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On stability of rotational 2D binary Bose–Einstein
condensates (∗)

Rémi Carles (1), Van Duong Dinh (2) and Hichem Hajaiej (3)

ABSTRACT. — We consider a two-dimensional nonlinear Schrödinger equation
proposed in Physics to model rotational binary Bose–Einstein condensates. The non-
linearity is a logarithmic modification of the usual cubic nonlinearity. The presence
of both the external confining potential and rotating frame makes it difficult to apply
standard techniques to directly construct ground states, as we explain in an appen-
dix. The goal of the present paper is to analyze the orbital stability of the set of
energy minimizers under mass constraint, according to the relative strength of the
confining potential compared to the angular frequency. The main novelty concerns
the critical case where these two effects compensate exactly (lowest Landau Level):
orbital stability is established by using techniques related to magnetic Schrödinger
operators.

RÉSUMÉ. — Nous considérons une équation de Schrödinger non linéaire en deux
dimensions d’espace, introduite en physique pour modéliser les condensats de Bose–
Einstein en rotation. La non-linéarité est une modification logarithmique du terme
cubique habituel. Les présences conjuguées d’un potentiel confinant et d’un repère
tournant font qu’il est difficile d’appliquer les techniques standard dans la construc-
tion d’états fondamentaux, comme expliqué en appendice. Le but de ce papier est
d’analyser la stabilité orbitale de l’ensemble des minimiseurs d’énergie à masse fixée,
selon la valeur relative de la force du potentiel confinant par rapport à la vitesse
de rotation. La nouveauté principale concerne le cas critique où les deux effets se
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compensent exactement (niveau fondamental de Landau) : la stabilité orbitale est
démontrée en utilisant des techniques en lien avec les opérateurs de Schrödinger
magnétiques.

1. Introduction

The formation of self-bound droplets is a well-known macroscopic phe-
nomenon. Recent experiments with ultracold quantum gases of bosonic atoms
revealed a novel type of quantum liquid: dilute self-bound Bose–Einstein
condensate (BEC) having orders of magnitude lower density than air (see
e.g. [19, 20, 25, 35] for Bose gases of dysprosium and [12, 36] for binary Bose
gases of potassium). Since these droplets form out of a BEC, there is good
reason to assume that they have superfluid properties. One remarkable fea-
ture of a superfluid is its response to rotation, in particular the occurrence
of quantized vortices (see [1] for a broad introduction to these phenomena).
In [37], binary BEC droplets carrying angular momentum were considered.
Using weak first-order corrections to the mean field energy, often referred to
as the Lee–Huang–Yang correction [27], a binary BEC droplet with angular
momentum is well described by the wave function ψ : R+ × R2 → C whose
evolution is governed by the Gross–Pitaevskii equation (GPE) with angular
momentum

i∂tψ + 1
2∆ψ = V ψ + |ψ|2 ln(|ψ|2)ψ − iK3|ψ|4ψ − ΩLzψ, (1.1)

where the scaling invariances have been used to bring the equation into its
dimensionless form. Here the external potential V is of the form

V (x) = γ2

2 |x|2 + V0e
−γ|x|2

, (1.2)

where γ > 0 is the harmonic trap frequency and V0 ⩾ 0 is the amplitude of
the Gaussian. The parameter K3 ⩾ 0 is the rate of three-body losses. The
angular momentum operator Lz is of the form

Lz = i(x2∂x1 − x1∂x2), x = (x1, x2) ∈ R2 (1.3)
and Ω > 0 is the rotational speed. The fact that the constants in the har-
monic trap and the Gaussian part of the potential are equal stems from [37],
but is not crucial in our analysis, so we consider more generally

V (x) = γ2

2 |x|2 + V0e
−γ0|x|2

, γ, γ0 > 0. (1.4)

The main purpose of this paper is to study the existence/nonexistence and
orbital stability of mass-constraint standing waves for (1.1). We consider the

– 82 –



Rotational Binary BEC

Cauchy problem for (1.1) with initial data ψ0 ∈ Σ, where
Σ :=

{
f ∈ H1(R2), x 7→ |x|f(x) ∈ L2(R2)

}
is equipped with the norm

∥f∥2
Σ = ∥f∥2

H1 + ∥xf∥2
L2 .

Due to the presence of the harmonic potential, this space is rather natural
(see e.g. [14]). In the case K3 = 0, there are three physical quantities which
are formally conserved along the flow of (1.1)
M(ψ(t)) = ∥ψ(t)∥2

L2 = M(ψ0), (Mass)

L(ψ(t)) =
∫
R2
ψ(t, x)Lzψ(t, x)dx = L(ψ0), (Angular momentum)

EΩ(ψ(t)) = 1
2∥∇ψ(t)∥2

L2 +
∫
R2
V (x)|ψ(t, x)|2dx (Energy)

+ 1
2

∫
R2

|ψ(t, x)|4 ln
(

|ψ(t, x)|2√
e

)
dx− ΩL(ψ(t)) = EΩ(ψ0).

Here we note that the angular momentum is real-valued, but has no definite
sign. Similarly, the term involving the natural logarithm also has no definite
sign.

In the case K3 ̸= 0, solutions to (1.1) formally satisfy
1
2

d
dt∥ψ(t)∥2

L2 +K3∥ψ(t)∥6
L6 = 0. (1.5)

This shows that for K3 ̸= 0, the equation is irreversible. This is the reason
why, since K3 ⩾ 0, we consider only positive time in the present paper.
In the case K3 = 0, the equation is reversible, and ψ(−t, x) solves (1.1):
considering the case t ⩾ 0 suffices to describes the dynamics for all time.

When γ = V0 = K3 = Ω = 0, the equation (1.1) was recently studied
in [16]. More precisely, the global well-posedness for H1 data, the existence
and uniqueness of positive ground state solutions for (1.1) were shown there,
along with the orbital stability of prescribed mass standing waves.

Our first result is the following global existence for (1.1).

Theorem 1.1 (Global well-posedness). — Let γ, γ0 > 0, Ω > 0, V0 ⩾ 0,
K3 ⩾ 0, and ψ0 ∈ Σ. Then there exists a unique global-in-time solution
to (1.1) satisfying ψ ∈ C(R+; Σ) ∩ L3

loc(R+;L6(R2)).

• If K3 = 0, the conservation laws of mass, angular momentum, and
energy hold.

• If K3 > 0, the solution asymptotically vanishes in the sense that

∥ψ(t)∥2
L2 = O

(
t−1/4

)
as t → ∞. (1.6)
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The Cauchy problem is addressed by resuming the approach from [3].
In passing, we fix a small flaw present in this paper regarding dispersive
estimates. The asymptotic extinction (1.6) is then established like in [2],
thanks to a suitable uniform bound which makes it possible to control the
L6-norm in (1.5) from below in terms of the L2-norm.

Remark 1.2. — The potential V in (1.4) is radially symmetric, since it
is the model given in [37]. We will see in the proof of Theorem 1.1 that the
result still holds true in the more general case of smooth potentials which are
at most quadratic (and thus need not be radial); see Remarks 2.2 and 2.3.

In the rest of the introduction, we are interested in the absence of three-
body losses, i.e. K3 = 0. In this case, (1.1) admits standing waves, i.e.
solutions of the form

ψ(t, x) = eiωtϕ(x), ω ∈ R, (1.7)
where ϕ solves

−1
2∆ϕ+ V ϕ+ ϕ|ϕ|2 ln(|ϕ|2) − ΩLzϕ+ ωϕ = 0, x ∈ R2. (1.8)

Note that in the case K3 > 0, there is no such solution in view of the
asymptotic extinction (1.6).

The existence of standing waves for (1.8) can be achieved by several ways.
The first way is to minimize the energy functional

EΩ(f) = 1
2∥∇f∥2

L2 +
∫
R2
V |f |2dx+ 1

2 |f |4 ln
(

|f |2√
e

)
dx− ΩL(f),

with prescribed mass constraint, i.e. ∥f∥2
L2 = ρ > 0, a strategy which is

often adopted in Physics. In this case, the parameter ω in (1.8) appears as
a Lagrange multiplier associated to the minimization problem. Another way
is to look for critical points of the action functional
Sω(f) = EΩ(f) + ωM(f)

= 1
2∥∇f∥2

L2 + ω∥f∥2
L2 +

∫
R2
V |f |2dx+ 1

2

∫
R2

|f |4 ln
(

|f |2√
e

)
dx− ΩL(f),

with ω being given and fixed. However, this approach seems difficult to
apply in the present context. More precisely, (1.8) has two features which
make it difficult to characterize the range of ω’s allowed to find a non-trivial
solution to (1.8). The presence of the external potential V and the rotation
Lz introduces an x-dependence which makes it impossible to invoke the
results from [9] (the 2D counterpart of [10]), or even adapt easily the proof.
On the other hand, the fact that the nonlinearity is not homogeneous in ϕ
makes it impossible to reproduce the arguments from [34] (see also [22] in the
case of a harmonic potential). In an appendix, we collect some information
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regarding the possible range for ω in the radial case, where the rotating term
is absent from (1.8), and explain in more details why minimizing the action
seems difficult here.

We therefore consider the following minimization problem: for ρ > 0,

IΩ(ρ) := inf
{
EΩ(f) : f ∈ Σ, ∥f∥2

L2 = ρ
}
. (1.9)

Our next result concerns the existence and stability of prescribed mass stand-
ing waves for (1.8) in the case of low rotational speed.

Theorem 1.3. — Let K3 = 0, γ, γ0 > 0, V0 ⩾ 0 and 0 < Ω < γ. Then
for any ρ > 0, there exists ϕ ∈ Σ such that EΩ(ϕ) = IΩ(ρ) and ∥ϕ∥2

L2 = ρ.
Moreover, the set

GΩ(ρ) :=
{
ϕ ∈ Σ : EΩ(ϕ) = IΩ(ρ), ∥ϕ∥2

L2 = ρ
}

is orbitally stable under the flow of (1.1) in the sense that for any ϵ > 0,
there exists δ > 0 such that for any initial data u0 ∈ Σ satisfying

inf
ϕ∈GΩ(ρ)

∥ψ0 − ϕ∥Σ < δ,

the corresponding solution to (1.1) exists globally in time and satisfies

sup
t∈R+

inf
ϕ∈GΩ(ρ)

∥ψ(t) − ϕ∥Σ < ϵ.

The proof of Theorem 1.3 is based on a standard variational argument
using the following observation (see Lemma 3.1): for 0 < Ω < γ,

∥∇f∥2
L2 + 2

∫
R2
V |f |2dx− 2ΩL(f) ≃ ∥∇f∥2

L2 + ∥xf∥2
L2

which enables us to use the standard compact embedding Σ ↪→ Lr(R2) for
all 2 ⩽ r < ∞. We also make use of the log-type inequality∣∣∣∣∫

R2
|f |4 ln

(
|f |2√
e

)
dx
∣∣∣∣ ≲ϵ ∥f∥4−ϵ

L4−ϵ + ∥f∥4+ϵ
L4+ϵ (1.10)

for any ϵ > 0. For more details, we refer to Subsection 3.1.

Next we consider the critical rotational speed Ω = γ (lowest Landau level,
see e.g. [1] and references therein), which constitutes the main novelty of this
paper. In this case, the energy functional can be rewritten as

Eγ(f) = 1
2∥∇Af∥2

L2

+ V0

∫
R2
e−γ0|x|2

|f(x)|2dx+ 1
2

∫
R2

|f |4 ln
(

|f |2√
e

)
dx, (1.11)
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where ∇A := ∇ − iA with A(x) = γ(−x2, x1). Thanks to this observation,
it is convenient to consider the above functional on the magnetic Sobolev
space

H1
A(R2) :=

{
f ∈ L2(R2) : (∂j − iAj)f ∈ L2(R2), j = 1, 2

}
(1.12)

endowed with the norm
∥f∥2

H1
A

:= ∥f∥2
L2 + ∥∇Af∥2

L2 .

Note that the energy functional (1.11) is well-defined on H1
A(R2) by us-

ing (1.10) and the magnetic Gagliardo–Nirenberg inequality (see e.g., [18]):
for 2 < r < ∞,

∥f∥r
Lr ⩽ Cr∥∇Af∥r−2

L2 ∥f∥2
L2 , ∀ f ∈ H1

A(R2).
We also have Σ ⊂ H1

A(R2). Indeed, for f ∈ Σ, we have

∥f∥2
H1

A
= ∥f∥2

L2 + ∥∇f∥2
L2 + γ2∥xf∥2

L2 − γ

∫
R2
fLzfdx ⩽ C∥f∥2

Σ,

where the last inequality follows from

|L(f)| ⩽ ∥xf∥L2∥∇f∥L2 ⩽
1

2γ ∥∇f∥2
L2 + γ

2 ∥xf∥2
L2 .

To show the existence and stability of standing waves to (1.1) in the
critical rotational case, it is convenient to consider separately two cases:
V0 = 0 and V0 > 0.

When V0 = 0, we denote
I0

γ(ρ) := inf
{
E0

γ(f) : f ∈ H1
A(R2), ∥f∥2

L2 = ρ
}
, (1.13)

where

E0
γ(f) := 1

2∥∇Af∥2
L2 + 1

2

∫
R2

|f |4 ln
(

|f |2√
e

)
dx, (1.14)

and the superscript 0 is here to emphasize the assumption V0 = 0. Let us
first introduce the cubic ground state, that is, the unique positive, radially
symmetric solution to

−1
2∆Q+Q = Q3, x ∈ R2. (1.15)

By making use of a variant of the celebrated concentration-compactness
principle of Lions adapted to the magnetic Sobolev space H1

A(R2) (see Lem-
ma 3.8), we prove the following result.

Theorem 1.4. — Let K3 = V0 = 0, 0 < γ < 1
2e3/2 and Ω = γ. Let

0 < ρ ⩽ ∥Q∥2
L2 . Then there exists ϕ ∈ H1

A(R2) such that E0
γ(ϕ) = I0

γ(ρ) and
∥ϕ∥2

L2 = ρ. Moreover, the set of minimizers for I0
γ(ρ), namely

G0
γ(ρ) :=

{
ϕ ∈ H1

A(R2) : E0
γ(ϕ) = I0

γ(ρ), ∥ϕ∥2
L2 = ρ

}
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is orbitally stable under the flow of (1.1) in the sense that for any ϵ >, there
exists δ > 0 such that for any initial data ψ0 ∈ H1

A(R2) satisfying

inf
ϕ∈G0

γ (ρ)
∥ψ0 − ϕ∥H1

A
< δ,

then the corresponding solution to (1.1) exists globally in time and satisfies

sup
t∈R+

inf
ϕ∈G0

γ (ρ)
inf

y∈R2
∥eiA(y)·xψ(t, x+ y) − ϕ(x)∥H1

A
< ϵ.

The assumption ρ ⩽ ∥Q∥2
L2 is probably technical, due to our argument

(see after (3.18)). The proof also relies on the property I0
γ(ρ) < 0 (see Propo-

sition 3.5). In the case K3 = V0 = γ = Ω = 0, the latter condition was shown
in [16] for any ρ > 0. In our setting, showing that I0

γ(ρ) < 0 is more com-
plicated since the scaling argument used in [16] does not work because of
the presence of magnetic potential. However, by using a trial function of the
form λe−b|x|2 with suitable positive constants λ and b, we are able to show
(see Lemma 3.10) that both conditions ρ ⩽ ∥Q∥2

L2 and I0
γ(ρ) < 0 are fulfilled

by some data f ∈ H1
A(R2). This also leads to a restriction on the validity of

γ. We refer the reader to Subsection 3.2 for more details.

When V0 > 0, the above-mentioned concentration-compactness argument
does not work due to the lack of spatial translation of the term∫

R2
e−γ0|x|2

|f(x)|2dx.

To overcome the difficulty, we restrict our consideration on H1
A,rad(R2) the

space of radially symmetric functions of H1
A(R2). Note that this restriction

has a drawback since we no longer see the effect of rotation to the equation
as Lzf = 0 for a radial function f . We consider

Iγ,rad(ρ) := inf
{
Eγ(f) : f ∈ H1

A,rad(R2), ∥f∥2
L2 = ρ

}
, (1.16)

where Eγ(f) is as in (1.11). We have the following result.

Theorem 1.5. — Let K3 = 0, V0 ⩾ 0, γ, γ0 > 0, and Ω = γ. Then
for any ρ > 0, there exists ϕ ∈ H1

A,rad(R2) such that Eγ(ϕ) = Iγ,rad(ρ)
and ∥ϕ∥2

L2 = ρ. Moreover, the set of minimizers for Iγ,rad(ρ) is orbitally
stable under the flow of (1.1), and radial perturbations (in the sense that Σ
is replaced by H1

A,rad in the conclusion of Theorem 1.3).

Remark 1.6. — As mentioned above the rotation term vanishes for radi-
ally symmetric functions, so the result in Theorem 1.5 holds for any Ω ⩾ 0.
In particular, it gives another (radial) solution, besides the one obtained in
Theorem 1.4, to (1.8).
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The proof of Theorem 1.5 relies on the following compact embedding
H1

A,rad(R2) ∋ f 7→ |f | ∈ Lr(R2) (1.17)
for all 2 ⩽ r < ∞. This compact embedding follows from the well-known
compact embedding H1

rad(R2) ↪→ Lr(R2) for all 2 ⩽ r < ∞ and the fact that
H1

A,rad(R2) ∋ f 7→ |f | ∈ H1
rad(R2)

is continuous due to the diamagnetic inequality (see e.g. [28])
|∇|f |(x)| ⩽ |∇Af(x)| a.e. x ∈ R2.

When the rotational speed exceeds the critical value, i.e. Ω > γ, we
have the following nonexistence of minimizers for the constrained variational
problem IΩ(ρ).

Theorem 1.7. — Let K3 = 0, γ, γ0 > 0, V0 ⩾ 0, and Ω > γ. Then for
any ρ > 0, there is no minimizer for IΩ(ρ), i.e., IΩ(ρ) = −∞.

The proof of Theorem 1.7 is based on an idea of Bao, Wang, and
Markowich [7, Section 3.2], using the central vortex state with winding num-
ber m, namely

fm(x) = fm(r, θ) =
√
ργm+1

πm! rme− γ|x|2
2 eimθ, m ∈ N,

where (r, θ) are the polar coordinates in R2. Physically, when the angular
velocity of rotation exceeds the trapping frequency, the harmonic poten-
tial cannot provide enough necessary centripetal force that counteracts the
centrifugal force caused by the rotation, and the gas may fly apart. In the
classical rotating BEC with purely power-type nonlinearity, the nonexis-
tence of prescribed mass standing waves was proved by Bao, Wang, and
Markowich [7].

This work is organized as follows. In Section 2, we study the local well-
posedness for (1.1) and prove the global existence given in Theorem 1.1. In
Section 3, we investigate the existence/nonexistence and the orbital stability
of prescribed mass standing waves for (1.1) given in Theorems 1.3, 1.4, 1.5,
and 1.7. Finally, we give some information on stationary solutions of (1.8) in
the radial case in Appendix A, and characterize prescribed mass minimizers
in Appendix B.

2. Cauchy problem

In the case K3 = 0, Theorem 1.1 is reminiscent of the results from [3]
for the local and global well-posedness. We present an alternative proof, to
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show that local solutions are actually global, which simplifies the approach,
and yields better bounds. The asymptotic extinction in the case K3 > 0 is
obtained by adapting the arguments from [4] based on the introduction of a
suitable pseudo-energy (see also [2] for generalizations).

2.1. Local well-posedness

Local well-posedness follows from a fixed point argument on Duhamel’s
formula

ψ(t) = U(t)ψ0 − iλ

∫ t

0
U(t− s)f(u)(s) ds, (2.1)

where here and in the following, we denote

f(z) = z|z|2 ln(|z|2) − iK3|z|4z, z ∈ C.

The notation U( · ) stands for the linear propagator, that is, U(t)ψ0 = ψlin(t)
is the solution to

i∂tψlin + 1
2∆ψlin = V (x)ψlin − ΩLzψlin, ψlin(0, x) = ψ0. (2.2)

As noticed in [3], U(t) = e−itH(x,Dx), where

H(x, ξ) = 1
2 |ξ|2 + V (x) + Ω(x1ξ2 − x2ξ1),

enters into the general framework of [26], where the fundamental solution,
that is, the kernel associated to U( · ), is constructed. However, this does
not yield directly local in time dispersive properties, since unlike in [21], the
solution to(1)

i∂tψ +H(t, x,−i∂x)ψ = 0 ; ψ|t=0 = φ,

forH = H(t, x, ξ) smooth, real-valued and at most quadratic in (x, ξ) (locally
in time), is represented as

U(t)φ(x) =
∫
R2
eiϕ(t,x,ξ)a(t, x, ξ)φ̂(ξ)dξ,

that is, an oscillatory integral involving the Fourier transform of φ, and not
φ directly. Consequently, dispersive L1 −L∞ estimates cannot be inferred in
general, as shown by the trivial case H = 0: it enters the framework of [26],
the above representation holds with a = constant (whose value depends
on the definition of the Fourier transform), but no Strichartz estimate is
available, of course.

(1) We do not include here the semi-classical parameter present in [21, 26].
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In the present case, local dispersive estimates are available though, as
we show by relying on the isotropy of V and Lz; this corresponds to the
trick presented in [3] in the 3D case. This alternative approach not only
yields dispersive estimates, but also makes it possible to study the Cauchy
problem as if the rotation term was absent. Define the function φ by

φ(t, x) = ψ (t, x1 cos(Ωt) + x2 sin(Ωt),−x1 sin(Ωt) + x2 cos(Ωt)) . (2.3)

We check that since V depends only on |x|2 (and is therefore invariant under
rotation), ψ solves (1.1) if and only if φ solvesi∂tφ+ 1

2∆φ = V φ+ φ|φ|2 ln(|φ|2) − iK3|φ|4φ, (t, x) ∈ R+ × R2,

φ(0, x) = ψ0,
(2.4)

that is, (1.1) with Ω = 0. Now for the perturbed harmonic oscillator H =
− 1

2 ∆ + V , local in time dispersive estimates are available: from [21], there
exists δ > 0 such that

∥e−itHψ0∥L∞ ≲
1
|t|

∥ψ0∥L1 , |t| ⩽ δ. (2.5)

Note that δ is necessarily finite, as H possesses eigenvalues (as a consequence
from e.g., [33, Theorem XIII.67]). This implies local in time Strichartz es-
timates (see e.g., [17]) and so, as long as bounded time intervals only are
involved, (2.1) can be studied like in the case where U(t) = eit∆. Note that
since (2.3) preserves the Lebesgue norms, we infer

∥e−itHΩψ0∥L∞ ≲
1
|t|

∥ψ0∥L1 , |t| ⩽ δ, (2.6)

for all Ω ∈ R, with δ and an implicit multiplicative constant independent
of Ω.

In the case K3 = 0, the analysis meets essentially the one presented
in [16]. In the general case K3 ⩾ 0, f ∈ C1(R2;R2) satisfies f(0) = 0,

|f(u)| ≲ |u|3−ε + |u|4, ∀ ε > 0,

as well as
|∇f(u)| ≲ (|u|2−ε + |u|3)|∇u|.

We then obtain:

Lemma 2.1 (Local well-posedness). — Let γ > 0,Ω > 0, V0 ⩾ 0,K3 ⩾ 0,
and ψ0 ∈ Σ. Then there exist T > 0 and a unique solution

φ ∈ C([0, T ]; Σ) ∩ L3((0, T );L6(R2)),

to (2.4). Equivalently, in view of (2.3),

ψ ∈ C([0, T ]; Σ) ∩ L3((0, T );L6(R2)),
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solves (1.1). Moreover, it satisfies (1.5). Either the solution is global in time,

φ,ψ ∈ C(R+; Σ) ∩ L3
loc(R+;L6(R2)),

or there exists T ∗ < ∞ such that

lim
t→T ∗

∥∇φ(t)∥L2 = lim
t→T ∗

∥∇ψ(t)∥L2 = ∞.

In the case K3 = 0, we also have the conservation laws of mass, angular
momentum, and energy.

Sketch of the proof. — We present the elements of the proof which require
a little modification due to the presence of the damping term (K3 > 0).

We recall that the standard blow-up alternative involves the condition

lim
t→T ∗

∥φ(t)∥Σ = lim
t→T ∗

∥ψ(t)∥Σ = ∞.

In view of (1.5), the L2-norm of ψ remains bounded for positive time, and
thus, so does the L2-norm of φ. On the other hand, we compute

d
dt∥xφ(t)∥2

L2 = − Im
∫
R2

|x|2φ∆φdx− 2K3

∫
R2

|x|2|φ|6dx

= 2 Im
∫
R2
φx · ∇φdx− 2K3

∫
R2

|x|2|φ|6dx.

Using Cauchy–Schwarz and Young’s inequalities, we infer that
d
dt∥xφ(t)∥2

L2 ⩽ ∥xφ(t)∥2
L2 + ∥∇φ(t)∥2

L2 . (2.7)

Therefore, if ∇φ remains bounded in L2, then so does the Σ-norm, and the
blow-up criterion can be reduced to the one stated in the lemma.

In the case K3 = 0, the proof of conservation laws follows, for instance,
from [31]. □

Remark 2.2 (Non-radial potential). — The case of a non-radial potential
can be treated along essentially the same lines. Indeed, for a potential V ∈
C∞(R2;R), which is at most quadratic in the sense of [21], that is,

∂α
xV ∈ L∞(R2), ∀ α ∈ N2, |α| ⩾ 2,

the function φ, given by (2.3), solves

i∂tφ+ 1
2∆φ = Ṽ (t, x)φ+ φ|φ|2 ln(|φ|2) − iK3|φ|4φ,

with Ṽ (t, x) = V (x1 cos(Ωt)+x2 sin(Ωt),−x1 sin(Ωt)+x2 cos(Ωt)). The time
dependent potential Ṽ is smooth in (t, x), and at most quadratic in space (in
the same sense as above), uniformly in time. It follows from [21] that (2.5)
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remains valid with e−itH replaced by the evolution group U(s+ t, s) associ-
ated to H̃(t) = − 1

2 ∆ + Ṽ (t, x), hence (2.6) holds in this case too. The rest
of the proof of Lemma 2.1 can be repeated exactly then.

2.2. Global well-posedness

In the case K3 = 0, the following energy is independent of time,

E0(φ) := 1
2∥∇φ∥2

L2 +
∫
R2
V |φ|2dx+ 1

2

∫
R2

|φ|4 ln
(

|φ|2√
e

)
dx,

as well as the mass of φ. The positive part of the energy satisfies

E+(φ(t)) := 1
2∥∇φ(t)∥2

L2 +
∫
R2
V |φ(t)|2dx

+ 1
2

∫
|φ|2>

√
e

|φ(t, x)|4 ln
(

|φ(t, x)|2√
e

)
dx

= E0(ψ0) + 1
2

∫
|φ|2<

√
e

|φ(t, x)|4 ln
( √

e

|ψ(t, x)|2

)
dx

⩽ E0(ψ0) +
√
e

2

∫
R2

|φ(t, x)|2dx,

where we have used the easy bound ln a ⩽ a for a ⩾ 1. Using the conservation
of mass, this yields

E+(φ(t)) ≲ 1,
and thus global existence (in the past as well, since for K3 = 0, the equation
is reversible), since ∥φ∥Σ ≲ E+(φ). Note that even the L2-norm of φ is con-
trolled by E+, in view of the uncertainty principle (see e.g., [32, Section 3.2])

∥f∥2
L2 ⩽ ∥∇f∥L2∥xf∥L2 , f ∈ Σ. (2.8)

In particular, there exists C > 0 such that∫
R2

|x|2|φ(t, x)|2dx =
∫
R2

|y|2|ψ(t, y)|2dy ⩽ C, ∀ t ⩾ 0. (2.9)

In the case K3 > 0, following the strategy presented in [4, Section 3.1],
we introduce a pseudo-energy, for k > 0,

E(k, φ) = E0(φ) + k∥φ∥6
L6 .

Adapting slightly the computations from [2], we find:

d
dtE(k, φ(t)) = K3

∫
R2

|φ|4 Re (φ∆φ) dx− 3k
∫
R2

|φ|4 Im (φ∆φ) dx

− 2K3

∫
R2
V |φ|6dx− 2K3

∫
R2

|φ|8 ln(|φ|2)dx− 6kK3

∫
R2

|φ|10dx.
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Again, following the computations from [4, Section 3.1], we introduce the
polar factor related to φ,

θ(t, x) :=


φ(t, x)
|φ(t, x)| if φ(t, x) ̸= 0,

0 if φ(t, x) = 0,
and the above time derivative can be rewritten as

d
dtE(k, φ(t)) = −(K3 − 6k)

∫
R2

|φ|4|∇φ|2dx− 4K3

∫
R2

|φ|4 |∇|φ||2 dx

− 6k
∫
R2

|φ|4
∣∣Re(θ∇φ) − Im(θ∇φ)

∣∣2 dx− 2K3

∫
R2
V |φ|6dx

− 2K3

∫
R2

|φ|8 ln(|φ|2)dx− 6kK3

∫
R2

|φ|10dx.

Picking 0 < k < K3/6, the above relation implies
d
dtE (k, φ(t)) ⩽ 2K3

∫
|φ|<1

|φ|8 ln 1
|φ|2

dx ⩽ 2K3

∫
R2

|φ|6dx.

Since the change of unknown (2.3) preserves the Lebesgue norms, (1.5) yields

2K3

∫
R2

|φ|6 = − d
dt∥φ∥2

L2 ,

hence
d
dt
(
E (k, φ(t)) + ∥φ∥2

L2

)
⩽ 0,

and we conclude like in the case K3 = 0. In particular, (2.9) holds.
Remark 2.3 (Non-radial potential, continued). — For a general potential

V like in Remark 2.2, the natural energy associated to φ becomes

E0(φ(t)) = 1
2∥∇φ(t)∥2

L2 +
∫
R2
Ṽ (t, x)|φ(t, x)|2dx

+ 1
2

∫
R2

|φ(t, x)|4 ln
(

|φ(t, x)|2√
e

)
dx,

and even for K3 = 0, it is not constant in time if V is not radial (∂tṼ ̸≡ 0).
However, following either the virial computation from [13] or the pseudo-
energy argument from [15], we can easily adapt the above argument and
infer that the global well-posedness in Theorem 1.1 remains valid.

2.3. Large time extinction in the presence of loss

In view of [2, Lemma 4.1],

∥φ∥L2 ≲ ∥φ∥3/5
L6 ∥xφ∥2/5

L2 ≲ ∥φ∥3/5
L6 ,
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where we have used (2.9). This, together with (1.5), yields

d
dt∥φ(t)∥2

L2 + C∥φ(t)∥10
L2 ⩽ 0,

for some uniform C > 0. Recalling that the (nonnegative) solution of the
ODE ẏ+Cy5 = 0 with y(0) = ∥ψ0∥2

L2 satisfies y(t) = O(t−1/4), this implies

∥φ(t)∥2
L2 ≲

1
t1/4 ,

hence the decay announced in Theorem 1.1, since ∥φ(t)∥L2 = ∥ψ(t)∥L2 .
Again, this conclusion remains true when V satisfies the assumptions of
Remark 2.2 and is not necessarily radial.

3. Orbital stability

In this section, we study the existence/nonexistence and stability of con-
straint mass standing waves associated to (1.8). Recall that K3 = 0 through-
out this section. We will consider separately three cases: low rotational speed
(0 < Ω < γ), critical rotational speed (Ω = γ), and high rotational speed
(Ω > γ).

3.1. Low rotational speed

In this subsection, we consider the low rotational speed 0 < Ω < γ. Let
us start with the following observation, mimicking the proof of [5, Proposi-
tion 2.1] (see also [8, Theorem 7.8]):

Lemma 3.1. — Let γ, γ0 > 0 and V0 ⩾ 0. If 0 < Ω < γ, then for any
f ∈ Σ,

∥∇f∥2
L2 + 2

∫
R2
V |f |2dx− 2ΩL(f) ≃ ∥∇f∥2

L2 + ∥xf∥2
L2 . (3.1)

Proof. — We first observe that by Cauchy–Schwarz and Young inequal-
ities, we have for any δ > 0,

Ω|L(f)| ⩽ Ω (∥x1f∥L2∥∂x2f∥L2 + ∥x2f∥L2∥∂x1f∥L2)

⩽ Ω∥xf∥L2∥∇f∥L2 ⩽ δ∥∇f∥2
L2 + Ω2

4δ ∥xf∥2
L2 . (3.2)
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Using (3.2) with δ = 1
2 , we have

B(f) := ∥∇f∥2
L2 + 2

∫
R2
V |f |2dx− 2ΩL(f) (3.3)

⩽ 2∥∇f∥2
L2 + (γ2 + Ω2)∥xf∥2

L2 + V0∥f∥2
L2

⩽

(
2 + V0

2

)
∥∇f∥2

L2 +
(
γ2 + Ω2 + V0

2

)
∥xf∥2

L2

⩽ C1
(
∥∇f∥2

L2 + ∥xf∥2
L2

)
,

where we have used (2.8) to get the third line. On the other hand, by (3.2),
we have for any δ > 0,

B(f) ⩾ (1 − 2δ)∥∇f∥2
L2 +

(
γ2 − Ω2

2δ

)
∥xf∥2

L2 + 2V0

∫
R2
e−γ0|x|2

|f(x)|2dx.

We choose δ > 0 so that

γ2 − Ω2

2δ = γ2 − Ω2

2 or δ = Ω2

γ2 + Ω2 .

It follows that

B(f) ⩾ γ2 − Ω2

γ2 + Ω2 ∥∇f∥2
L2 + γ2 − Ω2

2 ∥xf∥2
L2 ⩾ C2

(
∥∇f∥2

L2 + ∥xf∥2
L2

)
.

The proof is complete. □

Proof of Theorem 1.3. — The proof is divided into two steps.

Step 1. — We show the existence of minimizers for IΩ(ρ). Let ρ > 0 and
f ∈ Σ satisfy ∥f∥2

L2 = ρ.

We first show that IΩ(ρ) is well-defined. We have

EΩ(f) = 1
2B(f) + 1

2

∫
|f |2>

√
e

|f |4 ln
(

|f |2√
e

)
dx− 1

2

∫
|f |2<

√
e

|f |4 ln
( √

e

|f |2

)
dx

⩾
1
2B(f) −

√
e

2

∫
|f |2<

√
e

|f |2dx

⩾
1
2B(f) −

√
e

2 ρ, (3.4)

where B(f) is as in (3.3). Here we have used the fact that ln(1/λ) < 1/λ for
0 < λ < 1. Using (3.1), we see that IΩ(ρ) > −∞.

Next let (fn)n⩾1 be a minimizing sequence for IΩ(ρ). By (3.4) and (3.1),
we see that (fn)n⩾1 is a bounded sequence in Σ. Thus there exists ϕ ∈ Σ
such that (up to a subsequence) fn → ϕ weakly in Σ and strongly in Lr(R2)
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for all 2 ⩽ r < ∞ (see e.g., [33, Theorem XIII.67] for the compactness of the
embedding Σ ↪→ Lr(R2)). It follows that

∥ϕ∥2
L2 = lim

n→∞
∥fn∥2

L2 = ρ. (3.5)

By the strong convergence, Hölder’s inequality, and the fact that∣∣∣∣|f |4 ln
(

|f |2√
e

)
− |g|4 ln

(
|g|2√
e

)∣∣∣∣ ⩽ C|f − g|
(
|f |2 + |f |4 + |g|2 + |g|4

)
, (3.6)

we infer that∫
R2

|ϕ|4 ln
(

|ϕ|2√
e

)
dx = lim

n→∞

∫
R2

|fn|4 ln
(

|fn|2√
e

)
dx.

Moreover, by the lower semicontinuity of the weak convergence and (3.1),
we have

B(ϕ) ⩽ lim inf
n→∞

B(fn).

It follows that
EΩ(ϕ) ⩽ lim inf

n→∞
EΩ(fn) = IΩ(ρ)

which together with (3.5) show that ϕ is a minimizer for IΩ(ρ). In view
of Lemma 3.1, we also have that (up to a subsequence) fn converges to ϕ
strongly in Σ.

Step 2. — We show the orbital stability. We argue by contradiction.
Suppose that GΩ(ρ) is not orbitally stable. There exist ϵ0 > 0 and ϕ0 ∈ GΩ(ρ)
and a sequence u0,n ∈ Σ satisfying

lim
n→∞

∥u0,n − ϕ0∥Σ = 0 (3.7)

and a sequence of time (tn)n⩾1 ⊂ R such that

inf
ϕ∈GΩ(ρ)

∥un(tn) − ϕ∥Σ ⩾ ϵ0, (3.8)

where un is the solution to (1.1) with initial data un(0) = u0,n.

Since ϕ0 ∈ GΩ(ρ), we have EΩ(ϕ0) = IΩ(ρ). By (3.7), (3.1) and Sobolev
embedding, we have

∥u0,n∥2
L2 −→

n→∞
∥ϕ0∥2

L2 = ρ, EΩ(u0,n) −→
n→∞

EΩ(ϕ0) = IΩ(ρ).

By the conservation of mass and energy, we get

∥un(tn)∥2
L2 −→

n→∞
ρ, EΩ(un(tn)) −→

n→∞
IΩ(ρ).

This shows that (un(tn))n⩾1 is a minimizing sequence for IΩ(ρ). By Step 1,
we see that up to a subsequence, un(tn) → ϕ strongly in Σ for some ϕ ∈ GΩ(ρ)
which contradicts (3.8). The proof is now complete. □
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3.2. Critical rotational speed

In this subsection, we study the existence and stability of standing waves
related to (1.8) with a critical rotational speed Ω = γ (lowest Landau level).
To this end, we first collect some basic properties of the magnetic Sobolev
space H1

A(R2) (see (1.12)) in the following lemma.

Lemma 3.2 ([18, 28]). — We have:

• H1
A(R2) is a Hilbert space.

• C∞
0 (R2) is dense in H1

A(R2).
• H1

A(R2) is continuously embedded in Lr(R2) for all 2 ⩽ r < ∞.
• H1

A(R2) ⊂ H1
loc(R2).

• Diamagnetic inequality:

|∇|f |(x)| ⩽ |∇Af(x)| a.e. x ∈ R2. (3.9)

• Magnetic Gagliardo–Nirenberg inequality. For 2 ⩽ r < ∞,

∥f∥r
Lr ⩽ Cr∥∇Af∥r−2

L2 ∥f∥2
L2 , ∀ f ∈ H1

A(R2). (3.10)

Lemma 3.3. — The best constant in (3.10) is the same as the optimal
constant in Gagliardo–Nirenberg inequality for the case A = 0. In particular,
when r = 4, the best constant in (3.10) can be taken as

C4 = ∥Q∥−2
L2 ,

where Q is the cubic (positive, radial) ground state given by (1.15). Moreover,
the equality in (3.10) cannot be attained.

Proof. — We recall the standard Gagliardo–Nirenberg inequality

∥f∥r
Lr = ∥|f |∥r

Lr ⩽ CGN
r ∥f∥2

L2∥∇|f |∥r−2
L2 , (3.11)

where CGN
r stands for the best constant in the “regular” Gagliardo–Nirenberg

inequality. This best constant was first characterized in [38], in terms of a
suitable ground state solution of some elliptic equation. In particular, CGN

4
is given by

CGN
4 = ∥Q∥−2

L2 ,

where Q is the (only) positive, radially symmetric solution to (1.15) (recall
that unlike in [38], there is a 1

2 factor in front of the Laplacian in (1.15),
hence a slightly different formula). As a consequence of the diamagnetic
inequality (3.9), we infer

∥f∥r
Lr ⩽ CGN

r ∥f∥2
L2∥∇Af∥r−2

L2 .

This shows that (3.10) holds and Cr ⩽ CGN
r . To see CGN

r ⩽ Cr, we follow the
argument of [11, Proposition 3.1]. Note that the argument given [11] does
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not hold in two dimensions. Denote Aσ(x) := σA(σx) with σ > 0. By (3.10),
we have for any smooth compactly supported function f ,

∥f∥r
Lr ⩽ Cr∥∇Aσf∥r−2

L2 ∥f∥2
L2 , ∀ σ > 0.

On the other hand, by the triangle inequality, we have

∥∇Aσf∥L2 ⩽ ∥∇f∥L2 + ∥Aσf∥L2 .

We estimate∫
R2

|Aσ(x)f(x)|2dx ⩽

(∫
|x|⩽R

|Aσ(x)|2dx
)

∥f∥L∞

=
(∫

|x|⩽Rσ

|A(x)|2dx
)

∥f∥L∞ → 0 as σ → 0,

where R > 0 is such that supp(f) ⊂ {x ∈ R2 : |x| ⩽ R}. This shows that

∥f∥r
Lr ⩽ Cr∥∇f∥r−2

L2 ∥f∥2
L2 ,

hence CGN
r ⩽ Cr.

Finally we show that the equality in (3.10) cannot be achieved. Assume by
contradiction that (3.10) is attained by some function ϕ. By (3.9) and (3.11),
we have

∥ϕ∥r
Lr = Cr∥∇Aϕ∥r−2

L2 ∥ϕ∥2
L2 ⩾ CGN

r ∥∇|ϕ|∥r−2
L2 ∥ϕ∥2

L2 ⩾ ∥ϕ∥r
Lr

which implies that
∥∇Aϕ∥L2 = ∥∇|ϕ|∥L2 .

This together with the following estimate of [28, Theorem 7.21]:

|∇|ϕ|| =
∣∣∣∣Re

(
∇ϕ ϕ

|ϕ|

)∣∣∣∣ =
∣∣∣∣Re

(
(∇ − iA)ϕ ϕ

|ϕ|

)∣∣∣∣ ⩽ |(∇ − iA)ϕ|

imply that

Im
(

(∇ − iA)ϕ ϕ

|ϕ|

)
= 0 ⇐⇒ A = Im

(
∇ϕ
ϕ

)
.

In particular, B12(x) := ∂1A2(x) − ∂2A1(x) = 0, where A(x) = (A1(x),
A2(x)) = γ(−x2, x1). This is a contradiction since B12(x) = 2. The proof is
complete. □

Note that in view of [23, Lemma 1] (recall again the 1
2 factor (1.15)),

π ⩽ ∥Q∥2
L2 ⩽ π ln 2. (3.12)

We also have the following useful remark.
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Remark 3.4. — Let (fn)n⩾1 be a bounded sequence in H1
A(R2). Then up

to a subsequence, fn ⇀ ϕ weakly in H1
A(R2), fn → ϕ a.e. in R2 and fn → ϕ

strongly in Lr
loc(R2) for all 2 ⩽ r < ∞. Moreover,

∥∇Afn∥2
L2 = ∥∇Aϕ∥2

L2 + ∥∇A(fn − ϕ)∥2
L2 + on(1).

We have the following conditional result on the existence and stability of
prescribed mass standing waves to (1.1).

Proposition 3.5. — Let K3 = V0 = 0, γ > 0 and Ω = γ. Let 0 < ρ ⩽
∥Q∥2

L2 and assume that I0
γ(ρ) < 0. Then there exists ϕ ∈ H1

A(R2) such that
E0

γ(ϕ) = I0
γ(ρ) and ∥ϕ∥2

L2 = ρ. Schrodinger equation in the presence of a
magnetic field. Moreover, the set

G0
γ(ρ) :=

{
ϕ ∈ H1

A(R2) : E0
γ(ϕ) = I0

γ(ρ), ∥ϕ∥2
L2 = ρ

}
is orbitally stable under the flow of (1.1) in the sense that for any ϵ > 0,
there exists δ > 0 such that for any initial data ψ0 ∈ H1

A(R2) satisfying

inf
ϕ∈G0

γ (ρ)
∥ψ0 − ϕ∥H1

A
< δ,

the corresponding solution to (1.1) exists globally in time and satisfies

sup
t∈R+

inf
ϕ∈G0

γ (ρ)
inf

y∈R2
∥eiA(y)·xψ(t, x+ y) − ϕ(x)∥H1

A
< ϵ.

Remark 3.6. — In the case A ≡ 0 and γ = 0, it was shown in [16]
that I(ρ) := I0

0 (ρ) < 0 for any ρ > 0. This is done by using the scaling
fλ(x) := λf(λx) and taking λ > 0 sufficiently small. In our case, showing
I0

γ(ρ) < 0 is more complicated. The above scaling argument does not work
due to the presence of magnetic potential A.

Remark 3.7. — The assumption ρ ⩽ ∥Q∥2
L2 is probably only technical,

due to our argument (see after (3.18)).

Before giving the proof of Proposition 3.5, let us recall the following
version of concentration-compactness lemma.

Lemma 3.8 (Concentration-compactness lemma [29, 30]). — Let (fn)n⩾1
be a bounded sequence in H1

A(R2) satisfying

∥fn∥2
L2 = ρ

for all n ⩾ 1 with some fixed constant ρ > 0. Then there exists a subsequence
(still denoted by (fn)n⩾1) satisfying one of the following three possibilities:

Vanishing. — lim
n→∞

sup
y∈R2

∫
B(y,R)

|fn(x)|2dx = 0 for all R > 0.
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Dichotomy. — There exist a ∈ (0, ρ) and sequences (gn)n⩾1, (hn)n⩾1
bounded in H1

A(R2) such that
∥fn − gn − hn∥Lr → 0 as n → ∞ for all 2 ⩽ r < ∞,

∥gn∥2
L2 → a, ∥hn∥2

L2 → ρ− a as k → ∞,

dist(supp(gn), supp(hn)) → ∞ as n → ∞,

lim infn→∞ ∥∇Afn∥2
L2 − ∥∇Agn∥2

L2 − ∥∇Ahn∥2
L2 ⩾ 0.

(3.13)

Compactness. — There exists a sequence (yn)n⩾1 ⊂ R2 such that for all
ϵ > 0, there exists R(ϵ) > 0 such that for all k ⩾ 1,∫

B(yn,R(ϵ))
|fn(x)|2dx ⩾ ρ− ϵ.

The proof of this result is very similar to that of [29, 30], see also [17,
Proposition 1.7.6]. The only difference is the last inequality in (3.13) which
is proved by using the fact that

∥∇A(φRfn)∥2
L2 − ∥φR∇Afn∥2

L2 ⩽ CMR−1,

where φR(x) = φ(x/R) with a suitable function φ ∈ C∞(R2) and M :=
supn⩾1 ∥fn∥2

H1
A

.

Remark 3.9. —

• If vanishing occurs, then we infer that fn → 0 strongly in Lr(R2)
for all 2 < r < ∞. Indeed, by the magnetic inequality (3.9), we see
that |fn| is a bounded sequence in H1(R2). The result follows by
applying [30, Lemma 1.1] to (|fn|)n⩾1.

• If compactness occurs, then (fn)n⩾1 is relatively compact in Lr(R2)
for all 2 ⩽ r < ∞ up to a translation and change of gauge, i.e. there
exists (yn)n⩾1 ⊂ R2 such that up to subsequence

eiAnfn( · + yn) → ϕ

strongly in Lr(R2) for all 2 ⩽ r < ∞, where An(x) = A(yn) · x and
ϕ ∈ H1

A(R2). In fact, denote

f̃n(x) := eiA(yn)·xfn(x+ yn).
We see that

|f̃n(x)| = |fn(x+ yn)|, ∥∇Af̃n∥2
L2 = ∥∇Afn∥2

L2 .

It follows that (f̃n)n⩾1 is a bounded sequence in H1
A(R2) satisfying

for all ϵ > 0, there exists R(ϵ) > 0 such that for all n ⩾ 1,∫
Bc(0,R(ϵ))

|f̃n(x)|2dx =
∫

Bc(0,R(ϵ))
|fn(x+ yn)|2dx < ϵ.
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By the standard diagonalization argument and the compact embed-
ding H1

A(R2) ↪→ Lr(B(0, R)) for all R > 0 and all 2 ⩽ r < ∞, we
show that f̃n → ϕ strongly in L2(R2), hence strongly in Lr(R2) for
all 2 ⩽ r < ∞ by Sobolev embedding.

Proof of Proposition 3.5. — The proof is divided into three steps.

Step 1. — We first show that for each ρ > 0, I0
γ(ρ) is well-defined, i.e.

I0
γ(ρ) > −∞. Indeed, recalling (1.14) and arguing as in (3.4), we have directly

E0
γ(f) ⩾ 1

2∥∇Af∥2
L2 −

√
e

2 ρ (3.14)

for any f ∈ H1
A(R2) satisfying ∥f∥2

L2 = ρ.

Step 2. — We show the existence of minimizers for I0
γ(ρ), under the

assumption I0
γ(ρ) < 0. It is done by using the concentration-compactness ar-

gument as in [18]. Let (fn)n⩾1 be a minimizing sequence for I0
γ(ρ). By (3.14),

we see that (fn)n⩾1 is a bounded sequence in H1
A(R2) satisfying

∥fn∥2
L2 = ρ, ∀ n ⩾ 1, E0

γ(fn) → I0
γ(ρ) as n → ∞.

By Lemma 3.8, there exists a subsequence still denoted by (fn)n⩾1 satisfying
one of the following three possibilities: vanishing, dichotomy and compact-
ness.

No vanishing. — Suppose that vanishing occurs. Passing to a subse-
quence, we infer that fn → 0 strongly in Lr(R2) for all 2 < r < ∞. Thanks
to (1.10), we infer that∫

R2
|fn|4 ln

(
|fn|2√
e

)
dx −→

n→∞
0,

hence

I0
γ(ρ) = lim

n→∞
E0

γ(fn) = lim
n→∞

∥∇Afn∥2
L2 ⩾ 0,

which contradicts the assumption I0
γ(ρ) < 0.

No dichotomy. — If dichotomy occurs, then there exist a ∈ (0, ρ) and
sequences (gn)n⩾1, (hn)n⩾1 bounded in H1

A(R2) such that (3.13) holds. To
rule out the dichotomy, we first claim that there exists δ > 0 such that

lim inf
n→∞

∥fn∥4
L4 ⩾ δ > 0. (3.15)
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Since E0
γ(fn) → I0

γ(ρ) < 0, we see that for n sufficiently large, E0
γ(fn) ⩽

I0
γ (ρ)
2 . It follows that

I0
γ(ρ)
2 ⩾ E0

γ(fn) = 1
2∥∇Afn∥2

L2 + 1
2

∫
|fn|2>

√
e

|fn|4 ln
(

|fn|2√
e

)
dx

− 1
2

∫
|fn|2<

√
e

|fn|4 ln
( √

e

|fn|2

)
dx

which implies, since 0 < ln z ≲
√
z for z > 1,

∥fn∥3
L3 ≳

∫
|fn|2<

√
e

|fn|4 ln
( √

e

|fn|2

)
dx ⩾ −

I0
γ(ρ)
2 > 0,

for n sufficiently large. The claim (3.15) follows from the Hölder inequality
∥f∥3

L3 ⩽ ∥f∥2
L4∥f∥L2 and ∥fn∥2

L2 = ρ.

We next claim that

lim inf
n→∞

(
E0

γ(fn) − E0
γ(gn) − E0

γ(hn)
)
⩾ 0. (3.16)

To see this, we consider K(z) = z4 ln(z2) for z > 0. Using Taylor expansion
and the fact that

|K ′(z)| ≲ϵ |z|3−ϵ + |z|3+ϵ

for any ϵ > 0, we infer that∣∣∣∣∣K
(

N∑
j=1

zj

)
−

N∑
j=1

K(zj)

∣∣∣∣∣ ≲ϵ,N

∑
ℓ ̸=k

|zℓ|(|zk|3−ϵ + |zk|3+ϵ).

Applying the above estimate with ϵ = 1, N = 3 and en := fn − gn − hn, we
see that∣∣∣∣∫ K(fn)dx−

∫
K(gn)dx−

∫
K(hn)dx−

∫
K(en)dx

∣∣∣∣
≲
∫

|en|(|gn|2 + |gn|4 + |hn|2 + |hn|4)dx

+
∫

(|gn| + |hn|)(|en|2 + |en|4)dx.

Using (1.10), Hölder inequality and the fact that en → 0 strongly in Lr(R2)
for all 2 ⩽ r < ∞, we have∫

R2
|fn|4 ln(|fn|2)dx−

∫
R2

|gn|4 ln(|hn|2)dx−
∫
R2

|hn|4 ln(|hn|2)dx −→
n→∞

0.

Similarly, we can prove that

∥fn∥4
L4 − ∥gn∥4

L4 − ∥hn∥4
L4 −→

n→∞
0.
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This shows that

∫
R2

|fn|4 ln
(

|fn|2√
e

)
dx−

∫
R2

|gn|4 ln
(

|gn|2√
e

)
dx

−
∫
R2

|hn|4 ln
(

|hn|2√
e

)
dx −→

n→∞
0.

Using this and (3.13), we show (3.16).

Now, let λ > 0. We have

E0
γ(λf) = λ2

2 ∥∇Af∥2
L2 + λ4

2

∫
R2

|f |4 ln
(
λ2 |f |2√

e

)
dx

= λ2

2 ∥∇Af∥2
L2 + λ4

2

∫
R2

|f |4 ln
(

|f |2√
e

)
dx+ λ4 ln(λ2)

2 ∥f∥4
L4

= λ4E0
γ(f) − λ4 − λ2

2 ∥∇Af∥2
L2 + λ4 ln(λ2)

2 ∥f∥4
L4 ,

which implies

E0
γ(f) = λ−4E0

γ(λf) + 1 − λ−2

2 ∥∇Af∥2
L2 − ln(λ2)

2 ∥f∥4
L4 .

Set λn :=
√

ρ

∥gn∥L2
and µn :=

√
ρ

∥hn∥L2
. It follows that ∥λngn∥2

L2 = ∥µnhn∥2
L2 =

ρ, hence E0
γ(λngn), E0

γ(µnhn) ⩾ I0
γ(ρ). We see that for n sufficiently large,

E0
γ(gn) = λ−4

n E0
γ(λngn) + 1 − λ−2

n

2 ∥∇Agn∥2
L2 − ln(λ2

n)
2 ∥gn∥4

L4

⩾ λ−4
n I0

γ(ρ) + 1 − λ−2
n

2C4

∥gn∥4
L4

∥gn∥2
L2

− ln(λ2
n)

2 ∥gn∥4
L4 .

Here we have used the magnetic Gagliardo–Nirenberg inequality (3.10) and
the fact λn →

√
ρ
a > 1 as n → ∞. A similar estimate goes for E0

γ(hn). Thus,
we get

E0
γ(gn) + E0

γ(hn) ⩾
(
λ−4

n + µ−4
n

)
I0

γ(ρ) + 1 − λ−2
n

2C4

∥gn∥4
L4

∥gn∥2
L2

− ln(λ2
n)

2 ∥gn∥4
L4

+ 1 − µ−2
n

2C4

∥hn∥4
L4

∥hn∥2
L2

− ln(µ2
n)

2 ∥hn∥4
L4 .
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Letting n → ∞ and using (3.16), we obtain

I0
γ(ρ) ⩾ a2 + (ρ− a)2

ρ2 I0
γ(ρ) + 1

2

(
1
C4ρ

(ρ
a

− 1
)

− ln
(ρ
a

))
lim inf
n→∞

∥gn∥4
L4

+ 1
2

(
1
C4ρ

(
ρ

ρ− a
− 1
)

− ln
(

ρ

ρ− a

))
lim inf
n→∞

∥hn∥4
L4

⩾
a2 + (ρ− a)2

ρ2 I0
γ(ρ) + 1

2 min {K1,K2} lim inf
n→∞

∥fn∥4
L4 , (3.17)

where
K1 := 1

C4ρ

(ρ
a

− 1
)

− ln
(ρ
a

)
,

K2 := 1
C4ρ

(
ρ

ρ− a
− 1
)

− ln
(

ρ

ρ− a

)
.

(3.18)

Here K1,K2 > 0 as soon as C4ρ ⩽ 1, which follows from 0 < ρ ⩽ ∥Q∥2
L2 ,

see Lemma 3.3. Using (3.15) and (3.17), we infer that I0
γ(ρ) > 0 which is a

contradiction.

Compactness. — Therefore, compactness must occur. In this case, there
exist ϕ ∈ H1

A(R2) and (yn)n⩾1 ⊂ R2 such that up to a subsequence,

f̃n → ϕ

strongly in Lr(R2) for all 2 ⩽ r < ∞, where f̃n(x) := eiA(yn)·xfn(x+ yn). It
follows that

∥ϕ∥2
L2 = lim

n→∞
∥f̃n∥2

L2 = lim
n→∞

∥fn(· + yn)∥2
L2 = ρ,

and by (1.10),∫
R2

|ϕ|2 ln
(

|ϕ|2√
e

)
dx = lim

n→∞

∫
R2

|f̃n|4 ln
(

|f̃n|2√
e

)
dx

= lim
n→∞

∫
R2

|fn|4 ln
(

|fn|2√
e

)
dx.

We also have
∥∇Aϕ∥2

L2 ⩽ lim inf
n→∞

∥∇Af̃n∥2
L2 = lim inf

n→∞
∥∇Afn∥2

L2 .

Thus, we get
E0

γ(ϕ) ⩽ lim inf
n→∞

E0
γ(fn) = I0

γ(ρ).

This shows that ϕ is a minimizer for I0
γ(ρ). We also have that f̃n → ϕ

strongly in H1
A(R2) as n → ∞.

Step 3. — The orbital stability of G0
γ(ρ) follows by the same argument

as in Theorem 1.3. We thus omit the details. The proof is now complete. □
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In the following lemma, we show that the conditions 0 < ρ ⩽ ∥Q∥2
L2 and

I0
γ(ρ) < 0 are satisfied for some data f ∈ H1

A(R2).

Lemma 3.10. — If 0 < γ < 1
2e3/2 , then there exists f ∈ H1

A(R2) satisfy-
ing ∥f∥2

L2 = ρ ⩽ ∥Q∥2
L2 and I0

γ(ρ) < 0.

Proof. — We look for a function f ∈ H1
A(R2) satisfying

∥f∥2
L2 = ρ ⩽ ∥Q∥2

L2 , E0
γ(f) < 0. (3.19)

To this end, we consider fb(x) = e−b|x|2 for some b > 0 to be chosen later.
A direct computation shows

∥fb∥2
L2 =

∫
R2
e−2b|x|2

dx = π

2b .

We also have

∥∇Afb∥2
L2 = (γ2 + 4b2)

∫
R2

|x|2e−2b|x|2
dx = π

(
1 + γ2

4b2

)
.

In addition, we have

∥fb∥4
L4(R2) =

∫
R2
e−4b|x|2

dx = π

4b
and∫

R2
|fb|4 ln

(
|fb|2√
e

)
dx = −2b

∫
R2

|x|2e−4b|x|2
dx− 1

2

∫
R2
e−4b|x|2

dx = − π

4b .

Let λ > 0 to be chosen later. We see that

∥λfb∥2
L2 = λ2∥fb∥2

L2 = π

2bλ
2,

E0
γ(λfb) = π

2

(
1 + γ2

4b2

)
λ2 − π

8bλ
4 + π

8bλ
4 ln(λ2).

To make ∥λfb∥2
L2 ⩽ ∥Q∥2

L2 , we need λ2 ⩽ 2b
π ∥Q∥2

L2 . In view of (3.12), this
is granted by the property λ2 ⩽ 2b. Consider

F (θ) = π

2

(
1 + γ2

4b2

)
θ − π

8bθ
2 + π

8bθ
2 ln(θ), for 0 < θ ⩽ 2b.

We rewrite

F (θ) = πθ

8b2

(
4b2 + γ2 − bθ + bθ ln(θ)

)
=: πθ8b2G(θ).

The condition E0
γ(λfb) < 0 is now reduced to finding θ ∈ (0, 2b] so that

G(θ) < 0. We have
G′(θ) = b ln(θ).

If 2b ⩾ 1, we see that G attains its minimum at θ = 1, however G(1) =
4b2 + γ2 − b > 0 for 2b ⩾ 1. So, we need 2b < 1. In this case, G is strictly

– 105 –



Rémi Carles, Van Duong Dinh and Hichem Hajaiej

decreasing on (0, 2b]. To find θ ∈ (0, 2b] so that G(θ) < 0, a necessary
condition is

G (2b) < 0 ⇐⇒ 4b2 + γ2 − 2b2 − 2b2 ln
(

1
2b

)
< 0.

Consider H(b) := 2b2 + γ2 + 2b2 ln(2b) for b ∈
(
0, 1

2
)
. We compute

H ′(b) = 2b (3 + 2 ln(2b)) .

We see that on
(
0, 1

2
)
, H attains its minimum at b0 = e−3/2

2 < 1
2 . A direct

computation shows

H(b0) = γ2 − 1
4e3 .

Thus, if γ < 1
2e3/2 , then we have G (2b0) < 0. Therefore, by choosing λ > 0

so that λ2 ⩽ 2b0, we show the existence of a function f ∈ H1
A(R2) satisfy-

ing (3.19). The proof is complete. □

Proof of Theorem 1.4. — It follows directly from Proposition 3.5 and
Lemma 3.10. □

In the case V0 > 0, the concentration-compactness argument presented
above does not work due to the lack of spatial translation in the new potential
term ∫

R2
e−γ0|x|2

|f(x)|2dx.

More precisely, the sequence (yn)n⩾1 ⊂ R2, which appeared in the compact-
ness, may tend to infinity, and then

∫
R2
e−γ0|x|2

|fn(x+ yn)|2dx −→
n→∞

0.

To overcome this difficulty, we restrict our consideration on H1
A,rad(R2) the

space of radially symmetric functions of H1
A(R2). Note that this restriction

has the drawback that we no longer see the effect of rotation to the equation
since Lzf = 0 for a radial functions f .
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Proof of Theorem 1.5. — We proceed in two steps.

Step 1. — We show that there exists a minimizer for Iγ,rad(ρ). Let ρ > 0
and f ∈ H1

A,rad(R2) satisfy ∥f∥2
L2 = ρ. We have

Eγ(f) = 1
2∥∇Af∥2

L2 + V0

∫
R2
e−γ0|x|2

|f(x)|2dx

+ 1
2

∫
|f |2>

√
e

|f |4 ln
(

|f |2√
e

)
dx− 1

2

∫
|f |2<

√
e

|f |4 ln
( √

e

|f |2

)
dx

⩾
1
2∥∇Af∥2

L2 −
√
e

2

∫
|f |2<

√
e

|f |2dx

⩾
1
2∥∇Af∥2

L2 −
√
e

2 ρ. (3.20)

This shows that Iγ,rad(ρ) > −∞ is well-defined.

Next, let (fn)n⩾1 be a minimizing sequence for Iγ,rad(ρ). By (3.20),
(fn)n⩾1 is a bounded sequence in H1

A,rad(R2). Since H1
A,rad(R2) ↪→ Lr(R2)

is compact for all 2 ⩽ r < ∞, there exists ϕ ∈ H1
A,rad(R2) such that, up to

a subsequence, fn → ϕ weakly in H1
A,rad(R2) and strongly in Lr(R2) for all

2 ⩽ r < ∞. By the strong convergence and (3.6), we see that∫
R2

|ϕ|4 ln
(

|ϕ|2√
e

)
dx = lim

n→∞

∫
R2

|fn|4 ln
(

|fn|2√
e

)
dx.

On the other hand, by the weak continuity of the potential energy (see e.g.,
[28, Theorem 11.4]), we have∫

R2
e−γ0|x|2

|ϕ(x)|2dx = lim
n→∞

∫
R2
e−γ0|x|2

|fn(x)|2dx.

Moreover, the lower semicontinuity of the weak convergence implies

∥∇Aϕ∥L2 ⩽ lim inf
n→∞

∥∇Afn∥L2 .

Thus we get
Eγ(ϕ) ⩽ lim inf

n→∞
Eγ(fn) = Iγ,rad(ρ),

which together with
∥ϕ∥2

L2 = lim
n→∞

∥fn∥2
L2 = ρ

implies that ϕ is a minimizer for Iγ,rad(ρ). In addition, we have that (up to
a subsequence), fn → ϕ strongly in H1

A,rad(R2).

Step 2. — The orbital stability follows from the same argument as in
the proof of Theorem 1.3. We omit the details. □
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3.3. High rotational speed

In this subsection, we show the nonexistence of minimizers for IΩ(ρ) given
in Theorem 1.7.

Proof of Theorem 1.7. — The proof is inspired by the idea of [7] (see
also [6]). We consider

fm(x) = fm(r, θ) = C(m, γ)rme− γ|x|2
2 eimθ,

where m ∈ N and C(m, γ) > 0 to be determined later. Here (r, θ) is the
polar coordinate of x = (x1, x2) ∈ R2, i.e.

x1 = r cos θ, x2 = r sin θ, r > 0, θ ∈ (0, 2π].
It is useful to recall the following formulas:(

∂rx1 ∂θx1
∂rx2 ∂θx2

)
=
(

cos θ −r sin θ
sin θ r cos θ

)
,

and (
∂x1r ∂x2r
∂x1θ ∂x2θ

)
=
(

cos θ sin θ
− sin θ

r
cos θ

r

)
.

We have

∥fm∥2
L2(R2) =

∫
R2

|fm(x)|2dx = 2πC(m, γ)2
∫ ∞

0
r2me−γr2

rdr.

Let ρ > 0. We choose C(m, γ) so that ∥fm∥2
L2(R2) = ρ for all m ∈ N. Set

I(γ,m) :=
∫ ∞

0
r2me−γr2

rdr,

and write
∥fm∥2

L2(R2) = 2πC(m, γ)2I(γ,m).
Integrating by parts, we see that I(γ,m) = m

γ I(γ,m−1) which, by induction,
implies I(γ,m) = m!

γm I(γ, 0), where

I(γ, 0) =
∫ ∞

0
e−γr2

rdr = 1
2γ .

Thus we get

I(γ,m) = m!
2γm+1 . (3.21)

The condition ∥fm∥2
L2(R2) = ρ is equivalent to

ρ = 2πC(m, γ)2 m!
2γm+1 ⇐⇒ C(m, γ)2 = ργm+1

πm! (3.22)
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We compute

∂x1fm = ∂rfm∂x1r + ∂θfm∂x1θ

= C(m, γ)eimθe− γr2
2 (mrm−1 − γrm+1) cos θ

− C(m, γ)eimθe− γr2
2 imrm−1 sin θ

= C(m, γ)eimθe− γr2
2
(
(mrm−1 − γrm+1) cos θ − imrm−1 sin θ

)
,

and

∂x2fm = ∂rfm∂x2r + ∂θfm∂x2θ

= C(m, γ)eimθe− γr2
2
(
(mrm−1 − γrm+1) sin θ + imrm−1 cos θ

)
.

It follows that

|∇fm|2 = |∂x1fm|2 + |∂x2fm|2

= C(m, γ)2e−γr2
[ (

(mrm−1 − γrm+1) cos θ − imrm−1 sin θ
)2

+
(
(mrm−1 − γrm+1) sin θ + imrm−1 cos θ

)2
]

= C(m, γ)2e−γr2
(

2m2r2(m−1) − 2mγr2m + γ2r2(m+1)
)
.

Thus we have

∥∇fm∥2
L2(R2)

= 2π
∫ ∞

0
|∇fm|2rdr

= 2πC(m, γ)2
∫ ∞

0

(
2m2r2(m−1) − 2mγe2m + γ2r2(m+1)

)
e−γr2

rdr

= 2πC(m, γ)2 (2m2I(γ,m− 1) − 2mγI(γ,m) + γ2I(γ,m+ 1)
)
.

Thanks to (3.21) and (3.22), we have

∥∇fm∥2
L2(R2) = 2πργ

m+1

πm!

(
2m2 (m− 1)!

2γm
− 2mγ m!

2γm+1 + γ2 (m+ 1)!
2γm+2

)
= ρ(m+ 1)γ.
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We next compute∫
R2
V |fm|2dx

= C(m, γ)2
∫
R2

(
γ2

2 |x|2 + V0e
−γ0|x|2

)
|x|2me−γ|x|2

dx

= 2πC(m, γ)2
∫ ∞

0

(
γ2

2 r
2 + V0e

−γ0r2
)
r2me−γr2

rdr

= 2πC(m, γ)2
(
γ2

2

∫ ∞

0
r2(m+1)e−γr2

rdr + V0

∫ ∞

0
r2me−(γ+γ0)r2

rdr
)

= 2πC(m, γ)2
(
γ2

2 I(γ,m+ 1) + V0I(γ + γ0,m)
)
,

which, together with (3.21) and (3.22), implies that∫
R2
V |fm|2dx = 2πργ

m+1

πm!

(
γ2

2
(m+ 1)!
2γm+2 + V0

m!
2(γ + γ0)m+1

)
= ρ

2(m+ 1)γ +
(

γ

γ + γ0

)m+1
V0ρ.

Moreover, since the rotation operator can be rewritten as Lz = −i∂θ, we
have

L(fm) =
∫
R2
fmLzfmdx = 2πC(m, γ)2

∫ ∞

0
mr2me−γr2

rdr

= 2πmC(m, γ)2I(γ,m) = m∥fm∥2
L2(R2) = mρ.

Next we compute

∥fm∥6
L6(R2) = 2πC(m, γ)6

∫ ∞

0
r6me−3γr2

rdr = 2πC(m, γ)6I (3γ, 3m)

= 2πC(m, γ)6 (3m)!
2(3γ)3m+1 = 2π

(
ργm+1

πm!

)3 (3m)!
2(3γ)3m+1

= ρ3 γ
2

π2
(3m)!

(3mm!)3 ,

which tends to zero as m → ∞ for each ρ > 0 fixed. By interpolation between
L2 and L6, we infer that

∥fm∥p
Lp(R2) −→

m→∞
0, ∀ p ∈]2, 6].

This yields∣∣∣∣∫
R2

|fm|4 ln
(

|fm|2√
e

)
dx
∣∣∣∣ ≲ ∥fm∥3

L3(R2) + ∥fm∥5
L5(R2) −→

m→∞
0.
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Finally we have

EΩ(fm)

= 1
2∥∇fm∥2

L2 +
∫
R2
V |fm|2dx+ 1

2

∫
R2

|fm|4 ln
(

|fm|2√
e

)
dx− ΩL(fm)

= ρ(m+ 1)γ +
(

γ

γ + γ0

)m+1
V0ρ+ om(1) − Ωmρ

= −mρ(Ω − γ) + ργ +
(

γ

γ + γ0

)m+1
V0ρ+ om(1),

where om(1) → 0 as m → ∞. As Ω > γ, letting m → ∞ yields EΩ(fm) →
−∞. Therefore, for any ρ > 0, there is no minimizer for IΩ(ρ). □

Appendix A. Ground states

In this appendix, we collect some information on stationary solutions in
the radial case, where the rotation terms is absent, so (1.8) becomes

−1
2∆ϕ+ ωϕ+ ϕ|ϕ|2 ln(|ϕ|2) + V ϕ = 0, x ∈ R2. (A.1)

Recall that

V (x) = γ2

2 |x|2 + V0e
−γ0|x|2

.

We introduce the minimizing problem

ωV0 := inf
{

1
2∥∇f∥2

L2 +
∫
R2
V |f |2dx : f ∈ Σ, ∥f∥2

L2 = 1
}
. (A.2)

Denoting by

H = −1
2∆ + V,

we see that ωV0 is simply the bottom of the spectrum of H. If V0 = 0, then
it is well-known that ω0 is attained by the Gaussian

φ0(x) =
√
γ

π
e−γ|x|2/2, and ω0 = γ.

Moreover, every minimizer for ω0 is of the form f(x) = eiθφ0(x), where
θ ∈ R.

Lemma A.1. — Let V0 ⩾ 0. Then ωV0 is attained and γ = ω0 ⩽ ωV0 ⩽
γ + γ

γ+γ0
V0.
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Proof. — Since V0 ⩾ 0, it is obvious that ωV0 ⩾ ω0. Also,

⟨Hφ0, φ0⟩ = γ + V0
γ

π

∫
R2
e−(γ+γ0)|x|2

dx = γ + γ

γ + γ0
V0,

hence ωV0 ⩽ γ+ γ
γ+γ0

V0. It remains to show that ωV0 is attained. Let (fn)n⩾1
be a minimizing sequence for ωV0 . It follows that (fn)n⩾1 is a bounded
sequence in Σ. Thus, there exists φ ∈ Σ such that (up to a subsequence)
fn → φ weakly in Σ and strongly in Lr(R2) for all 2 ⩽ r < ∞. We infer that

∥φ∥2
L2 = lim

n→∞
∥fn∥2

L2 = 1.

By the lower continuity of the weak convergence, we have

1
2∥∇φ∥2

L2 + γ2

2 ∥xφ∥2
L2 ⩽ lim inf

n→∞

1
2∥∇fn∥2

L2 + γ2

2 ∥xfn∥2
L2 .

We also have from the weak continuity of the potential energy (see e.g., [28,
Theorem 11.4]) that∫

R2
e−γ0|x|2

|φ(x)|2dx = lim
n→∞

∫
R2
e−γ0|x|2

|fn(x)|2dx. (A.3)

This implies

ωV0 ⩽
1
2∥∇φ∥2

L2 +
∫
R2
V |φ|2dx ⩽ lim inf

n→∞

1
2∥∇fn∥2

L2 +
∫
R2
V |fn|2dx = ωV0 ,

hence φ is a minimizer for ωV0 . The proof is complete. □

Consider now the Pohozaev identities related to (A.1).

Lemma A.2. — Let ϕ ∈ Σ be a solution to (A.1). Then the following
identities hold

1
2∥∇ϕ∥2

L2 + ω∥ϕ∥2
L2 +

∫
R2
V |ϕ|2dx+

∫
R2

|ϕ|4 ln(|ϕ|2)dx = 0, (A.4)

ω∥ϕ∥2
L2 +

∫
R2
V |ϕ|2dx+ 1

2

∫
R2
x · ∇V |ϕ|2dx

+ 1
2

∫
R2

|ϕ|4 ln
(

|ϕ|2√
e

)
dx = 0, (A.5)

1
2∥∇ϕ∥2

L2 + 1
2∥ϕ∥4

L4 = ω∥ϕ∥2
L2 +

∫
R2
V |ϕ|2dx+

∫
R2
x · ∇V |ϕ|2dx. (A.6)

In particular, since V0 ⩾ 0, if ω ⩾ 1
2

√
e

+ V0
e2 or ω + ωV0 >

1
e , then ϕ ≡ 0.

Proof. — The identity (A.4) follows by multiplying both sides of (A.1)
with ϕ and taking the integration over R2. By multiplying both sides of (A.1)
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with x · ∇ϕ, integrating over R2, taking the real part and using the fact that

Re
(∫

R2
∆ϕx · ∇ϕdx

)
= 0,

Re
(∫

R2
V ϕx · ∇ϕdx

)
= −

∫
R2
V |ϕ|2dx− 1

2

∫
R2
x · ∇V |ϕ|2dx,

Re
(∫

R2
ϕ|ϕ|2 ln(|ϕ|2)x · ∇ϕdx

)
= −1

2

∫
R2

|ϕ|4 ln
(

|ϕ|2√
e

)
dx,

we get (A.5). Finally, (A.6) follows directly from (A.4) and (A.5).

In view of the formula

V (x) + 1
2x · ∇V (x) = γ2|x|2 + V0

(
1 − γ0|x|2

)
e−γ0|x|2

,

and of the straightforward estimate

sup
|x|2>1/γ0

(
γ0|x|2 − 1

)
e−γ0|x|2

= sup
r>1

(r − 1)e−r = 1
e2 ,

(A.5) yields

ω∥ϕ∥2
L2 + γ2

∫
R2

|x|2|ϕ|2dx+ 1
2

∫
|ϕ|2>

√
e

|ϕ|4 ln
(

|ϕ|2√
e

)
⩽

1
2

∫
|ϕ|2<

√
e

|ϕ|4 ln
( √

e

|ϕ|2

)
dx+ V0

e2 ∥ϕ∥2
L2 .

We also compute

sup
0<z<1

z ln
(

1
z

)
= 1
e
, (A.7)

hence

ω∥ϕ∥2
L2 + γ2

∫
R2

|x|2|ϕ|2dx+ 1
2

∫
|ϕ|2>

√
e

|ϕ|4 ln
(

|ϕ|2√
e

)
⩽

(
1

2
√
e

+ V0

e2

)
∥ϕ∥2

L2 .

It follows that

γ2
∫
R2

|x|2|ϕ|2dx+ 1
2

∫
|ϕ|2>

√
e

|ϕ|4 ln
(

|ϕ|2√
e

)
⩽

(
1

2
√
e

+ V0

e2 − ω

)
∥ϕ∥2

L2 .

Since the left hand side is the sum of non-negative terms, if ω ⩾ 1
2

√
e

+ V0
e2 ,

then we must have ϕ ≡ 0.

Similarly, (A.4) and (A.2) yield

(ω + ωV0) ∥ϕ∥2
L2 +

∫
R2

|ϕ|4 ln(|ϕ|2)dx ⩽ 0,
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hence

(ω + ωV0) ∥ϕ∥2
L2 ⩽

∫
|ϕ|2<1

|ϕ|4 ln
(

1
|ϕ|2

)
dx ⩽

1
e

∥ϕ∥2
L2 ,

where we have used (A.7) again. This shows that if ω + ωV0 >
1
e , then we

must have ϕ ≡ 0. The proof is complete. □

Remark A.3. — We infer from Lemma A.2 that non-trivial solutions exist
only if

ω <
1

2
√
e

+ V0

e2 and ω + ωV0 ⩽
1
e
. (A.8)

In particular, when V0 = 0, the above conditions become

ω <
1

2
√
e

and ω + γ ⩽
1
e
.

According to the value of γ, either the first condition or the second one is
the more stringent.

We now explain in more details why finding directly a solution to (A.1)
(that is, not minimizing the energy under a mass constraint, in which case
ω corresponds to the - unknown - Lagrange multiplier) seems intricate. In
order to simplify the computations, we go back to the initial case (1.2), that
is, we assume γ0 = γ. To find ground states related to (A.1), a standard way
is to consider the following minimization problem

mω := inf {Sω(f) : f ∈ Σ\{0}, Kω(f) = 0} , (A.9)

and then show that minimizers for mω are indeed solutions to (A.1), where

Sω(f) := 1
2∥∇f∥2

L2 + ω∥f∥2
L2 +

∫
R2
V |f |2dx+ 1

2

∫
R2

|f |4 ln
(

|f |2√
e

)
dx,

Kω(f) := ∥∇f∥2
L2 + 2ω∥f∥2

L2 + 2
∫
R2
V |f |2dx+ 2

∫
R2

|f |4 ln(|f |2)dx.

Note that

Sω(f) = 1
2Kω(f) − 1

2

∫
R2

|f |4 ln
(
|f |2

)
dx− 1

4∥f∥4
L4 (A.10)

= 1
4Kω(f) + 1

4∥∇f∥2
L2 + ω

2 ∥f∥2
L2 + 1

2

∫
R2
V |f |2dx− 1

4∥f∥4
L4 . (A.11)

We have the following sufficient condition that ensures the minimizing
problem (A.9) is well-defined.
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Lemma A.4. — Let γ > 0 and V0 ⩾ 0. If

ω <
1

2
√
e

− γ − V0

2 , (A.12)

then the set
{f ∈ Σ\{0} : Kω(f) = 0}

is not empty.

Proof. — Denote fb(x) = e−b|x|2 with b > 0. A direct computation shows

∥fb∥2
L2 = π

2b , ∥xfb∥2
L2 = π

4b2 , ∥∇fb∥2
L2 = π, ∥fb∥4

L4 = π

4b ,∫
R2
V (x)|fb(x)|2dx = γ2π

8b2 + πV0

γ + 2b ,
∫
R2

|fb|4 ln(|fb|2)dx = − π

8b .

For λ > 0 to be chosen later, we have

Kω(λfb) = λ2∥∇fb∥2
L2 + 2ωλ2∥fb∥2

L2 + 2λ2
∫
R2
V |fb|2dx

+2λ4 ln(λ2)∥fb∥4
L4 + λ4

∫
R2

|fb|4 ln(|fb|2)dx

= λ2π
(

1 + ω

b

)
+ 2λ2π

(
γ2

8b2 + V0

γ + 2b

)
+ λ4π

2b ln
(
λ2
√
e

)
.

It follows that
Kω(λfb)
λ2π

= 1 + ω

b
+ γ2

4b2 + 2V0

γ + 2b + λ2

2b ln
(
λ2
√
e

)
.

Using (A.7), we see that the last term takes its maximal negative value at
λ2 = 1√

e
. It follows that

Kω(λfb)
λ2π

∣∣∣∣
λ2= 1√

e

= π

(
1 + ω

b
+ γ2

4b2 + 2V0

γ + 2b − 1
2b

√
e

)
.

Optimizing the sum of the first and third terms yields b = γ
2 , hence

Kω(λfb)
λ2π

∣∣∣∣
(λ2,b)=

(
1√
e

, γ
2

) = π

(
2 + 2ω

γ
+ V0

γ
− 1
γ

√
e

)
.

This shows that if ω < 1
2

√
e

− γ − V0
2 , then

Kω(λfb)|(λ2,b)=
(

1√
e

, γ
2

) < 0.

By the continuity argument, there exists f ∈Σ\{0} such that Kω(f)=0. □

Remark A.5. — The condition (A.12) is stronger than (A.8) since V0 ⩾ 0
and ωV0 ⩽ γ + V0

2 .
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By the above remark, from now on, we consider the following condition
on ω

−ωV0 < ω <
1

2
√
e

− γ − V0

2 . (A.13)

This condition is equivalent to

0 < ω + ωV0 <
1

2
√
e

+ ωV0 − γ − V0

2 .

To make sure that the above inequality is not empty, we need

γ + V0

2 − ωV0 <
1

2
√
e
.

Note that the left hand side belongs to
(
0, V0

2
)

as γ ⩽ ωV0 ⩽ γ + V0
2 . So,

if V0 <
1√
e

≃ 0.6, then the above condition is satisfied. Note that only the
values V0 = 0 and V0 = 0.2 are considered in [37].

To show the existence of minimizers for mω, we need an estimate showing
the boundedness in Σ of minimizing sequences for mω. However due to the
interplay of various nonlinear terms, it is not clear to us how to prove this
at the moment. Below we collect some estimates which may be helpful for
future investigation.

Remark A.6. — Let ω be as in (A.13). Let f ∈ Σ\{0} be such that
Kω(f) = 0. Then there exist positive constants C1 = C1(ω) and C2 = C2(ω)
such that

∥f∥2
L2 + ∥f∥4

L4 ⩽ C1(ω)∥f∥3
L3 ,

∥∇f∥2
L2 + ∥f∥4

L4 ⩽ C1(ω)∥f∥2
L2 , ∥f∥L3 ⩾ C2(ω).

Indeed, since Kω(f) = 0, we have

∥∇f∥2
L2 + 2ω∥f∥2

L2 + 2
∫
R2
V |f |2dx+ 2

∫
R2

|f |4 ln
(

|f |2√
e

)
dx+ ∥f∥4

L4 = 0

hence

∥∇f∥2
L2 + 2ω∥f∥2

L2 + 2
∫
R2
V |f |2dx+ ∥f∥4

L4 + 2
∫

|f |2>
√

e

|f |4 ln
(

|f |2√
e

)
dx

= 2
∫

|f |2<
√

e

|f |4 ln
( √

e

|f |2

)
dx.

By the definition of ωV0 , we see that

2(ω + ωV0)∥f∥2
L2 + ∥f∥4

L4 + 2
∫

|f |2>
√

e

|f |4 ln
(

|f |2√
e

)
dx ⩽ C∥f∥3

L3

which implies
∥f∥2

L2 + ∥f∥4
L4 ⩽ C(ω)∥f∥3

L3 .
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Another estimate using (A.7) yields

∥∇f∥2
L2 + 2

∫
R2
V |f |2dx+ ∥f∥4

L4 + 2
∫

|f |2>
√

e

|f |4 ln
(

|f |2√
e

)
dx

⩽ 2
(

1√
e

− ω

)
∥f∥2

L2 (A.14)

which implies
∥∇f∥2

L2 + ∥f∥4
L4 ⩽ C(ω)∥f∥2

L2 .

By the Gagliardo–Nirenberg inequality, we obtain
∥f∥6

L3 ⩽ C∥∇f∥2
L2∥f∥4

L2 ⩽ C(ω)∥f∥6
L2 ⩽ C(ω)∥f∥9

L3 , (A.15)

hence ∥f∥3
L3 ⩾ 1

C(ω) > 0.

Observation A.7. — We have the following useful estimates:
∥f∥2

L2 ⩽ ∥∇f∥L2∥xf∥L2

⩽

√
2
γ

∥∇f∥L2

(∫
R2
V |f |2dx

)1/2

⩽
1
γ

(
1
2∥∇f∥2

L2 +
∫
R2
V |f |2dx

)
.

and

∥f∥4
L4 ⩽

1
∥Q∥2

L2
∥∇f∥2

L2∥f∥2
L2 ,

where Q is the unique positive radial solution to (1.15) satisfying (3.12).

In the following remark, we point out another difficulty in finding ground
states related to (A.1). More precisely, suppose that there is a minimizer ϕ
for mω, we are not able to show that ϕ is a solution to (A.1).

Remark A.8. — Assume that mω is attained by a function ϕ. Then there
exists a Lagrange multiplier λ ∈ R such that S′

ω(ϕ) = λK ′
ω(ϕ) or

− ∆ϕ+ 2ωϕ+ 2V ϕ+ 2ϕ|ϕ|2 ln(|ϕ|2)
= λ

(
2∆ϕ+ 4ωϕ+ 4V ϕ+ 8ϕ|ϕ|2 ln(|ϕ|2) + 4ϕ|ϕ|2

)
. (A.16)

We want to show that λ = 0 so that ϕ is a solution to (A.1). To see this, we
first multiply both sides of (A.16) with ϕ and integrate over R2 to get

Kω(ϕ) = λ

(
2∥∇ϕ∥2

L2 + 4ω∥ϕ∥2
L2 + 4

∫
R2
V |ϕ|2dx

+ 8
∫
R2

|ϕ|4 ln(|ϕ|2)dx+ 4∥ϕ∥4
L4

)
.
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Since Kω(ϕ) = 0, we infer that

λ

(∫
R2

|ϕ|4 ln(|ϕ|2)dx+ ∥ϕ∥4
L4

)
= 0.

Suppose that λ ̸= 0, then we must have∫
R2

|ϕ|4 ln(|ϕ|2)dx+ ∥ϕ∥4
L4 = 0. (A.17)

In particular, as Kω(ϕ) = 0, we have

∥∇ϕ∥2
L2 + 2ω∥ϕ∥2

L2 + 2
∫
R2
V |ϕ|2dx− 2∥ϕ∥4

L4 = 0. (A.18)

Moreover, if we multiply both sides of (A.16) with x · ∇ϕ, integrate over R2,
and take the real part, we get

2ω∥ϕ∥2
L2 + 2

∫
R2
V |ϕ|2dx+

∫
R2
x · ∇V |ϕ|2dx+

∫
R2

|ϕ|4 ln(|ϕ|2)dx− 1
2∥ϕ∥4

L4

= λ

(
4ω∥ϕ∥2

L2 + 4
∫
R2
V |ϕ|2dx+ 2

∫
R2
x · ∇V |ϕ|2dx+ 4

∫
R2

|ϕ|4 ln(|ϕ|2)dx
)

which implies
(2λ− 1)A+ (4λ− 1)B + 1

2C = 0,
where

A := 2ω∥ϕ∥2
L2 + 2

∫
R2
V |ϕ|2dx+

∫
R2
x · ∇V |ϕ|2dx,

B :=
∫
R2

|ϕ|4 ln(|ϕ|2)dx, C := ∥ϕ∥4
L4 .

From this and (A.17), we have

(2λ− 1)A+
(

3
2 − 4λ

)
C = 0.

However, it is not clear that λ = 0, and it is not possible to conclude.

Appendix B. Characterization of prescribed mass minimizers

In this section, we will characterize the orbit of prescribed mass standing
waves obtained in Section 3, in the absence of the rotational effect, following
the strategy from [24]. Throughout this section, we assume that Ω = 0 and
K3 = 0.

Denote

ΣR :=
{
f ∈ H1(R2,R) :

∫
R2

|x|2f2dx < ∞
}
.
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For f ∈ ΣR, we define

ER
0 (f) := 1

2 |∇f |2L2 +
∫
R2
V f2dx+ 1

2

∫
R2
f4 ln

(
f2
√
e

)
dx.

Let z = (f, g) ≃ f + ig. We observe that
z ∈ Σ ⇐⇒ f ∈ ΣR, g ∈ ΣR.

For z ∈ Σ, we consider

E0(z) := 1
2∥∇z∥2

L2 +
∫
R2
V |z|2dx+ 1

2

∫
R2

|z|4 ln
(

|z|2√
e

)
dx.

Here | · |L2 and ∥ · ∥L2 denote the norms of L2(R2,R) and L2(R2,C), respec-
tively.

For c > 0, we consider the following minimizing problems:
IR0,c := inf

{
ER

0 (f) : f ∈ SR
c

}
,

I0,c := inf {E0(z) : z ∈ Sc} ,
where

SR
c : =

{
f ∈ ΣR : |f |2L2 = c

}
,

Sc :=
{
z ∈ Σ : ∥z∥2

L2 = c
}
.

We also denote
Wc :=

{
f ∈ SR

c : ER
c (f) = IR0,c, f > 0

}
,

Zc := {z ∈ Sc : E0(z) = I0,c} .

Theorem B.1. — We have the following properties:

(1) For any c > 0, IR0,c = I0,c.
(2) If z ∈ Zc, then |z| ∈ Wc.
(3) If z ∈ Zc with z = f + ig, then

(a) f ≡ 0 or f(x) ̸= 0 for all x ∈ R2.
(b) g ≡ 0 or g(x) ̸= 0 for all x ∈ R2.

(4) Zc =
{
eiσφ : σ ∈ R, φ ∈ Wc

}
.

Proof. — The proof is essentially given in [24]. For the reader’s conve-
nience, we provide some details.

(1). — Let z = (f, g) ∈ Sc be such that E0(z) = I0,c and set φ := |z| =√
f2 + g2. It follows that φ ∈ SR

c and we have (see [24, Proposition 2.2.]) for
i = 1, 2,

∂iφ =


f∂ig + g∂if√

f2 + g2
if f2 + g2 > 0,

0 otherwise.
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We see that

E0(z) − ER
0 (φ) = 1

2
(
∥∇z∥2

L2 − |∇φ|2L2

)
= 1

2

∫
R2

(
|∇f |2 + |∇g|2 − |∇φ|2

)
dx

= 1
2

∫
f2+g2>0

2∑
i=1

(f∂ig − g∂if)2

f2 + g2 dx

⩾ 0. (B.1)
Thus

I0,c = E0(z) ⩾ ER
0 (φ) ⩾ IR0,c ⩾ I0,c

which implies that
IR0,c = I0,c, ER

0 (φ) = I0,c. (B.2)

(2). — If z ∈ Zc, then φ = |z| satisfies φ ∈ SR
c and ER

0 (φ) = I0,c. Using
regularity theory and maximum principle, we can deduce that φ ∈ C1(R2)
and φ > 0. In particular, |z| ∈ Wc.

(3). — We only prove (a) since the one for (b) is treated in a similar
manner. Let z = (f, g) ∈ Zc and φ = |z|. By (B.1) and (B.2), we know that∫

f2+g2>0

(f∂ig − g∂if)2

f2 + g2 dx = 0. (B.3)

On the other hand, as E0(z) = I0,c, there exists µ ∈ C such that for any
ξ ∈ Σ,

E′
0(z)(ξ) = µ

2

∫
R2
zξ + ξzdx.

Putting z = ξ and using regularity theory, we can deduce that f and g
belong to C1(R2).

Now suppose that f ≡ 0. Denote
δf =

{
x ∈ R2 : f(x) = 0

}
.

The continuity of f implies that δf is closed. Let us now prove that it is
also an open set of R2. Pick a point x0 ∈ δf . Since φ(x0) > 0, there exists
a ball B(x0, ρ) centered at x0 with radius ρ > 0 such that g(x) ̸= 0 for all
x ∈ B(x0, ρ). Observe that for each x ∈ B(x,ρ) and i = 1, 2,

(f∂ig − g∂if)2

f2 + g2 =
(
∂i

(
f

g

))2
g4

f2 + g2 .

From this and (B.3), we have∫
B(x0,ρ)

∣∣∣∣∇(fg
)∣∣∣∣2 g4

f2 + g2 dx = 0.
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Hence ∇
(

f
g

)
= 0 on B(x0, ρ). This implies that f

g = C on B(x0, ρ) for some
constant C > 0. As f(x0) = 0, we infer that C = 0. Hence f(x) = 0 for all
x ∈ B(x0, ρ) or B(x0, ρ) ⊂ δf which tells us that δf is an open set.

(4). — Finally we prove that Zc =
{
eiσφ : σ ∈ R, φ ∈ Wc

}
. To this

end, we consider two cases.

First case. — If g = 0, then φ = |f | > 0 on R2. Thus z = f = eiσφ with
σ = 0 if f > 0, σ = π if f < 0.

Second case. — If g(x) ̸= 0 on R2, then for i = 1, 2, we have from (B.3)
that ∫

R2

(f∂ig − g∂if)2

f2 + g2 dx =
∫
R2
∂i

(
f

g

)2
f4

f2 + g2 dx ≡ 0.

It follows that ∇
(

f
g

)
= 0 on R2. This implies that f = kg for k ∈ R, hence

z = (k + i)g and
φ = |z| = |k + i||g|.

Let θ ∈ R be such that k+ i = |k+ i|eiθ. We also write g = |g|eiϑ with ϑ = 0
if g > 0 and ϑ = π if g < 0. It follows that

z = (k + i)g = |k + i|eiθ|g|eiϑ = φeiσ, σ := θ + ϑ ∈ R.

The proof is complete. □

Remark B.2. — The statement of Theorem B.1 would remain true in the
presence of the rotation and the line of attack would be identical provided
that we had

∥∇Az∥L2 ⩾ |∇A|z||L2 (B.4)
and

∥∇Az∥L2 = |∇A|z||L2 =⇒ ∥∇z∥L2 = |∇|z||L2 .

However, we show that (B.4) cannot hold in general. By definition, we have

∥∇Az∥2
L2 =

2∑
j=1

∫
R2

|(∂j − iAj)z|2dx

=
2∑

j=1

∫
R2

(
|∂jz|2 + iAjz∂jz − iAjz∂jz +A2

j |z|2
)

dx.

Applying to z = |z|, we get

|∇A|z||2L2 = |∇|z||2L2 +
∫
R2

|A|2|z|2dx.

In our case A = Ω(−x2, x1), we have |A|2 = Ω2|x|2 and
|∇A|z||2L2 = |∇|z||2L2 + Ω2∥xz∥2

L2 .
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Let φ(x) = e−|x|2 and set zn(x) := eiA(yn)·xφ(x+ yn) with some (yn)n ⊂ R2

to be chosen later. Observe that

|zn(x)| = |φ(x+ yn)|, ∥∇Azn∥2
L2 = |∇Aφ|2L2 = π

(
1 + Ω2

4

)
.

On the other hand, by choosing |yn| → ∞ as n → ∞, we have

|∇A|zn||2L2 ⩾ Ω2
∫
R2

|x|2|φ(x+ yn)|2dx = Ω2
∫
R2

|x− yn|2|φ(x)|2dx

⩾
Ω2

4 |yn|2
∫

|x|⩽1
|φ(x)|2dx −→

n→∞
∞.
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