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Dynamical pairs with an absolutely continuous
bifurcation measure (∗)

Thomas Gauthier (1)

ABSTRACT. — In this article, we study algebraic dynamical pairs (f, a) param-
etrized by an irreducible quasi-projective curve Λ having an absolutely continuous
bifurcation measure. We prove that, if f is non-isotrivial and (f, a) is unstable, this
is equivalent to the fact that f is a family of Lattès maps. To do so, we prove
the density of transversely prerepelling parameters in the bifurcation locus of (f, a)
and a similarity property, at any transversely prerepelling parameter λ0, between
the measure µf,a and the maximal entropy measure of fλ0 . We also establish an
equivalent result for dynamical pairs of Pk, under an additional mild assumption.

RÉSUMÉ. — Dans cet article, nous étudions les paires dynamiques (f, a) algé-
briques paramétrées par une courbe quasi-projective irréductible possédant une me-
sure de bifurcation absolument continue. Nous prouvons que, si la famille f n’est
pas isotriviale et si la paire (f, a) est instable, c’est équivalent au fait que la famille
f soit une famille d’exemples de Lattès flexibles. A cette fin, nous montrons la den-
sité des paramètres transversalement prérépulsifs dans le lieu de bifurcation de la
paire (f, a), ainsi qu’une propriété de similarité, en un paramètre transversalement
prérépulsif λ0, entre la mesure de bifurcation µf,a et la mesure d’entropie maximale
de fλ0 . Sous une hypothèse relativement générale, nous établissons également un
résultat similaire pour les paires dynamiques de Pk.

Introduction

Let Λ be a complex manifold. A dynamical pair (f, a) parametrized by Λ
is a holomorphic family f : Λ×P1 → P1 of rational maps of degree d ⩾ 2, i.e.
f is a holomorphic and fλ is a degree d rational map for all λ ∈ Λ, together
with a marked point a, i.e. a holomorphic map a : Λ → P1.
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Recall that a dynamical pair (f, a) of the Riemann sphere is stable if the
sequence {λ 7→ fnλ (a(λ))}n⩾1 is a normal family on Λ. Otherwise, we say
that the pair (f, a) is unstable. Recall also that f is isotrivial if there exists a
branched cover X → Λ and a holomorphic family of Möbius transformations
M : X × P1 → P1 so that Mλ ◦ fλ ◦ M−1

λ : P1 → P1 is independent of the
parameter λ and that the pair (f, a) is isotrivial if, in addition, Mλ(a(λ)) is
also independent of the parameter λ.

When a dynamical pair (f, a) is unstable, the stability locus Stab(f, a) is
the set of points λ0 ∈ Λ admitting a neighborhood U on which the pair (f, a)
the sequence {λ 7→ fnλ (a(λ))}n⩾1 is a normal family. The bifurcation locus
Bif(f, a) of the pair (f, a) is its complement Bif(f, a) := Λ\Stab(f, a). If a is
the marking of a critical point, i.e. f ′

λ(a(λ)) = 0 for all λ ∈ Λ, it is classical
that the bifurcation locus Bif(f, a) has empty interior, [24]. However, when f
is not a family of polynomials and a is not a marked critical point, Bif(f, a)
can have non-empty interior. For instance, if f is an isotrivial family with
fλ = fλ′ for all λ, λ′ ∈ Λ and Jf = P1, then Bif(f, a) is either empty or the
whole parameter space Λ. In fact, we can describe precisely when Bif(f, a)
can have non-empty interior.

We say that a family f : Λ ×P1 −→ P1 of degree d rational maps of P1 is
J-stable if all the repelling cycles can be followed holomorphically throughout
the whole family Λ, i.e. if for all n ⩾ 1, there exists N ⩾ 0 and holomorphic
maps z1, . . . , zN : Λ → P1 such that {z1(λ), . . . , zN (λ)} is exactly the set of
all repelling cycles of fλ of exact period n for all λ ∈ Λ. Note that this is
equivalent to the fact that all critical points are stable [24]. We prove the
following:

Theorem A. — Let (f, a) be a dynamical pair of degree d of the Rie-
mann sphere P1 parametrized by a one-dimensional complex manifold Λ.
Assume that Bif(f, a) = Λ. Then f is J-stable and

• either f is isotrivial,
• or Jfλ

= P1 and fλ carries an invariant linefield for any λ ∈ Λ.

The bifurcation locus of a pair (f, a) is the support of natural a positive
(finite) measure: the bifurcation measure µf,a of the pair (f, a), see Section 1
for a precise definition. The properties of this measure appear to be very im-
portant for studying arithmetic and dynamical properties of the pair (f, a),
see e.g. [2, 3, 11, 12, 13, 18, 19, 20]. Note also that the entropy theory of
dynamical pairs has been recently developed in [9].

We will say that a dynamical pair (f, a) parametrized by Λ is algebraic
if Λ is a quasi-projective variety, if f : Λ × P1 → P1 is a morphism and if
a : Λ → P1 is a rational function on Λ. An important result of DeMarco [11]
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states that any stable algebraic pair is either isotrivial or preperiodic, i.e.
there exists n > m ⩾ 0 such that fnλ (a(λ)) = fmλ (a(λ)) for all λ ∈ Λ. In
the present article, we study algebraic dynamical pairs having an absolutely
continuous bifurcation measure.

Assume that for some parameter λ0 ∈ Λ, the marked point a eventually
lands on a repelling periodic point x, that is fnλ0

(a(λ0)) = x. Let x(λ) be the
(local) natural continuation of x as a periodic point of fλ. We say that a is
transversely prerepelling at λ0 if the graphs of λ 7→ fnλ (a(λ)) and λ 7→ x(λ),
as subsets of Λ × P1, are transverse at λ0.

Finally, recall that a rational map f : P1 → P1 is a Lattès map if there
exists an elliptic curve E, an endomorphism L : E → E and a finite branched
cover p : E → P1 such that p◦L = f ◦p on E. Such a map has an absolutely
continuous maximal entropy measure, see [29]. In addition, when f is a
family of Lattès maps and the pair (f, a) is unstable, then Bif(f, a) = Λ, see
e.g. [12, Section 6] or, e.g., Lemma 4.1 for another proof.

Our main result is the following.

Theorem B. — Let (f, a) be an algebraic dynamical pair of P1 of degree
d ⩾ 2 parametrized by an irreducible quasi-projective curve Λ. Assume that
f is non-isotrivial and that (f, a) is unstable. The following assertions are
equivalent:

(1) The bifurcation locus of the dynamical pair (f, a) is Bif(f, a) = Λ,
(2) Transversely prerepelling parameters are dense in Λ,
(3) The measure µf,a is absolutely continuous with continuous Radon–

Nikodym derivative outside a finite set,
(4) The family f is a family of Lattès maps.

Note that the hypothesis that f is not isotrivial is necessary to have the
equivalence between (1) and (4) (see Proposition 4.2).

The first step of the proof consists in proving that transversely pre-
repelling parameters are dense in the support of µf,a. Using properties
of Polynomial-Like Maps in higher dimension and a transversality Theo-
rem of Dujardin for laminar currents [15], we prove this property holds
for the appropriate bifurcation current for any tuple (f, a1, . . . , am), where
f : Λ × Pk → Pk is any holomorphic family of endomorphisms of Pk and
a1, . . . , am : Λ → Pk are any marked points (see Theorem 2.2).

As a second step, we adapt the similarity argument of Tan Lei [23] to
show that, if λ0 is a transversely prerepelling parameter where the bifurca-
tion measure is absolutely continuous, the maximal entropy measure µfλ0
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of fλ0 is also non-singular with respect to the Fubini–Study form on P1. As
Zdunik [29] has shown, this implies fλ0 is a Lattès map.

This gives, in particular, the following.

Theorem C. — Fix an integer d ⩾ 2 and let (f, a) be a holomorphic
dynamical pair of degree d of P1 parametrized by a Kähler manifold (M,ω)
of dimension 1. Assume the support of µf,a is supp(µf,a) = M . Then, the
following are equivalent:

(1) the measure µf,a is absolutely continuous with respect to ω and the
Radon–Nikodym derivative dµf,a

dω is continuous outside an analytic
subvariety of M ,

(2) the family f is a family of Lattès maps.

We can see Theorem B as a partial parametric counterpart of Zdunik’s
result. However, the comparison with Zdunik’s work ends there: Rational
maps with P1 as a Julia sets are, in general, not Lattès maps. Indeed, Lattès
maps form a strict subvariety of the space of all degree d rational maps,
and maps with Jf = P1 form a set of positive volume by [28]. In a way,
Theorem B is a stronger rigidity statement that the dynamical one.

Note also that we only use the fact that Λ is a quasi-projective curve
to prove the equivalence between Bif(f, a) = Λ and the smoothness of the
bifurcation measure, relying on [25]. We don’t know how to get rid of this al-
gebraicity assumption, without using the No Invariant Line Field Conjecture
of McMullen, which is far from being proved.

Recall that, as in dimension 1, an endomorphism f of Pk is a Lattès map
if there exists an abelian variety A, a finite branched cover p : A → Pk and
an isogeny I : A → A such that p◦I = f ◦p on A. Berteloot and Loeb [6] and
then Berteloot and Dupont [5] generalized Zdunik’s work to endomorphisms
of Pk: f is a Lattès map of Pk if and only if the measure µf is not singular
with respect to ωkPk , see also [17]. Recall finally that a repelling periodic
point of f is J-repelling if it belongs to supp(µf ).

As an important part of our arguments applies in any dimension, we have
the following higher dimensional counterpart to Theorem C.

Theorem D. — Fix integers d ⩾ 2 and k ⩾ 1 and let (f, a) be any holo-
morphic dynamical pair of degree d of Pk parametrized by a Kähler manifold
(M,ω) of dimension k. Assume that for all λ ∈ M , any J-repelling periodic
point of fλ is linearizable. Assume in addition that µf,a := T kf,a satisfies
supp(µf,a) = M . Then the following are equivalent:
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(1) the measure µf,a is absolutely continuous with respect to ωk and
dmuf,a

dωk is continuous outside an analytic subvariety of M ,
(2) the family f is a family of Lattès maps of Pk.

The paper is organized as follows. In Section 1, we recall the construction
of the bifurcation currents of marked points and properties of Polynomial-
Like Maps. Section 2 is dedicated to proving the density of transversely
prerepelling parameters. In Section 3, we establish the similarity property
for the bifurcation and maximal entropy measures. Finally, in Section 4 we
prove Theorems A, B, C and D and list related questions.

Acknowledgements

I would like to thank Charles Favre and Gabriel Vigny whose interesting
discussions, remarks and questions led to an important part of this work. I
also would like to thank the anonymous referee for helpful comments and
remarks.

1. Dynamical preliminaries

1.1. The bifurcation current of a dynamical tuple

For this section, we follow the presentation of [15, 16]. Even though ev-
erything is presented in the case k = 1 and for marked critical points, the
exact same arguments give what we present below.

Let Λ be a complex manifold and let f : Λ × Pk → Pk be a holomorphic
family of endomorphisms of Pk of algebraic degree d ⩾ 2: f is holomorphic
and fλ := f(λ, · ) : Pk → Pk is an endomorphism of algebraic degree d.

Definition 1.1. — Fix integers m ⩾ 1, d ⩾ 2 and let Λ be a com-
plex manifold. A dynamical (m + 1)-tuple (f, a1, . . . , am) of Pk of degree d
parametrized by Λ is a holomorphic family f of endomorphisms of Pk of
degree d parametrized by Λ, endowed with m holomorphic maps (marked
points) a1, . . . , am : Λ → Pk.

Let ωPk be the standard Fubini–Study form on Pk and πΛ : Λ × Pk → Λ
and πPk : Λ × Pk → Pk be the canonical projections. Finally, let ω̂ :=
(πPk )∗ωPk . A family f : Λ × Pk → Pk naturally induces a fibered dynamical
system f̂ : Λ × Pk → Λ × Pk, given by f̂(λ, z) := (λ, fλ(z)). It is known that
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the sequence d−n(f̂n)∗ω̂ converges to a closed positive (1, 1)-current T̂ on
Λ × Pk with continuous potential. Moreover, for any 1 ⩽ j ⩽ k,

f̂∗T̂ j = dj · T̂ j

and T̂ k|{λ0}×P1 = µλ0 is the unique measure of maximal entropy k log d of
fλ0 for all λ0 ∈ Λ.

For any n ⩾ 1, we have T̂ = d−n(f̂n)∗ω̂ + d−nddcûn, where (ûn)n is a
locally uniformly bounded sequence of continuous functions.

Pick now a dynamical (m+1)-tuple (f, a1, . . . , am) of degree d of Pk. Let
Γaj

⊂ Λ × Pk be the graph of the map aj and set

a := (a1, . . . , am).

Definition 1.2. — For 1 ⩽ i ⩽ m, the bifurcation current Tf,ai of the
pair (f, ai) is the closed positive (1, 1)-current on Λ defined by

Tf,ai
:= (πΛ)∗

(
T̂ ∧ [Γaj

]
)

and we define the bifurcation current Tf,a of the (m+1)-tuple (f, a1, . . . , am)
as

Tf,a := Tf,a1 + · · · + Tf,ak
.

For any ℓ ⩾ 0, write

aℓ(λ) :=
(
f ℓλ(a1(λ)), . . . , f ℓλ(am(λ))

)
, λ ∈ Λ.

Let now K ⋐ Λ be a compact subset of Λ and let Ω be some relatively
compact neighborhood of K, then (aℓ)∗(ωPk ) is bounded in mass in Ω by
Cdℓ, where C depends on Ω but not on ℓ.

Note that the proof of [16, Proposition-Definition 3.1 and Theorem 3.2]
(which is for marked critical points and when k = 1) works similarly when
k > 1 and a is non-critical. Applying verbatim their proof, we have the
following, see also the proof of [10, Theorem 9.1] which adapts also perfectly
here.

Lemma 1.3. — For any 1 ⩽ i ⩽ k, the support of Tf,ai
is the set of

parameters λ0 ∈ Λ such that the sequence {λ 7→ fnλ (ai(λ))} is not a normal
family at λ0.

Moreover, writing ai,ℓ(λ) := f ℓλ(ai(λ)), there exists a locally uniformly
bounded family (ui,ℓ) of continuous functions on Λ such that

(ai,ℓ)∗(ωPk ) = dℓTf,ai
+ ddcui,ℓ on Λ.
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As a consequence, for all j ⩾ 1, we have

(ai,ℓ)∗(ωjPk ) = djℓT jf,ai
+

j∑
s=1

(
j

s

)
dℓ(j−s) · (ddcui,ℓ)s ∧ T j−sf,ai

,

so that the mass of the (j, j)-current (ai,ℓ)∗(ωjPk ) − djℓT jf,ai
is O(d(j−1)ℓ) on

compact subsets of Λ. In particular, one sees that
T k+1
f,ai

= 0 on Λ. (1.1)

Let us still denote πΛ : Λ × (Pk)m → Λ be the projection onto the first
coordinate and for 1 ⩽ i ⩽ k, let πi : Λ × (Pk)m → Λ × Pk be the projection
onto Λ times the i-th factor of the product (Pk)m. Finally, we denote by Γa

the graph of a:
Γa := {(λ, z1, . . . , zm), ∀ j, zj = aj(λ)} ⊂ Λ × (Pk)m.

Following verbatim the proof of [1, Lemma 2.6], we get

1
(mk)!T

mk
f,a =

m∧
ℓ=1

T kf,aℓ
= (πΛ)∗

(
m∧
i=1

π∗
i

(
T̂ k
)

∧ [Γa]
)
.

1.2. Hyperbolic sets supporting a PLB ergodic measure

Definition 1.4. — Let W ⊂ Ck be a bounded open set. We say that a
positive measure ν compactly supported on W is PLB if the psh functions
on W are integrable with respect to ν.

We aim here at proving the following proposition in the spirit of [15,
Lemma 4.1]:

Proposition 1.5. — Let f : Pk → Pk be an endomorphism of degree
d ⩾ 2. There exists a small ball B ⊂ Pk, an integer m ⩾ 1, a fm-invariant
compact set K ⋐ B and an integer N ⩾ 2 such that

• fm|K is uniformly expanding and repelling periodic points of fm are
dense in K,

• there exists a unique probability measure ν supported on K such that
(fm|K)∗ν = Nν which is PLB.

Even though this result is considered folklore, we include a proof rely-
ing on properties of polynomial-like map. We refer to [14] for more about
polynomial-like maps. Given an complex manifold M and an open set V ⊂
M , we say that V is S-convex if there exists a continuous strictly plurisub-
harmonic function on V . In fact, this implies that there exists a smooth
strictly psh function ψ, whence there exists a Kähler form ω := ddcψ on V .
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Definition 1.6. — Given a connected S-convex open set and a relatively
compact open set U ⋐ V , a map f : U → V is polynomial-like if f is
holomorphic and proper.

The filled-Julia set of f is the set

Kf :=
⋂
n⩾0

f−n(U).

The set Kf is full, compact, non-empty and it is the largest totally invariant
compact subset of V , i.e. such that f−1(Kf ) = Kf .

The topological degree dt of f is the number of preimages of any z ∈ V
by f , counted with multiplicity. Let k := dimV . We define

d∗
k−1 := sup

φ

{
dt · lim sup

n→∞
∥Ψnddcφ∥1/n

U : φ is psh on V

}
,

where Ψ := d−1
t f∗. According to Theorem 3.2.1 and Theorem 3.9.5 of [14],

we have the following.

Theorem 1.7 (Dinh–Sibony). — Let f : U → V be a polynomial-like
map of topological degree dt ⩾ 2. There exists a unique probability measure
µ supported by ∂Kf which is ergodic and such that

(1) for any volume form Ω of mass 1 in L2(V ), one has d−n
t (fn)∗Ω → µ

as n → ∞,
(2) if d∗

k−1 < dt, the measure µ is PLB and repelling periodic points are
dense in supp(µ).

Proof of Proposition 1.5. — The first argument is an inverse branches
argument which follows Briend–Duval [7, Section 3]. Let B := B(x, ϵ) be
a small ball around a µf -generic point x. Since µf is mixing, we have
µf (f−n(B) ∩B) ≃ µ(B)2 for n large enough. In particular, using (fn)∗µf =
dnkµf , we deduce there exists C > 0 such that fn has M(n) ⩾ Cdnk inverse
branches g1, . . . , gM(n) defined on B with

• gi(B) ⋐ B and gi is uniformly contracting on B for all i,
• gi(B) ∩ gj(B) = ∅ for all i ̸= j.

Fix m ⩾ n0 large enough so that Cdmk > d(k−1)m ⩾ 2 and set

V := B, U :=
M(m)⋃
j=1

gj(B), N := M(m) and g := fm|U .

The map g : U → V is polynomial-like of topological degree N , whence
its equilibrium measure ν is the unique probability measure which satisfies
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g∗ν = Nν by the first part of Theorem 1.7. We let K := supp(ν). Since the
gi’s are uniformly contracting, the compact set K is fm-hyperbolic.

To conclude, it is sufficient to verify that N > d∗
k−1. Fix n ⩾ 1 and φ psh

on V . Let ω be the (normalized) restriction to V of the Fubini–Study form
of Pk. Then, since Ψ = 1

N g∗,

∥Ψn(ddcφ)∥U =
∫
U

(Ψn(ddcφ)) ∧ ωk−1 =
∫
U

1
Nn

((gn)∗(ddcφ)) ∧ ωk−1

= 1
Nn

∫
U

ddcφ ∧ (gn)∗ωk−1

= 1
Nn

∫
U

ddcφ ∧ (dmnω + ddcunm)k−1

where (un)n is a uniformly bounded sequence of continuous functions on Pk.
In particular, by the Chern–Levine–Niremberg inequality, if U ⋐ W ⋐ V ,
there exists a constant C ′ > 0 depending only on W such that

∥Ψn(ddcφ)∥U =
(
d(k−1)m

N

)n ∫
U

ddcφ ∧ (ω + d−nmddcunm)k−1

⩽

(
d(k−1)m

N

)n
C ′∥ddcφ∥W .

Taking the n-th root and passing to the limit, we get
d∗
k−1
N

⩽
d(k−1)m

N
< 1

by assumption. The second part of Theorem 1.7 allows us to conclude. □

2. The support of bifurcation currents

Pick a complex manifold Λ and let m, k ⩾ 1 be so that dim Λ ⩾ km. Let
(f, a1, . . . , am) be a dynamical (m+ 1)-tuple of Pk of degree d parametrized
by Λ.

Definition 2.1. — We say that the marked points a1, . . . , am are trans-
versely J-prerepelling (resp. properly J-prerepelling) at a parameter λ0 if
there exists integers n1, . . . , nm ⩾ 1 such that fnj

λ0
(aj(λ0)) = zj is a repelling

periodic point of fλ0 and, if zj(λ) is the natural continuation of zj as a
repelling periodic point of fλ in a neighborhood U of λ0, such that

(1) zj(λ) ∈ Jλ for all λ ∈ U and all 1 ⩽ j ⩽ m,
(2) the graphs of A : λ 7→ (fq1

λ (a1(λ)), . . . , fqm

λ (am(λ))) and of Z :
λ 7→ (z1(λ), . . . , zm(λ)) intersect transversely (resp. along an ana-
lytic subset of Λ × Pk of codimension km) at λ0.
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In this section, we prove the following:

Theorem 2.2. — Let (f, a1, . . . , am) be a dynamical (m+1)-tuple of Pk
of degree d parametrized by Λ with km ⩽ dim Λ.

Then the support of T kf,a1
∧ · · · ∧ T kf,am

coincides with the closure of the
set of parameters at which a1, . . . , am are transversely J-prerepelling.

Remark. — The hypothesis on the dimension of the parameter space
looks a priori artificial, but transversely J-prerepelling parameters form an-
alytic subsets of codimension km. In particular, it is not clear to me that you
can prove the existence (and thus the Zariski density) of such parameters if
dim Λ < km.

2.1. Properly prerepelling marked points bifurcate

First, we give a quick proof of the fact that properly J-prerepelling pa-
rameters belong to the support of T kf,a1

∧ · · · ∧T kf,am
, without any additional

assumption.

Theorem 2.3. — Let (f, a1, . . . , am) be a dynamical (m + 1)-tuple of
Pk of degree d parametrized by Λ with km ⩽ dim Λ. Pick any parameter
λ0 ∈ Λ such that a1, . . . , am are properly J-prerepelling at λ0. Then λ0 ∈
supp

(
T kf,a1

∧ · · · ∧ T kf,am

)
.

The proof of this result is an adaptation of the strategy of Buff and
Epstein [8] and the strategy of Berteloot, Bianchi and Dupont [4], see also [1,
21]. Since it follows closely that of [1, Theorem B], we shorten some parts of
the proof.

Before giving the proof of Theorem 2.3, remark that our properness as-
sumption is equivalent to saying that the local hypersurfaces

Xj := {λ ∈ Λ : f
qj

λ (aj(λ)) = zj(λ)}

intersecting at λ0 satisfy codim
(⋂

j Xj

)
= km.

Proof of Theorem 2.3. — According to [21, Lemma 6.3], we can reduce
to the case when Λ is an open set of Ckm. Take a small ball B centered at λ0
in Λ. Up to reducing B, we can assume zj(λ) can be followed as a repelling
periodic point of fλ for all λ ∈ B. Up to reducing B, our assumption is
equivalent to the fact that

⋂
j Xj = {λ0}.

We let µ := T kf,a1
∧ · · · ∧ T kf,am

. Our aim here is to exhibit a basis of
neighborhood {Ωn}n of λ0 in B with µ(Ωn) > 0 for all n. For any m-tuple
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n := (n1, . . . , nm) ∈ (N∗)m, we let
Fn : Λ × (Pk)m −→ Λ × (Pk)m

(λ, z1, . . . , zm) 7−→ (λ, fn1
λ (z1), . . . , fnm

λ (zm)) .
For a m-tuple n = (n1, . . . , nm) of positive integers, we set

|n| := n1 + · · · + nm .

We also denote
An(λ) := (fn1

λ (a1(λ)), . . . , fnm

λ (am(λ))) , λ ∈ Λ.
As in [1], we have the following.

Lemma 2.4. — For any m-tuple n = (n1, . . . , nm) of positive integers,
we let Γn be the graph in Λ × (Pk)m of An. Then, for any Borel set B ⊂ Λ,
we have

µ(B) = d−k·|n|
∫
B×(Pk)m

(
m∧
j=1

(πj)∗
(
T̂ k
))

∧
[
Γn
]
.

Suppose that the point zj is rj-periodic. For the sake of simplicity, we
let in the sequel An := Aq+nr, where q = (q1, . . . , qm), r = (r1, . . . , rm) are
given as above and q + nr = (q1 + nr1, . . . , qm + nrm). Again as above, we
let Γn be the graph of An.

Let z := (z1, . . . , zm) and fix any small open neighborhood Ω of λ0 in Λ.
Set

In :=
∫

Ω×(Pk)m

(
m∧
j=1

(πj)∗
(
T̂ k
))

∧ [Γn] .

Since zj(λ) is repelling and periodic for fλ for all λ ∈ B (if B has been
chosen small enough), there exists a constant K > 1 such that

dPk (frj

λ (z), frj

λ (w)) ⩾ K · dPk (z, w)
for all z, w ∈ B(zj(λ0), ϵ) and all λ ∈ B for some given ϵ > 0. In particular,
if Sn is the connected component of Γn ∩ Λ × Bmϵ (z) containing (λ0, z), the
current [Sn] is vertical-like in Λ ×Bmϵ (z) and there exists n0 ⩾ 1 and a basis
of neighborhood Ωn of λ0 in Λ such that

supp([Sn]) = Sn ⊂ Ωn × Bmϵ (z),
for all n ⩾ n0.

Let S be any weak limit of the sequence [Sn]/∥[Sn]∥. Then S is a closed
positive (mk,mk)-current of mass 1 in B × Bmϵ (z) with supp(S) ⊂ {λ0} ×
Bmϵ (z). Hence S = M ·[{λ0}×Bmϵ (z)], where M−1 > 0 is the volume of Bmϵ (z)
for the volume form

∧
j(ωkj ), where ωj = (pj)∗ωPk and pj : (Pk)m → Pk is

the projection on the j-th coordinate.
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As a consequence, [Sn]/∥[Sn]∥ converges weakly to S as n → ∞ and, since
the (mk,mk)-current

∧m
j=1(πj)∗(T̂ k) is the wedge product of (1, 1)-currents

with continuous potentials, we have
m∧
j=1

(πj)∗
(
T̂ k
)

∧ [Sn]
∥[Sn]∥ −→

m∧
j=1

(πj)∗
(
T̂ k
)

∧ S

as n → +∞. Whence

lim inf
n→∞

(
∥[Sn]∥−1 · In

)
⩾ lim inf

n→∞

∫ m∧
j=1

(πj)∗
(
T̂ k
)

∧ [Sn]
∥[Sn]∥

⩾
∫ m∧

j=1
(πj)∗

(
T̂ k
)

∧ S

By the above, this gives

lim inf
k→∞

(
∥[Sn]∥−1 · In

)
⩾M ·

∫
[{λ0} × Bmϵ (z)] ∧

m∧
j=1

(πj)∗
(
T̂ k
)
,

In particular, there exists n2 ⩾ n1 such that for all n ⩾ n2,

∥[Sn]∥−1 · In ⩾
M

2 ·
∫

[{λ0} × Bmϵ (z)] ∧
m∧
j=1

(πj)∗
(
T̂ k
)
.

Finally, since [Sn] is a vertical-like current, up to reducing ϵ > 0, Fubini
Theorem gives

lim inf
n→∞

∥[Sn]∥ ⩾
m∏
j=1

∫
B(zj ,ϵ)

ωkFS ⩾
(
c · ϵ2k

)m
> 0 .

Up to increasing n0, we may assume ∥[Sn]∥ ⩾ (cϵ2k)m/2 for all n ⩾ n0.
Letting α = M(cϵ2k)m/4 > 0, we find∫

Ω×(Pk)m

(
m∧
j=1

(πj)∗
(
T̂ k
))

∧ [Γn] ⩾ α

∫
[{λ0} × Bmϵ (z)] ∧

m∧
j=1

(πj)∗
(
T̂ k
)
.

To conclude the proof of Theorem 2.3, we rely on the following purely
dynamical result, which is an immediate adaptation of [1, Lemma 3.5].

Lemma 2.5. — For any δ > 0 and x = (x1, . . . , xm) ∈ (supp(µλ0))m, we
have ∫

[{λ0} × Bmδ (x)] ∧
m∧
j=1

(πj)∗
(
T̂ k
)

=
m∏
j=1

µλ0(B(xj , δ)) > 0.
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We can now conclude the proof of Theorem 2.3. Pick any open neighbor-
hood Ω of λ0 in Λ. By the above and Lemma 2.5, we have an integer n0 ⩾ 1
and constants α, ϵ > 0 such that for all n ⩾ n0,

µ(Ω) ⩾ α · d−k(|q|+n|r|)
m∏
j=1

µf (B(zj , ϵ)) > 0 .

In particular, this yields µ(Ω) > 0. By assumption, this holds for a basis of
neighborhoods of λ0 in Λ, whence we have λ0 ∈ supp(µ). □

2.2. Density of transversely prerepelling parameters

To finish the proof of Theorem 2.2, it is sufficient to prove that any point
of the support of T kf,a1

∧ · · · ∧ T kf,am
an be approximated by transversely J-

prerepelling parameters. We follow the strategy of the proof of Theorem 0.1
of [15] to establish this approximation property. Precisely, we prove here the
following.

Theorem 2.6. — Let (f, a1, . . . , am) be a dynamical (m+1)-tuple of Pk
of degree d parametrized by Λ with km ⩽ dim Λ.

Then, any parameter λ ∈ Λ lying in the support of the current T kf,a1
∧

· · ·∧T kf,am
can be approximated by parameters at which a1, . . . , am are trans-

versely J-prerepelling.

We rely on the following property of PLB measures (see [14]):

Lemma 2.7. — Let ν be PLB with compact support in a bounded open
set W ⊂ Ck and let ψ be a psh function on Ck. The function Gψ defined by

Gψ(z) :=
∫
ψ(z − w) dν(w), z ∈ Ck,

is psh and locally bounded on Ck.

Proof of Theorem 2.6. — We follow the strategy of the proof of [15,
Theorem 0.1]. Write µ := T kf,a1

∧ · · · ∧ T kf,am
and pick λ0 ∈ supp(Ω).

According to Proposition 1.5, there exists an integer m ⩾ 1 and a fmλ0
-

compact set K ⊂ Pk contained in a ball and N ⩾ 2 such that

• fmλ0
|K is uniformly hyperbolic and repelling periodic points of fmλ0

are dense in K,
• there exists a unique probability measure ν supported on K such

that (fmλ0
|K)∗ν = Nν which is PLB.
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Since K is hyperbolic, there exists ϵ > 0 and a unique holomorphic motion
h : B(λ0, ϵ) × K → Pk which conjugates the dynamics, i.e. h is continuous
and such that

• for all λ ∈ B(λ0, ϵ), the map hλ := h(λ, ·) : K → Pk is injective and
hλ0 = idK ,

• for all z ∈ K, the map λ ∈ B(λ0, ϵ) 7→ hλ(z) ∈ Pk is holomorphic,
and

• for all (λ, z) ∈ B(λ0, ϵ) ×K, we have hλ ◦ fmλ0
(z) = fmλ ◦ hλ(z),

see e.g. [27, Theorem 2.3 p. 255] or [4, Appendix A.1].

For all z := (z1, . . . , zm) ∈ Km, we denote by Γz the graph of the holo-
morphic map λ 7→ (hλ(z1), . . . , hλ(zm)).

We define a closed positive (km, km)-current on B(λ0, ϵ) × (Pk)m by let-
ting

ν̂ :=
∫
Km

[Γz]dν⊗m(z),

where Γz = {(λ, hλ(z1), . . . , hλ(zm)) : λ ∈ B(λ0, ϵ)} for all z = (z1, . . . , zm) ∈
Km.

Claim. — There exists a (km−1, km−1)-current U on B(λ0, ϵ)×(Pk)m
which is locally bounded and such that ν̂ = ddcU .

Recall that we have set an(λ) := (fnλ (a1(λ)), . . . , fnλ (am(λ))). We define
a∗
nν̂ by

a∗
nν̂ := (π1)∗ (ν̂ ∧ [Γan

]) ,
where π1 : B(t0, ϵ) × (Pk)m → B(t0, ϵ) is the canonical projection onto the
first coordinate. According to the claim, locally we have ν̂ = ddcU , for some
bounded (km− 1, km− 1)-current U . In particular, we get a∗

nν̂ = a∗
n(ddcU),

as expected.

Let ω be the Fubini–Study form of Pk and Ω̂ := (π2)∗(ωk ⊗ · · · ⊗ ωk),
where π2 : B(λ0, ϵ) × (Pk)m → (Pk)m is the canonical projection onto the
second coordinate. Then

ν̂ − Ω̂ = ddcV

where V is bounded on B(λ0, ϵ) × (Pk)m, hence

d−kmna∗
n(ν̂) − d−kmna∗

n(Ω̂) = d−kmna∗
n(ddcV ).

On the other hand, we have 1
dkm f̂

∗(Ω̂) = Ω̂+ddcW , where W is bounded on
B(λ0, ϵ) × (Pk)m, hence 1

dkmn (f̂n)∗(Ω̂) = ω̂ + ddcWn, where Wn − Wn+1 =
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O(d−n). In particular, 1
dn (f̂n)∗(Ω̂) ∧ [Γa] = d−n

(
Ω̂ ∧ [Γan

]
)

+ ddcO(d−n),

hence µ = limn d
−kmna∗

n(Ω̂). This yields

lim
n→∞

d−nkm(π1)∗ (ν̂ ∧ [Γan ]) = µ.

We now use [15, Theorem 3.1]: as (2km, 2km)-currents on B(λ0, ϵ)(Pk)m,

ν̂ ∧ [Γan
] =

∫
Km

[Γz] ∧ [Γan
]dν⊗m(z)

and only the geometrically transverse intersections are taken into account,
i.e. for ν⊗m-a.e. z ∈ Km, the graphs Γz and Γan

intersect transversely.
In particular, this means there exists a sequence of parameters λn → λ0
and zn ∈ Km such that the graph of an and Γzn intersect transversely
at λn. Now, since repelling periodic points of fmλ0

are dense in K, there
exists zn,j → zn as j → ∞, where zj,n ∈ Km and (fmλ0

, . . . , fmλ0
)-periodic

repelling. Since zj,n(λ) := (hλ, . . . , hλ)(zj,n) remains in (hλ, . . . , hλ)(Km)
and remains periodic, it remains repelling for all λ ∈ B(λ0, ϵ). By persistence
of transverse intersections, for j large enough, there exists λj,n where Γan

and Γzj,n
intersect transversely and λj,n → λn as j → ∞ and the proof is

complete. □

To finish this section, we prove the Claim.

Proof of the Claim. — Since the compact set K is contained in a ball,
we can choose an affine chart Ck such that K ⋐ Ck and, up to reduc-
ing ϵ > 0, we can assume Kλ = hλ(K) ⋐ Ck for all λ ∈ B(λ0, ϵ). Let
(x1

1, . . . , x
1
k, . . . , x

m
1 , . . . , x

m
k ) = (x1, . . . , xm) be the coordinates of (Ck)m and

let hλ,i be the i-th coordinate of the function hλ.

For all 1 ⩽ i ⩽ k and 1 ⩽ j ⩽ m, we define a psh function Ψj
i on

B(λ0, ϵ) × (Ck)m by letting

Ψj
i (t, w) :=

∫
Km

log |wji − ht,i(zj)|dν⊗m(z).

According to Lemma 2.7 and Proposition 1.5, we have

Ψj
i ∈ L∞

loc
(
B(λ0, ϵ) × (Ck)m

)
.

Moreover, according to [15, Theorem 3.1], we have

ν̂ =
∧
i,j

ddcΨj
i = ddc

(
Ψ1

1 ·
∧
i,j>1

ddcΨj
i

)
.

Since the functions Ψj
i are locally bounded, this ends the proof. □
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3. Local properties of bifurcation measures

3.1. A renormalization procedure

Pick k,m ⩾ 1 and let B(0, ϵ) be the open ball centered at 0 of radius ϵ in
Ckm and let (f, a1, . . . , am) be a dynamical (m+ 1)-tuple of degree d of Pk
parametrized by B(0, ϵ).

Assume there are m holomorphically moving J-repelling periodic points
z1, . . . , zm : B(0, ϵ) → Pk of respective period qj ⩾ 1 with fnj

0 (aj(0)) = zj(0).
We also assume that (a1, . . . , am) are transversely prerepelling at 0 and that
zj(λ) is linearizable for all λ ∈ B(0, ϵ) for all j. Let q := lcm(q1, . . . , qm) and

Lλ := (Dz1(λ)(fqλ), . . . , Dzm(λ)(fqλ)) :
m⊕
j=1

Tzj(λ)Pk −→
m⊕
j=1

Tzj(λ)Pk

and denote by ϕλ = (ϕλ,1, . . . , ϕλ,m) : (Ck, 0) → ((Pk)m, (z1(λ), . . . , zm(λ))),
where ϕλ,j is the linearizing coordinate of fqλ at zj(λ).

Denote by πj : (Pk)m → Pk the projection onto the j-th factor. Up to
reducing ϵ > 0, we can also assume there exists rj > 0 independent of λ such
that

fqλ ◦ ϕλ,j(z) = ϕλ,j ◦Dzj(λ)(f
qj

λ )(z), z ∈ B(0, rj),
and D0ϕλ,j : Ck → Tzj(λ)Pk is an invertible linear map. Up to reducing
again ϵ, we can also assume fnj

λ (aj(λ)) always lies in the range of ϕλ,j for all
1 ⩽ j ⩽ m. Recall that we denoted an(λ) = (fn1

λ (a1(λ)), . . . , fnm

λ (am(λ))),
where n = (n1, . . . , nm) and for λ ∈ B(0, ϵ), let

h(λ) := ϕ−1
λ ◦ an(λ)

=
(
ϕ−1
λ,1 (fn1

λ (a1(λ))) , . . . , ϕ−1
λ,m (fnm

λ (am(λ)))
)
.

Lemma 3.1. — The map h : B(0, ϵ) → (Ckm, 0) is a local biholomor-
phism at 0.

Proof. — Recall that fnj

0 (aj(0)) = zj(0). Write h = (h1, . . . , hm) with
hj : B(0, ϵ) → (Ck, 0) and let bj(λ) := f

nj

λ (aj(λ)) for all λ ∈ B(0, ϵ) so that
bj(λ) = ϕλ,j ◦ hj(λ) for all λ ∈ B(0, ϵ). Since ϕλ,j(0) = zj(λ), differentiating
and evaluating at λ = 0, we find

D0bj = D0zj +D0ϕ0,j ◦D0hj .

Now our tranversality assumption implies that

L := ((D0b1 −D0z1), . . . , (D0bm −D0zm)) : Ckm −→
m⊕
j=1

Tzj(0)Pk
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is invertible. As a consequence, the linear map
D0h = (D0h1, . . . , D0hm) = −(D0ϕ0)−1 ◦ L : Ckm −→ Ckm

is invertible, ending the proof. □

Up to reducing again ϵ, we assume h is a biholomorphism onto its im-
age and let r := h−1 : h(B(0, ϵ)) → B(0, ϵ). Fix δ1, . . . , δm > 0 so that
BCk (0, δ1) × · · · × BCk (0, δm) ⊂ h(B(0, ϵ)).

Finally, let Ω := BCk (0, δ1) × · · · × BCk (0, δm) and, for any n ⩾ 1, let
rn(x) := r ◦ L−n

0 (x), x ∈ BCk (0, δ1) × · · · × BCk (0, δm).
The main goal of this paragraph is the following.

Proposition 3.2. — In the weak sense of measures on Ω, we have
m∏
j=1

dk(nj+nq) · (rn)∗ (T kf,a1
∧ · · · ∧ T kf,am

)
−→
n→∞

(ϕ0)∗

(
m∧
j=1

(πj)∗µf0

)
.

In plain words, we are proving that near the parameter 0, the bifurcation
measure is asymptotic to the maximal entropy measure (viewed through the
linearizing coordinate). This is a measurable asymptotic similarity property.

To simplify notations, we let
a(n) := an+nq, with n+ nq = (n1 + nq, . . . , nm + nq).

Lemma 3.3. — The sequence (a(n) ◦ rn)n⩾1 converges uniformly to ϕ0
on Ω.

Proof. — Note first that

a(0) ◦ r(x) =
(
fn1
r(x)(a1(r(x))), . . . , fnm

r(x)(am(r(x)))
)

= ϕr(x)(x), x ∈ Ω,

by definition of r.

By definition, the sequence (rn)n⩾1 converges uniformly and exponen-
tially fast to 0 on Ω, since we assumed z1(0), . . . , zm(0) are repelling pe-
riodic points and since r(0) = 0. Moreover, Lrn

→ L0 and ϕrn(x) → ϕ0
exponentially fast. In particular,

lim
n→∞

Lnrn(x) ◦ L−n
0 (x) = x

and the convergence is uniform on Ω. Fix x ∈ Ω. Then
a(n) ◦ rn(x) = (fqnrn(x), . . . , f

qn
rn(x))

(
a(0) ◦ r ◦ L−n

0 (x)
)

= (fqnrn(x), . . . , f
qn
rn(x)) ◦ ϕrn(x)

(
L−n

0 (x)
)

= ϕrn(x)

(
Lnrn(x) ◦ L−n

0 (x)
)

and the conclusion follows. □
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Proof of Proposition 3.2. — Recall that we can assume there exists a
holomorphic family of non-degenerate homogeneous polynomial maps Fλ :
Ck+1 → Ck+1 of degree d such that, if π : Ck+1 \ {0} → Pk is the canonical
projection, then

π ◦ Fλ = fλ ◦ π on Ck+1 \ {0}.
For 1 ⩽ j ⩽ m, let ãj : B(0, ϵ) → Ck+1 \ {0} be a lift of aj , i.e. aj = π ◦ ãj .
Recall that

m∧
j=1

T kaj
=

m∧
j=1

(ddcGλ(ãj(λ)))k .

For 1 ⩽ j ⩽ m, pick a open set Uj ⊂ Pk such that ϕ0,j(BCk (0, δj)) ⋐ Uj
and such that there exists a section σj : Uj → Ck+1 \ {0} of π on Uj . Let
U := U1 × · · · × Uk and σ := (σ1, . . . , σk) : U → (Ck+1 \ {0})m so that
ϕ0(Ω) ⋐ U . According to Lemma 3.3, there exists n0 ⩾ 1 such that

a(n) ◦ rn(Ω) ⋐ U.

In other words, for any x ∈ Ω, any 1 ⩽ j ⩽ m and any n ⩾ n0,

an,j(x) := f
nj+nq
rn(x) (aj ◦ rn(x)) ∈ Uj .

Moreover, for all x ∈ Ω, we have

π ◦ Fnj+nq
rn(x) (ãj ◦ rn(x)) = f

nj+nq
rn(x) ◦ π(ãj ◦ rn(x)) = f

nj+nq
rn(x) (aj ◦ rn(x))

= π ◦ σj
(
an,j(x)

)
.

In particular, there exists a holomorphic function un,j : Ω → C∗ such that

F
nj+nq
rn(x) (ãj ◦ rn(x)) = un,j(x) · σj ◦ an,j(x)

and

dnq+njGrn(x) (ãj ◦ rn(x)) = Grn(x)

(
F
nj+nq
rn(x) (ãj ◦ rn(x))

)
= Grn(x)

(
σj ◦ an,j(x)

)
+ log |un,j(x)|,

for all x ∈ Ω. Since log |un,j | is pluriharmonic on Ω, the above gives

dnq+nj (rn)∗Tf,aj = ddcGrn(x)
(
σj ◦ an,j(x)

)
,

so that

µn :=
m∏
j=1

dk(nj+nq) · (rn)∗ (T kf,a1
∧ · · · ∧ T kf,am

)
=

m∧
j=1

(
ddcGrn(x)

(
σj ◦ an,j(x)

))k
.
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Using again Lemma 3.3 gives

µn −→
n→∞

m∧
j=1

(ddcG0 (σj ◦ ϕ0,j(x)))k =
m∧
j=1

(ϕ0,j)∗µf0 .

This ends the proof since ϕ0,j = πj ◦ ϕ0 by definition of ϕ0. □

3.2. Families with an absolutely continuous bifurcation measure

Fix integers k,m ⩾ 1 and d ⩾ 2. The following is a consequence of the
above renormalization process.

Proposition 3.4. — Let (f, a1, . . . , am) be a dynamical (m + 1)-tuple
of degree d of Pk parametrized by the unit Ball B of Ckm. Assume that
a1, . . . , am are transversely J-prerepelling at 0 to a J-repelling cycle of f0
which moves holmorphically in B as a J-repelling cycle of fλ which is lin-
earizable for all λ ∈ B. Assume in addition that the measure µ := T kf,a1

∧
· · · ∧ T kf,am

is absolutely continuous with respect to the Lebesgue measure on
B and the Radon–Nikodym derivative dµ

d Leb is continuous and > 0 near 0.

Then the measure µf0 is non-singular with respect to ωkPk .

Proof. — By assumption, we can write µ = h · Leb where h : B → R+ is
a continuous function. Let Ω := BCk (0, δ1) × · · · × BCk (0, δm), rn and ϕ0 be
given as in Section 3.1. We can apply Proposition 3.2:

m∏
j=1

dk(nj+nq)h ◦ rn · (rn)∗Leb =
m∏
j=1

dk(nj+nq) · (rn)∗µ

−→
n→∞

(ϕ0)∗

(
m∧
j=1

(πj)∗µf0

)
.

Since ϕ0(0) = (z1(0), . . . , zm(0)) ∈ (supp(µf0))k, the measure

(ϕ0)∗

(
m∧
j=1

(πj)∗µf0

)
has (finite) strictly positive mass in Ω. In particular, the measure

dknqm · (rn)∗ (h · Leb) = dknqm · (h ◦ rn) ·
(
Λ−n

0
)∗ (r∗Leb)

converges to a non-zero finite mass positive measure on Ω. As r is a local
holomorphic diffeomorphism, there exists a neighborhood of 0 in B such that
we have r∗Leb = v · Leb for some smooth function v > 0. Whence

dknqm · (rn)∗Leb = dknqm · (h ◦ rn) · (v ◦ Λ−n
0 )

(
Λ−n

0
)∗ (Leb) .
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By the change of variable formula and Fubini,(
Λ−n

0
)∗ (Leb) =

m∏
j=1

|detDzj(0)(fq0 )|−2nk · Leb .

For all n, define a continuous function αn : B → R+ by letting

αn(x) := dknqm
m∏
j=1

|detDzj(0)(fq0 )|−2nk · (h ◦ rn(x)) · (v ◦ Λ−n
0 (x)) ∈ R+.

By assumption, the measure αn · Leb converges weakly on Ω to a non-zero
finite positive measure, whence αn → α∞, as n → ∞, where α∞ : Ω → R+
is not identically zero. As a consequence,

(ϕ0)∗

(
m∧
j=1

(πj)∗µf0

)
= α∞ · Leb.

Using again Fubini, on Ω, we find

(ϕ0)∗

(
m∧
j=1

(πj)∗µf0

)
= α∞ · LebCk ⊠ · · · ⊠ LebCk .

Finally, since as positive measures on ϕ0(Ω), we have
m∧
j=1

(πj)∗µf0 = µf0 ⊠ · · · ⊠ µf0 ,

the measure µf0 is absolutely continuous with respect to Leb in an open
set. □

We now want to deduce Theorem D from the above, using [29] when
k = 1 and [5] when k > 1. In fact, they prove that f is a Lattès map if
and only if the sum of its Lyapunov exponents L(f) =

∫
Pk log|det(Df)|µf is

equal to k
2 log d. We use this characterization to prove Theorems C and D.

Proof of Theorems C & D. — Assume first that µf,a is absolutely con-
tinuous with respect to ωk with a continuous Radon–Nikodym derivative on
M \ Z, where Z is an analytic subvariety. Let T be the set of parameters
λ ∈ M such that a is transversely J-prerepelling at λ. The set T is dense in
M by Theorem 2.2. Recall that all repelling cycles of an endomorphism of P1

are linearizable and that we assumed all repelling J-cycle to be linearizable
when k > 1. We thus can apply Proposition 3.4 at all λ ∈ T outside an
analytic subvariety Z of M : this gives that µfλ

is non-singular with respect
to ωkPk for all λ ∈ T ′ = T \ Z.

We then apply Zdunik or Berteloot–Dupont Theorem (depending on
wether k = 1 or k > 1): the measure µfλ

is non-singular with respect to
ωkPk if and only if fλ is a Lattès example. We have proven there exists a
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countable subset T ′ which is dense in M such that the map fλ is a Lattès
map for all λ ∈ T ′. In particular, L(fλ) = k

2 log d for all λ ∈ T ′. As the
function λ ∈ M 7→ L(fλ) is continuous and T ′ is dense in M , this implies
L(fλ) = k

2 log d for all λ ∈ M , i.e. fλ is a Lattès map for all λ ∈ M .

To conclude, we assume f is a family of Lattès maps and the measure
µf,a is not identically zero. Let ωPk be the Fubini–Study form on Pk. For all
λ ∈ M , there exists a function uλ : Pk → R+ ∪ {+∞} such that

µfλ
= uλ · ωkPk .

Let u(λ, z) := uλ(z) for all (λ, z) ∈ M × Pk. The above can be expressed as

T̂ = u · ω̂k,

where ω̂ = π∗
Pk (ωPk ) and πPk : M × Pk → Pk is the canonical projection.

Up to taking a branched cover M ′ → M , there exists

• a family of abelian varieties π : A → M , i.e. a holomorphic map
such that Aλ := π−1{λ} is an abelian variety of dimension k,

• a finite branched Galois cover Θ : A → M × Pk such that Θ|Aλ
:

Aλ → {λ} × Pk is a finite branched Galois cover and
• an integer n ⩾ 2 such that Θ◦[n] = f̂ ◦Θ, where f̂(λ, z) := (λ, fλ(z))

and [n] is the fiberwise multiplication by n.

There exists a closed positive (1, 1)-current Ω on A which is smooth and
such that Ωk|Aλ

is the Haar measure of Aλ. One can, for example construct
Ω as

Ω := lim
N→∞

1
N2 [N ]∗α,

where α is any relatively ample continuous form. It is known that, in this
case, T̂ k = Θ∗(Ωk), so that T̂ k is smooth outside the set V(Θ) of critical
values of the map Θ, which form an analytic subvariety of M × Pk, i.e. u is
smooth on M × Pk \ V(Θ).

Let σ : M → M × Pk be the map given by σ(λ) := (λ, a(λ)), for λ ∈ M .
Take now a local chart U ⊂ M and a local chart V ⊂ Pk so that a(U) ⊂ V
and ωPk = ddcv on V where v is smooth. In U × V , the above gives

(πΛ)∗

(
T̂ k ∧ [Γa]

)
= (πΛ)∗

(
u · (ddcλ,zv(z))k ∧ [Γa]

)
= u(λ, a(λ)) (ddcλ(v ◦ a(λ)))k .

Letting h(λ) := u(λ, a(λ)) and w(λ) := v ◦ a(λ), w is smooth and

µf,a = h · (ddcw)k on U.

Since h is smooth on U \ σ−1(V(Θ)), the conclusion follows. □
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Remark. — Note that if (f, a) is an algebraic dynamical pair, M is a
quasiprojective variety, a is a rational function and the map π from the
proof is a morphism. Since Z := σ−1(V(Θ)) is the pull-back of an algebraic
subvariety by a section of π, the set Z is an algebraic subvariety of M .

4. Proof of the main result and concluding remarks

4.1. J-stability and bifurcation of dynamical pairs on P1

Recall that a family f : Λ×P1 −→ P1 of degree d rational maps of P1 is J-
stable if all the repelling cycles can be followed holomorphically throughout
the whole family Λ, i.e. if for all n ⩾ 1, there exists N ⩾ 0 and holomorphic
maps z1, . . . , zN : Λ → P1 such that {z1(λ), . . . , zN (λ)} is exactly the set of
all repelling cycles of fλ of exact period n for all λ ∈ Λ.

Recall also that an endomorphism of P1 has a unique measure of maximal
entropy µf and let L(f) :=

∫
P1 log |f ′|µf be the Lyapunov exponents of f

with respect to µf . By a classical result of Mañé, Sad and Sullivan [24], it
is also locally equivalent to the existence of a unique holomorphic motion of
the Julia set which is compatible with the dynamics, i.e. for λ0 ∈ Λ, there
exists h : Λ × Jfλ0

−→ Λ × P1 such that

• for any λ ∈ Λ, the map hλ := h(λ, ·) : Jfλ0
−→ P1 is a homeo-

morphism which conjugates fλ0 to fλ, i.e. hλ ◦ fλ0 = fλ ◦ hλ on
Jfλ0

,
• for any z ∈ Jfλ0

, the map λ 7→ hλ(z) is holomorphic on Λ,
• hλ0 is the identity on Jfλ0

.

Lemma 4.1. — Let (f, a) be any dynamical pair of P1 of degree d ⩾ 2
parametrized by the unit disk D. If f is J-stable and supp(µf,a) ̸= ∅, we have

supp(µf,a) = {λ ∈ D : a(λ) ∈ Jfλ
}.

Proof. — Since Bif(f, a) = supp(µf,a) ̸= ∅, the set D of parameters λ0 ∈
D such that a is transversely prerepelling at λ0 is a non-empty countable
dense subset of Bif(f, a). As J-repelling points of fλ0 are contained in Jfλ0

,
this gives Bif(f, a) ⊂ {λ ∈ D : a(λ) ∈ Jfλ

}.

Pick now λ0 ∈ {λ ∈ D : a(λ) ∈ Jfλ
} and assume λ0 /∈ Bif(f, a). Set

an(λ) := fnλ (a(λ)) for all n ⩾ 0 and all λ ∈ D. Let h : D × Jf0 → P1

be the unique holomorphic motion of Jf0 parametrized by D such that, if
hλ := h(λ, · ), then

hλ ◦ f0 = fλ ◦ hλ on Jf0 .
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Note that for all z ∈ Jf0 , the sequence {λ 7→ hλ(fn0 (z))}n is a normal family
on D.

Beware that for all periodic point z ∈ Jf0 of f0, the function z(λ) :=
hλ(z) is a marking of z as a periodic point of fλ. For all s ∈ D, if we let
hsλ := hλ ◦ h−1

s . The family (hsλ)λ is a holomorphic motion of Jfs
which

satisfies
hsλ ◦ fs = fλ ◦ hsλ on Jfs

,

for all λ ∈ D(s, 1 − |s|). Since we assumed λ0 /∈ Bif(f, a), there exists ϵ > 0
such that D(λ0, ϵ)∩Bif(f, a) = ∅ and we can choose an affine chart of P1 such
that an(λ) and hλ0

λ (an(λ0)) lie in this chart for all n ⩾ 1 and all λ ∈ D(λ0, ϵ).
For all n, set

sn(λ) := an(λ) − hλ0
λ (an(λ0)), λ ∈ D(λ0, ϵ).

Assume first sm ≡ 0 on D(λ0, ϵ) for some m ⩾ 0. This implies am(λ) =
hλ(am(0)) for all λ ∈ D(λ0, ϵ). By the Isolated Zero Theorem, we thus have

am(λ) = hλ(am(0)) for all λ ∈ D.

As hλ◦f0 = fλ◦hλ, this yields an(λ) ≡ hλ(an(0)) for all n ⩾ m, and (an) is a
normal family on D. This is a contradiction, since we assumed Bif(f, a) ̸= ∅.
We thus may assume sm ̸≡ 0 on D(λ0, ϵ). In particular, up to reducing ϵ,
we may assume sm(λ) ̸= 0 for all λ ∈ D(λ0, ϵ) \ {λ0}. Let z0 := am(λ0). By
Rouché Theorem, there exists η > 0 such that for any z ∈ D(z0, η) ∩ Jfλ0

,
the function

sm,z(λ) := am(λ) − hλ0
λ (z)

has finitely many isolated zeros in D(λ0, ϵ). As repelling periodic points are
dense in Jfλ0

, there exists z1 ∈ D(z0, η) ∩ Jfλ0
which is fλ0 -periodic and

repelling. The implies there exists λ1 ∈ D(λ0, ϵ) such that a is properly
prerepelling at λ1. Finally, Theorem 2.3 (or simply Montel Theorem in this
case) gives λ1 ∈ Bif(f, a) ending the proof. □

Using Montel theorem, one can deduce Theorem A.

Proof of Theorem A. — Assume first f is J-stable. Note first that Jfλ
=

P1 is true for some λ ∈ Λ if and only if it is true for all λ ∈ Λ in this case.

Assume now that Jfλ
̸= P1 for all λ ∈ Λ. Denote by Ffλ

:= P1 \ Jfλ
the

Fatou set of fλ. By [26, Theorem 7.8], there exists a countable union of proper
analytic subvariety S ⊂ Λ such that Λ \ S is open and, for any topological
disk D ⊂ Λ \ S (centered at some λ0), there exists a unique holomorphic
motion ϕ : D×P1 → P1 which conjugates fλ0 to fλ on P1. In particular the
set {(λ, z) ∈ D × P1 : z ∈ Ffλ

} is a non-empty open subset of D × P1. As
we assumed Bif(f, a) = Λ, the sequence {λ 7→ fnλ (a(λ))}n⩾1 is not a normal
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family on D. By Montel Theorem, there exists n ⩾ 1, 1 ⩽ i ⩽ p and λ1 ∈ D
such that fnλ1

(a(λ1)) ∈ Ffλ1
, hence a(λ1) ∈ Ffλ1

. However, Lemma 4.1 gives
D = Bif(f, a) ∩D = {λ ∈ D : a(λ) ∈ Jfλ

},
whence a(λ1) ∈ Jfλ1

. This is a contradiction. This implies Jfλ
= P1 for all

λ ∈ Λ. Finally, by Lemma V.1 of [24], if f is not trivial, this implies fλ has
an invariant linefield on its Julia set for all λ ∈ Λ.

If f is not J-stable, by Montel Theorem, there exists a non-empty open set
U of Λ such that (fλ)λ∈U is J-stable with an attracting periodic z1, . . . , zp of
period p ⩾ 3, and we proceed as follows: pick a topological disk D ⊂ U . Then
there exists holomorphic functions z1, . . . , zp : D → P1 which paramerize this
attracting cycle. In particular, zi(λ) ̸= zj(λ) for all i ̸= j and all λ ∈ D. Since
we assumed Bif(f, a) = Λ, the sequence {λ 7−→ fnλ (a(λ))}n⩾1 is not a normal
family on D. By Montel Theorem, there exists n ⩾ 1, 1 ⩽ i ⩽ p and λ0 ∈ D
such that

fnλ0
(a(λ0)) = zi(λ0).

By Lemma 4.1, since λ0 ∈ Bif(f, a) this implies zi(λ0) ∈ Jfλ0
. This is a

contradiction with the fact that zi is attracting. □

4.2. Proof of Theorem B and the isotrivial case

Proof of Theorem B. — Remark that points (1) and (2) are equivalent
by Theorem 2.2. We first prove (1) implies (4). Assume Bif(f, a) = Λ. By
Theorem A the family f is J-stable. As Λ is a quasi-projective manifold,
by [25, Theorem 2.4], since f is not isotrivial, f is a family of Lattès maps.

We now prove (4) implies (1). We thus assume that f is a non-isotrivial
family of Lattès and that µf,a is non-zero. Recall that, since f is a family
of Lattès maps, it is stable. By Lemma 4.1, the set Bif(f, a) coincides with
{λ ∈ Λ : a(λ) = Jfλ

} = Λ since Jfλ
= P1 for all λ ∈ Λ.

The equivalence between (3) and (4) follows from Theorem C and the
equivalence between (1) and (4). □

Recall that when f is isotrivial, either Jfλ
= P1 for all λ, or Jfλ

̸= P1 for
all λ. We conclude this section with the following easy proposition, which
clarifies the case when f is isotrivial.

Proposition 4.2. — Let f be an isotrivial algebraic family parametrized
by an irreducible quasiprojective curve Λ and let a : Λ → P1 be such that the
pair (f, a) is unstable. The following are equivalent:

(1) the Julia set of fλ is Jfλ
= P1 for all λ ∈ Λ,
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(2) the bifurcation locus of (f, a) contains a non-empty open set,
(3) the bifurcation locus of (f, a) is Bif(f, a) = Λ.

Remark. — In fact, in the isotrivial case we can also prove the following
are equivalent:

(1) the family f is an isotrivial family of Lattès maps,
(2) the measure µf,a is absolutely continuous with respect to ωΛ.

Proof. — If Bif(f, a) = Λ, obviously, it contains a non-empty open subset
of Λ. Now, as f is isotrivial, up to taking a finite branched cover of Λ and
up to conjugating f by a family of Möbius transformations, we can assume
fλ = f0 for all λ ∈ Λ. In particular, it is a J-stable family and., applying
Lemma 4.1 in local charts, we find

Bif(f, a) = {λ ∈ Λ : a(λ) ∈ Jf0} = a−1(Jf0).
Since Bif(f, a) ̸= ∅, the holomorphic map a has to be non-constant, whence
it is open. In particular, if Bif(f, a) contains a non-empty open set, Jf0 has
to contain a nonempty open set and Jf0 = P1. Finally, if Jf0 = P1, then we
clearly have Bif(f, a) = a−1(P1) = Λ.

Assume first Jfλ
= P1 for all λ ∈ Λ. When µf,a is absolutely continuous,

the conclusion follows as in the proof of Theorem B. □

4.3. Concluding remarks and questions

Dynamical pairs with a non-singular bifurcation measure

First, when k > 1, the statement of Theorem D holds only if all repelling
J-cycles are linearizable.

This results raises several questions:

Question 4.3. — Can we generalize Theorem D to the cases when

(1) There exists J-repelling cycles that are non-linearizable?
(2) T kf,a is just non-singular with respect to a smooth volume form?

The first question is very likely to have a positive answer, using Poincaré–
Dulac normal forms instead of linear normal forms. However, it looks quite
difficult to prove rigorously.

In fact, Zdunik [29] completely classifies rational maps with a maximal
entropy measure which is not singular with respect to a Hausdorff measure
Hα: either α = 1 and the rational map is conjugated to a monomial map
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z±d or to a Chebichev polynomial Td, i.e. the only polynomial satisfying
Td
(
z + 1

z

)
= zd+ 1

zd for all z ∈ C, or α = 2 and the rational map is a Lattès
map.

We expect the following complete parametric counterpart to [29] to be
true:

Question 4.4. — Let (f, a) be any holomorphic dynamical pair of P1

of degree d ⩾ 2 parametrized by the unit disk D of C. Assume that (f, a) is
unstable. Assume also there exists α > 0 and a function h : D → R+ such
that µf,a = h · Hα on D. Can we prove that

• either α = 2 and f is a family of Lattès maps,
• or α = 1, f is isotrivial and all fλ’s are conjugated to z±d or a

Chebichev polynomial?

As in the case of families of Lattès maps, we can expect the proof to
generalize to the case when k > 1. This raises the following question.

Question 4.5. — Classify endomorphisms of Pk which maximal entropy
measure is not singular with respect to some Hausdorff measure Hα on Pk
(and possible values of α).

As seen above, the case α = 2k has been treated by Berteloot and Loeb [6]
and Berteloot and Dupont [5]. Of course, there are also easy examples where
α = k: take f : P1 → P1 which maximal entropy measure has dimension 1,
then the endomorphism F : Pk −→ Pk making the following diagram com-
mute

(P1)k
(f,...,f)//

ηk

��

(P1)k

ηk

��
Pk

F
// Pk

where ηk is the quotient map of the action by permutation of coordinates
of the symmetric group Sk, satisfies dim(µF ) = k (see [22] for a study of
symmetric products).

J-stability and dynamical pairs, when k ⩾ 2

We say that a family f : Λ×Pk −→ Pk of degree d ⩾ 2 endomorphisms of
Pk is weakly J-stable if all the J-repelling cycles can be followed holomorphi-
cally throughout the whole family Λ, i.e. if for all n ⩾ 1, there exists N ⩾ 0
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and holomorphic maps z1, . . . , zN : Λ → Pk such that {z1(λ), . . . , zN (λ)} is
exactly the set of all repelling J-cycles of fλ of exact period n for all λ ∈ Λ.

For any endomorphism f of Pk, let L(f) :=
∫
Pk log|detDf |µf be the sum

of the Lyapunov exponents of f with respect to its Green measure µf . By
a beautiful result of Berteloot, Bianchi and Dupont [4], f is J-stable if and
only if λ 7−→ L(fλ) is pluriharmonic on Λ.

A natural question is then the following:

Question 4.6. — Given any dynamical pair (f, a) of degree d of the
projective space Pk parametrized by the unit ball B ⊂ Ck such that f is a
weakly J-stable family, do we still have

Supp(T kf,a) = {λ ∈ B : a(λ) ∈ Jfλ
} ?

Note that this holds for k = 1 by Lemma 4.1. One of the difficulties,
when k > 1, is that the weak J-stability is equivalent to the existence of a
branched holomorphic motion.
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