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Minimal hypersurfaces and geometric inequalities (∗)

Simon Brendle (1)

ABSTRACT. — In this expository paper, we discuss some of the main geometric
inequalities for minimal hypersurfaces. These include the classical monotonicity for-
mula, the Alexander–Osserman conjecture, the isoperimetric inequality for minimal
surfaces, and the Michael–Simon Sobolev inequality.

1. Minimal surfaces

The study of minimal surfaces has a long history in geometry. By defini-
tion, a hypersurface in Euclidean space is minimal if it is critical point of the
area functional. Alternatively, minimal surfaces can be characterized in terms
of their extrinsic curvature. To explain this, suppose Σ is a hypersurface in
Rn+1 (possibly with boundary ∂Σ). Moreover, let Fs : Σ → Rn+1 denote
a one-parameter family of immersions with F0(x) = x, and let V (x) :=
∂
∂s Fs(x)

∣∣
s=0 denote the velocity of the deformation. Let Σs := Fs(Σ). If V

vanishes along the boundary ∂Σ, then the first variation of area is given by
d
ds

|Σs|
∣∣∣
s=0

=
∫

Σ
H ⟨V, ν⟩.

Here, ν denotes the unit normal to Σ and H denotes the scalar mean curva-
ture. In other words, the mean curvature vector is −H ν in our convention.

We can think of the mean curvature as follows. Given two tangential
vector fields X and Y along the hypersurface Σ, the second fundamental
form is defined by h(X, Y ) = ⟨DXν, Y ⟩, where D denotes the standard flat
connection on Rn+1. The second fundamental form is a symmetric bilinear
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form on the tangent space to Σ, i.e. h(Y, X) = h(X, Y ). The mean curvature
is defined as the trace of the second fundamental form; that is,

H =
n∑

i=1
h(ei, ei) =

n∑
i=1

⟨Dei
ν, ei⟩,

where {e1, . . . , en} is a local orthonormal frame on the hypersurface Σ. In
view of the discussion above, we can think of the mean curvature as the
L2-gradient of the area functional. In particular, Σ is a critical point of the
area functional if and only if the mean curvature of Σ vanishes.

Finally, minimal surfaces can be characterized in terms of the Laplace
operator on the submanifold Σ. To see this, suppose that a is a vector in
ambient space Rn+1. Let us consider the restriction of the linear function
⟨a, x⟩ in Rn+1 to the hypersurface Σ. The Laplacian, on Σ, of that function
is given by

∆Σ⟨a, x⟩ = −H ⟨a, ν⟩.
In particular, if H vanishes, then the restriction of the function ⟨a, x⟩ to Σ
gives a harmonic function on Σ. Conversely, if the restriction of the function
⟨a, x⟩ to Σ is harmonic for every a ∈ Rn+1, then the mean curvature vanishes
identically.

The preceding discussion can be summarized as follows:

Theorem 1.1. — Let Σ be a hypersurface in Rn+1. Then the following
statements are equivalent:

• Σ is a minimal surface.
• The first variation of the area functional at Σ vanishes.
• The mean curvature of Σ vanishes.
• Each coordinate function in Rn+1 restricts to a harmonic function

on Σ.

Two-dimensional minimal surfaces in R3 can be studied using techniques
from complex analysis. In particular, the Enneper–Weierstrass representa-
tion makes it possible to describe minimal surfaces locally in terms of holo-
morphic functions (see [28, 31]). This gives many interesting examples of
minimal surfaces in R3.

While we have so far focused on minimal surfaces in Euclidean space,
the notion of a minimal surface makes sense in any ambient Riemannian
manifold. The case of minimal surfaces in spheres is particularly interesting:
while a minimal surface in Euclidean space can never close up, there do exist
examples of closed minimal surfaces in spheres (see [46]). In particular, there
is a complete classification of all immersed minimal surfaces in S3 of genus
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0 (cf. [3]), and of all embedded minimal surfaces in S3 of genus 1 (cf. [15]).
We refer to [16] for a survey of some recent developments in this direction.

Some of the broad themes that have been studied in minimal surface the-
ory are existence and regularity questions; uniqueness questions; and geo-
metric inequalities. In this survey, we will focus on the third topic.

2. The classical monotonicity formula

One of the most fundamental results in minimal surface theory is the
monotonicity formula (see e.g. [54]). To fix notation, let Br denote the ball
of radius r in the ambient Euclidean space Rn+1.

Theorem 2.1. — Let Σ be a compact minimal hypersurface in Rn+1

with boundary ∂Σ. Suppose that ∂Σ ∩ Bρ = ∅. Then the function

r 7→ |Σ ∩ Br|
|Bn| rn

is monotone increasing for 0 < r < ρ.

The standard proof of Theorem 2.1 uses the co-area formula. In the fol-
lowing, we will present a slightly different argument which is based on an
application of the divergence theorem to a suitably chosen vector field. Let
us define a vector field V in ambient space Rn+1 by

V (x) = |x|−n x.

The vector field V has a natural interpretation in terms of the gradient of the
Newton potential in n-dimensional Euclidean space. For each point x ∈ Σ,
we denote by V tan(x) and V ⊥(x) the tangential and normal components of
V (x), respectively. The divergence of V tan is given by

divΣ(V tan) =
n∑

i=1
⟨DeiV

tan, ei⟩

=
n∑

i=1
⟨DeiV, ei⟩ −

n∑
i=1

⟨DeiV
⊥, ei⟩

= n |x|−n − n |x|−n−2
n∑

i=1
⟨x, ei⟩2 − H ⟨V, ν⟩

= n |x|−n−2 |x⊥|2,

where in the last step we have used the fact that Σ is minimal.
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By Sard’s theorem, there exists a dense open subset R ⊂ (0, ρ) such that
∂Br meets Σ transversally for all r ∈ R. Let us fix two radii r0, r1 ∈ R such
that r0 < r1. For each point x ∈ Σ ∩ ∂Br1 , we denote by η the co-normal to
Σ ∩ Br1 . Similarly, for each point x ∈ Σ ∩ ∂Br0 , η will denote the co-normal
to Σ ∩ Br0 . Applying the divergence theorem to the vector field V tan on
Σ ∩ (Br1 \ Br0) gives∫

Σ∩(Br1 \Br0 )
n |x|−n−2 |x⊥|2 =

∫
Σ∩(Br1 \Br0 )

divΣ(V tan)

=
∫

Σ∩∂Br1

⟨V, η⟩ −
∫

Σ∩∂Br0

⟨V, η⟩

= r−n
1

∫
Σ∩∂Br1

⟨x, η⟩ − r−n
0

∫
Σ∩∂Br0

⟨x, η⟩.

On the other hand, since Σ is minimal, the vector field xtan satisfies
divΣ(xtan) = n. Applying the divergence theorem to the vector field xtan

gives
n |Σ ∩ Br1 | =

∫
Σ∩Br1

divΣ(xtan) =
∫

Σ∩∂Br1

⟨x, η⟩

and
n |Σ ∩ Br0 | =

∫
Σ∩Br0

divΣ(xtan) =
∫

Σ∩∂Br0

⟨x, η⟩.

Putting these facts together, we conclude that∫
Σ∩(Br1 \Br0 )

|x|−n−2 |x⊥|2 = r−n
1 |Σ ∩ Br1 | − r−n

0 |Σ ∩ Br0 |,

which implies the monotonicity formula.

3. Estimates for the area of a minimal surface in a ball

One important consequence of Theorem 2.1 is that it gives a lower bound
for the volume of a minimal surfaces that passes through the origin.

Theorem 3.1. — Let Σ be a compact minimal hypersurface in the closed
unit ball Bn+1 with boundary ∂Σ ⊂ ∂Bn+1. If Σ passes through the origin,
then |Σ| ⩾ |Bn|. Moreover, if equality holds, then Σ is a flat disk.

Theorem 3.1 follows directly from Theorem 2.1. Indeed, if Σ passes
through the origin, then lim infr→0

|Σ∩Br|
|Bn| rn ⩾ 1. Hence, the monotonicity

formula implies |Σ∩Br|
|Bn| rn ⩾ 1 for all 0 < r < 1. From this, the assertion

follows.
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In 1973, Alexander and Osserman [1] considered the more general situa-
tion when Σ passes through some prescribed point in Bn+1 (not necessarily
the origin). They conjectured that, among all minimal surfaces in the unit
ball which pass through a prescribed point y ∈ Bn+1, the flat disk orthogonal
to y has smallest area. This conjecture was proved in [20]:

Theorem 3.2 (S. Brendle, P.K. Hung [20]). — Let Σ be a compact min-
imal hypersurface in the closed unit ball Bn+1 with boundary ∂Σ ⊂ ∂Bn+1.
If Σ passes through a given point y ∈ Bn+1, then |Σ| ⩾ |Bn| (1 − |y|2) n

2 .
Moreover, if equality holds, then Σ is a flat disk which is orthogonal to y.

Berndtsson [10] later gave an alternative proof of Theorem 3.2 using the
theory of supercurrents.

Let us sketch the proof of Theorem 3.2. Let us fix a point y ∈ Bn+1. We
define a vector field W on Bn+1 \ {y} as follows. For n > 2, we define

W (x) = − 1
n

((
1 − 2⟨x, y⟩ + |y|2

|x − y|2

)n
2

− 1
)

(x − y)

+ 1
n − 2

((
1 − 2⟨x, y⟩ + |y|2

|x − y|2

)n−2
2

− 1
)

y.

For n = 2, we define

W (x) = −1
2

(
1 − 2⟨x, y⟩ + |y|2

|x − y|2
− 1
)

(x − y)

+ 1
2 log

(
1 − 2⟨x, y⟩ + |y|2

|x − y|2

)
y.

The vector field W has the following properties:

• For every point x∈Bn+1 and every orthonormal frame {e1, . . . , en}⊂
Rn+1, we have

∑n
i=1⟨Dei

W, ei⟩ ⩽ 1.
• W (x) = 0 for x ∈ ∂Bn+1.
• W (x) = −(1 − |y|2) n

2 x−y
n |x−y|n + o

( 1
|x−y|n−1

)
as x → y.

Since Σ is minimal, we have

divΣ(W tan) =
n∑

i=1
⟨DeiW, ei⟩ ⩽ 1,

where {e1, . . . , en} is a local orthonormal frame on Σ. Applying the diver-
gence theorem to the vector field W tan on Σ \ {y}, we obtain∫

Σ\{y}
divΣ(W tan) = |Bn| (1 − |y|2) n

2 .
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Since divΣ(W tan) ⩽ 1 at each point on Σ \ {y}, we conclude that

|Σ| ⩾ |Bn| (1 − |y|2) n
2 ,

as claimed.

Finally, a related argument gives a lower bound for the area of free bound-
ary minimal surfaces in the unit ball:

Theorem 3.3 (S. Brendle [14]). — Let Σ be a compact minimal hyper-
surface in the closed unit ball Bn+1 with boundary ∂Σ ⊂ ∂Bn+1. If Σ meets
∂Bn+1 orthogonally, then |Σ| ⩾ |Bn|. Moreover, if equality holds, then Σ is
a flat disk.

Theorem 3.3 confirms a conjecture of Schoen. The conjecture has been
attributed to a question posed earlier by Guth.

Let us sketch the proof of Theorem 3.3; for full details see [14]. We fix a
point y ∈ ∂Σ. We define a vector field Z on Bn+1 \ {y} by

Z(x) = 1
2 x − x − y

|x − y|n
− n − 2

2

∫ 1

0

tx − y

|tx − y|n
dt.

The vector field Z has a natural interpretation in terms of the gradient of
the Greens function for the Neumann problem on the n-dimensional unit
ball. The vector field Z has the following properties:

• For every point x∈Bn+1 and every orthonormal frame {e1, . . . , en}⊂
Rn+1, we have

∑n
i=1⟨Dei

Z, ei⟩ ⩽ n
2 .

• The vector field Z is tangential along the boundary ∂Bn+1; that is,
⟨Z(x), x⟩ = 0 for all x ∈ ∂Bn+1.

• Z(x) = − x−y
|x−y|n + o

( 1
|x−y|n−1

)
as x → y.

Since Σ is minimal, we have

divΣ(Ztan) =
n∑

i=1
⟨Dei

Z, ei⟩ ⩽
n

2 ,

where {e1, . . . , en} is a local orthonormal frame on Σ. Applying the diver-
gence theorem to the vector field Ztan on Σ \ {y} gives∫

Σ\{y}
divΣ(Ztan) = n

2 |Bn|.

Since divΣ(Ztan) ⩽ n
2 at each point on Σ \ {y}, we conclude that

n

2 |Σ| ⩾ n

2 |Bn|,

which implies the claim.
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4. Gromov’s extended monotonicity formula

The monotonicity formula in Theorem 2.1 is valid as long as the ball Br

is disjoint from the boundary ∂Σ. In this section, we discuss an extended
monotonicity formula, due to Gromov [38], which holds for all r. To fix
notation, let Σ be a compact minimal hypersurface with boundary Γ = ∂Σ.
We assume that the origin does not lie on Γ. Let E denote the exterior cone
over Γ, i.e.

E = {λx : x ∈ Γ, λ ∈ [1, ∞)}.

Moreover, we denote by Σ̃ := Σ ∪ E the union of the minimal surface Σ and
the exterior cone E. Note that Σ̃ has no boundary, but Σ̃ is non-smooth
along Γ.

Theorem 4.1 (M. Gromov [38, Theorem 8.2.A]). — Let Σ be a compact
minimal hypersurface in Rn+1 with boundary Γ = ∂Σ. Suppose that the
origin does not lie on Γ. Let Σ̃ denote the extended hypersurface defined
above. Then the function

r 7→ |Σ̃ ∩ Br|
|Bn| rn

is monotone increasing for all r > 0.

In the remainder of this section, we sketch the proof of the extended
monotonicity formula. As above, we define a vector field V in ambient space
Rn+1 by

V (x) = |x|−n x.

Since Σ is minimal, we have divΣ(V tan) = n |x|−n−2 |x⊥|2 and divΣ(xtan) =
n at each point on Σ. Moreover, since E is a cone, we have x⊥ = 0 at each
point on E. This implies divE(V tan) = 0 and divE(xtan) = n at each point
on E.

By Sard’s theorem, there exists a dense open subset R ⊂ (0, ∞) such
that ∂Br meets Σ, E, and Γ transversally for all r ∈ R. Let us fix two radii
r0, r1 ∈ R such that r0 < r1. For each point x ∈ Γ = ∂Σ, we denote by ηΣ
the co-normal to Σ. Moreover, for each point x ∈ Σ ∩ ∂Br1 , ηΣ will denote
the co-normal to Σ∩Br1 . Finally, for each point x ∈ Σ∩∂Br0 , ηΣ will denote
the co-normal to Σ ∩ Br0 . Applying the divergence theorem to the vector
field V tan on Σ ∩ (Br1 \ Br0) gives∫

Σ∩(Br1 \Br0 )
n |x|−n−2 |x⊥|2 = r−n

1

∫
Σ∩∂Br1

⟨x, ηΣ⟩ − r−n
0

∫
Σ∩∂Br0

⟨x, ηΣ⟩

+
∫

Γ∩(Br1 \Br0 )
|x|−n ⟨x, ηΣ⟩.
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On the other hand, applying the divergence theorem to the vector field xtan

on Σ gives

n |Σ ∩ Br1 | =
∫

Σ∩∂Br1

⟨x, ηΣ⟩ +
∫

Γ∩Br1

⟨x, ηΣ⟩

and

n |Σ ∩ Br0 | =
∫

Σ∩∂Br0

⟨x, ηΣ⟩ +
∫

Γ∩Br0

⟨x, ηΣ⟩.

Putting these facts together, we obtain∫
Σ∩(Br1 \Br0 )

n |x|−n−2 |x⊥|2

= n r−n
1 |Σ ∩ Br1 | − n r−n

0 |Σ ∩ Br0 |

+
∫

Γ∩(Br1 \Br0 )
(|x|−n − r−n

1 ) ⟨x, ηΣ⟩ + (r−n
0 − r−n

1 )
∫

Γ∩Br0

⟨x, ηΣ⟩.

We next consider the exterior cone E. For each point x ∈ Γ = ∂E, we denote
by ηE the co-normal to E. Moreover, for each point x ∈ E ∩ ∂Br1 , ηE will
denote the co-normal to E ∩ Br1 . Finally, for each point x ∈ E ∩ ∂Br0 , ηE

will denote the co-normal to E ∩ Br0 . Applying the divergence theorem to
the vector field V tan on E ∩ (Br1 \ Br0) gives

0 = r−n
1

∫
E∩∂Br1

⟨x, ηE⟩ − r−n
0

∫
E∩∂Br0

⟨x, ηE⟩ +
∫

Γ∩(Br1 \Br0 )
|x|−n ⟨x, ηE⟩.

On the other hand, applying the divergence theorem to the vector field xtan

on E gives

[n |E ∩ Br1 | =
∫

E∩∂Br1

⟨x, ηE⟩ +
∫

Γ∩Br1

⟨x, ηE⟩

and

n |E ∩ Br0 | =
∫

E∩∂Br0

⟨x, ηE⟩ +
∫

Γ∩Br0

⟨x, ηE⟩.

This implies

0 = n r−n
1 |E ∩ Br1 | − n r−n

0 |E ∩ Br0 |

+
∫

Γ∩(Br1 \Br0 )
(|x|−n − r−n

1 ) ⟨x, ηE⟩ + (r−n
0 − r−n

1 )
∫

Γ∩Br0

⟨x, ηE⟩.
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We now add the contributions from Σ and E. This gives∫
Σ∩(Br1 \Br0 )

n |x|−n−2 |x⊥|2

= n r−n
1 |Σ̃ ∩ Br1 | − n r−n

0 |Σ̃ ∩ Br0 |

+
∫

Γ∩(Br1\Br0 )
(|x|−n − r−n

1 ) ⟨x, ηΣ + ηE⟩ + (r−n
0 − r−n

1 )
∫

Γ∩Br0

⟨x, ηΣ + ηE⟩.

We claim that, for each point x ∈ Γ, the quantity ⟨x, ηΣ +ηE⟩ is nonpositive.
Indeed, since E is an exterior cone, the position vector x lies in the tangent
space TxE and is inward-pointing. Consequently, we may write x = −λ ηE +
w, where w ∈ TxΓ and λ ⩾ 0. Clearly, ⟨w, ηΣ⟩ = ⟨w, ηE⟩ = 0 since w ∈ TxΓ.
Hence, we obtain ⟨x, ηΣ + ηE⟩ = −λ ⟨ηE , ηΣ + ηE⟩ = − 1

2 λ |ηΣ + ηE |2 ⩽ 0.
Therefore, ⟨x, ηΣ + ηE⟩ is nonpositive at each point on Γ. Thus,∫

Σ∩(Br1 \Br0 )
|x|−n−2 |x⊥|2 ⩽ r−n

1 |Σ̃ ∩ Br1 | − r−n
0 |Σ̃ ∩ Br0 |.

This completes the proof of the extended monotonicitiy formula.

In particular, Theorem 4.1 implies that the density ratios of Σ̃ are
bounded from above by the density of E at infinity. In the special case of
two-dimensional minimal surfaces in R3, Ekholm, White, and Wienholtz [34]
were able to estimate the density of E at infinity in terms of the total cur-
vature of Γ. As a consequence, they obtained the following result:

Theorem 4.2 (T. Ekholm, B. White, D. Wienholtz [34]). — Let Σ be
a compact minimal surface in R3 with boundary Γ = ∂Σ. Suppose that the
origin does not lie on Γ. Let Σ̃ denote the extended surface defined above.
Then

|Σ̃ ∩ Br|
πr2 ⩽

1
2π

∫
Γ

|k|

for all r > 0, where k denotes the curvature vector of the boundary Γ. In
particular, if

∫
Γ |k| < 4π, then the interior of Σ is embedded.

5. The isoperimetric inequality for minimal surfaces

In this section, we discuss sharp isoperimetric inequalities on minimal
surfaces. Let us first recall the classical isoperimetric inequality for domains
in Euclidean space:

Theorem 5.1. — Let E be a compact domain in Rn with boundary ∂E.
Then

|∂E| ⩾ n |Bn| 1
n |E|

n−1
n .

Moreover, if equality holds, then E is a ball.
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There are many different proofs of Theorem 5.4. In particular, the isoperi-
metric inequality is a consequence of the classical Brunn–Minkowski inequal-
ity for compact subsets of Rn, which was proved in full generality by Lus-
ternik [50] in 1935. A modern exposition can be found in [55, Theorem 5.1].
We refer to [9] for an alternative proof of the Brunn–Minkowski inequality
using heat flows.

The classical isoperimetric inequality was generalized to the Riemannian
setting by Gromov (cf. [39, Appendix C]). Klartag [45] has developed an al-
ternative approach to the Lévy–Gromov inequality based on optimal trans-
port and needle decompositions; this approach was generalized to metric
measure spaces in [25]. Moreover, the classical Brunn–Minkowski inequal-
ity is a special case of the Riemannian interpolation inequality proved by
Cordero-Erausquin, McCann, and Schmuckenschläger [30].

It has been conjectured for a long time that the isoperimetric inequality
should hold for minimal surfaces. This line of research was initiated in a
seminal work of Torsten Carleman in 1921, where he proved a sharp isoperi-
metric inequality for disk-type minimal surfaces. Various authors have ob-
tained generalizations of this result under weaker topological assumptions
(see e.g. [26, 36, 42, 49, 52, 53]). In particular, these results include the case
of two-dimensional minimal surfaces with connected boundary:

Theorem 5.2 (T. Carleman [23]; T. Reid [53]; C.C. Hsiung [42]). — Let
Σ be a minimal surface in R3 with boundary ∂Σ. If ∂Σ is connected, then
|∂Σ|2 ⩾ 4π |Σ|. Moreover, if equality holds, then Σ is a flat disk.

Leon Simon and Andrew Stone have obtained non-sharp isoperimetric in-
equalities for two-dimensional minimal surfaces (see [56] and [59], Section 4).
These results require no topological assumptions.

In the following, we present the proof of Theorem 5.2. The proof is a gen-
eralization of Hurwitz’s proof of the isoperimetric inequality in R2 (see [44,
p. 392–394]). By scaling, we may assume that |∂Σ| = 2π. By assumption,
∂Σ is connected. Let α : [0, 2π] → ∂Σ denote a parametrization of ∂Σ by
arclength, so that |α′(s)| = 1 for all s ∈ [0, 2π]. Without loss of generality,
we may assume that the center of mass of the boundary ∂Σ is at the origin,
so that

∫ 2π

0 αi(s) ds = 0 for each 1 ⩽ i ⩽ 3. Applying Wirtinger’s inequality
to the function αi(s), we obtain∫ 2π

0
αi(s)2 ds ⩽

∫ 2π

0
α′

i(s)2 ds

for each 1 ⩽ i ⩽ 3. Summation over i gives∫ 2π

0
|α(s)|2 ds ⩽

∫ 2π

0
|α′(s)|2 ds = 2π.
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In other words, ∫
∂Σ

|x|2 ⩽ 2π.

On the other hand, since Σ is minimal, it follows that divΣ(xtan) = 2. Hence,
the divergence theorem gives

4 |Σ| = 2
∫

Σ
divΣ(xtan) = 2

∫
∂Σ

⟨x, η⟩ ⩽
∫

∂Σ
|x|2 +

∫
∂Σ

|η|2 ⩽ 4π.

Here, η denotes the co-normal to Σ; in particular, |η| = 1 at each point on
∂Σ. Thus, |Σ| ⩽ π, which implies the isoperimetric inequality.

Finally, we give the proof of the rigidity statement. Suppose that equality
holds in the isoperimetric inequality. By scaling, we can arrange that |∂Σ| =
2π and |Σ| = π. As above, we assume that the center of mass of the boundary
∂Σ is at the origin, and that α : [0, 2π] → ∂Σ is a parametrization of ∂Σ by
arclength. For each i, the function αi(s) must achieve equality in Wirtinger’s
inequality. This implies

α(s) = cos(s) v + sin(s) w

for all s ∈ [0, 2π], where v and w are fixed vectors in R3. This gives
1 = |α′(s)|2

= sin2(s) |v|2 + cos2(s) |w|2 − 2 sin(s) cos(s) ⟨v, w⟩

= 1
2
[
(|v|2 + |w|2) − cos(2s) (|v|2 − |w|2) − 2 sin(2s) ⟨v, w⟩

]
for all s ∈ [0, 2π]. Consequently, |v|2+|w|2 = 2, |v|2−|w|2 = 0, and ⟨v, w⟩ = 0.
Therefore, v and w are orthonormal, and ∂Σ is a circle of radius 1 which lies
in the plane spanned by v and w. This completes the proof of Theorem 5.2.

We now turn to the higher dimensional case. A fundamental result in
higher dimensions is the Michael–Simon Sobolev inequality (cf. [2, Section 7],
and [51]). This inequality holds for an arbitrary hypersurface in Euclidean
space. It implies an isoperimetric inequality for minimal surfaces, albeit with
a non-sharp constant. Castillon [24] later gave an alternative proof of the
Michael–Simon Sobolev inequality using ideas from optimal transport; again,
this gives a non-sharp constant. In a recent paper [17], we obtained a sharp
version of the Michael–Simon Sobolev inequality.

Theorem 5.3 (S. Brendle [17]). — Let Σ be a compact hypersurface in
Rn+1 (possibly with boundary ∂Σ), and let f be a positive smooth function
on Σ. Then∫

Σ

√
|∇Σf |2 + f2H2 +

∫
∂Σ

f ⩾ n |Bn| 1
n

(∫
Σ

f
n

n−1

)n−1
n

.

Moreover, if equality holds, then f is constant and Σ is a flat disk.
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Theorem 5.3 actually holds for every submanifold of codimension at most
2. If the codimension is 3 or higher, only a non-sharp version of the inequality
is known. A similar inequality holds in Riemannian manifolds with nonnega-
tive sectional curvature (cf. [19]); in that case, the constant in the inequality
depends not only on the dimension, but also on the asymptotic volume ratio
of the ambient manifold.

The proof of Theorem 5.2 uses the Alexandrov–Bakelman–Pucci method
and is inspired in part by an elegant argument due to Cabré [21, 22] (see
also [60]). In the following, we describe the main ideas in the codimension 1
case; we refer to [17] for a detailed proof in the codimension 2 setting. First,
it is enough to prove the assertion in the special case when Σ is connected.
(If Σ is disconnected, we apply the inequality to each connected component,
and take the sum over all connected components.) Second, by scaling, it is
enough to prove the assertion in the special case when∫

Σ

√
|∇Σf |2 + f2H2 +

∫
∂Σ

f = n

∫
Σ

f
n

n−1 .

This normalization ensures that we can find a function u : Σ → R which
solves the PDE

divΣ(f ∇Σu) = n f
n

n−1 −
√

|∇Σf |2 + f2H2

on Σ with Neumann boundary condition ⟨∇Σu, η⟩ = 1 on ∂Σ. Here, η denotes
the co-normal to Σ. Note that u is of class C2,γ for each 0 < γ < 1 by
standard elliptic regularity theory.

Let
Ω := {x ∈ Σ \ ∂Σ : |∇Σu(x)| < 1},

U := {(x, y) : x ∈ Σ \ ∂Σ, y ∈ T ⊥
x Σ, |∇Σu(x)|2 + |y|2 < 1},

A := {(x, y) ∈ U : D2
Σu(x) + h(x) ⟨ν(x), y⟩ ⩾ 0},

where h denotes the second fundamental form of Σ. We define a map Φ :
U → Rn+1 by

Φ(x, y) = ∇Σu(x) + y

for all (x, y) ∈ U . One can show that the image Φ(A) is the open unit ball
Bn+1. The Jacobian determinant of Φ satisfies

det DΦ(x, y) = det(D2
Σu(x) + h(x) ⟨ν(x), y⟩)

for all (x, y) ∈ U . Using the PDE for u, we obtain

∆Σu(x) = n f(x)
1

n−1 − f(x)−1 ⟨∇Σf(x), ∇Σu(x)⟩

− f(x)−1
√

|∇Σf(x)|2 + f(x)2H(x)2
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for all x ∈ Σ. Since |∇Σu(x)|2 + |y|2 < 1 for all (x, y) ∈ U , the Cauchy–
Schwarz inequality gives

−⟨∇Σf(x), ∇Σu(x)⟩ + f(x) H(x) ⟨ν(x), y⟩ ⩽
√

|∇Σf(x)|2 + f(x)2H(x)2

for all (x, y) ∈ U . Putting these facts together, we obtain

∆Σu(x) + H(x) ⟨ν(x), y⟩ ⩽ n f(x)
1

n−1

for all (x, y) ∈ U . Since D2
Σu(x) + h(x) ⟨ν(x), y⟩ ⩾ 0 for all (x, y) ∈ A, the

arithmetic-geometric mean inequality implies

0 ⩽ det(D2
Σu(x)+h(x) ⟨ν(x), y⟩) ⩽

(
∆Σu(x) + H(x) ⟨ν(x), y⟩

n

)n

⩽ f(x)
n

n−1

for all (x, y) ∈ A. Therefore,

0 ⩽ det DΦ(x, y) ⩽ f(x)
n

n−1

for all (x, y) ∈ A. We now apply the change of variables formula to the map
Φ. This gives

π |Bn| =
∫

Bn+1

1√
1 − |ξ|2

dξ

⩽
∫

Ω

(∫
{y∈T ⊥

x Σ:|Φ(x,y)|2<1}

|det DΦ(x, y)|√
1 − |Φ(x, y)|2

1A(x, y) dy

)
dvol(x)

⩽
∫

Ω

(∫
{y∈T ⊥

x Σ:|∇Σu(x)|2+|y|2<1}

f(x)
n

n−1√
1 − |∇Σu(x)|2 − |y|2

dy

)
dvol(x)

= π

∫
Ω

f(x)
n

n−1 dvol(x).

In the last step, we have used the fact that the normal space T ⊥
x Σ is one-

dimensional and
∫ a

−a
1√

a2−y2
dy = π for each a > 0. Consequently,

|Bn| ⩽
∫

Ω
f

n
n−1 ⩽

∫
Σ

f
n

n−1 .

Thus, we conclude that∫
Σ

√
|∇Σf |2 + f2H2 +

∫
∂Σ

f = n

∫
Σ

f
n

n−1 ⩾ n |Bn| 1
n

(∫
Σ

f
n

n−1

)n−1
n

,

as claimed.

Finally, we sketch the proof of the rigidity statement. Suppose that equal-
ity holds. It is easy to see that Σ must be connected. By scaling, we can
arrange that

∫
Σ

√
|∇Σf |2 + f2H2 +

∫
∂Σ f = n |Bn| and

∫
Σ f

n
n−1 = |Bn|. Let
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u : Σ → R, Ω, U , A, and Φ : U → Rn+1 be defined as above. We first
observe that

∫
Ω f

n
n−1 =

∫
Σ f

n
n−1 . Consequently, the complement Σ \ Ω has

n-dimensional measure zero. Moreover, the set

U \ {(x, y) ∈ A : det DΦ(x, y) = f(x)
n

n−1 }

has (n+1)-dimensional measure zero. Now, if (x, y) ∈ A and det DΦ(x, y) =
f(x)

n
n−1 , then equality holds in the arithmetic-geometric mean inequality,

and this implies D2
Σu(x) + h(x) ⟨ν(x), y⟩ = f(x)

1
n−1 g. Consequently, the set

U \ {(x, y) ∈ A : D2
Σu(x) + h(x) ⟨ν(x), y⟩ = f(x)

1
n−1 g}

has (n + 1)-dimensional measure zero. Therefore, D2
Σu(x) + h(x) ⟨ν(x), y⟩ =

f(x)
1

n−1 g for all points (x, y) ∈ U . This implies D2
Σu = f

1
n−1 g and h = 0

at each point in Ω. Using the PDE for u, we obtain ⟨∇Σf, ∇Σu⟩ = −|∇Σf |,
hence ∇Σf = 0 at each point in Ω. Since Ω is a dense subset of Σ, we conclude
that D2

Σu = f
1

n−1 g, h = 0, ∇Σf = 0, and |∇Σu| ⩽ 1 at each point in Σ. To
summarize, Σ is contained in a hyperplane P ; we have f = λn−1 for some
positive constant λ; and the function u is of the form u(x) = 1

2 λ |x − p|2 + c

for some point p ∈ P and some constant c. Since |∇Σu| ⩽ 1 at each point on
Σ, it follows that Σ is contained in the intersection of P with a closed ball of
radius λ−1 around p. On the other hand, since

∫
Σ f

n
n−1 = |Bn|, the volume

of Σ is given by |Bn| λ−n. Thus, Σ is the intersection of P with a closed ball
of radius λ−1. This completes the proof of the rigidity statement.

Corollary 5.4 (S. Brendle [17]). — Let Σ be a compact minimal hy-
persurface in Rn+1 with boundary ∂Σ. Then

|∂Σ| ⩾ n |Bn| 1
n |Σ|

n−1
n .

Moreover, if equality holds, then Σ is a flat disk.

Almgren [4] has obtained a sharp version of the filling inequality of Fed-
erer and Fleming [35]. As a consequence, he was able to prove the sharp
isoperimetric inequality under the assumption that Σ is an absolute mini-
mizer of area.

In the remainder of this section, we discuss several consequences of Corol-
lary 5.4.

First, Corollary 5.4 gives a lower bound for the area of a minimal surface
in the unit ball under a natural assumption on the contact angle.
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Theorem 5.5. — Fix a real number θ ∈ (0, π
2 ]. Let Σ be a compact min-

imal hypersurface in the closed unit ball Bn+1 with boundary ∂Σ ⊂ ∂Bn+1.
Suppose that, at each point on ∂Σ, the contact angle between Σ and ∂Bn+1

is at least θ, so that |x⊥| ⩽ cos θ for all x ∈ ∂Σ. Then

|Σ| ⩾ |Bn| sinn θ.

Moreover, if equality holds, then Σ is a flat disk.

In the special case when θ = π
2 , Theorem 5.5 reduces to Theorem 3.3.

Let us indicate how Theorem 5.5 follows from Corollary 5.4. For each
point x ∈ ∂Σ, we denote by η the co-normal to Σ. Clearly, η = xtan

|xtan| .
The assumption on the contact angle implies |x⊥| ⩽ cos θ for all x ∈ ∂Σ.
Moreover, |x⊥|2+|xtan|2 = |x|2 = 1 for all x ∈ ∂Σ. This implies |xtan| ⩾ sin θ
for all x ∈ ∂Σ. Consequently, ⟨x, η⟩ = |xtan| ⩾ sin θ for all x ∈ ∂Σ. Using
the formula divΣ(xtan) = n and the divergence theorem, we obtain

n |Σ| =
∫

Σ
divΣ(xtan) =

∫
∂Σ

⟨x, η⟩ ⩾ |∂Σ| sin θ.

Moreover, Corollary 5.4 implies

|∂Σ| ⩾ n |Bn| 1
n |Σ|

n−1
n .

Putting these facts together, we conclude that

n |Σ| ⩾ n |Bn| 1
n |Σ|

n−1
n sin θ,

which implies the claim.

Second, using Corollary 5.4 we obtain a Brunn–Minkowski-type inequal-
ity on minimal hypersurfaces. Recall that the classical Brunn–Minkowski
inequality gives a lower bound for the volume of a tubular neighborhood of
a compact subset of Rn. More precisely, if E is a compact subset of Rn, then
the volume of the tubular neighborhood Er := {x ∈ Rn : infy∈E |x − y| ⩽ r}
can be estimated by |Er| 1

n ⩾ |E| 1
n + |Bn| 1

n r. In the following, we extend
this inequality to the setting of minimal hypersurfaces.

Theorem 5.6. — Let Σ be a compact minimal hypersurface in Rn+1

with boundary ∂Σ. Let E be a compact subset of Σ, and let Er denote the set
of all points in Σ which have intrinsic distance at most r from the set E.
Moreover, suppose that the intrinsic distance of the set E from the boundary
∂Σ is greater than ρ. Then

|Er| 1
n ⩾ |E| 1

n + |Bn| 1
n r

for 0 < r < ρ.
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Theorem 5.6 follows by combining Corollary 5.4 with the co-area formula.
To explain this, let us fix a radius r such that 0 < r < ρ, and let f : Σ → R
denote the intrinsic distance from the set E. Clearly, f is Lipschitz continuous
with Lipschitz constant 1. Using the convolution technique of Greene and
Wu (see [37, Section 2]), we can construct a sequence of smooth functions
fj with the following properties:

• The function fj is defined on an open subset Ωj of Σ, and Ωj con-
tains the set Eρ.

• supΩj
|∇Σfj | ⩽ 1 + δj , where δj → 0.

• supΩj
|fj − f | ⩽ εj , where εj → 0.

In the following, we choose j sufficiently large so that 2εj < r. Since |∇Σfj | ⩽
1 + δj , the co-area formula gives

d
ds

|{x ∈ Ωj : fj(x) ⩽ s}| ⩾ (1 + δj)−1 |{x ∈ Ωj : fj(x) = s}|

whenever s ∈ (εj , r − εj) is a regular value of fj . Moreover, Corollary 5.4
implies

|{x ∈ Ωj : fj(x) = s}| ⩾ n |Bn| 1
n |{x ∈ Ωj : fj(x) ⩽ s}|

n−1
n

whenever s ∈ (εj , r−εj) is a regular value of fj . Putting these facts together,
we obtain

d
ds

|{x ∈ Ωj : fj(x) ⩽ s}| ⩾ (1 + δj)−1 n |Bn| 1
n |{x ∈ Ωj : fj(x) ⩽ s}|

n−1
n ,

hence
d
ds

|{x ∈ Ωj : fj(x) ⩽ s}| 1
n ⩾ (1 + δj)−1 |Bn| 1

n

whenever s ∈ (εj , r − εj) is a regular value of fj . Since the function s 7→
|{x ∈ Ωj : fj(x) ⩽ s}| 1

n is monotone increasing, we conclude that

|{x ∈ Ωj : fj(x) ⩽ r − εj}| 1
n − |{x ∈ Ωj : fj(x) ⩽ εj}| 1

n

⩾
∫ r−εj

εj

d
ds

|{x ∈ Ωj : fj(x) ⩽ s}| 1
n ds

⩾ (1 + δj)−1 |Bn| 1
n (r − 2εj).

We next observe that E ⊂ {x ∈ Ωj : f(x) = 0} ⊂ {x ∈ Ωj : fj(x) ⩽ εj} and
{x ∈ Ωj : fj(x) ⩽ r − εj} ⊂ {x ∈ Ωj : f(x) ⩽ r} ⊂ Er. Consequently,

|Er| 1
n − |E| 1

n ⩾ (1 + δj)−1 |Bn| 1
n (r − 2εj).

Passing to the limit as j → ∞ gives

|Er| 1
n − |E| 1

n ⩾ |Bn| 1
n r,

as claimed.

– 194 –



Minimal hypersurfaces and geometric inequalities

Corollary 5.7. — Let Σ be a compact minimal hypersurface in Rn+1

with boundary ∂Σ. Let E be a compact subset of Σ, and let Er := {x ∈ Rn+1 :
infy∈E |x − y| ⩽ r} denote the set of all points in ambient space Rn+1 which
have distance at most r from the set E. Moreover, suppose that ∂Σ∩Eρ = ∅.
Then

|Σ ∩ Er| 1
n ⩾ |E| 1

n + |Bn| 1
n r

for 0 < r < ρ.

Since Er ⊂ Σ ∩ Er, Corollary 5.7 is a direct consequence of Theorem 5.6.

In the special case when E consists of a single point, Corollary 5.7 gives
an alternative proof of Theorem 3.1.

Finally, Corollary 5.4 implies that the sharp Lp Sobolev inequality of
Aubin [5] and Talenti [58] holds on every minimal hypersurface:

Theorem 5.8. — Let Σ be a compact minimal hypersurface in Rn+1 with
boundary ∂Σ, and let 1 < p < n. Let f be a nonnegative smooth function on
Σ which vanishes in a neighborhood of ∂Σ. Then(∫

Σ
f

np
n−p

)n−p
np

⩽ K(n, p)
(∫

Σ
|∇Σf |p

) 1
p

,

where

K(n, p) = π− 1
2 n− 1

p

(
p − 1
n − p

)p−1
p

(
Γ( n

2 + 1) Γ(n)
Γ( n

p ) Γ(n + 1 − n
p )

)1
n

.

Theorem 5.8 follows by combining the isoperimetric inequality in Corol-
lary 5.4 with the co-area formula. The argument is the same as in [5] and [58].

6. The logarithmic Sobolev inequality on a self-similar shrinker

In this section, we discuss how the results in Section 5 can be used to
prove a sharp logarithmic Sobolev inequality for submanifolds in Euclidean
space. The classical logarithmic Sobolev inequality has been studied by many
authors (see e.g. [6, 7, 11, 29, 40, 41, 47, 48]). The statement is as follows:

Theorem 6.1 (L. Gross [40]). — Let

dγ = (4π)− n
2 e− |x|2

4 dx

denote the Gaussian measure on Rn. Then∫
Rn

φ log φ dγ −
∫
Rn

|∇φ|2

φ
dγ ⩽

(∫
Rn

φ dγ

)
log
(∫

Rn

φ dγ

)
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for every positive smooth function φ on Rn satisfying
∫
Rn φ dγ < ∞ and∫

Rn

|∇φ|2

φ dγ < ∞.

There are many different proofs of the logarithmic Sobolev inequality.
These employ a variety of techniques, including the central limit theorem
(cf. [41, Example 2.7]), heat flows (cf. [7]), and optimal transport (cf. [29]).
The logarithmic Sobolev inequality can be viewed as a corollary of the
isoperimetric inequality in Gauss space (see [12, 13, 57]). The Gaussian
isoperimetric inequality can be proven using the heat equation; see [48, Sec-
tion 1.2].

The classical logarithmic Sobolev inequality is a special case of the Bakry–
Émery theorem [7]. Similarly, the isoperimetric inequality in Gauss space is
a special case of the isoperimetric comparison theorem of Bakry–Ledoux [8].

Ecker proved a logarithmic Sobolev inequality which holds on every sub-
manifold of Euclidean space, albeit with a non-sharp constant (see [32]
and [33, p. 59–60]). This inequality is similar in spirit to the Michael–Simon
Sobolev inequality. Using the techniques in Section 5, we obtain a sharp
version of Ecker’s inequality:

Theorem 6.2 (S. Brendle [18]). — Let Σ be a compact hypersurface in
Rn+1 without boundary, and let

dγ = (4π)− n
2 e− |x|2

4 dvol

denote the Gaussian measure on Σ. Then∫
Σ

φ log φ dγ −
∫

Σ

|∇Σφ|2

φ
dγ −

∫
Σ

φ

(
H − 1

2 ⟨x, ν⟩
)2

dγ

⩽

(∫
Σ

φ dγ

)
log
(∫

Σ
φ dγ

)
for every positive smooth function φ on Σ.

Theorem 6.2 actually holds for submanifolds of arbitrary codimension;
see [18].

Let us sketch the proof of Theorem 6.2. As in Section 5, we can reduce
to the special case when Σ is connected. By scaling, we may assume that∫

Σ
φ log φ dγ −

∫
Σ

|∇Σφ|2

φ
dγ −

∫
Σ

φ

(
H − 1

2 ⟨x, ν⟩
)2

dγ = 0.
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This normalization ensures that we can find a smooth function v : Σ → R
such that

divΣ

(
e− |x|2

4 φ ∇Σv

)
= e− |x|2

4 φ log φ − e− |x|2
4

|∇Σφ|2

φ
− e− |x|2

4 φ

(
H − 1

2 ⟨x, ν⟩
)2

.

Let u(x) := v(x) + |x|2

2 . We define

U := {(x, y) : x ∈ Σ, y ∈ T ⊥
x Σ},

A := {(x, y) ∈ U : D2
Σu(x) + h(x) ⟨ν(x), y⟩ ⩾ 0},

where h denotes the second fundamental form of Σ. Moreover, we define a
map Φ : U → Rn+1 by

Φ(x, y) = ∇Σu(x) + y

for all (x, y) ∈ U . It can be shown that the image Φ(A) is all of Rn+1. The
Jacobian determinant of Φ satisfies

det DΦ(x, y) = det(D2
Σu(x) + h(x) ⟨ν(x), y⟩)

for all (x, y) ∈ U . Using the PDE for v, we obtain

∆Σu(x) − |∇Σu(x)|2

4 + |x|2

4 + H(x)2 − n

= log φ(x) − |2 ∇Σφ(x) + φ(x) ∇Σv(x)|2

4φ(x)2 ⩽ log φ(x)

for all x ∈ Σ. This implies

∆Σu(x) + H(x) ⟨ν(x), y⟩ − n

⩽
|∇Σu(x)|2 + |y|2

4 − |x|2

4 − |y − 2H(x)ν(x)|2

4 + log φ(x)

for all (x, y) ∈ U . Since D2
Σu(x) + h(x) ⟨ν(x), y⟩ ⩾ 0 for all (x, y) ∈ A, it

follows that

0 ⩽ e− |∇Σu(x)|2+|y|2
4 det(D2

Σu(x) + h(x) ⟨ν(x), y⟩)

⩽ e− |∇Σu(x)|2+|y|2
4 e∆Σu(x)+H(x) ⟨ν(x),y⟩−n

⩽ e− |x|2
4 − |y−2H(x)ν(x)|2

4 φ(x)

for all (x, y) ∈ A. Thus, we conclude that

0 ⩽ e− |Φ(x,y)|2
4 det DΦ(x, y) ⩽ e− |x|2

4 − |y−2H(x)ν(x)|2
4 φ(x)
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for all (x, y) ∈ A. Applying the change of variables formula to the map Φ
gives

1 = (4π)− n+1
2

∫
Rn+1

e− |ξ|2
4 dξ

⩽ (4π)− n+1
2

∫
Σ

(∫
T ⊥

x Σ
e− |Φ(x,y)|2

4 |det DΦ(x, y)| 1A(x, y) dy

)
dvol(x)

⩽ (4π)− n+1
2

∫
Σ

(∫
T ⊥

x Σ
e− |x|2

4 − |y−2H(x)ν(x)|2
4 φ(x) dy

)
dvol(x)

= (4π)− n
2

∫
Σ

e− |x|2
4 φ(x) dvol(x).

This shows that
∫

Σ φ dγ ⩾ 1. To summarize, we know that∫
Σ

φ log φ dγ −
∫

Σ

|∇Σφ|2

φ
dγ −

∫
Σ

φ

(
H − 1

2 ⟨x, ν⟩
)2

dγ = 0

and (∫
Σ

φ dγ

)
log
(∫

Σ
φ dγ

)
⩾ 0.

From this, the assertion follows.

Theorem 6.2 is particularly useful on self-similar shrinking solutions to
mean curvature flow. To explain this, suppose that Σ is a hypersurface
in Rn+1. We say that Σ is a self-similar shrinker if H = 1

2 ⟨x, ν⟩. Self-
similar shrinkers can be characterized as critical points of the Gaussian area
γ(Σ) = (4π)− n

2
∫

Σ e− |x|2
4 dvol. The Gaussian area appears naturally in con-

nection with Huisken’s monotonicity formula for mean curvature flow [43].
Self-similar shrinkers achieve equality in Huisken’s monotonicity formula;
they play a central role in understanding singularity formation in mean cur-
vature flow (see [27, 43]).

Corollary 6.3. — Let Σ be a compact hypersurface in Rn+1 without
boundary, and let

dγ = (4π)− n
2 e− |x|2

4 dvol

denote the Gaussian measure on Σ. If Σ is a self-similar shrinker, then∫
Σ

φ log φ dγ −
∫

Σ

|∇Σφ|2

φ
dγ ⩽

(∫
Σ

φ dγ

)
log
(∫

Σ
φ dγ

)
for every positive smooth function φ on Σ.
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