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About relative polar varieties and Brasselet numbers (∗)

Hellen Santana (1)

ABSTRACT. — In this work, we study the consequences of an empty polar variety
on the topology of a function-germ with (possibly) nonisolated singularities defined
on a singular variety.

RÉSUMÉ. — Dans ce travail, nous étudions les conséquences d’une variété polaire
vide sur le topologie d’une germe de fonction avec (possiblement) des singularités
non isolées définies sur une variété singulière

Introduction

Let f : (Cn, 0) → (C, 0) be an analytic function defined in a neighbour-
hood of the origin. In [15], Milnor described the topology of the germ f
at the origin, proving that, if f has an isolated singularity at the origin,
the set f−1(δ) ∩ Bϵ, later called Milnor fiber, has the homotopy type of a
bouquet of µ(f) spheres of dimension n − 1, where δ is a regular value of
f, 0 < |δ| ≪ ϵ ≪ 1. The number µ(f) is the Milnor number of f , an invariant
associated to the germ f which also counts the number of Morse points in a
Morsefication of f in a neighbourhood of the origin.

The Milnor number was largely studied and generalized to many settings
(for instance, for mention a few [4, 5, 6, 7, 12, 17]). If f is defined over a
complex analytic space X and f has an isolated singularity at the origin, a
generalization for the Milnor number is the Euler obstruction of the function
f , introduced in [2], by Brasselet, Massey, Parameswaran and Seade. In [16],
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Seade, Tibăr and Verjovsky proved that, up to sign, this number is the
number of Morse critical points of a stratified Morsefication of f appearing
in the regular part of X in a neighbourhood of the origin.

In the case where f is defined over a complex analytic germ (X, 0)
equipped with a good stratification V relative to f and the function f has
nonisolated singularities, Dutertre and Grulha provided a way to numeri-
cally describe the topology of the generalized Milnor fiber X ∩ f−1(δ) ∩ Bϵ.
In [3], the authors defined the Brasselet number Bf,X(0) of f at the ori-
gin and proved a Lê–Greuel type formula for this number: if g : X → C
is prepolar with respect to V at the origin and 0 < |δ| ≪ ϵ ≪ 1, then
Bf,X(0) − Bf,Xg (0) = (−1)d−1nq, where nq is the number of Morse critical
points of a partial Morsefication of g|X∩f−1(δ)∩Bϵ

appearing in the regular
part of X, and Xg = X ∩ {g = 0}.

Computing these number of stratified Morse critical points is directly con-
nected to relative polar varieties. Consider a linear form l in Cn, a Whitney
stratification of X and a function-germ g : (U, 0) → (C, 0). If l is sufficiently
generic, the polar variety (curve) Γg,l defined by Lê and Teissier in [8] coin-
cides with the relative polar curve defined by Massey in [11], and with the
relative polar varieties defined by Massey in [12] (see [13] and [14]). Each of
these polar varieties is useful to compute polar multiplicities ([9, 18]) and
intersection numbers ([12]), but also to describe the critical loci of a pair of
functions defined over X ([3, 11]), which is the approach we are interested
the most.

In this work, we use polar varieties to compute a number of stratified
Morse critical points of a specific type of deformation of a function-germ
aiming to obtain informations about the Brasselet number of this germ.

1. Local Euler obstruction and Euler obstruction of a function

In this section, we will see the definition of the local Euler obstruction, a
singular invariant defined by MacPherson and used as one of the main tools
in his proof of the Deligne–Grothendieck conjecture about the existence and
uniqueness of Chern classes for singular varities (see [10]).

Let (X, 0) ⊂ (Cn, 0) be an equidimensional reduced complex analytic
germ of dimension d in a open set U ⊂ Cn. Consider a complex analytic
Whitney stratification V = {Vλ} of U adapted to X such that {0} is a
stratum. We choose a small representative of (X, 0), denoted by X, such
that 0 belongs to the closure of all strata. We write X =

⋃q
i=0 Vi, where

V0 = {0} and Vq = Xreg, where Xreg is the regular part of X. We suppose
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that V0, V1, . . . , Vq−1 are connected and that the analytic sets V0, V1, . . . , Vq

are reduced. We write di = dim(Vi), i ∈ {1, . . . , q}. Note that dq = d.

Let G(d, n) be the Grassmannian manifold, x ∈ Xreg and consider the
Gauss map ϕ : Xreg → U × G(d, n) given by x 7→ (x, Tx(Xreg)).

Definition 1.1. — The closure of the image of the Gauss map ϕ in
U ×G(d, n), denoted by X̃, is called Nash modification of X. It is a complex
analytic space endowed with an analytic projection map ν : X̃ → X.

Consider the extension of the tautological bundle T over U × G(d, n).
Since X̃ ⊂ U × G(d, n), we consider T̃ the restriction of T to X̃, called the
Nash bundle, and π : T̃ → X̃ the projection of this bundle.

In this context, denoting by φ the natural projection of U × G(d, n) at
U, we have the following diagram:

T̃

π
��

// T

��
X̃

ν

��

// U × G(d, n)

φ

��
X // U ⊆ Cn

Considering ∥z∥ =
√

z1z1 + · · · + znzn, the 1-differential form w = d∥z∥2

over Cn defines a section in T ∗Cn and its pullback φ∗w is a 1- form over
U × G(d, n). Denote by w̃ the restriction of φ∗w over X̃, which is a section
of the dual bundle T̃ ∗.

Choose ϵ small enough for w̃ be a non zero section over ν−1(z), 0 < ∥z∥ ⩽
ϵ. Let Bϵ ⊂ Cn be the closed ball with center at the origin with radius ϵ and
denote by:

(1) Obs(T̃ ∗, w̃) ∈ H2d(ν−1(Bϵ), ν−1(Sϵ),Z) the obstruction for extend-
ing w̃ from ν−1(Sϵ) to ν−1(Bϵ);

(2) Oν−1(Bϵ),ν−1(Sϵ) the fundamental class in H2d(ν−1(Bϵ), ν−1(Sϵ),Z).

We can obtain the integer number given by the value of the cohomology
class Obs(T̃ ∗, w̃) on the correspondent homology class Oν−1(Bϵ),ν−1(Sϵ).

Definition 1.2. — The local Euler obstruction of X at 0, EuX(0), is
given by the evaluation

EuX(0) = ⟨Obs(T̃ ∗, w̃), Oν−1(Bϵ),ν−1(Sϵ)⟩.
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In [1], Brasselet, Lê and Seade proved a formula to make the calculation
of the Euler obstruction easier.

Theorem 1.3 ([1, Thm. 3.1]). — Let (X, 0) and V be given as before,
then for each generic linear form l, there exists ϵ0 such that for any ϵ with
0 < ϵ < ϵ0 and δ ̸= 0 sufficiently small, the Euler obstruction of (X, 0) is
equal to

EuX(0) =
q∑

i=1
χ(Vi ∩ Bϵ ∩ l−1(δ)). EuX(Vi),

where χ is the Euler characteristic, EuX(Vi) is the Euler obstruction of X
at a point of Vi, i = 1, . . . , q, and 0 < |δ| ≪ ϵ ≪ 1.

Let us give the definition of another invariant introduced by Brasselet,
Massey, Parameswaran and Seade in [2]. Let f : X → C be a holomorphic
function with isolated singularity at the origin given by the restriction of a
holomorphic function F : U → C and denote by ∇F (x) the conjugate of the
gradient vector field of F in x ∈ U ,

∇F (x) :=
(

∂F

∂x1
, . . . ,

∂F

∂xn

)
.

Since f has an isolated singularity at the origin, for all x ∈ X \ {0},

the projection ζ̂i(x) of ∇F (x) over Tx(Vi(x)) is nonzero, where Vi(x) is a
stratum containing x. Using this projection, the authors constructed in [2]
a stratified vector field over X, denoted by ∇f(x). Let ζ̃ be the lifting of
∇f(x) as a section of the Nash bundle T̃ over X̃, without singularity over
ν−1(X ∩ Sϵ).

Let O(ζ̃) ∈ H2n(ν−1(X ∩ Bϵ), ν−1(X ∩ Sϵ)) be the obstruction cocycle
for extending ζ̃ as a non zero section of T̃ inside ν−1(X ∩ Bϵ).

Definition 1.4. — The local Euler obstruction of the function f ,
Euf,X(0) is the evaluation of O(ζ̃) on the fundamental class [ν−1(X ∩ Bϵ),
ν−1(X ∩ Sϵ)].

The next theorem compares the Euler obstruction of a space X with the
Euler obstruction of function defined over X.

Theorem 1.5 ([2, Thm. 3.1]). — Let (X, 0) and V be given as before
and let f : (X, 0) → (C, 0) be a function with an isolated singularity at 0.
For 0 < |δ| ≪ ϵ ≪ 1, we have

Euf,X(0) = EuX(0) −
q∑

i=1
χ(Vi ∩ Bϵ ∩ f−1(δ)). EuX(Vi).
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Let us now see a definition we will need to define a generic point of
a function-germ. Let V = {Vλ} be a stratification of a reduced complex
analytic space X.

Definition 1.6. — Let p be a point in a stratum Vβ of V. A degenerate
tangent plane of V at p is an element T of some Grassmanian manifold such
that T = limpi→p TpiVα, where pi ∈ Vα, Vα ̸= Vβ .

Definition 1.7. — Let (X, 0) ⊂ (U, 0) be a germ of complex analytic
space in Cn equipped with a Whitney stratification and let f : (X, 0) → (C, 0)
be an analytic function, given by the restriction of an analytic function F :
(U, 0) → (C, 0). Then 0 is said to be a generic point of f if the hyperplane
Ker(d0F ) is transverse in Cn to all degenerate tangent planes of the Whitney
stratification at 0.

Now, let us see the definition of a Morsefication of a function.
Definition 1.8. — Let W = {W0, W1, . . . , Wq}, with 0 ∈ W0, a Whit-

ney stratification of the complex analytic space X. A function f : (X, 0) →
(C, 0) is said to be Morse stratified if dim W0 ⩾ 1, f |W0 : W0 → C has a
Morse point at 0, and 0 is a generic point of f with respect to Wi, for all
i ̸= 0.

A stratified Morsefication of a germ of analytic function f : (X, 0) →
(C, 0) is a deformation f̃ of f such that f̃ is Morse stratified.

In [16], Seade, Tibăr and Verjovsky proved that the Euler obstruction
of a function f is also related to the number of Morse critical points of a
stratified Morsefication of f.

Proposition 1.9 ([16, Prop. 2.3]). — Let f : (X, 0) → (C, 0) be a germ
of analytic function with isolated singularity at the origin. Then,

Euf,X(0) = (−1)dnreg,

where nreg is the number of Morse points in Xreg in a stratified Morsefication
of f.

2. Brasselet number

In this section, we introduce the definitions and results needed in the
development of this work. The main reference for this section is [11].

Let X be a reduced complex analytic space (not necessarily equidimen-
sional) of dimension d in an open set U ⊆ Cn and let f : (X, 0) → (C, 0) be
an analytic map. We denote V (f) = f−1(0), despite the fact it will always
be considered as a germ of set at the origin.
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Definition 2.1. — A good stratification of X relative to f is a stratifi-
cation V of X which is adapted to V (f) such that {Vλ ∈ V, Vλ ⊈ V (f)} is a
Whitney stratification of X \ V (f) and such that for any pair (Vλ, Vγ) such
that Vλ ⊈ V (f) and Vγ ⊆ V (f), the (af )-Thom condition is satisfied. That
is, if p ∈ Vγ and pi ∈ Vλ are such that pi → p and Tpi

V (f |Vλ
− f |Vλ

(pi))
converges to some T , then TpVγ ⊆ T .

If f : X → C has a stratified isolated critical point and V is a Whitney
stratification of X, then

{Vλ \ Xf , Vλ ∩ Xf \ {0}, {0}, Vλ ∈ V} (2.1)

is a good stratification of X relative to f, called the good stratification
induced by f.

Let V be a good stratification of X relative to f.

Definition 2.2. — The critical locus of f relative to V, ΣVf, is given
by the union

ΣVf =
⋃

Vλ∈V
Σ(f |Vλ

).

Definition 2.3. — If V = {Vλ} is a stratification of X, the relative
polar variety of f and g with respect to V, denoted by Γf,g(V), is the union⋃

λ Γf,g(Vλ), where Γf,g(Vλ) denotes the closure in X of the critical locus of
(f, g)|Vλ\Xf , where Xf = X ∩ {f = 0}.

Definition 2.4. — If V = {Vλ} is a stratification of X, the symmetric
relative polar variety of f and g with respect to V, Γ̃f,g(V), is the union⋃

λ Γ̃f,g(Vλ), where Γf,g(Vλ) denotes the closure in X of the critical locus of
(f, g)|Vλ\(Xf ∪Xg), Xf = X ∩ {f = 0} and Xg = X ∩ {g = 0}.

Definition 2.5. — Let V be a good stratification of X relative to a func-
tion f : (X, 0) → (C, 0). A function g : (X, 0) → (C, 0) is prepolar with
respect to V at the origin if the origin is a stratified isolated critical point of
g, that is, 0 is an isolated point of ΣVg.

Definition 2.6. — A function g : (X, 0) → (C, 0) is tractable at the
origin with respect to a good stratification V of X relative to f : (X, 0) →
(C, 0), if dim0 Γ̃f,g(V) ⩽ 1 and, for all strata Vα ⊆ Xf , g|Vα

has no critical
point in a neighbourhood of the origin except perhaps at the origin itself.

Another usefulconcept for this work is the notion of constructible func-
tions. Consider a Whitney stratification W = {W1, . . . , Wq} of X such that
each stratum Wi is connected.
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Definition 2.7. — A constructible function with respect to the stratifi-
cation W of X is a function β : X → Z which is constant on each stratum
Wi, that is, there exist integers t1, . . . , tq, such that β =

∑q
i=1 ti.1Wi , where

1Wi
is the characteristic function of Wi.

Definition 2.8. — The Euler characteristic χ(X, β) of a constructible
function β : X → Z with respect to the stratification W of X, given by
β =

∑q
i=1 ti.1Wi , is defined by χ(X, β) =

∑q
i=1 ti.χ(Wi).

We present now the definition of the Brasselet number and the main
theorems of [3], used as inspiration for this work.

Let f : (X, 0) → (C, 0) be a complex analytic function germ and let V be
a good stratification of X relative to f. We denote by V1, . . . , Vq the strata
of V that are not contained in {f = 0} and we assume that V1, . . . , Vq−1 are
connected and that Vq = Xreg \{f = 0}. Note that Vq may not be connected.

Definition 2.9. — Suppose that X is equidimensional. Let V be a good
stratification of X relative to f. The Brasselet number of f at the origin,
Bf,X(0), is defined by

Bf,X(0) =
q∑

i=1
χ(Vi ∩ f−1(δ) ∩ Bϵ) EuX(Vi),

where 0 < |δ| ≪ ϵ ≪ 1.

Remark. — If V i
q is a connected component of Vq, EuX(V i

q ) = 1.

Notice that if f has a stratified isolated singularity at the origin, then
Bf,X(0) = EuX(0) − Euf,X(0) (see Theorem 1.5).

In [3], Dutertre and Grulha proved interesting formulas describing the
topological relation between the Brasselet number and a number of certain
critical points of a special type of deformation of functions. Let us now
remind some of these results. Fist, we need the definition of a special type
of Morsefication, introduced by the authors in [3].

Definition 2.10. — A partial Morsefication of g : f−1(δ)∩X ∩Bϵ → C
is a function g̃ : f−1(δ)∩X ∩Bϵ → C (not necessarily holomorphic) which is
a local Morsefication of all isolated critical points of g in f−1(δ) ∩ X ∩ {g ̸=
0} ∩ Bϵ and which coincides with g outside a small neighbourhood of these
critical points.

Let g : (X, 0) → (C, 0) be a complex analytic function which is tractable
at the origin with respect to V relative to f. Then Γ̃f,g is a complex analytic
curve and for 0 < |δ| ≪ 1 the critical points of g|f−1(δ)∩X in Bϵ lying outside
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{g = 0} are isolated. Let g̃ be a partial Morsefication of g : f−1(δ)∩X∩Bϵ →
C and, for each i ∈ {1, . . . , q}, let nq be the number of stratified Morse critical
points of g̃ appearing on Xreg ∩ f−1(δ) ∩ {g ̸= 0} ∩ Bϵ.

Theorem 2.11 ([3, Thm. 4.4]). — Suppose that X is equidimensional
and that g is prepolar with respect to V at the origin. For 0 < |δ| ≪ ϵ ≪ 1,
we have

Bf,X(0) − Bf,Xg (0) = (−1)d−1nq,

where nq is the number of stratified Morse critical points on the top stratum
Vq ∩ f−1(δ) ∩ Bϵ appearing in a Morsefication of g : X ∩ f−1(δ) ∩ Bϵ → C.

In the case where X is equipped with a Whitney stratification V =
{V0, V1, . . . , Vq} with V0 = {0}, and f, g : X → C have an isolated stratified
singularity at the origin with respect to this stratification. In [3], the authors
also related the topology of the generalized Milnor fibres of f and g with the
number of Morse points of a partial Morsefication of g : X ∩f−1(δ)∩Bϵ → C
and f : X ∩ g−1(δ) ∩ Bϵ → C.

Corollary 2.12. — Suppose that X is equidimensional and that g
(resp. f) is prepolar with respect to the good stratification induced by f
(resp. g) at the origin. Then

Bf,X(0) − Bg,X(0) = (−1)d−1(nq − mq),

where nq (resp. mq) is the number of stratified Morse critical points on the
top stratum Vq ∩f−1(δ)∩Bϵ (resp. Vq ∩g−1(δ)∩Bϵ) appearing in a Morsefi-
cation of g : X ∩ f−1(δ) ∩ Bϵ → C (resp. f : X ∩ g−1(δ) ∩ Bϵ → C).

3. Brasselet numbers and empty polar varieties

In this final section, we relate the Brasselet numbers of two function-
germs in the case where the relative polar variety associated to these germs
is empty.

Let (X, 0) be a complex analytic space in U ⊂ Cn+1. Let f, g : (U, 0) →
(C, 0) be germs of holomorphic functions and let V be a good stratification
of X relative to f. Suppose that ΣVg ∩ {f = 0} = {0}. We aim to obtain
information about the Brasselet number of f and the Brasselet number of g
in the case where the relative polar variety Γf,g(V) is empty. We begin with
a description of two relevant subsets of Γf,g(V).

Proposition 3.1. — The stratified critical set ΣVg of g and the sym-
metric relative polar variety Γ̃f,g(V) are subsets of Γf,g(V).
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Proof. — If x ∈ ΣVg, then dxg̃|Vα
= 0, for a stratum Vα ∈ V containing

x and an analytic extension g̃ of g in a neighbourhood of x. If Vα ⊂ {f = 0},
then x = 0, since ΣVg ∩ {f = 0} = {0}. If Vα ⊂ X \ {f = 0}, rk(dxf̃ , dxg̃) ⩽
1, where f̃ is an analytic extension of f in a neighbourhood of x. Hence,
x ∈ Σ(f, g)|Vα

= Σ(f, g)|Vα\{f=0}, that is, x ∈ Γf,g(V).

Furthermore, Γ̃f,g(V) is given by the components of Γf,g(V) not contained
in {g = 0}, that is, Γ̃f,g(V) = Γf,g(V) \ {} = ′} ⊂ Γf,g(V). □

Using this proposition, we obtain the following useful information about
the behaviour of g with respect to V.

Corollary 3.2. — If Γf,g(V) is empty, then g is prepolar at the origin
with respect to the good stratification V of X relative to f.

Proof. — By Proposition 3.1, if Γf,g(V) is empty, then ΣVg is empty, that
is, g has no stratified critical point with respect to V. □

Let ni be the number of stratified Morse critical points of a Morsefication
of g : X ∩ f−1(δ) ∩ Bϵ → C in Vi ∩ f−1(δ) ∩ Bϵ, for each i ∈ {1, . . . , q}.
The next proposition uses the relative polar variety Γf,g(V) for counting the
number ni.

Proposition 3.3. — If Γf,g(V) is empty, then ni = 0, for all i ∈
{1, . . . , q}.

Proof. — Let Vi be a stratum of V and x be a critical point of
g|Vi∩f−1(δ)∩Bϵ

. If f̃ and g̃ are analytic extensions of f and g in a neigh-
bourhood of x, respectively, then x ∈ Vi ∩ f−1(δ) ∩ Bϵ and rk(dxf̃ , dxg̃) ⩽ 1,
that is, x ∈ (Vi ∩ f−1(δ) ∩ Bϵ) ∩ (ΣVf ∪ ΣVg ∪ Γ̃f,g(V)). By Proposition 1.3
of [11], ΣVf ⊂ {f = 0}. Therefore, by Proposition 3.1,

Σg|Vi∩f−1(δ)∩Bϵ
= Vi ∩ f−1(δ) ∩ Bϵ ∩ (Σg|Vi ∪ Γ̃f,g(Vi))

⊂ Vi ∩ f−1(δ) ∩ Bϵ ∩ Γf,g(Vi).
Since Γf,g(V) is empty, Σg|Vi∩f−1(δ)∩Bϵ

is empty which implies ni = 0, for
all i ∈ {1, . . . , q}. □

In [3], Dutertre and Grulha proved a Lê–Greuel type formula for the
Brasselet number, making possible to count the number of stratified Morse
critical points using Brasselet numbers. We apply their result to compute
Brasselet numbers in the setting we already know the number of Morse
critical points. First, let us show a more general result.

Proposition 3.4. — Let β : X → Z be a constructible function with
respect to the good stratification V of X relative to f . If Γf,g(V) is empty,
then

χ(X ∩ f−1(δ) ∩ Bϵ, β) = χ(X ∩ g−1(0) ∩ f−1(δ) ∩ Bϵ, β).
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Proof. — By Corollary 3.2, since Γf,g(V) is empty, g is prepolar at the
origin with respect to V and, by Proposition 1.12 of [11], g is tractable at
the origin with respect to V. Then, by Theorem 4.2 of [3], we obtain

χ(X ∩ f−1(δ) ∩ Bϵ, β)

= χ(X ∩ g−1(0) ∩ f−1(δ) ∩ Bϵ, β) +
q∑

i=1
(−1)d−1niη(Vi, β),

where ni is the number of stratified Morse critical points of a Morsefication
of g|Vi∩f−1(δ)∩Bϵ

appearing in Vi ∩ f−1(δ) ∩ Bϵ. By Proposition 3.3, ni = 0,
for all i ∈ {1, . . . , q}, and the equality holds. □

If the constructible function β is the local Euler obstruction, we obtain a
relation between Brasselet numbers.

Corollary 3.5. — If X is equidimensional and Γf,g(V) is empty, then
Bf,X(0) = Bf,Xg (0).

Proof. — By Theorem 4.4 of [3], Bf,X(0) = Bf,Xg (0)+(−1)d−1nq, where
nq is the number of stratified Morse critical points of a Morsefication of
g|Xreg∩f−1(δ)∩Bϵ

appearing in Xreg ∩ f−1(δ) ∩ Bϵ. Since Γf,g(V) is empty, nq

vanishes and the equality holds. □

When f is a generic linear form on Cn, Bf,X(0) = EuX(0) and Bf,Xg (0) =
EuXg (0). Therefore, the last corollary leads the following consequence.

Corollary 3.6. — If X is equidimensional and Γf,g(V) is empty, then
EuX(0) = EuXg (0).

When both f and g have isolated singularity at the origin, Dutertre and
Grulha proved several formulas about the Brasselet numbers of f and g.
Using these formulas and supposing that Γf,g(V) is empty, we obtain further
information about these numbers. If this is the case, then g is prepolar at
the origin with respect to the good stratification V of X induced by f , given
as a refinement of a Whitney stratification W = {Wi} of X. Hence, by
Lemma 6.1 of [3], we conclude that f is prepolar at the origin with respect
to the good stratification V of X induced by g, also given by a refinement
of W. By Proposition 1.12 of [11], we obtain that Γf,g(V) = Γ̃f,g(V) and
Γg,f (V) = Γ̃g,f (V). On the other hand,

Γ̃f,g(V) =
⋃

Vi∈V
Σ(f, g)|Vi\({f=0}∪{g=0}) =

⋃
Wi∈W

Σ(f, g)|Wi\({f=0}∪{g=0})

=
⋃

Vi∈V

Σ(f, g)|Vi\({f=0}∪{g=0}) = Γ̃g,f (V).
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Hence, the four mentioned polar varieties are equal. We can then compute
the following.

Proposition 3.7. — Let β : X → Z be a constructible function with
respect to the Whitney stratification W and V is a good stratification of X
induced by f. If Γf,g(V) is empty, then χ(X ∩ f−1(δ) ∩ Bϵ, β) = χ(X ∩
g−1(δ) ∩ Bϵ, β).

Proof. — Since Γf,g(V) is empty, by Corollary 3.2, g is prepolar at the
origin with respect to V. By Lemma 6.1 of [3], f is prepolar at the origin with
respect to the good stratification V induced by g. By Theorem 6.4 of [3],

χ(X ∩ f−1(δ) ∩ Bϵ, β)

= χ(X ∩ g−1(δ) ∩ Bϵ, β) +
q∑

i=1
(−1)di−1(ni − mi)η(Wi, β),

where di denotes the dimension of Wi ∈ W, ni is the number of strati-
fied Morse critical points of a Morsefication of g|Vi∩f−1(δ)∩Bϵ

appearing in
Vi ∩ f−1(δ) ∩ Bϵ and mi is the number of stratified Morse critical points of
a Morsefication of f |Vi∩g−1(δ)∩Bϵ

appearing in Vi ∩ g−1(δ) ∩ Bϵ. By Proposi-
tion 3.3, since Γf,g(V) is empty, mi = ni = 0, for all i ∈ {1, . . . , q}, and the
equality is proved. □

In the case that β is the local Euler obstruction, we obtain a relation
between the Brasselet numbers.

Corollary 3.8. — If X is equidimensional and Γf,g(V) is empty, then
Bf,X(0) = Bg,X(0).

Proof. — Since Γf,g(V) is empty, g (resp. f) is prepolar at the origin with
respect to the good stratification of f (resp. g). By Corollary 6.5 of [3],

Bf,X(0) = Bg,X(0) + (−1)d−1(nq − mq),
where nq (resp. mq) is the number of Morse critical points of a Morsefication
of g|Xreg∩f−1(δ)∩Bϵ

(resp. f |Xreg∩g−1(δ)∩Bϵ
) appearing in Xreg ∩ f−1(δ) ∩ Bϵ

(resp. Xreg ∩ g−1(δ) ∩ Bϵ). Using again that Γf,g(V) is empty, we have that
nq = mq = 0 and the equality holds. □
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