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Sobolev’s inequality under a curvature-dimension
condition (∗)

Louis Dupaigne (1), Ivan Gentil (2) and Simon Zugmeyer (3)

ABSTRACT. — In this note we present a new proof of Sobolev’s inequality under
a uniform lower bound of the Ricci curvature. This result was initially obtained in
1983 by Ilias. Our goal is to present a very short proof, to give a review of the famous
inequality and to explain how our method, relying on a gradient-flow interpretation,
is simple and robust. In particular, we elucidate computations used in numerous
previous works, starting with Bidaut–Véron and Véron’s 1991 classical work.

RÉSUMÉ. — Dans cette note, nous proposons une nouvelle preuve de l’inégalité de
Sobolev sur les variétés à courbure de Ricci minorée par une constante positive. Le
résultat avait été obtenu en 1983 par Ilias. Nous présentons une preuve très courte
de ce théorème, dressons l’état de l’art pour cette fameuse inégalité et expliquons
en quoi notre méthode, qui repose sur un flot de gradient, est simple et robuste.
En particulier, nous élucidons les calculs utilisés dans des travaux précédents, à
commencer par un célèbre article de Bidaut–Véron et Véron publié en 1991.

1. Introduction

Given d ∈ N, d ⩾ 2, and p ∈ [1, d), let p∗ ∈ [1,+∞) denote Sobolev’s
exponent, that is

1
p∗ = 1

p
− 1
d
.
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According to Sobolev’s inequality, there exists a constant A > 0 such that
for every φ ∈ C∞

c (Rd),
∥φ∥Lp∗ (Rd) ⩽ A∥∇φ∥Lp(Rd),

see [49], as well as [24, 41] for the case p = 1, [3, 47, 51] for the value of
the sharp constant A and the expression of the extremals, [40] for a more
direct proof using rearrangements and [11] for the classification of all posi-
tive solutions to the associated Euler–Lagrange equation. In the special case
p = 2, using the stereographic projection (see e.g. [37]), the sharp Sobolev
inequality in Rd is equivalent to

1
q − 2

(
∥v∥2

Lq(Sd) − ∥v∥2
L2(Sd)

)
⩽

1
d

∥∇v∥2
L2(Sd),

where q = 2∗, v ∈ C∞(Sd), Sd is the standard sphere equipped with its
normalized(1) measure. The inequality is again sharp and the extremals are
known, see [2], as well as Theorem 5.1 in [32, p. 121]. In fact, the inequality
is true for every q ∈ [1, 2∗], q ̸= 2, see [7, 9], as well as [18, Section 3.11]
for the case q ∈ [1, 2). Also note that letting q → 2, one recovers the sharp
log-Sobolev inequality. In [33], Sobolev’s inequality has been generalized as
follows to any compact Riemannian manifold (M, g) with positive Ricci cur-
vature.

Theorem A ([33]). — Let (M, g) be a smooth connected, compact, d-
dimensional Riemannian manifold, d ⩾ 3. Assume that the Ricci curvature
of M is uniformly bounded from below by a constant ρ > 0. Let q = 2∗ = 2d

d−2 .
Then, for all v ∈ C∞(M),

1
q − 2

(
∥v∥2

Lq(M) − ∥v∥2
L2(M)

)
⩽

1
d

d− 1
ρ

∥∇v∥2
L2(M), (1.1)

where M is equipped with its normalized measure.

Remark 1.1. — It is not necessary to assume that M is compact, as
follows from Myer’s theorem (see e.g. [32, p. 100] for a geometric proof, or
combine Theorems 3.2.7, 6.6.1 and 6.8.1 in [5] for an analytic proof).

Many proofs of Theorem A are available. The approach in [33] relies
on symmetrization arguments and the Lévy–Gromov isoperimetric inequal-
ity [30], the rigorous proof of which seems involved, see e.g. [54]. The proof
of [9] clarifies computations of [28], but does not elucidate them. The latter
paper presumably took inspiration from Obata’s work [43] (also described
in [8, p. 179–185]). In [6] (see Theorem 6.10 in [4, p. 107] for the actual proof,
as well as Chapter 6 in [5] for a more recent and thorough account), the

(1) in other words, the normalized measure ν is proportional to the Riemannian volume
and ν(Sd) = 1
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inequality is generalized to any Markov generator satisfying the curvature-
dimension condition CD(ρ, n), ρ > 0, n > 2. Among other tools, their proof
makes use of the Bakry-Émery method (or Γ-calculus) and a rather unin-
tuitive change of unknown which was already present in the aforementioned
litterature. The proof of Fontenas [23] provides a sharper version of the
inequality in terms of the generator’s best Poincaré constant in the case
q ∈ [2, 2∗). His computations, inspired by [48], use again the Γ-formalism
and recast the proof in a yet simpler form, but still fail short of making it
transparent. In [17], Sobolev’s inequality in Rd appears as a limiting case of a
family of optimal Gagliardo–Nirenberg inequalities. This paper puts forward
two important tools for our purposes: the classification of solutions to the
associated Euler–Lagrange, based here on the symmetry result of [27] and,
more importantly, the connection between Sobolev’s inequality and the con-
vergence to equilibrium of solutions to the fast-diffusion equation, or rather
to a Fokker–Planck-type equation obtained by rescaling. The fast-diffusion
and porous medium equations had just been reformulated in [44] as a gra-
dient flow in Wasserstein space, leading the way to the reinterpretation of
Sobolev’s inequality (and more generally the Gagliardo–Nirenberg inequali-
ties studied by del Pino and Dolbeault) as a simple convexity inequality along
a flow, in other words as an entropy-entropy production inequality. This lat-
ter point of view was taken in [12, 13, 14] to establish Sobolev-type inequal-
ities in Rd and more recently simplified and generalized to convex euclidean
domains in [56]. Soon after, [16] gave a short proof using optimal transport,
but valid in the euclidean setting only. The extension of the Bakry-Émery
method to nonlinear flows was further cleverly extended in the Riemannian
setting in [19], although without Otto’s geometric insight, but with a twist:
the use of two distinct entropy functionals, the evolutions of which can be
related through a simple differential inequality. Other recent generalizations
include the cases of RCD∗(ρ, n)-spaces [46], CD∗(ρ, n)-spaces [15] and Rie-
mannian manifolds with boundary [34]. Going back to the euclidean setting,
but with weights, [22] extended the method to prove the sharp Caffarelli–
Kohn–Nirenberg inequalities and the associated Liouville-type results.

We probably forgot to cite important contributions and judging by the
extent of the bibliography, one may wonder why we intend to give here yet
another proof of Sobolev’s inequality. From our point of view, the proof pre-
sented below, inspired by [22], has the advantage of being short, transparent
and hopefully robust. In particular, with no extra work, our proof yields the
following generalization(2) of Theorem A, due to [6].

(2) For convenience of the reader, in Section 2, we recall the definition of the CD(ρ, n)
condition used in Theorem B.
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Theorem B ([6]). — Let α ∈ (0, 1). Assume that (M, g) is a C2,α,
compact, connected, d-dimensional Riemannian manifold, d ⩾ 1. Let W ∈
C2(M ; R) and L = ∆ − ∇W · ∇ satisfy the CD(ρ, n) condition for some
ρ > 0 and n ∈ [d,+∞), n > 2. Let q = 2n

n−2 . Then, for all v ∈ C∞(M),

1
q − 2

(
∥v∥2

Lq(M) − ∥v∥2
L2(M)

)
⩽

1
n

n− 1
ρ

∥∇v∥2
L2(M),

where M is equipped with the measure dν = e−W

Z dVolg, with Z ∈ R∗
+ chosen

so that ν(M) = 1.

Remark 1.2. — Again, it is not necessary to assume that M is compact,
as follows from the generalized Myer’s theorem proved in [6].

As another by-product of our proof, we obtain the following rigidity re-
sult, improving previous results given in [6, 9, 20, 21, 23, 28, 38, 39], which,
as stated, seems new.

Theorem 1.3. — Assume that (M, g) is a C2, compact, connected, d-
dimensional Riemannian manifold, d ⩾ 1. Let W ∈ C2(M ; R) and L =
∆ − ∇W · ∇ satisfy the CD(ρ, n) condition for some ρ > 0 and n ∈ [d,+∞),
n > 2. Let q = 2n

n−2 . Assume that v ∈ C2(M), v > 0, is a nonconstant
solution to

−ALv + v = vq−1f(v) in M, (1.2)

where A > 0 and f ∈ C1,α(R∗
+; R∗

+), α ∈ (0, 1) and f is nonincreasing. Let
A∗ = 4(n−1)

n(n−2)ρ . Then, A ⩽ A∗. In addition, if A = A∗, then f is constant
on v(M).

Remark 1.4. — If equality holds in Sobolev’s inequality (1.1) for some
nonconstant function v, then v solves the associated Euler–Lagrange (equa-
tion (1.2) with n = d, A = A∗, L = ∆ and f constant). As follows from
the proof of Theorem 1.3, the function Φ = v− 4

d−2 solves the equation
∇2Φ = ∆Φ

d g in M . This in turn implies that (M, g) is conformally dif-
feomorphic to the round sphere, see e.g. [31, Lemme 6.4.3]. In fact (M, g)
is isometric to the round sphere and v(x) = (β − cos(dg(x0, x))− d−2

2 for
some β > 1 and x0 ∈ M , as recently proved by Nobili and Violo in [42,
Theorem 1.3].
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2. Proofs of Theorem A, Theorem B and Theorem 1.3

2.1. Proof of Theorem A

Fix q ∈ [1, 2∗). By the (non-sharp but tight) Sobolev inequality, there
holds

∥v∥2
q ⩽ A∥∇v∥2

2 + ∥v∥2
2, (2.1)

for some A ∈ R∗
+ and every v ∈ H1(M), apply e.g. [32, Corollary 2.1] and [5,

Proposition 6.2.2]. Given A ∈ R∗
+, consider the minimization problem

I(A) = inf
{
A∥∇v∥2

2 + ∥v∥2
2 : v ∈ H1(M) , ∥v∥q = 1

}
.

Then, (2.1) holds if I(A) = 1. Thanks to the Banach–Alaoglu–Bourbaki
and Rellich–Kondrakov compactness theorems (see e.g. [10, Theorem 3.16]
and [32, Theorem 2.9]), there exists a minimizer v ∈ H1(M) s.t. ∥v∥q = 1.
By Stampacchia’s theorem [50], |v| is also a minimizer, so we may assume
that v ⩾ 0 a.e. in M . In addition, a constant multiple of v (abusively denoted
the same below) is a weak solution to

−A∆v + v = vq−1 in M. (2.2)

By standard elliptic regularity (see e.g. [31, proof of Theorem 6.2.1, p. 248])
v ∈ C3(M) and by the strong maximum principle (see e.g. [31, Theo-
rem 5.7.2]), v > 0 in M .

Define the pressure function Φ = v− q−2
2 . Then, Φ solves

Φ∆Φ − d′

2 |∇Φ|2 = −λ(Φ2 − 1) in M , (2.3)

where d′ = 2q
q−2 and λ = q−2

2A = 2
(d′−2)A . Multiply equation (2.3) by ∆Φ1−d′

and integrate. For the right-hand-side we find,∫
λ(Φ2 − 1)∆Φ1−d′

= λ

∫
Φ2∆Φ1−d′

= −λ
∫

∇Φ2 · ∇Φ1−d′

= 2λ(d′ − 1)
∫

|∇Φ|2Φ1−d′
= c

∫
Γ(Φ)Φ1−d′
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where we expressed the carré du champ operator Γ(Φ) = |∇Φ|2 and where
c = 2λ(d′ − 1) = 4 d′−1

(d′−2)A . For the left-hand side, we obtain∫ (
Φ∆Φ − d′

2 |∇Φ|2
)

∆Φ1−d′

=
∫

∆
(

Φ∆Φ − d′

2 |∇Φ|2
)

Φ1−d′

=
∫ [

(∆Φ)2 + Φ∆2Φ + 2∇Φ · ∇∆Φ − d′

2 ∆|∇Φ|2
]

Φ1−d′

= −
∫ (

d′Γ2(Φ) − (∆Φ)2)
Φ1−d′

,

where we expressed the iterated carré du champ

Γ2(Φ) = 1
2∆|∇Φ|2 − ∇Φ · ∇∆Φ

and used the fact that∫
Φ2−d′

∆2Φ = (d′ − 2)
∫

(∇Φ · ∇∆Φ)Φ1−d′
.

Collecting the left and right-hand sides and dividing by d′, we find∫ (
Γ2(Φ) − 1

d′ (∆Φ)2 − c

d′ Γ(Φ)
)

Φ1−d′
= 0. (2.4)

The celebrated Bochner–Lichnerowicz formula states(3) that

Γ2(Φ) = ∥∇2 Φ∥2
H.S + Ricg(∇Φ,∇Φ),

where ∇2Φ denotes the Hessian of Φ, ∥∇2 Φ∥2
H.S the square of its Hilbert–

Schmidt norm (the sum of the squares of its components) and Ricg the
Ricci tensor of the Riemannian manifold (M, g). Using the Cauchy–Schwarz
inequality on the one hand and the assumption Ric ⩾ ρg on the other hand,
we find

Γ2(Φ) ⩾ 1
d

(∆Φ)2 + ρΓ(Φ)

and so (
1
d

− 1
d′

) ∫
(∆Φ)2Φ1−d′

+
(
ρ− c

d′

) ∫
Γ(Φ)Φ1−d′

⩽ 0.

Since q < 2∗, we have d < d′ and so, if ρ ⩾ c
d′ i.e.

A ⩾
4(d′ − 1)
d′(d′ − 2)ρ ,

(3) and motivates the definition of Γ2
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we deduce that ∆Φ = 0 in M . Integrating against Φ, Φ is constant. Hence
v = 1, I(A) = 1, and (2.1) holds for A = 4(d′−1)

d′(d′−2)ρ . Let q ↗ 2∗. Then d′ ↘ d

and (1.1) follows.

2.2. Proof of Theorem B

2.2.1. The CD(ρ, n) condition.

Let us quickly explain the definitions and notations used in the theorem.
Clearly, a second order differential operator of the form(4) L = ∆ − ∇W · ∇
fails to satisfy the chain rule: if Φ ∈ C2(M) is not constant, L(Φ2) ̸= 2ΦLΦ.
The defect is measured by the carré du champ operator defined for
Φ ∈ C2(M) by

Γ(Φ) = 1
2L(Φ2) − ΦLΦ.

By a simple and direct computation, Γ(Φ) = |∇Φ|2. Abusing notation
slightly, we let Γ(Φ,Ψ) = ∇Φ · ∇Ψ denote the polar form of Γ. Now, re-
peat the above consideration by replacing the product of real numbers, seen
as a bilinear form, by the carré du champ operator Γ: again L fails to satisfy
the chain rule and the defect is measured by the iterated carré du champ
operator, defined for Φ ∈ C3(M) by

Γ2(Φ) = 1
2L(Γ(Φ)) − Γ(Φ, LΦ). (2.5)

Thanks to the Bochner–Lichnerowicz formula, the Γ2 operator can be com-
puted as follows:

Γ2(Φ) = ∥∇2Φ∥2
H.S. + (Ricg +∇2W )(∇Φ,∇Φ).

Given, ρ ∈ R and n ∈ [d,+∞], the operator L is then said to satisfy the
CD(ρ, n) condition if for every Φ ∈ C3(M),

Γ2(Φ) ⩾ ρΓ(Φ) + 1
n

(LΦ)2. (2.6)

Note that when W = 0, LΦ = ∆Φ. By the Cauchy–Schwarz inequality(5) ,
∥∇2Φ∥2

H.S. ⩾ 1
d (∆Φ)2 so that, in this case, the CD(ρ, d) condition(6) is

equivalent to the lower bound Ricg ⩾ ρg.

(4) Here ∆ is the Laplace–Beltrami operator on (M, g), the dot product designates the
Riemannian metric g and | · | the associated norm.

(5) with equality if and only if ∇2Φ = ∆Φ
d

g.
(6) We recall that d is the dimension of M
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2.2.2. Proof of Theorem B

Let us review the proof of Theorem A. We start similarly with the tight
but non-sharp Sobolev’s inequality (2.1), the proof of which remains un-
changed (e.g. adapt [32] Theorem 4.1). Since M is compact and W contin-
uous, e−W is bounded above and below by positive constants. So, the Rie-
mannian volume and the measure dν = e−W

Z dVolg yield the same Sobolev
space H1(M,dν) = H1(M, dVolg). In particular, by the same proof, the
quantity I(A) has a nonnegative minimizer u, which this time solves

−ALv + v = vq−1 in M,

leading to

ΦLΦ − n′

2 |∇Φ|2 = −λ(Φ2 − 1) in M,

where the definition of Φ is unchanged, n′ = 2q
q−2 and λ = q−2

2A = 2
(n′−2)A .

Multiply by L(Φ1−n′) and integrate. Using the formulas
∫

M
(Lu)v dν =∫

M
uLv dν = −

∫
M

Γ(u, v) dν, the exact same computations lead to∫ (
Γ2(Φ) − 1

n′ (LΦ)2 − c

n′ Γ(Φ)
)

Φ1−n′
dν = 0,

where c = 2λ(n′ − 1) = 4 n′−1
(n′−2)A . Now apply the CD(ρ, n) condition to

deduce that (2.1) holds for A = 4(n′−1)
n′(n′−2)ρ . Let q ↗ 2n

n−2 . Then, n′ ↘ n and
the theorem follows.

2.3. Proof of Theorem 1.3

Repeating once again the above computation we arrive at∫ (
Γ2(Φ) − ρΓ(Φ) − 1

n
(LΦ)2

)
dν +

(
ρ− c

n

) ∫
Γ(Φ)Φ1−n dν

+ λ

∫
f ′(v)Φ2∇v · ∇Φ1−n dν = 0,

where c = 2λ(n − 1) = 4 n−1
(n−2)A and λ = q−2

2A = 2
(n−2)A . By the CD(ρ, n)

condition, the first integral is nonnegative. Since f is nonincreasing, the last
integral is also nonnegative. Finally, the coefficient in front of the second
integral is strictly positive if A > A∗, so that v must be constant in that
case. If A = A∗, then all the first and third integrals vanish. In particular, f
is constant on v(M).

– 132 –



Sobolev’s inequality under a curvature-dimension condition

3. Sobolev’s inequality is a convexity inequality for Renyi
entropies in Wasserstein space

In this section, we explain the genesis of our short proof of Theorems A
and 1.3. Our strategy consists in using a gradient flow defined on the set
of probability measures over M , equipped with the Wasserstein distance.
If one uses the appropriate functionals, the proof is rather simple. In the
next paragraph, we explain first how a gradient flow in the usual Euclidean
space Rm can be used to derive sharp convexity inequalities. The extension
of the method to the Wasserstein space is next presented in Section 3.2. The
computations are not new, but this presentation and this point of view seem
to be new and useful.

Some of our considerations will be formal: although this can be done, we
do not try to make all arguments rigorous, but we provide references to do
so. Instead, we ask the reader to keep in mind that we only want to give a
guideline to the rigorous proofs presented previously.

3.1. A review of gradient flows in Euclidean space

Letm ⩾ 1 and F : Rm 7→ R any C2 function, that we call entropy in what
follows. Assume that F is strictly convex and coercive i.e. lim|x|→+∞ F (x) =
+∞. Then, F has unique critical point x∗. In addition,

F (x∗) = inf
x∈Rm

F (x).

In order to locate the point of minimum x∗, one can start from an arbitrary
point x ∈ Rm and follow the gradient flow associated to F . More precisely,
let t 7→ St(x) denote the solution of the ODE

d
dtSt(x) = −∇F (St(x))

S0(x) = x.
(3.1)

Thanks to the Cauchy–Lipschitz theorem, t 7→ St(x) is well-defined on a
maximal interval I containing t = 0. In fact, the solution is bounded, hence
global, since F is coercive and nondecreasing along the flow:

d
dtF (St(x)) = −|∇F (St(x))|2 ⩽ 0. (3.2)

In addition, given any x ∈ Rm,

lim
t→∞

St(x) = x∗. (3.3)
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Indeed, since F is bounded below and (3.2) holds, there exists a sequence
tn → +∞ such that |∇F (Stn(x))| → 0. Since (St(x)) is bounded, up to
extraction, (Stn(x)) also converges and by continuity of |∇F |, its limit must
be x∗. Using (3.2) once more, F (St(x)) ⩽ F (Stn

(x)) for t ⩾ tn and so
F (St(x)) decreases to F (x∗). (3.3) follows.

If we further assume that F is strongly convex, i.e. ∇2F ⩾ ρ Id for some
ρ > 0, then the rate of convergence of the entropy along its gradient flow
can be quantified (as we shall prove shortly):

F (St(x)) − F (x∗) ⩽ e−2ρt (F (x) − F (x∗)) .

Note that equality holds when t = 0 and so we can differentiate the inequality
at t = 0. This yields the following equivalent convexity inequality

F (x) − F (x∗) ⩽ 1
2ρ |∇F (x)|2.

Note that the inequality is sharp in the sense that it is an equality for
F (x) = ρ|x|2/2. In fact, one can be a bit more general and consider the
following convexity inequality

G(x∗) ⩽ 1
2ρ |∇F (x)|2 +G(x), (3.4)

which holds true whenever G ∈ C2(Rm) and F satisfy the following convex
condition: there exits ρ > 0 such that uniformly in Rm,

∇F · ∇2F ∇F ⩾ −ρ∇F · ∇G. (3.5)

We provide three proofs of this fact, ending with the most robust.

(1). A direct proof based on the gradient flow. — Differentiating (3.1)
once more, gives, for any x ∈ Rm,

d2

dt2F (St(x)) = 2∇F (St(x)) · ∇2F (St(x))∇F (St(x))

⩾ −2ρ∇F (St(x)) · ∇G(St(x)) = 2ρ d
dtG(St(x)).

Integrating over [0,∞] the previous inequality becomes,∫ ∞

0

d2

dt2F (St(x)) dt ⩾ 2ρ
∫ ∞

0

d
dtG(St(x)) dt.

Since
lim

t→∞
|∇F (St(x))| = 0, (3.6)

we have
− d

dtF (St(x))
∣∣
t=0 ⩾ 2ρ(G(x∗) −G(x)).
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Since − d
dtF (St(x))|t=0 = |∇F (x)|2, we proved the inequality (3.4), under

the condition (3.5).

As we can see, inequality (3.4) is just a clever convex inequality under
the convex condition (3.5). As we shall see, when generalizing this proof
to an infinite-dimensional setting, we are faced with two problems: proving
rigorously the existence of the gradient flow (St)t⩾0 and proving the two
limits (3.3) and (3.6). □

(2). A proof based on a minimization problem and the gradient flow. —
To prove (3.4), we fix a constant A > 0, compute the quantity

I(A) := inf
x∈Rm

[
A|∇F (x)|2 +G(x)

]
and show that for A > 1

2ρ , G(x∗) ⩽ I(A). Letting A ↘ 1
2ρ , (3.4) will then

follow. If G is coercive, which we assume in this approach, then there exists
x ∈ Rm such that

inf
x∈Rm

[
A|∇F (x)|2 +G(x)

]
= A|∇F (x)|2 +G(x). (3.7)

We now consider (St(x))t⩾0, the gradient flow starting from x. Then, since
x is a minimizer, we have

d
dt

[
A|∇F (St(x))|2 +G(St(x))

]∣∣∣
t=0

⩾ 0.

In addition,

d
dt

[
A|∇F (St(x))|2 +G(St(x))

]∣∣∣
t=0

= −2A∇F (x) · ∇2F (x)∇F (x) − ∇G(x) · ∇F (x)

=
[
−1
ρ

∇F (x) · ∇2F (x)∇F (x) − ∇G(x) · ∇F (x)
]

−
(

2A− 1
ρ

)
∇F (x) · ∇2F (x)∇F (x). (3.8)

Since F is strongly convex and (3.5) holds, if A > 1
2ρ , we see that if

x ̸= x∗, ∇F (x) ̸= 0 and so
d
dt

[
A |∇F (St(x))|2 +G(St(x))

]∣∣∣
t=0

< 0,

which is impossible since x is a minimizer. Hence, x = x∗ and the following
inequality holds,

G(x∗) ⩽ A|∇F (x)|2 +G(x),
for any x ∈ Rd and A > 1

2ρ . This proves the desired inequality (3.4), by
letting A → 1

2ρ . Note that in this approach, we no longer need to prove the

– 135 –



Louis Dupaigne, Ivan Gentil and Simon Zugmeyer

asymptotic behavior of the gradient flow (St)t⩾0 but we still need to know
its existence. □

(3). A proof based on the minimization problem only. — As in the pre-
vious proof, let x given by equation (3.7), with A > 1

2ρ . Then, x solves the
Euler–Lagrange equation

2A∇2F (x)∇F (x) + ∇G(x) = 0.
Multiply the previous equality by ∇F (x), to conclude again, as in (3.8), that
x = x∗. Again, this implies inequality (3.4).

This last proof is quite interesting since we completely avoid using the
gradient flow. Moreover, methods based on optimization problems are often
robust. □

3.2. Gradient flows in the space of probability measures

In this section, we reproduce the three methods of Section 3.1, this time
in the space of probability measures over M . Before doing so, we introduce
Otto’s calculus, the main point of our method. For simplicity, all compu-
tations are given on a d-dimensional smooth, connected and compact Rie-
mannian manifold (M, g). But they can be easily generalized to the setting
of weighted Riemannian manifold under the CD(ρ, n) condition (2.6), as in
Theorem 1.3 or Theorem B.

3.2.1. Otto’s calculus

Otto’s calculus, so called by C. Villani in his book [53], is a very efficient
tool to compute the second derivative of a functional along its probability
gradient flow. This calculus has been developed in the seminal papers [35, 44,
45]. It allows to view the space of probability measures on a manifold, at least
formally, as an infinite dimensional Riemannian manifold. Our presentation
is based on [26], to which we refer for more details (see also [25] for an
informal presentation in French). The calculus can be viewed as a heuristic
guideline but all the results can be turned into rigorous statements, see the
monograph [29].

Let P2(M) denote the space of probability measures on M admitting a
second moment(7) . Equip P2(M) with the Wasserstein distance, defined as

(7) Since we assumed for simplicity that M is compact, all probability measures admit
a second moment and so P2(M) = P(M) in this case.
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follows: for every µ, ν ∈ P2(M),

W2(µ, ν) = inf

√∫∫
d(x, y)2 dπ(x, y),

where the infimum is taken over all transportation plans π ∈ P(M × M)
with marginals µ and ν and where d is the Riemannian distance of M .

Following the presentation of [1, Chap. 1], a path [0, 1] ∋ t 7→ νt ∈ P2(M)
is absolutely continuous with respect to the Wasserstein distance if

|ν̇t| := lim sup
s→t

W2(νt, νs)
|t− s|

∈ L1([0, 1]).

It turns out that given any absolutely continuous path (νt)t∈[0,1], there exists
a unique vector field (t, x) 7→ Vt(x) in M , such that

∫
|Vt|2 dνt < ∞ and

|ν̇t|2 =
∫

|Vt|2 dνt a.e. in [0, 1], see [1]. In addition, the vector field Vt is the
limit in L2(νt) of the gradient of functions φn ∈ C∞(M) and the continuity
equation holds in the sense of distributions:

∂tνt + ∇ · (νtVt) = 0 in D′(M × (0, 1)). (3.9)
Conversely, given any such vector field Vt, there exists an absolutely contin-
uous path (νt)t∈[0,1] such that the continuity equation (3.9) holds. In other
words, for almost every t ∈ [0, 1], we may see Vt as a tangent vector along
the path (νt)t∈[0,1]. So, we denote

ν̇t := Vt (3.10)
and call ν̇t the velocity of the path (νt)t∈[0,1] at time t. The tangent space
at a point µ ∈ P2(M) can then be defined by

TµP2(M) = {∇φ, φ : M 7→ R, φ ∈ C∞(M)}L2(µ)

and a natural Riemannian metric can be defined via the scalar product in
L2(µ) by

⟨∇φ,∇ψ⟩µ =
∫

∇φ · ∇ψ dµ =
∫

Γ(φ,ψ) dµ, for ∇φ,∇ψ ∈ TµP2(M).

We shall write |∇φ|2µ =
∫

Γ(φ) dµ the corresponding Riemannian length.
Such a metric is often referred to as the Otto metric. In addition, thanks
to the Benamou–Brenier formulation, the Wasserstein distance is the Rie-
mannian distance associated to the Otto metric.

3.2.2. Differentiating twice Renyi’s entropy using Otto’s calculus

To lighten notations and formulas, we identify henceforth measures and
densities. All the measures considered in this section are supposed to be
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smooth and absolutely continuous with respect to the Riemannian measure
on M . Unless specified, all integrals are viewed with respect to the normal-
ized Riemannian measure.

Now, we consider our main flow (µt)t⩾0, started from a probability mea-
sure µ0 = µ and solving the following nonlinear diffusion equation

∂tµt = 1
α

∆µα
t = ∇ ·

(
µt

1
α− 1∇µα−1

t

)
, (3.11)

where α > 0, α ̸= 1. If the initial datum µ0 is chosen smooth, bounded
and bounded away from zero, then µt is smooth and globally defined.(8)

Then, according to the continuity equation (3.9), the velocity of this flow is
given by

µ̇t = − 1
α− 1∇µα−1

t ∈ Tµt
P2(M) (3.12)

Consider now the Rényi entropy (of order α > 0 with α ̸= 1),

Rα(µ) = 1
α(α− 1)

∫
µα, µ ∈ P2(M), (3.13)

which is the main functional used in this article. Then the gradient of Rα is
given by

gradµ Rα := 1
α− 1∇µα−1 ∈ TµP2(M), (3.14)

see for instance [26, §3.2]. So, if (µt)t⩾0 is a solution of (3.11), then

µ̇t = − gradµt
Rα.

In other words, (3.11) is the gradient flow of the Rényi entropy with re-
spect to the Otto metric. This was proved rigorously in [44]. Furthermore,
the Riemannian structure given to P2(M) allows us to define the covariant
derivative and the Hessian of a functional. A remarkable fact is that the
Hessian of Rényi’s entropy in the sense of Otto’s calculus has an explicit
formulation: for any µ ∈ P2(M) and ∇φ ∈ TµP2(M),

Hessµ Rα(∇φ,∇φ) = 1
α

∫ [
(α− 1)(∆φ)2 + Γ2(φ)

]
µα, (3.15)

where the operator Γ2 has been defined in (2.5) (see [44] or [26, §3.3]).

Let us now turn to our three methods to prove inequality (1.1), under a
lower bound of the Ricci curvature.

(8) for precise statements, see Section 11.5.1 in [52] for the existence of a unique weak
solution and the proof of Proposition 7.21 in the same book for its regularity. For a precise
proof assuming only standard nonlinear parabolic regularity theory (as developped in [36]),
the interested reader can easily adapt the proof presented in [55, Section 4.3].
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3.2.3. Method based on a convex inequality for the Rényi entropy

We mimic the first proof proposed in Section 3.1 by using the Rényi
entropy and the fast diffusion flow. Replace the entropy F of Section 3.1
by Rα, with α = 1 − 1

d and G by −Rβ , with β = 1 − 2
d . Then, letting

Φ = 1
α−1µ

α−1, it follows from (3.14), (3.15) and the CD(ρ, d) condition(9)

that

Hessµ Rα(gradµ Rα, gradµ Rα) = 1
α

∫ [
(α− 1)(∆Φ)2 + Γ2(Φ)

]
µα

⩾
ρ

α

∫
Γ(Φ)µα

while, since β − 3 = 2α− 4,

− ⟨gradµ Rα, gradµ(−Rβ)⟩µ = 1
(α− 1)(β − 1)

∫
∇µα−1∇µβ−1dµ

=
∫
µα+β−3|∇µ|2 =

∫
Γ(Φ)µα

and so we have the exact analogue of (3.5), that is

Hessµ Rα(gradµ Rα, gradµ Rα) ⩾ − ρ

α
⟨gradµ Rα, gradµ(−Rβ)⟩µ. (3.16)

Since µ∗ = 1 is the unique critical point of Rα, repeating the elementary
analysis(10) leading to (3.3), one has the following limits lim

t→∞
µt = 1,

lim
t→∞

d
dtRα(µt) = 0.

(3.17)

Hence, by the very same proof of Section 3.1, we arrive at the exact analogue
of (3.4), that is:

−Rβ(µ∗) ⩽ α

2ρ |gradµ Rα|2µ − Rβ(µ).

By using the very definitions of Rα, Rβ , α, β and Φ we obtain

1 ⩽
4(d− 1)
ρd(d− 2)

∫
Γ(µ

d−2
2d ) +

∫
µ

d−2
d ,

(9) Recall that d is the dimension of M .
(10) In so doing, one should restrict to a smooth, bounded, bounded away from zero

initial datum µ0, so that standard nonlinear parabolic regularity theory and the maximum
principle apply. In particular, the family (µt)t⩾0 is uniformly bounded and compact in
the Ck topologies.
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for any probability measure µ. Letting |f | = µ
d−2
2d in the previous inequality,

we obtain

1 ⩽
4(d− 1)
ρd(d− 2)

∫
Γ(f) +

∫
f2,

under the normalization ∥f∥2∗ = 1 (so that µ is a probability measure).
This is precisely Sobolev’s inequality (1.1). This proof was first proposed by
J. Demange in [19]. This method is important since it shows that Sobolev’s
inequality under a lower bound on the Ricci tensor is just a convex inequality
applied to a functional (the Rényi entropy) along its gradient flow (the fast
diffusion equation). The drawback of this method is that it is not so easy
to prove the existence of a smooth global solution of the nonlinear diffusion
equation (3.11) and the two limits (3.17).

3.2.4. Method based a minimization problem associated with the
fast diffusion equation

Now, let us mimic the second proof of Section 3.1. Given A > 0, we
consider the minimization problem

I(A) := inf
µ∈P2(M)

[
A|∇Rα(µ)|2 − Rβ(µ)

]
. (3.18)

And we prove that for any A > α
2ρ , −Rβ(µ∗) ⩽ I(A), where µ∗ = 1. Then,

Sobolev’s inequality follows as discussed in the previous section. Since the
problem is critical, the first delicate point consists in proving that the in-
fimum I(A) is attained by some measure µ, which we admit here.(11) .This
being said, once we have a well-defined global smooth solution of the gradi-
ent flow (3.11), and once we’ve observed the strict convexity of Rα, which
follows from (3.15) and the CD(ρ, d) condition, then all computations done
in Section 3.1 remain unchanged, leading to µ = µ∗ = 1 and the desired
inequality is proved. The main advantage of this method, compared to the
previous one, is that it is no longer necessary to prove the two delicate lim-
its of the fast diffusion equation (3.17). However, one needs to prove the
existence of the minimizer µ as well as the existence of a smooth solution
of the fast diffusion equation (3.11). The method proposed in the proof of
Theorem A avoids both problems by working in a subcritical setting and by
using the limit case, that is, the elliptic equation.

(11) In our proof in Section 2.1, we bypassed this issue by approximating the inequality
with a subcritical inequality
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3.2.5. Method based only on the minimization problem

Indeed, mimic the third proof of Section 3.1. We consider again the min-
imization problem (3.18). Assume that there exists a probability measure µ
minimizing I(A). Then, µ satisfies the corresponding Euler–Lagrange equa-
tion, given by

TµP2(M) ∋ 2AHessµ Rα(gradµ Rα, · ) − gradµ Rβ = 0, (3.19)
thanks to Otto’s calculus. Apply the equality to the test function gradµ Rα,
to get

2AHessµ Rα(gradµ Rα, gradµ Rα) − ⟨gradµ Rβ , gradµ Rα⟩µ = 0.

Using again the strict convexity of Rα and (3.16), we conclude that µ = 1.

The proof proposed in Section 2.1 is inspired from this one. The only
difference is that we work here on the space of probability measures, whereas
in Section 2.1, to prove the existence of a minimizer, we work on the space of
functions v such that ∥v∥q = 1, where q ∈ [1, 2∗) is subcritical. The elliptic
equation (2.2) is, up to a change of functions, the equation (3.19) whereas
when we multiply by ∆Φ1−d′ and integrate in the proof of Section 2.1 is
exactly applying (3.19) to gradµ Rα.
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