
Publication membre du centre
Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2258-7519

ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
FRANC FORSTNERIČ
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Proper superminimal surfaces of given conformal types
in the hyperbolic four-space (∗)

Franc Forstnerič (1)

ABSTRACT. — Let H4 denote the hyperbolic four-space. Given a bordered Rie-
mann surface, M , we prove that every smooth conformal superminimal immersion
M → H4 can be approximated uniformly on compacts in M by proper conformal
superminimal immersions M → H4. In particular, H4 contains properly immersed
conformal superminimal surfaces normalised by any given open Riemann surface of
finite topological type without punctures. The proof uses the analysis of holomorphic
Legendrian curves in the twistor space of H4.

1. Introduction

Among minimal surfaces in an oriented four-dimensional Riemannian
manifold (X, g) there is an interesting subclass consisting of superminimal
surfaces of positive or negative spin. They were introduced in 1897 by Kom-
merell [30] and were studied by many authors; see [19] for a brief historical
account. The term superminimal surface was coined by Bryant [12] (1982)
in his seminal study of minimal surfaces in the four-sphere S4 which arise
as projections of holomorphic Legendrian curves in CP3, the Penrose twistor
space of S4. The Bryant correspondence [12, Theorems B, B′] was extended
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to all oriented Riemannian four-manifolds (X, g) by Friedrich [22, Proposi-
tion 4] who also showed in [23] that superminimal surfaces in the sense of
Bryant coincide with those of Kommerell.

Assume that (X, g) is an oriented Riemannian four-manifold and M ⊂ X
is a smooth oriented embedded surface with the induced conformal structure.
(Our considerations will also apply to immersed surfaces.) Then TX|M =
TM ⊕ N where N = N(M) is the cooriented orthogonal normal bundle to
M . A unit normal vector n ∈ Nx at a point x ∈ M determines a second
fundamental form Sx(n) : TxM → TxM , a self-adjoint linear operator on
the tangent space of M . For a fixed tangent vector v ∈ TxM we consider the
closed curve

Ix(v) =
{
Sx(n)v : n ∈ Nx, |n|g = 1

}
⊂ TxM. (1.1)

Definition 1.1. — A smooth oriented embedded surface M in an ori-
ented Riemannian four-manifold (X, g) is superminimal of positive (resp.
negative) spin if for every point x ∈ M and unit tangent vector v ∈ TxM ,
the curve Ix(v) ⊂ TxM (1.1) is a circle centred at 0 and the map n →
S(n)v ∈ Ix(v) is orientation preserving (resp. orientation reversing). The
last condition is void at points x ∈ M where the circle Ix(v) reduces to
0 ∈ TxM . The analogous definition applies to a smoothly immersed oriented
surface f : M → X.

Every superminimal surface is also a minimal surface; see Friedrich [23,
Proposition 3] and the discussion in [19, Section 2]. The converse only holds
in special cases. For example, every conformal minimal immersion of the
two-sphere S2 into the four-sphere S4 with the spherical metric is supermin-
imal; see [12, Theorem C], [31], and [25, Proposition 25]. The same holds for
immersions of S2 into the projective plane CP2 with the Fubini–Study met-
ric (see [25, Proposition 28] and [32]). Superminimal surfaces in S4 and CP2

with their natural metrics have been studied extensively; see the references
in [19, Section 2].

A motivation for the present paper is Bryant’s theorem [12, Corollary
H] that every compact Riemann surfaces, M , admits a conformal supermin-
imal immersion into S4 with the spherical metric. In view of the Bryant
correspondence, this follows from his result [12, Theorem G] saying that ev-
ery such M admits a holomorphic Legendrian embedding M → CP3 in the
standard contact structure determined by the following 1-form on C4:

α = z1dz2 − z2dz1 + z3dz4 − z4dz3. (1.2)
Approximation theorems of Runge and Mergelyan type for Legendrian curves
in CP3 have been obtained recently in [7, Corollary 7.3] and [20, Corol-
lary 1.11].
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In this paper we consider superminimal surfaces in the four dimensional
hyperbolic space H4, the unique simply connected complete Riemannian four-
manifold of constant sectional curvature −1 (see [13, Theorem 4.1]). Among
the geometric models for H4 it will be most convenient for us to use the
Poincaré (conformal) ball model, given by the unit ball B = {x ∈ R4 :
|x|2 < 1} endowed with the complete hyperbolic metric

gh = 4|dx|2

(1 − |x|2)2 , x ∈ B. (1.3)

The ball model is related to the hyperboloid model in the Lorentz space R4,1

by the stereographic projection (2.4); see Section 2.

Recall that a bordered Riemann surface is an open domain of the form
M = R \

⋃
i ∆i in a compact Riemann surface R, where ∆i are finitely

many compact pairwise disjoint discs (diffeomorphic images of D = {z ∈ C :
|z| ⩽ 1}) with smooth boundaries b∆i. Its closure M is a compact bordered
Riemann surface.

The following is our main result; it is proved in Section 6 as a corollary
to Theorem 6.1.

Theorem 1.2. — Let M be a bordered Riemann surface. Every smooth
conformal superminimal immersion f : M → (B, gh) = H4 can be approxi-
mated uniformly on compacts in M by proper conformal superminimal im-
mersions f̃ : M → B. Furthermore, f̃ can be chosen to agree with f to a
given finite order at finitely many points in M .

What is new in comparison to the extant results in the literature is that
we control not only the (finite) topology of proper superminimal surfaces,
but also their conformal type.

Any minimal surface in H4 is open and its conformal universal covering
is the disc (see [20, Corollary 6.3]). Since every open Riemann surface with
finitely generated homology group H1(M,Z) is conformally equivalent to a
domain obtained by removing finitely many closed discs and points from a
compact Riemann surface (see Stout [38, Theorem 8.1]), bordered Riemann
surfaces are precisely the open Riemann surfaces of finite topology without
punctures. This gives the following corollary to Theorem 1.2.

Corollary 1.3. — Every open Riemann surface of finite topological
type without punctures is the conformal structure of a properly immersed
superminimal surface in H4.

Although Corollary 1.3 might also hold for bordered Riemann surfaces
with punctures, it is notoriously difficult to deal with this case, and we leave
it as an open problem.
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It has recently been shown in [20, Corollary 6.3] that any self-dual or
anti-self dual Einstein four-manifold (this class of manifolds includes S4,
H4, and many other Riemannian four-manifolds) also contains complete rel-
atively compact immersed superminimal surfaces of any conformal type in
Corollary 1.3, thereby solving the Calabi–Yau problem for such surfaces.

Our approach to Theorem 1.2 uses the Bryant correspondence to the
effect that superminimal surfaces in an oriented Riemannian four-manifold
(X, g) are the projections of horizontal holomorphic curves in total spaces
of twistor bundles π± : Z± → X, with the sign depending on the spin of
the superminimal surface; see [19, Section 4]. Both twistor spaces Z± of
H4 = (B, gh) can be identified with the domain in CP3 given by

Ω =
{

[z1 : z2 : z3 : z4] ∈ CP3 : |z1|2 + |z2|2 > |z3|2 + |z4|2
}
, (1.4)

and the twistor projection π : Ω → B is the restriction to Ω of the twistor
projection π : CP3 → S4 for the spherical metric on S4 (see Section 3).
This is a particular instance of the general fact that the twistor bundles
π± : Z± → X of an oriented Riemannian four-manifold (X, g) depend only
on the conformal class of the metric g, but the horizontal bundles ξ± ⊂ TZ±

depend on the choice of a metric in that conformal class. In the case at
hand, both the spherical and the hyperbolic metric are conformally flat. The
horizontal bundle ξ ⊂ TCP3 determined by the hyperbolic metric on B is
the holomorphic contact bundle given by the homogeneous 1-form

β = z1dz2 − z2dz1 − z3dz4 + z4dz3 (1.5)

(see Section 3). Compared to the 1-form α given by (1.2), we note a change
of sign in the last two terms. Although ξ is contactomorphic to the standard
contact structure ξstd determined by α (in fact, ξstd is the unique holomor-
phic contact structure on CP3 up to holomorphic contactomorphisms, see
LeBrun and Salamon [33, Corollary 2.3]), these two structures behave very
differently with respect to the twistor projection π : CP3 → S4 ∼= R̂4 :=
R4 ∪ {∞}. While ξstd is orthogonal to all fibres of π with respect to the
Fubini–Study metric on CP3, ξ is orthogonal to the fibres of π over B and
over the complementary open ball B′ = R̂4 \B in the twistor metric induced
by the hyperbolic metrics on B and B′, but the fibres π−1(x) over points
x ∈ bB are ξ-Legendrian curves. Any holomorphic Legendrian immersion
F : M → (CP3, ξ) whose image does not lie in a fibre of π determines an
immersed superminimal surface in B, obtained by intersecting the image of
F with Ω (1.4) and projecting down to B. If M is compact and F intersects
bΩ transversely, we obtain a proper superminimal surface in B with smooth
boundary in bB = S3, and we know by Bryant [12, Theorem G] that any
compact Riemann surface embeds as a complex Legendrian curve in (CP3, ξ).
However, it seems impossible to control the conformal type of the examples
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obtained in this way. In a related direction, Anderson [9] solved the Plateau
problem for area minimizing generalized surfaces (currents) in the hyperbolic
ball Bn, n ⩾ 3, having a given boundary manifold in the sphere bBn = Sn−1.

On the other hand, our approach provides full control of the conformal
type, but we do not know whether the map f̃ : M → H4 in Theorem 1.2
can be chosen to extend continuously or smoothly to the boundary of M .
This difficulty is not unique to the present situation. Indeed, even for the
simplest minimal surfaces such as holomorphic curves in a bounded strongly
pseudoconvex domain D in Cn for n > 1 it is not known whether the ana-
logue of Theorem 1.2 holds for maps extending smoothly to the boundary
bM without changing the conformal type of M . (Continuous extendibility
is possible in this case.) This holds if M is the disc (see Globevnik and the
author [21]), or if the domain D is convex and M is arbitrary (see Černe and
Flores [14]). The most general analogue of Theorem 1.2 in the holomorphic
category, due to Drinovec Drnovšek and the author [15], pertains to holo-
morphic curves in any complex manifold of dimension > 1 having a smooth
exhaustion function whose Levi form has at least two positive eigenvalues
at every point. An analogue for minimal surfaces in minimally convex do-
mains in flat Euclidean spaces Rn, n ⩾ 3, was given by Alarcón et al. [1,
Theorems 1.1 and 1.9].

Let us say a few words about the method of proof and the organisation
of the paper.

In Sections 2 and 3 we review the necessary background concerning the
geometry of the hyperbolic space H4 and its twistor space. A more complete
overview of the twistor space theory pertaining to superminimal surfaces can
be found in [19].

Our proof of Theorem 1.2 relies upon the Bryant correspondence between
superminimal surfaces in H4 = (B, gh) and holomorphic Legendrian curves
in its twistor space (Ω, β). The main analytic technique used in the proof
are Riemann–Hilbert modifications, using approximates solutions of certain
Riemann–Hilbert boundary value problems. One of the contributions of the
present paper is the development of the Riemann–Hilbert modification tech-
nique for holomorphic Legendrian curves in projective spaces CP2n+1; see
Theorem 4.1. We expect that this result will find further applications. This
classical complex-analytic method was adapted in [8, Section 3] to holomor-
phic Legendrian curves in Euclidean space C2n+1 with the standard contact
structure inherited from CP2n+1; however, those results do not apply to
projective spaces since the relevant geometric configurations need not be
contained in any particular affine chart. We also prove a general position
theorem showing that any noncompact Legendrian curve in a projective
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space, possibly with branch points, can be approximated by holomorphic
Legendrian embeddings; see Theorem 5.1.

With these newly developed tools in hand, we construct in Section 6
properly immersed holomorphic Legendrian curves in the twistor domain Ω
of B = H4 whose projections to B satisfy Theorem 1.2. The geometry of the
hyperbolic space and of its twistor space (see Sections 2–3) plays an essential
role in the application of the Riemann–Hilbert method.

The Riemann–Hilbert technique was used in a recent solution of the
Calabi–Yau problem for superminimal surfaces and holomorphic Legendrian
curves [19], and before that in the original Calabi–Yau problem concerning
minimal surfaces in Euclidean spaces; see the formulation of the problem
by S.-T. Yau in [39, p. 360] and [40, p. 241], and the recent advances sum-
marized in [5, 6]. In the paper [19] we used Riemann–Hilbert modifications
with Legendrian discs of small extrinsic diameter, and in this case the re-
quired result (see [4, Theorem 1.3]) follows from the Euclidean case by the
contact neighbourhood theorem given by [4, Theorem 1.1]. On the contrary,
the construction of proper Legendrian curves is more demanding since one
must apply Riemann–Hilbert modifications with discs of big extrinsic diam-
eter in order to push the boundary of the surface successively closer to the
boundary of the given domain, thereby obtaining a proper map in the limit.

In conclusion, we mention an open problem related to Theorem 1.2. There
are constructions in the literature of infinite dimensional families of self-dual
Einstein metrics with constant negative scalar curvature on the ball B ⊂
R4 inducing given conformal structures of a suitable type on the boundary
sphere S3 = bB; see in particular Graham and Lee [27], Hitchin [28], and
Biquard [11]. The twistor space of B with any such metric is a complex
contact manifold. Does the analogue of Theorem 1.2 hold true for any or all
of these metrics, besides the standard one considered in the present paper?

2. Making the acquaintance of the principal protagonist

In this section we recall a few basics of hyperbolic geometry that shall be
used in the paper, referring to the monograph by Ratcliffe [36] for further
information.

A geometric model of the hyperbolic n-space Hn is the hyperboloid

Σ = Σ+

=
{

(x1, . . . , xn+1) ∈ Rn+1 : x2
1 + · · · + x2

n − x2
n+1 = −1, xn+1 > 0

}
. (2.1)
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This is one of two connected components of the unit sphere of radius i =
√

−1
in the Lorentz space (1) Rn,1, the Euclidean space Rn+1 with the indefinite
Lorentz inner product

x ◦ y = x1y1 + · · · + xnyn − xn+1yn+1. (2.2)

The other connected component Σ− is obtained by taking xn+1 < 0 in (2.1).
Considering xn+1 as the time variable, Σ± are contained in the open cone
of time-like vectors

T =
{
x ∈ Rn+1 : x ◦ x < 0

}
=

{
(x′, xn+1) ∈ Rn+1 : x2

n+1 > |x′|2
}
, (2.3)

while all nonzero tangent vectors to Σ± are contained in the cone S =
{x2

n+1 < |x′|2} of space-like vectors. Their common boundary bT = bS is the
light cone

LC =
{
x ∈ Rn+1 : x ◦ x = 0

}
=

{
(x′, xn+1) ∈ Rn+1 : x2

n+1 = |x′|2
}
.

The Lorentz norm ∥x∥ =
√
x ◦ x is a positive real number for space-like

vectors, a positive multiple of i =
√

−1 for time-like vector, and it vanishes
for light-like vectors x ∈ LC.

Consider the stereographic projection σ : B = {x ∈ Rn : |x|2 < 1}
∼=−→ Σ+

given by

σ(x) =
(

2x
1 − |x|2

,
1 + |x|2

1 − |x|2

)
, x ∈ B. (2.4)

The pullback by σ of the Lorentz pseudometric ∥x∥2 = x ◦ x on Rn,1

(see (2.2)) is the hyperbolic Riemannian metric of constant sectional cur-
vature −1 on B given by (1.3). The same formula defines the hyperbolic
metric on the complementary ball

B′ = R4 ∪ {∞} \ B. (2.5)

Consider the reflection B → B′ in the sphere bB = bB′ = Sn−1 given by
B ∋ x 7→ x

|x|2 = y ∈ B′, with 0 7→ ∞. Then, dx
1−|x|2 = dy

1−|y|2 , and hence the
reflection is an isometry. The stereographic projection ψ : Rn ∪ {∞} → Sn

given by

ψ(x) =
(

2x
1 + |x|2

,
1 − |x|2

1 + |x|2

)
, x ∈ Rn; ψ(∞) = s = (0′,−1) (2.6)

maps the balls B,B′ onto opposite hemispheres of the Euclidean sphere Sn ⊂
Rn+1.

(1) Lorentz spaces are named after Hendrik Antoon Lorentz (1853–1928), a Dutch
physicist and a 1902 Nobel Prize winner who derived the transformation equations un-
derpinning Albert Einstein’s theory of special relativity on the Lorentz four-space R3,1,
the Minkowski space-time. The terms Lorentz space and Lorentz transformation were
introduced by Poincaré in his 1906 paper [35]. See [36, Section 3.6] for more information.
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The group of linear automorphisms of Rn,1 preserving the Lorentz inner
product x ◦ y is the Lorentz group O(n, 1). Every Lorentz transformation
preserves the light cone LC and the open cones T, S of time-like and space-
like vectors, but it may interchange the two connected components T± of
T (2.3) defined by ±xn+1 > 0. The group O(n, 1) contains the index two
positive Lorentz group PO(n, 1) of Lorentz transformations mapping T+ (and
hence also T−) to itself. Since the hyperboloid Σ (2.1) is the component of
the unit sphere of radius i =

√
−1 contained in T+, the restriction of any

positive Lorentz transformation A ∈ PO(n, 1) to Σ ∼= Hn is an isometry
of Hn; conversely, every isometry of Hn extends to a unique A ∈ PO(n, 1)
(see [36, Theorem 3.2.3]).

Via the stereographic projection σ : B → Σ given by (2.4), the group
PO(n, 1) of positive Lorentz transformations of Rn,1 corresponds to the
group I(B) of isometries of the hyperbolic n-ball (B, gh) (1.3). Note that I(B)
coincides with the group M(B) of Möbius transformations of the extended
Euclidean space R̂n = Rn ∪ {∞} mapping B onto itself (see Ratcliffe [36,
Theorem 4.5.2 and Corollary 1]). Every Möbius transformation in M(B) is a
composition of reflections of R̂n in spheres orthogonal to Sn−1 = bB, where
spheres passing through ∞ are hyperplanes through 0 ∈ Rn. In particular,
M(B) = M(B′) where B′ is the complementary hyperbolic ball (2.5). The
restriction of the elements of M(B) to the sphere Sn−1 = bB is the Möbius
group M(Sn−1).

An important class of objects in Hn are its hyperbolic planes. A vector
subspace V ⊂ Rn,1 is said to be time-like if it contains a time-like vector, i.e.,
V intersects the cone T (2.3). A hyperbolic m-plane of Hn is the intersection
of Hn = Σ (2.1) with an (m + 1)-dimensional time-like vector subspace of
Rn,1. Hyperbolic lines are precisely the geodesics of Hn (cf. [36, p. 70]).
Preimages of hyperbolic m-planes in Hn by the stereographic projection
σ : B → Σ = Hn (2.4) are hyperbolic m-planes in B; every such is the
intersection of B with either an m-dimensional vector subspace of Rn or
an m-sphere orthogonal to the unit sphere Sn−1 = bB [36, Theorem 4.5.3].
Every hyperbolic m-plane Λ ⊂ B is the image of the m-ball B ∩ V ∼= Bm

in an m-dimensional vector subspace V ⊂ Rn by the orientation preserving
hyperbolic translation τb ∈ M(B) for some b ∈ B:

τb(x) = 1
|b|2|x|2 + 2x · b+ 1

(
(1 − |b|2)x+ (|x|2 + 2x · b+ 1)b

)
. (2.7)

(See [36, (4.5.5)]. Here, x · b denotes the Euclidean inner product on Rn.
Note that τb(0) = b and τ0 = Id.) Indeed, choosing b ∈ Λ with the smallest
Euclidean norm |b| and letting V = TbΛ considered as a vector subspace of
Rn, we have that τb(B ∩ V ) = Λ. To see this, note that for every x ∈ B ∩ V
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and h ∈ V we have that x · b = 0 and hence

τb(x) = 1
|b|2|x|2 + 1

(
(1 − |b|2)x+ (|x|2 + 1)b

)
, (dτb)0h = (1 − |b|2)h.

Since a hyperbolic plane is uniquely determined by a pair (b, V ) where V is
an m-dimensional vector subspace of Rn and b ∈ B is orthogonal to V , the
claim follows. We summarise this observation for a later application.

Proposition 2.1. — Given a pair (b, V ), where V is an m-dimensional
vector subspace of Rn and b ∈ B is orthogonal to V , there is a unique hyper-
bolic m-plane Λ(b, V ) ⊂ B with

b ∈ Λ(b, V ), TbΛ(b, V ) = V, |b| = min{|x| : x ∈ Λ(b, V )}.
We have that Λ(0, V ) = B ∩ V , and if b ̸= 0 then

Λ(b, V ) = τb(B ∩ V ) = B ∩ Sm(a, r), (2.8)

where a ∈ R+· b is the unique point with |a| = 1+|b|2

2|b| , r = 1−|b|2

2|b| , and Sm(a, r)
is the sphere with centre a and radius r in the (m + 1)-dimensional vector
subspace L ⊂ Rn spanned by V and b. In particular, Λ(b, V ) depends real
analytically on (b, V ).

In the calculation of the centre point a and the radius r of the sphere
Sm(a, r) ⊂ L ∼= Rm+1 in the above proposition, one takes into account that
Sm(a, r) intersects the unit sphere Sm ⊂ Rm+1 orthogonally if and only if
|a|2 = r2 + 1 [36, Theorem 4.4.2].

3. Twistor space of the hyperbolic four-space

We briefly recall the main facts about twistor spaces pertaining to this
paper, referring to [19, Section 4] and the references therein for a more
complete account.

To any smooth orientable Riemannian four-manifold (X, g) one associates
a pair of twistor fibre bundles π± : Z± → X. The fibre π−1(x) ∼= CP1 over
any point x ∈ X consists of almost hermitian structures J : TxX → TxX,
that is, linear maps satisfying J2 = − Id which preserve the metric g and
either agree or disagree with the orientation of X, depending on ±. The Levi-
Civita connection determined by the metric g on X determines a horizontal
subbundle ξ± ⊂ TZ± projecting by the differential dπ± isomorphically onto
the tangent bundle of X. Each space Z± carries a unique almost complex
structure J± such that ξ± is a J±-complex subbundle, J± coincides with the
natural complex structure on the fibres (π±)−1(x) ∼= CP1, and for any point
z ∈ Z± (which is an almost hermitian structure on TxX for x = π±(z)) we
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have that dπ±
z ◦ J±

z = z ◦ dπ±
z . The bundles (Z±, J±) only depend on the

conformal class of the metric g, but the horizontal bundle ξ± depends on
the choice of g in a given conformal class.

Let M be an open Riemann surface. The Bryant correspondence says
that conformal superminimal immersions f : M → X of positive or negative
spin (see Def. 1.1) are the twistor projections of horizontal (tangent to ξ±)
holomorphic immersions F± : M → Z±, the sign depending on the spin
of f (see Bryant [12, Theorems B, B′], Friedrich [22, Proposition 4], and
the summary in [19, Theorem 4.6]). According to Atiyah et al. [10, Theo-
rem 4.1], the almost complex structure J± is integrable (i.e., (Z±, J±) is
a complex manifold) if and only if the Weyl tensor W = W+ + W− (the
conformally invariant part of the curvature tensor of g) satisfies W+ = 0 (g
is anti-self-dual) or W− = 0 (g is self-dual), respectively. If either of these
conditions hold then the corresponding horizontal subbundle ξ± ⊂ TZ± is a
holomorphic subbundle if and only if g is an Einstein metric, and in such case
ξ± is a holomorphic contact bundle if and only if g has nonzero (constant)
scalar curvature; see Salamon [37, Theorem 10.1] and Eells and Salamon [17,
Theorem 4.2].

The spherical metric on S4, and the hyperbolic metric on H4, are con-
formally flat Einstein metrics of respective constant scalar curvature ±1, so
their twistor spaces are complex contact three-manifolds by what was said
above. It was shown by Penrose [34, Section VI] and Bryant [12, Section 1]
that both twistor spaces Z±(S4) can be identified with the complex pro-
jective space CP3 with the Fubini–Study metric such that the horizontal
bundle is the holomorphic contact bundle ξstd ⊂ TCP3 given by the 1-form
α in (1.2). See also Gauduchon [24, 25] and the elementary proof in [19,
Section 6]. It is also known (see Friedrich [23]) that the twistor spaces Z± of
the hyperbolic space H4 = (B, gh) (1.3) can be identified with the domain
Ω ⊂ CP3 (1.4) with the contact structure ξ defined by β (1.5). Since we
shall need a precise understanding of the relevant geometry when proving
Theorem 1.2, we recall the main facts.

Let H denote the field of quaternions, add let i, j, k denote the quaternionic
units with i2 = j2 = k2 = −1, ij = k, jk = i, and ki = j. An element of H is
uniquely written as

q = x1 + x2i + x3j + x4k = z1 + z2j,

where

(x1, x2, x3, x4) ∈ R4, z1 = x1 + x2i ∈ C, z2 = x3 + x4i ∈ C.
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We identify R4 with H using 1, i, j, k as the standard basis. Recall that

q = x1−x2i−x3j−x4k, qq = |q|2 =
4∑

i=1
x2

i , q−1 = q

|q|2
if q ̸= 0, pq = qp.

We identify the quaternionic plane H2 with C4 by

H2 ∋ q = (q1, q2) = (z1 + z2j, z3 + z4j) = (z1, z2, z3, z4) = z ∈ C4. (3.1)

Write H2
∗ = H2 \ {0} ∼= C4

∗. The situation is described by the following
diagram

Proper superminimal surfaces of given conformal types in the hyperbolic four-space

We identify R4 with H using 1, i, j, k as the standard basis. Recall that

q = x1−x2i−x3j−x4k, qq = |q|2 =
4�

i=1
x2

i , q−1 = q

|q|2 if q �= 0, pq = qp.

We identify the quaternionic plane H2 with C4 by

H2 � q = (q1, q2) = (z1 + z2j, z3 + z4j) = (z1, z2, z3, z4) = z ∈ C4. (3.1)

Write H2
∗ = H2 \ {0} ∼= C4

∗. The situation is described by the following
diagram

H2
∗

φ1 ��

φ

��

CP3

π

��
�R4 �� ∼= �� HP1 ψ �� S4

where �R4 = R4 ∪ {∞}, φ1 : H2
∗ ∼= C4

∗ → CP3 is the canonical projection with
fibre C∗ sending q ∈ H2

∗ to the complex line Cq ∈ CP3, π : CP3 → HP1 is
the fibre bundle sending a complex line Cq (q ∈ H2

∗) to the quaternionic line
Hq = Cq ⊕ Cjq, and φ = π ◦ φ1 sends a point q ∈ H2

∗ to the quaternionic
line Hq ∈ HP1. The fibre π−1(π(Cq)) is the linear rational curve CP1 ⊂
CP3 of complex lines contained in the quaternionic line Hq. Thus, HP1 is
the one-dimensional quaternionic projective space which we identify with
H ∪ {∞} = �R4 such that the quaternionic line {0} × H corresponds to ∞.
The map ψ : �R4 ∼=−→ S4 is the stereographic projection (2.6).

With these identifications, the projection π : CP3 → HP1 is the twistor
bundle Z+(S4) → S4. We get the negative twistor bundle Z−(S4) → S4 by
reversing the orientation on S4; for example, by replacing the stereographic
projection ψ by the one sending ∞ to n = (0, 0, 0, 0, 1) ∈ S4 ⊂ R5. Using the
coordinates (3.1) we have

φ(q1, q2) = q−1
1 q2 = 1

|q1|2 q1q2 = 1
|z1|2 + |z2|2 (z1z3 + z2z4, z1z4 − z2z3) .

Identifying HP1 ∼= R4 ∪ {∞} = C2 ∪ {∞} =: �C2 and using complex coordi-
nates w = (w1, w2) ∈ C2, this shows that the twistor projection π : CP3 →
�C2 is given by

w1 = z1z3 + z2z4
|z1|2 + |z2|2 , w2 = z1z4 − z2z3

|z1|2 + |z2|2 , |w|2 = |z3|2 + |z4|2
|z1|2 + |z2|2 = |q2|2

|q1|2 . (3.2)

The maximal subgroup Gs ⊂ GL4(C), which passes down to the group of
biholomorphic isometries of CP3 in the Fubini–Study metric, and further
down to the group of isometries of HP1 ∼= �R4 in the spherical metric gs =
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4|x|2

(1+|x|2)2 (x ∈ R4), is the group preserving the quaternionic inner product
on H2 given by

H2 × H2 ∋ (p, q) 7−→ pqt = p1q1 + p2q2 ∈ H. (3.3)

(We consider elements of H2 as row vectors acted upon by right multiplica-
tion.) Writing

p = (z1 + z2j, z3 + z4j) = z, q = (v1 + v2j, v3 + v4j) = v, (3.4)

a calculation gives

pqt = z vt + α0(z, v)j, α0(z, v) = z2v1 − z1v2 + z4v3 − z3v4. (3.5)

Then α0(z,dz) = α is the contact form (1.2). Denoting by J0 ∈ SU(4) the
matrix having diagonal blocks

( 0 −1
1 0

)
and zero off-diagonal blocks, we have

α0(z, v) = zJ0v
t and hence

Gs = {A ∈ U(4) : AJ0A
t = J0} = U(4) ∩ Sp2(C), (3.6)

where Sp2(C) denotes the complexified symplectic group.

We now consider the twistor space Z+ of the hyperbolic space H4 =
(B, gh). From (3.2) we see that the preimage of B by the twistor projection
π : CP3 → Ĉ2 is the domain

Ω = π−1(B) =
{

[z1 : z2 : z3 : z4] ∈ CP3 : |z1|2 + |z2|2 > |z3|2 + |z4|2
}
. (3.7)

Likewise, the preimage Ω′ = π−1(B′) ⊂ CP3, obtained by reversing the in-
equality in (3.7), is the twistor space of the complementary four-ball B′ (2.5)
with the hyperbolic metric. The common boundary of these two domains is
the cone

Γ =
{

[z1 : z2 : z3 : z4] ∈ CP3 : |z1|2 + |z2|2 = |z3|2 + |z4|2
}

(3.8)

whose projection π(Γ) is the unit sphere bB = bB′ = S3 ⊂ R4. The maximal
subgroup Gh of GL4(C) descending to a group of holomorphic automor-
phisms of CP3, and further down to the group of isometries I(B) = I(B′) ⊂
M(R̂4) of the hyperbolic balls B and B′, consists of all A ∈ GL4(C) preserving
the indefinite quaternionic inner product

H2 × H2 ∋ (p, q) 7−→ p ∗ q = p1q1 − p2q2 ∈ H.

Writing (p, q) in the complex notation (3.4), we have that

p ∗ q = (z1v1 + z2v2 − z3v3 − z4v4) + (z2v1 − z1v2 − z4v3 + z3v4) j. (3.9)

The subgroup of GL4(C) preserving the first component on the right hand
side is U(2, 2). Let β0(z, v) denote the coefficient of j in (3.9). Note that
β0(z,dz) = β is the form (1.5). Let J1 ∈ SU(4) be the matrix having the
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diagonal blocks
( 0 −1

1 0
)
,
( 0 1

−1 0
)

and zero off-diagonal blocks. Then β0(z, v) =
zJ1v

t, so the group we are looking for is

Gh = {A ∈ U(2, 2) : AJ1A
t = J1}. (3.10)

This also shows that the horizontal bundle of the twistor projections π : Ω →
B and π : Ω′ → B′ is the kernel ξ ⊂ TCP3 of the 1-form β (1.5), which is a
contact bundle.

For any p = (p1, p2) ∈ H2
∗ the fibre π−1(ϕ(p)) ⊂ CP3 is the space of all

complex lines contained in the quaternionic line Hp. The tangent space to
this fibre at any point is spanned by a vector q = ap for some imaginary
quaternion a ∈ H with |a| = 1. From (3.9) we get

p ∗ q = p1ap1 − p2ap2 = p1p1a− p2p2a = (p ∗ p)a.

This vanishes for all a ∈ H precisely when |p1|2 = |p2|2, which is equivalent
to ϕ1(p) ∈ Γ = π−1(bB) (3.8). It follows that for every point x ∈ bB = bB′

the fibre π−1(x) ⊂ Γ is a ξ-Legendrian curve. This is in strong contrast to
the situation for the contact bundle ξstd which is transverse to all fibres of
π. This difference reflects the fact that the hyperbolic metrics on B and B′

blow up along their common boundary sphere.

The above discussion in illustrated by the following diagram, where Gh

is the group (3.10) and M(B) is the Möbius group (the isometry group) of B
introduced in Section 2.
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introduced in Section 2.

H2
∗

A ∈ Gh ��

φ1
��

H2
∗

φ1
��

Ω �
� ��

π

��

CP3 �A ∈ PGL(4) ��

π
��

CP3

π
��

Ω� ���

π

��
B �
� �� �R4 A� ∈ M(B) �� �R4 B� ���

The negative twistor bundle Z−(B) is the positive twistor bundle of B
with the opposite orientation; it can still be identified with (Ω, β). There
is however no need to consider it since an orientation reversing isometry
τ : B → B (for example, a reflection in a hyperplane of R4 through the
origin) maps any conformal superminimal surface f : M → B of negative
spin to a conformal superminimal surface τ ◦ f : M → B of positive spin,
and vice versa. It therefore suffices to consider superminimal surfaces of
positive spin.
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Proposition 3.1. — Every oriented hyperbolic 2-plane Λ(b, V ) ⊂ B =
B4 in Proposition 2.1 is a totally geodesic superminimal surface in (B, gh),
hence a superminimal surface of both positive and negative spin. Its twistor
lift to the domain Ω ⊂ CP3 (3.7) is the intersection of Ω with a linear ξ-
Legendrian rational curve CP1 ⊂ CP3.

Proof. — For any two-plane 0 ∈ V ⊂ R4, Λ(0, V ) = B∩V is a hyperbolic
disc in the metric gh. Given a circle C ⊂ V intersecting bB∩V orthogonally
in V , C also intersects bB orthogonally in R4, so C∩B is a geodesic of (B, gh).
This shows that B∩V is a totally geodesic surface in B, hence superminimal
with all circles Ix(v) in Definition 1.1 reducing to points. (In particular,
B ∩ V with any orientation is superminimal of both ± spin.) Taking V =
R2 × {0}2 = C × {0} and the parameterization f(ζ) = (ζ, 0) ∈ B ∩ V for
ζ ∈ D = {|ζ| < 1}, we see from (3.2) that the holomorphic ξ-Legendrian
embedding

F : CP1 = C ∪ {∞} ↪→ CP3, F (ζ) = [1 : 0 : ζ : 0]
restricted to the disc D is the twistor lift of f . (Note that F is also ξstd-
Legendrian, so this particular map f is also a superminimal surface in S4

with the spherical metric.) Reversing the orientation on V = R2 × {0}2, a
conformal orientation preserving parameterization of B ∩ V is f(ζ) = (ζ, 0)
(ζ ∈ D) with the twistor lift F (ζ) = [0 : 1 : 0 : ζ] ∈ Ω.

Any other hyperbolic surface Λ(b, V ) can be obtained from B∩(R2×{0}2)
by an orientation preserving isometry of B. Indeed, we get other planes
through 0 by orthogonal rotations in SO(4), and for 0 ̸= b ∈ B we have that
Λ(b, V ) = τb(B∩V ) (cf. (2.8)) where τb ∈ M(B) is the orientation preserving
hyperbolic translation (2.7). Since every orientation preserving isometry of B
lifts to a holomorphic contactomorphism of (CP3, ξ) preserving the domain
Ω, the same conclusion holds for the twistor lift of every surface Λ(b, V ). □

4. The Riemann–Hilbert method for Legendrian curves

In this section we develop the Riemann–Hilbert deformation method
for holomorphic Legendrian curves in complex projective spaces; see The-
orem 4.1.

The Riemann–Hilbert deformation method for holomorphic curves and
related geometric objects is a very useful tool in global constructions of such
object having certain additional properties. A particularly useful feature of
this technique is that it offers precise geometric control of the placement of
objects into the ambient space. This particular feature is especially helpful
if one aims to preserve its conformal (complex) structure without having to
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cut away pieces of it during an inductive construction. It is therefore not sur-
prising that this technique was used in constructions of proper holomorphic
maps from bordered Riemann surfaces into an optimal class of complex man-
ifolds and complex spaces (see [15] and the references therein), of complete
holomorphic curves which are either proper in a given domain or contained
in a small neighbourhood of a given curve (see [2]), in the Poletsky theory of
disc functionals (see [16]), and many others. More recently, this method has
been adapted to several other geometries, in particular, to conformal minimal
surfaces in Euclidean spaces Rn and holomorphic null curves in Cn for any
n ⩾ 3 (see the survey [5] and the paper [6]), and to holomorphic Legendrian
curves in C2n+1 with its standard complex contact structure (see [8]).

The following is the main result of this section. Since the contact struc-
ture on CP2n+1 is unique up to holomorphic contactomorphisms (see [33,
Corollary 2.3]), the precise choice of the contact bundle is irrelevant.

Theorem 4.1 (The Riemann–Hilbert method for Legendrian curves in
CP2n+1). — Assume that M is a compact bordered Riemann surface, I ⊂
bM is an arc which is not a boundary component of M , f : M → CP2n+1 is
a Legendrian map of class A 1(M) = C 1(M)∩O(M̊) (i.e., it is holomorphic
on the interior M̊ of M), and for every u ∈ bM the map D ∋ v 7→ F (u, v) ∈
CP2n+1 is a Legendrian disc of class A 1(D) depending continuously on u ∈
bM such that F (u, 0) = f(u) for all u ∈ bM and F (u, v) = f(u) for all u ∈
bM \ I and v ∈ D. Assume that there is a projective hyperplane H ⊂ CP2n+1

which avoids the compact set
⋃

u∈I F (u,D). Given a number ϵ > 0 and a
neighbourhood U ⊂ M of the arc I, there exist a holomorphic Legendrian
map f̃ : M → CP2n+1 and a neighbourhood V ⋐ U of I, with a smooth
retraction τ : V → V ∩ bM , such that the following conditions hold.

(i) dist(f̃(u), f(u)) < ϵ for all u ∈ M \ V .
(ii) dist(f̃(u), F (u, bD)) < ϵ for all u ∈ bM .
(iii) dist(f̃(u), F (τ(u),D)) < ϵ for all u ∈ V .
(iv) The map f̃ agrees with f to a given finite order on a given finite set

of points in M̊ .

Recall that a map from a compact bordered Riemann surface M to a
complex manifold X is called holomorphic if it extends to a holomorphic
map U → X from an open neighbourhood of M in an ambient Riemann
surface R.

Proof. — We adapt the proof of [8, Theorem 3.3], which applies to holo-
morphic Legendrian curves in C2n+1, to the projective case. For simplicity
of notation we consider the case n = 1; the same proof applies in general
with obvious modifications.
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We begin with a few reductions. We may assume that M is connected,
f is nonconstant, and its image f(M) is not contained in the affine chart
CP3 \H, for otherwise the result follows from [8, Theorem 3.3]. The special
case when M = D and the entire configuration is contained in an affine chart
C3 ⊂ CP3 is furnished by [8, Lemma 3.2].

By Bertini’s theorem (see [26, p. 150] or [29] and note that this is an
application of the transversality theorem) we can move the hyperplane H
slightly to ensure that it intersects f(M) transversely and it does not meet
the compact set f(bM) ∪

⋃
p∈I F (p,D). In particular, f is an immersion at

any point p ∈ M with f(p) ∈ H, and the set P of all such points is finite
and contained in M̊ . Choose a closed smoothly bounded simply connected
domain D ⊂ U such that D is a neighbourhood of the arc I and f(D)∩H =
∅. By denting bM inward along a neighbourhood of the arc I we find a
smoothly bounded compact domain M ′ ⊂ M diffeotopic to M and such that

M = M ′ ∪D and M ′ \D ∩ D \M ′ = ∅.

Thus, (M ′, D) is a Cartan pair (cf. [18, Definition 5.7.1]). Note that P ⊂ M ′.

By [7, Proposition 2.2] there are homogeneous coordinates [z0 : z1 : z2 : z3]
on CP3, with H = {z0 = 0}, such that the contact form on CP3 \H ∼= C3 =
{z0 = 1} is given by dz1 + z2dz3 − z3dz2, and in these coordinates the map
f is of the form

f = F (g, h) = [1 : e : g : h] , e = gh− 2
∫
gdh = 2

∫
hdg − gh, (4.1)

where g, h : M → CP1 are meromorphic functions on M having at most
simple poles at the points in P (this reflects the fact that f intersects the
hyperplane H transversely at these points and hence is an immersion there)
and of class C 1 near the boundary of M (in particular, g and h are holomor-
phic on M̊ \ P ), and gdh is an exact meromorphic 1-form with a meromor-
phic primitive

∫
gdh determined up to an additive constant. In fact, every

holomorphic Legendrian map into CP3 intersecting the hyperplane H trans-
versely is of this form, and such a map f is an immersion if and only if the
map (g, h) : M \ P → C2 is an immersion (cf. [7, Corollary 2.3]).

The meromorphic 1-form gdh on M is exact if and only if
∫

C
gdh = 0 for

every closed curve C in M̊ \ P . There are two types of curves to consider:
those in a homology basis of H1(M,Z) ∼= Zl, say C1, . . . , Cl, and small loops
around the poles of gdh. Since M ′ is a deformation retract of M , the curves
Ci forming a homology basis of M can be chosen in M̊ ′ \ P and such that
they meet at a single point p0 ∈ M̊ ′ and their union

⋃l
i=1 Ci is Runge in

M (i.e., holomorphically convex in M). The integral of gdh along a small
Jordan curve around a pole a ∈ P equals 2πi Resa(gdh). Assuming that a
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is a simple pole of g or h (as is the case in our situation), vanishing of this
integral is equivalent to

c−1(h, a)c1(g, a) − c−1(g, a)c1(h, a) = Resa(gdh) = 0, (4.2)

where ck(h, a) denotes the coefficient of (ζ − a)k in the Laurent series for
h at a in a local holomorphic coordinate ζ (so c−1(h, a) = Resa h); see [7,
Proposition 2.4]. Clearly these vanishing conditions are preserved if we re-
place (g, h) by any pair (g′, h′) of meromorphic functions which agrees with
(g, h) to the second order at every point a ∈ P .

Let A 1(M ;P, g) denote the space of meromorphic functions on M which
are of class C 1 up to the boundary, have poles only at the points of P , and
agree with g to the second order at each point of P (i.e., the difference has a
second order zero). Likewise, A 1(M ;P, h) denotes the corresponding space
for h. Consider the period map

P = (P1, . . . ,Pl) : A 1(M ;P, g) × A 1(M ;P, h) → Cl

whose j-th component equals

Pj(x, y) =
∫

Cj

xdy, x ∈ A 1(M ;P, g), y ∈ A 1(M ;P, h). (4.3)

Note that P(x, y) = 0 if and only if the 1-form xdy is exact, if and only
if the map F (x, y) : M → CP3 (4.1) is a holomorphic Legendrian curve.
Exactness at the points of P is ensured by (4.2) and the definition of the
spaces A 1(M ;P, g) and A 1(M ;P, h).

The idea of proof is to first use the Riemann–Hilbert deformation method
for holomorphic curves without paying attention to the Legendrian condi-
tion. Applying this technique to the central curve f : M → CP3 and the fam-
ily of boundary discs F (u, · ) yields a new holomorphic curve f̃ : M → CP3

which satisfies the conditions in Theorem 4.1 but is not necessarily Legen-
drian. In fact, as shown in [8, proof of Lemma 3.2], the deviation from the
Legendrian condition is not even pointwise small due to the fast turning of
the curve f̃ from being close to f on M \V (see condition (i)) to being close
to the union of the boundary discs F (u, · ) when the point of M approaches
the boundary arc I (see conditions (ii) and (iii)). However, what makes the
method feasible is that the integral of the error is uniformly small, and hence
it is possible to correct it and find nearby a Legendrian solution. For tech-
nical reasons which will become apparent in the proof, we shall apply the
Riemann–Hilbert deformation method not only to a single datum, but to a
holomorphically varying collection (a spray) of data of the same kind which
we shall now construct. By doing things right, the new family of curves will
still satisfy the approximation conditions for small values of the parameter,
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and the family will contain a Legendrian curve. We now explain the details
of this idea.

Since the map f = [1 : e : g : h] (4.1) is nonconstant, one of the com-
ponents g, h is nonconstant. Assume that h is nonconstant; the other case
can be handled by a symmetric argument. Then, h|Cj

is nonconstant for any
j = 1, . . . , l by the identity principle. Since the compact set

⋃l
j=1 Cj is Runge

in M and every pair of curves Ci, Cj with i ̸= j only meet at a point, we can
find holomorphic functions g1, . . . , gl on M vanishing to the second order at
every point of P such that for every j, k = 1, . . . , l the number

∫
Cj
gk dh ≈ δj,k

is arbitrarily close to 1 if j = k and to 0 if j ̸= k. (Here, δj,k is the Kronecker
symbol.) To find such a function, we first construct smooth functions gk on⋃l

j=1 Cj such that
∫

Cj
gk dh = δj,k and then use Mergelyan’s approxima-

tion theorem and Weierstrass’s interpolation theorem to approximate them
by holomorphic functions with the stated properties on M . The elementary
details are left to the reader; see [3, Lemma 5.1] or [5, Lemma 3.2] for the
details in a similar situation when constructing minimal surfaces in Rn.

Let ζ = (ζ1, . . . , ζl) ∈ Cl. Consider the meromorphic function ĝ : M ×
Cl → CP1 given by

ĝ(u, ζ) = g(u) +
l∑

k=1
ζk gk(u), u ∈ M, ζ ∈ Cl. (4.4)

Note that ĝ( · , ζ) ∈ A 1(M ;P, g) for every fixed ζ. For all j, k ∈ {1, . . . , l} we
have

∂

∂ζk

∣∣∣∣
ζ=0

∫
Cj

ĝ( · , ζ)dh =
∫

Cj

gk dh ≈ δj,k. (4.5)

If the above approximations are close enough then
∂

∂ζ

∣∣∣∣
ζ=0

P(ĝ( · , ζ), h) : Cl −→ Cl is an isomorphism.

(A map (4.4) with this property is called a period dominating holomorphic
spray with the core ĝ( · , 0) = g.) By the inverse function theorem there
is a ball rB ⊂ Cl around the origin such that the period map rB ∋ ζ 7→
P(ĝ( · , ζ), h) ∈ Cl is biholomorphic onto its image, the latter being a neigh-
bourhood of the origin in Cl.

Fix a point u0 ∈ D̊. Consider the function ẽ : D × Cl → C given by

ê(u, ζ) = ĝ(u, ζ)h(u) − 2
∫ u

u0

ĝ( · , ζ)dh+ c0, u ∈ D, ζ ∈ Cl,

where the constant c0 ∈ C is chosen such that ê(u0, 0) = e(u0), and hence
ê( · , 0) = e|D. (The integral is independent of the path in the disc D. It is
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however impossible to extend ê( · , ζ) to all of M since the 1-form ĝ( · , ζ)dh
has nonvanishing periods for ζ ̸= 0.) Let f̂ : D × Cl → C3 be the family of
holomorphic Legendrian discs

D ∋ u 7→ f̂(u, ζ) = [1 : ê(u, ζ) : ĝ(u, ζ) : h(u)] ∈ CP3 (4.6)
of the form (4.1) and depending holomorphically on ζ ∈ Cl. Note that
f̂(u, 0) = f(u) for u ∈ D. Since these discs lie in the affine chart CP3 \ H,
we delete the initial component 1 and consider them as discs in C3. Using
the same affine coordinates, we write the given Legendrian discs F (u, · ) in
the theorem as

F (u, v) = (Z(u, v), X(u, v), Y (u, v)), u ∈ bM, v ∈ D.
In view of (4.1) we have that

Z(u, v) = X(u, v)Y (u, v) − 2
∫ v

0
X(u, t)dY (u, t) + e(u) − g(u)h(u).

For each point u ∈ bD ∩ bM and every ζ ∈ Cl let
D ∋ v 7→ F̂ (u, v, ζ) =

(
Ẑ(u, v, ζ), X̂(u, v, ζ), Y (u, v)

)
∈ C3

be the Legendrian disc of class A 1(D) given by

X̂(u, v, ζ) = X(u, v) + ĝ(u, ζ) − g(u),

Ẑ(u, v, ζ) = X̂(u, v, ζ)Y (u, v)

− 2
∫ t=v

t=0
X̂(u, t, ζ) dY (u, t) + ê(u, ζ) − ĝ(u, ζ)h(u).

Note that F̂ (u, v, 0) = F (u, v) and

F̂ (u, 0, ζ) = f̂(u, ζ), u ∈ bD ∩ bM, ζ ∈ Cl.

Finally, for every point u ∈ bD ∩ bM \ I and all ζ ∈ Cl we have that

F̂ (u, v, ζ) = F̂ (u, 0, ζ) = f̂(u, ζ), v ∈ D,

so F̂ (u, · , ζ) is the constant disc. We extend F̂ to all points u ∈ bD by setting

F̂ (u, v, ζ) = f̂(u, ζ) for all u ∈ bD \ I, v ∈ D and ζ ∈ Cl.

Note that for every fixed ζ ∈ Cl the Legendrian disc f̂( · , ζ) : D → C3 and
the family of Legendrian discs F̂ (u, · , ζ) : D → C3 (u ∈ bD) satisfy the
assumptions of [8, Lemma 3.2] on D (which is conformally diffeomorphic to
the standard disc D), and both families depend holomorphically on ζ ∈ Cl.
Hence, [8, Lemma 3.2] furnishes a family of Legendrian discs

Ĝ( · , ζ) = (Ĝ1, Ĝ2, Ĝ3) : D → C3

depending holomorphically on ζ and satisfying the estimates in the lemma
uniformly with respect to ζ ∈ rB. (These estimates are of the same type
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as those in conditions (i)–(iii) of Theorem 4.1 with M replaced by D. The
observation regarding holomorphic dependence and uniformity of the esti-
mates with respect to ζ is evident from [8, proof of Lemma 3.2] and has also
been used in [8, proof of Theorem 3.3].)

Let V ⊂ D \ M ′ be a small neighbourhood of the arc I ⊂ bM . By [8,
Lemma 3.2(iv)] we may assume that Ĝ( · , ζ) is as close as desired to f̂( · , ζ)
in the C 1 norm on D \ V , and hence on M ′ ∩D ⊂ D \ V for all ζ ∈ rB. In
particular, given δ > 0 we may assume that

∥Ĝ( · , ζ) − f̂( · , ζ)∥C 1(M ′∩D) < δ, ζ ∈ rB.

Recall that the component ĝ of f̂ (4.6) is a meromorphic function on M×Cl

with poles only on P × Cl. By solving a Cousin-I problem with bounds on
the Cartan pair (M ′, D) with interpolation on P , we can glue ĝ and Ĝ2 into
a function H2( · , ζ) : M → CP1 of class A 1(M ;P, g), holomorphic in ζ ∈ rB
and satisfying the estimates

∥H2( · , ζ) − ĝ( · , ζ)∥C 1(M ′) < Cδ, ∥H2( · , ζ) − Ĝ2( · , ζ)∥C 1(D) < Cδ,

where the constant C > 0 only depends on the Cartan pair (M ′, D). (See
e.g. [18, Lemma 5.8.2] and use C 1 estimates instead of the uniform ones.)
By the same token, we can glue the last component h of f̂ with the function
Ĝ3( · , ζ) into a function H3( · , ζ) of class A 1(M ;P, h), depending holomor-
phically on ζ ∈ rB and satisfying the estimates

∥H3( · , ζ) − h∥C 1(M ′) < Cδ, ∥H3( · , ζ) − Ĝ2( · , ζ)∥C 1(D) < Cδ.

Since
⋃l

i=1 Ci ⊂ M ′ \ P , it follows that the period map ζ 7→ P(H2( · , ζ),
H3( · , ζ)) (see (4.3)) approximates the biholomorphic map ζ 7→ P(ĝ(, · , ζ), h)
uniformly on ζ ∈ rB. Assuming that δ > 0 is chosen small enough, there is
a point ζ ′ ∈ rB as close to the origin as desired such that

P
(
H2( · , ζ ′), H3( · , ζ ′)

)
= 0.

Setting g̃ = H2( · , ζ ′), h̃ = H3( · , ζ ′) we obtain a holomorphic Legendrian
curve

f̃ = [1 : ẽ : g̃ : h̃] : M → CP3

of the form (4.1) with ẽ(u0) = e(u0). It follows from the construction that f̃
satisfies conditions (i)–(iii) of Theorem 4.1 provided that the approximations
were close enough.

In order to ensure also the interpolation condition (iv) at finitely many
points A = {a1, . . . , ak} ⊂ M̊ , we amend the above procedure as follows.
First, we choose the hyperplane H at the beginning of the proof such that,
in addition to the other stated conditions, it does not intersect the finite set
f(A), and we choose the disc D as above and contained in M \A. Pick a base
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point u0 ∈ D̊. We connect u0 to each point aj ∈ A by an embedded oriented
arc Ej ⊂ M̊ \P which exits D only once and such that any two of these arcs
only meet at u0. It follows that the inclusion M \ (D ∪

⋃k
i=1 Ei) ⊂ M is a

homotopy equivalence, and hence we can choose curves C1, . . . , Cl forming a
homology basis of M contained in the complement of D∪P ∪

⋃k
i=1 Ei. To the

period map P, given by (4.3), we add k additional components given by the
integrals over the arcs E1, . . . , Ek. The rest of the proof remains unchanged.
By ensuring that the integrals of the 1-form g̃dh̃ over the arcs E1, . . . , Ek

equal those of gdh, the map f̃ agrees with f at the points of A. By the same
tools we can obtain finite order interpolation on A. □

5. A general position theorem for Legendrian curves in
projective spaces

Holomorphic Legendrian curves obtained by Riemann–Hilbert modifica-
tions in the previous section typically have branch points. However, in the
application of this method to the proof of Theorem 1.2 we need Legendrian
immersions.

The purpose of this section is to explain the following general position
theorem for holomorphic Legendrian curves in projective spaces. As pointed
out in the previous section, CP2n+1 admits a unique complex contact struc-
ture up to holomorphic contactomorphisms, and hence a concrete choice of
the contact bundle is irrelevant.

Theorem 5.1. —

(a) Let M be a compact bordered Riemann surface. Every Legendrian
curve f : M → CP2n+1 of class A 1(M) can be approximated in
the C 1(M,CP2n+1) topology by holomorphic Legendrian embeddings
f̃ : M ↪→ CP2n+1.

(b) Every holomorphic Legendrian curve f : M → CP2n+1 from an open
Riemann surface can be approximated uniformly on compacts in M

by holomorphic Legendrian embeddings f̃ : M ↪→ CP2n+1.

The analogue of this result for Legendrian curves in C2n+1 with its stan-
dard complex contact structure was proved in [8, Theorem 5.1], where it was
shown in addition that the approximating embedding f̃ : M ↪→ C2n+1 in
case (b) can be chosen proper. (The latter condition is of course impossible
in the compact manifold CP2n+1.) The cited result also gives approximation
of generalised Legendrian curves S → C2n+1 on compact Runge admissible
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sets S in an open Riemann surface M ; this can be extended to Legendrian
curves in CP2n+1 as well, but we shall not need it in the present paper.

Proof. — It was shown in [7, Corollary 3.7] that every holomorphic Legen-
drian immersion M → CP2n+1 from an open Riemann surface M can be ap-
proximated uniformly on compacts by holomorphic Legendrian embeddings
M ↪→ CP2n+1. The proof combines [4, Theorem 1.2] to the effect that every
holomorphic Legendrian immersion M → X from an open Riemann surface
to an arbitrary complex contact manifold can be approximated, uniformly
on any compact subset K of M , by holomorphic Legendrian embeddings
U ↪→ X from open neighbourhoods U ⊂ M of K, and the approximation
theorem for holomorphic Legendrian immersions into projective spaces given
by [7, Theorem 3.4].

To prove the theorem, it remains to show that one can approximate
any Legendrian map f : M → CP2n+1 of class A 1(M) by holomorphic
Legendrian immersions U → CP2n+1 from open neighbourhoods U of M in
an ambient Riemann surface. For the convenience of notation we consider
curves in CP3, although this restriction is inessential. As in the proof of
Theorem 4.1 we find a projective hyperplane H ⊂ CP3 intersecting f(M)
transversely in at most finitely many points P ⊂ M̊ and not intersecting
f(bM), and homogeneous coordinates [z0 : z1 : z2 : z3] with H = {z0 = 0}
in which

f = F (g, h) =
[
1 : gh− 2

∫
gdh : g : h

]
(cf. (4.1)), where g, h : M → CP1 are meromorphic functions having only
simple poles at the points in P and of class C 1 near the boundary of M .
A map f of this form is an immersion if and only if (g, h) : M \ P →
C2 is an immersion (cf. [7, Corollary 2.3]). It now suffices to approximate
the map (g, h) : M → (CP1)2 as closely as desired in C 1(M, (CP1)2) by a
meromorphic map (g̃, h̃) : U → (CP1)2, defined on a neighbourhood U ⊂ R

of M , such that (g̃, h̃) agrees with (g, h) to the second order at every point of
P , it is a holomorphic immersion U \P → C2, and the meromorphic 1-form
g̃dh̃ is exact. We have seen in the proof of Theorem 4.1 that the interpolation
condition on P ensures that g̃dh̃ has a local meromorphic primitive at every
point of P ; see (4.2). Therefore, exactness of g̃dh̃ is equivalent to the period
vanishing conditions

∫
Ci
g̃dh̃ = 0 (i = 1, . . . , l), where C1, . . . , Cl ⊂ M̊ \P is

a basis of the homology group H1(M,Z) = Zl.

The construction of (g̃, h̃) satisfying these conditions is made in two steps.
In the first step we approximate (g, h) by a meromorphic map (ĝ, ĥ) defined
on a neighbourhood U ⊂ R of M which agrees with (g, h) to the second order
at the points of P , it has no poles onM\P , and such that ĝdĥ is exact. This is
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achieved by following the proof of [8, Lemma 4.3], the only addition being the
presence of poles at the points in P and the interpolation condition at these
points. Next, we follow the first part of the proof of [8, Lemma 4.4] in order
to approximate (ĝ, ĥ) on M and interpolate it to the second order on P by
a meromorphic map (g̃, h̃) on a neighbourhood of M which is a holomorphic
immersion of M \ P into C2 and such that g̃dh̃ is an exact meromorphic 1-
form. By what has been said, the associated map f̃ = F (g̃, h̃) : M → CP3,
defined by (4.1), is then a holomorphic immersion. Both proofs alluded to
above easily extend to the present setting in essentially the same way as was
done in the proof of Theorem 4.1, and we leave the details to the reader. □

Problem 5.2. — Does Theorem 5.1(a) hold for Legendrian curves in
an arbitrary complex contact manifold (X, ξ)?

Assuming that f : M → X is a Legendrian immersion of class A 4(M,X),
it was shown in [20, Theorem 1.2] that f can be approximated in C 2(M,X)
by holomorphic Legendrian embeddings of small open neighbourhoods of M
into X; however, the cited result does not apply to branched Legendrian
maps.

6. Proof of Theorem 1.2

Let Ω ⊂ CP3 be the domain (3.7) and π : Ω → B ⊂ R4 be the twistor bun-
dle over the hyperbolic ball (B, gh) given by (3.2). Denote by ξ ⊂ TCP3 the
holomorphic contact bundle determined by the homogeneous 1-form β (1.5),
so ξ|T Ω is the horizontal bundle of the twistor projection π : Ω → B. When
speaking of Legendrian curves in Ω, we always mean holomorphic curves
tangent to ξ. By what has been said in Section 3, Theorem 1.2 follows im-
mediately from the following result.

Theorem 6.1. — Let M be a bordered Riemann surface and F : M → Ω
be a Legendrian curve of class C 1(M,Ω) which is holomorphic on M . Then,
F can be approximated uniformly on compacts in M by proper holomorphic
Legendrian embeddings F̃ : M ↪→ Ω which can be chosen to agree with F to
a given finite order at finitely many points in M .

Indeed, by the Bryant correspondence, the given superminimal immersion
f : M → B in Theorem 1.2 (which may be assumed of positive spin and of
class C 2(M,B)) lifts to a unique Legendrian immersion F : M → Ω as in
Theorem 6.1. If F̃ : M ↪→ Ω is a resulting proper holomorphic Legendrian
embedding in Theorem 6.1, then its projection f̃ = π ◦ F̃ : M → B is a
proper superminimal immersion satisfying Theorem 1.2.
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We begin with some preparations. Consider the exhaustion function ρ :
Ω → [0, 1) defined in the homogeneous coordinates z = [z1 : z2 : z3 : z4] by

ρ
(
[z1 : z2 : z3 : z4]

)
= |π(z)|2 = |z3|2 + |z4|2

|z1|2 + |z2|2
(6.1)

(see (3.2)). Given a pair of numbers 0 < c < c′ ⩽ 1 we write
Ωc = {z ∈ Ω : ρ(z) < c}, Ωc,c′ = {z ∈ Ω : c < ρ(z) < c′}. (6.2)

For every point z ∈ Ω \π−1(0) there is a unique properly embedded Leg-
endrian disc Lz ⊂ Ω with z ∈ Lz whose projection π(Lz) ⊂ B is a hyperbolic
surface Λ(π(z), V ) in Proposition 2.1. Indeed, by the twistor correspondence
the point z represents an almost hermitian structure on the tangent space
TxR4 at the base point x = π(z) ∈ B \ {0}. Let Sx ⊂ B denote the three-
sphere with centre 0 and passing through x. Then,

π(Lz) = Λ(x, V ) where V = TxSx ∩ z(TxSx). (6.3)
That is, V is the unique z-invariant two-plane contained in the three dimen-
sional tangent space TxSx to the sphere Sx at x. (Such Lz also exists for
every point z in the central fibre π−1(0), but it is not unique since different
2-planes V ⊂ T0R4 may determine the same almost hermitian structure z
on T0R4.) By Proposition 3.1, Lz is the intersection of Ω with a linearly
embedded Legendrian rational curve CP1 ⊂ CP3. By Proposition 2.1 we
have

Lz ⊂ {z} ∪ Ωc,1 where c = |ρ(z)| ∈ (0, 1), (6.4)
using the notation (6.2). It is obvious that the family of Legendrian holo-
morphic discs Lz depend real-analytically on the point z ∈ Ω \ π−1(0).

Theorem 6.1 is obtained from the following lemma by a standard induc-
tive procedure.

Lemma 6.2. — Let M be a bordered Riemann surface, P be a finite set
of points in M , and 0 < c < c′ < c′′ < 1. Assume that F : M → Ω is
a Legendrian map of class A 1(M,Ω) and U ⋐ M is an open subset such
that F (M \ U) ⊂ Ωc,c′ . Given ϵ > 0 there exists a holomorphic Legendrian
embedding G : M → Ω satisfying the following conditions:

(i) G(bM) ⊂ Ωc′,c′′ ,
(ii) G(M \ U) ⊂ Ωc,c′′ ,
(iii) dist(G(u), F (u)) < ϵ for u ∈ U , and
(iv) F and G have the same k-jets at each of the points in P for a given

k ∈ N.

The details of proof that Lemma 6.2 implies Theorem 6.1 are left to the
reader. Inductive constructions of this type are ubiquitous in the literature;
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see e.g. [15, proof of Theorem 1.1] using [15, Lemma 6.3] and note that our
situation is simpler since the exhaustion function ρ (6.1) of Ω has no critical
points in Ω \π−1(0). In order to ensure that the limit map of this procedure
is a Legendrian embedding, we use the general position theorem (see The-
orem 5.1) at each step and approximate sufficiently closely in subsequent
steps.

Proof of Lemma 6.2. — Given a pair of numbers 0 < c < c′ < 1 and an
open set ω ⊂ bΩc = ρ−1(c) (see (6.2)), we let

D(ω, c, c′) := Ωc′ \
⋃

z∈bΩc\ω

Lz. (6.5)

Clearly, D(ω, c, c′) is an open set containing Ωc and we have that
z ∈ Ω \D(ω, c, c′) =⇒ Lz ⊂ Ω \D(ω, c, c′). (6.6)

Moreover, it is elementary to see that there is a subdivision c = c0 <
c1 < · · · < cm = c′ and for every i = 0, 1, . . . ,m − 1 a finite open cover
ωi,1, . . . , ωi,ki

of bΩci
such that

ki⋃
j=1

D(ωi,j , ci, ci+1) = Ωci+1 , (6.7)

and for every i as above and j = 1, . . . , ki we also have that⋃
z∈D(ωi,j ,c,c′)\Ωci

Lz ∩ Ωci+1 is contained in an affine chart of CP3. (6.8)

We are now ready to prove the lemma. Let us begin by explaining the
initial step. The assumptions imply that F (bM) ⊂ Ωc,c′ . Consider the set

I ′
1 = {u ∈ bM : F (u) ∈ D1 := D(ω1,1, c0, c1)}. (6.9)

Assume first that I ′
1 does not contain any boundary component of M . Then,

I ′
1 is contained in the interior of the union I =

⋃j
i=1 Ii of finitely many

pairwise disjoint arcs I1, . . . , Ij ⊂ bM , none of which is a component of
bM . Choose a number c′

1 with c1 < c′
1 < c2 and close to c1. Consider the

Riemann–Hilbert problem (cf. Theorem 4.1) with the central Legendrian
curve F : M → Ω and the family of Legendrian discs L̂u := LF (u) ∩ Ωc′

1
for

points u ∈ I. (In Theorem 4.1, the central disc is denoted f and parameteri-
zations of the boundary discs are denoted F (u, · ).) For the values u ∈ I \ I ′

1
we shrink the discs L̂u within themselves (by dilations) to reach the constant
discs L̂u = {F (u)} as u reaches the boundary of I; these discs remain in the
complement of D1 in view of (6.6). By (6.8) and decreasing c′

1 > c1 if neces-
sary we can also arrange that the set

⋃
u∈I L̂u is contained in an affine chart

of CP3. Applying Theorem 4.1 to this configuration gives a new holomorphic

– 169 –



Franc Forstnerič

Legendrian curve F ′ : M → Ω whose boundary F ′(bM) ⊂ Ωc,c′ no longer
intersects D1 and the remaining conditions in the theorem are satisfied. If
however the set I ′

1 (6.9) contains a boundary component of M , we perform
the same procedure twice, first pushing a part of I ′

1 out of D1 and thereby
reducing to the previous case.

The subsequent steps are basically the same as the first one. For simplicity
we denote the result of step 1 again by F , so in step 2 the assumption is that
F (bM) ⊂ Ωc′ \D1. By following the same procedure we push the boundary
of M out of the set D1 ∪D2 where D2 := D(ω1,2, c0, c1). Note that a point
of F (bM) which is outside of D1 will not reenter this set in subsequent steps
in view of condition (6.6). We see from (6.7) that in k1 steps of this kind the
image of bM is pushed into Ωc1,c′ . We then continue inductively to the next
levels c2, . . . , cm = c′, eventually pushing the image of bM into the domain
Ωc′,c′′ by a Legendrian map G satisfying the conditions in the lemma. □
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