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Strict convexity of the Mabuchi functional for energy
minimizers (∗)

Long Li (1)

ABSTRACT. — The aim of this paper is to investigate the strict convexity of the
Mabuchi functional up to a holomorphic automorphism. We partially answered this
question, and proved this strict convexity when a C1,1-geodesic connects two non-
degenerate energy minimizers.

RÉSUMÉ. — Le but de cet article est d’étudier la convexité stricte de la fonction-
nelle de Mabuchi modulo automorphismes holomorphes. Nous avons partiellement
répondu à cette question, et prouvé cette convexité stricte lorsqu’une C1,1-géodésique
relie deux minimisateurs d’énergie non dégénérés.

1. Introduction

Suppose X is an n-dimensional compact complex Kähler manifold, and
ω is its associated Kähler form. Let H be the space of all the smooth Kähler
potentials

H :=
{
φ ∈ C∞(X) ; ωφ = ω + i∂∂φ > 0

}
.

Up to a chosen normalization, it can be identified with the space of all Käher
metrics in the cohomology class [ω]. The tangent space TφH at a point φ
can be identified with the space of all real-valued smooth functions on X,
namely, we have

TφH :=
{
ψ ∈ C∞(X) ;

∫
X

ψωnφ = 0
}

Furthermore, we can introduce an L2 metric on this tangent space as

⟨ψ0, ψ1⟩φ :=
∫
X

ψ0ψ1ω
n
φ,
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for any ψ0, ψ1 ∈ TφH. Equipped with this metric, the space H becomes
an infinite dimensional Riemannian manifold, and the distance between two
points φ0, φ1 ∈ H can be computed as

d(φ0, φ1) = inf
φt∈γ

∫ 1

0

(∫
X

φ̇t
2ωnφt

) 1
2

dt,

where γ denotes the class of all the smooth curves in H from φ0 to φ1. Then
we can discuss the existence problem of geodesics on this special Riemannian
manifold.

Unfortunately, it is not possible to find such a curve in H in general, as
shown in the example of Darvas–Lempert ([10]). However, a weaker replace-
ment can be found. X.X. Chen [6] proved that the “C1,1-geodesic” always
exists for any two points in H. As a curve in the space of ω-plurisubharmonic
functions, it indeed realizes the distance between these two points (see more
details in the next section).

Later such C1,1-geodesics became an important tool in the study of
canonical metrics on Kähler manifolds. Especially, people are interested with
investigating the behaviour of certain energy functionals when they are re-
stricted to these geodesics. As is well known, the so called Ding-functional
plays a major role in the study of Kähler–Einstein metrics, and similarly, we
study the Mabuchi functional for constant scalar curvature Kähler (cscK)
metrics.

It is proved by Berndtsson [5] that the Ding -functional is convex along
any C1,1-geodesic (or even bounded geodesic) G on a Fano manifold. More-
over, this functional is actually strictly convex, in the sense that G will be
generated by a holomorphic vector field whenever the Ding-functional is lin-
ear along it. These convexity results turned out to be very useful in the study
of uniqueness and existence problems of the Kähler–Einstein metrics.

In the work of Berman–Berndtsson [4] and Chen–Li–Păun [8], the
Mabuchi functional M is also proved to be convex and continuous along
any C1,1-geodesic G. Now we can further ask the following question.

Conjecture 1.1. — Suppose the Mabuchi functional M is linear along
a C1,1-geodesic G. Then the geodesic G is generated by a holomorphic
vector field.

In other words, we are asking if the Mabuchi functional is strictly con-
vex along any C1,1-geodesic. It is well known that this conjecture holds on
any smooth geodesic. However, there are two difficulties that prevent the
generalisation: the degeneracy and the lack of regularities on C1,1-geodesics.
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A closed positive (1, 1)-current is said to be non-degenerate at a point
p ∈ X if it is a Kähler current near p. Otherwise, it is degenerate at this
point. As a solution of the homogenous complex Monge–Ampère (HCMA)
equation, a C1,1-geodesic must have some vanishing directions, and the best
hope is that the vanishing only appears in the time direction. In other words,
the geodesic is non-degenerate on the fiber direction Xt.

The key observation is that the truncated Mabuchi functional, introduced
by Berman–Berndtsson ([4]), will coincide with the Mabuchi functional, if the
latter is linear along a C1,1-geodesic G. Combined with a W 1,2-estimate (first
discovered in Chen–Tian ([9])), we conclude that G must be non-degenerate
along each fiber Xt, if its boundaries are two non-degenerate energy mini-
mizers of M. (see Corollary 3.5).

Moreover, we prove that such a energy minimizer satisfies the weak cscK
equation in the sense of He–Zeng ([13]), and He–Zeng’s regularities estimates
enable us to improve the regularities of the geodesic on the fiber direction.
In fact, the restriction G|Xt must be a smooth cscK metric for each t ∈ [0, 1].

In the last step, Chen–Feldman–Hu’s estimate ([7]) tells us that such
a geodesic G must have at least C4-regularities along the time direction.
Therefore, we conclude the main theorem by a direction computation as the
case of smooth geodesics.

Theorem 1.2. — Suppose G is a C1,1-geodesic connecting two non-
degenerate energy minimizers of M. Then G is generated by a holomorphic
vector field.

As an upshot of this theorem, we give a alternative proof of the uniqueness
of the cscK metric, namely, any two cscK metrics in the same cohomology
class can only differ by a holomorphic automorphism on X.

Finally, we would like to compare our result with a recently result by
Berman [3]. He constructed a counter-example of the Conjecture 1.1, when
the geodesic has degenerate boundaries. This example shows that the
Mabuchi functional is essentially different from the Ding-functinal along
C1,1-geodesics.

On the other hand, Berman’s example is constructed on CP1 and has toric
symmetry. If we require that the boundaries of G are in H, then this kind of
examples can never appear, since such C1,1-geodesics with toric symmetry
must be smooth. Therefore, we believe that there is still hope to confirm this
conjecture with “correct” boundary conditions.
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2. Preliminary

Suppose Σ is an annuals domain in C with boundary, and π is the holo-
morphic projection from the product space Y := X × Σ to X. Therefore,
Y is a compact complex Kähler manifold with boundary. Let Φ be a quasi-
plurisubharmonic function on Y continuous up to the boundary. Denote G
by the closed positive (1, 1) current

π∗ω + ddcΦ
on Y . We say that G is a geodesic in the space of Kähler potential, if it
is S1-invariant in the argument direction of Σ, and satisfies the following
Homogeneous complex Monge–Ampère (HCMA) equation

Gn+1 = (π∗ω + ddcΦ)n+1 = 0, (2.1)
in a suitable sense on Y . The boundary value of Φ is required to be in the
space of the smooth Kähler potentials. Hence we say that G is a geodesic
connecting two points φ0, φ1 ∈ H if Φ|X×{0} = φ0 and Φ|X×{1} = φ1,
where we identify the annulus Σ by a cylinder [0, 1] × S1 via the standard
diffeomorphism.

It is proved by Chen ([6]) that such a geodesic is unique with fixed bound-
ary value, and has the so called C1,1-regularities, namely, writing G locally
as

gττdτ ∧ dτ +
n∑

α,β=1

(
gτβdτ ∧ dzβ + gατdzα ∧ dτ + gαβdz

α ∧ dzβ
)
,

we have

∥gττ∥L∞ +
n∑

α,β=1

(
∥gτβ∥L∞ + ∥gατ∥L∞ + ∥gαβ∥L∞

)
< +∞.

Moreover, it is also proved in ([6]) that there exist a uniform constant C > 0
such that

0 ⩽ G ⩽ C(π∗ω + idτ ∧ dτ)
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on Y . Therefore the quasi-plurisubharmonic function Φ is of class C1,α for
any α ∈ (0, 1), and the wedge product Gn+1 can be interpreted in the sense
of Bedford and Talyor ([2]).

As a closed positive (1, 1) current, the restriction of G on a fiber Xτ for
some τ ∈ Σ is not necessary to be a Kähler metric, and hence we introduce
the following notation.

Definition 2.1. — A geodesic G is called non-degenerate at a point
p ∈ Xτ , τ ∈ Σ, if its restriction G|Xτ is a Kähler current near p, namely,
there exists an ε > 0 such that

G|Xτ
⩾ εω

in an open neighbourhood of p. Otherwise, it is degenerate at p.

Suppose a geodesic G is non-degenerate at each point of Y . We can con-
sider the following vector field locally defined as

Vτ := ∂

∂τ
− gβαgτβ

∂

∂zα
. (2.2)

As the horizontal lift of the vector field ∂/∂τ by the metric G, it is actually
globally defined (see [8]). This vector field plays an important role in the
study of geodesics. It is a well known fact that the geodesic G is generated
by a holomorphic automorphism if this vector field Vt is holomorphic.

2.1. The Mabuchi functional

In the study of canonical metrics, Mabuchi ([1]) introduced the following
functional on the space H

M := RE − ERicω +H,

where the constant R is the average of the scalar curvature

R = nc1(X) · [ω]n−1

[ω]n .

More precisely, the energy functional E is defined as

E(φ) := 1
n+ 1

n∑
i=0

∫
X

φωi ∧ ωn−i
φ

for any φ ∈ H. The twisted energy functional Eα (by a closed smooth (1, 1)
form α) is defined as

Eα(φ) :=
n−1∑
i=0

∫
X

φωi ∧ ωn−i−1
φ ∧ α.

– 1307 –



Long Li

Finally, the entropy functional is

H(φ) :=
∫
X

(
log

ωnφ
ωn

)
ωnφ.

According to the definition, the Mabuchi functional is independent of the
normalization of φ. Hence, it is in fact a functional defined on the space of
all Kähler metrics cohomologous to ω.

The tangent space of H at point φ ∈ H can be identified with the space of
all smooth functions on X. Then the first variation of the Mabuchi functional
can be found via a standard computation

dM|φ(ψ) = −
∫
X

ψ(Rφ −R)ωnφ, (2.3)

for any ψ ∈ C∞(X). In other words, the constant scalar curvature Kähler
(cscK) metrics (namely, metrics satisfying the equation Rφ = R on X), are
critical points of the Mabuchi functional.

In fact, the Mabuchi functional can be generalised to the space of all ω-
plurisubharmonic functions on X with C1,1-regularities ([4]). In particular, if
Φ is a π∗ω-plurisubharmonic function on Y which corresponds to a geodesic
G, then its restriction φτ := Φ|Xτ

on a fiber is a ω-plurisubharmonic function
on Xτ and has the C1,1-regularities. Therefore, we can define the Mabuchi
functional along a geodesic as

K(τ) := M(φτ ),

Furthermore, we introduce the following modified versions of the Mabuchi
functional. Suppose Ψ(τ, · ) = ψτ ( · ) is a locally bounded singular metric
on the relative canonical bundle KY/Σ, and then −ψτ is a metric on the
anti-canonical line bundle −KXτ

:=
∧n

TXτ . Therefore, the following is a
measure on X

µ := eψτ ,

which is absolutely continuous with respect to the Lebesgue measure. Define
the following functional along the geodesic G as

KΨ(τ) := RE(φτ ) − ERicω(φτ ) +
∫
X

log
(
eψτ

ωn

)
ωnφτ

.

Notice that this functional equals to K(τ), if Ψ is the (unbounded) metric
defined by ωnφτ

. In this case, Berman–Berndtsson ([4]) found that its complex
Hessian can be computed in the sense of current as

ddcKΨ(τ)(v) =
∫
Xτ

Ψ(π∗ω + ddcΦ)n ∧ ddcv,
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for any locally supported smooth test function v on Y . In fact, they also
proved that this is a positive current.

Theorem 2.2 (Berman–Berndtsson). — The Mabuchi functional M is
weakly subharmonic along a geodesic G, namely, we have

ddcK(τ) ⩾ 0,
for any τ in the interior of Σ.

In order to prove this theorem, we can consider the following truncated
Mabuchi functional along the geodesic G as

KΨA(τ) := RE(φτ ) − ERicω(φτ ) +
∫
X

log
(

max
{
ωnφτ

ωn
,
eχ−A

ωn

})
ωnφτ

,

where χ is a fixed continuous metric on KY/Σ satisfying
ddcχ ⩾ k0(π∗ω + ddcΦ),

for some positive integer k0. By invoking the dominated convergence theo-
rem, one can easily show that for each τ ∈ Σ we have

KΨA(τ) → K(τ),
as A → +∞. Therefore, it is enough to prove that the truncated Mabuchi
functionals are weakly subharmonic. This is true, since the complex Hessian
of KΨA can be computed as

ddcKΨA(τ) :=
∫
Xτ

TA, TA := ddcΨA ∧ (π∗ω + ddcΦ)n,

and the (n + 1, n + 1)-current TA is in fact positive, because the volume
element ωnφτ

can be approximated by a sequence of Bergman kernel locally
(see [4, Theorem (2.1)]).

2.2. Convexity and continuity

In the study of cscK metrics, a stronger result than Theorem 2.2 is needed.
Before doing this, we will slightly switch our setting on geodesics.

Let Γ := {z ∈ C ; 0 ⩽ Re z ⩽ 1} be a strip domain in C. Then there is a
holomorphic map from Γ to Σ as

τ(z) := ez.

This is a branched cover of Σ, and the inverse map is not well defined on
the whole annulus. The difficulty arises when one selects a typical branch.

Fortunately this does no harm to us, since a geodesic G is S1-invariant
in the argument direction of Σ. Therefore, the pull back of geodesic G is in
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fact a solution of HCMA equation on Γ × X, which is independent of the
imaginary part of z. For this reason, we will identify the complex variable

z := t+ is

with its real part t. For the same reason, the z-variable on Γ can be taken
as the complex coordinate of the cylinder

R := [0, 1] × S1,

and we think that G is actually defined on R ×X in this sense.

Thanks to Theorem 2.2, the Mabuchi functional K(t) along a geodesic G is
a convex curve in the open interval (0, 1). However, the boundary behaviour
is not clear up to this stage. In fact, Berman–Berndtsson ([4]) proved the
following “strong convexity” of the Mabuchi functional, and the same result
was also obtained by Chen–Li–Păun ([8]) via a different method.

Theorem 2.3. — The Mabuchi functional M along a geodesic G is con-
vex and continuous up to the boundary, namely, K(t) is a convex and con-
tinuous function on [0, 1].

In fact, the truncated Mabuchi functional KΨA also plays a major role
in Berman–Berndtsson’s proof, and they actually first proved the following
fact ([4, Theorem 3.4]).

Theorem 2.4. — For each positive number A, the truncated Mabuchi
functional KΨA(t) is convex along any geodesic G.

We emphasis that KΨA(t) may not be continuous up to the boundaries
of the interval [0, 1]. Nevertheless, it is still upper semi-continuous near the
boundaries as a convex function.

Taking the limit of KΨA(t) as A → +∞, we conclude that K(t) is up-
per semi-continuous near the boundaries, but it is also lower semi-continuous
since the entropy functional H(φ) is lower semi-continuous in the weak topol-
ogy of plurisubharmonic functions. Hence Theorem 2.3 follows.

3. Non-degeneracy of the geodesic

As we discussed before, there are usually two difficulties while dealing
with problems concerning with a geodesic G. One is the possible degeneracy;
the other is the lack of regularities. In this section, we prove that the first
difficulty will never happen when the Mabuchi functional is linear along the
geodesic.

– 1310 –
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3.1. Gap phenomenon

Put a function fφ := ωnφ/ω
n, and the entropy can be re-written as

H(φ) =
∫
X

fφ log fφ · ωn.

Moreover, put

fA(φ) := max
{
ωnφ
ωn

,
eχ−A

ωn

}
,

and then the truncated entropy is

HA(φ) =
∫
X

fφ log fA · ωn.

If we consider these functions on the fiber of the geodesic, then they are
exactly the fiberwise volume form ratio of G. Hence the truncated Mabuchi
functional along a geodesic G can be written as

KΨA(t) = RE(φt) − ERicω(φt) +HA(φt).

As we have seen in the last section, these functionals converge to K(t)
as A → +∞. Moreover, a simple but important observation is that they
actually build a decreasing sequence, namely, we have

KΨA(t) ↘ K(t), (3.1)
for each t ∈ [0, 1] as A → +∞. The reason is just because

HA′(φ) ⩽ HA(φ),
for any A′ ⩾ A, since we have fA′(φ) ⩽ fA(φ) and fφ ⩾ 0 in this case. Bear
this in mind, we can prove the following fact.

Lemma 3.1. — Suppose the Mabuchi functional M is linear along a ge-
odesic G. Then there exists a positive number A0, such that for each A ⩾ A0,
the truncated Mabuchi functional is also linear and coincides with M along
the geodesic G, namely, we have

KΨA(t) = K(t),
for all t ∈ [0, 1].

Proof. — Up to a linear function on [0, 1], we can assume that the
Mabuchi functional is identically zero along the geodesic, i.e. K(t) = 0 for
each t ∈ [0, 1]. Let φ0, φ1 be the boundary value of the potentials of the
geodesic G, and then we can pick up a constant as

A0 := sup
X

(χ− log fφi
),
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for i = 0, 1. Observe that on the boundary, we have
KΨA(0) = K(0), KΨA(1) = K(1), (3.2)

for all constant A ⩾ A0. Then we have KΨA(0) = KΨA(1) = 0.

Moreover, KΨA(t) is a convex curve on [0, 1], and hence it is upper semi-
continuous near the boundaries, namely, we have

lim sup
t→0,1

KΨA(t) ⩽ 0. (3.3)

Therefore, this convex curve must be below the line segment joining its two
boundaries. Hence we conclude that

KΨA(t) ⩽ 0
for each t ∈ [0, 1]. On the other hand, thanks to the inequality (3.1), we also
know that

KΨA(t) ⩾ K(t) = 0.

Therefore, the truncated Mabuchi functional is also identically zero along
the geodesic G, i.e. KΨA(t) ≡ 0, for each t ∈ [0, 1]. Then our result follows.

□

An immediate consequence of Lemma 3.1 is that the truncated entropy
HA(φt) also coincides with the entropy H(φt) along the geodesic G for each
A ⩾ A0. Therefore, it gives a way to describe the degenerate locus of the
geodesic along each fiber Xt.

Proposition 3.2. — Suppose the Mabuchi functional is linear along a
geodesic G. Then on each fiber Xt, there exists a non-empty measurable sub-
set Zt and a uniform constant A0, such that the following holds up to a set
of measure zero:

ωnφt
⩾ eχ−A0 ,

on Zt, and ωnφt
= 0 on Xt − Zt.

Proof. — Denote the set Zt by the non-zero locus of the function fφ on
the fiber Xt. It is a non-empty set since the integral of ωnφt

is the fixed
volume of this Kähler metric. Consider the sub-level sets of the function fφ
on a fiber Xt as

EA :=
{
p ∈ Xt ; fφ(p) ⩾ eχ(p)−A/ωn

}
.

We claim that EA − EA0 has measure zero for each A > A0. Then we
have

Zt =
⋃

A⩾A0

EA = EA0 ,

up to a set of measure zero, and our result follows.
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Now on each fiber Xt, we compute as

0 = HA0(φt) −H(φt) =
∫
X

(log fA0 − log f)f

⩾
∫
EA

(log fA0 − log f)f

⩾ ε

∫
EA

(log fA0 − log f). (3.4)

This inequality implies that fA0 = f almost everywhere on EA since
log fA0 ⩾ log f on it. Moreover, we know that∫

EA

(log fA0 − log f) =
∫
EA−EA0

(log fA0 − log f). (3.5)

However, it is clear that fA0 = eχ−A0/ωn on EA − EA0 and we have
eχ−A

ωn
⩽ f <

eχ−A0

ωn

on this set. Therefore, the set EA − EA0 must have measure zero, and we
complete the proof. □

We emphasis that this constant A0 is independent of t. In fact, the value
of the volume form ratio fφ on the geodesic is either larger than a positive
constant κ or equal to zero almost everywhere, provided the Mabuchi func-
tional is linear. In other words, there exists a “gap” for the volume form ratio
of the geodesic on Γ ×X.

3.2. W 1,2 estimate

The next step is to investigate the regularities of the geodesic G. Recall
that the volume form ratio of a Kähler potential φ is defined as

fφ := ωnφ/ω
n.

Here we will invoke the following estimate from Chen–Tian (see [9, Theo-
rem 7.3.1]) to estimate the W 1,2 norm of fφ. However, an extra condition is
needed.

Let φ be a ω-plurisubharmonic functions on X with C1,1-regularities.
Suppose the infimum of the Mabuchi functional in the class [ω] is finite.
Denote ϱ by this infimum as

ϱ := min
u∈H

M(u), (3.6)

and then we can state the following result.
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Proposition 3.3 (Chen–Tian). — Suppose M(φ) = ϱ. Then we have

∥f1/2
φ ∥W 1,2 < +∞.

This regularity theorem is proved via the so called “weak Kähler Ricci
flow ”, and a crucial step is to observe that the first derivative of the energy
∂M
∂t |t=0 is bounded from below uniformly along the flow direction. However,

this is unlikely to be true if we merely assume the Mabuchi functional is
linear.

Combining with the “gap phenomenon”, this W 1,2 estimate enable us
to conclude the following uniform non-degeneracy of the geodesic, provided
that the two boundaries of G are non-degenerate.

Proposition 3.4. — Suppose the Mabuchi functional M is linear along
a C1,1-geodesic G. Assume that the fiberwise volume form ratio of G satisfies

fαφt
∈ W 1,2

for some α > 0 and each t ∈ [0, 1]. Then there exists a uniform constant
κ > 0, such that we have

fφt > κ,

almost everywhere on each Xt.

Proof. — For any fiber Xt, put u = fαφ . Thanks to Proposition 3.2, there
exists a uniform constant κ > 0, such that the gap phenomenon occurs for
the value of the function u almost everywhere on Xt. Since the function u
itself is in L∞, we can further assume that the gap exists for each point
p ∈ Xt, i.e. either u(p) > κ or u(p) = 0. Moreover, the function u is also
non-trivial since

∫
Xt
u2 = 1.

Let Ui ⊂ Vi ⊂ U ′
i be open coverings of Xt, such that Ui corresponds

to a ball B1 with radius 1/2, U ′
i corresponds to a ball B2 with radius 2,

and Vi corresponds to the n-interval [0, 1]n in each local coordinate. Then a
standard regularity argument (see Lemma A.1) implies that each restriction
ui := u|Vi

is either trivial or greater than κ everywhere on Vi. Since Ui forms
an open converging of Xt, only the latter situation can occurs for each ui.
Then our result follows. □

With this gap κ, the restriction of the geodesic G|Xt
becomes a (possi-

bly non-smooth) Kähler metric on each fiber Xt, t ∈ [0, 1]. Moreover, these
Kähler metrics have a uniform lower bound since they already have a uni-
form upper bound thanks to their C1,1-regularities. Combining Chen–Tian’s
W 1,2-estimate with Propositions 3.2 and 3.4, we proved the following fact.
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Corollary 3.5. — Any C1,1-geodesic G connecting two non-degenerate
energy minimizers of the Mabuchi functional is uniformly non-degenerate on
Γ ×X, namely, there exists a uniform constant C > 0 such that

C−1ω ⩽ G|Xt ⩽ Cω

almost everywhere on each Xt, t ∈ [0, 1].

Finally, we emphasis the following fact. To prove Lemma 3.1 and Propo-
sition 3.2, it is enough to assume the volume form ratios fφ0 , fφ1 on the
boundaries are bounded below from zero. Therefore, it is not necessary to
require the boundaries of G are smooth Kähler metrics in Corollary 3.5.

4. Regularities of the energy minimizers

The goal of this section is to deal with the regularities of the geodesic
G when it connects to two minimums of M. Thanks to the convexity of
the Mabuchi functional, this implies that the Kähler metric ωφt

reaches the
minimum of M for each t ∈ [0, 1], where the φt := Φ|Xt

is the fiberwise
potential of the geodesic G.

4.1. Fiber direction

The first step is to prove that any energy minimizer of M satisfies the
cscK equation in some weak sense.

Lemma 4.1. — Suppose ωφ is a non-degenerate C1,1-energy minimizer
of the Mabuchi functional. Then for any C1,1-test function χ supported lo-
cally, it satisfies∫

X

log fφi∂∂χ ∧ ωn−1
φ =

∫
X

χ(Ric(ω) − ωφ) ∧ ωn−1
φ . (4.1)

Proof. — By the standard approximation method, it is enough to prove
that equation (4.1) holds for all smooth compactly supported test function χ.

First notice that the potential φ is a strictly ω-plurisubharmonic function
on X, and we actually can gain a bit more than this from the non-degeneracy.
The non-degenerate condition on the volume form fφ > κ and the upper
bound of the coefficients of the metric ωφ together implies the lower bound
of the metric, i.e. ωφ > ε′ω for some small ε′ > 0. Therefore, the potential
φ is actually a (1 − ε′)ω-plurisubharmonic function on X.
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Denote PSH∞(X,ω) by the space of all smooth ω-plurisubharmonic
functions on X. According to Demailly’s regluarization theorem [11],
there exists a sequence φ(s) ∈ PSH∞(X, (1 − ε′)ω), such that φ(0) = φ,
∥φ(s)∥C1,1̄ < C, and φ(s) converges to φ in W 2,p for any p large.

For any small s > 0, we want to construct a smooth curve φ(s, t) ∈
PSH∞(X,ω) initiated from φ(s), such that it satisfies

∂φ(s, t)
∂t

∣∣∣∣
t=0

= χ, (4.2)

and it exists for t ∈ [0, δ) for some uniform small constant δ. In fact, one can
check that a linear combination φ(s, t) := φ(s) + tχ would work, since we
have

ω + i∂∂φ(s, t) > ε′ω + ti∂∂χ ⩾ 0,
for all t small enough.

Since the potential φ is an energy minimizer, we have

M(φ) = lim
s→0

M(φ(s, 0)) ⩽ M(s, t),

for any s > 0, t ⩾ 0. Therefore, for any small constant c > 0, there exists a
sequence of points si, ti → 0 such that we have

−c ⩽ ∂M(s, t)
∂t

∣∣∣∣
si,ti

=
∫
X

log fφ(∆φχ)ωnφ|si,ti −
∫
X

χ(Ric(ω) − ωφ) ∧ ωn−1
φ |si,ti . (4.3)

Since each coefficient of ωφ(si,ti) converges strongly to ωφ in Lp, we conclude
the following one side inequality by letting si, ti → 0∫

X

log fφi∂∂χ ∧ ωn−1
φ ⩽

∫
X

χ(Ric(ω) − ωφ) ∧ ωn−1
φ . (4.4)

Observe that both sides of our equation (4.3) are linear in χ, and then we
obtain an inequality with reversed sign of (4.4) by putting χ̃ = −χ. Hence
the desired equation follows. □

In the language of He–Zeng (see [13, Definition 2.5]), the function fφ is a
∆-weak solution if it satisfies equation (4.1), and the L∞ metric ωφ is called
a weak solution of the cscK equation. In the same work, they proved the
following regularity estimate (and a apriori estimate).

Theorem 4.2 (He–Zeng). — Let ωφ be an L∞-Kähler metric in the
class [ω] such that

εω ⩽ ωφ ⩽ Λω
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holds in L∞ sense with constants Λ > ε > 0. If ωφ is a weak solution of the
equation Rφ = R, then ωφ is smooth. Moreover, there are uniform positive
constants c1 := c1(n,Λ) and Ck := C(n, k,Λ) such that

c1ω ⩽ ωφ ⩽ Λω ; ∥φ∥Ck ⩽ C(n, k,Λ). (4.5)

We note that the constants c1 and Ck are independent of ε. Combined
with He–Zeng’s estimate and our Corollary 3.5, we obtain that the restriction
of such geodesic on each fiber is a smooth Kähler metric with uniform lower
and upper bound.

Theorem 4.3. — Suppose G is a C1,1-geodesic connecting two non-
degenerate energy minimizers of the Mabuchi functional. Then the fiberwise
restriction of the geodesic ωφt

:= G|Xt
is a smooth cscK metric for all

t ∈ [0, 1]. Moreover, there are uniform constants Λ > κ′ > 0 such that

κ′ω ⩽ ωφt ⩽ Λω.

4.2. Time direction

We continue to understand the regularities in time direction of the ge-
odesic G. It is a well known question that whether we can perturb a C1,1-
geodesic a bit to get a smooth geodesic. Recently Chen–Feldman–Hu [7]
proved the following theorem, and partially answered this question in a local
version.

Theorem 4.4 (Chen–Feldman–Hu). — For any φ ∈ H, and any real
number α ∈ (0, 1), there exists a small number ε > 0, such that for any
Kähler potential φ1 ∈ C5 satisfying |φ1 − φ|C5 < ε, the C1,1-geodesic G
connecting φ and φ1 is non-degenerate and has C5−α regularities on Γ ×X.

In our case, the time direction regularities of the geodesic will be improved
to C5−α by invoking this theorem, provided that we can prove that the
geodesic potentials φt and φt′ is close in C5 norm if t and t′ is close enough.
This is the place where we will use the cscK equation again.

Proposition 4.5. — Suppose G is a C1,1-geodesic connecting two non-
degenerate energy minimizers of the Mabuchi functional. Then the geodesic
is at least C5−α′ continuous on Γ ×X for some 0 < α′ < 1.

Proof. — As we have seen in Theorem 4.3, the metric ωφt := G|Xt is
smooth cscK with uniform lower and upper bound for each t ∈ [0, 1]. Then
He–Zeng’s a priori estimate (equation (4.5)) implies that the higher order
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regularities of ωφt
are uniformly controlled. In particular, there exists a uni-

form constant C := C(n, 6,Λ) satisfying

∥φt∥C6 ⩽ C(n, 6,Λ).

Fix a time t0 ∈ [0, 1], and consider a sequence of points ti such that
ti → t0 as i → ∞. Then the potential φti converges to a C5,α potential
φ∞ in C5 norm by possibly passing to a subsequence. However, since φt is
continuous in time direction along the geodesic, the limit φ∞ must coincide
with the potential φt0 . Therefore, for any ε > 0 small, we have

|φti − φt0 |C5 < ε (4.6)

for all i large. It follows from the uniqueness of the HCMA equation and The-
orem 4.4 that in an open neighbourhood of t0, the geodesic G|[t0−δ,t0+δ]×X
is at least C5−α-continuous for some 0 < α < 1. Finally, our result follows
from the compactness of the closed interval [0, 1]. □

Once we have enough regularities of the geodesic G, all calculations on
the complex Hessian of the Mabuchi functional along G will go through, and
our main theorem follows.

Proof of Theorem 1.2. — Suppose G is a C1,1-geodesic connecting two
non-degenerate energy minimizers of M. Thanks to the convexity of M, we
have on [0, 1]

K(t) ≡ ϱ,

where the constant ϱ is defined in equation (3.6). By Corollary 3.5 and
Proposition 4.5, the geodesic G is in fact non-degenerate and has at least
C4-regularities on Γ × X. Therefore, we can compute the complex Hessian
of the functional K(t) as

0 = ddcK(t) =
∫
X

∥∂Vt∥2ωnφt
, (4.7)

where the vector field Vt is defined in equation (2.2). Finally, we conclude
our result since Vt is holomorphic along the geodesic G. □

As we have seen from Lemma 4.1 and He–Zeng’s estimate, a non-degen-
erate C1,1-energy minimizer of M is actually a smooth cscK metric. Then
the following corollary naturally follows.

Corollary 4.6. — Suppose ω0 and ω1 are two constant scalar curva-
ture Kähler metrics on X in the same cohomology class [ω]. Then there exists
a holomorphic automorphism F of X such that

F ∗ω1 = ω0.

– 1318 –



Strict Convexity

4.3. Yet another proof

There is another way to figure out the regularities of the geodesic along
the time direction, by using the cscK equation. Write the equation along
the geodesic as follows

gβαt ∂α∂β log det gt = R. (4.8)
Then take the first time variation of the family of the cscK equations yielding
as

∆2
ϕ(δtϕ) −Rβα(δtϕ),αβ = 0. (4.9)

This is a one parameter family of the fourth order (strict) elliptic equations,
with uniformly bounded coefficients. Hence we can lift the regularities of
the function δtϕ in the space direction by the standard elliptic estimates.
However, this equation (4.9) can not be derived in the usual sense, since δtϕ
is merely a Lipschitz continuous function on X × Σ.

What we can do is to take the difference quotient along the time direction
in the cscK equation (4.8), i.e.

δtϕ := ϕ(t0 + t, · ) − ϕ(t0, · )
t

.

The difference quotient also satisfies the Leibniz rule, and then equation (4.9)
indeed holds for it. Finally, observe that all the elliptic estimates coming
from equation (4.9) holds uniformly for t. Therefore, we actually improved
the regularities of the function ϕ̇ in the space, and proved ϕ̇ is in fact a
smooth function on Xt.

We circumvent using the Chen–Feldman–Hu Theorem, but still the cscK
equation plays an essential role in this argument. When the two boundary of
G are no longer energy minimizers, we lost the cscK condition in general, and
it still remains a question to prove the holomorphicity of the vector field Vt.

Appendix

Let Ω denote the domain nth. unit interval (0, 1)n in Rn, and u is a non-
negative function on Ω. We say the function u is trivial if it is identically
zero outside a set of measure zero.

Lemma A.1. — Suppose a non-trivial function u belongs to the inter-
section of the spaces W 1,2(Ω) and L∞(Ω), and satisfies the following gap
condition:

u ⩾ 1,
whenever u ̸= 0. Then u ⩾ 1 everywhere on Ω.
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Proof. — First we can assume the function u is either equal to 1 or 0,
otherwise replace u by (1 − u)+, and the energy

∫
Ω |∇u|2 decreases under

this change by the property of maximum operator [12].

Assume n = 2, and Ω is the unit square (0, 1) × (0, 1). We will first
illustrate our idea in this case. The energy can be decomposed as follows∫

Ω
|∇u|2dxdy =

∫
Ω

|Dxu|2 +
∫

Ω
|Dyu|2. (A.1)

Hence we have ∫ 1

0

(∫ 1

0
|Dxu|2dx

)
dy < +∞,

and then Fubini’s Theorem implies that for almost everywhere y ∈ (0, 1), we
have ∫ 1

0
|Dxu|2(x, y)dx < +∞.

Therefore, the restriction of u on the interval (0, 1)×{y} is W 1,2, and then u
is continuous along this interval, thanks to the Sobolev embedding theorem.
That is to say, for almost everywhere y ∈ (0, 1), the function u(x, y) is
identically 1 or 0 on the slice (0, 1) × {y}.

On the other hand, we have from equation (A.1)∫ 1

0

(∫ 1

0
|Dyu|2dy

)
dx < +∞.

As we have proved, for any x1, x2 ∈ (0, 1), the function u(x1, y) equals to
u(x2, y) for almost everywhere y ∈ (0, 1). Therefore, the partial derivatives
satisfy ∫ 1

0
|Dyu|2(x1, y)dy =

∫ 1

0
|Dyu|2(x2, y)dy,

and then we have for each x0 ∈ (0, 1)∫ 1

0
|Dyu|2(x0, y)dy < +∞, (A.2)

The same argument implies that the restriction u{x0}×(0,1) is also continuous,
and therefore u is identically equal to 1 on the square since it is non-trivial.

For n > 2, we can also decompose the energy as∫
Ω

|∇u|2dx1 · · · dxn =
∫ 1

0

∫
Ωn−1

|∇n−1u|2 +
∫

Ωn−1

∫ 1

0
|Dxn

u|2,

and then the result follows in a similar way by induction on the dimension
of Ω. □
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