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Abelian varieties as automorphism groups of smooth
projective varieties in arbitrary characteristics (∗)

Jérémy Blanc (1) and Michel Brion (2)

ABSTRACT. — Let A be an abelian variety over an algebraically closed field. We
show that A is the automorphism group scheme of some smooth projective variety
if and only if A has only finitely many automorphisms as an algebraic group. This
generalizes a result of Lombardo and Maffei for complex abelian varieties.

RÉSUMÉ. — Soit A une variété abélienne sur un corps algébriquement clos. Nous
montrons que A est le groupe d’automorphismes d’une variété projective lisse si et
seulement si A n’a qu’un nombre fini d’automorphismes en tant que groupe algé-
brique. Ceci généralise un résultat de Lombardo et Maffei pour les variétés abéliennes
complexes.

1. Introduction

Let X be a projective algebraic variety over an algebraically closed field.
The automorphism group functor of X is represented by a group scheme
AutX , locally of finite type (see [3, p. 268] or [7, Thm. 3.7]). Thus, the
automorphism group Aut(X) is the group of k-rational points of a smooth
group scheme that we will still denote by Aut(X) for simplicity. One may
ask which smooth group schemes are obtained in this way, possibly imposing
some additional conditions on X such as smoothness or normality. It is
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Jérémy Blanc and Michel Brion

known that every finite group G is the automorphism group scheme of some
smooth projective curve X (see e.g. the main result of [5]). The case of a
complex abelian variety A was treated recently by Lombardo and Maffei
in [4]; they showed that A = Aut(X) for some complex projective manifold
X if and only if A has only finitely many automorphisms as an algebraic
group. In this note, we generalize their result as follows:

Theorem A. — Let A be an abelian variety over an algebraically closed
field. Denote by Autgp(A) the group of automorphisms of A as an algebraic
group.

(1) If A = Aut(X) for some projective variety X, then Autgp(A) is
finite.

(2) If Autgp(A) is finite, then there exists a smooth projective variety
X such that A = AutX .

Like in [4], the proof of the first assertion is easy, and the second one is
obtained by constructing X as a quotient (A × Y )/G, where G ⊂ A is a
finite subgroup, Y is a smooth projective variety such that G = AutY , and
the quotient is taken for the diagonal action of G on A × Y . In [4], G is a
cyclic group of prime order ℓ, and Y a surface of degree ℓ in P3 equipped
with a free action of G. As the construction of Y does not extend readily to
prime characteristics, we take for G the n-torsion subgroup scheme A[n] for
an appropriate integer n, and for Y an appropriate rational variety.

A different construction of a variety X satisfying the second assertion has
been obtained independently by Mathieu Florence, see [2]; it works over an
arbitrary field.

Let us briefly describe the structure of this note. Section 2 is a short
introduction to basic notation and reminders on abelian varieties. In Sec-
tion 3, we take an abelian variety A with Autgp(A) infinite, assume that
A = Aut(X) for some projective variety X, and derive a contradiction. In
Section 4, we take an abelian variety A with Autgp(A) finite and prove that
for each prime number ℓ different from the characteristic of the ground field,
for each m ⩾ 1 big enough, and for each smooth rational projective variety
Y with AutY ≃ A[ℓm], one has

AutX = A

where X is the smooth projective variety (A × Y )/A[ℓm]. Then, Section 5 is
devoted to an explicit construction of Y .
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Abelian varieties as automorphism groups

2. Preliminaries and notation

We begin by fixing some notation and conventions which will be used
throughout this note. The ground field k is algebraically closed, of char-
acteristic p ⩾ 0. A variety X is a separated integral scheme of finite type
over k. By a point of X, we mean a k-rational point.

We use [8] as a general reference for abelian varieties. We denote by A
such a variety of dimension g ⩾ 1, with group law + and neutral element 0.
Then

Aut(A) = A ⋊ Autgp(A),
where A acts on itself by translations. Moreover, Autgp(A) = Aut(A, 0) (the
group of automorphisms fixing the neutral element), see [8, §4, Cor. 1].

For any positive integer n, we denote by A[n] the n-torsion subgroup
scheme of A, i.e., the schematic kernel of the multiplication map

nA : A −→ A, a 7−→ na.

Clearly, A[n] is stable by Autgp(A). Also, recall from [8, §6, Prop.] that A[n]
is finite; moreover, A[n] is the constant group scheme (Z/n)2g if n is prime
to p.

We denote by
q : A −→ A/A[n], a 7−→ ā

the quotient morphism. Then nA factors as q followed by an isomorphism
A/A[n] ≃−→ A.

3. Proof of Theorem A(1)

In this section, we choose an abelian variety A such that Autgp(A) is
infinite, and proceed to the proof of Theorem A(1). We will need:

Lemma 3.1. — For any positive integer n, the kernel of the restriction
map

ρn : Autgp(A) −→ Autgp(A[n])
is infinite.

Proof. — Note that ρn extends to a ring homomorphism
σn : Endgp(A) −→ Endgp(A[n])

with an obvious notation. Moreover, the image of σn is a finitely generated
abelian group (as a quotient of Endgp(A)) and is killed by n; thus, this image
is finite. So the image of ρn is finite as well. □
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We assume, for contradiction, the existence of a projective variety X such
that A = Aut(X); in particular, X is equipped with a faithful action of A.
By [1, Lem. 3.2], there exist a finite subgroup scheme G of A and an A-
equivariant morphism f : X → A/G, where A acts on A/G via the quotient
map. Denote by n the order of G; then G is a subgroup scheme of A[n]. By
composing f with the natural map A/G → A/A[n], we may thus assume
that G = A[n].

We now adapt the proof of [4, Thm. 2.2]. Let Y be the schematic fiber
of f at 0̄. Then Y is a closed subscheme of X, stable by the action of A[n].
Form the cartesian square

X ′
f ′

//

r

��

A

q

��

X
f
// A/A[n].

Then X ′ is a projective scheme equipped with an action of A; moreover, f ′

is an A-equivariant morphism and its fiber at 0 may be identified to Y . It
follows that the morphism

A × Y −→ X ′, (a, y) 7−→ a · y

is an isomorphism with inverse

X ′ −→ A × Y, x′ 7−→ (f ′(x′), −f ′(x′) · x′).

So we may identify X ′ with A × Y ; then r is invariant under the action of
A[n] via g ·(a, y) = (a−g, g ·y). Since q is an A[n]-torsor, so is r. In particular,
X = (A×Y )/A[n] and the stabilizer in A of any y ∈ Y is a subgroup scheme
of A[n].

By Lemma 3.1, we may choose a nontrivial v ∈ Autgp(A) which restricts
to the identity on A[n]. Then v × id is an automorphism of A × Y that
commutes with the action of A[n]. Since r is an A[n]-torsor and hence a
categorical quotient, it follows that v × id ∈ Aut(A × Y ) factors through a
unique u ∈ Aut(X), which satisfies u(a ·y) = v(a) ·y for all a ∈ A and y ∈ Y .

As Aut(X) = A, we have u ∈ A. For any a, b ∈ A and y ∈ Y , we
have (a + b) · y = b · (a · y). Choosing b = u in the above formula yields
(a + u) · y = u · (a · y) = v(a) · y. Thus, v(a) − a − u fixes every point of Y
for any a ∈ A. Taking a = 0, it follows that u fixes Y pointwise, and hence
u ∈ A[n]. So v(a) − a ∈ A[n] for any a ∈ A, i.e., v − id factors through a
homomorphism A → A[n].

Since A is smooth and connected, it follows that v − id = 0, a contradic-
tion.
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4. Proof of Theorem A(2): first steps

We assume from now on that the group Autgp(A) is finite. Recall that
q : A → A/A[n] is the quotient morphism (see Section 2).

Lemma 4.1. —

(1) The map q∗ : Autgp(A) → Autgp(A/A[n]) is an isomorphism for
any integer n ⩾ 1.

(2) Let ℓ ̸= p be a prime number. Then ρℓm : Autgp(A) → Autgp(A[ℓm])
is injective for m ≫ 0.

Proof. —

(1). — Since Autgp(A/A[n]) ≃ Autgp(A) is finite, it suffices to show
that q∗ is injective. Let u ∈ Autgp(A) such that q∗(u) = id. Then we have
u(a)−a ∈ A[n] for any a ∈ A, that is, u−id factors through a homomorphism
A → A[n]. As in the very end of the proof of Theorem A(1) the smoothness
and connectedness of A yield u = id.

(2). — Let Tℓ(A) = lim←A[ℓm]; then Tℓ(A) is a Zℓ-module and the nat-
ural map Autgp(A) → AutZℓ

(Tℓ(A)) is injective (see [8, §19, Thm. 3]). Thus,⋂
m⩾1 Ker(ρℓm) = {id}. Since the Ker(ρℓm) form a decreasing sequence, we

get Ker(ρℓm) = {id} for m ≫ 0. □

Next, consider a smooth projective variety Y equipped with an action of
the finite group G = A[n], for some integer n prime to p. Then G acts freely
on A×Y via g ·(a, y) = (a−g, g ·y). The quotient X = (A×Y )/G exists and
is a smooth projective variety (see [8, §7, Thm.]). The A-action on A×Y via
translation on itself yields an action on X. The projection prA : A × Y → A
yields a morphism

f : X −→ A/G

which is A-equivariant, where A acts on A/G via the quotient map q. More-
over, f is smooth and its schematic fiber at 0̄ is G-equivariantly isomorphic
to Y .

Lemma 4.2. — Assume that Y is rational.

(1) The map f is the Albanese morphism of X.
(2) The neutral component Aut0(Y ) is a linear algebraic group.

Proof. —

(1). — Let B be an abelian variety, and u : X → B a morphism. Compos-
ing u with the quotient morphism A×Y → X yields a G-invariant morphism
v : A×Y → B. As Y is rational, v factors through a morphism A → B, which
must be G-invariant. So u factors through a morphism A/G → B.
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(2). — By a theorem of Nishi and Matsumura (see [1] for a modern
proof), there exist a closed affine subgroup scheme H ⊂ Aut0(Y ) such that
the homogeneous space Aut0(Y )/H is an abelian variety, and an Aut0(Y )-
equivariant morphism u : Y → Aut0(Y )/H. As Y is rational and u is surjec-
tive, this forces H = Aut0(Y ). □

As a consequence of Lemma 4.2, if Y is rational then f induces a homo-
morphism

f∗ : Aut(X) −→ Aut(A/G),
and hence an exact sequence

1 −→ AutA/G(X) −→ Aut(X) f∗−→ A/G ⋊ Autgp(A/G),
where AutA/G(X) denotes the group of relative automorphisms. The A-
action on X yields a homomorphism G → AutA/G(X). Moreover, the image
of f∗ contains the group A/G of translations, and hence equals A/G ⋊ Γ,
where Γ denotes the subgroup of Autgp(A/G) consisting of automorphisms
which lift to X.

Lemma 4.3. — Let G = A[ℓm], where ℓ, m satisfy the assumptions of
Lemma 4.1(2).

Let Y be a smooth projective rational G-variety such that Aut(Y ) = G.

(1) The map G → AutA/G(X) is an isomorphism.
(2) The group Γ is trivial.

Proof. —

(1). — Let u ∈ AutA/G(X). Then u restricts to an automorphism of Y

(the fiber of f at 0), and hence to a unique g ∈ G. Replacing u with g−1u,
we may assume that u fixes Y pointwise. For any a ∈ A and y ∈ Y , we have
f(u((a, y))) = f((a, y)) = ā, where (a, y) denotes the image of (a, y) in X.
As f is A-equivariant, it follows that (−a) · u((a, y)) ∈ Y . This defines a
morphism

F : A × Y −→ Y, (a, y) 7−→ (−a) · u((a, y))
such that F (0, y) = u(y) = y for all y ∈ Y . As A is connected, this defines
in turn a morphism (of varieties) A → Aut0(Y ), which must be constant by
Lemma 4.2(2). So u((a, y)) = a · y = (a, y) identically, i.e., u = id.

(2). — Let γ ∈ Γ; then there exists u ∈ Aut(X) such that f∗(u) = γ.
Since γ(0̄) = 0̄, we see that u stabilizes Y ; thus, u|Y = g for a unique g ∈ G.
Also, there exists v ∈ Autgp(A) such that q∗(v) = γ (Lemma 4.1(1)). Thus,
we have f(u(a, y)) = γf((a, y)) = v(a), i.e., (−v(a)) · u((a, y)) ∈ Y for all
a ∈ A and y ∈ Y . Arguing as in the proof of 1, it follows that

u((a, y)) = v(a) · g(y)
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identically. In particular, g(a · y) = v(a) · g(y) for all a ∈ G and y ∈ Y .
Since G is commutative, we obtain v(a) = a for all a ∈ G. Thus, v = id by
Lemma 4.1(2). So γ = id as well. □

Proposition 4.4. — Under the assumptions of Lemma 4.3, the A-action
on X yields an isomorphism A → Aut(X). If in addition G = AutY , then
A → AutX is an isomorphism as well.

Proof. — We have a commutative diagram of exact sequences

0 // G //

��

A //

��

A/G //

��

0

1 // AutA/G(X) // Aut(X) f∗ // Aut(A/G).

By Lemma 4.3, the left vertical map is an isomorphism and the image of f∗
is the group A/G of translations. This yields the first assertion.

To show the second assertion, it suffices to show that the induced ho-
momorphism of Lie algebras Lie(A) → Lie(AutX) is an isomorphism when
G = AutY . Recall that Lie(AutX) is the space of global sections of the tan-
gent bundle TX (see e.g. [7, Lem. 3.4]). Moreover, as f is smooth, we have
an exact sequence

0 −→ Tf −→ TX
df−→ f∗(TA/G) −→ 0,

where Tf denotes the relative tangent bundle. Since TA/G is the trivial bundle
with fiber Lie(A/G), this yields an exact sequence

0 −→ H0(X, Tf ) −→ H0(X, TX) −→ Lie(A/G)
such that the composition Lie(A) → H0(X, TX) → Lie(A/G) is Lie(q). So it
suffices in turn to show that H0(X, Tf ) = 0.

We have a cartesian diagram

A × Y
prA //

��

A

��

X
f
// A/G,

where the vertical arrows are G-torsors. This yields an isomorphism
H0(X, Tf ) ≃ H0(A × Y, TprA

)G

and hence
H0(X, Tf ) ≃ H0(A×Y, pr∗Y (TY ))G ≃ (OA(A)⊗H0(Y, TY ))G ≃ H0(Y, TY )G.

As G=AutY , we have H0(Y, TY )=Lie(G)=0; this completes the proof. □
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5. Proof of Theorem A(2): the construction of Y

In this section, we fix integers n, r ⩾ 2, where p does not divide n, and
construct a smooth projective rational variety Y of dimension r such that
AutY = (Z/n)r.

We define

G = {(µ1, . . . , µr) ∈ kr | µn
i = 1 for each i ∈ {1, . . . , r}} ≃ (Z/n)r

and let G act on (P1)r by

G × (P1)r −→ (P1)r

((µ1, . . . , µr), ([u1 : v1], . . . , [ur : vr])) 7−→ ([u1 : µ1v1], . . . , [ur : µrvr])

For each i ∈ {1, . . . , r}, we denote by ℓi ⊂ (P1)r the closed curve isomor-
phic to P1 given by the image of

P1 −→ (P1)r

([u : v]) 7−→ ([0 : 1], . . . , [0 : 1], [u : v], [0 : 1], . . . , [0 : 1])

where the [u : v] is at the place i. The curves ℓ1, . . . , ℓr ⊂ (P1)r generate the
cone of curves of (P1)r.

For each i ∈ {1, . . . , r}, the curve ℓi is stable by G and the action of G on
ℓi corresponds to a cyclic action of order n on P1, given by [u : v] 7→ [µu : v],
where µ ∈ k, µn = 1. All orbits are of size n, except the two fixed points
[0 : 1] and [1 : 0].

We choose s = (s1, . . . , sr) to be a sequence of positive integers, all dis-
tinct, such that si · n ⩾ 3 for each i if r = 2, and consider a finite subset

∆ ⊂ ℓ1 ∪ · · · ∪ ℓr ⊂ (P1)r,

stable by G, given by a union of orbits of size n. For each i ∈ {1, . . . , r},
we define ∆i ⊂ ℓi to be a union of exactly si ⩾ 1 orbits of size n, and
choose then ∆ =

⋃r
i=1 ∆i. We moreover choose the points such that the

group H = {h ∈ Aut(P1) | h(∆i) = ∆i, h([0 : 1]) = [0 : 1]} only consists of
{[u : v] 7→ [µu : v] | un = 1}. As the unique point of intersection of any two
distinct ℓi is fixed by G, each point of ∆ lies on exactly one of the curves ℓi.
This gives

∆ =
r⊎

i=1
∆i

Let π : Y → (P1)r be the blow-up of ∆. As ∆ is G-invariant, the action of
G lifts to an action on Y . We want to prove that the resulting homomorphism
G → AutY is an isomorphism.
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5.1. Intersection on (P1)r

For i = 1, . . . , r, we denote by Hi ⊂ (P1)r the hypersurface given by
Hi = {([u1 : v1], . . . , [ur : vr]) ∈ (P1)r | ui = 0}.

Then H1, . . . , Hr generate the cone of effective divisors on (P1)r, and we
have

Hi · ℓi = 1, Hi · ℓj = 0
for all i, j ∈ {1, . . . , r} with i ̸= j. Moreover, the canonical divisor class of
(P1)r satisfies K(P1)r = −2H1 − 2H2 − · · · − 2Hr, so K(P1)r · ℓi = −2 for each
i ∈ {1, . . . , r}.

We also observe that ℓi ⊂ Hj for all i, j ∈ {1, . . . , r} with i ̸= j and that
ℓi ̸⊂ Hi.

5.2. Intersection on Y

For i = 1, . . . , r, denote by ℓ̃i, H̃i ⊂ Y the strict transforms of ℓi and Hi.

For each p ∈ ∆, we denote by Ep = π−1(p) the exceptional divisor,
isomorphic to Pr−1, and choose a line ep ⊂ Ep.

A basis of the Picard group of Y is given by the union of H̃1, . . . , H̃r

and of all exceptional divisors Ep, with p ∈ ∆. A basis of the vector space
of curves (up to numerical equivalence) is given by ℓ̃1, . . . , ℓ̃r and by all ep

with p ∈ ∆. We have
ep · Ep = −1, ep · Eq = 0

for all p, q ∈ ∆, p ̸= q.

Lemma 5.1. — For all i, j ∈ {1, . . . , r} with i ̸= j, the following hold:

(1) H̃i = π∗(Hi) −
∑

p∈∆∩Hi
Ep = π∗(Hi) −

∑
s̸=i

∑
p∈∆s

Ep.

(2) ℓ̃i · Ep = 1 if p ∈ ∆i and ℓ̃i · Ep = 0 if p ∈ ∆ \ ∆i.
(3) H̃i · ℓ̃i = 1.
(4) H̃i · ℓ̃j = −|∆j | = −nsj.

Proof. —

(1). — It follows from the fact that Hi is a smooth hypersurface of (P1)r

and that ∆ ∩ Hi =
⋃

s̸=i ∆s.

(2). — It follows from the fact that ℓi is a smooth curve, passing through
all points of ∆i and not through any point of ∆ \ ∆i.
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(3). — With (1) and (2), we get H̃i · ℓ̃i = Hi · ℓi = 1.

(4). — With (1) and (2), we get H̃i·ℓ̃j =Hi·ℓj−|∆j |=−|∆j | = −nsj . □

Lemma 5.2. — For all i ∈ {1, . . . , r} and each p ∈ ∆ \ ∆i, we take
the irreducible curve γp,i ⊂ (P1)r passing through p and being numerically
equivalent to ℓi.

(1) Let j ∈ {1, . . . , r} be such that p ∈ ∆j. The j-th coordinate of γp,i

is the one of p, its i-th coordinate is free, and all others are [0 : 1].
(2) The strict transform γ̃p,i of γp,i on Y is numerically equivalent to

ℓ̃i +
∑

q∈∆i
eq − ep and satisfies γ̃p,i · Ep = 1 and γ̃p,i · Eq = 0 for

all q ∈ ∆ \ {p}.

Proof. —

(1). — We write p = (p1, . . . , pr) ∈ (P1)r. Since γp,i ⊂ (P1)r is a curve
equivalent to ℓi and passing through p, it has to be

γp,i = {(p1, . . . , pi−1, t, pi+1, . . . , pr) ∈ (P1)r | t ∈ P1} ≃ P1.

Moreover, for each s ∈ {1, . . . , r} \ {j}, we have ps = [0 : 1], as p ∈ ∆j ⊂ ℓj .
This completes the proof of 1.

(2). — We want to prove that γ̃p,i ≡ ℓ̃i +
∑

q∈∆i
eq −ep. For each divisor

D on (P1)r, we have
γ̃p,i · π∗(D) = π(γ̃p,i) · D = γp,i · D

(ℓ̃i − ep) · π∗(D) = π(ℓ̃i) · D = ℓi · D = γp,i · D

We moreover have (with Lemma 5.1(2))

γ̃p,i · Ep = 1 = Ep ·

(
ℓ̃i +

∑
q∈∆i

eq − ep

)
,

γ̃p,i · Ep′ = 0 = Ep′ ·

(
ℓ̃i +

∑
q∈∆i

eq − ep

)
, for all p′ ∈ ∆ \ {p}. □

Lemma 5.3. — Let γ ⊂ Y be an irreducible curve. Then, one of the
following holds:

(1) We have γ ≡ dep for some d ⩾ 1 and some p ∈ ∆ (where ≡ denotes
numerical equivalence);

(2) There are non-negative integers a1, . . . , ar and {µp}p∈∆ such that

γ ≡
r∑

i=1
aiℓ̃i +

∑
p∈∆

µpep

and such that a1 + · · · + ar ⩾ 1.

– 616 –



Abelian varieties as automorphism groups

(3) There are j ∈ {1, . . . , r}, q ∈ ∆j and integers a1, . . . , ar ⩾ 0 such
that

γ ≡ ajeq +
∑
i ̸=j

aiγ̃q,i

and such that
∑

i ̸=j ai ⩾ 1.

Proof. — Suppose first that γ is contained in some Ep, where p ∈ ∆. In
this case, γ is a curve of degree d ⩾ 1 in the projective space Ep ≃ Pr−1 (if
r = 2, then γ = ep = Ep and d = 1), and thus γ ≡ dep. This gives Case (1).

We may now assume that γ is not contained in Ep for any p ∈ ∆. Hence,
γ is the strict transform of the irreducible curve π(γ) ⊂ (P1)r, numerically
equivalent to

∑r
i=1 aiℓi, with a1, . . . , ar ⩾ 0 and

∑r
i=1 ai ⩾ 1. For each

p ∈ ∆, we write ϵp = Ep · γ ⩾ 0.

We first prove that

γ ≡
r∑

i=1
aiℓ̃i +

r∑
i=1

∑
p∈∆i

(ai − ϵp)ep. (♠)

Intersecting both sides of (♠) with the divisor π∗(D), for any divisor D
on (P1)r, gives π(γ) · D =

∑
aiℓi · D. Moreover, for each p ∈ ∆, there is

j ∈ {1, . . . , r} such that p ∈ ∆j . Intersecting Ep with both sides of (♠), we
obtain Ep · γ = ϵp

Lemma 5.1(2)= Ep · (
∑r

i=1 aiℓ̃i +
∑r

i=1
∑

p∈∆i
(ai − ϵp)ep).

This completes the proof of (♠).

For each p ∈ ∆, we denote by i ∈ {1, . . . , r} the integer such that p ∈ ∆i

and by Hp ⊂ (P1)r the hypersurface consisting of points q ∈ (P1)r having
the same i-th coordinate as p. Hence pi ∈ Hp, Hp ∩ ∆ = {p} and Hp ∼ Hi.
The strict transform of Hp, that we write H̃p, satisfies H̃p ∼ π∗(Hi) − Ep.
This gives

H̃p · γ = ai − Ep · γ = ai − ϵp. (♡)

Suppose first that H̃p ·γ ⩾ 0 for each p ∈ ∆. This means (with (♡)), that
ai − ϵp ⩾ 0 for each i ∈ {1, . . . , r} and each p ∈ ∆i. Hence all coefficients
in (♠) are non-negative, so we obtain (2).

Suppose now that H̃q · γ < 0 for some q ∈ ∆. This implies that γ ⊂ H̃q.
As Hq ∩ ∆ = {q}, we obtain Ep ∩ H̃q = ∅ for each p ∈ ∆ \ {q}, which yields
ϵp = Ep ·γ = 0. Writing j ∈ {1, . . . , r} the element such that q ∈ ∆j , the j-th
component of π(γ) ⊂ (P1)r is constant, so aj = π∗(Hj) · γ = Hj · π(γ) = 0.
We now prove that

γ ≡

(
−ϵq +

∑
i ̸=j

ai

)
eq +

∑
i̸=j

aiγ̃q,i (♢)
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Intersecting both sides of (♢) with the divisor π∗(D), for any divisor D on
(P1)r, gives π(γ) · D =

∑
aiℓi · D. Intersecting Eq with both sides gives

ϵq = ϵq, since Eq · γ̃q,i = 1 for each i ̸= j (Lemma 5.2(2)). Intersecting with
Ep for p ∈ ∆ \ {q} gives ϵp = 0. This completes the proof of (♢).

As the j-th component of π(γ) ⊂ (P1)r is constant, there is an integer
i ∈ {1, . . . , r} \ {j} such that the i-th component of π(γ) is not constant.
This implies that π(γ) ̸⊂ Hi, so γ̃ ̸⊂ H̃i. We obtain

0 ⩽ H̃i · γ
Lemma 5.1(1)=

(
π∗(Hi) −

∑
s̸=i

∑
p∈∆s

Ep

)
· γ = ai − ϵq.

Hence, the coefficents of (♢) are non-negative, giving (3). □

Proposition 5.4. — Let γ ⊂ Y be an irreducible curve. Then, the fol-
lowing are equivalent:

(1) For all effective 1-cycles γ1, γ2 on Y such that γ ≡ γ1 + γ2, we have
γ1 = 0 or γ2 = 0.

(2) γ is numerically equivalent to ℓ̃i for some i ∈ {1, . . . , r}, to γ̃p,i for
some i ∈ {1, . . . , r}, p ∈ ∆ \ ∆i, or to ep for some p ∈ ∆.

(3) γ is either equal to ℓ̃i for some i ∈ {1, . . . , r}, or equal to γ̃p,i for
some i ∈ {1, . . . , r}, p ∈ ∆ \ ∆i, or is a line in Ep, for some p ∈ ∆.

Proof. —

(1) ⇒ (2). — By Lemma 5.3, γ ≡ γ1 + · · · + γs where s ⩾ 1 and
where the points γ1, . . . , γs belong to {ℓ̃i | i ∈ {1, . . . , r}} ∪ {ep | p ∈ ∆} ∪
{γ̃p,i | i ∈ {1, . . . , r}, p ∈ ∆ \ ∆i}. As (1) is satisfied, we have s = 1, which
implies (2).

(2) ⇒ (3). — Suppose first that γ ≡ ep for some p ∈ ∆. For an ample
divisor D on (P1)r, we have 0 = ep · π∗(D) = π∗(γ) · D, which implies that
γ is contracted by π. Hence, γ is a curve of degree d ⩾ 1 in some Eq, q ∈ ∆,
and is thus equivalent to deq. As −1 = Ep · ep = Ep · γ, we have q = p and
d = 1.

Suppose now that γ ≡ ℓ̃i for some i ∈ {1, . . . , r}. For each j ∈ {1, . . . , r}
with j ̸= i, we have H̃i · γ = H̃i · ℓ̃j

Lemma 5.1(4)= −nsj < 0. Hence, π(γ) ⊂⋂
j ̸=i Hj = ℓi. As π(γ) · Hi = π∗(Hi) · γ = π∗(Hi) · ℓ̃i = 1, we have π(γ) = ℓi

and γ̃ = ℓ̃i.

In the remaining case, γ ≡ γ̃p,i for some i ∈ {1, . . . , r} and some p ∈
∆ \ ∆i. Hence, π(γ) is numerically equivalent to π(γ̃p,i), which is equivalent
to ℓi (Lemma 5.2(2)). Hence, all coordinates of π(γ) except the i-th one are
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constant. As γ · Ep = γ̃p,i · Ep = 1 (again by Lemma 5.2(2)), the point p
belongs to both π(γ) and γp,i, which yields π(γ) = γp,i and thus γ = γ̃p,i.

(3) ⇒ (1). — We take effective 1-cycles γ1, γ2 on Y such that γ ≡ γ1 +γ2
and prove that one of the two is zero, using (3).

For each i ∈ {1, . . . , r}, we write ai = π∗(Hi) · γ, bi = π∗(Hi) · γ1 and
ci = π∗(Hi) · γ2 and obtain ai = bi + ci. As Hi is nef, π∗(Hi) is nef, so
ai, bi, ci ⩾ 0. Moreover, γ satisfying (3), we have

∑r
i=1 ai = 1, which implies

that, up to exchanging γ1 and γ2, we may assume that
∑r

i=1 ai =
∑r

i=1 bi

and ci = 0 for i = 1, . . . , r. In particular, γ2 is a sum of irreducible curves
contained in the exceptional divisors Ep, p ∈ ∆.

Suppose first that γ = eq for some q ∈ ∆. This gives
∑r

i=1 ai =
∑r

i=1 bi =
0, which implies that both γ1 and γ2 are sums of irreducible curves contained
in the exceptional divisors Ep, p ∈ ∆. For each p′ ∈ ∆ and each irreducible
curve c ⊂ Ep′ of degree d ⩾ 1 we get

∑
p∈∆ Ep ·c = −d. As

∑
p∈∆ Ep ·γ = −1,

this gives γ1 = 0 or γ2 = 0.

We may now take s ∈ {1, . . . , r} and either γ = ℓ̃s or γ = γ̃p,s for some
p ∈ ∆ \ ∆s. This gives bs = 1 and bi = 0 for all i ∈ {1, . . . , r} \ {s}.
Lemma 5.3 implies that γ1 is equivalent to a sum of curves contained in
{ℓ̃i | i ∈ {1, . . . , r}} ∪ {ep | p ∈ ∆} ∪ {γ̃p,i | i ∈ {1, . . . , r}, p ∈ ∆ \ ∆i}. As
bs = 1 and bi = 0 for all i ∈ {1, . . . , r} \ {s}, we have γ1 ≡ α + β, where α is
either equal to ℓ̃s or γ̃p,s for some p ∈ ∆ \ ∆s and where β is a non-negative
sum of ep, p ∈ ∆. For each p ∈ ∆, we obtain

Ep · γ = Ep · α + Ep · β + Ep · γ2 ⩽ Ep · α.

We now use the fact that we know the intersection of α and γ with Ep (which
is given either by Lemma 5.1(2) or by Lemma 5.2(2), depending if the curve
is equal to ℓ̃s or γ̃p,s).

If γ = γ̃p,s for some p ∈ ∆\∆s, then 1 = Ep ·γ ⩽ Ep ·α, which implies that
α = γ̃p,s. If γ = γ̃s, then 1 = Eq · γ ⩽ Eq · α for each q ∈ ∆s, which implies
that α = γ̃s. In both cases, we get α = γ, which implies that Ep · γ2 = 0 for
each p ∈ ∆, and thus that γ2 = 0, as desired. □

Theorem 5.5. — The map G → AutY is an isomorphism.

Proof. — We first show that G
∼→ Aut(Y ). Let α ∈ Aut(Y ). For each

irreducible curve γ ⊂ Y that satisfies Proposition 5.4(1), the curve α(γ) also
satisfies Proposition 5.4(1). Hence, the union F ⊂ Y of all curves satisfying
this assertion is also stable by Aut(Y ).
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By Proposition 5.4, we have

F =
( ⋃

p∈∆

Ep

)
∪

(
r⋃

i=1
ℓ̃i

)
∪

(
r⋃

i=1

( ⋃
p∈∆\∆i

γ̃p,i

))
.

We observe that the above union is the decomposition of F into irreducible
components. Hence, α permutes the irreducible components. We now make
the following observations:

(1) For each i ∈ {1, . . . , r}, ℓ̃i intersects exactly n · si other irreducible
components of F , namely the Ep with p ∈ ∆.

(2) For each p ∈ ∆i, the divisor Ep intersects exactly r other irreducible
components of F , namely the curve ℓ̃i and the curves γ̃p,j with
j ∈ {1, . . . , r} \ {i}.

(3) For each i ∈ {1, . . . , r} and p ∈ ∆ \ ∆i, the curve γ̃p,i intersects
exactly n · si + 1 other irreducible components of F . Writing j ∈
{1, . . . , r} the element such that p ∈ ∆j , the curve intersects Ep and
all curves γ̃q,j for each q ∈ ∆i.

If r ⩾ 3, the exceptional divisors Ep are the irreducible components of
maximal dimension of F , so g permutes them. If r = 2, then g also permutes
the Ep, as these are the only irreducible components of F that intersect
exactly 2 other irreducible components of F (we assumed n · si ⩾ 3 for
each i in the case r = 2). In any case, g permutes the exceptional divisors
Ep and is thus the lift of an automorphism ĝ of (P1)r: we observe that the
birational self-map ĝ = πgπ−1 of (P1)r restricts to an automorphism on the
complement of ∆, and as ∆ has codimension ⩾ 2, ĝ is an automorphism. We
then use again the three observations above to see that g(ℓ̃i) = ℓ̃i for each
i ∈ {1, . . . , r}, as the si are all distinct. Hence, ĝ(ℓi) = ĝ(ℓi) for each i. This
implies that ĝ is of the form

(P1)r −→ (P1)r

((µ1, . . . , µr), ) 7−→ ([u1 : µ1v1 + κ1u1], . . . , [ur : µrvr + κrur])

for some µ1, . . . , µr ∈ k∗ and κ1, . . . , κr ∈ k.

For each i ∈ {1, . . . , r}, the restriction of ĝ to ℓi corresponds to the
automorphism [u : v] 7→ [ui : µiv1 + κiui]. As it has to stabilize the set
∆i, we have κi = 0 and µi ∈ k∗ is of order n. This yields the isomorphism
G ≃ Aut(Y ).

To complete the proof, it suffices to show that AutY is constant, or equiv-
alently that its Lie algebra is trivial. (We refer to [6, §2.1] for background
on infinitesimal automorphisms and vector fields). Recall that Lie(AutY ) =
H0(Y, TY ), where TY denotes the tangent sheaf. In other terms, Lie(AutY )
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consists of the global vector fields on Y . Denoting by E =
⊎

p∈∆ Ep the
exceptional divisor, we have an exact sequence of sheaves on Y

0 −→ TY,E −→ TY −→
⊕
p∈∆

(iEp
)∗(NEp/Y ) −→ 0,

where TY,E is the sheaf of vector fields that are tangent to E, and NEp/Y

denotes the normal sheaf. Moreover, for any p ∈ ∆, we have Ep ≃ Pr−1 and
this identifies NEp/Y with OPr−1(−1); thus, H0(Ep, NEp/Y ) = 0. As a con-
sequence, H0(Y, TY,E) ∼−→ H0(Y, TY ). Viewing vector fields as derivations
of the structure sheaf OY , this yields

Der(OY , OY (−E)) ∼−→ Der(OY ),

where the left-hand side denotes the Lie algebra of derivations which stabilize
the ideal sheaf of E.

The blow-up π : Y → (P1)r contracts E to ∆ and satisfies π∗(OY ) =
O(P1)r ; also, π∗(OY (−E)) = I∆ (the ideal sheaf of ∆). So π induces a homo-
morphism of Lie algebras π∗ : Der(OY ) → Der(O(P1)r ), which is injective as
π is birational. Moreover, π∗ sends Der(OY , OY (−E)) into Der(O(P1)r , I∆),
the Lie algebra of vector fields on (P1)r which vanish at each p ∈ ∆. So it
suffices to show that each such vector field is zero.

We have

Der(O(P1)r ) = H0((P1)r, T(P1)r ) =
r⊕

i=1
H0(P1, TP1) = Lie(AutP1)r.

Moreover, Lie(AutP1) = M2(k)/k id, the quotient of the Lie algebra of
2 × 2 matrices by the scalar matrices. Let ξ = (ξ1, . . . , ξr) ∈ Der(O(P1)r ),
with representative (A1, . . . , Ar) ∈ M2(k)r. Then ξ vanishes at p =
([x1 : y1], . . . , [xr : yr]) if and only if (xi, yi) is an eigenvector of Ai for
each i ∈ {1, . . . , r}. Thus, if ξ ∈ Der(O(P1)r , I∆), then (0, 1) is an eigenvec-
tor of each Ai, i.e., Ai is lower triangular. In addition, each point of ∆i yields
an eigenvector of Ai. So each Ai is scalar, and ξ = 0 as desired. □

Bibliography

[1] M. Brion, “Some basic results on actions of nonaffine algebraic groups”, in Symmetry
and Spaces, Progress in Mathematics, vol. 278, Birkhäuser, 2010, p. 1-20.

[2] M. Florence, “Realisation of Abelian varieties as automorphism groups”, 2021,
https://arxiv.org/abs/2102.02581.

[3] A. Grothendieck, “Techniques de construction et théorèmes d’existence en géométrie
algébrique IV : les schémas de Hilbert”, in Séminaire Bourbaki Vol. 13, Secrétariat
Mathématique, 1960, Exp. 221, p. 249-276.

– 621 –

https://arxiv.org/abs/2102.02581


Jérémy Blanc and Michel Brion

[4] D. Lombardo & A. Maffei, “Abelian varieties as automorphism groups of smooth
projective varieties”, Int. Math. Res. Not. 2020 (2020), no. 7, p. 1942-1956.

[5] M. Madan & M. Rosen, “The automorphism group of a function field”, Trans. Am.
Math. Soc. 115 (1992), no. 4, p. 923-929.

[6] G. Martin, “Infinitesimal automorphisms of algebraic varieties and vector fields on
elliptic surfaces”, Algebra Number Theory 16 (2022), no. 7, p. 1655-1704.

[7] H. Matsumura & F. Oort, “Representability of group functors, and automorphisms
of algebraic schemes”, Invent. Math. 4 (1967), p. 1-25.

[8] D. Mumford, Abelian varieties, Hindustan Book Agency, 2008, corrected reprint of
the 2nd ed. 1974.

– 622 –


	1. Introduction
	2. Preliminaries and notation
	3. Proof of Theorem A(1)
	4. Proof of Theorem A(2): first steps
	5. Proof of Theorem A(2): the construction of Y
	5.1. Intersection on (p1)r
	5.2. Intersection on Y

	Bibliography

