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Brilliant families of K3 surfaces: Twistor spaces, Brauer
groups, and Noether–Lefschetz loci (∗)

Daniel Huybrechts (1)

ABSTRACT. — We describe the Hodge theory of brilliant families of K3 surfaces.
Their characteristic feature is a close link between the Hodge structures of any
two fibres over points in the Noether–Lefschetz locus. Twistor deformations, the
analytic Tate–Šafarevič group, and certain one-dimensional Shimura special cycles
are covered by the theory. In this setting, the Brauer group is viewed as the Noether–
Lefschetz locus of the Brauer family or as the specialization of the Noether–Lefschetz
loci in a family of approaching twistor spaces. Passing from one algebraic twistor fibre
to another, which by construction is a transcendental operation, is here viewed as
first deforming along the more algebraic Brauer family and then along a family of
algebraic K3 surfaces.

RÉSUMÉ. — On étudie la théorie de Hodge des familles brillantes des surfaces K3.
Deux fibres dans le lieu de Noether–Lefschetz d’une telle famille ont des structures
de Hodge très similaires. Les déformations de twisteurs, le groupe de Tate–Šafarevič
et certaines courbes de Shimura donnent des exemples de telles familles. Dans ce
cadre le groupe de Brauer apparaît comme lieu de Noether–Lefschetz de la famille
de Brauer et aussi comme spécialisation des lieux de Noether–Lefschetz des espaces
de twisteurs. Le passage transcendent d’une fibre algébrique à une autre dans l’es-
pace de twisteur est vu comme composition de deux déformations du caractère plus
algébriques.

This note is concerned with the Hodge theory of brilliant families of K3
surfaces. A connected smooth holomorphic family S //C of K3 surfaces
is called a brilliant deformation of the fibre S = S0 if there exists a class
ℓ ∈ H1,1(S,Z) such that under parallel transport one has

H2,0(St) ⊂ H2,0(S) ⊕H0,2(S) ⊕ C · ℓ
with ℓ not contained in H2,0(St) ⊕ H0,2(St), see Sections 2.1 and 3.1 for
details.
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The starting point is the Hodge theory of twistor spaces studied in [8], but
more algebraic constructions like Brauer and Tate–Šafarevič groups as well
as special cycles of K3 surfaces are covered by the theory. The Hodge theo-
retic approach adopted here unifies these rather different geometric notions
and explains their interactions. We start out by describing three particular
examples of brilliant families and then state the main results in the geometric
context.

0.1. Examples of brilliant families include the following well-known con-
structions:

(i) The Dwork pencil S //A1 \ {t | t4 = 1} of quartic surfaces defined
by

∑3
i=0 x

4
i − 4t

∏3
i=0 xi, the special fibre S = S0 of which is the

Fermat quartic.
(ii) The Brauer (or Tate–Šafarevič ) family S //C ≃ H0,2(S) param-

eterizing all complex elliptic K3 surfaces with a fixed elliptic K3
surface S // P1 as relative Jacobian.

(iii) The twistor family S // P1 associated with a polarized K3 surface
(S,L).

A priori, these examples have not much in common. For example, the
Dwork pencil is an algebraic family, while for the Brauer and the twistor
family most of the fibres are not projective. However, as we shall explain, the
Hodge theory describing the three families is similar in that H2,0(St) varies
in H2,0(S) ⊕H0,2(S) ⊕C · ℓ for a certain algebraic class ℓ ∈ H1,1(S,Z). The
three examples above correspond to (ℓ.ℓ) < 0 (Dwork), (ℓ.ℓ) = 0 (Brauer),
and (ℓ.ℓ) > 0 (twistor).

Example 0.1. — To an elliptic K3 surface S // P1 with a section one can
associate brilliant families of all three types, choosing ℓ as the fibre class of
the elliptic fibration, as an ample class, or as any class of negative square,
e.g. the class of a component of a reducible fibre.

2 D. HUYBRECHTS

H2,0(St) varies in H2,0(S)⊕H0,2(S)⊕C·� for a certain algebraic class � ∈ H1,1(S,Z). The three
examples above correspond to (�.�) < 0 (Dwork), (�.�) = 0 (Brauer), and (�.�) > 0 (twistor).

Example 0.1. To an elliptic K3 surface S ��P1 with a section one can associate brilliant
families of all three types, choosing � as the fibre class of the elliptic fibration, as an ample
class, or as any class of negative square, e.g. the class of a component of a reducible fibre.

(�.�) > 0

(�.�) = 0

(�.�) < 0

• S

twistor Dwork

Brauer

A similar picture can be drawn for non-elliptic K3 surfaces by working with higher-dimensional
moduli spaces of sheaves on K3 surfaces, see §3.2.

0.2. The first result is the observation that the main result in [Huy20] generalizes from twistor
spaces associated to K3 surfaces with complex multiplication to general brilliant deformations
of K3 surfaces with complex multiplication.

Theorem 0.2. Assume S ��C is a brilliant deformation of a K3 surface S with complex
multiplication. Then any algebraic fibre St with ρ(St) = ρ(S) has complex multiplication as
well and the maximal totally real subfields of the Hodge endomorphism rings of the rational
transcendental lattices T (S)⊗Q and T (St)⊗Q are isomorphic.

Beware that except for scalar multiplications, Hodge endomorphisms contained in the maxi-
mal totally real subfield do not deform sideways in a brilliant family, i.e. they are typically not
realized as Hodge endomorphisms of the transcendental lattice of a fibre with ρ(St) < ρ(S).

We think of the countable set of all algebraic fibres St, t ∈ C, with ρ(St) = ρ(S) as the
Noether–Lefschetz locus NL(S/C) ⊂ C. Then the result can be rephrased by saying that the
maximal totally real subfield of EndHdg(T (S) ⊗ Q) is reproduced as a field of Hodge endo-
morphisms of the transcendental lattice of the fibre over any point in the Noether–Lefschetz
locus.

Viewing endomorphisms of T (S)⊗Q as Hodge classes on S×S, the assertion becomes more
geometric. However, for (�.�) �= 0 we are currently lacking a geometric explanation for the
reappearance of these algebraic classes over all points in the Noether–Lefschetz locus, see §1.2.

0.3. The Hodge theoretic characterization of brilliant families reveals that in some appropri-
ate sense the Noether–Lefschetz locus NL(S/P1) of the twistor family associated with (S,L)

A similar picture can be drawn for non-elliptic K3 surfaces by working
with higher-dimensional moduli spaces of sheaves on K3 surfaces, see Sec-
tion 3.2.
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0.2. The first result is the observation that the main result in [8] generalizes
from twistor spaces associated to K3 surfaces with complex multiplication
to general brilliant deformations of K3 surfaces with complex multiplication.

Theorem 0.2. — Assume S //C is a brilliant deformation of a K3
surface S with complex multiplication. Then any algebraic fibre St with
ρ(St) = ρ(S) has complex multiplication as well and the maximal totally
real subfields of the Hodge endomorphism rings of the rational transcenden-
tal lattices T (S) ⊗ Q and T (St) ⊗ Q are isomorphic.

Beware that except for scalar multiplications, Hodge endomorphisms con-
tained in the maximal totally real subfield do not deform sideways in a bril-
liant family, i.e. they are typically not realized as Hodge endomorphisms of
the transcendental lattice of a fibre with ρ(St) < ρ(S).

We think of the countable set of all algebraic fibres St, t ∈ C, with ρ(St) =
ρ(S) as the Noether–Lefschetz locus NL(S/C) ⊂ C. Then the result can be
rephrased by saying that the maximal totally real subfield of EndHdg(T (S)⊗
Q) is reproduced as a field of Hodge endomorphisms of the transcendental
lattice of the fibre over any point in the Noether–Lefschetz locus.

Viewing endomorphisms of T (S)⊗Q as Hodge classes on S×S, the asser-
tion becomes more geometric. However, for (ℓ.ℓ) ̸= 0 we are currently lacking
a geometric explanation for the reappearance of these algebraic classes over
all points in the Noether–Lefschetz locus, see Section 1.2.

0.3. The Hodge theoretic characterization of brilliant families reveals that in
some appropriate sense the Noether–Lefschetz locus NL(S/P1) of the twistor
family associated with (S,L) specializes to the Brauer group Br(S). This
affirms and refines the point of view, suggested by F. Charles and further
advocated by D. Bragg and M. Lieblich [2], that the Brauer group of a
supersingular K3 surface should be viewed as the analogue of the twistor
base in positive characteristic. We can use Hodge theory to make this more
precise in characteristic zero as follows.

Theorem 0.3. — Consider an elliptic K3 surface S with polarizations
Ls approaching the fibre class of an elliptic fibration of S. Then the twistor
families S(s) // P1 associated with (S,Ls) restricted to the upper hemi-
sphere of S2 ≃ P1 specialize to the Brauer family S //C. Furthermore,
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the Noether–Lefschetz loci NL(S(s)/P1) specialize to Br(S) up to the free
abelian group H2(S,Z)/NS(S).

3

specializes to the Brauer group Br(S). This affirms and refines the point of view, suggested by
F. Charles and further advocated by D. Bragg and M. Lieblich [BrLi18], that the Brauer group
of a supersingular K3 surface should be viewed as the analogue of the twistor base in positive
characteristic. We can use Hodge theory to make this more precise in characteristic zero as
follows.

Theorem 0.3. Consider an elliptic K3 surface S with polarizations Ls approaching the fibre
class of an elliptic fibration of S. Then the twistor families S(s) ��P1 associated with (S,Ls)

restricted to the upper hemisphere of S2 � P1 specialize to the Brauer family S ��C. Further-
more, the Noether–Lefschetz loci NL(S(s)/P1) specialize to Br(S) up to the free abelian group
H2(S,Z)/NS(S).

S(s) S��

�� Br(S)NL(S(s)/P1)

•
•
•
•
•
•

•

•
•

•
•

•

S

The precise meaning of the notions involved in this statement will be explained in §2.4 and
§3.1. Viewing the Brauer (or Tate–Šafarevič) family as a degeneration of twistor lines is not
new and has been discussed already by E. Markman [Mar14, Rem. 4.6], see also work of M.
Verbitsky [Ver15]. Our discussion adds the comparison of Noether–Lefschetz loci and Brauer
groups to the picture. The proof can be adapted to show analogously that the Dwork family
with its Noether–Lefschetz locus specializes to the Brauer family and the Brauer group.

0.4. The three types of brilliant families, twistor, Brauer, and Dwork, can be put in a two-
dimensional family. Those parameterizing algebraic K3 surfaces form a countable union of
curves, each of which intersects the three brilliant deformation types in their Noether–Lefschetz
locus. This allows one to view the transcendental twistor construction as a combination of the
Brauer family and a family of algebraic K3 surfaces.

Theorem 0.4. Assume S is an elliptic K3 surface with an ample line bundle L. For every point
t ∈ NL(S/P1) in the Noether–Lefschetz locus of the associated twistor space S ��P1, there exists
a Brauer class α ∈ Br(S) such that the associated K3 surface Sα and St are naturally fibres of
a holomorphic family of algebraic K3 surfaces.

The interest in this viewpoint stems from the fact that we do understand the propagation
of algebraic classes in Theorem 0.2 for brilliant families of Brauer type, see §1.2, and that

The precise meaning of the notions involved in this statement will be
explained in Sections 2.4 and 3.1. Viewing the Brauer (or Tate–Šafarevič)
family as a degeneration of twistor lines is not new and has been discussed
already by E. Markman [10, Rem. 4.6], see also work of M. Verbitsky [15].
Our discussion adds the comparison of Noether–Lefschetz loci and Brauer
groups to the picture. The proof can be adapted to show analogously that
the Dwork family with its Noether–Lefschetz locus specializes to the Brauer
family and the Brauer group.

0.4. The three types of brilliant families, twistor, Brauer, and Dwork, can be
put in a two-dimensional family. Those parameterizing algebraic K3 surfaces
form a countable union of curves, each of which intersects the three brilliant
deformation types in their Noether–Lefschetz locus. This allows one to view
the transcendental twistor construction as a combination of the Brauer fam-
ily and a family of algebraic K3 surfaces.

Theorem 0.4. — Assume S is an elliptic K3 surface with an ample line
bundle L. For every point t ∈ NL(S/P1) in the Noether–Lefschetz locus of the
associated twistor space S // P1, there exists a Brauer class α ∈ Br(S) such
that the associated K3 surface Sα and St are naturally fibres of a holomorphic
family of algebraic K3 surfaces.

The interest in this viewpoint stems from the fact that we do understand
the propagation of algebraic classes in Theorem 0.2 for brilliant families
of Brauer type, see Section 1.2, and that the propagation along families of
algebraic K3 surfaces should be more accessible to geometric arguments than
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for the purely transcendental twistor families.

4 D. HUYBRECHTS

the propagation along families of algebraic K3 surfaces should be more accessible to geometric
arguments than for the purely transcendental twistor families.

•
St Sα

•

• S

twistor

algebraic
Brauer

Once again, a similar result holds linking Dwork and Brauer families.

Acknowledgement: I would like to thank F. Charles for his interest and comments and the
referee for valuable suggestions.

1. Geometric families

We start by reviewing some of the geometric properties of the three families mentioned in
the introduction.

1.1. The Dwork (or Fermat) pencil of quartic surfaces St ⊂ P3 defined by
�3

i=0 x
4
i −4t

�3
i=0 xi

parameterizes K3 surfaces for t4 �= 1. The four singular surfaces St, t ∈ {±1,±i}, have 16
ordinary double points and their minimal resolutions are K3 surfaces. In fact, by passing to
a double cover C ��A1 ramified at the four points and then taking a small resolution of the
singular base change, the Dwork pencil can be turned into an algebraic family of quasi-polarized
K3 surfaces.

The Fermat quartic S = S0 is known to have maximal Picard number ρ(S) = 20, in fact its
Néron–Severi group NS(S) � Z⊕20 is generated by the lines contained in S, and its transcen-
dental lattice T (S) is of rank two with intersection matrix diag(8, 8), see [SSL10]. Furthermore,
there exists a primitive sublattice �⊥ ⊂ NS(S) of corank one that stays algebraic along the
whole family and �⊥ � NS(St) for very general t. By Hodge index theorem, (�.�) < 0 and, more
precisely, � can be chosen of the form L1 + L2 − L3 − L4 for two disjoint pairs of intersecting
lines Li ⊂ S such that (�.�) = −4.1 Thus, under parallel transport,

H2,0(St) ⊂ H2,0(S)⊕H0,2(S)⊕ C · � = T (S)C ⊕ C · �.

For another example, consider a non-trivial deformation Et of a CM elliptic curve E and
let St be the family of Kummer surfaces associated with Et × Et. Again, ρ(St) = 19 for the
very general Et and ρ(St) = 20 whenever Et has complex multiplication. Clearly, H2,0(St) =

1Thanks to E. Sertöz for this information.

Once again, a similar result holds linking Dwork and Brauer families.

Acknowledgement

I would like to thank F. Charles for his interest and comments and the
referee for valuable suggestions.

1. Geometric families

We start by reviewing some of the geometric properties of the three fam-
ilies mentioned in the introduction.

1.1. The Dwork (or Fermat) pencil of quartic surfaces St ⊂ P3 defined by∑3
i=0 x

4
i −4t

∏3
i=0 xi parameterizes K3 surfaces for t4 ̸= 1. The four singular

surfaces St, t ∈ {±1,±i}, have 16 ordinary double points and their minimal
resolutions are K3 surfaces. In fact, by passing to a double cover C //A1

ramified at the four points and then taking a small resolution of the singular
base change, the Dwork pencil can be turned into an algebraic family of
quasi-polarized K3 surfaces.

The Fermat quartic S = S0 is known to have maximal Picard number
ρ(S) = 20, in fact its Néron–Severi group NS(S) ≃ Z⊕20 is generated by the
lines contained in S, and its transcendental lattice T (S) is of rank two with
intersection matrix diag(8, 8), see [13]. Furthermore, there exists a primitive
sublattice ℓ⊥ ⊂ NS(S) of corank one that stays algebraic along the whole
family and ℓ⊥ ≃ NS(St) for very general t. By Hodge index theorem, (ℓ.ℓ) < 0
and, more precisely, ℓ can be chosen of the form L1 + L2 − L3 − L4 for two
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disjoint pairs of intersecting lines Li ⊂ S such that (ℓ.ℓ) = −4.(1) Thus,
under parallel transport,

H2,0(St) ⊂ H2,0(S) ⊕H0,2(S) ⊕ C · ℓ = T (S)C ⊕ C · ℓ.

For another example, consider a non-trivial deformation Et of a CM el-
liptic curve E and let St be the family of Kummer surfaces associated with
Et ×Et. Again, ρ(St) = 19 for the very general Et and ρ(St) = 20 whenever
Et has complex multiplication. Clearly, H2,0(St) = H1,0(Et) ⊗ H1,0(Et) ⊂
H2(Et ×Et,C) ⊂ H2(St,C) is contained in the three-dimensional space or-
thogonal to the classes [Et × {pt}], [{pt} ×Et], [∆t] ∈ H2(Et ×Et,Z) or, in
other words,

H2,0(St) ⊂ (H1,0(E) ⊗H1,0(E)) ⊕ (H0,1(E) ⊗H0,1(E)) ⊕ C · ℓ

where ℓ is an appropriate linear combination of the graph Γ of a complex
multiplication of E and the aforementioned three algebraic classes.

More generally, any family of projective K3 surfaces St for which the very
general fibre has Picard number ρ(St) = 19 is of the type covered by our
considerations. These families yield one-dimensional Shimura special cycles
in the moduli space of polarized K3 surfaces. It is possible to construct
holomorphic families of projective K3 surfaces St over a one-dimensional
base that also fit our theory and have ρ(St) < 19 for the very general fibre
St, but then the family does not correspond to an algebraic curve in the
moduli space, cf. Remark 2.7.

1.2. We next come to the Brauer family. Consider a K3 surface S together
with a fibration π : S // P1 by curves of genus one. We shall assume that
the fibration has a section, so that all smooth fibres are elliptic curves, in
which case π is called an elliptic fibration. The Fermat quartic is an example
of an elliptic K3 surface and it is so in more than one way.

The Tate–Šafarevič group of S parameterizes all K3 surfaces with a genus
one fibration and an isomorphism of its relative Jacobian fibration with S. It
comes in two flavors: The algebraic and the analytic Tate–Šafarevič group.
More precisely, Xan(S) is the set of all isomorphism classes of pairs (S′, ψ)
consisting of a complex K3 surface S′, typically not projective,
with a fixed fibration S′ // P1 by curves of genus one and an isomorphism
ψ : J(S′/P1) ∼ // S over P1 between the relative Jacobian J(S′/P1) and S,
see [3, Ch. 1.5] or [6, Ch. 11.5]. The algebraic version is X(S), which is
defined similarly but now requiring S′ to be projective. Clearly, then

X(S) ⊂ Xan(S).

(1) Thanks to E. Sertöz for this information.
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Both sets are indeed groups and as such they are naturally isomorphic to
the algebraic resp. analytic Brauer groups

X(S) ⊂ Xan(S)
|≀ |≀

Br(S) ⊂ Bran(S).

Here, the algebraic Brauer group Br(S) can be described cohomologically as
the torsion subgroup of H2(S,O∗

S) or, more directly, as H2
ét(S,Gm), while

the analytic Brauer group is all of H2(S,O∗
S). From the exponential sequence

one obtains an exact sequence

0 // Pic(S) // H2(S,Z) // H2(S,OS) // H2(S,O∗
S) // 0,

which leads to the description of the analytic Brauer group as

Bran(S) ≃ H2(S,OS)/ coker
(
NS(S) �

� //H2(S,Z)
)

≃ C/Z⊕22−ρ(S).

Note that the obvious inclusion T (S) ⊂ H2(S,Z)/NS(S) is of finite index
and, therefore, the natural surjection

H0,2(S)/T (S) ≃ H2(S,OS)/T (S) // // Bran(S)

has a finite, typically non-trivial, kernel. From a Hodge theoretic perspective
H2(S,OS)/T (S) is more natural, but the difference between the two groups
will be of no importance to us. Note that unless ρ = 20, the groups

Xan(S) ≃ Bran(S) ≃ H0,2(S)/Z⊕22−ρ(S)

have no reasonable geometric structure and cannot serve as a basis for a
family of all K3 surfaces S′ parameterized by Xan(S). However, there exists
a family, the Brauer family

S //H0,2(S) ≃ C, (1.1)

for which the fibre St over t ∈ H0,2(S) is isomorphic to the K3 surface S′

corresponding to the image (S′, ψ) of t under H0,2(S) // // Br(S) ≃ Xan(S),
see [3, Ch. 1.5] for a detailed discussion. Note that S //C is actually a family
of K3 surfaces together with a genus one fibration which is the one that is
given by considering (S′, ψ) as an element in Xan(S).

By construction, we again have

H2,0(St) ⊂ H2,0(S) ⊕ C · ℓ ⊂ H2,0(S) ⊕H0,2(S) ⊕ C · ℓ,

where ℓ = f ∈ H2(S,Z) denotes the class of a fibre of the elliptic fi-
bration S // P1. The construction does not provide a topological or C∞-
trivialization, but see Remark 1.7.
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Remark 1.1. — Instead of studying the Brauer family S //C ≃ H0,2(S)
one can consider the constant family S × C //C and endow it with a uni-
versal Brauer class ααα ∈ H2(S × C,O∗). Explicitly, using H2(S × C,O) ≃
H0(C,O) ⊗ H0,2(S), which under the identification C = H0,2(S) contains
H0,2(S)∗ ⊗ H0,2(S), the universal Brauer class ααα is realized as the image
of idH0,2 under the exponential map H2(S × C,O) //H2(S × C,O∗). By
construction, if α ∈ H2(S,O∗

S) is the image of t ∈ C = H0,2(S), then
ααα|S×{t} = α. The situation was discussed for supersingular K3 surfaces in
positive characteristic in [2].

Remark 1.2. — The analogy between the Brauer groups of supersingular
K3 surfaces and twistor spaces promoted in [2] is sometimes met with the
following objection. The Hochschild cohomology HH2(S) ≃ H2(S,OS) ⊕
H1(S, TS) ⊕H0(S,

∧2 TS) parameterizes all infinitesimal deformations of S,
classical commutative as well as non-commutative ones. First order classi-
cal deformations correspond to classes in H1(S, TS), while non-commutative
ones associated to deformations of the standard bounded derived category
Db(S) of coherent sheaves to the bounded derived category Db(S, α) of α-
twisted coherent sheaves correspond to classes in H2(S,OS). How could
then possibly the tangent space of Bran(S), which is naturally identified
with H2(S,OS), end up in the direct summand H1(S, TS)?

The answer to this is that it is actually not S that is deformed in the
Brauer family above but its Fourier–Mukai partner, which just happens to
be isomorphic to S. More precisely, the automorphism of HH2(S) induced
by the relative Poincaré sheaf P on S ×P1 S is compatible with the action
of P on Hochschild homology HH∗(S) ≃

⊕
q−p=∗ H

p,q(S) considered as a
module over HH∗(S). Identifying HH∗(S) with (ungraded) de Rham co-
homology H∗(S,C) and using that the action of P on H∗(S,Z) identifies
(H0 ⊕H4)(S,Z) with the hyperbolic plane in NS(S) ⊂ H2(S,Z) spanned by
the fibre class ℓ and the class of the section, one finds that P indeed sends
H2(S,OS) ⊂ HH2(S) into H1(S, TS) ⊂ HH2(S).

A similar point of view is exploited in Section 3.2, where non-commutative
deformations of S corresponding to Brauer classes are interpreted in terms
of classical commutative deformations of a certain moduli space of sheaves
on S.

For α ∈ Br(S), let (Sα, ψα) ∈ X(S) be the corresponding algebraic K3
surface πα : Sα

// P1 together with an isomorphism ψα : J(Sα/P1) ∼ // S.
The relative Jacobian J(Sα/P1) can be interpreted as a moduli space of
stable sheaves concentrated on the fibres of πα, but it is not a fine moduli
space. In fact, the obstruction to the existence of a universal family is exactly
α ∈ Br(S). In other words, a universal sheaf Pα on Sα ×P1 S exists but only
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as a twisted sheaf, where the twist is with respect to 1 ⊠ α ∈ Br(Sα × S).
The usual Fourier–Mukai formalism then yields an exact equivalence

Db(Sα) ≃ Db(S, α)
between the bounded derived category Db(Sα) of coherent sheaves on Sα

and the bounded derived category Db(S, α) of α-twisted coherent sheaves
on S, for more information and references see [6, §10.2.2 & Rem. 11.5.9].
The Mukai vector of the twisted universal sheaf yields a Hodge isometry
H̃(Sα,Z) ≃ H̃(S, α,Z), which restricts to a Hodge isometry between their
transcendental lattices T (Sα) ≃ T (S, α), see [5, 9] for details. Since the
transcendental lattice of the twisted K3 surface (S, α) is a finite index sub-
Hodge structure of T (S), this yields a Hodge isometry

T (Sα)Q ≃ T (S)Q. (1.2)
Moreover, (1.2) is algebraic, i.e. it is defined by an algebraic class in (T (Sα)⊗
T (S))2,2

Q ⊂ H2,2(Sα × S,Q). Here, we use that the (1 ⊠ α)-twisted sheaf P
becomes untwisted by passing to its derived tensor power P⊗r for r = ord(α).
The Chern classes of the untwisted sheaves P⊗r exist in the traditional sense,
which eventually leads to a description of (1.2) in terms of algebraic classes
associated to untwisted sheaves.

Remark 1.3. — There is a slightly confusing point about the relation be-
tween the transcendental lattices T (Sα), T (S), and T (S, α). By definition,
T (Sα)Q ⊂ H2(Sα,Q) and T (S)Q ⊂ H2(S,Q), while T (S, α)Q ⊂ H̃(S, α,Q)
is more naturally viewed as T (S, α)Q = exp(B) · T (S)Q ⊂ (H2 ⊕H4)(S,Q),
where B ∈ H2(S,Q) lifts α. The cohomological Fourier–Mukai formal-
ism above then yields T (Sα)Q ≃ T (S, α)Q ⊂ (H2 ⊕ H4)(S,Q). On the
other hand, parallel transport along the Brauer family leads to an inclu-
sion T (Sα)Q ⊂ T (S)Q ⊕ Q · f ⊂ H2(S,Q), where f is the class of the fi-
bre of the elliptic fibration S // P1. Furthermore, the image of T (Sα) ≃
T (S, α) ⊂ (H2 ⊕ H4)(S,Z) under the projection onto H2(S,Z) identifies
T (Sα) with the kernel of T (S) //Q/Z, γ � // (B.γ), which eventually leads
to the Hodge isometry T (Sα)Q ≃ T (S)Q. In particular, the one-dimensional
H2,0(Sα) ⊂ H2(Sα,C) is via (1.2) mapped into H2,0(S) ⊕ H4(S,C) while
parallel transport maps it into H2,0(S) ⊕ C · f .

Remark 1.4. — The preceding discussion can be made to work with suit-
able modifications in the case when α is not torsion. Again S can be viewed
as a coarse moduli space of torsion sheaves on Sα for which the universal
sheaf is twisted with respect to the non-torsion class α on S. For moduli
spaces of stable sheaves on non-projective K3 surfaces see [12].(2) There is

(2) Note however that the case of torsion sheaves needs extra care, but as it is not
essential for our purpose, we ignore this point.
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still a Hodge isometry T (Sα) ≃ T (S, α), only that now T (S, α) cannot be
viewed just as the B-field shift of T (S) (up to finite index). By definition, it
is the minimal primitive sub-Hodge structure of H2(S,Z) ⊕ H4(S,Z) with
its (2, 0)-part spanned by σ + σ ∧ t, where t ∈ C ≃ H0,2(S) lifts α un-
der H0,2(S) // Bran(S). In fact, when α is non-torsion, the rank of the
transcendental lattice T (Sα) exceeds the rank of T (S) and, moreover, the
intersection form is degenerate on it.

Clearly, since Sα and S have Hodge isometric rational transcendental
lattices for α ∈ Br(S), their fields of Hodge endomorphisms are isomorphic:

EndHdg(T (Sα) ⊗ Q) ≃ EndHdg(T (S) ⊗ Q).
Furthermore, viewing S as a moduli space of sheaves on Sα or, conversely,
Sα as a moduli space of α-twisted sheaves on S, provides us with a geometric
understanding of this isomorphism. The Mukai vector of (some tensor power
of) P⊠P on (Sα×S)2 maps any Hodge endomorphism φ ∈ EndHdg(T (S)⊗Q)
or, equivalently, any Hodge class φ ∈ (T (S) ⊗ T (S))2,2

Q ⊂ H2,2(S × S,Q) to
a Hodge class on Sα × Sα. Under this map, algebraic classes are mapped to
algebraic classes. Note, however, that the Hodge conjecture for squares of
K3 surfaces is only known for K3 surfaces with CM endomorphism field.

We summarize the above discussion as follows.
Proposition 1.5. — Consider the Brauer family (1.1) S //C associ-

ated with an elliptic K3 surface S // P1. Then for any algebraic fibre St

there exists an algebraic Hodge isometry
T (S) ⊗ Q ≃ T (St) ⊗ Q.

Furthermore, the induced isomorphism of their endomorphism fields
EndHdg(T (S) ⊗ Q) ≃ EndHdg(T (St) ⊗ Q)

maps algebraic classes to algebraic classes. □

In Section 3.2 we explain that the same principle applies to projective K3
surfaces S which are not elliptic by working with higher-dimensional moduli
spaces. In the case of elliptic K3 surfaces one can state more algebraically
that the rational Chow motives of all algebraic fibres of the Brauer family
are isomorphic: h(St) ≃ h(S), cf. [7].

Remark 1.6. —

(i) The first assertion in the above proposition does not hold for the
other two types of families considered in this article. A weaker ver-
sion of the second assertion does hold, see Proposition 2.11, but a
clear geometric reason for the recurrence of the same Hodge classes
in all algebraic fibres is lacking.

– 406 –



Brilliant families of K3 surfaces

(ii) Furthermore, for the Brauer family, we also know that if S is defined
over Q, also all other algebraic fibres Sα are defined over Q. This is
unknown for the algebraic fibres of the twistor family associated to
a K3 surface without complex multiplication.

1.3. We conclude by a short review of twistor families which have been
discussed already in the prequel [8]. To any K3 surface S together with a
Kähler class ω ∈ H1,1(S,R) there is naturally associated a complex structure
on S × P1, with the corresponding complex threefold denoted S, such that
the projection defines a holomorphic map S // P1. The fibres St are K3
surfaces with

H2,0(St) ⊂ H2,0(S) ⊕H0,2(S) ⊕ C · ω ⊂ T (S)C ⊕ C · ω.

The construction of S // P1, the twistor family associated with (S, ω), de-
pends on the existence of the unique Ricci flat Kähler structure with Kähler
class ω. In this sense, it is a transcendental construction. For more informa-
tion and references see [8, §1].

For a projective K3 surface S, the construction can be applied to any
ample line bundle L on S whose first Chern class ℓ := c1(L) is of course a
Kähler class. However, even in this case, only countably many of the fibres St

are projective. According to [8, Prop. 3.2], any projective fibre St for which
H2,0(St) ⊕H0,2(St) does not contain ℓ satisfies ρ(St) = ρ(S). The set of all
fibres for which ℓ is contained in H2,0(St) ⊕H0,2(St) can be pictured as the
equator of the sphere P1 ≃ S2 with the original K3 surface S corresponding
to the north pole.

Remark 1.7. — Inspired by the twistor construction one might try to find
a C∞-trivialization of the Brauer family. This is indeed possible but not in
a canonical way. Concretely, if π : S // P1 is an elliptic K3 surface and S
is viewed as a differentiable manifold M endowed with a complex structure
I, then a generator σ of H2,0(S) is a closed complex two-form on M which
uniquely determines the complex structure I, for T 0,1(M, I) ⊂ TCM is the
kernel of σ : TCM // T ∗

CM . Now, pick any non-exact closed (1, 1)-form ω on
P1, say with

∫
ω = 1. Then σt := σ+ tπ∗ω is a closed complex two-form with

the same properties as σ, namely σt ∧ σt ≡ 0 and σt ∧ σt > 0 (pointwise),
and therefore defines a complex structure It on M . Note that with respect to
It the projection π is still holomorphic and, hence, St := (M, It) comes with
a natural genus one fibration. However, the section of π : S // P1 will not
be holomorphic anymore with respect to It. Altogether, this yields a family
of complex structures It on M that is isomorphic to the Brauer family.
We emphasize that the construction of the family (M, It) depends on the
choice of ω and in this sense the Brauer family does not come with a natural
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trivialization. Also note that proving that the relative Jacobian of St is
isomorphic to S for all t is not immediate.

2. Brilliant families of Hodge structures

This section deals with all purely Hodge theoretic aspects. The results
can be applied to any geometric situation that involves Hodge structures of
weight two with a one-dimensional (2, 0)-part. Later we will focus exclusively
on K3 surfaces, but the Hodge theory developed here equally well applies to
hyperkähler manifolds.

2.1. We start by considering a real vector space TR with a non-degenerate
symmetric bilinear form ( . ) of signature (2, r − 2). A Hodge structure
of K3 type on TR is then given by a generator σ0 ∈ TR ⊗ C of its (2, 0)-
part, unique up to scaling, that satisfies the two conditions (σ0.σ0) = 0 and
(σ0.σ0) > 0. Alternatively, the Hodge structure can be thought of in terms
of the oriented, positive plane Pσ0 := ⟨Re(σ0), Im(σ0)⟩ ⊂ TR.

Next, we extend TR to the orthogonal sum
Tℓ := TR ⊕ R · ℓ, (2.1)

where d := (ℓ.ℓ) ∈ R can be arbitrary. The discussions in the three cases,
d > 0, d = 0, and d < 0, will be similar, but there are interesting differences
and special phenomena that we wish to explore.

For now we fix a Hodge structure on TR with σ0 ∈ TR ⊗ C as above and
consider it as a Hodge structure on Tℓ by declaring ℓ to be of type (1, 1).
We are interested in Hodge structures of K3 type on Tℓ, i.e. for which the
(2, 0)-part is spanned by a class σt ∈ Tℓ ⊗C with (σt.σt) = 0 and (σt.σt) > 0.
Once again, even for d = 0, such a Hodge structure is uniquely determined
by σt, for its (1, 1)-part is the orthogonal complement of the positive plane
Pσt

:= ⟨Re(σt), Im(σt)⟩ ⊂ TR ⊕ R · ℓ.

However, we shall only consider Hodge structures for which
σt ∈ C · σ0 ⊕ C · σ0 ⊕ C · ℓ

or, equivalently, such that Pσt
⊂ Pσ0 ⊕ R · ℓ. They are parameterized by an

open subset Dℓ ⊂ Qℓ of the conic Qℓ ⊂ P(C · σ0 ⊕ C · σ0 ⊕ C · ℓ) defined by
(σ.σ) = 0:
Dℓ := {σ ∈ Qℓ | (σ.σ) > 0 } ⊂ Qℓ ⊂ P(C · σ0 ⊕ C · σ0 ⊕ C · ℓ) ≃ P2. (2.2)

For d ̸= 0 the conic Qℓ is smooth, while for d = 0 it consists of the two
conjugate lines P(C ·σ0 ⊕C · ℓ) and P(C ·σ0 ⊕C · ℓ) with [ℓ] as their point of
intersection. In the latter case, we shall write Lℓ := P(C ·σ0 ⊕C ·ℓ)\{[ℓ]}. We
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emphasize that, although not reflected by the notation, Dℓ and Qℓ depend
not only on TR and ℓ, but also on σ0.

Lemma 2.1. — Let TR ⊂ TR ⊕ R · ℓ be as above. Then

Dℓ =


Qℓ ≃ P1 if d > 0

Lℓ ⊔ Lℓ ≃ C ⊔ C if d = 0

D′
ℓ ⊔D′

ℓ ≃ H ⊔ H if d < 0,

where the connected component D′
ℓ is chosen to contain σ0.

Proof. — The cases d > 0 and d = 0 are covered by the above discus-
sion. For d < 0 observe that ⟨Re(σ0), Im(σ0), ℓ⟩R is isometric to R3 with
e1, e2 isotropic, (e1.e2) = 1, and (e3.e3) = 1. Then z

� // [1 : −(z.z) :
√

2z]
describes a biholomorphic identification of H with one of the two connected
components of the period domain Dℓ. □

To restore the symmetry between the three cases, we shall shrink the
period domain for d > 0 to the complement of the equator S1

ℓ ⊂ Dℓ ≃ P1.
Recall that the equator is described by the condition ℓ ∈ Pσt

. Hence,
Dℓ \ S1

ℓ ≃ H ⊔ H
as in the case d < 0 and we usually follow the convention that σ0 ∈ H.

Remark 2.2. — Note that for d ⩽ 0 every σt ∈ Dℓ satisfies ℓ ̸∈ Pσt
. In

fact, if one lets d > 0 approach d = 0, then the equator S1
ℓ flows into the

point of intersection [ℓ]. Thus, removing the equator allows one to view the
two connected components in each of the three cases as part of a family
depending on the parameter d = (ℓ.ℓ).

11

Lemma 2.1. Let TR ⊂ TR ⊕ R · � be as above. Then

D� =





Q� � P1 if d > 0

L� � L̄� � C � C if d = 0

D�
� � D̄�

� � H � H̄ if d < 0,

where the connected component D�
� is chosen to contain σ0.

Proof. The cases d > 0 and d = 0 are covered by the above discussion. For d < 0 observe
that �Re(σ0), Im(σ0), ��R is isometric to R3 with e1, e2 isotropic, (e1.e2) = 1, and (e3.e3) = 1.
Then z ✤ �� [1 : −(z.z) :

√
2z] describes a biholomorphic identification of H with one of the two

connected components of the period domain D�. �

To restore the symmetry between the three cases, we shall shrink the period domain for d > 0

to the complement of the equator S1
� ⊂ D� � P1. Recall that the equator is described by the

condition � ∈ Pσt . Hence,
D� \ S1

� � H � H̄

as in the case d < 0 and we usually follow the convention that σ0 ∈ H.

Remark 2.2. Note that for d ≤ 0 every σt ∈ D� satisfies � �∈ Pσt . In fact, if one lets d > 0

approach d = 0, then the equator S1
� flows into the point of intersection [�]. Thus, removing the

equator allows one to view the two connected components in each of the three cases as part of
a family depending on the parameter d = (�.�).

(�.�) > 0 (�.�) = 0

◦

(�.�) < 0

Those are the deformations of σ0 that interest us here.

Definition 2.3. For a fixed Hodge structure of K3 type on TR given by σ0 ∈ TR⊗C the family
of Hodge structures σt on TR ⊕ R · � satisfying

Pσt ⊂ Pσ0 ⊕ R · � and � �∈ Pσt

is called a brilliant family of deformations of σ0. We usually restrict to the connected component
containing σ0, the other one being obtained by complex conjugation.

Those are the deformations of σ0 that interest us here.

Definition 2.3. — For a fixed Hodge structure of K3 type on TR given
by σ0 ∈ TR ⊗ C the family of Hodge structures σt on TR ⊕ R · ℓ satisfying

Pσt
⊂ Pσ0 ⊕ R · ℓ and ℓ ̸∈ Pσt
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is called a brilliant family of deformations of σ0. We usually restrict to the
connected component containing σ0, the other one being obtained by complex
conjugation.

Occasionally, we will refer to the three types of brilliant deformations
corresponding to d < 0, d = 0, and d > 0 as deformations of Dwork, Brauer,
resp. twistor type.

2.2. In a second step, we start with a Q-vector space T , associate to it the
real vector space TR := T ⊗ R, and assume that the Hodge structure σ0
is irreducible. In particular, orthogonal projection yields Q-linear injections
T �
� // Pσ0 and T �

� //C ·σ0, cf. [8, Lem. 2.3]. Furthermore, the class ℓ is now
considered to be rational and of type (1, 1), so that σ0 can be viewed as a
Hodge structure on the Q-vector space

T ⊕ Q · ℓ. (2.3)
For a brilliant deformation σt of σ0 on T ⊕ Q · ℓ we denote by

Tt ⊂ T ⊕ Q · ℓ
its transcendental lattice, i.e. the minimal sub-Hodge structure with non-
trivial (2, 0)-part. For example, since the original Hodge structure is assumed
to be irreducible, we have T0 = T . The Picard number of σt is then defined
as

ρ(σt) := dim(T ⊕ Q · ℓ) − dimTt.

We are used to think of the Picard number as the dimension of the subspace
of all classes in T ⊕ Q · ℓ that are (1, 1) with respect to σt. However, due
to the fact that the quadratic form is possibly non-degenerate, this number
can be bigger, cf. the discussion for d = 0 in Section 2.3 below.

With this definition, ρ(σ0) = 1 and ρ(σt) = 0 for the very general σt.
In fact, ρ(σt) = 1 is the maximal value that can be attained due to the
assumption on σt to be brilliant. Slightly stronger, we have dim(T⊥

t ) ⩽ 1 for
all t. To see this adapt the proof of [8, Prop. 3.2] to cover also the case d < 0
and d = 0.

The set of brilliant deformations σt of σ0 with ρ(σt) = 1 is countable and
dense. Of particular interest to us are those for which the transcendental
lattice Tt ⊂ T⊕Q·ℓ has the same signature (2, r−2) as T0 = T . Then clearly
ρ(σt) = 1 and the converse holds for d ⩽ 0. We define the Noether–Lefschetz
locus as the following countable dense subset of brilliant deformations of σ0:

NLℓ := {σt | sign(Tt) = sign(T0) = (2, r − 2) }.

Lemma 2.4. — For σt ∈ NLℓ orthogonal projection Tt
� � // T ⊕Q · ℓ // //

T0 = T defines a bijection
Tt

∼ // T
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of Q-vector spaces, which for d = 0 is an isometry of Hodge structures up to
conjugation.

Proof. — First observe that for ρ(σt) = 1 the obvious inclusion Pσt ⊂
Tt ∩ (Pσ0 ⊕ R · ℓ) is an equality. Next, since Tt and T0 are Q-vector spaces
of the same dimension, it suffices to prove the injectivity of Tt

// T , which
follows from ℓ ̸∈ Tt or, equivalently, ℓ ̸∈ Pσt

= Tt ∩ (Pσ0 ⊕ R · ℓ). Indeed, as
Pσt

is positive definite, we clearly have ℓ ̸∈ Pσt
for d ⩽ 0. For d > 0 it is

implied by the assumption that σt is brilliant deformations.

For the second assertion in the case d = 0 use that σt = σ0 + tℓ ∈ Lℓ or
σt = σ0 + tℓ ∈ Lℓ for some t ∈ C. Hence, the projection Tt

// T maps σt to
σ0 or σ0. As for d = 0 the set of (1, 1)-classes is the same for all σ0 + tℓ, see
Section 2.3 below, also (1, 1)-classes are preserved under the projection. □

2.3. Let us now study the case of an isotropic class ℓ, i.e. d = 0. We will
restrict to the connected component Lℓ, i.e. we only study brilliant deforma-
tions of the form σt = σ0 + tℓ for some t ∈ C. Those parameterized by Lℓ are
obtained by complex conjugation.

The first thing to observe is that, unlike the case d ̸= 0, the class ℓ is
always of type (1, 1), for (σt.ℓ) = 0. However, for the very general σt ∈ Lℓ,
one has Tt = T ⊕ Q · ℓ, cf. Lemma 2.5, and, therefore, in spite of being of
type (1, 1) for σt, the class ℓ is contained in the transcendental lattice Tt.
More generally, the space of (1, 1)-classes is the same for all σt ∈ Lf .

Next, any σt ∈ Lℓ can be written as

σt = σ0 + (σ0.B)ℓ

for some B ∈ T ⊗ C. Here, the class B is not uniquely defined, only its
(0, 2)-part B0,2 ∈ T 0,2 is. This yields an identification

Lℓ
∼ // T 0,2, (2.4)

which is independent of the choice of σ0. The following description of the
image of the Noether–Lefschetz locus under (2.4) views the irreducible Hodge
structure T as a Q-linear subspace of T 0,2 via orthogonal projection.

Lemma 2.5. — A point t ∈ Lℓ is contained in the Noether–Lefschetz
locus NLℓ if and only if there exists a class B ∈ T (in the Q-vector space!)
with σt = σ0 + (σ0.B)ℓ. In other words, under the identification (2.4),

NLℓ ≃ T.

Proof. — For any B ∈ T , the map fB : T // T ⊕ Q · ℓ, α � // α+ (α.B)ℓ
defines a Q-linear isometric embedding with σt = σ0 + (σ0.B)ℓ ∈ fB(T ) ⊗C
and, moreover, its image fB(T ) ⊂ T ⊕ Q · ℓ is a sub-Hodge structure with
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respect to σt. Thus, Tt ⊂ fB(T ) by minimality of Tt, which combined with
ρ(σt) ⩽ 1 shows that Tt = fB(T ) is of signature (2, r − 2), i.e. t ∈ NLℓ.

Conversely, if t is contained in the Noether–Lefschetz locus, then by virtue
of Lemma 2.4, orthogonal projection yields an isomorphism Tt

∼ // T . Its in-
verse is a map T // T⊕Q·ℓ, α � // α+g(α)ℓ for some linear map g : T //Q.
As ( . ) is non-degenerate on T , there exists a (non-unique) B ∈ T with
g(α) = (α.B) for all α. □

If T is associated with an integral Hodge structure, i.e. an integral lattice
TZ ⊂ T with TZ⊗Q ≃ T is fixed, then its Brauer group can be defined and it
comes in two flavors. In the following definition we again use the injectivity
of the orthogonal projection T // T 0,2 which allows us to view both, the
Z-module TZ and the bigger Q-vector space T , as subgroups of T 0,2.

Definition 2.6. — The analytic Brauer group of an irreducible integral
Hodge structure TZ of K3 type as above is the quotient

Bran(TZ) := T 0,2/TZ.

The algebraic Brauer group Br(TZ) ⊂ Bran(TZ) is defined as the subgroup of
all torsion elements or, equivalently,

Br(TZ) := T/TZ ⊂ T 0,2/TZ = Bran(TZ).

Then Lemma 2.5 expresses a relation between the Noether–Lefschetz lo-
cus and the Brauer group:

NLℓ

����

⊂ Lℓ ≃ T 0,2

����
Br(TZ) ⊂ Bran(TZ)

or, in other words,
NLℓ /TZ ≃ Br(TZ),

where NLℓ is considered as an affine space over TZ.

2.4. There are various similarities between the three cases, d < 0, d = 0,
and d > 0 and also a procedure to combine them.

Remark 2.7. — The most notable difference between the three cases is
the signature of T ⊕ Q · ℓ. To simplify things, assume T is two-dimensional.
Then T ⊕ Q · ℓ is positive definite for d > 0, of signature (2, 1) for d < 0,
and degenerate with one isotropic and two positive directions for d = 0. This
not only has consequences for the description of the corresponding period
domains as in Lemma 2.1, but also for the possible existence of algebraic
quotients.
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To make this more transparent, assume that we start with an integral
Hodge structure TZ, let T = TZ ⊗ Q, and assume d = (ℓ.ℓ) ∈ Z. Then the
orthogonal group Γ := O(TZ⊕Z ·ℓ) of the lattice TZ⊕Z ·ℓ is a finite group for
d > 0 and in many cases essentially trivial. On the other hand, for brilliant
families of Dwork type, so d < 0, the group Γ is infinite and Dℓ/Γ will be
the quotient of H by a modular group. Often, as in the case of the classical
Dwork family, a family given over Dℓ will descend to an algebraic family of
the quotient of Dℓ by some subgroup of Γ of finite index.

Something special happens in the case d = 0. Here, Γ is again an infinite
group. Indeed, Γ contains the B-field shifts α+nℓ � // α+ ((α.B) +n)ℓ for
any B ∈ TZ. Note that this also works when dimT > 2 and that under the
identification Dℓ = Lℓ ≃ T 0,2 ≃ C the action corresponds to translation by
elements in TZ ⊂ T 0,2. However, unlike the case d < 0, the quotient Dℓ/Γ
usually does not have any reasonable geometric structure.

The three types of brilliant deformations can be combined as follows. We
extend the Hodge structure on T given by σ0 to

Tℓ1,ℓ2 := T ⊕ Q · ℓ1 ⊕ Q · ℓ2

by declaring both classes ℓ1 and ℓ2 to be of type (1, 1). We assume d :=
(ℓ1.ℓ1) > 0, (ℓ1.ℓ2) = 0, and (ℓ2.ℓ2) = −d. In particular, f := ℓ1 + ℓ2 is an
isotropic class. Analogously to Dℓ ⊂ Qℓ, one defines

Dℓ1,ℓ2 ⊂ Qℓ1,ℓ2 ⊂ P(C · σ0 ⊕ C · σ0 ⊕ C · ℓ1 ⊕ C · ℓ2)
by the conditions (σ.σ) = 0 and (σ.σ) > 0. Clearly, the three types of period
domains Dℓ with (ℓ.ℓ) > 0, = 0, and < 0 considered previously reappear as
curves

Dℓ1 , Dℓ2 , Df ⊂ Dℓ1,ℓ2 .

More generally, for any rational (or real) linear combination ℓ = c1ℓ1 + c2ℓ2
the associated period domain Dℓ describes a curve in Dℓ1,ℓ2 . Note that if an
arbitrary σ ∈ Dℓ1,ℓ2 is written as σ = aσ + bσ + (c1ℓ1 + c2ℓ2), then σ can
be viewed as a point in the one-dimensional family of deformations Dℓ with
ℓ = c1ℓ1 + c2ℓ2 as in Section 2.1, but typically ℓ = c1ℓ1 + c2ℓ2 is not even
real. In this context one would again say that σ is a brilliant deformation
of σ0 whenever Pσ intersects R · ℓ1 ⊕ R · ℓ2 trivially. In Remark 2.2 we have
noted already that the equators S1

ℓs
⊂ Dℓs for ℓs = ℓ1 + sℓ2 with s ∈ [0, 1)

specialize to the point [f ] ∈ Qf for s approaching 1.

Putting the brilliant deformations associated with varying classes ℓ =
c1ℓ1 + c2ℓ2 into one family shows the discrete Noether–Lefschetz loci NLℓ

as part of another continuous family. To make this precise, consider ℓ′ ∈
T ⊕ Q · ℓ1 ⊕ Q · ℓ2 not contained in Q · ℓ1 ⊕ Q · ℓ2 such that

(ℓ′.ℓ′) > 0 and (ℓ′.f) > 0. (2.5)
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Then Dℓ1,ℓ2 ∩ ℓ′⊥ ⊂ Dℓ1,ℓ2 is a one-dimensional family of deformations σ of
σ0 for which ℓ′ is of type (1, 1).

Proposition 2.8. — For any ℓ′ satisfying (2.5) and any rational ℓ =
c1ℓ1 + c1ℓ2, the curve Dℓ1,ℓ2 ∩ ℓ′⊥ intersects the family of brilliant defor-
mations parameterized by Dℓ in the Noether–Lefschetz locus. Conversely, if
σt ̸= σ0 is a brilliant deformation contained in NLℓ ⊂ Dℓ, then σt ∈ ℓ′⊥ for
an appropriate ℓ′ as above.

Proof. — Let σt ∈ Dℓ be a brilliant deformation of σ0 orthogonal to ℓ′.
If (ℓ.ℓ) > 0, then σt is contained in the orthogonal complement of the plane
⟨ℓ′, ℓ′′⟩Q, where ℓ′′ is a generator of ℓ⊥ ⊂ Q·ℓ1⊕Q·ℓ2. As sign⟨ℓ′, ℓ′′⟩Q = (1, 1)
and σt is brilliant, Tt is of signature (2, r − 2) and, therefore, σ ∈ NLℓ. For
(ℓ.ℓ) = 0, i.e. ℓ a multiple of f = ℓ1 + ℓ2 or ℓ1 − ℓ2, we apply Lemma 2.5.
For example, if σt = σ0 + tf , then it suffices to show that t = (σ0.B)
for some B ∈ T . However, (σt.ℓ

′) = 0 and (ℓ′.f) ̸= 0 allows us to write
t = −(σ0.ℓ

′)/(ℓ′.f). Then let B := −(1/(ℓ′.f))ℓ′, where ℓ′ is the image of ℓ′

under the projection onto T .

Eventually, for (ℓ.ℓ) < 0 the transcendental lattice Tt is contained in
T ⊕ Q · ℓ, which is of signature (2, r − 1). Since by assumption ℓ′ is not
contained in Q · ℓ1 ⊕ Q · ℓ2, the transcendental lattice Tt is of dimension r
and using Pσt

⊂ Tt ⊗ R its signature must be (2, r − 2). Hence, also in this
case, σt ∈ NLℓ.

To prove the converse, recall that σt is contained in the Noether–Lefschetz
locus if its transcendental lattice Tt ⊂ T ⊕ Q · ℓ has signature (2, r− 2). For
(ℓ.ℓ) > 0, its orthogonal complement T⊥

t is spanned by some ℓ′ ∈ T⊕Q·ℓ with
(ℓ′.ℓ′) > 0, which, after changing its sign if necessary, also satisfies (ℓ′.f) > 0.
For (ℓ.ℓ) < 0, one changes a generator of the orthogonal complement T⊥

t ⊂
T⊕Q·ℓ by a large multiple of a class in ℓ⊥ ⊂ Q·ℓ1⊕Q·ℓ2 to ensure (ℓ′.ℓ′) > 0.
The condition (ℓ′.f) > 0 can then be achieved by a sign change if necessary.
If (ℓ.ℓ) = 0, then ℓ is a multiple of ℓ1 ± ℓ2. We shall assume ℓ = f = ℓ1 + ℓ2,
the case ℓ = ℓ1 −ℓ2 is similar. Then the transcendental lattice is the image of
fB for some B ∈ T , see Lemma 2.5. In other words, Tt is orthogonal to any
element of the form ℓ′ := −B + (1/d)ℓ1 + kf with (ℓ′.f) > 0 and for k ≫ 0
one has (ℓ′.ℓ′) > 0. In all three cases, the assumption σt ̸= σ0 is needed to
ensure that ℓ′ is not contained in Q · ℓ1 ⊕ Q · ℓ2. □

Rephrasing the above discussion yields the Hodge theory underlying The-
orem 0.4.

Corollary 2.9. — Consider a brilliant twistor deformation σt ∈ Dℓ1 of
σ0 that is contained in NLℓ1 . Then there exists a class ℓ′ ∈ T ⊕Q · ℓ1 ⊕Q · ℓ2
satisfying (2.5) and such that the curve Dℓ1,ℓ2 ∩ ℓ′⊥ intersects the Brauer
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family Lf ⊂ Df in a point in the Noether–Lefschetz locus, i.e. in a point of
the form σ0 + (σ0.B)f for some B ∈ T .

Proof. — By virtue of the proposition, σt ∈ ℓ′⊥ for some ℓ′ satisfy-
ing (2.5). Then σ := σ0 +(σ0.B)f , where B is the projection of −(1/(f.ℓ′))ℓ′

in T , is a brilliant deformation of σ0 in the Brauer family. Moreover, σ is
contained in the Noether–Lefschetz locus NLf and, by construction, it is
orthogonal to ℓ′, which proves the assertion. □

2.5. As before, we consider an irreducible rational Hodge structure of K3
type T and fix a generator σ0 of T 2,0. Then the ring

K(σ0) := EndHdg(T )
of Q-linear endomorphisms φ : T // T of the Hodge structure T is a field.
The map φ � // λ, with λ determined by φ(σ0) = λσ0, describes an embed-
ding K(σ0) �

� //C and according to [17], K(σ0) is either a RM or a CM
field, i.e. K(σ0) is either a totally real field or a purely imaginary quadratic
extension K0(σ0) ⊂ K(σ0) of a totally real field K0(σ0).

The Hodge structure T is said to have CM if K(σ0) is a CM field and,
additionally, T is of dimension one as a vector space over K(σ0).

Remark 2.10. — For a brilliant Hodge structure σt contained in
the Noether–Lefschetz locus, projection yields a Q-linear isomorphism
ϖt : Tt

∼ // T , see Lemma 2.4. In particular, any Hodge endomorphism φ ∈
K(σ0) naturally describes a Q-linear endomorphism φt of Tt. Observe that
after linear extension, the projection ϖt maps σt = aσ0 + bσ0 + cℓ to
aσ0 + bσ0. Thus, if φ(σ0) = λσ0, then φ(ϖt(σt)) = φ(aσ0 + bσ0) = aλσ0 +
bλσ0 and, therefore, φt(σt) = λσt for any φ with λ ∈ R. Hence, in this case
the Q-linear map φt : Tt

// Tt respects the (2, 0)-part. However, for d ̸= 0
the map φt is not an endomorphism of the Hodge structure Tt, as it does not
respect the space of (1, 1)-forms. For d = 0, φt is a Hodge endomorphism,
which also follows from Lemma 2.4.

In spite of there not being an obvious way of associating to a Hodge endo-
morphism φ of T a Hodge endomorphism φt of Tt, this is possible whenever
T has CM and φ is contained in K0(σ0). The proof of [8, Prop. 3.8], dealing
with the case d = (ℓ.ℓ) > 0, carries over literally to the case d < 0 and yields
the following.

Proposition 2.11. — Assume T is an irreducible Hodge structure of K3
type with complex multiplication. Then, for any brilliant deformation σt of
σ0 as a Hodge structure on T⊕Q·ℓ that is contained in the Noether–Lefschetz
locus NLℓ, there exists a natural embedding

K0(σ0) �
� //K(σt) = EndHdg(Tt).
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Proof. — Only the case d < 0 needs to be checked. For a brilliant defor-
mation σt in NLℓ there exists a class ℓ′ ∈ T ⊕ Q · ℓ with m := (ℓ.ℓ′) ̸= 0 and
Tt = ℓ′⊥, which is of signature (2, r−2). Note that unlike the case considered
in [8, §3], we have (ℓ′.ℓ′) < 0, but this sign difference is of no consequence in
the argument there, only m ̸= 0 matters. □

The result immediately implies Theorem 0.2, see Section 3.1 for the trans-
lation.

Corollary 2.12. — Under the assumption of the previous proposition,
if σ0 has complex multiplication, then also any brilliant deformation σt of
σ0 contained in the Noether–Lefschetz locus has complex multiplication and
the maximal totally real subfields of σ0 and σt coincide.

Proof. — For dimension reasons, Tt as a vector space over K0(σ0) is of
dimension two. Hence, according to [14, Lem. 3.2], Tt has complex multipli-
cation and K0(σ0) is its maximally totally real subfield. □

Remark 2.13. — Note that the CM fields K(σ0) and K(σt) will typically
be different. In [8, Cor. 3.10] an equation of degree two X2 + γX + δ = 0 is
given that describes the extensionK0(σ0) ≃ K0(σt) ⊂ K(σt). Unfortunately,
there is a factor 2 missing in the computation of δ, which really should be
δ = m2 − (1/2)d(σ0.σ0)−1(α2 + α−2 − 2).(3) The same computation then
holds for any brilliant deformation in the Noether–Lefschetz locus as long
as d ̸= 0. Note that for d = 0 we have K(σ0) ≃ K(σt) for all t in the
Noether–Lefschetz locus.

3. Geometric brilliant families

In this section we translate the Hodge theory of the previous section into
geometric statements. We also indicate how to think of the Hodge theoretic
Brauer family for K3 surfaces that are not elliptic.

3.1. We shall first explain how to reduce the geometric situation considered
in the introduction and in Section 1 to the purely Hodge theoretic context
in Section 2. The arguments are straightforward and we will be brief.

Assume S is a complex projective K3 surface with transcendental lattice
T (S) := NS(S)⊥ ⊂ H2(S,Z). Then the real Hodge structure TR := T (S)⊗R
and the rational Hodge structure T := T (S) ⊗ Q satisfy the assumptions in
Sections 2.1 and 2.2. In particular, TQ is an irreducible Hodge structure. The
generator σ0 ∈ T 2,0 is nothing but a non-zero holomorphic (2, 0)-form on S.
For the additional class ℓ in (2.1) and (2.3) one picks a class ℓ ∈ H1,1(S,Z).

(3) Thanks to F. Viganò [16] for pointing this out to me.
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The three cases (ℓ.ℓ) > 0, = 0, and < 0 are geometrically realized by the
constructions in Sections 1.1, 1.2, and 1.3.

The surjectivity of the period map, see [6, Ch. 7] for the statement and
references, immediately yields the following.

Proposition 3.1. — Consider the period domain Dℓ in (2.2). Then
there exists a smooth family of K3 surfaces S //Dℓ such that the fibre over
σ0 is S and parallel transport identifies H2,0(St) with the Hodge structure
on T ⊕ Q · ℓ corresponding to σt. □

For an ample class ℓ the family can alternatively be viewed as the twistor
family in Section 1.3. If ℓ is the class of the fibre of an elliptic fibration
of S, the family can be constructed geometrically and without using the
surjectivity of the period map, see Section 1.2. However, for (ℓ.ℓ) < 0 there
typically is no alternative geometric construction. Moreover, in this case,
unless ρ(S) = 20, the family S //Dℓ will not descend to an algebraic family
despite all its fibres being polarized by any ample class in ℓ⊥ ∩ H1,1(S,Z),
see Remark 2.7 and the discussion at the end of Section 1.1.

Remark 3.2. — For (ℓ.ℓ) ⩽ 0, the family S //Dℓ is a brilliant deforma-
tion of S, i.e. H2,0(St) ⊂ (H2,0 ⊕H0,2)(S)⊕C · ℓ with ℓ ̸∈ (H2,0 ⊕H0,2)(St).
For (ℓ.ℓ) > 0, the last condition forces us to restrict to the union of the two
hemispheres Dℓ \ S1

ℓ , which we shall henceforth do.

Note that by definition t ∈ NLℓ if and only of St is algebraic with ρ(St) =
ρ(S), which justifies to call NLℓ the Noether–Lefschetz locus of the brilliant
family.

Proof of Theorem 0.2. — Apply Proposition 2.11 and Corollary 2.12. □

Let us now focus on the case (ℓ.ℓ) = 0. As remarked already in Sec-
tion 1.2, the two Brauer groups Br(S) and Br(T (S)) differ by a finite group.
More precisely, there is a surjection Bran(T (S)) // // Bran(S) with a finite
kernel and inducing a surjection between the algebraic Brauer groups. How-
ever, as we rather work with the brilliant family over H2,0(S) ≃ T 2,0 ≃ C,
the difference is of no importance to us. If ℓ is the class f of an elliptic fi-
bration S // P1, then the Brauer family S //C, see (1.1), is the geometric
realization of the Hodge theoretic Brauer family. This yields

Corollary 3.3. — Let S be a complex projective elliptic K3 surface.
Then the Brauer family S //C ≃ H2,0(S) is a brilliant deformation of S
such that its fibre St is isomorphic to the K3 surface Sα, where α is the image
of t under H2,0(S) // // Bran(S) ≃ Xan(S). Furthermore, St is algebraic if
and only if t ∈ T (S) ⊗ Q or, equivalently, if α ∈ Br(S). □
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In other words, the fibre St is algebraic if and only if after parallel trans-
port H2,0(St) is generated by σ0 + (σ0.B)f for some rational cohomology
class B ∈ H2(S,Q).

Proof of Theorem 0.3. — In order to apply the Hodge theory in Sec-
tion 2.4, we pick an ample line bundle L on S and let ℓ1 := m · c1(L) with
m := (f.c1(L))/(c1(L).c1(L)). Then ℓ2 := f − ℓ1 satisfies the assumption
(ℓ2.ℓ2) = −(ℓ1.ℓ1).

Then the first assertion in Theorem 0.3 is the observation in Remark 2.2,
while the second follows from Proposition 2.8 applied to ℓ = ℓ1. □

Proof of Theorem 0.4. — The result is a direct consequence of Corol-
lary 2.9. The class ℓ′ there satisfies (ℓ′.ℓ′) > 0. Thus, it is a (1, 1)-class in
the positive cone of all fibres of S //Dℓ1,ℓ2 ∩ ℓ′⊥, which therefore are all
algebraic □

3.2. In order to realize the Hodge theoretic description of the Brauer family
in Section 2.3 geometrically, we need to give the additional isotropic class ℓ
a geometric meaning. In Sections 1.2 and 3.1 this was achieved for elliptic
K3 surfaces S // P1 by letting ℓ be the fibre class f . Of course, a general
K3 surface is not elliptic, i.e. there is no isotropic (1, 1)-class in H2(S,Z).
However, there is an easy way out by passing to higher-dimensional hyper-
kähler manifolds endowed with a Lagrangian fibration. To this end, we first
note the following standard fact.

Proposition 3.4. — Let S be a projective K3 surface. Then there exists
a projective hyperkähler manifold X together with a Lagrangian fibration
X // Pn with a section and an algebraic Hodge isometry T (S) ≃ T (X).

Proof. — Consider a primitive ample line bundle L on S and a Mukai
vector v ∈ H∗(S,Z) of the form v = (0, c1(L), χ). Then the moduli space
X of sheaves E with v(E) = v that are Gieseker stable with respect to
a v-generic polarization on S is a projective hyperkähler manifold, see [6,
Prop. 10.2.5] for the statement and references. Furthermore, there exists
a Hodge isometry H2(X,Z) ≃ v⊥ ⊂ H̃(S,Z), where the left hand side
is endowed with the Beauville–Bogomolov form and the right hand side is
the orthogonal complement of v in the Mukai lattice, see [11]. Moreover,
the isomorphism is algebraic, i.e. it is induced by an algebraic class on the
product S × X, and, thus, yields an algebraic Hodge isometry between the
transcendental lattices T (S) ≃ T (X). Finally, mapping a sheaf to its Fitting
support yields a Lagrangian fibration X // Pn ≃ |L|, which for χ = (L.L)/2
comes with a section given by the sheaves L|C for C ∈ |L|.
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Alternatively, one could work with any primitive v with a square zero
(1, 1)-class in v⊥ and use [1, Thm. 1.5] to produce a birational Lagrangian
fibration. □

Clearly, there is no canonical choice for X, in fact not even for its dimen-
sion. But note that this happens already for the case of elliptic K3 surfaces
considered before, as frequently K3 surfaces admit more than one elliptic
fibration.

The analogue of Corollary 3.3 for elliptic K3 surfaces is then the following.

Corollary 3.5. — Let S be a projective K3 surface with
(H2,0 ⊕H0,2)(S) ∩H2(S,Q) = 0.

(i) There exists a compact Lagrangian hyperkähler manifold π :X // Pn

together with an algebraic Hodge isometry T (S) ≃ T (X) and a bril-
liant deformation X //C of X of Brauer type that is endowed with
a family of Lagrangian fibrations Xt

// Pn.
(ii) If αt ∈ Br(X) is the image of a point t ∈ C under the natural pro-

jection H0,2(S) ≃ C // // Bran(S) ≃ Bran(X), then the Lagrangian
fibration πt : Xt

// Pn corresponds to the Tate–Šafarevič twist of
X // Pn associated to αt.

(iii) The hyperkähler manifold Xt is projective if and only if t is contained
in the Noether–Lefschetz locus or, equivalently, if its image αt is
contained in the algebraic Brauer group Br(X) ⊂ Bran(X).

To spell this out a bit more, observe that T (S) ≃ T (X) yields a natural
isomorphism (up to a finite kernel) between the algebraic and the analytic
Brauer groups of S andX. The statement that X //C is a brilliant deforma-
tion of Brauer type means that there exists an isotropic class f ∈ H1,1(X,Z),
namely π∗c1(O(1)), such that H2,0(Xt) ⊂ H2,0(X) ⊕H0,2(X) ⊕ C · f . This
allows one to use the identification Lf ≃ H0,2(X) ≃ H0,2(S) in (2.4) and
the surjection NLf

// // Br(X) ≃ Br(S).

Proof. — The idea of the proof is similar to the one for elliptic K3
surfaces. The existence of X // Pn is guaranteed by the previous propo-
sition. For the construction of the family X //C we refer to [10, §§7.1-7.2],
it is analogous to the one for elliptic K3 surfaces [3, Ch. 1.5]. To prove
(iii), one needs to relate projectivity of Xt to the existence of (1, 1)-classes
of positive Beauville–Bogomolov square, for which we use the criterion [4,
Thm. 3.11]. □

Ideally one would like to phrase (ii) in terms of an isomorphism Bran(X) ≃
Xan(X) (and similar for the algebraic variants), but the situation is more
complicated in higher dimensions. Also note that the assumption on (H2,0 ⊕
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H0,2)(S) holds for most K3 surfaces and is probably not needed. It is used
to ensure that all fibres in the Brauer family obtained by twisting the La-
grangian fibration X // Pn are actually hyperkähler.

Remark 3.6. — The main result of [10] roughly says that any Lagrangian
fibration of a hyperkähler manifold that is deformation equivalent to a
Hilbert scheme of a K3 surface is obtained as a fibre Xt of a family of the
above type.

Remark 3.7. — The situation in positive characteristic shows certain fea-
tures that are definitely not mirrored by Hodge theory. For example, the
construction of “twistor spaces” in [2] starts with a supersingular K3 surface
S together with a fixed isotropic Mukai vector v and interpretes the collec-
tion of moduli spaces of stable sheaves that are twisted with respect to the
varying Brauer class α as a family of untwisted K3 surfaces. In characteristic
zero, this does not work unless the Mukai vector v = (r, ℓ, s) satisfies r = 0.
Indeed, if an α-twisted sheaf exists at all, then the order of α must divide r,
which is impossible to ensure for varying Brauer classes.
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