⋆X. The cotangent space is a symplectic manifold and one can
use p as an Hamiltonian function on it. We say that P is classically complete
if the Hamiltonian flow of p is complete: it means that the maximal interval
of definition of any integral curve of the Hamiltonian vector field of p is R.

A natural question is then: how are classical and quantum completeness
related? The goal of this article is to give very partial answers to this ques-
tion. We will state a possible answer as the

Conjecture 1.2. — Let P be a formally self-adjoint differential opera-
tor of degree 2 on C∞(X) where X is a closed smooth manifold equipped with
a smooth density |dx|, classical and quantum completeness are equivalent.

As we will see, this conjecture holds true in the following cases:

(1) Differential operators of degree 2 on the circle of the form
P = a(x)d2

x + . . .

where all zeroes of a are of finite order.
(2) Differential operators of degree 1.
(3) Generic and conformally flat Lorentzian Laplacians on 2-tori.

– 1288 –



On essential-selfadjointness of differential operators on closed manifolds

Let us describe other known results on this question: a classical result
is that classical completeness and quantum completeness are not equivalent
in general; examples of Schrödinger operators on R are given in [12, §X-
1, p. 155–157]. However the potentials involved are quite complicated near
infinity: they do not admit a polynomial asymptotic behaviour. A classical
results in this domain is Gaffney’s Theorem [6] which states that, if a Rie-
mannian manifold (X, g) is complete, the Laplace operator on it is ESA. For
a clear proof, see [4, p. 151–152]. For a more recent work on this aspect,
see [1].

Acknowledgements

Many thanks to Christophe Bavard, Yves Carrière, Etienne Ghys, Nico-
las Lerner and Bernard Malgrange for several discussions helping us. Many
thanks also to the referee for many remarks helping us to make the paper
more accessible.

2. General facts on ESA operators

2.1. Abstract context

Let us recall some classical results which can be found in [12, §X]. Let
(H, ⟨ · | · ⟩) be an Hilbert space. A linear operator P : D(P ) → H with
D(P ) a dense subspace of H is said to be symmetric if, for all x, y ∈ D(P ),
⟨Px|y⟩ = ⟨x|Py⟩. The closure of P is the operator P whose graph is the
closure of the graph of P in H×H. The adjoint P ⋆ of P is defined as follows:
the domain D(P ⋆) is the set of x ∈ H so that y → ⟨Py|x⟩ as defined on
D(P ) extends continously to H. We have then ⟨Py|x⟩ ≡ ⟨y|z⟩ and we define
P ⋆x = z. The operator P is ESA if P ⋆ is the closure of P . In other words, P
has an unique self-adjoint extension. A useful property is the following one

Theorem 2.1. — A symmetric operator P on an Hilbert space H is ESA
if and only if the spaces kerH(P ⋆ ± i) are {0}.

2.2. The case of differential operators on compact manifolds with-
out boundary

Recall that a differential operator with smooth coefficients acts on
Schwartz distributions and in particular on L2 functions. In particular, we
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see that any symmetric elliptic operator P on a closed manifold is ESA: if
(P ± i)u = 0, u is smooth and the result follows from the symmetry of P .
This is why we are only interested here to non elliptic operators.

2.3. The case of differential operators on a compact interval

Let X := [α, β] be a compact interval. We consider a differential operator
P of degree 2 whose coefficients are smooth up to the boundary. Assum-
ing that P is symmetric on C∞

c (]α, β[, |dx|) (it is usually called formally
symmetric), then P is given by the equation (4.1).

We want to describe the Dirichlet boundary conditions. For that, we
assume that P is elliptic near the boundary, i.e. that a does not vanish
at the points of ∂X. We will take for domain of P the space D(P ) :=
C∞(X,C) ∩ {f |f |∂X = 0}.

Lemma 2.2. — The domain of P ⋆ is then the set of L2 functions g so
that Pg ∈ L2, where P is acting on distributions defined in the interior of
X and g vanishes on the boundary.

Proof. — We get first that Pg ∈ L2 by looking at
∫

X
Pfg|dx| with f ∈

C∞
c (]α, β[). It follows that g is continuous near the boundary. Then we have,

if f ∈ D(P ), ∫
X

(Pfg − fPg)|dx| = [af ′g]βα

We have to control the righthandside in terms of the L2 norm of f which is
clearly not possible if g does not vanish on the boundary because a does not
vanish at on ∂X. □

2.4. Localization

Let us prove the following localization

Lemma 2.3. — Let P be a symmetric operator of degree 2 on a the circle.
Let Z ⊂ X be the closed set of points where P is not elliptic. We assume that
Z is a finite set Z = {x1, . . . , xN }. Let Ω =

⋃N
j=1[αj , βj ] be a neighbourhood

of Z so that P is elliptic near the boundary of Ω. Then P is ESA if and only
if the Dirichlet restriction PΩ of P to Ω is ESA.

Proof. — Let us first prove that, if PΩ is ESA, P is ESA: let us take
a ρ ∈ C∞

c (Ω) with ρ ≡ 1 near Z. Then, if Pu = v with u, v ∈ L2(X),
(1 − ρ)u belongs to the Sobolev space H2(X) by ellipticity of P on the
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support of 1−ρ. In particular P ((1−ρ)u) ∈ L2. There exists (u′
n, v′

n = Pu′
n)

a sequence of smooth functions converging to ((1 − ρ)u, P ((1 − ρ)u) in L2

by density of C∞(X) in H2(X). We have now P (ρu) = w with ρu, w ∈ L2

and support(ρu) ⊂ Ω. ESA of PΩ allows to approximate (ρu, w) by smooth
functions (u′′

n, v′′
n = Pu′′

n) and we can assume that u′′
n vanishes near the

boundary because ρu does. Then (u′
n + u′′

n, v′
n + v′′

n) are smooth, converge to
(u, v) in L2 × L2 and P (u′

n + u′′
n) = v′

n + v′′
n. This allows to conclude that P

is ESA.

Let us now prove that if P is ESA, PΩ is ESA: let us start with PΩu = v
with (u, v) ∈ L2(Ω), u ∈ H2 near the boundary and u(∂Ω) = 0. We choose
ρ ∈ C∞

c (Ω) with ρ = 1 near Z. Similarly to the previous argument, we
decompose u = ρu + (1 − ρ)u. And by ellipticity of P near ∂Ω we get that
(1 − ρ)u belongs to the Sobolev space H2

0 (Ω) of distributions which are in
H2(Ω) and vanish at the boundary. By density of smooth functions vanishing
at the boundary in the Sobolev space H2

0 , we get an approximating sequence
to ((1 − ρ)u, P ((1 − ρ)u). Now we are left with ρu with P (ρu) ∈ L2 and we
use the fact that P is ESA to get an approximating sequence (u′

n, Pu′
n)

on X. Choosing ρ1 ∈ C∞
c (Ω) with ρ1 = 1 on the support of ρ, we take

u′′
n = ρ1u′

n and we get an approximating sequence for (ρu, P (ρu)). This
allows to conclude. □

Note that the previous localization result extends probably to higher
dimensional manifolds, but this extension is much less simple.

3. Essential self-adjointness of differential operators of degree 1

The following property goes back to Friedrichs [5] as cited by Hörman-
der [8].

Lemma 3.1. — Let P be a differential operator of degree 1 on a closed
manifold X and u ∈ L2(X) so that Pu ∈ L2(X). There exists a sequence
uj ∈ C∞(X) so that uj → u and Puj → Pu both in L2(X).

If P is symmetric, this implies that the closure in L2 ⊕ L2 of the graph
of P restricted to smooth functions is the graph of the adjoint of P . Hence
P with domain C∞(X) is essentially self-adjoint.

Theorem 3.2. — Any symmetric differential operator of degree 1 on a
closed manifold is essentially self-adjoint.

This holds in particular for differential operators of the form P := i(V +
1
2 div|dx|(V )) where V is a vector field and div|dx|(V ) := d(ι(V )dx)/dx where
ι is the inner product.
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In the note [9], Nicolas Lerner remarks that this property extends to
pseudo-differential operator of degree 1.

This is related to our problem because then the Hamiltonian flow is com-
plete at infinity: the Hamiltonian vector field of p is bounded by C∥ξ∥ and
the completeness at infinity follows from Gronwall lemma.

4. Sturm–Liouville operators on the circle

4.1. Main result

Any symmetric operator on the circle S1 = R/Z equipped with the
Lebesgue measure |dx| can be written as

P = dxa(x)dx − ib(x)dx − i
1
2b′(x) + c(x) (4.1)

where dx := d/dx, a, b, c are smooth real valued periodic functions of pe-
riod 1. We assume always in what follows that the zeroes of a are of finite
multiplicities. The symbol p of P is

p = −a(x)ξ2 + b(x)ξ

The term c(x) plays no role in the essential self-adjointeness, so we will forget
it in what follows.

Our main result is

Theorem 4.1. — For operators P of the previous form, classical com-
pleteness of the Hamiltonian flow of p is equivalent to quantum completeness
of P .

Our proof consists in describing the properties of a and b leading to
classical completeness and to study the quantum completeness in the corre-
sponding cases.

Note that the result in the case where the zeroes of a are non degenerate
is also proved using some microlocal analysis in [14].

4.2. Classical completeness

We have the
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Theorem 4.2. — Let p := −a(x)ξ2 + b(x)ξ where the zeroes of a are
of finite multiplicity. Then the Hamiltonian flow of p is complete on T ⋆S1

if and only if the zeroes of a are not simple and b vanishes at these zeroes.
Moreover, this flow is complete if and only if it is null complete, i.e. complete
when restricted to p−1(0).

Proof. — Recall that the Hamiltonian differential equation writes

dx/dt = −2a(x)ξ + b(x), dξ/dt = a′(x)ξ2 − b′(x)ξ.

The function p is constant along the integral curves. We will denote by
(x0, ξ0) the data at time 0 of the integral curves that we will consider.

The proof splits into three cases:

Case 1: Assume that a(0) = 0 and b(0) > 0. — We will show that the
flow is not null complete. Let us look at the set p = 0 near x = 0. This set
is the union of the disjoint curves {ξ = 0} and C := {a(x)ξ − b(x) = 0}.
The curve C ∩ {x > 0} is oriented by the flow so that x is decaying because
then dx/dt = −b(x). Let us start on C, with x0 > 0 small enough and ξ0 so
that −a(x0)ξ0 + b(x0) = 0. Then −a(x(t))ξ(t) + b(x(t)) = 0 for all t. Along
C, we have dx/dt = −b(x). Hence, there exists t0 > 0 so that x(t0) = 0 and
ξ(t0) = +∞. The flow is not null complete: the maximal integral curve is
only defined up to t−

0 .

Case 2: Assume that 0 is a non degenerate zero of a and b(0) = 0. —
Let us start with x0 = 0 and ξ0 ̸= 0. We have x(t) = 0 for all t and
dξ/dt = a′(0)ξ2 − b′(0)ξ. The solution of this differential equation is not
defined for all t’s because a′(0) ̸= 0. The flow is not null complete.

Case 3: Assume now that zeroes of a are degenerate and b vanishes on
a−1(0). — We want to prove that the flow is complete. We have, by conser-
vation of p, for any integral curve, there exists E so that −a(x)ξ2+b(x)ξ ≡ E.
It follows that ξ stays bounded on any compact interval in x disjoint from
a−1(0). We need only to consider what happens when x(t) comes close to a
zero of a, says x = 0.

Let us first assume that x0 = 0, then x(t) ≡ 0 for all t and dξ/dt =
−b′(0)ξ. The trajectory is complete.

If x0 ̸= 0 is close to 0, we get dx/dt = ±
√

−4a(x)E − b(x)2 = O(|x|). It
follows that x(t) does not reach 0 in finite time and hence the integral curve
ie defined for all times. □
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4.3. Simple zeroes of a

We will show in this section that if a(0) = 0 is a simple zero of a then P
is not ESA.

Let I := [−α, α] with no other zeroes of a inside I. The point 0 is a regular
singular point (see Appendix A) of the differential equation (P − i)u = 0.

The indicial equation writes Ar2 − iBr = 0 with A := a′(0), B = b(0).
Hence the solutions of this equation near 0 writes, for x > 0, y(x) = f(x) +
x

iB/A
+ g(x) if B ̸= 0 and y(x) = f(x) + g(x) log x if B = 0 with f, g smooth

up to x = 0 (see Appendix A) and similarly for x < 0 with x− and log(−x).

Let y+ be the unique solution of (P − i)y+ = 0, y′
+(α) = 0, y′

+(α) = 1 on
]0, α], so that y+ satisfies the Dirichlet boundary condition at α. And define
y− similarly with y−(−α) = 0. If we extend y+ by zero for x < 0, we get a
Schwartz distribution Y+ and (P −i)Y+ is supported by the origine. We have
PY+ = dxdxaY+ + dx[a, dx]Y+ − ibdxY+ − ib′Y+/2. We check that dxaY+
is in L2

loc. So that (P − i)Y+ is near 0 in the Sobolev space H−1, because
dxaY+ ∈ L2. The derivatives δ′(0), . . . of the Dirac distribution are not in
H−1. We have the same result for Y−. It follows that (P − i)Y± = µ±δ(0).

Hence there is a non zero linear combination Y of Y+ and Y− which
satisfies (P − i)Y = 0 and the Dirichlet boundary conditions at ±α. This
proves that PI is not ESA and hence P is not ESA by Lemma 2.3.

4.4. Degenerate zeroes where b(0) vanishes

Let us assume that all zeroes of a are degenerate. Then if I =]c, d[ is an
interval between two zeroes of a and assume a > 0 on I, we will show that
there is an explicit unitary map from L2(I, |dx|) onto L2(R, |dy|) sending
C∞

c (I) (the set of operator with compact support on I) into C∞
c (R) (set of

operator with compact support on R) and sending P to Q = d2
y + V with

an explicit V .

First step: a gauge transform. — Let us consider PS := e−iSPeiS where
S is smooth and real valued. We get, by an easy calculation,

PS = dxadx − i(b − 2aS′)dx − i(b′/2 − a′S′ − aS′′) − aS′2 + bS′

Choosing S so that S′ = b/2a, we get

PS = dxadx + b2/4a
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Second step: a change of variable. — Let us choose x0 ∈ I. Let us define
y = ϕ(x) =

∫ x

x0
a− 1

2 (t)dt. The map ϕ is smooth diffeomorphism in I onto
R. Let us introduce the unitary transform Ω : L2(I, |dx|) → L2(R, |dy|)
defined by Ωf(ϕ(x)) = a(x)1/4f(x). We compute PΩ := ΩPSΩ⋆. We get
PΩ = d2

y + V (y) with

V (y) =
(

b2

2a
+ a′2

16a
− a′′

4

)
(ϕ−1(y))

(a′2/16a + a′′/4) is bounded. The derivative of (b/a1/2) ◦ ϕ−1 is(
b′ − a′b

2a

)
◦ ϕ−1

which is also bounded. So (b/a1/2) ◦ ϕ−1 is bounded by C(1 + |y|) and we
get that V (y) ⩽ C(y2 + 1).

It follows then from the Farine–Lavis Theorem ([12, Thm. X.38]) that
PΩ is ESA and hence P is ESA on C∞

c (I). It follows that P is ESA on
C∞

c (S1 \ a−1(0)) and a fortiori on C∞(S1).

4.5. Degenerate zeroes where b(0) does not vanish

Finally, we study the case where all zeroes of a are degenerate and b does
not vanish at least at one of these, say x = 0. We will need the following

Lemma 4.3. — Let us choose a smooth function E on I :=]0, c] so that
E′ = b/a. There exists two independent solutions u1 and u2 of (P − i)u = 0
on I such that u1 is smooth up to 0, u2 = u3eiE with u3 smooth up to 0.

It follows that the functions a(x)dxuj are in L2 and that P is not ESA
by the same argument than in Section 4.3.

Proof. — We check first the existence of u1 in an elementary way by
showing the existence of a full Taylor expansion directly: we start with the
Ansatz u1(x) = 1+a1x+a2x2 + · · · . We get b(0)a1 +(b′(0)/2−1) = 0. Hence
a1. Then, inductively, we get an expression for ak as a function of the al for
l < k. Applying Malgrange’s Theorem 7.1 in [10], we get a smooth solution
u1 with u1(0) = 1.

Then we make the Ansatz u2 = u1v and we get the following differential
equation for v: (

dx + a′

a
+ 2u′

1
u1

− i
b

a

)
dxv = 0
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It follows that, we can choose

dxv = 1
au2

1
eiE

If k is the order of the zero of a at x = 0, we can choose local coordinates
near 0 so that E = 1/yk−1, we get dyv = A(y)y−k exp(i/yk−1). We can
integrate by part and we get

v(y) = A0(y)ei/yk−1
−

∫ 1

y

A1(t)ei/tk−1
dt

with A0 and A1 smooth. We can iterate the integration by part and get
a formal solution v(x) ≡ (v0 + v1x + · · · )eiE(x). Again we can apply
Malgrange’s Theorem. □

5. Lorentzian Laplacians on surfaces

5.1. General facts on Lorentzian tori

We will consider for X a 2-torus with a smooth Lorentzian metric g.
Recall that a Lorentzian metric on a surface is a smooth non degenerate
symmetric 2-form of signature (1, 1). There is, as in the Riemannian case,
an associated geodesic flow (the Hamiltonian flow of the dual metric), a
canonical volume form and a Laplace operator, which is an hyperbolic op-
erator.

The null curves. — A smooth curve γ is said to be null if, at every
point x of γ, and for any tangent vector V to γ at the point x, we have
gx(V, V ) = 0, i.e. the tangent space to γ at x is isotropic for gx. Locally the
null curves are the leaves of two transverse foliations. This is not always true
globally.

A closed null leaf γ is a simple closed curve which is null. There is then a
neighborhood of γ with two null foliations: F+ is close to the tangent space
to γ and F− is transversal to γ. We can then define a Poincaré map Pγ as
follows. Take a point x0 on γ and a germ of leaf of F−, C at x0. Then Pγ

is a germ of diffeomorphism (C, x0) into itself obtained by following the null
leaves of F+. The map Pγ is uniquely defined modulo smooth conjugation
by germs of diffeomorphisms. Note that Pγ is orientation preserving because
X is orientable.

– 1296 –



On essential-selfadjointness of differential operators on closed manifolds

5.2. Examples of non geodesically complete Lorentzian surfaces

It is known that Lorentzian metrics on the 2-torus are not always geodesi-
cally complete. It is the case for example for the Clifton-Pohl torus:

Let T be the quotient of R2 \ 0 by the group generated by the homothety
of ratio 2. On T , the Clifton-Pohl Lorentzian metric is g := dxdy/(x2 + y2).
The associated Laplacian □g = (x2 + y2)∂2/∂x∂y is formally self-adjoint on
L2(T, |dxdy|/(x2 + y2)).

There is also a much simpler example, namely the quotient on (R+
x ×

Ry, dxdy) by the group generated by (x, y) → (2x, y/2). The manifold is not
closed, but non completeness sits already in a compact region.

It is known these metric are not geodesically complete. What about ESA
of □g?

5.3. Some results

We will prove a rather general result:

Theorem 5.1. —

(1) If the metric g admits a closed null leaf for which the Poincaré
section is not tangent to infinite order to the identity, then g is not
geodesically complete. Under the same assumptions, □g is not ESA.

(2) If g is conformal to a flat metric with a smooth conformal factor on
a 2-torus, then □g is ESA.

Remark 5.2. — In the first case, the proof of the null-incompleteness
of the geodesic flow is due to Yves Carrière and Luc Rozoy [2]. We will
reprove it.

Note that the conformal class of a Lorentzian metric is determined by
the null foliations; hence ESA is a property of these foliations.

For the proof of Theorem 5.1, we will need two lemmas:

Lemma 5.3. — The null-geodesic completeness is invariant by conformal
change.

Proof. — If g = eϕg0, the dual metric satisfy g⋆ = e−ϕg⋆
0 and hence the

geodesic flow restricted to g⋆ = 0 are conformal with a bounded ratio. □

Lemma 5.4. — The ESA property is invariant by conformal change.
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Proof. — If □gu = v, we have also □g0u = eϕv and eϕv is in L2 as soon
as v is. Hence, if □g0 is ESA, there exists a sequence (un, wn = □g0un)n∈N
converging in L2 to (u, eϕv) and e−ϕvn converges to v. □

This proves part (2) of Theorem 5.1.

5.4. Normal forms

It is well known and due to Sternberg [13] that a smooth germ of map
(R, 0) → (R, 0) whose differential at the origin is in ]0, 1[∪]1, +∞[ is smoothly
conjugated to y → λy and hence is the time 1 flow of the vector field µy∂y

with λ = eµ.

A similar result hold for more degenerate diffeomorphisms: we assume
that g admits a closed null-leaf so that the Poincaré map is of the form
P (y) = y+ykR(y) where R(0) ̸= 0 and k ⩾ 2. It is proved in [15, Theorem 4].

Theorem 5.5. — Any such map is the flow at time 1 of a vector field
V = A(y)∂y with A ∼ A0yk.

Let γ be closed null-leaf of g and U a neighbourhood of γ so that we have
the two null foliations F+ and F−. We have the:

Theorem 5.6. — Let γ be a closed leaf whose Poincaré map is P =
Id +R with R of order k. There exists coordinates near γ so that the metric
g is conformal to g0 = dx(dy − a(y)dx) with a(y) ∼ a0yk, a0 ̸= 0.

Proof. — Let us parametrize the closed leaf γ by x ∈ R/Z and extend
the coordinate x in some neighbourhood U of γ so that the null foliation F−
is given by dx = 0. Choose then for y any coordinate in U so that y = 0
on γ. We introduce the differential equation dy/dx = A(x, y) associated to
the foliation F+ close to γ. Note that A(x, 0) = 0. Let ϕx(y) be the flow of
this differential equation. The map y → ϕ1(y) is the Poincaré map of γ. By
Theorem 5.5, we can choose a vector field a(y)∂y so that the time one flow
is the same Poincaré map; and denote by (ϕ0)x(y) this flow. Let us consider
the germ of diffeomorphism near γ defined by

F : (x, y) →
(
x, y′ = (ϕ0)x ◦ ϕ−1

x (y)
)
.

The map F sends the integral curves of dy − bdx onto the integral curves
of dy − adx and is periodic of period 1 because the time 1 flows are the
same. Hence the two null foliations are given respectively by dx = 0 and
dy′ − a(y′)dx = 0. The Theorem follows. □
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5.5. Proof of Theorem 5.1(1)

The idea is to use the normal form which, being invariant by translation
in x, allows a separation of variables and hence application of Theorem 4.1.

Let us first prove the null incompleteness. Using the normal form and the
conformal invariance of null completeness, we have to study near y = 0 the
Hamiltonian h = −η(a(y)η + ξ). The function ξ is a constant of the motion.
Let us take initial conditions with y0 > 0, ξ0 > 0, and a(y0)η0 + ξ0 = 0. We
have, using that a(y)η + ξ0 stays at 0, dy/dt = 2a(y)η = −2ξ0. Hence y(t)
vanishes for a finite time t0 and, we have then η(t0) = ∞. Null incompleteness
follows.

The Lorentzian Laplacian associated to g = dx(dy − a(y)dy) is given by
□ = ∂ya(y)∂y + ∂2

xy

Let us look at solutions of □u = v of the form u(x, y) = e2πixv(y) with v
compactly supported near 0. We have

□u(x, y) = e2πix (∂ya(y)∂y + 2iπ∂y) v(y)
The operator P := ∂ya(y)∂y + 2iπ∂y is a Sturm–Liouville operator already
studied in Section 3. P is not ESA. It follows then that there exists v com-
pactly supported near 0 and L2 so that Pv = w ∈ L2 and there is no
sequences (vn, wn = Pvn) converging in L2 × L2 to (v, w). The result fol-
lows.

5.6. Genericity

The goal of this section is to show that, for a generic Lorentzian metric
on the 2-torus, there exists at least one null closed curve γ whose Poincaré
map is hyperbolic, i.e. such that the differential of Pγ at the point x0 of γ
is not tangent to the identity. It follows that, for a generic metric on the
2-torus, the geodesic flow is not complete and the Lorentzian Laplacian is
not ESA.

A C∞−generic property is a property which holds for an open dense
subset of the metrics in the C∞ topology.

We have the

Proposition 5.7. — The existence of a closed null hyperbolic curve is
a C∞−generic property of Lorentzian metrics on 2-tori.

The following argument is due to Etienne Ghys.
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Proof. — The openness of the set of metric with a closed null hyperbolic
geodesic is evident.

We say that the metric g splits if the null leaves belong to two distincts
foliations F+ and F−. We say that the metric g is orientable if there is a
smooth non vanishing vector field V on X so that g(V, V ) is strictly positive
everywhere. Any orientable metric splits. The two foliations are the bound-
aries of the connected component C+ of the cone g > 0 containing V . Indeed
using an orientation of X, we choose F+ so that the frame generated by F+
and V is positively oriented. We now study the two different cases.

Case 1; g splits. — the genericity then follows from the fact that having
an hyperbolic closed leaf is a generic property for a foliation of a torus
(see [11]), here for F+.

Case 2: g do not split. — We introduce in this case a two-fold cover
Y of X for which the lift G of the metric g is orientable. This cover Y is
equipped with an involution J exchanging the two null foliations. Let us take
a null closed curve γ of one of these foliations. Then J(γ) is a null closed
curve of the other. They cannot cross: they have the same rotation number,
because J is homotopic to the identity. Moreover all intersections have the
same sign because both foliations as well as Y are orientable. It follows that
the projection of γ onto X is simple. Still having a closed hyperbolic leaf for
the foliation F+ of G is generic and F− = J(F+). □

6. Further questions

There are still several open problems in this setting; we see at least five
of them:

(1) Prove our Conjecture 1.2.
(2) Describe the self-adjoint extensions in the case of Lorentzian tori in

a geometrical way.
(3) If we choose a self-adjoint extension, are there interesting spectral

asymptotics?
(4) Extend to higher dimensional Lorentzian manifolds
(5) Extend to pseudo-differential operators of principal type.

Appendix A. Regular singular points of linear differential
equations of order two

For this section, one can look at [3] and [16].
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We consider a linear differential equqation
Pu := (a(x)d2

x + b(x)dx + c(x))u = 0
We assume that a(0) = 0 and 0 is a zero of finite order k of a. The singular
point x = 0 of P is said to be regular if b (resp. c) vanishes at order at least
k − 1 (resp. k − 2) at x = 0. Otherwise 0 is an irregular singular point.

If x = 0 is a regular singular point, we introduce the indicial equation:
a(k)(0)r(r − 1) + kb(k−1)(0)r + k(k − 1)c(k−2), r ∈ C

We call r1, r2 the two roots of the indicial equation. Then the following
holds:

• If Im(r1 − r2) /∈ Z, there exist two independent solutions of Pu = 0
on a small interval ]0, c[ of the form uj = x

rj

+ vj(x)
• If Im(r2 −r1) ∈ N, we have u1 = xr1

+ v1(x) and u2 = xr2
+ (v2(x) log x+

v3(x))

where the functions vj are smooth on [0, c[ and v1(0) = v2(0) = 1.
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