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An example of resonance instability (∗)

Jean-François Bony (1), Setsuro Fujiié (2),
Thierry Ramond (3) and Maher Zerzeri (4)

ABSTRACT. — We construct a semiclassical Schrödinger operator such that the
imaginary part of its resonances closest to the real axis changes by a term of size h

when a real compactly supported potential of size o(h) is added.

RÉSUMÉ. — On construit un opérateur de Schrödinger semiclassique dont la partie
imaginaire des résonances les plus proches de l’axe réel est modifiée par un terme
d’ordre h lorsqu’un potentiel réel à support compact de taille o(h) lui est ajouté.

1. Introduction

In this note, we consider a semiclassical Schrödinger operator P on
L2(Rn), n ⩾ 1,

P = −h2∆ + V (x), (1.1)
where V ∈ C∞

0 (Rn;R) is a real-valued smooth compactly supported po-
tential, and we study the stability of its resonances under a subprincipal
perturbation of the form

h1+δW (x), (1.2)
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with δ > 0 and W ∈ C∞
0 (Rn;R). In order to realize the geometrical settings

we need, it is sometimes easier to work with such operators outside compact
smooth obstacles with Dirichlet boundary condition. Since P and P+h1+δW
are compactly supported perturbations of −h2∆, their resonances near the
real axis are well-defined through the analytic distortion method or using the
meromorphic extension of its truncated resolvent. We send the reader to the
books of Sjöstrand [15] or Dyatlov and Zworski [7] for a general presentation
of resonance theory, and we denote Res(Q) the set of resonances of the
operator Q. In the semiclasssical limit (i.e. h → 0), it is true that in many
situations the distribution of the resonances near E0 > 0 is governed by the
geometry of the trapped set K(E0), that is the set of bounded Hamiltonian
trajectories at energy E0 (see (2.1)). In this paper, we shall see that this is
not always the case.

It is well known that the spectrum of a self-adjoint operator is stable.
This is a direct consequence of the spectral theorem. More precisely, for any
self-adjoint operator P and any bounded perturbation W , the spectrum of
P +W satisfies

σ(P +W ) ⊂ σ(P ) +B(0, ∥W∥).
Thus, a perturbation of size h1+δ of a self-adjoint operator can not lead to
a perturbation of size h of its spectrum.

On the contrary, the stability of resonances is a subtle problem as both
stability results and instability results have been obtained. On one hand,
the resonances tend to be stable as other spectral objects like the eigenval-
ues. This is particularly clear when the resonances are defined by complex
distortion, since the usual perturbation theory of the discrete spectrum can
directly be applied to the distorted operator. Even if the resonances are
defined as the poles of the meromorphic extension of some weighted resol-
vent, Agmon [1, 2] has proved their stability. In the semiclassical setting, the
stability of resonances under geometric perturbations has been obtained in
particular settings, see e.g. Wunsch and Zworski [17] in the hyperbolic case
or our previous paper [5, Section 4.2.4] in the homoclinic case. On the other
hand, the resonances can be unstable since they come from a non self-adjoint
problem: some typical non self-adjoint effects may occur concerning the res-
onances even if P is self-adjoint. For instance, the distorted operator may
have a Jordan block or the truncated resolvent may have a pole of algebraic
order greater than 1 (see e.g. Sjöstrand [14, Section 4]).

Our instability result is the following.
Theorem 1.1 (Resonance instability). — In dimension n = 2, one can

construct an operator P and a potential W as above satisfying the following
property for all δ > 0 small enough. There exist a set H ⊂]0, 1] with 0 ∈ H
and constants D0, E0, α > 0 such that, for all C > 0 and −C ⩽ A < B ⩽ C,
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Figure 1. The spectral setting of Theorem 1.1.

other spectral objects like the eigenvalues. This is particularly clear when the resonances are
defined by complex distortion, since the usual perturbation theory of the discrete spectrum can
directly be applied to the distorted operator. Even if the resonances are defined as the poles of
the meromorphic extension of some weighted resolvent, Agmon [1, 2] has proved their stability.
In the semiclassical setting, the stability of resonances under geometric perturbations has been
obtained in particular settings, see e.g. Wunsch and Zworski [17] in the hyperbolic case or our
previous paper [5, Section 4.2.4] in the homoclinic case. On the other hand, the resonances
can be unstable since they come from a non self-adjoint problem: some typical non self-
adjoint effects may occur concerning the resonances even if P is self-adjoint. For instance,
the distorted operator may have a Jordan block or the truncated resolvent may have a pole
of algebraic order greater than 1 (see e.g. Sjöstrand [14, Section 4]).

Our instability result is the following.

Theorem 1.1 (Resonance instability). In dimension n = 2, one can construct an operator

P and a potential W as above satisfying the following property for all δ > 0 small enough.

There exist a set H ⊂]0, 1] with 0 ∈ H and constants D0, E0,α > 0 such that, for all C > 0
and −C ≤ A < B ≤ C,

i) On one hand, P has no resonance z with Re z ∈ E0 + [−Ch,Ch] and

(1.3) Im z ≥ −D0h− αh,

for h ∈ H small enough.

ii) On the other hand, the resonances z of P + h1+δW with Re z ∈ E0 + [Ah,Bh] closest
to the real axis satisfy

(1.4) Im z ∼ −D0h− δh,

for h ∈ H small enough.

The result is illustrated in Figure 1. In the statement of the previous result, we do not
specify the subset of semiclassical parameters H . In fact, depending on the geometric sit-
uation, the resonance instability may occur on the whole interval H =]0, 1] or only near a
sequence H like {j−1; j ∈ N

∗}. Operators corresponding to these different situations are
given at the end of Section 2.

The constructions in the proof of Theorem 1.1 can be realized in any dimension n ≥ 2,
but our method of proof does not work in dimension n = 1. Indeed, we need that the
Hamiltonian vector field has a hyperbolic fixed point with many different trajectories in its

Figure 1.1. The spectral setting of Theorem 1.1.

(i) On one hand, P has no resonance z with Re z ∈ E0 + [−Ch,Ch]
and

Im z ⩾ −D0h− αh, (1.3)

for h ∈ H small enough.
(ii) On the other hand, the resonances z of P + h1+δW with Re z ∈

E0 + [Ah,Bh] closest to the real axis satisfy

Im z ∼ −D0h− δh, (1.4)

for h ∈ H small enough.

The result is illustrated in Figure 1.1. In the statement of the previous
result, we do not specify the subset of semiclassical parameters H . In fact,
depending on the geometric situation, the resonance instability may occur on
the whole interval H =]0, 1] or only near a sequence H like {j−1; j ∈ N∗}.
Operators corresponding to these different situations are given at the end of
Section 2.

The constructions in the proof of Theorem 1.1 can be realized in any
dimension n ⩾ 2, but our method of proof does not work in dimension
n = 1. Indeed, we need that the Hamiltonian vector field has a hyperbolic
fixed point with many different trajectories in its stable manifold, which is
only possible in dimension at least 2 (see Section 2). Yet we do not know
if the resonance instability phenomenon described here occurs in dimension
one.

Note that Theorem 1.1(ii) provides at least one resonance z of P+h1+δW
satisfying Re z ∈ E0 + [Ah,Bh] and Im z ∼ −D0h− δh. But its proof shows
that the number of such resonances is at least of order |ln h|. In particular,
let us define the essential quantum trapping of the operator Q in the interval
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Figure 2. The resonances generated by (A) a well in the island, (B) a non-
degenerate critical point and (C) a hyperbolic closed trajectory.

stable manifold, which is only possible in dimension at least 2 (see Section 2). Yet we do not
know if the resonance instability phenomenon described here occurs in dimension one.

Note that Theorem 1.1 ii) provides at least one resonance z of P + h1+δW satisfying
Re z ∈ E0 + [Ah,Bh] and Im z ∼ −D0h − δh. But its proof shows that the number of such
resonances is at least of order | lnh|. In particular, let us define the essential quantum trapping

of the operator Q in the interval I ⊂ R by

(1.5) ess-qtI(Q) = lim
n→+∞

lim sup
h→0
h∈H

inf
z1,...,zn∈Res(Q)

Re z•∈I

sup
z∈Res(Q)\{z1,...,zn}

Re z∈I

h

| Im z|
.

Roughly speaking, this means that R− ih ess-qtI(Q)−1 is the closest line to the real axis on
which an infinity of resonances of Q accumulate below I as h ∈ H goes to 0. With this
notation, ess-qtE0+[Ah,Bh](P ) increases by at least (α− δ)(D0+α)−1(D0+ δ)−1 when we add

the perturbation h1+δW to the operator P . Thus, the resonance instability described here is
not an anomaly due to an exceptional resonance or a Jordan block but a phenomenon mixing
geometry and analysis.

We can also consider perturbations of size h of P . More precisely, for 0 < κ ≪ 1 fixed, one
can show that the resonances z of P + κhW with Re z ∈ E0 + [Ah,Bh] closest to the real
axis satisfy Im z ∼ −D0h for h ∈ H small enough. The proof of this point is similar to that
of Theorem 1.1. On the contrary, for larger values of κ, some cancellations may appear and
P + κhW may have a resonance free region of size D0h+ αh below the real axis as for P .

The proof of Theorem 1.1 provides also resolvent estimates. Let Pθ denote the operator
obtained from P after a complex distortion of angle θ = h| lnh|. It follows from a contradiction
argument that its resolvent satisfies a polynomial estimate in Ω = E0+[−Ch,Ch]+ i[−D0h−
αh, h]. This means that, for some M > 0, we have

(1.6)
��(Pθ − z)−1

�� � h−M ,

uniformly for z ∈ Ω. By the usual perturbation theory, it implies that P+W has no resonance
in Ω for any distortable perturbation W of size o(hM ). The stability of resonances under small
enough perturbations has already been observed (see e.g. Agmon [1, 2]). Summing up, the
resonances of P are stable for perturbations of size o(hM ) and unstable for some perturbations
of size h1+δ (showing that M ≥ 1 + δ).

The instability phenomenon described here does not exist in the previously obtained asymp-
totics of resonances (see Figure 2). In the “well in the island” situation, the resonances are
known to be exponentially close to the real axis (see Helffer and Sjöstrand [11] for globally

Figure 1.2. The resonances generated by (A) a well in the island, (B)
a non-degenerate critical point and (C) a hyperbolic closed trajectory.

I ⊂ R by

ess-qtI(Q) = lim
n→+∞

lim sup
h→0
h∈H

inf
z1,...,zn∈Res(Q)

Re z•∈I

sup
z∈Res(Q)\{z1,...,zn}

Re z∈I

h

|Im z|
. (1.5)

Roughly speaking, this means that R − ih ess-qtI(Q)−1 is the closest line
to the real axis on which an infinity of resonances of Q accumulate below
I as h ∈ H goes to 0. With this notation, ess-qtE0+[Ah,Bh](P ) increases
by at least (α − δ)(D0 + α)−1(D0 + δ)−1 when we add the perturbation
h1+δW to the operator P . Thus, the resonance instability described here is
not an anomaly due to an exceptional resonance or a Jordan block but a
phenomenon mixing geometry and analysis.

We can also consider perturbations of size h of P . More precisely, for
0 < κ ≪ 1 fixed, one can show that the resonances z of P + κhW with
Re z ∈ E0 + [Ah,Bh] closest to the real axis satisfy Im z ∼ −D0h for h ∈ H
small enough. The proof of this point is similar to that of Theorem 1.1.
On the contrary, for larger values of κ, some cancellations may appear and
P + κhW may have a resonance free region of size D0h+ αh below the real
axis as for P .

The proof of Theorem 1.1 provides also resolvent estimates. Let Pθ denote
the operator obtained from P after a complex distortion of angle θ = h|ln h|.
It follows from a contradiction argument that its resolvent satisfies a poly-
nomial estimate in Ω = E0 + [−Ch,Ch] + i[−D0h−αh, h]. This means that,
for some M > 0, we have ∥∥(Pθ − z)−1∥∥ ≲ h−M , (1.6)
uniformly for z ∈ Ω. By the usual perturbation theory, it implies that P +W
has no resonance in Ω for any distortable perturbation W of size o(hM ). The
stability of resonances under small enough perturbations has already been
observed (see e.g. Agmon [1, 2]). Summing up, the resonances of P are stable
for perturbations of size o(hM ) and unstable for some perturbations of size
h1+δ (showing that M ⩾ 1 + δ).
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The instability phenomenon described here does not exist in the previ-
ously obtained asymptotics of resonances (see Figure 1.2). In the “well in
the island” situation, the resonances are known to be exponentially close to
the real axis (see Helffer and Sjöstrand [11] for globally analytic potentials
and Lahmar-Benbernou, Martinez and the second author [8] for potentials
analytic at infinity). Adding a subprincipal real potential hW (x) does not
change this properties. When the trapped set at energy E0 consists of a
non-degenerate critical point (say at (x0, 0) ∈ T ∗Rn), Sjöstrand [14] has
proved that the resonances form, modulo o(h), a quarter of a rectangular
lattice which is translated by hW (x0) when a subprincipal potential hW (x)
is added. Finally, the asymptotic of the resonances generated by a hyper-
bolic closed trajectory has been obtained by Gérard and Sjöstrand [10] (see
also Ikawa [12] and Gérard [9] for obstacles). Modulo o(h), they form half
of a rectangular lattice which is translated by a real quantity after pertur-
bation by a real potential hW (x). Summing up, the imaginary part of the
resonances is very stable in the three previous examples: it moves only by
o(h) when a perturbation by a real potential of size h is applied. In other
words, if the quantum trapping (or maximum of the quantum lifetime) in
I = E0 + [−Ch,Ch] of an operator Q is defined by

qtI(Q) = lim sup
h→0

sup
z∈Res(Q)

Re z∈I

h

|Im z|
, (1.7)

with the conventions that qtI(Q) = +∞ if the quantity diverges and qtI(Q)=
0 if Q has no resonance, we have qtI(P ) = qtI(P + hW ) in these examples.
The situation is completely opposite in Theorem 1.1 since a self-adjoint per-
turbation of size o(h) induces a change of size 1 of the quantum trapping. By
definition, we always have qtI(Q) ∈ [0,+∞] and qtI(Q) ⩾ ess-qtI(Q). More-
over, if the resonance expansion of the quantum propagator holds, we have
∥χe−itQ/hφ(Q)χ∥ ≈ et/ qtI (Q) for t ≫ 1 and h in an appropriate sequence,
justifying the name of quantum trapping. Other results in scattering theory
provide resonance free regions, that is upper bounds on the quantum trap-
ping, under geometric assumptions. In general, the bounds obtained do not
depend on the subprincipal symbol, assumed to be self-adjoint in an appro-
priate class (see for instance Nonnenmacher and Zworski [13, Section 3.2]).
In the present setting, Section 3.1 of [5] implies qtI(P ) ⩽ D−1

0 , but Theo-
rem 1.1(i) shows that this inequality is not sharp.

From a broader point of view, Theorem 1.1 may seem natural since the
distorted resolvent is generally large in the unphysical sheet and small pertur-
bations may produce eigenvalues. More precisely, the norm of the distorted
resolvent is known to be larger than h−1, that is∥∥(Pθ − z)−1∥∥ ≫ h−1,
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0

suppW
suppVtop

suppVref{Vref ≥ E0}

(a, 0)

πx(γ3)

πx(γ1)

πx(γ2)

Figure 3. The potentials V = Vtop + Vref and W .

2. Construction of the operators

To construct a Schrödinger operator P = −h2Δ+V (x) as in (1.1) with unstable resonances,
we follow Example 4.23 and Example 4.24 (B) of [5]. We send back the reader to this paper
for a slightly different presentation, some close geometric situations and general results about
resonances generated by homoclinic trajectories. As usual, p(x, ξ) = ξ2 + V (x) denotes the
symbol of P , its associated Hamiltonian vector field is

Hp = ∂ξp · ∂x − ∂xp · ∂ξ = 2ξ · ∂x −∇V (x) · ∂ξ,

and the trapped set at energy E for P is

(2.1) K(E) =
�
(x, ξ) ∈ p−1(E); t 7→ exp(tHp)(x, ξ) is bounded

�
.

Recall that K(E) is compact and stable by the Hamiltonian flow for E > 0.

In dimension n = 2, we consider the potential

(2.2) V (x) = Vtop(x) + Vref(x),

as in Figure 3 and described below. On one hand, the potential Vtop is of the form Vtop(x) =
V1(x1)V2(x2) where the functions V• ∈ C∞

0 (R) are single barriers (see Figure 4) with

V1(x1) = E0 −
λ2
1

4
x21 +O(x31) and V2(x2) = 1−

λ2
2

4E0
x22 +O(x32),

near 0 and 0 < λ1 < λ2. In particular, Vtop is an anisotropic bump,

Vtop(x) = E0 −
λ2
1

4
x21 −

λ2
2

4
x22 +O(x3),

near 0 and (0, 0) is a hyperbolic fixed point for Hp. The anisotropy of the fixed point is
mandatory to have different incoming curves at (0, 0) with the same asymptotic direction. The
stable/unstable manifold theorem ensures the existence of the incoming/outgoing Lagrangian
manifolds Λ± characterized by

Λ± =
�
(x, ξ) ∈ T ∗

R
2; exp(tHp)(x, ξ) → (0, 0) as t → ∓∞

�
.

Figure 2.1. The potentials V = Vtop + Vref and W .

with Im z < 0, in many cases (see e.g. Burq and two of the authors [3] or
Dyatlov and Waters [6]). By the pseudospectral theory (see e.g. Trefethen
and Embree [16, Section I.4]), there exists a bounded operator Wθ of size
o(h) such that z is precisely an eigenvalue of Pθ +Wθ. Nevertheless, it is not
clear that Wθ is the distortion of some operator W , that W is a potential
and that W is self-adjoint. In fact, as explained in the previous paragraph,
this is not always the case.

The present result is obtained for a Schrödinger operator whose trapped
set at energy E0 consists of a hyperbolic fixed point and homoclinic trajecto-
ries, following our recent paper [5]. The operator P and the potential W are
constructed in Section 2. The instability phenomenon stated in Theorem 1.1
is proved in Section 3.

2. Construction of the operators

To construct a Schrödinger operator P = −h2∆ + V (x) as in (1.1) with
unstable resonances, we follow Example 4.23 and Example 4.24 (B) of [5]. We
send back the reader to this paper for a slightly different presentation, some
close geometric situations and general results about resonances generated by
homoclinic trajectories. As usual, p(x, ξ) = ξ2 + V (x) denotes the symbol of
P , its associated Hamiltonian vector field is

Hp = ∂ξp · ∂x − ∂xp · ∂ξ = 2ξ · ∂x − ∇V (x) · ∂ξ,
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and the trapped set at energy E for P is
K(E) =

{
(x, ξ) ∈ p−1(E); t 7→ exp(tHp)(x, ξ) is bounded

}
. (2.1)

Recall that K(E) is compact and stable by the Hamiltonian flow for E > 0.

In dimension n = 2, we consider the potential
V (x) = Vtop(x) + Vref(x), (2.2)

as in Figure 2.1 and described below. On one hand, the potential Vtop is of
the form Vtop(x) = V1(x1)V2(x2) where the functions V• ∈ C∞

0 (R) are single
barriers (see Figure 2.2) with

V1(x1) = E0 − λ2
1

4 x2
1 + O(x3

1) and V2(x2) = 1 − λ2
2

4E0
x2

2 + O(x3
2),

near 0 and 0 < λ1 < λ2. In particular, Vtop is an anisotropic bump,

Vtop(x) = E0 − λ2
1

4 x2
1 − λ2

2
4 x2

2 + O(x3),

near 0 and (0, 0) is a hyperbolic fixed point for Hp. The anisotropy of the
fixed point is mandatory to have different incoming curves at (0, 0) with the
same asymptotic direction. The stable/unstable manifold theorem ensures
the existence of the incoming/outgoing Lagrangian manifolds Λ± character-
ized by

Λ± =
{

(x, ξ) ∈ T ∗R2; exp(tHp)(x, ξ) → (0, 0) as t → ∓∞
}
.

They are stable by the Hamiltonian flow and included in p−1(E0). Moreover,
there exist two smooth functions φ±, defined in a vicinity of 0, satisfying

φ±(x) = ±
2∑

j=1

λj

4 x
2
j + O(x3), (2.3)

and such that Λ± = {(x, ξ); ξ = ∇φ±(x)} near (0, 0).

6 J.-F. BONY, S. FUJIIÉ, T. RAMOND, AND M. ZERZERI

They are stable by the Hamiltonian flow and included in p−1(E0). Moreover, there exist two
smooth functions ϕ±, defined in a vicinity of 0, satisfying

(2.3) ϕ±(x) = ±
2�

j=1

λj

4
x2j +O(x3),

and such that Λ± = {(x, ξ); ξ = ∇ϕ±(x)} near (0, 0).

00

V1(x1)

x1 ∈ R x2 ∈ R

1

V2(x2)

E0

Figure 4. The potentials V1 and V2.

On the other hand, the reflecting potential Vref is non-trapping and localized near (a, 0) ∈
R
2 with a > 0. If the support of Vref is small enough and a is large enough, no Hamiltonian

trajectory of energy E0 can start from the support of Vref , touch the support of Vtop and then
come back to the support of Vref . Indeed, assume that such a trajectory γ exists. If γ gets
away from γ2 (see Figure 3), it will never come back to suppVref since Vtop is repulsive in the
direction x2. On the other hand, if γ stays close to γ2, the existence of such a curve would
contradict a property of hyperbolic fixed point given in Lemma B.1 of [5]. Thus, a trapped
trajectory of energy E0 is either {(0, 0)} or a Hamiltonian trajectory starting asymptotically
from the origin, touching the support of Vref and coming back to the origin; these latter
trajectories are called homoclinic. In other words, K(E0) satisfies

K(E0) = Λ− ∩ Λ+,

and H = Λ− ∩ Λ+ \ {(0, 0)} denotes the set of homoclinic trajectories.

Giving to Vref the form of a “croissant” barrier, we can make sure that H consists of a
finite number of trajectories {γ1, . . . , γK} on which Λ− and Λ+ intersect transversally. In
the sequel, we will need at least two homoclinic trajectories, that is K ≥ 2. To achieve this
geometric configuration, one can start replacing the potential barrier Vref by an obstacle O

such that the operator �P = −h2ΔR2\O+Vtop(x) on R
2 \O with Dirichlet boundary condition

(see Figure 5) satisfies the expected geometric properties. Then, one can easily realize a
situation where K = 3 whereas it seems complicated to have K = 2 (see Example 4.14 of [5]).
In Figure 5, the transversality of the intersection of Λ− and Λ+ is guaranteed if ∂O and the
dash-dotted curves have a contact of order one on each point of ∂O∩πx(H). The presence of
such obstacles does not affect the proof of Theorem 1.1 below since the trapped set contains
no glancing trajectories, thus it does not modify the propagation of singularities. Therefore,

the Schrödinger operator with obstacle �P can be chosen as the operator P in Theorem 1.1.
However, to get a Schrödinger operator without obstacle as in (1.1), one can approximate the
obstacle O by a potential Vref of the form χ(dist(x,O)/ε) where χ ∈ C∞

0 (R2) is a potential
barrier as V1 with χ(0) > E0 and ε > 0 is small enough. Indeed, first the reflection laws for
Hamiltonian curves of energy E0 on the obstacleO and on the potential Vref are asymptotically
the same as ε → 0 outside the glancing region. Moreover, one can show that the Hamiltonian

Figure 2.2. The potentials V1 and V2.

On the other hand, the reflecting potential Vref is non-trapping and lo-
calized near (a, 0) ∈ R2 with a > 0. If the support of Vref is small enough
and a is large enough, no Hamiltonian trajectory of energy E0 can start
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from the support of Vref , touch the support of Vtop and then come back to
the support of Vref . Indeed, assume that such a trajectory γ exists. If γ gets
away from γ2 (see Figure 2.1), it will never come back to suppVref since Vtop
is repulsive in the direction x2. On the other hand, if γ stays close to γ2,
the existence of such a curve would contradict a property of hyperbolic fixed
point given in Lemma B.1 of [5]. Thus, a trapped trajectory of energy E0
is either {(0, 0)} or a Hamiltonian trajectory starting asymptotically from
the origin, touching the support of Vref and coming back to the origin; these
latter trajectories are called homoclinic. In other words, K(E0) satisfies

K(E0) = Λ− ∩ Λ+,

and H = Λ− ∩ Λ+ \ {(0, 0)} denotes the set of homoclinic trajectories.

Giving to Vref the form of a “croissant” barrier, we can make sure that H
consists of a finite number of trajectories {γ1, . . . , γK} on which Λ− and Λ+
intersect transversally. In the sequel, we will need at least two homoclinic
trajectories, that is K ⩾ 2. To achieve this geometric configuration, one
can start replacing the potential barrier Vref by an obstacle O such that
the operator P̃ = −h2∆R2\O + Vtop(x) on R2 \ O with Dirichlet boundary
condition (see Figure 2.3) satisfies the expected geometric properties. Then,
one can easily realize a situation where K = 3 whereas it seems complicated
to have K = 2 (see [5, Example 4.14]). In Figure 2.3, the transversality of the
intersection of Λ− and Λ+ is guaranteed if ∂O and the dash-dotted curves
have a contact of order one on each point of ∂O∩πx(H). The presence of such
obstacles does not affect the proof of Theorem 1.1 below since the trapped set
contains no glancing trajectories, thus it does not modify the propagation
of singularities. Therefore, the Schrödinger operator with obstacle P̃ can
be chosen as the operator P in Theorem 1.1. However, to get a Schrödinger
operator without obstacle as in (1.1), one can approximate the obstacle O by
a potential Vref of the form χ(dist(x,O)/ε) where χ ∈ C∞

0 (R2) is a potential
barrier as V1 with χ(0) > E0 and ε > 0 is small enough. Indeed, first the
reflection laws for Hamiltonian curves of energy E0 on the obstacle O and on
the potential Vref are asymptotically the same as ε → 0 outside the glancing
region. Moreover, one can show that the Hamiltonian field with Vref has a
unique homoclinic trajectory, on which Λ− and Λ+ intersect transversally,
in the neighborhood of each homoclinic trajectory existing in the case of the
obstacle O.

As usual in the semiclassical regime, we will see in the next section that
the asymptotic of the resonances is given in terms of geometric quantities
related to the trapped set. Working from a quantization rule as in Exam-
ple 4.24 of [5], it will appear that the resonance instability is governed here
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suppVadd

0

suppVabs

suppW

O

suppVtop

(a, 0)πx(γ2)

πx(γ1)

πx(γ3)

Figure 5. A realization with a potential Vtop and an obstacle O.

field with Vref has a unique homoclinic trajectory, on which Λ− and Λ+ intersect transversally,
in the neighborhood of each homoclinic trajectory existing in the case of the obstacle O.

As usual in the semiclassical regime, we will see in the next section that the asymptotic of
the resonances is given in terms of geometric quantities related to the trapped set. Working
from a quantization rule as in Example 4.24 of [5], it will appear that the resonance instability
is governed here by the function

(2.4) µ(σ, h) = Γ
�λ1 + λ2

2λ1
− i

σ

λ1

�
e
− πσ

2λ1

K�

k=1

eiAk/hBke
iTkσ,

for σ ∈ C, where Ak, Bk, Tk are related to the curve γk = (xk, ξk) (see Lemma 3.2). We recall
quickly how these quantities are defined and send the reader to Section 4.1 [5] for the proof
of convergence of the various objects. First,

Ak =

�

γk

ξ · dx,

is the action along γk. The function xk(t) has the following asymptotics

xk(t) = gk±e
±λ1t + o

�
e±λ1t

�
,

as t → ∓∞ for some vector gk± ∈ R
2. As a matter of fact, gk± is collinear to the first vector

of the canonical basis (1, 0) and do not vanish. Eventually, if γk(t, y) = (xk(t, y), ξk(t, y)) :
R×R −→ T ∗

R
2 is a smooth parametrization of Λ+ by Hamiltonian curves such that γk(t, 0) =

γk(t), the limits of the Maslov determinants

M+
k = lim

s→−∞

���� det ∂xk(t, y)
∂(t, y)

|t=s, y=0

��� e−s
λ1+λ2

2 ,

M−
k = lim

s→+∞

���� det ∂xk(t, y)
∂(t, y)

|t=s, y=0

��� e−s
λ2−λ1

2 ,

Figure 2.3. A realization with a potential Vtop and an obstacle O.

by the function

µ(σ, h) = Γ
(
λ1 + λ2

2λ1
− i

σ

λ1

)
e− πσ

2λ1

K∑
k=1

eiAk/hBke
iTkσ, (2.4)

for σ ∈ C, where Ak, Bk, Tk are related to the curve γk = (xk, ξk) (see
Lemma 3.2). We recall quickly how these quantities are defined and send
the reader to [5, Section 4.1] for the proof of convergence of the various
objects. First,

Ak =
∫

γk

ξ · dx,

is the action along γk. The function xk(t) has the following asymptotics

xk(t) = gk
±e

±λ1t + o
(
e±λ1t

)
,

as t → ∓∞ for some vector gk
± ∈ R2. As a matter of fact, gk

± is collinear to
the first vector of the canonical basis (1, 0) and do not vanish. Eventually, if
γk(t, y) = (xk(t, y), ξk(t, y)) : R × R −→ T ∗R2 is a smooth parametrization
of Λ+ by Hamiltonian curves such that γk(t, 0) = γk(t), the limits of the
Maslov determinants

M+
k = lim

s→−∞

√√√√∣∣∣∣∣det ∂xk(t, y)
∂(t, y)

∣∣∣∣
t=s, y=0

∣∣∣∣∣ e−s
λ1+λ2

2 ,

M−
k = lim

s→+∞

√√√√∣∣∣∣∣det ∂xk(t, y)
∂(t, y)

∣∣∣∣
t=s, y=0

∣∣∣∣∣ e−s
λ2−λ1

2 ,
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exist and belong to ]0,+∞[. Let also νk denote the Maslov index of Λ+ along
γk. With these notations, we have

Bk =
√
λ1

2π
M+

k

M−
k

e− π
2 (νk+ 1

2 )i
∣∣gk

−
∣∣(iλ1|gk

+||gk
−|

)− λ1+λ2
2λ1 ,

Tk =
ln(λ1|gk

+||gk
−|)

λ1
.

(2.5)

Note that Bk ∈ C \ {0} and Tk ∈ R.

The idea is to find a geometric situation and a set H ⊂]0, 1] with 0 ∈ H
such that

µ(σ, h) = 0, (2.6)
for all σ ∈ C and h ∈ H . For simplicity, we take in the sequel K = 3 as in
Figure 2.1 or 2.3 and assume that the trajectories γ1 and γ3 are symmetric.
In particular, A1 = A3, B1 = B3 and T1 = T3. We consider two situations:

Case (I): A1 ̸= A2 (say A2 > A1), 2B1 = B2e
iν , ν ∈ R, and T1 = T2. —

Using (2.4) and the symmetry of γ1 and γ3, these relations imply that (2.6)
holds true with

H =
{ A2 −A1

(2j + 1)π + ν
; j ∈ N

}
.

The required relations can be realized since T2 is only given by the potential
V on the line R × {0} if ∂x2V (x1, 0) = 0 for all x1 ∈ R, whereas B2 is given
by ∂2

x2
V on R × {0}. If Vref is replaced by an obstacle O, one may need an

additional potential Vadd in order to satisfy these relations (see Figure 2.3).
Case (II): A1 = A2, 2B1 = −B2 and T1 = T2. — In this setting, (2.6)

holds true with H =]0, 1]. These relations can been obtained as before. More
precisely, one can adjust Vref on R× {0} with ∂x2V = 0 on R× {0} in order
to have A1 = A2 and T1 = T2. Then, modifying ∂2

x2
Vref on R × {0}, one

can realize the condition 2B1 = −B2. For that, we first perform a rotation
around γ2 in the plane (x2, ξ2), in such a way that Λ+ makes a complete
turn along γ2. Thus, the Maslov indices satisfy ν2 = ν1 ± 2. Finally, we can
add another modification of ∂2

x2
Vref so that |2B1| = |B2| without producing

caustics, therefore without changing the Maslov index ν2.

Adding an absorbing potential −ih|ln h|Vabs, with Vabs ⩾ 0, it is pos-
sible to artificially remove a homoclinic trajectory and thus to work with
only K = 2 trajectories (see [5, Remark 2.1(ii) and Example 4.14]). The
resulting operator will be non self-adjoint (dissipative) but the conclusions
of Theorem 1.1 will still hold.

For the perturbation W , we take any non-negative C∞
0 (R2;R) function

supported away from the support of V and non-zero on the base space pro-
jection of only one homoclinic trajectory. In the sequel, we will assume that
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this trajectory is γ1 as in Figures 2.1 and 2.3. We assume that W = 0 near
the support of V only to simplify the discussion. The same way, W ⩾ 0
and W non-zero on πx(γ1) can be weakened to

∫
RW (x1(t)) dt ̸= 0. Finally,

W = c1W1 + c2W2 + c3W3, with Wj non-zero only on γj , may be suitable
for Theorem 1.1 generically with respect to cj ∈ R.

3. Proof of the spectral instability

We consider the operators constructed in the previous section. In partic-
ular, we work in dimension n = 2, the trapped set of energy E0 > 0 has
K = 3 homoclinic trajectories and (2.6) holds true for h ∈ H . Following
Chapter 4 of [5], the resonances of P closest to the real axis are given by the
3 × 3 matrix Q whose entries are

Qk,ℓ(z, h) = eiAk/hΓ
(
S(z, h)/λ1

)√
λ1

2π
M+

k

M−
k

× e− π
2 (νk+ 1

2 )i
∣∣gℓ

−
∣∣(iλ1|gk

+||gℓ
−|

)−S(z,h)/λ1
, (3.1)

with rescaled spectral parameter

S(z, h) = λ1 + λ2

2 − i
z − E0

h
. (3.2)

The same way, the entries of the corresponding matrix for P̃ = P + h1+δW
are

Q̃k,ℓ(z, h) =
{
e−iwhδ

Qk,ℓ(z, h) if k = 1,
Qk,ℓ(z, h) if k ̸= 1,

(3.3)

with the notation w =
∫
RW (x1(t)) dt ̸= 0.

Lemma 3.1. — The matrices Q and Q̃ are of rank one with non-zero
entries. Moreover, Q2(z, h) = 0 for all z ∈ C and h ∈ H .

Proof. — Since M±
• ̸= 0 and g•

± ̸= 0, the entries of Q and Q̃ are always
non-zero. From (3.1), the entries of Q can be written Qk,ℓ = αkβℓ for some
αk, βk ∈ C \ {0}. In particular, Q = α(β, ·) with α, β ∈ C3 \ {0} and Q is of
rank one (the same thing for Q̃). Thus, 0 is an eigenvalue of Q of multiplicity
at least 2 and the last eigenvalue is given by its trace, that is

tr(Q) = Γ
(
S(z, h)/λ1

) 3∑
k=1

eiAk/h

√
λ1

2π
M+

k

M−
k

× e− π
2 (νk+ 1

2 )i
∣∣gk

−
∣∣(iλ1|gk

+||gk
−|

)− λ1+λ2
2λ1

+i
z−E0

λ1h

= µ
(z − E0

h
, h

)
.
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For h ∈ H , all the eigenvalues of Q are zero from (2.6) and Q is nilpotent.
Since Qj = α(β, α)j−1(β, ·), Q is nilpotent iff (β, α) = 0 iff Q2 = 0. □

Let W be the 3×3 diagonal matrix W = diag(−iw, 0, 0). The eigenvalues
of WQ(z, h) are

−iwQ1,1(z, h), 0, 0. (3.4)

In the present setting, the quantization rule for P̃ takes the following form:
we say that z is a pseudo-resonance of P̃ when

1 ∈ sp
(
hS(z,h)/λ1−1/2+δWQ(z, h)

)
. (3.5)

From (3.4), this is equivalent to hS(z,h)/λ1−1/2+δwQ1,1(z, h) = i. The set of
pseudo-resonances is denoted by Res0(P̃ ). We show below that they provide
the asymptotic of the resonances close to the real axis. Heuristically, at the
level of powers of h, this equation amounts to hS(z,h)/λ1−1/2+δ = 1 so that
Im h = −λ2h/2−δλ1h. This explain why a perturbation of size h1+δ changes
the imaginary part of the resonances by a term of size h. More precisely,
since (3.5) is similar to Definition 4.2 of [5], we can adapt Proposition 4.3
and Lemma 11.3 of [5] in our case and obtain the following asymptotic of
the pseudo-resonances.

Lemma 3.2. — Let 0 < δ < 1/2, C, β > 0 and ε(h) be a function which
goes to 0 as h → 0. Then, uniformly for τ ∈ [−C,C], the pseudo-resonances
z of P̃ in

E0 + [−Ch,Ch] + i

[
−

(
λ2

2 + δλ1

)
h− C

h

|ln h|
, h

]
, (3.6)

with Re z ∈ E0 + τh+ hε(h)[−1, 1] satisfy z = zq(τ) + o(h|ln h|−1) with

zq(τ) = E0 −A1λ1

|ln h|
+2qπλ1

h

|ln h|
−ih

(
λ2

2 +δλ1

)
+i ln(µ̃(τ))λ1

h

|ln h|
, (3.7)

and

µ̃(τ) = wΓ
(

1
2 − δ − i

τ

λ1

)√
λ1

2π
M+

1
M−

1
e− π

2 (ν1+ 3
2 )i

∣∣g1
−

∣∣(iλ1|g1
+||g1

−|
)− 1

2 +δ+i τ
λ1 ,

for some q ∈ Z. On the other hand, for each τ ∈ [−C,C] and q ∈ Z such that
zq(τ) belongs to (3.6) with a real part lying in E0 + τh+ hε(h)[−1, 1], there
exists a pseudo-resonance z satisfying z = zq(τ)+o(h|ln h|−1) uniformly with
respect to q, τ . Moreover, there exists M > 0 such that, for all z ∈ (3.6), we
have

dist
(
z,Res0(P̃ )

)
> β

h

|ln h|
=⇒

∥∥(
1 − hS/λ1−1/2+δWQ

)−1∥∥ ⩽M. (3.8)

– 546 –



An example of resonance instability

In the lemma, we have used that the eigenvalues of WQ are explicitly
given by (3.4) and that two of them are zero. On the contrary, note that
µ̃(τ) is a smooth function which does not vanish and that there are a lot of
pseudo-resonances in (3.6). The assumption 0 < δ < 1/2 allows to avoid the
poles of the Γ function. This result implies the following resolvent estimates
at the classical level.

Lemma 3.3. — For all 0 < δ < 1/2, ν = λ1/4 + λ2/2 and C, β > 0, the
following properties are satisfied for h ∈ H small enough.

(i) For all z ∈ E0 + [−Ch,Ch] + i[−νh, h], we have∥∥(
1 − hS/λ1−1/2Q

)−1∥∥ ≲ max
(
1, h

λ2
2λ1

+ Im z
λ1h

)
. (3.9)

(ii) For all z ∈ (3.6) with dist(z,Res0(P̃ )) > βh|ln h|−1, we have∥∥(
1 − hS/λ1−1/2Q̃

)−1∥∥ ≲ h−δ. (3.10)

The particular value of ν in Lemma 3.3 has no particular meaning. We
only need ν > D0 = λ2/2 for Theorem 1.1 and ν < λ1/2 +λ2/2 to avoid the
poles of Γ.

Proof. — Since Q2 = 0 by Lemma 3.1, we get(
1 − hS/λ1−1/2Q

)−1 = 1 + hS/λ1−1/2Q. (3.11)

Using that |hS/λ1−1/2| = h
λ2

2λ1
+ Im z

λ1h and that Q(z, h) is uniformly bounded
for z ∈ E0 + [−Ch,Ch] + i[−νh, h], this identity yields (3.9).

On the other hand, (3.3), e−iwhδ = 1 − iwhδ + O(h2δ) and Q2 = 0 give

1 − hS/λ1−1/2Q̃

= 1 − hS/λ1−1/2Q − hS/λ1−1/2+δWQ + O(h
λ2

2λ1
+ Im z

λ1h +2δ)Q

=
(

1 − hS/λ1−1/2+δWQ + O(h
λ2

2λ1
+ Im z

λ1h +2δ)Q
)(

1 − hS/λ1−1/2Q
)

=
(

1 + O(h
λ2

2λ1
+ Im z

λ1h +2δ)Q
(
1 − hS/λ1−1/2+δWQ

)−1
)

×
(
1 − hS/λ1−1/2+δWQ

)(
1 − hS/λ1−1/2Q

)
. (3.12)

We have |hS/λ1−1/2| = h
λ2

2λ1
+ Im z

λ1h ⩽ h−δ for z ∈ (3.6). Combining these
estimates with (3.8), (3.9) and (3.11), (3.12) implies(

1 − hS/λ1−1/2Q̃
)−1

=
(
1 − hS/λ1−1/2Q

)−1(
1 − hS/λ1−1/2+δWQ

)−1(
1 + O(hδ)

)−1

=
(
1 + hS/λ1−1/2Q

)(
1 − hS/λ1−1/2+δWQ

)−1 + O(1), (3.13)
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if dist(z,Res0(P̃ )) > βh|ln h|−1. Then (3.10) follows. □

The next result provides a resonance free region for P and the asymptotic
of the resonances closest to the real axis for P̃ = P+h1+δW . Combined with
Lemma 3.2, it implies directly Theorem 1.1 with D0 = λ2/2 if we choose
λ1 = 1.

Lemma 3.4. — There exists α > 0 such that, for all δ > 0 small enough
and C > 0, the following properties hold for h ∈ H small enough.

(i) P has no resonance in

E0 + [−Ch,Ch] + i

[
−

(
λ2

2 + α

)
h, h

]
.

(ii) In the domain (3.6), we have

dist
(
Res(P̃ ),Res0(P̃ )

)
= o

(
h

|ln h|

)
.

As in Definition 4.4 of [5], the notation dist(A,B) ⩽ ε in C means that
∀ a ∈ A ∩ C, ∃ b ∈ B, |a− b| ⩽ ε,

and ∀ b ∈ B ∩ C, ∃ a ∈ A, |a− b| ⩽ ε.

The proof of Lemma 3.4 gives a polynomial estimate of the resolvents in the
corresponding domains (at distance larger than h|ln h|−1 from the pseudo-
resonances of P̃ ).

Proof. — The first point of the lemma has already been obtained in
Lemma 12.1 of [5]. In order to show the second point, we follow the strategy
of Chapters 11 and 12 of [5] and summarized in the introduction of [5]. How-
ever, we cannot directly use [5] since we have to make clear the role of the
perturbation h1+δW and since the resolvent of the quantization matrices are
not uniformly bounded (see Lemma 3.3). Then, we first prove that P̃ has no
resonance and we show a polynomial estimate of its resolvent away from the
pseudo-resonances.

Lemma 3.5. — For δ > 0 small enough, C, β > 0 and h ∈ H small
enough, P̃ has no resonance in the domain

E0 + [−Ch,Ch]

+ i

[
−

(
λ2

2 + δλ1

)
h− C

h

|ln h|
, h

]
\

(
Res0(P̃ ) +B

(
0, β h

|ln h|

))
, (3.14)

and there exists M > 0 such that the distorted operator P̃θ of angle θ =
h|ln h| satisfies ∥∥(P̃θ − z)−1∥∥ ≲ h−M ,
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suppW

ρk+
γk

ρk
−

0 u = uk
+

u = uk
−

Figure 6. The geometric setting in the proof of Lemma 3.5.

Lemma 3.5. For δ > 0 small enough, C,β > 0 and h ∈ H small enough, �P has no resonance

in the domain

(3.14) E0 + [−Ch,Ch] + i
�
−
�λ2

2
+ δλ1

�
h− C

h

| lnh|
, h

�
\
�
Res0( �P ) +B

�
0,β

h

| lnh|

��
,

and there exists M > 0 such that the distorted operator �Pθ of angle θ = h| lnh| satisfies
��( �Pθ − z)−1

�� � h−M ,

uniformly for h ∈ H small enough and z ∈ (3.14).

Proof of Lemma 3.5. This result is just an adaptation of Proposition 11.4 of [5]. We only
give the changes which have to be made in the present setting, sending back the reader to
Section 11.2 of [5] for the technical details. From the general arguments of Chapter 8 of [5],
it is enough to show that any u = u(h) ∈ L2(R2) and z = z(h) ∈ (3.14) with

(3.15)

�
( �Pθ − z)u = O(h∞),

kukL2(R2) = 1,

vanishes microlocally near each point of K(E0). For k = 1, 2, 3, let uk± be microlocal restric-

tions of u near ρk±, where ρk− (resp. ρk+) is a point on γk just “before” (resp. “after”) (0, 0)
(see Figure 6). By microlocal restriction of v ∈ L2(R2) near ρ ∈ T ∗

R
2, we mean a function

Op(ψ)v where Op is the usual semiclassical Weyl–Hörmander quantization, ψ ∈ C∞
0 (T ∗

R
2)

and ψ = 1 near ρ. As in [5, (11.23)], they are Lagrangian distributions

uk− ∈ I(Λ1,k
+ , h−N ) and uk+ ∈ I(Λ0

+, h
−N ),

associated to the Lagrangian manifold Λ+ just after (0, 0) (denoted Λ0
+) and after a turn

along γk (denoted Λ1,k
+ ) for some N ∈ R. This property is proved in [5] computing u around

the trapped set and using that the propagation through a hyperbolic fixed point transforms
any function into a Lagrangian distribution (see [4]).

After an appropriate renormalization (see [5, (11.25)]), the symbols ak−(x, h) ∈ S(h−N ) of

uk− satisfy the relation

(3.16) ak−(x, h) = hS(z,h)/λ1−1/2
3�

ℓ=1

Pk,ℓ(x, h)a
ℓ
−(x

ℓ
−, h) + S(h−N+ζ−δ),

Figure 3.1. The geometric setting in the proof of Lemma 3.5.

uniformly for h ∈ H small enough and z ∈ (3.14).

Proof of Lemma 3.5. — This result is just an adaptation of Proposi-
tion 11.4 of [5]. We only give the changes which have to be made in the
present setting, sending back the reader to Section 11.2 of [5] for the techni-
cal details. From the general arguments of Chapter 8 of [5], it is enough to
show that any u = u(h) ∈ L2(R2) and z = z(h) ∈ (3.14) with{

(P̃θ − z)u = O(h∞),
∥u∥L2(R2) = 1,

(3.15)

vanishes microlocally near each point of K(E0). For k = 1, 2, 3, let uk
± be

microlocal restrictions of u near ρk
±, where ρk

− (resp. ρk
+) is a point on γk

just “before” (resp. “after”) (0, 0) (see Figure 3.1). By microlocal restriction
of v ∈ L2(R2) near ρ ∈ T ∗R2, we mean a function Op(ψ)v where Op is
the usual semiclassical Weyl–Hörmander quantization, ψ ∈ C∞

0 (T ∗R2) and
ψ = 1 near ρ. As in [5, (11.23)], they are Lagrangian distributions

uk
− ∈ I(Λ1,k

+ , h−N ) and uk
+ ∈ I(Λ0

+, h
−N ),

associated to the Lagrangian manifold Λ+ just after (0, 0) (denoted Λ0
+) and

after a turn along γk (denoted Λ1,k
+ ) for some N ∈ R. This property is proved

in [5] computing u around the trapped set and using that the propagation
through a hyperbolic fixed point transforms any function into a Lagrangian
distribution (see [4]).

After an appropriate renormalization (see [5, (11.25)]), the symbols
ak

−(x, h) ∈ S(h−N ) of uk
− satisfy the relation

ak
−(x, h) = hS(z,h)/λ1−1/2

3∑
ℓ=1

Pk,ℓ(x, h)aℓ
−(xℓ

−, h) + S(h−N+ζ−δ), (3.16)

near xk
− = πx(ρk

−). In this expression, the symbols Pk,ℓ ∈ S(1) (resp. the
constant ζ > 0) are independent of u (resp. δ, u) and Pk,ℓ(xk

−, h) = Q̃k,ℓ(z, h).
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Compared with [5, (11.27)], Q is replaced by Q̃ in Pk,ℓ(xk
−, h). Indeed, no

change has to be made for the propagation through the fixed point (0, 0) since
W is supported away from Vtop (see [5, (11.29)]), but the usual transport
equation near γk

2∇φ+ · ∇ak
− + (∆φ+ − iσ)ak

− = O(h−N+1),

with σ = (z − E0)/h is replaced by

2∇φ+ · ∇ak
− + (∆φ+ − iσ + ihδW )ak

− = O(h−N+1),

giving on the curve γk

∂ta
k
−(xk(t)) + (∆φ+ − iσ + ihδW )ak

−(xk(t)) = O(h−N+1),

and leading to the additional factor e−ihδ
∫

W (xk(t)) dt in the quantization ma-
trix Q̃ (see [5, (11.31)]). On the other hand, the remainder term O(h−N+ζ−δ)
in (3.16) comes from the fact that |hS/λ1−1/2| ≲ h−δ uniformly for z ∈ (3.14)
(see [5, Chapter 12.2] for a similar argument).

Applying (3.16) with x = xk
−, we get(

1 − hS(z,h)/λ1−1/2Q̃(z, h)
)
a−(x−, h) = O(h−N+ζ−δ),

where a−(x−, h) is a shortcut for the 3-vector with coefficients ak
−(xk

−, h).
From (3.10), it yields

|a−(x−, h)| ≲ h−N+ζ−2δ,

uniformly for z ∈ (3.14). Using again (3.16), we deduce ak
− ∈ S(h−N+ζ−3δ) ⊂

S(h−N+ζ/2) for δ > 0 small enough. Thus, starting from ak
− ∈ S(h−N ), we

have proved ak
− ∈ S(h−N+ζ/2). By a bootstrap argument (see [5, end of

Chapter 9]), we obtain u = O(h∞) microlocally near K(E0) and the lemma
follows. □

To finish the proof of Lemma 3.4, it remains to show that P̃ has a reso-
nance near each pseudo-resonance. That is

Lemma 3.6. — For δ > 0 small enough, C, β > 0 and h ∈ H small
enough, the operator P̃ has at least one resonance in B(z, βh|ln h|−1) for
any pseudo-resonance z ∈ (3.6).

Proof of Lemma 3.6. — This result is equivalent to Proposition 11.6
of [5] in the present setting, and we only explain how to adapt its proof. If
Lemma 3.6 did not hold, there would exist a sequence z = z(h) ∈ (3.6) of
pseudo-resonances where h ∈ H goes to 0 such that

P̃ has no resonance in D = B

(
z, β

h

|ln h|

)
. (3.17)
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0

ρ1+
γ1

suppW
ρ1
−

v

Figure 7. The geometric setting in the proof of Lemma 3.6.

for �z ∈ ∂D, where ϕ1,1
+ is a generating function of Λ1,1

+ . Note that �P = P near x1− and
that �v can be chosen holomorphic with respect to �z near D. After multiplication by a renor-
malization factor as in [5, (11.44)], this function is denoted �v. Consider cut-off functions
χ,ψ ∈ C∞

0 (T ∗
R
2) such that χ = 1 near ρ1− and ψ = 1 near the part of the curve supp(∇χ)∩γ1

before ρ1−. Then, we take as “test function”

v = Op(ψ)
� �P ,Op(χ)

�
�v,

whose microsupport is illustrated in Figure 7. We will now test the spectral projector as-
sociated to the presumed resonances close to z on v, and we show that it gives a non-zero
contribution. The choice for v as a Lagrangian distribution associated to Λ1,1

+ is natural since
such functions already appear in the proof of the previous lemma.

Let u ∈ L2(R2) be the solution of

(3.18) ( �Pθ − �z)u = v,

for �z ∈ ∂D. From Lemmas 3.2 and 3.5, u is well-defined and polynomially bounded. Let uk−
be a microlocal restriction of u near ρk− as before. Working as in Lemma 11.10 of [5], one can

show that uk− ∈ I(Λ1,k
+ , h−2δ) with renormalized symbol ak−. Moreover, as in (3.16), we get

(3.19) ak−(x, h) = hS(z,h)/λ1−1/2
3�

ℓ=1

Pk,ℓ(x, h)a
ℓ
−(x

ℓ
−, h) + �ak(x, h) + S(hζ−3δ),

near xk−, where �ak denotes the symbol of �v near xk−. In particular, �ak(x, h) = 0 for k 6= 1 and
�a1(x1−, h) = 1. This relation is obtained using the proofs of (3.16) and Lemma 11.8 of [5].

To obtain a contradiction with (3.17), we consider

(3.20) I =
1

2iπ

�

∂D
u(�z) d�z.

From the properties of uk− and |∂D| = 2πβh| lnh|−1, we have I ∈ I(Λ1,k
+ , h1−2δ| lnh|−1)

microlocally near ρk−, where its renormalized symbol bk(x, h) satisfies

(3.21) bk(x, h) =
1

2iπ

�

∂D
ak−(x, h) d�z.

Applying (3.19) with x = xk− leads to
�
1− hS(z,h)/λ1−1/2 �Q(z, h)

�
a−(x−, h) = �a(x−, h) +O(hζ−3δ),

Figure 3.2. The geometric setting in the proof of Lemma 3.6.

We now construct a “test function”. Let ṽ be a WKB solution near x1
− of{

(P̃ − z̃)ṽ = 0 near x1
−,

ṽ(x) = eiφ1,1
+ (x)/h on |x| = |x1

−| near x1
−,

for z̃ ∈ ∂D, where φ1,1
+ is a generating function of Λ1,1

+ . Note that P̃ = P near
x1

− and that ṽ can be chosen holomorphic with respect to z̃ near D. After
multiplication by a renormalization factor as in [5, (11.44)], this function is
denoted v̂. Consider cut-off functions χ, ψ ∈ C∞

0 (T ∗R2) such that χ = 1
near ρ1

− and ψ = 1 near the part of the curve supp(∇χ) ∩ γ1 before ρ1
−.

Then, we take as “test function”

v = Op(ψ)
[
P̃ ,Op(χ)

]
v̂,

whose microsupport is illustrated in Figure 3.2. We will now test the spectral
projector associated to the presumed resonances close to z on v, and we
show that it gives a non-zero contribution. The choice for v as a Lagrangian
distribution associated to Λ1,1

+ is natural since such functions already appear
in the proof of the previous lemma.

Let u ∈ L2(R2) be the solution of

(P̃θ − z̃)u = v, (3.18)

for z̃ ∈ ∂D. From Lemmas 3.2 and 3.5, u is well-defined and polynomially
bounded. Let uk

− be a microlocal restriction of u near ρk
− as before. Work-

ing as in Lemma 11.10 of [5], one can show that uk
− ∈ I(Λ1,k

+ , h−2δ) with
renormalized symbol ak

−. Moreover, as in (3.16), we get

ak
−(x, h) = hS(z,h)/λ1−1/2

3∑
ℓ=1

Pk,ℓ(x, h)aℓ
−(xℓ

−, h)

+ ãk(x, h) + S(hζ−3δ), (3.19)
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near xk
−, where ãk denotes the symbol of ṽ near xk

−. In particular, ãk(x, h) =
0 for k ̸= 1 and ã1(x1

−, h) = 1. This relation is obtained using the proofs
of (3.16) and Lemma 11.8 of [5].

To obtain a contradiction with (3.17), we consider

I = 1
2iπ

∫
∂D

u(z̃) dz̃. (3.20)

From the properties of uk
− and |∂D| = 2πβh|ln h|−1, we have I ∈

I(Λ1,k
+ , h1−2δ|ln h|−1) microlocally near ρk

−, where its renormalized symbol
bk(x, h) satisfies

bk(x, h) = 1
2iπ

∫
∂D

ak
−(x, h) dz̃. (3.21)

Applying (3.19) with x = xk
− leads to(

1 − hS(z,h)/λ1−1/2Q̃(z, h)
)
a−(x−, h) = ã(x−, h) + O(hζ−3δ),

where c(x−, h) is a generic shortcut for the 3-vector with coefficients
ck(xk

−, h). It implies

a−(x−, h) =
(
1 − hS/λ1−1/2Q̃

)−1
ã(x−, h) + O(hζ−4δ)

=
(
1 + hS/λ1−1/2Q

)(
1 − hS/λ1−1/2+δWQ

)−1
ã(x−, h)

+ O(1) + O(hζ−4δ),

from (3.10) and (3.13). We deduce

Wa−(x−, h) = W
(
1 − hS/λ1−1/2+δWQ

)−1
ã(x−, h) − h−δã(x−, h)

+ h−δ
(
1 − hS/λ1−1/2+δWQ

)−1
ã(x−, h) + O(1) + O(hζ−4δ).

Inserting this expression in (3.21) and using (3.8) yield

Wb(x−, h) = h−δ

2iπ

∫
∂D

(
1 − hS/λ1−1/2+δWQ

)−1
ã(x−, h) dz̃

+ O
(

h

|ln h|

)
+ O

(
h1+ζ−4δ

|ln h|

)
.

Note that ã(x−, h) = t(1, 0, 0) is an explicit eigenvector of WQ associated
to its non-zero eigenvalue −iwQ1,1(z, h) (see (3.4)). Thus, computing the
integral as in [5, (11.67)], we get

Wb(x−, h) = iλ1
h1−δ

|ln h|
ã(x−, h) + o

(
h1−δ

|ln h|

)
+ O

(
h

|ln h|

)
+ O

(
h1+ζ−4δ

|ln h|

)
.

Taking δ > 0 small enough and using that Wb ∈ S(h1−2δ|ln h|−1), the
previous asymptotic shows that Wb ̸= 0 so that I ̸= 0. On the other hand,
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since P̃ has no resonance in D (see (3.17)), the function u defined by (3.18) is
holomorphic in D and (3.20) gives I = 0. Eventually, we get a contradiction
and the lemma follows. □

The second point of Lemma 3.4 is a direct consequence of Lemmas 3.5
and 3.6. □
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