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Infinite dimensional representations of orthogonal
groups of quadratic forms with finite index (∗)

Bruno Duchesne (1)

ABSTRACT. — We study representations G → H where G is either a simple Lie
group with real rank at least 2 or an infinite dimensional orthogonal group of some
quadratic form of finite index at least 2 and H is such an orthogonal group as well.
The real, complex and quaternionic cases are considered. Contrarily to the rank
one case, we show that there is no exotic such representations and we classify these
representations.

On the way, we make a detour and prove that the projective orthogonal groups
POK(p, ∞) or their orthochronous component (where K denotes the real, complex
or quaternionic numbers) are Polish groups that are topologically simple but not
abstractly simple.

1. Introduction

The study of finite dimensional representations of Lie groups is a clas-
sical subject. Apart from finite dimensional representations, there are also
infinite dimensional unitary representations, which are classically studied,
see e.g. [22]. In this paper, we are interested in some other infinite dimen-
sional representations with a geometric taste. Namely, representations that
preserve a quadratic or Hermitian form with finite index.

The simplest example is given by representations into the real orthogonal
group O(1, ∞) which is the group that preserves a quadratic form of signa-
ture (1, ∞) on some separable real Hilbert space. In this case, the geometric
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taste is given by the induced action on the infinite dimensional hyperbolic
space. Such representations were put in this geometric context in [11, 27].
The Cremona group has also a natural representation in O(1, ∞) see for
example [4].

In [27], representations PO(1, n) → PO(1, ∞) are studied and classified
by a parameter t ∈ (0, 1]. These representations correspond to a standard
embedding if and only if t = 1. In the other cases, these representations are
called exotic. They come from the spherical principal series of PO(1, n). This
spherical principal series also yields representations PO(1, n) → PO(p, ∞)
for infinitely many p > 1, where the possible values of p depend on n.

This result has been extended to the classification of self-representations
of PO(1, ∞) in [28] and there is still a one parameter family of exotic self-
representations.

Here we are interested in the higher rank cases (for the source group) and
in particular in the existence of possible higher rank exotic representations.
For uniform lattices in higher rank semisimple Lie groups, a theorem similar
to the geometric interpretation of Margulis superrigidity has been proved
in [15, Theorem 1.2]. This gives hints that there should be no exotic such
representations for higher rank semisimple Lie groups.

Representations in PO(p, ∞), for p ∈ N, are not the only ones to give
actions on infinite dimensional and finite rank symmetric spaces with non-
positive curvature. One could also consider the similar constructions over the
complex numbers and the quaternions. This gives rise to representations in
POK(p, ∞) where K = R, C or H and the associated symmetric spaces are
denoted XK(p, ∞) [13, 14] (see Sections 2 and 3 for precise definitions). We
use the notations POK(p, ∞) to have a uniform notation independent of the
ground field (or division algebra) and PO(p, ∞) merely means POR(p, ∞).
Self-representations of POC(1, ∞) have been also classified in [26] under an
additional hypothesis.

The study of representations of these infinite dimensional classical groups
is not completely new and unitary representations have been studied for ex-
ample in [33] and references therein. Even earlier, these infinite dimensional
groups were studied by Pontryagin, Naimark and Ismagilov, see for exam-
ple [32, 19, 36].

Our first result is about finite dimensional Lie groups of higher rank. It
shows that there is no exotic continuous representations in this case. All those
representations come from finite dimensional representations and unitary
representations.
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Theorem 1.1. — Let G be a connected simple non-compact Lie group
with trivial center. Let G → POK(p, ∞) be a continuous representation with-
out totally isotropic invariant subspace. If the real rank of G is at least 2 then
the underlying Hilbert space H splits orthogonally as E1 ⊕· · ·⊕Ek ⊕K where
each Ei is a finite dimensional, non-degenerate, G-invariant linear subspace
and the induced representation on Ei is irreducible. The induced representa-
tion on K is unitary.

Let us observe that the existence of a decomposition as a sum of finitely
many irreducible representations and a unitary one is known for any group
as soon as there is no totally isotropic invariant space [19, 36]. The strategy
to prove Theorem 1.1 is to use the aforementioned mention [15, Theorem 1.2]
for lattices and extended it to the whole ambiant group. This strategy may
seem surprising since the ambiant Lie group has much more structure than
its lattices. In particular, it has a differentiable structure. The topology used
on POK(p, ∞) is the coarsest that makes the action on the symmetric space
XK(p, ∞) continuous. This is not the topology coming from the norm topol-
ogy on POK(p, ∞) and thus one cannot use the standard result in finite
dimension that a continuous homomorphism between Lie groups is actually
smooth. In fact, the exotic representations PO(1, n) → PO(1, ∞) cited above
are not continuous for the norm topology.

One can also imagine that one can directly adapt the proof for lattices
to Lie groups but the proof for lattices uses harmonic maps from a locally
symmetric space. For the whole Lie groups this would lead to harmonic maps
from a point. Over a point, differential methods could not work. However,
one can imagine there is a proof that does not use the result for lattices.

Theorem 1.1 leaves open the study of representations of rank one Lie
groups in the groups POK(p, ∞) (See [27, Problem 5.2]). Let us mention
that continuous representations of PSO(1, n) for n ⩾ 3 into O(2, ∞) have
been considered in [35] and the authors show there is no such irreducible
representations.

Theorem 1.2. — Let p, q ∈ N with p ⩾ 2 and K, L ∈ {R, C, H}, If
ρ : POK(p, ∞) → POL(q, ∞) is a continuous geometrically dense represen-
tation then K = L, q = p and ρ is induced by an isomorphism of quadratic
spaces.

The assumption about geometric density implies that the representation
is irreducible and in finite dimension this is equivalent to Zariski density.
See [17, §3] for a discussion thereon. As a corollary, we get an understanding
of the continuous automorphism group.
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Corollary 1.3. — The group of continuous automorphisms
Autc(POK(p, ∞)) is Isom (XK(p, ∞)).

This latter group is described in Theorem 3.3 where it is shown that
Isom (XK(p, ∞)) is POK(p, ∞) except in the complex case where the only
non-trivial outer automorphism correspond to the complex conjugation.

Since the topology on POK(p, ∞) plays a role in the previous results,
we take a quick look at this topological group and prove that, although
abstractly it is not simple (see Remark 3.11), topologically it is.

Theorem 1.4. — The Polish group POC(p, ∞), POH(p, ∞) and
POo

R(p, ∞) are topologically simple.

Here Oo
R(p, ∞) denotes the orthochronous component of OR(p, ∞). See

Section 3.2.
Remark 1.5. — All the results in this introduction are stated for the

infinite countable cardinal ℵ0, merely denoted by ∞ here. But the proofs deal
with any cardinal κ except for the fact that POK(p, κ) is Polish, which holds
only when κ is countable. Theorems are restated in this larger generality in
the body of the text.

Remark 1.6. — It is asked in [28, §1.3] if the group PO(1, ∞) has the
automatic continuity. A Polish group G has this property if any homomor-
phism to a separable topological group is continuous. The same question can
be asked for POK(p, ∞) and any finite value of p. If this property holds for
POK(p, ∞) then the continuity assumption in Theorem 1.2 and its corollary
can be removed. A general study of POK(p, ∞) as a Polish group should be
the subject of a future work.

Acknowledgments

This works has been stimulated by discussions with Nicolas Monod and
Pierre Py. I thank them for these stimulations and their comments about
this paper.

2. Symmetric spaces of infinite dimension

By a Riemannian manifold, we mean a (possibly infinite dimensional)
smooth manifold modeled on some real Hilbert space with a smooth Rie-
mannian metric. For a background on infinite dimensional Riemannian man-
ifolds, we refer to [23] or [34].
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Let (M, g) be a Riemannian manifold, a symmetry at a point p ∈ M is
an involutive isometry σp : M → M such that σp(p) = p and the differential
at p is − Id. A Riemannian symmetric space (or simply a symmetric space)
is a connected Riemannian manifold such that, at each point, there exists a
symmetry. See [14, §3] for more details.

A natural infinite dimensional generalization of the symmetric space as-
sociated to SLn(R) is obtained with the following construction. Let H be
a real Hilbert space and L2(H) be the space of Hilbert–Schmidt operators
on H. Let S2(H) be the subset of L2(H) given by self-adjoint operators and
let P 2(H) = exp

(
S2(H)

)
, the set of Hilbert–Schmidt perturbations of the

identity that are positive definite. This space P 2(H) is a symmetric space of
non-positive curvature.

As in finite dimension, the Riemann tensor and the curvature operator
can be defined for Riemannian manifolds of infinite dimension. Under the as-
sumption of separability and non-positivity of the curvature operator, a clas-
sification of such symmetric spaces has been obtained in [14, Theorem 1.8]
and they are analogs of the classical ones.

The non-positivity of the curvature operator is a natural but stronger
condition than non-positivity of the sectional curvature. In particular, sym-
metric spaces with non-positive curvature operator and no local de Rham
factor are automatically simply connected and thus CAT(0) [14, Proposi-
tion 4.1].

Definition 2.1. — Let X be a Riemannian manifold. A closed subman-
ifold Y is said to be totally geodesic if for any geodesic γ : I → X, where
I is a real open interval containing 0, with initial conditions (γ(0), γ′(0)) in
the tangent bundle of Y, γ(I) is contained in Y.

The rank of a symmetric space with non-positive sectional curvature is
defined as the supremum of the dimensions of totally geodesic embedded Eu-
clidean spaces. The symmetric space P 2(H) has infinite rank and for exam-
ple, one can find three points that are not contained in any finite dimensional
totally geodesic subspace [17, Example 2.6].

One can also construct infinite dimensional symmetric spaces of non-
positive curvature and finite rank. Let us describe them. Let H denotes the
division algebra of the quaternions, and H be a Hilbert space over K = R,
C or H with a Hilbert basis of cardinality κ. In case K = H, the scalar
multiplication is understood to be on the right. Let p ∈ N. We fix an or-
thonormal basis (ei)i∈p+κ of the separable Hilbert space H, and we consider
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the quadratic form
Q(x) =

∑
i⩽p

xixi −
∑
i∈κ

xixi

where x =
∑

eixi. The space

XK(p, κ) = {V ⩽ H, dimK(V ) = p, Q|V > 0}

has a structure of symmetric space of non-curvature (see [13]). The rank of
XK(p, κ) is exactly p. Actually, separable symmetric spaces of non-positive
curvature operator and finite rank are classified [14, Corollary 1.10]. They
split as a finite product of finite dimensional symmetric spaces of non-
compact type and copies of XK(p, ∞). These infinite dimensional symmetric
spaces have the particularity that any finite configurations of points, flats
subspaces or points at infinity are contained in a finite dimensional totally
geodesic subspace [13, Proposition 2.6].

The following characterizations of totally geodesic subspaces of symmet-
ric spaces are well-known in finite dimension (it follows from the work of
Mostow [30]). In particular, one can characterize them without referring to
the differential structure. The knowledge of geodesics or the symmetries is
sufficient.

Proposition 2.2. — Let X be a separable symmetric space with non-
positive curvature operator and finite rank or X = XK(p, κ). Let Y be a
non-empty closed subspace of X . Let σx be the symmetry at x ∈ X .The
followings are equivalent:

(1) The subspace Y is a totally geodesic submanifold of X .
(2) For any distinct points x, y ∈ Y, the unique geodesic of X containing

x and y is included in Y.
(3) The subspace Y is convex and satisfies σx(Y) = Y for any x ∈ Y.
(4) The subspace Y is a connected submanifold such that the Riemann-

ian distance of Y (coming from the Riemannian structure of Y in-
duced by X ) is equal to the restriction to Y of the Riemannian dis-
tance of X .

(5) There exists x ∈ Y such that Y = expx(E) for some closed linear
subspace E ⩽ TxX such that E is a Lie triple system when TxX is
identified to p in the Cartan decomposition g = t ⊕ p relative to x.

(6) For any x ∈ Y, Y = expx(E) for some closed linear subspace E ⩽
TxX such that E is a Lie triple system when TxX is identified to p
in the Cartan decomposition g = t ⊕ p relative to x.

Proof. — Since X is a symmetric space with non-positive curvature op-
erator, we know that it can be embedded as a totally geodesic manifold
of S2(H) [14]. Thus, it suffices to consider the case where X is S2(H). In
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that case, the correspondence between totally geodesic submanifolds and Lie
triple system has been observed in [18, Proposition III.4]. So we know that
(1), (5) and (6) are equivalent.

Let us prove that (2) and (3) are equivalent. It is clear that if Y satisfies
(2) then it is convex. Moreover, for any x ̸= y, σx(y) lies on the geodesic
line through x and y. Thus Y satisfies (3). Conversely if Y satisfies (3) then
for any x ̸= y ∈ Y, the geodesic segments [(σx ◦ σy)n (y), (σy ◦ σx)n (x)] is
contained in Y for all n ∈ Z. Since their union is the whole geodesic through
x and y, this geodesic is contained in Y.

Assume that Y satisfies (6) then for any x ̸= y in Y, there is v ∈ F
such that y = expx(v). Since the geodesic through x and y is the image
of t 7→ expx(tv) for t ∈ R, this geodesic is contained in Y and thus Y
satisfies (2).

Now assume Y satisfies (2). For a finite subset F ⊂ Y, F lies in some finite
dimensional totally geodesic subspace ZF . The intersection YF = Y ∩ ZF

is a totally geodesic subspace of ZF and thus there is a finite dimensional
subspace EF of Ty1X , that is a Lie triple system (by the result in finite
dimension) and such that expy1(EF ) = YF . Since expy1 : Ty1X → X is a
homeomorphism, it induces a homeomorphism from E, the closure of

⋃
F EF

(where F is any finite subset of Y) to Y and thus Y satisfies (5).

It is clear that (2) implies (4). Conversely, since the distance on Y coin-
cides with the one in X , Y is convex. Moreover since Y is a submanifold, any
geodesic segment can be enlarged a bit and since X is closed, any geodesic
segment can be extended to a whole geodesic line. Thus (2) is satisfied. □

The following corollary is an immediate consequence of characteriza-
tion (1).

Corollary 2.3. — Any non-empty intersection of totally geodesic sub-
spaces of X is a totally geodesic subspace. In particular, any subset of X is
contained in a unique minimal totally geodesic subspace of X .

3. Isometry groups of infinite dimensional Riemannian
symmetric spaces of finite rank

3.1. Full isometry group

In the remaining of this paper, K denotes either the real, complex or
quaternionic numbers. Let H be a K-Hilbert space of with a strongly non-
degenerate quadratic form Q of signature (p, κ) where p ∈ N and κ ⩾ p is
some finite or infinite cardinal. This means that
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• there is a Q-orthogonal decomposition H = H+ ⊕ H−,
• if φ is the Hermitian form obtained by polarization of Q and φ±

are the restrictions of φ on H± then (H+, φ+) and (H−, −φ−) are
Hilbert spaces with Hilbert bases of cardinality respectively p and κ,

• moreover, the Hermitian form φ+ −φ− is positive definite on H and
equivalent to the scalar product on H.

For more details about strongly non-degenerate quadratic forms, one may
have a look at [3, §2]. We are essentially interested in the case where κ is
infinite but at least we assume that p + κ ⩾ 4. If κ is the infinite countable
cardinal, we denote it by κ = ∞ as in the introduction.

We denote the orthogonal group of Q by OK(p, κ) and its intersection
with the set of finite rank perturbations of the identity by Ofr

K(p, κ). Let us
recall that a finite rank perturbation of the identity is an operator of the
form Id +A where A is a finite rank operator. The center of OK(p, κ) is the
set of homotheties λ Id where λ ∈ K, |λ| = 1 and λ ∈ Z(K), the center of
K. The center of OK(p, κ) is thus ± Id for K = R or H and isomorphic to
S1 for K = C. We define POK(p, κ) to be the quotient of OK(p, κ) by the
its center Z (OK(p, κ)).

By construction POK(p, κ) acts by isometries on XK(p, κ) and it is proved
that when K = R, PO(p, κ) = Isom (XK(p, κ)). As explained in [26] for
p = 1, Isom (XC(1, κ)) is the union of the holomorphic isometries and the
antiholomorphic isometries. This comes from the complex conjugation which
is the unique field automorphism of C that preserves the absolute value. For
the quaternionic numbers, one can follows the strategy as in finite dimension
to prove that Isom(XH(1, κ)) = POK(1, κ), see [2, II.10.17-21].

Projective geometry is lurking in these statements and the fundamental
theorem of projective geometry tells us that field automorphisms have some
role to play. As it is well known, the field R has no non-trivial field au-
tomorphisms and for the quaternions H, all field automorphisms are inner
and preserve the quaternionic absolute value. Since the center of H is R,
one has Aut(H) ≃ H∗/R∗ ≃ SO(3). The former isomorphism is obtained
by considering the two dimensional sphere of pure unit quaternions. Let us
observe that the quaternionic conjugation is not a field automorphism since
xy = y x which is in general different from x y.

Let us denote by Autc(K) the group of continuous field automorphisms of
K. It coincides with the group of automorphisms that preserve the absolute
value (|σ(x)|2 = |x|2 for x ∈ K and σ ∈ Aut(K)). It is trivial when K = R,
Autc(C) ≃ Z/2Z (the non-trivial automorphism being given by the conju-
gation) and Autc(H) = Aut(H) ≃ H∗/R∗ ≃ SO(3) is given by conjugations
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of elements of H∗. One can realize each σ ∈ Autc(K) as a R-linear isomor-
phism of H that preserves the real part of the Hermitian form. It suffices to
apply coordinate-wise the automorphism σ in the base (ei). In particular, it
maps K-linear subspaces to K-linear subspaces of the same dimension and
preserves positivity. Thus it induces a bijection of XK(p, κ) and the metric is
invariant. Observe that this construction identifies Autc(σ) with a subgroup
of the stabilizer of the span of (e1, . . . , ep) in XK(p, κ).

Remark 3.1. — A possibility to see that each σ ∈ Autc(K) induces an
isometry is the following. Let d = dimR(K) and let φR = ℜ(φ) be the real
part of the Hermitian form φ on the underlying real Hilbert space structure
on H. The real quadratic form QR is a strongly non-degenerate quadratic
form of signature (dp, dκ) (where dκ denotes the multiplication of cardinal
numbers and thus dκ = κ as soon as κ is infinite since d ⩽ 4). Consider-
ing any totally isotropic K-linear space of dimension p as a totally isotropic
R-linear space of dimension dp gives an embedding of XK(p, κ) as a to-
tally geodesic submanifold of XR(dp, dκ) and any element of OK(p, κ) or of
Autc(K) act on XR(dp, dκ) preserving both XK(p, κ) and φR. Thus any such
element induces an isometry of XK(p, κ).

Our goal in this subsection is to identify the full isometry group of
XK(p, κ). So we need to understand how elements of OK(p, κ) and Autc(K)
interact in Isom (XK(p, κ)) and see how they generate it. Let us recall a few
vocabulary from projective geometry. A collineation of the projective space
P H is a bijection that preserves projective lines (they are also called pro-
jective automorphisms). We denote by PΓL(H) the group of collineations.
Since the dimension of H is at least 3, the fundamental theorem of projec-
tive geometry tells us that this group is the image of the group of semilinear
automorphisms GL(H) ⋊ Aut(K). Let us denote by PΓOK(p, κ)
the image of OK(p, κ) ⋊ Autc(K) in PΓL(H). Since R has no automorph-
isms, PΓOR(p, κ) = POR(p, κ), for the complex numbers PΓOC(p, κ) =
POC(p, κ) ⋊ Z/2Z and remarkably for the quaternions PΓOH(p, κ) =
POH(p, κ) since the conjugation by a ∈ H∗ induces the same collineation as
the left multiplication by a.

In order to identify the isometry group Isom (XK(p, κ)), we introduce
the context of Tits’ fundamental work on spherical buildings [38]. Let us
recall briefly that a spherical building of dimension n is a simplicial complex
with some special subcomplexs called appartements and isomorphic to a
tessellation of a real sphere of dimension n associated to some spherical
Coxeter group. It is proved in [13, Proposition 5.2] that the Tits boundary
∂XK(p, κ) is a spherical building of dimension p − 1 (in particular, this is
a non-trivial structure as soon as p ⩾ 2). Actually the proof is done in the
case where κ = ∞ but the proof works for any cardinal as well.
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One can describe explicitly what are the simplices. They are in corre-
spondance with isotropic flags, that are sequences F1 < F2 < · · · < Fk

where each Fi is a totally isotropic K-linear subspace (and thus k ⩽ p). This
is proved in the real case in [13, Proposition 6.1]. This can be extended to
the other cases via the embedding described in Remark 3.1 since an element
of OK(p, κ) that stabilizes a flag of isotropic R-linear subspaces for QR also
stabilizes a flag of K-linear subspaces and vice-versa.

In particular, vertices correspond to totally isotropic subspaces. The type
of a vertex is merely the dimension of the associated totally isotropic sub-
space. The polar space S associated to this building (see [38, §7] for general
definitions) is the space of isotropic lines, i.e. vertices of type 1. Two points
in S are collinear if they are contained in a common totally isotropic plane,
i.e. they are orthogonal. An automorphism of this polar space is a bijection
that preserves collinearity.

To any ξ ∈ ∂XK(p, κ), one can associate its symmetric space at infin-
ity Xξ. In a general CAT(0) context, this is defined as the quotient of the
space of geodesics pointing to ξ under the equivalence of being strongly
asymptotic (see for example [24, §2.1.3], [5, §4.2] or [9, §3.1]). Two points
ξ, η ∈ ∂XK(p, κ) are opposite if they are extremities of a common geodesic.
If ξ is a vertex and η is opposite to ξ then η is a vertex of the same type and
the span of ξ and η is a linear subspace of H of signature (d, d) where d is
the type of ξ. This follows from the fact that any geodesic line lies in some
maximal flat subspace and from the description of these flats in [13, §3].

Let us fix a vertex ξ ∈ XK(p, κ) of type d. Let us choose η opposite to ξ.
The union Y of geodesics with extremities ξ, η is closed and invariant under
symmetries σx for x ∈ Y, thus it is a totally geodesic subspace of XK(p, κ).
It splits as Y ≃ R × Xξ where the R-factor correspond the direction of
a geodesic from ξ to η. The isometry type of Xξ does not depend on η
since the stabilizer of ξ in POK(p, κ) acts transitively on points opposite to
ξ. A point x ∈ XK(p, κ), i.e. a positive subspace of dimension p lies in Y
if and only if x ∩ Span {ξ, η} has dimension d and x = x ∩ Span {ξ, η} ⊕
x ∩ Span {ξ, η}⊥. Since Span {ξ, η}⊥ has signature (p − d, κ), Xξ splits has
Xξ ≃ X ′

ξ × XK(p − d, κ − d) where X ′
ξ is some finite dimensional symmetric

space of non-compact type.

For the next lemma, let us assume that κ is an infinite cardinal, otherwise
an identification (which is not very hard) of X ′

ξ is required.

Lemma 3.2. — Let p ⩾ 2. The group Isom (XK(p, κ)) acts by type pre-
serving automorphisms on the spherical building ∂XK(p, κ).

Moreover, Isom (XK(p, κ)) acts by automorphisms on the polar space S.
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Proof. — Isometries preserve maximal flats and thus their boundaries
which are appartements of the spherical building at infinity. Points in the
interior of chambers (maximal simplices) correspond to extremities of reg-
ular geodesics, those contained in a unique maximal flat. Thus the set of
these points is invariant by the isometries as well as chambers, which are
connected components of the set of regular points at infinity. The other sim-
plices are obtained as intersections of closure of chambers and thus invariant
as well. In particular, vertices are minimal non-empty intersections of closure
of chambers and thus the isometry group acts on the set of vertices.

We claim that any two vertices have the same type if and only if they are
in the same Isom (XK(p, κ))-orbit. Witt theorem implies that POK(p, κ) acts
transitively on the set of vertices of a given type. For a vertex ξ of type d,
the infinite dimensional factor of Xξ has rank p−d and this rank is invariant
by Isom (XK(p, κ)).

So, this proves that the action on the spherical building at infinity is
by type-preserving automorphisms. Looking at vertices of type 1, we get an
action on the polar space S. For two distinct vertices of type 1, there are
only two possibilities: they are collinear, that is their span is totally isotropic,
that is they are orthogonal or their span has signature (1, 1). This can be
recovered by geometric means, since in the first case, their Tits angle is π/2
where as they are opposite in the second case.

So the action of the isometry group on the polar space S preserves
collinearity. □

Theorem 3.3. — Let p ∈ N. The isometry group of XK(p, κ) is
PΓOK(p, κ).

More precisely,

• Isom(XR(p, κ)) = POR(p, κ),
• Isom(XC(p, κ)) = POC(p, κ) ⋊ Z/2Z,
• Isom(XH(p, κ)) = POH(p, κ).

Proof. — As explained above, this statement is not new in case p = 1.
So let us assume that p ⩾ 2. Any isometry induces an automorphism of
the associated polar space by Lemma 3.2. By [38, Theorem 8.6.II], since
the dimension of H is at least 4, the group of all this automorphisms is
PΓOK(p, κ). □

Remark 3.4. — The definition of PΓOK(p, κ) in [38, §8.2.8] is not exactly
the same as the one here but it is easy to see that they coincide. Let f be
some semilinear map associated to σ ∈ Aut(C) such that f∗Q = αQ for
some α ∈ R∗. Tits defined PΓOC(p, κ) as a quotient of such semilinear
maps. We claim that for such f , necessarily σ ∈ Autc(C) thus one recovers
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the definition here. Let x ∈ H such that Q(x) > 0. For any λ ∈ C, f∗Q(λx) =
σ−1 (

|σ(λ)|2Q(f(x))
)
. So,

|σ(λ)|2Q(f(x)) = σ (αQ(x)) σ(|λ|2).

For λ = 1, we get that Q(f(x)) = σ (αQ(x)) and thus |σ(λ)|2 = σ(|λ|2)
which implies that σ preserves R and thus σ ∈ Autc(C).

3.2. Topological simplicity

Let us endow Isom(XK(p, κ)) with the topology of pointwise convergence,
that is the topology associated to the uniform structure given by the écarts
(g, h) 7→ d(gx, hx) for any x ∈ XK(p, κ). When κ ⩽ ∞, this topology on
Isom(XK(p, κ)) is Polish [20, §9.B]. The group POK(p, ∞) is a closed sub-
group and thus a non-locally compact Polish group. In the real and quater-
nionic cases, there is nothing to prove since the two groups coincide. In
the complex case, the following lemma follows from the fact that POC(p, κ)
is exactly the subgroup that preserves the cocycle induced by the Kähler
form [17, §5.2].

Lemma 3.5. — The group POK(p, κ) is a closed subgroup of
Isom(XK(p, κ)).

In the remaining of this section we prove that POK(p, κ) is topologically
simple for any cardinal κ. For a closed non-degenerate subspace E, H = E ⊕
E⊥ and the orthogonal group of the restriction of Q on E can be embedded
in OK(p, κ) by letting it act trivially on E⊥. We denote by OK(E) its image
in OK(p, κ) and by POK(E) the corresponding subgroup of POK(p, κ)

Proposition 3.6. — Let g1, . . . , gn be a finite collection of elements in
Ofr

K(p, κ) then there is a non-degenerate finite dimensional subspace E ⩽ H
of index p such that gi ∈ OK(E) for all i ⩽ n.

Proof. — We first prove the result for one element g ∈ Ofr
K(p, κ). By

definition, there is an operator A of finite rank such that g = Id +A. Let F
be the image of A and choose E to be any finite dimensional non-degenerate
subspace of H of index p that contains F . Observe that any subspace of H is
g-invariant if and only if it is A-invariant. Since for any x ∈ E, Ax ∈ F ⊂ E,
E is g-invariant. Since E is non-degenerate, H = E ⊕ E⊥ is a g-invariant
splitting. We claim that the restriction of A to E⊥ is trivial. Actually, for
x ∈ E⊥, Ax ∈ E⊥ (because E⊥ is g-invariant) and Ax ∈ F ⊂ E. Thus
Ax = 0. So g ∈ OK(E).
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Now, for each i, we find Ei non-degenerate finite dimensional subspace
of index p such that gi ∈ OK(Ei). The sum E =

∑
i Ei is non-degenerate

finite dimensional subspace of index p. Since OK(Ei) ⩽ OK(E), the result
follows. □

There is no determinant for infinite dimensional operators in general but
if K = R or C and g ∈ Ofr

K(p, κ), one can find E as in Lemma 3.6 and define
det(g) = det(gE) which does not depend on the choice of E. As in finite
dimension, this defines a group homomorphism Ofr

K(p, κ) → {±1} or S1.
We define SOfr

K(p, κ) to be the subgroup of elements with determinant 1. In
the quaternionic case, there is also a notion of determinant [12] but it takes
positive real values and thus it is constant to 1 on OK(p, q) for p, q ∈ N.

So, we use SOfr
H(p, κ) = Ofr

H(p, κ) to have a uniform notation. We denote
by PSOfr

K(p, κ) the image of SOfr
K(p, κ) in POfr

K(p, κ). Let us observe that
this image is isomorphic to SOfr

K(p, κ) since non-trivial homotheties are never
finite rank perturbations of the identity.

The real case is bit particular since the Lie group SOR(E) has two con-
nected components. If P is a definite positive subspace of dimension p in E
and let πP be the orthogonal projection to P . The map

SOR(E) −→ {±1}
g 7−→ det((πP ◦g)|P )

|det((πP ◦g)|P )|

is a group homomorphism and its kernel is exactly the connected compo-
nent of the identity in SOR(E), which is called the orthochronous group(1)

denoted SOo
R(E). This homomorphism does not depend on the choice of P

and actually extends to the whole of OR(p, κ).

Lemma 3.7. — The orientation map
or : OR(p, κ) −→ {±1}

g 7−→ det((πP ◦g)|P )
|det((πP ◦g)|P )|

is a well-defined surjective homomorphism.

Proof. — Let us denote by B+ = {x = (x1, . . . , xp) ∈ Hp, Span(x) ∈
XR(p, κ)}. Let

∧p H the p-th exterior power of H and for g ∈ GL(H), we
denote by ∧pg the linear operator defined by ∧pg(x1 ∧ · · · ∧ xp = g(x1) ∧
· · · ∧ g(xp). The symmetric form φ on H induces a symmetric form on

∧p H
denoted φ as well and defined by

φ(x1 ∧ · · · ∧ xp, y1 ∧ · · · ∧ yp) = det (φ(xi, yj)) .

(1) The name comes from the Lorentz group in special relativity. The orthochronous
subgroup is the subgroup that preserves the direction of time.
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There is an OR(p, κ)-equivariant continuous map i : B+ →
∧p H defined

by i(x) = x1 ∧ · · · ∧ xp where x = (x1, . . . , xp). Let us observe that i(x) and
i(y) are proportional if and only if Span(x) = Span(y) and they are moreover
positively proportional if the bases x and y are in the same orientation class.

For x, y ∈ B+, φ(i(x), i(y)) ̸= 0 since there exist orthonormal bases x′, y′

of Span(x) and Span(y) such that φ(x′
i, y′

i) = cosh(λi) where (λi) is the
collection of hyperbolic principal angles between Span(x) and Span(y) and
φ(x′

i, y′
j) = 0 for i ̸= j. So, φ(i(x′), i(y′)) =

∏
cosh(λi) ̸= 0. Moreover for

x, y, z ∈ B+ if φ(i(x), i(y)) > 0 and φ(i(x), i(z)) > 0 then φ(i(y), i(z)) > 0.
This follows from the fact that there is a continuous path t 7→ xt from [0, 1]
to B+ such that x0 = x and x1 is a basis of Span(y) in the orientation
class of y (using the exponential matrix that appears in [13, Proposition 3.5]
which maps Span(y) to Span(x) and multiplying the hyperbolic angles λi

by (1 − t)). In particular, one can define an equivalence relation ∼ on B+
such that x ∼ y ⇐⇒ φ(i(x), i(z)) > 0. This relation is invariant under
the induced action of OR(p, κ) (i.e. gx ∼ gy ⇐⇒ x ∼ y). In particular,
an element g ∈ OR(p, κ) preserves each of the two equivalent classes or
permute them. It preserves these two classes if and only if for any x ∈ B+,
φ(i(gx), x) > 0.

If x is a basis of P then φ(i(gx), x) and det ((πP ◦ g)|P ) have the same
sign. This yields the homomorphism OR(p, κ) → Z/2Z. The surjectivity
is obtained by choosing an element of OR(P ) \ SOR(P ) and extending it
trivially on P ⊥. □

We denote the kernel of or by Oo
R(p, κ) and called it the orthochronous

group as well.

Remark 3.8. — Let us observe that if p is odd then − Id /∈ Oo
R(p, κ) and

in this case, POo
R(p, κ) = POR(p, κ). On the contrary, if p is even then − Id ∈

Oo
R(p, κ) and the orientation map or defines a non-trivial homomorphism on

the quotient group POR(p, κ). Thus POo
R(p, κ) is a strict non-trivial normal

subgroup of POR(p, κ).

Lemma 3.9. — For any finite collection {xi}i∈{1,...,n} of points in
XK(p, κ) and g ∈ POK(p, κ), there is g0 ∈ PSOfr

K(p, κ) such that gxi = g0xi

for any i ∈ {1, . . . , n}.

Proof. — Let E be the minimal non-degenerate subspace of H such that
xi ⊆ E for all i ∈ [1, n] [17, Lemma 3.11]. Let us set F = E + g(E) which is
a non-degenerate subspace and thus H = F ⊕ F ⊥. By Witt theorem, there
is h ∈ PO(F ) such that h−1gE = E. In particular h ∈ POfr

K(p, κ). The
element h−1g preserves E and thus its orthogonal E⊥. Let us define f to be
the restriction h−1g on E and being trivial on E⊥. Let g0 = hf ∈ POfr

K(p, κ).
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Since for all i ∈ [1, n] xi ⊂ E, g0xi = h(h−1g)xi = gxi. In case K = R or C,
one can moreover choose a (necessarily negative) line L in F ⊥ and modify
g0 to act by det(g0)−1 on this line and being trivial on (F + L)⊥. In this
way, one has moreover g0 ∈ SOfr

K(p, κ). □

Proposition 3.10. — The group PSOfr
K(p, κ) is simple and dense in

POK(p, κ) when K = C or H. In the real case, PSOfr
R(p, κ) ∩ POo

R(p, κ) is
simple and dense in POo

R(p, κ)

Proof. — It is well known that when q is finite, the group PSOK(p, q)
or PSOo

R(p, q), is a connected simple Lie group with trivial center and
thus is abstractly simple. Let g ∈ PSOfr

K(p, κ) (assumed to be moreover
orthochronous in the real case), there is E such that g ∈ PSOK(E). If
h ∈ PSOfr

K(p, κ) is another element (also assumed to be orthochronous in
the real case), we may moreover enlarge E such that g, h ∈ PSOK(E). If g is
not trivial then the normal subgroup of PSOK(E) (respecticvely PSOo

R(E))
generated by g is PSOK(E) (respecticvely PSOo

R(E)) itself and thus contains
h. So the simplicity statement follows.

Density of PSOfr
K(p, κ) in POK(p, κ) is a straightforward corollary of

Lemma 3.9. In case K = R and g is orthochronous then g0 (from Lemma 3.9)
is automatically orthochronous as well. □

Remark 3.11. — For any ideal I of the space of bounded operators (like
the finite rank operators, the compact operators or the q-th Schatten class
operators for q ⩾ 1) one can construct a normal subgroup of elements of
OK(p, κ) that are perturbations of the identity where the perturbation lies
in I, i.e. elements of the form I + A where A ∈ I. So, OK(p, κ) has a lot of
normal subgroups and POK(p, κ) is not simple.

For a subgroup G′ ⩽ G, we denote by ZG(G′) its centralizer in G. A
topological group is said to be topologically simple if any non-trivial normal
subgroup is dense. In order to show that POK(p, κ) is topologically simple,
let us show two easy facts from group theory.

Lemma 3.12. — Let G be a group and N a normal simple subgroup. If
H ⩽ G is a normal subgroup, either N ⩽ H or H ⩽ ZG(N).

Proof. — Let n ∈ N and h ∈ H then [n, h] ∈ N ∩ H. So if H ≰ ZG(N)
then there are n and h such that [n, h] ̸= e thus N ∩ H is non trivial normal
subgroup of N and thus N = N ∩ H ⩽ H. □

Proposition 3.13. — Let G be a Hausdorff topological group with trivial
center. If there is a dense normal simple subgroup N then G is topologically
simple.
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Proof. — Let H be a non trivial normal subgroup. Assume H ⩽ ZG(N).
Let h ∈ H, the map g 7→ [g, h] from G to G, is continuous and constant on
N . Since N is dense and G is Hausdorff, this map is constant on G and h is
in the center of G. Since H is non-trivial and G has trivial center, this is a
contradiction. So by Lemma 3.12, N ⩽ H and H is dense. □

Theorem 3.14. — Let κ be some infinite cardinal. The topological
groups POC(p, κ), POH(p, κ) and POo

K(p, κ) are topologically simple.

In case κ = ∞, one recovers Theorem 1.4.

Proof. — Since POK(p, κ) or POo
R(p, κ) has trivial center, the theorem

follows from Propositions 3.10 and 3.13. □

4. Actions on infinite dimensional symmetric spaces

Definition 4.1. — A subgroup G of Isom(XK(p, κ)) is geometrically
dense if G has no fixed point at infinity nor invariant strict totally geodesic
subspace. A representation ρ : G → Isom(XK(p, κ)) is geometrically dense if
its image is so.

Remark 4.2. — Our definition is different from the one in [7]. There,
totally geodesic subspaces are replaced by convex subspaces because they
consider CAT(0) spaces instead of symmetric spaces. For symmetric spaces
of non-compact type and rank 1, the two definitions do not coincide but for
finite dimensional irreducible higher rank symmetric spaces, both definitions
are equivalent to Zariski-density.

Our definition coincides with the one in [17] and with geometric Zariski
density in [27, §5]

In [8, Lemma 4.2], it is proved that for any group G ⩽ Isom(X ) of a
CAT(0) space X , the boundary of the convex closure any G-orbit does not
depend on the choice of the orbit. Since the normalizer N (G) of G permutes
the G-orbits, this yields a subspace ∆G ⊂ ∂X , namely the convex closure of
any orbit, which is N (G)-invariant.

In [21] Leeb showed that the geometric dimension of a CAT(1) space X ,
a notion he introduced, can be computed as the supremum of the topolog-
ical dimension of compact subsets of X . A CAT(0) space X has telescopic
dimension at most k ∈ N if any asymptotic cone of X has geometric di-
mension at most k. If such a finite k exists then X is said to have finite
telescopic dimension and in this case its telescopic dimension is defined to
be the minimal such k.
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A main feature of the spaces XK(p, κ) is their finite telescopic dimension,
which is exactly p. Thus it coincides with the rank of XK(p, κ) which is
the dimension of maximal flat subspaces. We refer to [6] for details about
this dimension and [13] for a computation of this telescopic dimension for
XK(p, κ).

A consequence of the finiteness of this telescopic dimension is the follow-
ing fact.

Theorem 4.3 ([6, Theorem 1.1]). — Let X be a complete CAT(0) space
of finite telescopic dimension and (Xα)α∈A be a filtering family of closed
convex subspaces. Then either the intersection

⋂
α∈A Xα is non-empty, or

the intersection of the visual boundaries
⋂

α∈A ∂Xα is a non-empty subset of
∂X of intrinsic radius at most π/2.

Moreover the boundary of a CAT(0) space of telescopic dimension has
finite geometric dimension [6, Proposition 2.1] and this allows us to use the
following fixed point statement.

Proposition 4.4 ([1, Proposition 1.4]). — Let X be a CAT(1) space of
finite dimension and of intrinsic radius at most π/2. Then X has a circum-
center which is fixed by every isometry of X .

Lemma 4.5. — Let G be a subgroup of Isom(XK(p, κ)) whose normal-
izer N (G) in Isom(XK(p, κ)) has no fixed point at infinity. Then G has a
minimal invariant closed convex subset and a minimal invariant totally geo-
desic subspace. All these minimal invariant closed convex subsets or totally
geodesic invariant subspaces are isometric one to another and their union is
a convex subset Y that splits as a direct product X × T where X is a copy of
the minimal convex (resp. totally geodesic) invariant subspace.

Proof. — Let C be the collection of either G-invariant closed convex sub-
sets or G-invariant totally geodesic subspsaces. This collection is non-empty
because it contains XK(p, κ). Moreover, any intersection of elements of C is
either empty or an element of C. If C has no minimal element (for inclusion)
then one can find a sequence (xi) such that Conv(Gxi+1) ⊂ Conv(Gxi)
with

⋂
i Conv(Gxi) = ∅. So ∆G is a non-empty set of intrinsic radius at

most π/2. Since ∆G is N (G)-invariant, N (G) has a fixed point. This is a
contradiction and this implies that C has a minimal element. Actually, this
proves that any decreasing intersection of G-invariant closed convex subsets
is non-empty and in particular any convex G-subset contains a minimal one.

Let Y be the union of all minimal closed convex G-invariant subspaces.
Let X be such a minimal closed convex G-invariant subspace. By [25, Re-
mark 39.(1)], Y splits isometrically as Y ≃ X × T where the action of G on
Y is diagonal, being trivial on T .
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The same argument works for minimal invariant totally geodesic sub-
spaces. Actually, if X , X ′ are G-invariant totally geodesic subspaces, the
distance function dX to X is a G-invariant convex function on X ′. Its sub-
level sets are G-invariant convex subsets. By the non-emptiness of decreasing
intersections of G-invariant closed convex subsets, the function dX has a min-
imum on X ′. Since totally geodesic submanifolds are analytic submanifolds,
the distance function dX is analytic on X ′. In particular, if it is constant
on some geodesic segment (not reduced to a point), it is constant on the
unique geodesic line that contains this geodesic segment. So the subspace
of X ′ where dX achieves its minimum is a totally geodesic subspace and
by minimality of X ′, it coincides with X ′ itself. So, all minimal G-invariant
totally geodesic subspaces are parallel, thus isometric and the union of all
such spaces splits as a product X × T . □

In the fifties, Tits conjectured that convex subcomplexs of spherical build-
ings are either buildings themselves or they have a center, i.e. a fixed point
for all automorphisms preserving the subcomplex. The interest for this con-
jecture was renewed in relation to Serre’s complete reducibility [37, §2.4]. It
was proved first in the classical cases [31] and extended later in the excep-
tional cases. We recommend [10] for details about this conjecture.

Theorem 4.6 (Solution of the Center Conjecture). — Let ∆ be some
spherical building of type Bp. If C is a convex subcomplex of ∆, either C has
a center, or any simplex in C has an opposite simplex in C.

Corollary 4.7. — Let G be a subgroup of Isom (XK(p, κ)) with a non-
empty fixed point set at infinity Y . Either Y is a sub-building of ∂XK(p, κ)
or the normalizer of G in Isom (XK(p, κ)) has a fixed point at infinity.

Proof. — The group Isom (XK(p, κ)) acts by preserving type automor-
phisms on the spherical building ∂XK(p, κ) (Lemma 3.2), which is of type
Bp. The set of fixed points in ∂XK(p, κ) of some isometry g ∈ Isom (XK(p, κ))
is convex (because it induces an isometry for the Tits metric on ∂XK(p, κ)p)
and it is a subcomplex because if some ξ ∈ ∂XK(p, κ) is fixed by g the closure
of the smallest facet that contains ξ is pointwise fixed.

By Theorem 4.6, The fixed point set Y of G is either a sub-building or
there is a point ξ ∈ Y which invariant under all typer preserving automor-
phisms that stabilize Y . Since the normalizer of G stabilizes Y , we have the
result. □

The following proposition is similar to [8, §4.C]

Proposition 4.8. — Let G, N be subgroups of Isom(XK(p, κ)) such that
N is a non-trivial normal subgroup of G. The subgroup G is geometrically
dense if and only if N is so.
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Proof. — It is straightforward that if N is geometrically dense so is G.
So, let us assume that G is geometrically dense. By Lemma 4.5, since G
has no fixed point at infinity, N has a minimal invariant totally geodesic
subspace X . The union Y of all such totally geodesic subspaces splits as
X ×T . Since G permutes minimal N -invariant totally geodesic subspaces, Y
is G-invariant. Since G is geometrically dense, Y = XK(p, κ). Since XK(p, κ)
is irreducible, X or T is trivial. If X is trivial, that is reduced to a point, N
fixes all points of XK(p, κ) and this is a contradiction with the non-triviality
of N . So T is trivial and X = XK(p, κ) and N has no strict invariant totally
geodesic subspace.

Now, If N has fixed points at infinity then by Corollary 4.7 either N has
two opposite fixed points or the set of N -fixed points at infinity has a center
and G has a fixed point at infinity. The last case is a contradiction.

If N has opposite fixed points, there are two isotropic subspaces E−, E+
of the same dimension k ⩽ p such that E− +E+ is non-degenerate. Let Y be
the set of elements E of XK(p, κ) such that E ∩ (E+ + E−) has dimension k.
The subspace Y is a strict N -invariant totally geodesic subspace and once
again we have a contradiction.

So N has no fixed point at infinity and thus is geometrically dense. □

5. Representations of finite dimensional simple Lie groups of
rank at least 2

Let G be a connected semisimple Lie group with trivial center and no
compact factor. Then G is the connected component of the isometry group
of a symmetric space of non-compact type XG which is of the form G/K
where K is a maximal compact subgroup.

Proposition 5.1. — Let G be a connected simple non-compact Lie
group with trivial center. Let ρ : G → Isom(XK(p, κ)) be a continuous repre-
sentation without fixed point in XK(p, κ) nor in ∂XK(p, κ).

If the real rank of G is at least 2 then there is a G-equivariant totally
geodesic isometric embedding of the symmetric subspace XG in XK(p, κ).

Proof. — Let Γ be a cocompact lattice in G (which exists, see [29] for
example). Moreover, up to consider a finite index subgroup, we may assume
that Γ is torsion free. Let us prove first that there is a Γ-invariant totally
geodesic isometric embedding XG → XK(p, κ).

Since G has no fixed point at infinity then it has a unique minimal closed
invariant subspace X (Lemma 4.5). This space X has finite telescopic dimen-
sion. It has a de Rham decomposition [6, Proposition 6.1] and the Euclidean
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factor has to be trivial since G has property (T) and thus a fixed point on
this Euclidean factor.

We claim that there is a Γ-equivariant harmonic map XG → X in the
sense of Korevaar and Schoen for metric spaces. The existence of such har-
monic map is provided by [15, Theorem 3.1] if we know that Γ has no fixed
point in ∂X .

If Γ has a fixed point at infinity ξ ∈ ∂X , one can define a map f : X → R
given by the formula

f(x) =
∫

G/Γ
βgξ(x, x0)dµ(gΓ)

where µ is the G-invariant probability measure on G/Γ and x 7→ βη(x, x0) is
the Busemann function associated to the point η ∈ ∂XK(p, κ) that vanishes
at some base point x0.

The function f is convex, 1-Lipschitz and G-almost invariant, that is
x 7→ f(x) − f(gx) is constant for any g ∈ G. If f has no minimum then G
has a fixed point at infinity (the center at infinity associated to the invariant
filteringfamily of sub-level sets of f [6, Theorem 1.1]), that is a contradiction
and if f has a minimum then f is constant since X is a minimal G-invariant
convex subspace. Thanks to [6, Proposition 4.8], X splits as X ′ × R and we
have a contradiction with the vanishing of the Euclidean factor of X .

So there is a Γ-equivariant harmonic map h : XG → X . Assume this map
is constant. Then the image is a Γ-fixed point x ∈ XK(p, κ) and by continuity
of the orbit map gΓ 7→ gx, the G-orbit of x is compact and thus bounded.
In particular, G has a fixed point, that is a contradiction.

Since the metric projection πX : XK(p, κ) → X is 1-Lipschitz and Γ-
equivariant, the map u 7→ πX ◦u does not increase the energy of Γ-equivariant
maps. Thus h is harmonic as well as map from XG to XK(p, κ). We can now
use [15, Proposition 4.1] to show that h is a smooth map and conclude as
in [15, Theorem 1.2] to prove that h is actually a totally geodesic embedding.

So we know that there exist totally geodesic embeddings XG → XK(p, κ)
that are Γ-equivariant. Let us denote by Y some image of a Γ-equivariant
totally geodesic embedding of XG in X and let us introduce the function
φ : X → R+ given by

φ(x) =
∫

G/Γ
d(x, gY)2dµ(gΓ).

The function is well defined because µ is G-invariant and g 7→ d(x, gY) is
bounded by cocompactness. The function φ is G-invariant, continuous and
convex. If it has no minimum then G has a fixed point at infinity (by the
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same argument about the filtering family of sub-level sets) and otherwise the
minimum is realized on the whole of X since this space is minimal among
closed convex G-invariant subspaces. Let x, y ∈ X and m their midpoint.
Using the fact that φ is constant on X and x 7→ d(x, gY) is convex, one has

0 = φ(m) − φ(x) + φ(y)
2

⩽
∫

G/Γ

(
d(x, gY) + d(y, gY)

2

)2
−

(
d(x, gY)2 + d(y, gYΓ)2

2

)
dµ(gΓ)

⩽ −1
4

∫
G/Γ

(d(x, gY) − d(y, gY))2 dµ(gΓ)

and thus for all g ∈ G, d(x, gY) = d(y, gY). By taking x ∈ Y and g to be
the identity, one has that X = Y. So, X is a G-invariant totally geodesic
subspace isometric to XG. Let h : XG → X be a Γ-equivariant totally geodesic
embedding. Let m : G → G be the continuous group homomorphism defined
by m(g) = h−1 ◦ ρ(g) ◦ h. Since the restriction of m is the identity on Γ, m
is the identity. This means that h is G-equivariant. □

Remark 5.2. — The strategy of the first part of the proof of Proposi-
tion 5.1 is very close to the one of [8, Theorem 2.4] but this theorem does
not apply directly because the space XK(p, κ) is not proper. It could be
deduce from [16, Theorem 1] but we prefer to give a proof without the vo-
cabulary of IRS, which is useless here. The IRS related to this proof is the
one supported on the conjugacy class of Γ.

The following theorem is the extension of Theorem 1.1 to any cardinal κ.

Theorem 5.3. — Let G be a connected simple non-compact Lie group
with trivial center. Let G → POK(p, κ) be a continuous representation with-
out totally isotropic invariant subspace.

If the real rank of G is at least 2 then the underlying Hilbert space H splits
orthogonally as E1 ⊕ · · · ⊕ Ek ⊕ K where each Ei is finite dimensional, non-
degenerate, G-invariant and the induced representation on Ei is irreducible.
The induced representation on K is unitary.

Proof. — If there is a fixed point in XK(p, κ), then there is a definite
positive subspace E of dimension p which is G-invariant. Let K be the or-
thogonal of E. One has H = E⊕K and K is negative definite. So the induced
representation on K is unitary. This implies that the representation on H is
unitary for the scalar product ⟨ · , · ⟩|E − ⟨ · , · ⟩|K.

Assume there is no fixed point in XK(p, κ). Since a fixed point at infinity
would yield an invariant totally isotropic flag, we know there is no fixed
points at infinity. So, by Proposition 5.1, there is a G-equivariant totally

– 391 –



Bruno Duchesne

geodesic embedding of XG in XK(p, κ) and we denote by XG its image as
well. By [17, Lemma 3.11], there is a unique minimal finite dimensional
non-degenerate subspace E0 ⩽ H such that for any x ∈ XG, x ⩽ E0. By
uniqueness, this linear subspace E0 is G-invariant. If E ⩽ E0 is G-invariant
then its kernel would be G-invariant and there would be a totally isotropic
invariant space. So, any G-invariant subspace E ⩽ E0 is non-degenerate
and in particular, H splits orthogonally as E ⊕ E⊥. Let us choose such a
minimal E. In particular the induced representation on E is irreducible. The
signature of the restriction of the quadratic form on E⊥ is (s, κ) for some
s < r. While s > 0, one can repeat the argument and an induction on the
index of the quadratic form gives the result. □

6. Representations of POK(p, κ) for p ⩾ 2.

The goal of this section is to prove Theorem 1.2 that describes geomet-
rically dense continuous representations POK(p, ∞) → POL(q, ∞) in the
generality of infinite cardinals κ and λ.

Theorem 6.1. — Let p, q ∈ N with p ⩾ 2 and K, L ∈ {R, C, H}, If
ρ : POK(p, κ) → POL(q, λ) is a continuous geometrically dense representa-
tion then K = L, q = p, κ = λ and ρ is induced by an isomorphism of
quadratic spaces.

Proof. — Let ρ : POK(p, κ) → POL(q, λ) be a geometrically dense rep-
resentation. We denote the respective underlying Hilbert spaces H and H′

with quadratic forms Q and Q′. Let E be the collection of non-degenerate
finite dimensional subspaces of H of index p. Let E ∈ E and let us denote
GE = PSOK(E) or PSOo

R(E) in the real case. First, we prove that for E
of dimension large enough, GE has no fixed points in XL(p, κ). For the sake
of a contradiction, let us assume that for any E ∈ E , GE has a non-empty
set of fixed points YE ⊂ XL(q, λ). For E ⩽ E′, YE′ ⊆ YE and thus this is a
filtering family of totally geodesic subspaces. If

⋂
E∈E YE is non-empty them

PSOfr
K(p, κ) has fixed points but since PSOfr

K(p, κ) is geometrically dense
by Proposition 4.8, we have a contradiction. If the intersection

⋂
E∈E YE is

empty, then by Theorem 4.3 and Proposition 4.4, there is a PSOfr
K(p, κ)-fixed

point at infinity contradicting its geometric density. As a conlusion, we know
there is some E ∈ E such that YE = ∅ and the same holds for any E′ ⩾ E.

Now, let us show that GE has no fixed points in ∂XL(q, λ). Assume for
the sake of a contradiction that there are fixed points at infinity. Let us
recall that one can associate a flag of totally isotropic subspaces of H′ to any
point at infinity. If GE stabilizes some totally isotropic subspace F then one
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get a continuous representation GE → PGL(F ). Since GE is simple and F
has dimension at most q, we know that as soon dim(GE) > dim(PGL(F )),
this representation is trivial (because a continuous representation of a (finite
dimensional) Lie group to another Lie group is automatically smooth) and
thus GE fixes all lines in F . In particular, the fixed point set (P H′)GE

of GE in the projective space P H′ is non-empty. If L1, L2 are two GE-
invariant lines in H′, by the same argument, GE fixes all lines of their span.
In particular, there is a closed linear subspace HE of H′ such that (P H′)GE

is the projective space of HE . Then, considering the restriction of Q′ on HE ,
one has two possibilities:

(i) HE has a non-trivial kernel or
(ii) HE is non-degenerate.

In the first case, this means that there is some line which is orthogonal to all
GE-invariant invariant totally isotropic subspaces. In particular, all GE-fixed
points in ∂XL(q, λ) lie in the ball of radius π/2 for the Tits metric around
the vertex corresponding to such a line in the kernel.

In the second case, one has H′ = HE ⊕ H⊥
E . Observe that if E′ ⩾ E then

HE′ ⩽ HE and thus H⊥
E′ ⩾ H⊥

E .

Assume that the first possibility (i) holds for all E ∈ E then let us denote
by CE the set of GE-fixed points in ∂XL(q, λ). This is a filtering family of
closed convex subsets of intrinsic at most π/2 and by [6, Lemma 5.1], the
intersection of all of them is not empty and thus one get a PSOfr

K(p, κ)-fixed
point in ∂XL(q, λ) and together with Proposition 4.8, we get a contradiction
with geometric density of the representation.

So we know that there is E ∈ E such that HE has trivial kernel and
thus for any E′ ⩾ E, the same holds. The closure of the union

⋃
E∈E H⊥

E

is PSOfr
K(p, κ)-invariant. Since geometric density implies irreducibility of the

representation, this union is necessarily dense and thus the index of the
restriction of the quadratic form on this union is q. In particular, one can
find E such that H⊥

E has index q (since the index can be checked using
finitely many points at a time). This yields a contradiction with the fact
that HE has some isotropic line and thus index at least 1, which implies
that the one of H⊥

E is at most q − 1.

In conclusion, we know that GE has no fixed point in XL(q, λ) nor in
∂XL(q, λ) for some E ∈ E and thus for all E′ ⩾ E. For such E ∈ E , there
is a GE-equivariant totally geodesic embedding φE of the symmetric space
XE of GE in POL(q, λ) by Proposition 5.1 since p ⩾ 2. The image YE of
the embedding φE is a GE-invariant totally geodesic subspace. It is minimal
since the action on it is transitive. Since GE has no fixed point at infinity,
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this totally geodesic subspace YE is unique (Lemma 4.5). In particular, this
uniqueness implies that if E ⩽ E′, then YE ⊂ YE′ and more precisely φE is
the restriction of φE′ on XE .

The closure Y of the union of the subspaces YE (which is isometric to
the space XK(p, κ)) is a PSOfr

K(p, κ)-invariant totally geodesic subspace of
XL(q, λ). By Lemma 4.8 and the fact that ρ (POK(p, κ)) is geometrically
dense, Y is necessarily XL(q, λ). In particular, the two spaces XK(p, κ) and
XL(q, λ) have the same ranks, i.e. p = q. The induced isometry between
the Tits buildings at infinity yields an isomorphism of polar spaces as in
the proof of Theorem 3.3 and once again, relying on [38, Theorem 8.6.II],
this isomorphism is given by some isomorphism of quadratic spaces, this
corresponds to a semilinear map and in particular K = L and κ = λ. □
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