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Hodge numbers and Hodge structures for 3-Calabi–Yau
categories (∗)

Roland Abuaf (1)

ABSTRACT. — Let A be a smooth proper C-linear triangulated category which
is 3-Calabi–Yau endowed with a (non-trivial) rank function. Using the homological
unit of A with respect to the given rank function, we define Hodge numbers for A .

If the classes of unitary objects generate the rational numerical K-theory of A ,
it is proved that these numbers are independent of the chosen rank function : they
are intrinsic invariants of the triangulated category A .

In the special case where A is a semi-orthogonal component of the derived cate-
gory of a smooth complex projective variety and the homological unit of A is C⊕C[3],
we define a Hodge structure on the Hochschild homology of A . The dimensions of
the Hodge spaces of this structure are the Hodge numbers aforementioned.

Finally, we give some numerical applications toward the Homological Mirror
Symmetry conjecture for cubic sevenfolds and double quartic fivefolds.

RÉSUMÉ. — Soit A une catégorie triangulée C-linéaire, non singulière et propre,
que l’on suppose être 3-Calabi–Yau et munie d’une fonction rang non-triviale. En
nous basant sur la notion d’unité homologique pour A associée à la fonction rang,
nous définissons des nombres de Hodge pour A .

Si les classes d’objets unitaires engendrent la K-théorie numérique de A , nous
prouvons que ces nombres ne dépendent pas de la fonction rang choisie : ce sont
alors des invariants intrinsèques de la catégorie A .

Dans le cas particulier où A est une composante semi-orthogonale de la catégorie
dérivée d’une variété projective non singulière définie sur C et que l’unité homolo-
gique de A est C ⊕ C[3], nous définissons une structure de Hodge sur l’homologie
d’Hochschild de A . Les dimensions des espaces de Hodge associés à cette structure
sont les nombres de Hodge déjà mentionnés.

En conclusion, nous donnons quelques applications numériques de notre théorie
en direction de la conjecture de Symétrie Miroir Homologique pour les hypersurfaces
cubiques de dimension 5 et les recouvrements doubles quartiques de P5.

(*) Reçu le 20 août 2019, accepté le 9 juin 2021.
Keywords: Calabi–Yau categories, Hodge theory of non-commutative spaces, numeri-

cal invariants of triangulated categories.
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1. Introduction

As part of his Homological Mirror Symmetry conjecture (see [20]) M.
Kontsevich predicted that the Hochschild homology (or rather the cyclic
homology) of a smooth proper triangulated category should be endowed
with a Hodge structure. It has been suggested that this Hodge structure
could be obtained via the degeneration of a certain spectral sequence, à
la Deligne–Illusie ([14, 15, 16]). This approach is very promising. It seems
however difficult, at the present time, to use it in practice to compute Hodge
numbers of a given Calabi–Yau category outside of the realm of LG models
of Fano threefolds and surfaces (see [10, 25] for instance).

In this paper, we use the more elementary theory of homological units
(see [2]) in order to define and compute Hodge numbers for smooth proper C-
linear triangulated categories which are 3-Calabi–Yau. Our main definition
and our main result are (see Definition 1.1 and Theorem 3.4):

Definition 1.1. — Let A be a smooth proper triangulated category
which is 3-Calabi–Yau and endowed with a non-trivial rank function. Let
T•

A be a homological unit for A with respect to the rank function. We define
the Hodge numbers of A as:

(1) for all i ∈ [0, . . . , 3], hi,0(A ) = T3−i
A ,

(2) h3,1(A ) = dim HH−2(A ) − h2,0(A ),
(3) h3,2(A ) = h1,0(A ) and h2,1(A ) = dim HH−1(A ) − h1,0(A ) −

h3,2(A ),
(4) h3,3(A ) = h0,0(A ) and

h1,1(A ) = h2,2(A ) = dim HH0(A ) − h0,0(A ) − h3,3(A )
2 .

(5) hp,q(A ) = hq,p(A ) for all p, q ∈ [0, . . . , 3].

Theorem 1.2. — Let A be a smooth proper triangulated 3-Calabi–Yau
category. Let rk1, rk2 be a non-trivial numerical rank functions on A and
let T•

A ,1,T
•
A ,2 be homological units for A with respect to rk1, rk2. Let cl :

A → Knum(A ) be the class map and denote by A
(i)

unitary the set of objects
F ∈ A such that Hom•

A (F ,F ) ≃ T•
A ,i as graded rings. Finally, for all

p, q ∈ [0, . . . , 3], we denote by hp,qi (A ) the Hodge numbers of A associated
to T•

A ,i as in Definition 1.1. We have the following:

(1) If both cl(A (1)
unitary) and cl(A (2)

unitary) generate Knum(A ) ⊗ C, then:

hp,q1 (A ) = hp,q2 (A ),
for all p, q ∈ [0, . . . , 3].
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(2) If T•
A ,1 = C ⊕ C[3], cl(A (1)

unitary) generates Knum(A ) ⊗ C and there
exists a unitary object in A with respect to T•

A ,2, then:

hp,q1 (A ) = hp,q2 (A ),

for all p, q ∈ [0, . . . , 3].

The key hypothesis in the above Theorem, namely that the classes of uni-
tary objects generate the rational numerical K-theory of A is satisfied for
many examples of smooth proper 3-Calabi–Yau categories. Indeed, derived
categories of projective varieties of dimension three, 3-Calabi–Yau categories
obtained as semi-orthogonal components of hypersurfaces in weighted pro-
jective spaces and Calabi–Yau categories associated to quivers with poten-
tials do satisfy this hypothesis. We shall discuss in details such examples in
Section 2.2 of the paper.

In the last section of the paper, we give some applications of our definition
of Hodge numbers to numerical Mirror Symmetry for some Greene–Plesser
pairs, namely for the cubic sevenfold and the double quartic fivefold.

The plan of the paper is the following:

In Section 2.1, we recall the definitions of rank functions, homological
units and their basic properties. We compute the units for many examples
of smooth proper 3-Calabi–Yau category.

In Section 2.2, we study the invariance of the homological unit with re-
spect to the chosen rank function.

In Section 3.1, we define the Hodge numbers for a smooth proper Calabi–
Yau category endowed with a non-trivial rank function. We compute them
for the examples introduced in Section 2.2.

In Section 3.2, we assume that our triangulated category is a semi-
orthogonal component of the derived category of coherent sheaves on a
smooth complex projective variety and that its homological unit (with re-
spect to the rank function coming from the variety) is C ⊕ C[3]. We then
define a Hodge structure on the Hochschild homology of this category. The
dimensions of the corresponding Hodge spaces are the Hodge numbers afore-
mentioned.

In Section 3.3, we give some numerical applications toward the Homo-
logical Mirror Symmetry conjecture for cubic sevenfolds and double quartic
fivefolds.
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Conventions

We work over the field of complex numbers. We only consider C-linear
triangulated categories which can be realized as derived categories of DG-
modules over a smooth and proper DG-algebra (call them smooth and
proper). In particular, for any such triangulated category A and any F ,G ∈
A , the graded vector space

⊕
k∈Z Extk(F ,G ) is finite dimensional over C.

2. Homological units and invariance properties for 3-Calabi–Yau
categories

In this section, we recall the definition of homological unit [2], compute
the homological units for many examples of Calabi–Yau categories and prove
some invariance properties for the homological units of 3-Calabi–Yau cate-
gories.

2.1. Calabi–Yau categories and homological units

We first recall some definitions related to such categories.

Definition 2.1. — Let A be a triangulated category. We say that A is
a p-Calabi–Yau category if the shift by [p] is a Serre functor for A . We say
furthermore that A is a geometric p-Calabi–Yau category if it is p-Calabi–
Yau and there exists a smooth projective variety X and a semi-orthogonal
decomposition

Db(X) = ⟨A ,⊥A ⟩.

This definition already appeared many times in the literature. It has
been studied in details when X is a cubic fourfold and p = 2 in [22] and
more generally when X is a hypersurface in (or a double cover of) a rational
homogeneous space for any p in [23]. The study of the K3 category appearing
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in a cubic fourfold in connection with rationality problems and the Hodge
theory of cubic fourfolds has been carried out in many papers (with starting
point [22]). The paper [11] provides a detailed study of recent works on the
subject.

The notion of homological units has been introduced in [2] as a categorical
substitute for the algebra H•(OX ). We recall its definition in the context of
triangulated categories.

Definition 2.2. — Let A be a smooth proper triangulated category. A
rank function on A is a function rk : A → Z which is additive with respect
to exact triangles and such that rk(F [1]) = − rk(F ), for any F ∈ A . We
say that it is a numerical rank function if it descends to a map:

rk : Knum(A ) −→ Z,

where Knum(A ) is the quotient of the K-theory of A by the kernel of the
bilinear form:

χ : K0(A ) × K0(A ) −→ Z

(E ,F ) 7−→
∑
k⩾0

(−1)k dim Extk(E ,F ).

Let X be a smooth projective variety, the Grothendieck–Riemann–Roch
Theorem shows that the rank of a numerically trivial object in K0(X) is
necessarily 0. Hence, the natural rank function on Db(X) is a numerical
rank function. If A is a semi-orthogonal component of Db(X), then we have
decompositions:

K0(X) = K0(A ) ⊕ K0(⊥A )

and
Knum(X) = Knum(A ) ⊕ Knum(⊥A ).

As a consequence, the natural rank function on Db(X) restricts to a numer-
ical rank function on A .

Definition 2.3. — Let A be a smooth proper triangulated category en-
dowed with a non-trivial rank function. A graded algebra T•

A is called a
homological unit for A , if T•

A is maximal, with respect to inclusion, for the
following property. For any object F ∈ A , there exists a pair of morphisms
iF : T•

A → Hom•
A (F ,F ) and tF : Hom•

A (F ,F ) → T•
A such that:

• the morphism iF : T•
A → Hom•

A (F ,F ) is a graded algebra mor-
phism which is functorial in the following sense. Let F ,G ∈ A ,
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then, for any morphism ψ : F → G , there is a commutative dia-
gram:

F
iF //

ψ

��

F [k]

ψ[k]

��

G
iG // G [k]

• the morphism tF : Hom•
A (F ,F ) → T•

A is a graded vector spaces
morphism such that for any F ∈ A and any a ∈ T•

A , we have
tF (iF (a)) = rank(F ).a.

An object F ∈ A is said to be unitary, if Hom•
A (F ,F ) ≃ T•

A as graded
rings, where T•

A is a homological unit for A .

Remark 2.4. —

(1) By “maximal with respect to inclusion”, we (obviously) mean that
for any algebra B• satisfying the conditions in the above definition,
a graded algebra monomorphism r• : T•

A ↪→ B• which makes the
following diagram commutative for any F ∈ A :

T•
A
� � r•

//

i•F
""

B•

i•F
}}

Hom•
A (F ,F )

is necessarily an isomorphism
(2) Let X be a projective Deligne–Mumford stack which can be written

as a global quotient [X/G] where X is a smooth projective variety
and G is a reductive group acting linearly on X. Let OX(1) be a
G-equivariant line bundle. A minor modification of the arguments
in Theorem 4 of [27] shows that there is an equivalence:

Dperf(X ) ≃ Dperf(C ),
where

C = RHomG
X

(dimX⊕
i=0

OX(i),
dimX⊕
i=0

OX(i)
)
.

Let us consider the rank of an OX -module as a rank function
on Dperf(X ). In such a case, we have T•

Dperf(X ) = H•(OX ). Fur-
thermore, for any F ∈ Dperf(X ), the morphism iF is the tensor
product (over OX ) with the identity map of F and the morphism
tF is the trace map Hom•

X (F ,F ) → H•(OX ).
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(3) In the above definition, the existence of the morphism iF for all
F ∈ A and its functorial properties is equivalent to the existence
of a morphism of graded algebras:

T•
A −→ HH•(A ),

where HH•(A ) is the Hochschild cohomology of A . If the rank
function on A is non-trivial, the splitting property of t• implies
that the map T•

A
→ HH•(A ) is injective.

(4) On the other hand, the definition and the (splitting) properties of
the morphisms tF , for F ∈ A with non-zero rank do not seem to be
easily written using only the notion of graded morphisms between
HH•(A ) and T•

A . It appears that there is no obvious way to write
that tF splits iF whenever the rank of F is not zero only in terms
of Hochschild cohomology.

(5) If A contains a unitary object whose rank is not zero, then the
homological unit of A is necessarily unique (though the embedding
of the homological unit in HH•(A ) is certainly not unique). This
follows from the maximality condition imposed in Definition 2.3.

(6) Let X and Y be smooth projective varieties of dimension less or
equal to 4 such that Db(X) ≃ Db(Y ). It is proved in [2] that the
algebras H•(OX) and H•(OY ) are isomorphic. This suggests that
the homological unit of a DG category of geometric origin could be
independent of the embedding into the derived category of a smooth
projective Deligne–Mumford stack (at least if the dimensions of the
varieties are small enough). In the next subsection, we will investi-
gate in more details the invariance properties of homological units
attached to geometric 3-Calabi–Yau categories.

Let X ⊂ P5 be a smooth cubic hypersurface. According to [22], we have
a semi-orthogonal decomposition:

Db(X) = ⟨AX ,OX ,OX(1),OX(2)⟩,
where the Serre functor of AX is the twist by [2]. This category has been
studied in some details, most prominently in connection with the rationality
problem for cubic fourfolds (see [4, 11, 22] for instance).

Proposition 2.5. — We keep notations as above, the algebra C ⊕ C[2]
satisfies all the properties of a homological unit for AX with respect to the
rank function coming from Db(X), except that for any E ∈ AX which rank
is not zero, the map C⊕C[2] → Hom•(E ,E ) is perhaps only a graded vector
space isomorphism (and not a graded ring isomorphism as expected).

Proof. — The pure shift by [2] is a Serre functor for AX , as proved in [22].
The dimension of the Hochschild cohomology spaces of AX can be found for
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instance in [4] :

HH1(AX) = HH3(AX) = 0
HH0(AX) ≃ HH4(AX) ≃ C

HH2(AX) ≃ C22.

Let l ⊂ X be a line in X and let Jl ⊂ OX be the ideal sheaf of l. The
computations made in [24] show that Fl ∈ AX and that:

Hom(Fl,Fl) = C.

Since Fl ∈ AX and AX is 2-Calabi–Yau category, we find Ext2(FlFl) = C
and Extp(Fl,Fl) = 0 for p ⩾ 3. Let T•

AX
be a homological unit for AX

with respect to the embedding in Db(X). As rank(Fl) = 3 and Fl ∈ AX ,
we have embedding of graded algebras:

T•
AX

↪−→ Hom•(Fl,Fl),

by definition of an homological unit for AX . We therefore find T0
AX

≃ T2
AX

≃
C and TpAX

= 0 for p ⩾ 3 or p < 0. By item 2 of Remark 2.4 above, we have
an embedding:

T•
AX

↪−→ HH•(AX).
We have already observed that HH1(AX) = 0, which implies T1

AX
= 0. We

conclude that if T•(AX) is a homological unit for AX with respect to the
rank function coming from Db(X), then we necessarily have T•

AX
= C⊕C[2].

We now prove that C ⊕ C[2] satisfies all the properties of a homological
unit for AX with respect to the rank function coming from Db(X), except
perhaps the map C ⊕ C[2] → Hom•(E ,E ) is not a ring morphism (and is
only a graded vector space morphism). For any E ∈ AX , any a ∈ C and any
f ∈ Hom(E ,E ), we put:

i0E (a) = a.idE and t0E (f) = Trace(f),

where Trace is the trace map inherited from Db(X). It is clear that
t0E (i0E (a)) = rank(E ).a, for any a ∈ C. Let ω be a generator of H4(X,ωX).
By the Hochschild–Kostant–Rosenberg isomorphism, we can see ω ∈
HH0(Db(X)). Let δ : AX ↪→ Db(X) be the admissible embedding of AX

in Db(X). It is clear that δ!ω ∈ HH0(AX) and that for any F ∈ Db(X):

ω|F = idF ⊗ω : F −→ F ⊗ ωX [4].

Furthermore, for any E ∈ AX , we have:

Hom(δ∗E , δ∗E ⊗ ωX [4]) = Hom(E , δ!(δ∗E ⊗ ωX [4])), by adjunction,
= Hom(E ,E [2]), because AX is 2-Calabi–Yau.
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For any E ∈ AX and any f ∈ Ext2(E ,E ), we then define t2E (f) as the trace
of f seen as an element in Hom(δ∗E , δ∗E ⊗ ωX [4]).

The category AX is 2-Calabi–Yau, Theorem 4.5 and Proposition 4.6
of [21] ensure an isomorphism HH0(AX) ≃ HH2(AX). We can therefore
see δ!ω as an element in HH2(AX) and for any E ∈ AX and any a ∈ C, we
define:

i2E (a) = a.(δ!ω)|E ,
where (δ!ω)|E is the restriction to Ext2(E ,E ) of δ!ω. Since for any E ∈ AX ,
we have:

(δ!ω)|E = δ!(ω|E ),
we deduce that, for all a ∈ C:

t2E (i2E (a)) = t2E (a.δ!(ω|E )) = TrDb(X)(a.idE ⊗ ω) = a.rk(E ). □

Remark 2.6. —

(1) Since AX share many features with the derived category of a K3
surface [22], we naturally expect that for any E ∈ AX , the map
C⊕C[2] → Hom•(E ,E ) is a ring morphism (and not only a graded
vector space morphism).

(2) If it were true, then the homological unit of AX (with respect to the
rank function inherited from X) would be C ⊕ C[2]. This would be
in sharp contrast with the fact that H•(OX) = C. Nevertheless, it
would match with the general principle that AX should be seen as
a “non-commutative” K3 surface.

In case A is an admissible odd-dimensional Calabi–Yau subcategory of
the derived category of a smooth projective variety and contains a spherical
object whose rank is non-zero, the homological unit of A is easily computed.
Let us recall that an object E ∈ A is (2p + 1)-spherical if we have a ring
isomorphism:

Hom•(E ,E ) ≃ C ⊕ C[2p+ 1].

Proposition 2.7. — Let X be a smooth projective variety and A ⊂
Db(X) be an admissible subcategory. Assume that A is a (2p + 1)-Calabi–
Yau category and that it contains a (2p+ 1)-spherical object whose rank (as
an OX-module) is non-zero. Then, the homological unit of A (with respect
to the rank function coming from Db(X)) is C ⊕ C[2p+ 1].

Proof. — Let T•
A be a homological unit for A with respect to the rank

function coming from Db(X). Let E be a (2p + 1)-spherical object in A
which rank is not zero. By definition of homological unit, we must have
T•

A ↪→ Hom•(E ,E ) = C ⊕ C[2p+ 1].
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We now prove that C⊕C[2p+ 1] is a homological unit for A . Let ω be a
generator of HdimX(X,ωX). By the Hochschild–Kostant–Rosenberg isomor-
phism, we can see ω ∈ HH0(Db(X)). Let δ : AX ↪→ Db(X) be the admissible
embedding of AX in Db(X). It is again clear δ!ω ∈ HH0(AX). Since A is
(2p+1)-Calabi–Yau and HH0(AX) ≃ HH2p+1(AX), we can therefore see δ!ω
as an element in HH2p+1(AX). Hence, for any E ∈ AX and any a ∈ C, we
define:

i2p+1
E (a) = a.(δ!ω)|E ,

where (δ!ω)|E is the restriction to Ext2p+1(E ,E ) of δ!ω. The first steps of
the proof that C ⊕ C[2p + 1] is a homological unit for AX are identical
to that of Proposition 2.5. We only focus on the last defining feature of a
homological unit and we prove that the map i•E : C⊕C[2p+1] → Hom•(E ,E )
is a ring morphism for any E ∈ A . This is equivalent to the vanishing of
i2p+1
E (a) ◦ i2p+1

E (a), for any E ∈ A and any a ∈ C. For any such a and E , we
have:

i2p+1
E (a) ◦ i2p+1

E (a) = a2δ!(ω)|E ◦ δ!(ω)|E , by definition,
= a2(δ!ω ◦ δ!ω)|E , by functoriality.

But the algebra HH•(A ) is graded commutative (see [35] for instance). Since
δ!ω ∈ HH2p+1(A ), we deduce that δ!ω ◦ δ!ω = 0 ∈ HH4p+2(A ). As a con-
sequence, we have i2p+1

E (a) ◦ i2p+1
E (a) = 0, for any E ∈ A and any a ∈ C.

This finally demonstrates that the ring C ⊕ C[2p + 1] is a homological unit
for A . □

Remark 2.8. — We stated our result only in the odd-dimensional case
in order to benefit from the graded-commutativity of the algebra HH•(A )
and therefore get a quick proof that the graded vector space morphism C ⊕
C[2p + 1] ↪→ Hom•(E ,E ) is indeed a ring morphism. We of course expect
that Proposition 2.7 should be true also in the even dimensional case.

Example 2.9. —

(1) Let X ⊂ P8 be a generic cubic hypersurface. It was checked in [12]
that X is a linear section of the E6 invariant cubic CE6 ⊂ P(V27),
where V27 is the minuscule 27-dimensional representation of E6.
Denote by LX ⊂ V27 the 9-dimensional vector space such that
C ∩ P(LX) = X. As explained in [23], we have a semi-orthogonal
decomposition:

Db(X) = ⟨AX ,OX ,OX(1), . . . ,OX(5)⟩,

where AX is a 3-Calabi–Yau category. We will prove below that the
homological unit of AX (with respect to the rank function coming
from X) is C⊕C[3] by exhibiting a 3-spherical vector bundle in AX .
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Recall that a Jordan algebra structure can be put on V27. Namely
let :

V27 =


λ1 σ1 σ2
σ1 λ2 σ3
σ2 σ3 λ3

 , σ1, σ2, σ3 ∈ O and λ1, λ2, λ3 ∈ C

 ,

where O is the algebra of rational octonions and σ is the conjugate
of σ with respect to the octonionic conjugation. For any A,B ∈
V27, we put A ⋆ B = AB+BA

2 . This is a commutative (but non-
associative) product on V27, which endows V27 with a structure of
Jordan algebra.

The determinant of any element of V27 is well defined and we get
a determinant map, say Det ∈ S3V ∗

27. The vanishing locus of Det in
P(V27) is the E6 invariant cubic. The Hessian matrix of Det gives a
27 ∗ 27 symmetric matrix with linear entries (say M) which is part
of a matrix factorization of Det. As a consequence, we get an exact
sequence:

0 −→ V27 ⊗ OP(V27)(−1) M−→ V27 ⊗ OP(V27) −→ i∗(E ) −→ 0,
where i∗(E ) is the push-forward of a rank-9 coherent sheaf on CE6 .
The jumping locus of E is the singular locus of CE6 , that is the
Cayley plane OP2 (which is a 16-dimensional projective variety ho-
mogeneous under E6).

The intersection X = C ∩P(LX) being transverse, we can restrict
the above exact sequence to P(LX) and we get:

0 −→ V27 ⊗ OP(LX )(−1)
M |LX−→ V27 ⊗ OP(LX ) −→ i∗(EX) −→ 0, (2.1)

where i∗(EX) is the push-forward of a rank-9 vector bundle on C ∩
P(LX) = X. It is shown in [12] that EX is a 3-spherical vector bundle
on X. Proposition 2.7 then implies that the homological unit of AX

with respect to the rank function coming from X is C ⊕ C[3].
(2) Let X ⊂ P(1, 1, 1, 1, 1, 1, 2) be a generic double quartic fivefold. We

checked in [3] that X is a linear section of the double cover of P(∆+)
ramified along the Spin12 invariant quartic Q ⊂ P(∆+) (here ∆+
is one of the 32-dimensional half-spin representations for Spin12).
Denote by LX ⊂ ∆+ the 6 dimensional vector space such that X is
the double cover of P(LX) along Q ∩ P(LX). As explained in [23],
we have a semi-orthogonal decomposition:

Db(X) = ⟨AX ,OX ,OX(1),OX(2),OX(3)⟩,
where AX is a 3-Calabi–Yau category. We will prove below that the
homological unit of AX (with respect to the rank function coming
from X) is C⊕C[3] by exhibiting a 3-spherical vector bundle in AX .
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Let us fix a system of coordinates on ∆∗
+. Using the theory of

exceptional quaternionic representations, we constructed in [3] a
12 × 12 matrix, say M , with quadratic entries in the variables of
∆ such that M × M = PQ.I12, where PQ is an equation for Q in
the chosen variables of ∆+. As a consequence, we have an exact
sequence:

0 −→ C12 ⊗ OP(∆+)(−2) M−→ C12 ⊗ OP(∆+) −→ i∗ (F ) −→ 0,
where i∗(F ) is the push-forward of a rank-6 coherent sheaf on Q.
The jumping locus of F is the singular locus of Q, that is the closure
in P(∆+) of a 24-dimensional quasi-projective variety homogeneous
under Spin12.

The intersection X = Q∩P(LX) being transverse, we can restrict
the above exact sequence to P(LX) and we get:

0 −→ C12 ⊗ OP(LX )(−2) M−→ C12 ⊗ OP(LX ) −→ i∗(FX) −→ 0, (2.2)
where i∗(FX) is the push-forward of a rank-6 vector bundle on
Q ∩ P(LX) = X. We showed in [3] that FX is a 3-spherical vec-
tor bundle on X. Furthermore, if we consider the semi-orthogonal
decomposition:

Db(X) = ⟨AX ,OX ,OX(1), . . . ,OX(3)⟩
described above, the exact sequence (2.2) shows that FX(−1) and
FX(−2) are in AX . As they are 3-spherical vector bundles, Propo-
sition 2.7 allows to conclude that the homological unit of AX with
respect to the rank function coming from X is C ⊕ C[3].

Remark 2.10. — Let X be a generic cubic fourfold an AX the K3-
category associated to X. It is shown in [11] that AX does not contain
any 2-spherical object. Proposition 2.5 nevertheless strongly suggests that
the homological unit of AX with respect to the rank function coming from
Db(X) is C⊕C[2]. This highlights the fact that the homological unit is useful
in order to capture the Hodge-theoretic properties of a Calabi–Yau category
even in the absence of spherical objects.

There is an analogous statement to that of 2.7 holds for Calabi–Yau
categories coming from quivers with potentials, namely we have:

Proposition 2.11. — Let (Q,W ) be a quiver without loops and W be a
reduced potential for Q. Let A(Q,W ) be the 3-Calabi–Yau algebra associated
to (Q,W ). Let Dfd(A(Q,W )) be the derived category of finite dimensional
DG A(Q,W )-modules. For E ∈ Dfd(A(Q,W )), we let rk(E ) be the rank of E
as a representation of Q. Then, the homological unit of Dfd(A(Q,W )) with
respect to rk is C ⊕ C[3].
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We refer to [7, 19] for the construction of A(Q,W ) and to [7, 18] for proofs
that the category Dfd(A(Q,W )) is 3-Calabi–Yau.

Proof. — We denote by T•
Dfd(A(Q,W )) a homological unit of A(Q,W ) with

respect to the rank. Let i be a vertex of Q and let Si be the simple module
corresponding to i. Its rank as a Q-module is 1. Since there are no loops at i,
we know that Hom•(Si, Si) = C⊕C[3] (see [19, Lemma 2.15], for instance).
As rank(Si) = 1 ̸= 0, we have an injection of graded algebras:

T•
Dfd(A(Q,W )) ↪−→ Hom•(Si, Si) = C ⊕ C[3].

We now prove that C⊕C[3] is indeed the homological unit ofDfd(A(Q,W ))
with respect to the rank function coming from representations of Q. By [29],
for any E ∈ Dfd(A(Q,W )), we have a linear map (called the bulk-boundary
map in [29]):

ΘE : Hom•(E ,E ) −→ HH•(Dfd(A(Q,W ))).

The vector ΘE (idE ) ∈ HH0(Dfd(A(Q,W ))) is called the Chern character of
E . The set {Si}i∈Q is a minimal system of generators of Dfd(A(Q,W )), from
which we deduce that the set {ΘSi

(idSi
)}i∈Q is a free family in

HH0(Dfd(A(Q,W ))).

We fill {ΘSi(idSi)}i∈Q into a basis of HH0(Dfd(A(Q,W ))) and we
let ΘSi

(idSi
)∗ be the corresponding vectors of the dual basis in

(HH0(Dfd(A(Q,W ))))∗. For any E ∈ Dfd(A(Q,W )), we let:

t0E :=

⊕
i∈Q

ΘSi
(idSi

)∗

 ◦ ΘE : Hom(E ,E ) −→ C.

By definition of the rank function inDfd(A(Q,W )) we have t0E (idE ) =
rank(E ), for any E ∈ Dfd(A(Q,W )). For all E ∈ Dfd(A(Q,W )), we then we
define:

i0E (a) : C −→ Hom(E ,E )
a 7−→ a.idE

It is obvious that iE is functorial in E and that t0E (i0E )(a) = a.rank(E ), for
any E ∈ Dfd(A(Q,W )).

For any i ∈ Q, we denote by ωi a generator of Ext3(Si, Si) such that:

SSi
(idSi

, wi) = 1,

where SSi is the perfect pairing between Hom(Si, Si) and Ext3(Si, Si) pro-
vided by Serre duality. We let ω =

⊕
i∈Q ωi ∈ Hom•(

⊕
i∈Q Si,

⊕
i∈Q Si).

Since Si is the simple module corresponding to i ∈ Q, the morphism ω
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induces (functorially) a morphism ωF : F → F [3], for any finite dimen-
sional representation F of Q. Hence, for any E ∈ Dfd(A(Q,W )), we have
(functorially) a morphism:

ωE : E −→ E [3].
We then define:

i3E : C −→ Ext3(E ,E )
a −→ a.ωE ,

and
t3E : Ext3(E ,E ) −→ C

f −→ SE (idE , f),

where SE is the perfect pairing between Hom(E ,E ) and Ext3(E ,E ) provided
by Serre duality.

By construction, we have t3Si
◦i3Si

(a) = a, for any a ∈ C and any i ∈ Q. As
a consequence, the definition of the rank function on Dfd(A(Q,W )) implies
that t3E ◦ i3E (a) = a.rank(E), for any a ∈ C and any E ∈ Dfd(A(Q,W )).

We are left to prove that, for any E ∈ Dfd(A(Q,W )), the graded vector
space morphism i•E : C ⊕ C[3] → Hom•(E ,E ) is a ring morphism. We only
have to check that ipE (a) ◦ i3E (a) = 0, for any a ∈ C and E ∈ Dfd(A(Q,W )).
This is obvious as Extk(

⊕
i∈Q Si,

⊕
i∈Q Si) = 0, for any k ⩾ 4. □

2.2. Invariance of the homological unit

In this section, we will be interested in the following question:

Question 2.12. — Let A be a smooth proper triangulated category and
let rk1, rk2 be two non-trivial rank functions on A . We denote by T•

A ,1,
T•

A ,2 homological units of A with respect to rk1 and rk2. Is there always a
ring isomorphism T•

A ,1 ≃ T•
A ,2?

In the geometric setting, a special case of the above question is the:

Question 2.13. — Let X,Y be smooth projective varieties (over C).
Let AX and AY be full admissible subcategories of Db(X) and Db(Y ). Let
Φ : Db(X) → Db(Y ) be a Fourier–Mukai functor such that Φ induces an
equivalence between AX and AY . Let T•

AX
and T•

AY
be homological units

of AX and AY with respect to the rank function coming from Db(X) and
Db(Y ). Assume that AX and AY both contain an object whose rank is not
zero. Is there always a ring isomorphism T•

AX
≃ T•

AY
?
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When AX = Db(X) and AY = Db(Y ), we proved in [2] that there is a
ring isomorphism T•

AX
≃ T•

AY
provided that one of the following conditions

holds:

• The kernel giving the equivalence is generically a (possibly shifted)
vector bundle on X × Y ,

• the Chern classes of the kernel giving the equivalence vanish in de-
gree less than 2 dimX − 1,

• the Hodge algebra
⊕dimX

p=0 Hp(X,ΩpX) ∩ H•(X,Q) and⊕dimX
p=0 Hp(Y,ΩpY ) ∩H•(Y,Q) are generated in degree 1,

• the varieties X and Y have dimension less or equal to 4.

In case AX = Db(X) and AY = Db(Y ), we expect that there is always a
ring isomorphism T•

AX
≃ T•

AY
. Below, we prove such invariance result for the

homological unit of any triangulated category provided that this category
contains enough unitary objects with respect to the homological unit under
study. We will provide many examples where this result can be applied.

Theorem 2.14. —

(1) Let A be a smooth proper triangulated category and let rk1, rk2 be
two non-trivial rank functions on A . We denote by T•

A ,1, T•
A ,2 the

homological units associated to rk1 and rk2. Let

cl : A −→ K0(A )

be the class map and let A
(1)

unitary the subset of A consisting of uni-
tary objects with respect to T•

A ,1. Assume that cl(A (1)
unitary) generates

K0(A ) ⊗ C. Then, there is a injection of graded rings:

T•
A ,2 ↪−→ T•

A ,1.

(2) The same conclusion as above holds if we only assume that
cl(A (1)

unitary) generates Knum(A ) ⊗ C provided that rk1 and rk2 are
numerical rank functions on A .

Proof. — By definition of rank functions, both rk1 and rk2 can be lifted
to rank functions:

rki ⊗C : K0(A ) ⊗ C −→ C.
The function rk2 is non trivial, so the same holds for rk2 ⊗C. Furthermore,
we know by hypothesis that cl(A (1)

unitary) generates K0(A ) ⊗C. Hence, there
exists F ∈ A

(1)
unitary such that rk2 ⊗C(F ) ̸= 0, that is rk2(F ) ̸= 0. By

definition of homological units, we have a graded ring embedding:

T•
A ,2 ↪−→ Hom•(F ,F ).

– 351 –



Roland Abuaf

Since F ∈ A
(1)

unitary, this turns into a graded ring embedding:

T•
A ,2 ↪−→ T•

A ,1.

The proof in the numerical case is exactly the same. □

As a consequence of the above result, we get an effective criterion to
determine whether the homological units related to different rank functions
on a given triangulated category are isomorphic:

Corollary 2.15. —

(1) Let A be a smooth proper triangulated category and let rk1, rk2
be two non-trivial rank functions on A . We denote by T•

A ,1, T•
A ,2

the homological units associated to rk1 and rk2. Assume that both
cl(A (1)

unitary) and cl(A (2)
unitary) generate K0(A ) ⊗C. Then, there is an

isomorphism of graded rings:

T•
A ,2 ≃ T•

A ,1.

(2) The same conclusion as above holds if we only assume that
cl(A (1)

unitary) and (A (2)
unitary) generate Knum(A ) ⊗C provided that rk1

and rk2 are numerical rank functions on A .

Theorem 2.14 happens to be equally useful when the given category is
(2p+ 1)-Calabi–Yau with p ⩾ 0 and the homological unit related to a rank
function is C⊕C[2p+1]. If the classes of unitary objects related to this homo-
logical unit generate K0/num(A ) ⊗ C, then the homological unit associated
to any other rank function on A is necessarily C ⊕ C[2p+ 1].

Corollary 2.16. —

(1) Let A be a triangulated category which is a (2p + 1)-Calabi–Yau
category with p ⩾ 0. Let rk1 be a non-trivial rank function on A
such that C⊕C[2p+1] is a homological unit for A with respect to rk1.
Assume that cl(A (1)

unitary) generates K0(A ) ⊗ C. Let rk2 be another
non-trivial rank function on A and let T•

A ,2 be a homological unit
on A with respect to rk2. Assume that there exists E ∈ A with
rk2(E ) ̸= 0 and which is unitary with respect to T•

A ,2. Then we
have a graded ring isomorphism:

T•
A ,2 ≃ C ⊕ C[2p+ 1].

(2) The same conclusion as above holds if we only assume that
cl(A (1)

unitary) generates Knum(A ) ⊗ C provided that rk1 and rk2 are
numerical rank functions on A .
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Proof. — By Theorem 2.14, we have a graded injection:

T•
A ,2 ↪−→ C ⊕ C[2p+ 1].

Let E ∈ A be a unitary object with respect to T•
A ,2 such that rk2(E ) ̸= 0.

Since A is a (2p+ 1)-Calabi–Yau category, we have a graded injection (see
for instance the proof of Proposition 2.7):

C ⊕ C[2p+ 1] ↪−→ Hom•(E ,E ) ≃ T•
A ,2.

We conclude that there is a graded ring isomorphism : T•
A ,2 ≃

C ⊕ C[2p+ 1]. □

Example 2.17. — There are numerous situations where Corollaries 2.15
and 2.16 apply:

(1) Let X be a smooth projective threefold over C. All line bundles on X
are unitary objects. Because numerical and homological equivalence
coincide on X, the cohomological Chern character gives an injection:

ChX(.) ⊗ C : Knum(X) ⊗ C ↪−→
⊕
p⩾0

Hp(X,ΩpX) ∩H•(X,C).

Furthermore, the Lefschetz 1−1 Theorem and the Hard Lefschetz
Theorem easily imply that the Chern characters of line bundles gen-
erate

⊕
p⩾0 H

p(X,ΩpX)∩H•(X,C). We deduce that cl(Db(X)unitary)
generates Knum(X) ⊗ C. In particular, if X is a strict Calabi–Yau
variety (that is KX ≃ OX and H•(OX) = C ⊕ C[3]), then Corol-
lary 2.16 shows that the homological unit associated to any other
non-trivial numerical rank function on Db(X) having a unitary ob-
ject whose rank is non zero is necessarily C ⊕ C[3].

(2) Let X ⊂ P8 be a generic cubic hypersurface. Consider the semi-
orthogonal decomposition:

Db(X) = ⟨AX ,OX ,OX(1), . . . ,OX(5)⟩,

where AX is a 3-Calabi–Yau category. As explained in Example 2.9,
there exists a rank 9 vector bundle EX on X which is 3-spherical and
such that EX(−1) and EX(−2) are in AX . From this, we deduced
that the homological unit of AX with respect to the rank function
coming from Db(X) is C ⊕ C[3] (see Proposition 2.7).

Let us note that Knum(AX)⊗C = C2. Indeed, the Grothendieck–
Riemann–Roch Theorem implies that the Chern character:

ch : K0(AX) ⊗ C −→ HH0(AX),

descends to an injective map:

ch : Knum(AX) ⊗ C −→ (HH0(AX))num ,
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where (HH0(AX))num is the quotient of HH0(AX) by the numeri-
cally trivial classes. Griffiths computations of the Hodge numbers of
a smooth hypersurface [9], the Hochschild–Kostant–Rosenberg iso-
morphism for Hochschild homology and Corollary 9.2 of [21] show
that (HH0(AX))num ⊗ C = C2. Since ch(EX(−1)) and ch(EX(−2))
are linearly independent in (HH0(AX))num, we deduce that the
classes of EX(−1) and EX(−2) generate Knum(AX) ⊗ C. In partic-
ular, cl((AX)unitary) generate Knum(AX) ⊗ C. Corollary 2.16 then
shows that the homological unit associated to any other non-trivial
rank function on AX having a unitary object whose rank is non zero
is necessarily C ⊕ C[3].

(3) Let X ⊂ P(1, 1, 1, 1, 1, 1, 2) be a generic double quartic fivefold. Con-
sider the semi-orthogonal decomposition:

Db(X) = ⟨AX ,OX ,OX(1),OX(2),OX(3)⟩,

where AX is a 3-Calabi–Yau category. As explained in Example 2.9,
there exists a rank 6 vector bundle FX on X which is 3-spherical
and such that FX(−1) and FX(−2) are in AX . As a consequence,
the homological unit of AX with respect to the rank function coming
from Db(X) is C ⊕ C[3] (see Proposition 2.7).

The same computation as in the previous example (with [34]
instead of [9] for the Hodge numbers of a smooth hypersurface in a
weighted projective space) show that Knum(AX) ⊗ C = C2. Hence,
the classes of FX(−1) and FX(−2) generate Knum(AX) ⊗ C. In
particular, cl((AX)unitary) generate Knum(AX) ⊗ C. Corollary 2.16
then guarantees that the homological unit associated to any other
non-trivial rank function on AX having a unitary object whose rank
is non zero is necessarily C ⊕ C[3].

(4) Let (Q,W ) be a quiver without loops and W be a reduced potential
for Q. Let A(Q,W ) be the 3-Calabi–Yau algebra associated to (Q,W ).
Let Dfd(A(Q,W )) be the derived category of finite dimensional DG
A(Q,W )-modules. For E ∈ Dfd(A(Q,W )), we let rk(E ) be the rank
of E as a representation of Q. As proved in Proposition 2.11, the
homological unit of Dfd(A(Q,W )) with respect to rk is C ⊕ C[3].

Let i be a vertex of Q and let Si be the simple module cor-
responding to i. We recalled in the proof of Proposition 2.11 that
the {Si}i∈Q are 3-spherical objects which generate Dfd(A(Q,W )).
Hence, cl

(
(Dfd(A(Q,W ))unitary

)
generate K0(A(Q,W )) ⊗ C. Corol-

lary 2.16 then shows that the homological unit associated to any
other non-trivial rank function on Dfd(A(Q,W )) having a unitary
object whose rank is non zero is necessarily C ⊕ C[3].
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3. A Hodge structure on the Hochschild homology of some
3-Calabi–Yau categories

3.1. Hodge numbers for 3-Calabi–Yau categories

In this section, using the homological unit, we define Hodge numbers
for 3-Calabi–Yau categories and we provide examples of computations of
such numbers. In the following, we shall use the following terminology for a
smooth proper triangulated category endowed with a non trivial rank func-
tion and a homological unit associated to this rank function:

Definition 3.1. — A TC/HU triple is a triple (A , rk,T•
A ) where A is

a smooth proper triangulated category, rk is a non-trivial rank function on
A and T•

A is a homological unit for A with respect to rk.
Definition 3.2. — Let (A , rk,T•

A ) be a TC/HU triple, with A a 3-
Calabi–Yau category. We define the Hodge numbers of A as:

(1) for all i ∈ [0, . . . , 3], hi,0(A ) = T3−i
A ,

(2) h3,1(A ) = dim HH−2(A ) − h2,0(A ),
(3) h3,2(A ) = h1,0(A ) and h2,1(A ) = dim HH−1(A ) − h1,0(A ) −

h3,2(A ),
(4) h3,3(A ) = h0,0(A ) and

h1,1(A ) = h2,2(A ) = dim HH0(A ) − h0,0(A ) − h3,3(A )
2 .

(5) hp,q(A ) = hq,p(A ) for any p, q ∈ [0, . . . , 3].

In case A = Db(X), where X is a smooth complex projective variety of
dimension 3 with KX ≃ OX , one immediately checks (with the Hochschild–
Kostant–Rosenberg isomorphism) that the Hodge numbers defined above
match with the “classical” Hodge numbers. In the general case, the equality
h3,1(A ) = h2,0(A ), which is certainly expected for 3-Calabi–Yau categories,
is not obvious at all.(1) As a matter of fact, it isn’t even clear that all
these Hodge numbers are positive (and integral as far as h1,1 and h2,2 are
concerned). We provide an easy criterion to check that all these numbers
(except possibly h2,1) are non-negative integers.

Proposition 3.3. — Let (A , rk,T•
A ) be a TC/HU triple, where A is a

3-Calabi–Yau category which is the derived category of perfect DG-modules
over a DG-algebra C . Assume that A is connected (that is HH−3(A ) = C)
and that there exists a unitary object with respect to T•

A in A . Then all
hp,q(A ) (except possibly h2,1(A ) = h1,2(A )) are non-negative integers.

(1) Note however that HH−2(A ) = 0 in many cases of interest, so that we automati-
cally get h3,1(A ) = h2,0(A ) = 0.
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Proof. — We first notice that for all i ∈ [0, . . . , 3], the numbers hi,0(A )
are non-negative integers by definition. We also remark that h3,0(A ) =
h0,0(A ) ̸= 0 and that h1,0(A ) = h2,0(A ). Indeed, we know by hypothe-
sis that there exists an unitary object in A and Serre duality applies to its
endomorphism algebra.

The definition of homological unit implies that there is a graded ring
embedding:

T•
A ↪−→ HH•(A ).

Since A is a 3-Calabi–Yau category, there is an isomorphism of graded
vector spaces HH•(A ) ≃ HH•−3(A ). We deduce that there is an embedding
of graded vector spaces:

T•
A ↪−→ HH•−3(A ).

As a consequence, the number h3,1(A ) is a non-negative integer. As noticed
earlier,we have T3

A ≃
(
T0

A

)∗ ̸= 0. Moreover, we have HH−3(A ) = C by
hypothesis (connectivity of A ). We find that C ≃ HH−3(A ) ≃ T3

A (A ) ≃
T0

A . In particular h3,0(A ) = h0,0(A ) = 1.

As mentioned in the statement of Proposition 3.3, we do not know if
h2,1(A ) is always a non-negative integer. We move on to prove that
h1,1(A ) = h2,2(A ) are non-negative integers. Since A is the derived cate-
gory of perfect DG-modules over the DG-algebra C , we have an identifica-
tion:

HH•(A ) = Hom•
Dperf(C op⊗C )(∆C ,∆C ),

where ∆C is the diagonal bimodule over C op ⊗ C . Let us check that
Dperf(C op ⊗ C ) is a 6-Calabi–Yau categories. For any (F1,F2,G1,G2) ∈
(Dperf(C op))2 × (Dperf(C ))2, we have functorial isomorphisms:

Hom•
Dperf(C op⊗C )(F1 ⊗ F2,G1 ⊗ G2[6])

≃ Hom•
Dperf(C op)(F1,G1[3]) ⊗• Hom•

Dperf(C op)(F2,G2[3]),
where ⊗• is the graded tensor product (see [17, Sections 4 and 6]). Since
Dperf(C ) and Dperf(C op) are 3-Calabi–Yau categories, we have a functorial
isomorphism:

Hom•
Dperf(C op)(F1,G1[3]) ⊗• Hom•

Dperf (C op)(F2,G2[3])
≃ Hom•

Dperf (C op)(G1,F1)∗ ⊗• Hom•
Dperf (C op)(G2,F2)∗.

Hence, any (F1,F2,G1,G2) ∈ (Dperf(C op))2 × (Dperf(C ))2, we have functo-
rial isomorphisms:

Hom•
Dperf(C op⊗C )(F1 ⊗ F2,G1 ⊗ G2[6])

≃ Hom•
Dperf(C op⊗C )(G1 ⊗ G2,F1 ⊗ F2)∗,
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which proves that Dperf(C op ⊗ C ) is 6-Calabi–Yau. Serre duality then pro-
vides a graded-commutative perfect pairing (given by composition of mor-
phisms followed by a trace map):

S•
(C op⊗C ) : Hom•

Dperf(C op⊗C )(∆C ,∆C ) × Hom6−•
Dperf(C op⊗C )(∆C ,∆C ) −→ C.

Specializing to the case • = 3, we find that Hom3
Dperf(C op⊗C )(∆C ,∆C ) =

HH3(A ) is a symplectic vector space, in particular its dimension is even. We
deduce that dim HH0(A ) is even. As C ≃ T3

A (A ) embeds in HH0(A ), the
dimension of HH0(A ) must necessarily be an even integer strictly positive.
Since h0,0(A ) = h3,3(A ) = 1, we have proved that the numbers h1,1(A )
and h2,2(A ) defined by:

h1,1(A ) = h2,2(A ) = dim HH0(A ) − h0,0(A ) − h3,3(A )
2

are integral and non-negative. □

Using the results of the previous sections, one can prove the invariance
(with respect to the rank function) of the afore-mentioned Hodge numbers
in many situations. Namely we have the:

Theorem 3.4. —

(1) Let (A , rk1,T
•
A ,1) and (A , rk2,T

•
A ,2) be two TC/HU triples based

on the same smooth proper 3-Calabi–Yau category A. Let cl : A →
K0(A ) be the class map and denote by A

(i)
unitary the set of objects

in A which are unitary with respect to T•
A ,i. Finally, for all p, q ∈

[0, . . . , 3], we denote by hp,qi (A ) the Hodge numbers of A associated
to T•

A ,i as in Definition 3.2.
(a) If both cl(A (1)

unitary) and cl(A (2)
unitary) generate K0(A ) ⊗ C, then

we have:
hp,q1 (A ) = hp,q2 (A ),

for all p, q ∈ [0, . . . , 3].
(b) If T•

A ,1 = C⊕C[3], cl(A (1)
unitary) generates K0(A )⊗C and there

exists a unitary object in A with respect to T•
A ,2 whose rank2

is not zero, then we have:

hp,q1 (A ) = hp,q2 (A ),

for all p, q ∈ [0, . . . , 3].
(2) The same conclusions as above hold if we only assume that

cl(A (1)
unitary) and cl(A (2)

unitary) generate Knum(A ) ⊗ C (resp.
cl(A (1)

unitary) generates Knum(A ) ⊗ C) provided that rk1 and rk2 are
numerical rank functions on A .
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Proof. — In light of the definition of Hodge numbers given in 1.1, the
statements above are easy consequences of Corollaries 2.15 and 2.16. □

Example 3.5. —

(1) Let X ⊂ P8 be a generic cubic hypersurface. Consider the semi-
orthogonal decomposition:

Db(X) = ⟨AX ,OX ,OX(1), . . . ,OX(5)⟩,
where AX is a 3-Calabi–Yau category. As explained in Example 2.17,
the homological unit of AX with respect to the rank function coming
from Db(X) is C ⊕ C[3]. The Hochschild homology numbers for X
are (see [13], Section 3):

• hh0(X) = 8,
• hh1(X) = hh−1(X) = 84,
• hh2(X) = hh−2(X) = 0,
• hh3(X) = hh−3(X) = 1,
The direct sum decomposition HH•(X) = HH•(AX) ⊕C6 finally

implies that the Hodge diamond of AX with respect to the rank
function coming from Db(X) is:

1
0 0

0 0 0
1 84 84 1

0 0 0
0 0

1

As mentioned in Example 2.17, we know that cl((AX)unitary) gener-
ate Knum(AX) ⊗C. As a consequence, Theorem 3.4 guarantees that
the Hodge numbers of AX defined for any other non-trivial rank
function on AX having a unitary object whose rank is not zero are
equal are equal to the numbers appearing in the above diamond.

(2) Let X ⊂ P(1, 1, 1, 1, 1, 1, 2) be a generic double quartic fivefold. Con-
sider the semi-orthogonal decomposition:

Db(X) = ⟨AX ,OX ,OX(1),OX(2),OX(3)⟩,
where AX is a 3-Calabi–Yau category. As explained in 2.17, the
homological unit of AX with respect to the rank function coming
from Db(X) is C ⊕ C[3]. The Hochschild homology numbers for X
are (see [13, Section 3]):

• hh0(X) = 6,
• hh1(X) = hh−1(X) = 90,
• hh2(X) = hh−2(X) = 0,
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• hh3(X) = hh−3(X) = 1,
The direct sum decomposition HH•(X) = HH•(AX) ⊕C6 finally

implies that the Hodge diamond of AX with respect to the rank
function coming from Db(X) is:

1
0 0

0 0 0
1 90 90 1

0 0 0
0 0

1

As mentioned in Example 2.17, we know that cl((AX)unitary) gener-
ate Knum(AX) ⊗C. As a consequence, Theorem 3.4 guarantees that
the Hodge numbers of AX defined for any other non-trivial rank
function on AX having a unitary object whose rank is not zero are
equal to the numbers appearing in the above diamond.

The cubic sevenfold and the double quartic fivefolds are examples of
Fano manifolds of Calabi–Yau type that were introduced in [13]. As far as
complete intersections in weighted projective spaces are concerned, there is a
another example of Fano manifolds of Calabi–Yau type exhibited in [13] : the
(transverse) complete intersection of a smooth cubic and a smooth quadric
in P7. Let X such a complete intersection. It is known (see [23]) that there
is a semi-orthogonal decomposition:

Db(X) = ⟨AX ,OX ,OX(1),OX(2),S (2)⟩,

where AX is 3-Calabi–Yau and S is the restriction of one of the Spinor bun-
dles from Q6 where Q6 denotes the smooth hyperquadric above-mentioned.
It is easily computed that K0(AX) = Z2.

Question 3.6. — Can we find a spherical bundle E on X such that
E (−1) ∈ AX and E (−2) ∈ AX?

A positive answer to this question would show that the homological unit
of AX with respect to the rank function coming from Db(X) is C ⊕ C[3].
Hence, the Hodge diamond of AX (with respect to the rank function on AX
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coming from Db(X)) would be:
1

0 0
0 0 0

1 83 83 1
0 0 0

0 0
1

Theorem 3.4 would guarantee that Hodge numbers of AX with respect to
any other rank function on AX having a unitary object whose rank is not
zero are equal are equal to the above numbers.

Remark 3.7. — It would also certainly be interesting to compute the
Hodge numbers of the corresponding categories in the case of quiver with
potentials. We already know that their homological units are C ⊕ C[3] and
that cl(Aunitary) generates K0(A ) ⊗ C (see Proposition 2.11). As a conse-
quence of Theorem 3.4, the Hodge numbers of the 3-Calabi–Yau categories
coming from quiver with potentials are independent of the rank function.

3.2. A Hodge structure

In this section we assume that A is a geometric 3-Calabi–Yau : there
exists is a smooth projective variety over C, say X, and a semi-orthogonal
decomposition:

Db(X) = ⟨A ,⊥A ⟩
such that A is 3-Calabi–Yau. By the Hochschild–Kostant–Rosenberg iso-
morphism, we have an isomorphism:

τHH• : HH•(Db(X)) ≃
⊕
p−q=•

Hq(X,ΩpX),

Furthermore, by Hodge symmetry, the complex conjugation induces an iso-
morphism:

HSX : Hp(X,ΩqX) ≃ Hq(X,ΩpX).
Composing complex conjugation with the inverse of the map τHH• , we find
an involution:

cX : HH•(Db(X)) ≃ HH−•(Db(X))
From now, we make the following hypothesis:

Hypothesis 3.8. — The map cX stabilizes the Hochschild homology of
⊥A in the decomposition:

HH•(Db(X)) = HH•(A ) ⊕ HH•(⊥A ).
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This hypothesis is satisfied in many situations which we shall describe.
Let Y1, . . . , Yk be smooth projective varieties and F1, . . . ,Fk be objects in
Db(Y1 ×X), . . . ,Db(Yk×X). We denote by pk and qk the natural projections
in the diagram:

Yk ×X
qk

��

pk

��

Yk X

Assume that the Fourier–Mukai functors:

Φk(?) = (pk)∗(q∗
k(?) ⊗ Fk) : Db(Yk) −→ Db(X)

are fully faithful and that there is a semi-orthogonal decomposition:

Db(X) = ⟨A ,Φ1(Db(Y1)), . . . ,Φk(Db(Yk))⟩.

Then Hypothesis 3.8 holds in that case. In particular, since we have an
equality:

HH•(A ) = HH•(X)/HH•(⊥A ),
the map cX descends to an involution:

cA : HH•(A ) ≃ HH−•(A ).

Since A is a semi-orthogonal component of Db(X) with X smooth pro-
jective, we can write A as the derived category of DG-modules over some
DG-algebra, say C . In particular, we have an identification:

HH•(A ) = Hom•
Dperf(C op⊗C )(∆C ,∆C ),

where ∆C is the diagonal bimodule over C op ⊗ C . Assume that A is a 3-
Calabi–Yau category, the category Dperf(C op ⊗ C ) is then a 6-Calabi–Yau
category. Serre duality then provides a graded-commutative perfect pairing
(given by composition of morphisms followed by a trace map):

S•
(C op⊗C ) : Hom•

Dperf(C op⊗C )(∆C ,∆C ) × Hom6−•
Dperf(C op⊗C )(∆C ,∆C ) −→ C.

Specializing to the case • = 3, we find that Hom3
Dperf(C op⊗C )(∆C ,∆C ) =

HH3(A ) is a symplectic vector space with symplectic form S3
(C op⊗C ). As

A is 3-Calabi–Yau, we have an isomorphism HH0(A ) ≃ HH3(A ). Hence
we can lift S3

(C op⊗C ) to a symplectic form on HH0(A ), which we denote by
ωHH0(A ).

Definition 3.9. — Let X be smooth projective variety and let
(A , rk,T•

A ) be a TC/HU triple where A is a semi-orthogonal component
of Db(X) which is 3-Calabi–Yau and connected (that is HH−3(A ) = C).
Assume that T•

A = C ⊕ C[3] and that the Hypothesis 3.8 is satisfied. We
define the Hodge spaces of A as:
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(1) H3,0(A ) = HH−3(A ) = C, H0,0(A ) = C ⊂ HH0(A ), H1,0(A ) =
H2,0(A ) = 0.

(2) H3,1(A ) = HH−2(A ), H3,2(A ) = 0 and H2,1(A ) = HH−1(A ).
(3) We choose V1 a maximal isotropic subspace of HH0(A )(for ωHH0(A ))

containing H0,0(A ) and V2 a maximal isotropic subspace in HH0(A )
which is complementary to V1. We let H1,1(A ) be a complementary
subspace of H0,0(A ) in V1. We let H3,3(A ) be a line in V2 and
H2,2(A ) be a complementary subspace of H3,3(A ) in V2.

(4) Hp,q(A ) = cA (Hq,p(A )) for any (p, q) ∈ [0, . . . , 3] such that p < q.

Remark 3.10. —

(1) By definition of homological units, we have a graded embedding
C ⊕ C[3] ↪→ HH•(A ). The category A is 3-Calabi–Yau, so that
there is a graded embedding:

C ⊕ C[3] ↪−→ HH•−3(A ).

This accounts for the definition of H0,0(A ) and its embedding in
HH0(A ).

(2) Since H0,0(A ) is a line in the symplectic vector space (HH0(A ),
ωHH0(A )), it is automatically an isotropic subspace of HH0(A ). The
definition of V1 and H1,1(A ) is accordingly meaningful.

(3) The definition of H3,3(A ) and H2,2(A ) looks rather arbitrary, but
it seems difficult to do better in the absence of the a reasonable
Lefschetz operator on HH0(A ). Note that for A the 3-Calabi–Yau
category inside the derived category of the cubic sevenfold or the
double quartic fivefold, this potential Leschetz operator is probably
to be defined as 0. Indeed, we know h1,1(A ) = 0 in both cases.

(4) It doesn’t seem impossible to extend the definition of these Hodge
spaces beyond the case where the homological unit with respect to
the chosen rank function is C ⊕ C[3]. One would naturally define
Hi,0(A ) = TA ,3−i, for i ∈ [0, . . . , 3]. The definition of H1,1(A ),
H2,2(A ), H3,3(A ) is carried out exactly as in Definition 3.9. On
the other hand, the definition of H3,1(A ), H3,2(A ) and H2,1(A )
looks less obvious, but could probably be found out in many special
cases.

Proposition 3.11. — Let X be smooth projective variety and let
(A , rk,T•

A ) be a TC/HU triple where A is a semi-orthogonal component
of Db(X) which is 3-Calabi–Yau and connected (that is HH−3(A ) = C).
Assume that T•

A = C ⊕ C[3] and that the Hypothesis 3.8 is satisfied. Con-
sider the Hodge spaces of A as in Definition 3.9. Then we have a graded
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decomposition:

HH•(A ) =
⊕
p−q=•

Hp,q(A )

and the direct sum
⊕

p,q⩾0 H
p,q(A ) is a Hodge structure on HH•(A ). If

cl(Aunitary) generates K0(A ) ⊗ C (resp. Knum(A ) ⊗ C provided that rk is a
numerical rank function), then the dimensions of the Hodge spaces defined for
any other non-trivial rank function (resp. non-trivial numerical rank func-
tion) having a unitary object on A are equal to the hp,q(A ) = dimHp,q(A ).

Proof. — The graded decomposition and the fact that
⊕

p,q⩾0 H
p,q(A )

is a Hodge structure on HH•(A ) follow immediately from Definition 3.9
and the existence of the involution cA : HH•(A ) ≃ HH−•(A ) which sends
Hp,q(A ) on Hq,p(A ) (by definition). The second part of the proposition
follows from Theorem 3.4. □

3.3. Some observations toward Homological Mirror Symmetry for
the cubic sevenfold and the double quartic fivefold

This final section (mainly observational) relates the computations of
Hodge numbers for the Calabi–Yau categories associated to the cubic sev-
enfold and the double quartic fivefold to some mirror symmetry phenomena
expected for quotients of products of elliptic curves by finite groups. We also
discuss the possible existence of generators of these categories in connection
with the spherical vector bundles they contain. This would be a first step to-
ward a natural generalization of the proof of Homological Mirror Symmetry
for elliptic curves discovered in [30, 36].

3.3.1. Cubic sevenfold

Let T = E ×E ×E be the triple product of an elliptic curve E, given by
the equation {Z3

1 +Z3
2 +Z3

3 = 0} ⊂ P2 and let Z3 ×Z3 acts on T as follows:

(1, 0).(z1, z2, z3, z4, z5, z6, z7, z8, z9) = (α.z1, z2, z3, α
2.z4, z5, z6, z7, z8, z9)

(0, 1).(z1, z2, z3, z4, z5, z6, z7, z8, z9) = (α.z1, z2, z3, z4, z5, z6, α
2.z7, z8, z9),

where α is a cubic root of unity. The quotient T/Z3 × Z3 has a crepant
resolution which is a Calabi–Yau threefold. We denote it by Z1. The Hodge
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diamond of Z1 is:
1

0 0
0 84 0

1 0 0 1
0 84 0

0 0
1

As explained in [5, 6, 31], the mirror of Z1 ought to be a Landau–Ginzburg
model related to a smooth cubic sevenfold. Let X1 ⊂ P8 be a smooth cubic
sevenfold. We have a semi-orthogonal decomposition:

Db(X1) = ⟨A1,OX1 , . . . ,OX1(5)⟩,

where A1 is a 3-Calabi–Yau category. It follows from [26] that A1 is the
homotopy category of the DG-category of graded matrix factorizations of the
equation of X1. Therefore, the category A1 can be interpreted as a Landau–
Ginzburg model for the cubic sevenfold X1. We found out in Example 3.5
that the Hodge diamond of A1 is:

1
0 0

0 0 0
1 84 84 1

0 0 0
0 0

1

One observes that both diamonds are obtained from each other by a π/2-
rotation. This is certainly a favorable presage as far as mirror symmetry is
concerned.

We have shown in Example 2.9 that there exists a 3-spherical bundle
EX1 on X1 such that EX1(−1) and EX1(−2) are in A1 and that the Chern
characters of these two bundles generate HH0(A1). The following questions
naturally come to mind:

Question 3.12. —

(1) Do the objects EX1(−1) and EX1(−2) split-generate the category A1?
(2) For n ⩾ 0, denote by TnEX1 (−2) the n-th composition with itself of the

spherical twist along EX1(−2). Can we reconstruct a smooth elliptic
curve, say E, and an action of Z3 ×Z3 on E×E×E from the ring⊕

n⩾0 Hom(EX1(−1), TnEX1 (−2)(EX1(−1)))?
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(3) Is there a smooth cubic sevenfold X1 such that the Fukaya category
of Z1 is equivalent to the category of A∞-modules over the A∞-
algebra RHom(EX1(−1) ⊕ EX1(−2),EX1(−1) ⊕ EX1(−2))?

The first equation is quite natural and has a positive answer in the context
of Fukaya categories (see [1, Theorem 1.1]) or [32, Lemma 9.2]). Unfortu-
nately, the analogues of such results are not known in algebraic geometry.
We state as a question:

Question 3.13. — Let X be a smooth projective variety and A be a
semi-orthogonal component of Db(X) which is p-Calabi–Yau. Let E1, . . . ,Ek
be p-spherical objects in A whose ranks with respect to the rank function
coming from X are non-zero. Assume that the Chern characters of E1, . . . ,Ek
generate HH0(A ). Do the object E1, . . . ,Ek split generate A ?

The assumption that A is Calabi–Yau can not be withdrawn. Indeed,
there are many known examples of derived categories of smooth projective
general type surfaces for which the answer to the question is no. This re-
lates to the existence of a phantom category inside their derived categories
(see [8] for instance). On the other hand, it is a folklore conjecture that
phantom categories do not exist inside Calabi–Yau categories. Furthermore,
the Homological Mirror Symmetry conjecture and the truth of the statement
corresponding to Question 3.13 in the context of Fukaya categories lead us
to believe that it should have a positive answer.

The second item of Question 3.12 is inspired by known proofs of Homolog-
ical Mirror Symmetry for elliptic curves (see [30, 36], see also [28]). Provided
that the answer to the first item of Question 3.12 is positive, the third item
of Question 3.12 is just a formulation of the Homological Mirror Symmetry
conjecture for the cubic sevenfold and the rigid Calabi–Yau threefold Z1.

Remark 3.14. — Let T = E × E × E be the triple product of an elliptic
curve E, given by the equation {Z3

1 +Z3
2 +Z3

3 = 0} ⊂ P2 and let Z3 acts on
T as follows:

(1).(z1, z2, z3, z4, z5, z6, z7, z8, z9) = (α.z1, z2, z3, α.z4, z5, z6, α.z7, z8, z9)

where α is a cubic root of unity. The quotient T/Z3 has a crepant resolution
which is a Calabi–Yau threefold. We denote it by Z2. The Hodge diamond
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of Z2 is:
1

0 0
0 36 0

1 0 0 1
0 36 0

0 0
1

We consider the cubic sevenfolds having equations of type:

Xb =
{

−z1z2z3 − z4z5z6 − z7z8z9 +
9∑
i=1

biz
3
i +

∑
i∈[1,2,3]
j∈[4,5,6]
k∈[7,8,9]

bijkzizjzk = 0
}
,

where the b = (bi, bijk) is a vector of complex numbers. Let Z3 acts on Xb by:

(1).(z1, z2, z3, z4, z5, z6, z7, z8, z9)
= (α.z1, α.z2, α.z3, α

2.z4, α
2.z5, α

2.z6, z7, z8, z9)

The exists a semi-orthogonal decomposition:

Db(Xb)Z3 = ⟨Ab,OXb
, . . . ,OXb

(5)⟩,

where Db(Xb)Z3 is the derived category of Z3-equivariant coherent sheaves
on Xb. In case Xb is smooth, the category Ab is 3-Calabi–Yau. It is proved
in [33] that (for the right choice of b) there is an equivalence between Ab and
a version of the Fukaya category of Z2. It would be interesting to check if
their techniques can be applied to answer the third item of Question 3.12.

3.3.2. Double quartic fivefold

The story for the double quartic fivefold is very similar to that of the
cubic sevenfold. Namely, let T = E × E × E be the triple product of an
elliptic curve E, given by the equation {Z4

1 + Z4
2 + Z2

3 = 0} ⊂ P(1, 1, 2) and
let Z4 × Z4 acts on T as follows:
(1,0).(z1, z2, z3, z4, z5, z6, z7, z8, z9, ) = (−i.z1, z2,−z3, z4, z5, z6, i.z7, z8,−z9)
(0,1).(z1, z2, z3, z4, z5, z6, z7, z8, z9) = (z1, z2, z3,−i.z4, z5,−z6, i.z7, z8,−z9),

where i is a square root of −1. The quotient T/Z4 × Z4 has a crepant res-
olution which is a Calabi–Yau threefold. We denote it by Z3. The Hodge
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diamond of Z3 is:
1

0 0
0 90 0

1 0 0 1
0 90 0

0 0
1

As explained in [5, 6, 31], the mirror of Z3 ought to be a Landau–
Ginzburg model related to a smooth double quartic fivefold. Let X3 ⊂
P(1, 1, 1, 1, 1, 1, 2) be a smooth double quartic fivefold. We have a semi-
orthogonal decomposition:

Db(X3) = ⟨A3,OX1 , . . . ,OX1(3)⟩,

where A3 is a 3-Calabi–Yau category. It follows from [26] that A3 is the
homotopy category of the DG-category of graded matrix factorizations of
the equation of X1. Therefore, the category A3 can be interpreted as a
Landau–Ginzburg model for the double quartic fivefold X3. We found out
in Example 3.5 that the Hodge diamond of A3 is:

1
0 0

0 0 0
1 90 90 1

0 0 0
0 0

1

which is again a favorable presage as far as mirror symmetry is concerned.

We have shown in Example 2.9 that there exists a 3-spherical bundle FX3

on X3 such that FX3(−1) and FX3(−2) are in A3 and that the Chern char-
acters of these two bundles generate HH0(A3). We ask for X3 the analogous
question to 3.12:

Question 3.15. —

(1) Do the objectis FX3(−1) and FX3(−2) split-generate the category
A3?

(2) For n ⩾ 0, denote by TnFX3 (−2) the n-th composition with itself of
the spherical twist along FX3(−2). Can we reconstruct a smooth
elliptic curve, say E, and an action of Z4 × Z4 on E ×E ×E from
the ring

⊕
n⩾0 Hom(FX3(−1), TnFX3 (−2)(FX3(−1)))?
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(3) Is there a smooth double quartic fivefold X3 such that the Fukaya
category of Z3 is equivalent to the category of A∞-modules over the
A∞-algebra RHom(FX3(−1) ⊕ FX3(−2),FX3(−1) ⊕ FX1(−2))?

It would be again interesting to know if the techniques developed in [33]
could be used to answer the third item of Question 3.15.
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