Tome XXXII, n ${ }^{\circ} 4$ (2023), p. 607-622.
https://doi.org/10.5802/afst. 1746
© les auteurs, 2023.
Les articles des Annales de la Faculté des Sciences de Toulouse sont mis à disposition sous la license Creative Commons Attribution (CC-BY) 4.0 http://creativecommons.org/licenses/by/4.0/

Publication membre du centre
Mersenne pour l'édition scientifique ouverte

Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics ${ }^{(*)}$

Jérémy Blanc ${ }^{(1)}$ and Michel Brion ${ }^{(2)}$

Abstract

Let A be an abelian variety over an algebraically closed field. We show that A is the automorphism group scheme of some smooth projective variety if and only if A has only finitely many automorphisms as an algebraic group. This generalizes a result of Lombardo and Maffei for complex abelian varieties.

Résumé. - Soit A une variété abélienne sur un corps algébriquement clos. Nous montrons que A est le groupe d'automorphismes d'une variété projective lisse si et seulement si A n'a qu'un nombre fini d'automorphismes en tant que groupe algébrique. Ceci généralise un résultat de Lombardo et Maffei pour les variétés abéliennes complexes.

1. Introduction

Let X be a projective algebraic variety over an algebraically closed field. The automorphism group functor of X is represented by a group scheme Aut $_{X}$, locally of finite type (see [3, p. 268] or [7, Thm. 3.7]). Thus, the automorphism group $\operatorname{Aut}(X)$ is the group of k-rational points of a smooth group scheme that we will still denote by $\operatorname{Aut}(X)$ for simplicity. One may ask which smooth group schemes are obtained in this way, possibly imposing some additional conditions on X such as smoothness or normality. It is

[^0]known that every finite group G is the automorphism group scheme of some smooth projective curve X (see e.g. the main result of [5]). The case of a complex abelian variety A was treated recently by Lombardo and Maffei in [4]; they showed that $A=\operatorname{Aut}(X)$ for some complex projective manifold X if and only if A has only finitely many automorphisms as an algebraic group. In this note, we generalize their result as follows:

Theorem A. - Let A be an abelian variety over an algebraically closed field. Denote by $\operatorname{Aut}_{\mathrm{gp}}(A)$ the group of automorphisms of A as an algebraic group.
(1) If $A=\operatorname{Aut}(X)$ for some projective variety X, then $\operatorname{Aut}_{g \mathrm{~g}}(A)$ is finite.
(2) If $\operatorname{Aut}_{\mathrm{gp}}(A)$ is finite, then there exists a smooth projective variety X such that $A=\operatorname{Aut}_{X}$.

Like in [4], the proof of the first assertion is easy, and the second one is obtained by constructing X as a quotient $(A \times Y) / G$, where $G \subset A$ is a finite subgroup, Y is a smooth projective variety such that $G=\mathrm{Aut}_{Y}$, and the quotient is taken for the diagonal action of G on $A \times Y$. In [4], G is a cyclic group of prime order ℓ, and Y a surface of degree ℓ in \mathbb{P}^{3} equipped with a free action of G. As the construction of Y does not extend readily to prime characteristics, we take for G the n-torsion subgroup scheme $A[n]$ for an appropriate integer n, and for Y an appropriate rational variety.

A different construction of a variety X satisfying the second assertion has been obtained independently by Mathieu Florence, see [2]; it works over an arbitrary field.

Let us briefly describe the structure of this note. Section 2 is a short introduction to basic notation and reminders on abelian varieties. In Section 3 , we take an abelian variety A with $\operatorname{Aut}_{g p}(A)$ infinite, assume that $A=\operatorname{Aut}(X)$ for some projective variety X, and derive a contradiction. In Section 4, we take an abelian variety A with $\operatorname{Aut}_{\mathrm{gp}}(A)$ finite and prove that for each prime number ℓ different from the characteristic of the ground field, for each $m \geqslant 1$ big enough, and for each smooth rational projective variety Y with $\mathrm{Aut}_{Y} \simeq A\left[\ell^{m}\right]$, one has

$$
\operatorname{Aut}_{X}=A
$$

where X is the smooth projective variety $(A \times Y) / A\left[\ell^{m}\right]$. Then, Section 5 is devoted to an explicit construction of Y.

2. Preliminaries and notation

We begin by fixing some notation and conventions which will be used throughout this note. The ground field \mathbf{k} is algebraically closed, of characteristic $p \geqslant 0$. A variety X is a separated integral scheme of finite type over \mathbf{k}. By a point of X, we mean a \mathbf{k}-rational point.

We use [8] as a general reference for abelian varieties. We denote by A such a variety of dimension $g \geqslant 1$, with group law + and neutral element 0 . Then

$$
\operatorname{Aut}(A)=A \rtimes \operatorname{Aut}_{\mathrm{gp}}(A)
$$

where A acts on itself by translations. Moreover, $\operatorname{Aut}_{\mathrm{gp}}(A)=\operatorname{Aut}(A, 0)$ (the group of automorphisms fixing the neutral element), see [8, §4, Cor. 1].

For any positive integer n, we denote by $A[n]$ the n-torsion subgroup scheme of A, i.e., the schematic kernel of the multiplication map

$$
n_{A}: A \longrightarrow A, \quad a \longmapsto n a .
$$

Clearly, $A[n]$ is stable by $\operatorname{Aut}_{\mathrm{gp}}(A)$. Also, recall from [8, $\S 6$, Prop.] that $A[n]$ is finite; moreover, $A[n]$ is the constant group scheme $(\mathbb{Z} / n)^{2 g}$ if n is prime to p.

We denote by

$$
q: A \longrightarrow A / A[n], \quad a \longmapsto \bar{a}
$$

the quotient morphism. Then n_{A} factors as q followed by an isomorphism $A / A[n] \xrightarrow{\simeq} A$.

3. Proof of Theorem A(1)

In this section, we choose an abelian variety A such that $\operatorname{Aut}_{g \mathrm{p}}(A)$ is infinite, and proceed to the proof of Theorem A (1). We will need:

Lemma 3.1. - For any positive integer n, the kernel of the restriction map

$$
\rho_{n}: \operatorname{Aut}_{\mathrm{gp}}(A) \longrightarrow \operatorname{Aut}_{\mathrm{gp}}(A[n])
$$

is infinite.
Proof. - Note that ρ_{n} extends to a ring homomorphism

$$
\sigma_{n}: \operatorname{End}_{\mathrm{gp}}(A) \longrightarrow \operatorname{End}_{\mathrm{gp}}(A[n])
$$

with an obvious notation. Moreover, the image of σ_{n} is a finitely generated abelian group (as a quotient of $\operatorname{End}_{\mathrm{gp}}(A)$) and is killed by n; thus, this image is finite. So the image of ρ_{n} is finite as well.

We assume, for contradiction, the existence of a projective variety X such that $A=\operatorname{Aut}(X)$; in particular, X is equipped with a faithful action of A. By [1, Lem. 3.2], there exist a finite subgroup scheme G of A and an A equivariant morphism $f: X \rightarrow A / G$, where A acts on A / G via the quotient map. Denote by n the order of G; then G is a subgroup scheme of $A[n]$. By composing f with the natural map $A / G \rightarrow A / A[n]$, we may thus assume that $G=A[n]$.

We now adapt the proof of [4, Thm. 2.2]. Let Y be the schematic fiber of f at $\overline{0}$. Then Y is a closed subscheme of X, stable by the action of $A[n]$. Form the cartesian square

Then X^{\prime} is a projective scheme equipped with an action of A; moreover, f^{\prime} is an A-equivariant morphism and its fiber at 0 may be identified to Y. It follows that the morphism

$$
A \times Y \longrightarrow X^{\prime}, \quad(a, y) \longmapsto a \cdot y
$$

is an isomorphism with inverse

$$
X^{\prime} \longrightarrow A \times Y, \quad x^{\prime} \longmapsto\left(f^{\prime}\left(x^{\prime}\right),-f^{\prime}\left(x^{\prime}\right) \cdot x^{\prime}\right)
$$

So we may identify X^{\prime} with $A \times Y$; then r is invariant under the action of $A[n]$ via $g \cdot(a, y)=(a-g, g \cdot y)$. Since q is an $A[n]$-torsor, so is r. In particular, $X=(A \times Y) / A[n]$ and the stabilizer in A of any $y \in Y$ is a subgroup scheme of $A[n]$.

By Lemma 3.1, we may choose a nontrivial $v \in \operatorname{Aut}_{g \mathrm{p}}(A)$ which restricts to the identity on $A[n]$. Then $v \times$ id is an automorphism of $A \times Y$ that commutes with the action of $A[n]$. Since r is an $A[n]$-torsor and hence a categorical quotient, it follows that $v \times \mathrm{id} \in \operatorname{Aut}(A \times Y)$ factors through a unique $u \in \operatorname{Aut}(X)$, which satisfies $u(a \cdot y)=v(a) \cdot y$ for all $a \in A$ and $y \in Y$.

As $\operatorname{Aut}(X)=A$, we have $u \in A$. For any $a, b \in A$ and $y \in Y$, we have $(a+b) \cdot y=b \cdot(a \cdot y)$. Choosing $b=u$ in the above formula yields $(a+u) \cdot y=u \cdot(a \cdot y)=v(a) \cdot y$. Thus, $v(a)-a-u$ fixes every point of Y for any $a \in A$. Taking $a=0$, it follows that u fixes Y pointwise, and hence $u \in A[n]$. So $v(a)-a \in A[n]$ for any $a \in A$, i.e., v - id factors through a homomorphism $A \rightarrow A[n]$.

Since A is smooth and connected, it follows that $v-\mathrm{id}=0$, a contradiction.

4. Proof of Theorem A(2): first steps

We assume from now on that the group $\operatorname{Aut}_{\mathrm{gp}}(A)$ is finite. Recall that $q: A \rightarrow A / A[n]$ is the quotient morphism (see Section 2).

LEMMA 4.1. -
(1) The map $q_{*}: \operatorname{Aut}_{\mathrm{gp}}(A) \rightarrow \operatorname{Aut}_{\mathrm{gp}}(A / A[n])$ is an isomorphism for any integer $n \geqslant 1$.
(2) Let $\ell \neq p$ be a prime number. Then $\rho_{\ell^{m}}: \operatorname{Aut}_{\mathrm{gp}}(A) \rightarrow \operatorname{Aut}_{\mathrm{gp}}\left(A\left[\ell^{m}\right]\right)$ is injective for $m \gg 0$.

Proof. -
(1). - Since $\operatorname{Aut}_{\mathrm{gp}}(A / A[n]) \simeq \operatorname{Aut}_{\mathrm{gp}}(A)$ is finite, it suffices to show that q_{*} is injective. Let $u \in \operatorname{Aut}_{g p}(A)$ such that $q_{*}(u)=\mathrm{id}$. Then we have $u(a)-a \in A[n]$ for any $a \in A$, that is, u-id factors through a homomorphism $A \rightarrow A[n]$. As in the very end of the proof of Theorem A(1) the smoothness and connectedness of A yield $u=\mathrm{id}$.
(2). - Let $T_{\ell}(A)=\lim _{\leftarrow} A\left[\ell^{m}\right]$; then $T_{\ell}(A)$ is a \mathbb{Z}_{ℓ}-module and the natural map $\operatorname{Aut}_{\mathrm{gp}}(A) \rightarrow \operatorname{Aut}_{\mathbb{Z}_{\ell}}\left(T_{\ell}(A)\right)$ is injective (see [8, §19, Thm. 3]). Thus, $\bigcap_{m \geqslant 1} \operatorname{Ker}\left(\rho_{\ell^{m}}\right)=\{\mathrm{id}\}$. Since the $\operatorname{Ker}\left(\rho_{\ell^{m}}\right)$ form a decreasing sequence, we $\operatorname{get} \operatorname{Ker}\left(\rho_{\ell^{m}}\right)=\{\mathrm{id}\}$ for $m \gg 0$.

Next, consider a smooth projective variety Y equipped with an action of the finite group $G=A[n]$, for some integer n prime to p. Then G acts freely on $A \times Y$ via $g \cdot(a, y)=(a-g, g \cdot y)$. The quotient $X=(A \times Y) / G$ exists and is a smooth projective variety (see [8, $\S 7$, Thm.]). The A-action on $A \times Y$ via translation on itself yields an action on X. The projection $\operatorname{pr}_{A}: A \times Y \rightarrow A$ yields a morphism

$$
f: X \longrightarrow A / G
$$

which is A-equivariant, where A acts on A / G via the quotient map q. Moreover, f is smooth and its schematic fiber at $\overline{0}$ is G-equivariantly isomorphic to Y.

Lemma 4.2. - Assume that Y is rational.
(1) The map f is the Albanese morphism of X.
(2) The neutral component $\operatorname{Aut}^{0}(Y)$ is a linear algebraic group.

Proof. -
(1). - Let B be an abelian variety, and $u: X \rightarrow B$ a morphism. Composing u with the quotient morphism $A \times Y \rightarrow X$ yields a G-invariant morphism $v: A \times Y \rightarrow B$. As Y is rational, v factors through a morphism $A \rightarrow B$, which must be G-invariant. So u factors through a morphism $A / G \rightarrow B$.
(2). - By a theorem of Nishi and Matsumura (see [1] for a modern proof), there exist a closed affine subgroup scheme $H \subset \operatorname{Aut}^{0}(Y)$ such that the homogeneous space $\operatorname{Aut}^{0}(Y) / H$ is an abelian variety, and an $\operatorname{Aut}^{0}(Y)$ equivariant morphism $u: Y \rightarrow \operatorname{Aut}^{0}(Y) / H$. As Y is rational and u is surjective, this forces $H=\operatorname{Aut}^{0}(Y)$.

As a consequence of Lemma 4.2, if Y is rational then f induces a homomorphism

$$
f_{*}: \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(A / G)
$$

and hence an exact sequence

$$
1 \longrightarrow \operatorname{Aut}_{A / G}(X) \longrightarrow \operatorname{Aut}(X) \xrightarrow{f_{*}} A / G \rtimes \operatorname{Aut}_{\mathrm{gp}}(A / G),
$$

where $\operatorname{Aut}_{A / G}(X)$ denotes the group of relative automorphisms. The A action on X yields a homomorphism $G \rightarrow \operatorname{Aut}_{A / G}(X)$. Moreover, the image of f_{*} contains the group A / G of translations, and hence equals $A / G \rtimes \Gamma$, where Γ denotes the subgroup of $\operatorname{Aut}_{\mathrm{gp}}(A / G)$ consisting of automorphisms which lift to X.

Lemma 4.3. - Let $G=A\left[\ell^{m}\right]$, where ℓ, m satisfy the assumptions of Lemma 4.1 (2).

Let Y be a smooth projective rational G-variety such that $\operatorname{Aut}(Y)=G$.
(1) The map $G \rightarrow \operatorname{Aut}_{A / G}(X)$ is an isomorphism.
(2) The group Γ is trivial.

Proof. -

(1). - Let $u \in \operatorname{Aut}_{A / G}(X)$. Then u restricts to an automorphism of Y (the fiber of f at 0), and hence to a unique $g \in G$. Replacing u with $g^{-1} u$, we may assume that u fixes Y pointwise. For any $a \in A$ and $y \in Y$, we have $f(u(\overline{(a, y)}))=f(\overline{(a, y)})=\bar{a}$, where $\overline{(a, y)}$ denotes the image of (a, y) in X. As f is A-equivariant, it follows that $(-a) \cdot u(\overline{(a, y)}) \in Y$. This defines a morphism

$$
F: A \times Y \longrightarrow Y, \quad(a, y) \longmapsto(-a) \cdot u(\overline{(a, y)})
$$

such that $F(0, y)=u(y)=y$ for all $y \in Y$. As A is connected, this defines in turn a morphism (of varieties) $A \rightarrow \operatorname{Aut}^{0}(Y)$, which must be constant by Lemma $4.2(2)$. So $u(\overline{(a, y)})=a \cdot y=\overline{(a, y)}$ identically, i.e., $u=\mathrm{id}$.
(2). - Let $\gamma \in \Gamma$; then there exists $u \in \operatorname{Aut}(X)$ such that $f_{*}(u)=\gamma$. Since $\gamma(\overline{0})=\overline{0}$, we see that u stabilizes Y; thus, $\left.u\right|_{Y}=g$ for a unique $g \in G$. Also, there exists $v \in \operatorname{Aut}_{g \mathrm{p}}(A)$ such that $q_{*}(v)=\gamma($ Lemma 4.1(1)). Thus, we have $f(u(\overline{a, y}))=\gamma f(\overline{(a, y)})=\overline{v(a)}$, i.e., $(-v(a)) \cdot u(\overline{(a, y)}) \in Y$ for all $a \in A$ and $y \in Y$. Arguing as in the proof of 1 , it follows that

$$
u(\overline{(a, y)})=v(a) \cdot g(y)
$$

identically. In particular, $g(a \cdot y)=v(a) \cdot g(y)$ for all $a \in G$ and $y \in Y$. Since G is commutative, we obtain $v(a)=a$ for all $a \in G$. Thus, $v=\mathrm{id}$ by Lemma 4.1(2). So $\gamma=$ id as well.

Proposition 4.4. - Under the assumptions of Lemma 4.3, the A-action on X yields an isomorphism $A \rightarrow \operatorname{Aut}(X)$. If in addition $G=\operatorname{Aut}_{Y}$, then $A \rightarrow$ Aut $_{X}$ is an isomorphism as well.

Proof. - We have a commutative diagram of exact sequences

By Lemma 4.3, the left vertical map is an isomorphism and the image of f_{*} is the group A / G of translations. This yields the first assertion.

To show the second assertion, it suffices to show that the induced homomorphism of Lie algebras $\operatorname{Lie}(A) \rightarrow \operatorname{Lie}\left(\operatorname{Aut}_{X}\right)$ is an isomorphism when $G=$ Aut $_{Y}$. Recall that Lie $\left(\mathrm{Aut}_{X}\right)$ is the space of global sections of the tangent bundle T_{X} (see e.g. [7, Lem. 3.4]). Moreover, as f is smooth, we have an exact sequence

$$
0 \longrightarrow T_{f} \longrightarrow T_{X} \xrightarrow{d f} f^{*}\left(T_{A / G}\right) \longrightarrow 0,
$$

where T_{f} denotes the relative tangent bundle. Since $T_{A / G}$ is the trivial bundle with fiber $\operatorname{Lie}(A / G)$, this yields an exact sequence

$$
0 \longrightarrow H^{0}\left(X, T_{f}\right) \longrightarrow H^{0}\left(X, T_{X}\right) \longrightarrow \operatorname{Lie}(A / G)
$$

such that the composition $\operatorname{Lie}(A) \rightarrow H^{0}\left(X, T_{X}\right) \rightarrow \operatorname{Lie}(A / G)$ is $\operatorname{Lie}(q)$. So it suffices in turn to show that $H^{0}\left(X, T_{f}\right)=0$.

We have a cartesian diagram

where the vertical arrows are G-torsors. This yields an isomorphism

$$
H^{0}\left(X, T_{f}\right) \simeq H^{0}\left(A \times Y, T_{\mathrm{pr}_{A}}\right)^{G}
$$

and hence
$H^{0}\left(X, T_{f}\right) \simeq H^{0}\left(A \times Y, \operatorname{pr}_{Y}^{*}\left(T_{Y}\right)\right)^{G} \simeq\left(\mathcal{O}_{A}(A) \otimes H^{0}\left(Y, T_{Y}\right)\right)^{G} \simeq H^{0}\left(Y, T_{Y}\right)^{G}$.
As $G=$ Aut $_{Y}$, we have $H^{0}\left(Y, T_{Y}\right)=\operatorname{Lie}(G)=0$; this completes the proof.

5. Proof of Theorem $\mathbf{A (2) : ~ t h e ~ c o n s t r u c t i o n ~ o f ~} Y$

In this section, we fix integers $n, r \geqslant 2$, where p does not divide n, and construct a smooth projective rational variety Y of dimension r such that Aut $_{Y}=(\mathbb{Z} / n)^{r}$.

We define

$$
G=\left\{\left(\mu_{1}, \ldots, \mu_{r}\right) \in \mathbf{k}^{r} \mid \mu_{i}^{n}=1 \text { for each } i \in\{1, \ldots, r\}\right\} \simeq(\mathbb{Z} / n)^{r}
$$

and let G act on $\left(\mathbb{P}^{1}\right)^{r}$ by

$$
\begin{array}{ccc}
G \times\left(\mathbb{P}^{1}\right)^{r} & \longrightarrow & \left(\mathbb{P}^{1}\right)^{r} \\
\left(\left(\mu_{1}, \ldots, \mu_{r}\right),\left(\left[u_{1}: v_{1}\right], \ldots,\left[u_{r}: v_{r}\right]\right)\right) & \longmapsto & \left(\left[u_{1}: \mu_{1} v_{1}\right], \ldots,\left[u_{r}: \mu_{r} v_{r}\right]\right)
\end{array}
$$

For each $i \in\{1, \ldots, r\}$, we denote by $\ell_{i} \subset\left(\mathbb{P}^{1}\right)^{r}$ the closed curve isomorphic to \mathbb{P}^{1} given by the image of

$$
\begin{array}{ccc}
\mathbb{P}^{1} & \longrightarrow & \left(\mathbb{P}^{1}\right)^{r} \\
([u: v]) & \longmapsto & ([0: 1], \ldots,[0: 1],[u: v],[0: 1], \ldots,[0: 1])
\end{array}
$$

where the $[u: v]$ is at the place i. The curves $\ell_{1}, \ldots, \ell_{r} \subset\left(\mathbb{P}^{1}\right)^{r}$ generate the cone of curves of $\left(\mathbb{P}^{1}\right)^{r}$.

For each $i \in\{1, \ldots, r\}$, the curve ℓ_{i} is stable by G and the action of G on ℓ_{i} corresponds to a cyclic action of order n on \mathbb{P}^{1}, given by $[u: v] \mapsto[\mu u: v]$, where $\mu \in \mathbf{k}, \mu^{n}=1$. All orbits are of size n, except the two fixed points $[0: 1]$ and $[1: 0]$.

We choose $s=\left(s_{1}, \ldots, s_{r}\right)$ to be a sequence of positive integers, all distinct, such that $s_{i} \cdot n \geqslant 3$ for each i if $r=2$, and consider a finite subset

$$
\Delta \subset \ell_{1} \cup \cdots \cup \ell_{r} \subset\left(\mathbb{P}^{1}\right)^{r}
$$

stable by G, given by a union of orbits of size n. For each $i \in\{1, \ldots, r\}$, we define $\Delta_{i} \subset \ell_{i}$ to be a union of exactly $s_{i} \geqslant 1$ orbits of size n, and choose then $\Delta=\bigcup_{i=1}^{r} \Delta_{i}$. We moreover choose the points such that the group $H=\left\{h \in \operatorname{Aut}\left(\mathbb{P}^{1}\right) \mid h\left(\Delta_{i}\right)=\Delta_{i}, h([0: 1])=[0: 1]\right\}$ only consists of $\left\{[u: v] \mapsto[\mu u: v] \mid u^{n}=1\right\}$. As the unique point of intersection of any two distinct ℓ_{i} is fixed by G, each point of Δ lies on exactly one of the curves ℓ_{i}. This gives

$$
\Delta=\biguplus_{i=1}^{r} \Delta_{i}
$$

Let $\pi: Y \rightarrow\left(\mathbb{P}^{1}\right)^{r}$ be the blow-up of Δ. As Δ is G-invariant, the action of G lifts to an action on Y. We want to prove that the resulting homomorphism $G \rightarrow$ Aut $_{Y}$ is an isomorphism.

5.1. Intersection on $\left(\mathbb{P}^{1}\right)^{r}$

For $i=1, \ldots, r$, we denote by $H_{i} \subset\left(\mathbb{P}^{1}\right)^{r}$ the hypersurface given by

$$
H_{i}=\left\{\left(\left[u_{1}: v_{1}\right], \ldots,\left[u_{r}: v_{r}\right]\right) \in\left(\mathbb{P}^{1}\right)^{r} \mid u_{i}=0\right\} .
$$

Then H_{1}, \ldots, H_{r} generate the cone of effective divisors on $\left(\mathbb{P}^{1}\right)^{r}$, and we have

$$
H_{i} \cdot \ell_{i}=1, H_{i} \cdot \ell_{j}=0
$$

for all $i, j \in\{1, \ldots, r\}$ with $i \neq j$. Moreover, the canonical divisor class of $\left(\mathbb{P}^{1}\right)^{r}$ satisfies $K_{\left(\mathbb{P}^{1}\right)^{r}}=-2 H_{1}-2 H_{2}-\cdots-2 H_{r}$, so $K_{\left(\mathbb{P}^{1}\right)^{r}} \cdot \ell_{i}=-2$ for each $i \in\{1, \ldots, r\}$.

We also observe that $\ell_{i} \subset H_{j}$ for all $i, j \in\{1, \ldots, r\}$ with $i \neq j$ and that $\ell_{i} \not \subset H_{i}$.

5.2. Intersection on Y

For $i=1, \ldots, r$, denote by $\widetilde{\ell}_{i}, \widetilde{H}_{i} \subset Y$ the strict transforms of ℓ_{i} and H_{i}.
For each $p \in \Delta$, we denote by $E_{p}=\pi^{-1}(p)$ the exceptional divisor, isomorphic to \mathbb{P}^{r-1}, and choose a line $e_{p} \subset E_{p}$.

A basis of the Picard group of Y is given by the union of $\widetilde{H}_{1}, \ldots, \widetilde{H}_{r}$ and of all exceptional divisors E_{p}, with $p \in \Delta$. A basis of the vector space of curves (up to numerical equivalence) is given by $\widetilde{\ell}_{1}, \ldots, \widetilde{\ell}_{r}$ and by all e_{p} with $p \in \Delta$. We have

$$
e_{p} \cdot E_{p}=-1, e_{p} \cdot E_{q}=0
$$

for all $p, q \in \Delta, p \neq q$.
Lemma 5.1. - For all $i, j \in\{1, \ldots, r\}$ with $i \neq j$, the following hold:
(1) $\widetilde{H}_{i}=\pi^{*}\left(H_{i}\right)-\sum_{p \in \Delta \cap H_{i}} E_{p}=\pi^{*}\left(H_{i}\right)-\sum_{s \neq i} \sum_{p \in \Delta_{s}} E_{p}$.
(2) $\widetilde{\ell}_{i} \cdot E_{p}=1$ if $p \in \Delta_{i}$ and $\widetilde{\ell}_{i} \cdot E_{p}=0$ if $p \in \Delta \backslash \Delta_{i}$.
(3) $\widetilde{H}_{i} \cdot \widetilde{\ell}_{i}=1$.
(4) $\widetilde{H}_{i} \cdot \widetilde{\ell}_{j}=-\left|\Delta_{j}\right|=-n s_{j}$.

Proof. -
(1). - It follows from the fact that H_{i} is a smooth hypersurface of $\left(\mathbb{P}^{1}\right)^{r}$ and that $\Delta \cap H_{i}=\bigcup_{s \neq i} \Delta_{s}$.
(2). - It follows from the fact that ℓ_{i} is a smooth curve, passing through all points of Δ_{i} and not through any point of $\Delta \backslash \Delta_{i}$.
(3). - With (1) and (2), we get $\widetilde{H}_{i} \cdot \widetilde{\ell}_{i}=H_{i} \cdot \ell_{i}=1$.
(4). - With (1) and (2), we get $\widetilde{H}_{i} \cdot \tilde{\ell}_{j}=H_{i} \cdot \ell_{j}-\left|\Delta_{j}\right|=-\left|\Delta_{j}\right|=-n s_{j}$.

Lemma 5.2. - For all $i \in\{1, \ldots, r\}$ and each $p \in \Delta \backslash \Delta_{i}$, we take the irreducible curve $\gamma_{p, i} \subset\left(\mathbb{P}^{1}\right)^{r}$ passing through p and being numerically equivalent to ℓ_{i}.
(1) Let $j \in\{1, \ldots, r\}$ be such that $p \in \Delta_{j}$. The j-th coordinate of $\gamma_{p, i}$ is the one of p, its i-th coordinate is free, and all others are $[0: 1]$.
(2) The strict transform $\widetilde{\gamma}_{p, i}$ of $\gamma_{p, i}$ on Y is numerically equivalent to $\widetilde{\ell}_{i}+\sum_{q \in \Delta_{i}} e_{q}-e_{p}$ and satisfies $\widetilde{\gamma}_{p, i} \cdot E_{p}=1$ and $\widetilde{\gamma}_{p, i} \cdot E_{q}=0$ for all $q \in \Delta \backslash\{p\}$.

Proof. -

(1). - We write $p=\left(p_{1}, \ldots, p_{r}\right) \in\left(\mathbb{P}^{1}\right)^{r}$. Since $\gamma_{p, i} \subset\left(\mathbb{P}^{1}\right)^{r}$ is a curve equivalent to ℓ_{i} and passing through p, it has to be

$$
\gamma_{p, i}=\left\{\left(p_{1}, \ldots, p_{i-1}, t, p_{i+1}, \ldots, p_{r}\right) \in\left(\mathbb{P}^{1}\right)^{r} \mid t \in \mathbb{P}^{1}\right\} \simeq \mathbb{P}^{1}
$$

Moreover, for each $s \in\{1, \ldots, r\} \backslash\{j\}$, we have $p_{s}=[0: 1]$, as $p \in \Delta_{j} \subset \ell_{j}$. This completes the proof of 1 .
(2). - We want to prove that $\widetilde{\gamma}_{p, i} \equiv \widetilde{\ell}_{i}+\sum_{q \in \Delta_{i}} e_{q}-e_{p}$. For each divisor D on $\left(\mathbb{P}^{1}\right)^{r}$, we have

$$
\begin{aligned}
\widetilde{\gamma}_{p, i} \cdot \pi^{*}(D) & =\pi\left(\widetilde{\gamma}_{p, i}\right) \cdot D=\gamma_{p, i} \cdot D \\
\left(\tilde{\ell}_{i}-e_{p}\right) \cdot \pi^{*}(D) & =\pi\left(\widetilde{\ell}_{i}\right) \cdot D=\ell_{i} \cdot D=\gamma_{p, i} \cdot D
\end{aligned}
$$

We moreover have (with Lemma 5.1(2))

$$
\begin{aligned}
& \widetilde{\gamma}_{p, i} \cdot E_{p}=1=E_{p} \cdot\left(\tilde{\ell}_{i}+\sum_{q \in \Delta_{i}} e_{q}-e_{p}\right) \\
& \widetilde{\gamma}_{p, i} \cdot E_{p^{\prime}}=0=E_{p^{\prime}} \cdot\left(\widetilde{\ell}_{i}+\sum_{q \in \Delta_{i}} e_{q}-e_{p}\right), \text { for all } p^{\prime} \in \Delta \backslash\{p\}
\end{aligned}
$$

Lemma 5.3. - Let $\gamma \subset Y$ be an irreducible curve. Then, one of the following holds:
(1) We have $\gamma \equiv d e_{p}$ for some $d \geqslant 1$ and some $p \in \Delta$ (where \equiv denotes numerical equivalence);
(2) There are non-negative integers a_{1}, \ldots, a_{r} and $\left\{\mu_{p}\right\}_{p \in \Delta}$ such that

$$
\gamma \equiv \sum_{i=1}^{r} a_{i} \widetilde{\ell}_{i}+\sum_{p \in \Delta} \mu_{p} e_{p}
$$

and such that $a_{1}+\cdots+a_{r} \geqslant 1$.
(3) There are $j \in\{1, \ldots, r\}, q \in \Delta_{j}$ and integers $a_{1}, \ldots, a_{r} \geqslant 0$ such that

$$
\gamma \equiv a_{j} e_{q}+\sum_{i \neq j} a_{i} \widetilde{\gamma}_{q, i}
$$

and such that $\sum_{i \neq j} a_{i} \geqslant 1$.
Proof. - Suppose first that γ is contained in some E_{p}, where $p \in \Delta$. In this case, γ is a curve of degree $d \geqslant 1$ in the projective space $E_{p} \simeq \mathbb{P}^{r-1}$ (if $r=2$, then $\gamma=e_{p}=E_{p}$ and $d=1$), and thus $\gamma \equiv d e_{p}$. This gives Case (1).

We may now assume that γ is not contained in E_{p} for any $p \in \Delta$. Hence, γ is the strict transform of the irreducible curve $\pi(\gamma) \subset\left(\mathbb{P}^{1}\right)^{r}$, numerically equivalent to $\sum_{i=1}^{r} a_{i} \ell_{i}$, with $a_{1}, \ldots, a_{r} \geqslant 0$ and $\sum_{i=1}^{r} a_{i} \geqslant 1$. For each $p \in \Delta$, we write $\epsilon_{p}=E_{p} \cdot \gamma \geqslant 0$.

We first prove that

$$
\gamma \equiv \sum_{i=1}^{r} a_{i} \tilde{\ell}_{i}+\sum_{i=1}^{r} \sum_{p \in \Delta_{i}}\left(a_{i}-\epsilon_{p}\right) e_{p} .
$$

Intersecting both sides of $(\boldsymbol{\oplus})$ with the divisor $\pi^{*}(D)$, for any divisor D on $\left(\mathbb{P}^{1}\right)^{r}$, gives $\pi(\gamma) \cdot D=\sum a_{i} \ell_{i} \cdot D$. Moreover, for each $p \in \Delta$, there is $j \in\{1, \ldots, r\}$ such that $p \in \Delta_{j}$. Intersecting E_{p} with both sides of $(\boldsymbol{\oplus})$, we obtain $E_{p} \cdot \gamma=\epsilon_{p} \stackrel{\text { Lemma }}{=}{ }^{5.1(2)} E_{p} \cdot\left(\sum_{i=1}^{r} a_{i} \widetilde{\ell}_{i}+\sum_{i=1}^{r} \sum_{p \in \Delta_{i}}\left(a_{i}-\epsilon_{p}\right) e_{p}\right)$. This completes the proof of ($\boldsymbol{\oplus}$).

For each $p \in \Delta$, we denote by $i \in\{1, \ldots, r\}$ the integer such that $p \in \Delta_{i}$ and by $H_{p} \subset\left(\mathbb{P}^{1}\right)^{r}$ the hypersurface consisting of points $q \in\left(\mathbb{P}^{1}\right)^{r}$ having the same i-th coordinate as p. Hence $p_{i} \in H_{p}, H_{p} \cap \Delta=\{p\}$ and $H_{p} \sim H_{i}$. The strict transform of H_{p}, that we write \widetilde{H}_{p}, satisfies $\widetilde{H}_{p} \sim \pi^{*}\left(H_{i}\right)-E_{p}$. This gives

$$
\begin{equation*}
\widetilde{H}_{p} \cdot \gamma=a_{i}-E_{p} \cdot \gamma=a_{i}-\epsilon_{p} \tag{囚}
\end{equation*}
$$

Suppose first that $\widetilde{H}_{p} \cdot \gamma \geqslant 0$ for each $p \in \Delta$. This means (with ((Ω)), that $a_{i}-\epsilon_{p} \geqslant 0$ for each $i \in\{1, \ldots, r\}$ and each $p \in \Delta_{i}$. Hence all coefficients in $(\boldsymbol{\oplus})$ are non-negative, so we obtain (2).

Suppose now that $\widetilde{H}_{q} \cdot \gamma<0$ for some $q \in \Delta$. This implies that $\gamma \subset \widetilde{H}_{q}$. As $H_{q} \cap \Delta=\{q\}$, we obtain $E_{p} \cap \widetilde{H}_{q}=\emptyset$ for each $p \in \Delta \backslash\{q\}$, which yields $\epsilon_{p}=E_{p} \cdot \gamma=0$. Writing $j \in\{1, \ldots, r\}$ the element such that $q \in \Delta_{j}$, the j-th component of $\pi(\gamma) \subset\left(\mathbb{P}^{1}\right)^{r}$ is constant, so $a_{j}=\pi^{*}\left(H_{j}\right) \cdot \gamma=H_{j} \cdot \pi(\gamma)=0$. We now prove that

$$
\gamma \equiv\left(-\epsilon_{q}+\sum_{i \neq j} a_{i}\right) e_{q}+\sum_{i \neq j} a_{i} \widetilde{\gamma}_{q, i}
$$

Intersecting both sides of (\diamond) with the divisor $\pi^{*}(D)$, for any divisor D on $\left(\mathbb{P}^{1}\right)^{r}$, gives $\pi(\gamma) \cdot D=\sum a_{i} \ell_{i} \cdot D$. Intersecting E_{q} with both sides gives $\epsilon_{q}=\epsilon_{q}$, since $E_{q} \cdot \widetilde{\gamma}_{q, i}=1$ for each $i \neq j$ (Lemma $\left.5.2(2)\right)$. Intersecting with E_{p} for $p \in \Delta \backslash\{q\}$ gives $\epsilon_{p}=0$. This completes the proof of (\diamond).

As the j-th component of $\pi(\gamma) \subset\left(\mathbb{P}^{1}\right)^{r}$ is constant, there is an integer $i \in\{1, \ldots, r\} \backslash\{j\}$ such that the i-th component of $\pi(\gamma)$ is not constant. This implies that $\pi(\gamma) \not \subset H_{i}$, so $\widetilde{\gamma} \not \subset \widetilde{H}_{i}$. We obtain

$$
0 \leqslant \widetilde{H}_{i} \cdot \gamma \stackrel{\text { Lemma }}{=} \text { 5.1(1) }\left(\pi^{*}\left(H_{i}\right)-\sum_{s \neq i} \sum_{p \in \Delta_{s}} E_{p}\right) \cdot \gamma=a_{i}-\epsilon_{q}
$$

Hence, the coefficents of (\diamond) are non-negative, giving (3).
Proposition 5.4. - Let $\gamma \subset Y$ be an irreducible curve. Then, the following are equivalent:
(1) For all effective 1-cycles γ_{1}, γ_{2} on Y such that $\gamma \equiv \gamma_{1}+\gamma_{2}$, we have $\gamma_{1}=0$ or $\gamma_{2}=0$.
(2) γ is numerically equivalent to $\widetilde{\ell}_{i}$ for some $i \in\{1, \ldots, r\}$, to $\widetilde{\gamma}_{p, i}$ for some $i \in\{1, \ldots, r\}, p \in \Delta \backslash \Delta_{i}$, or to e_{p} for some $p \in \Delta$.
(3) γ is either equal to $\widetilde{\ell}_{i}$ for some $i \in\{1, \ldots, r\}$, or equal to $\widetilde{\gamma}_{p, i}$ for some $i \in\{1, \ldots, r\}, p \in \Delta \backslash \Delta_{i}$, or is a line in E_{p}, for some $p \in \Delta$.

Proof. -
(1) \Rightarrow (2). - By Lemma 5.3, $\gamma \equiv \gamma_{1}+\cdots+\gamma_{s}$ where $s \geqslant 1$ and where the points $\gamma_{1}, \ldots, \gamma_{s}$ belong to $\left\{\widetilde{\ell}_{i} \mid i \in\{1, \ldots, r\}\right\} \cup\left\{e_{p} \mid p \in \Delta\right\} \cup$ $\left\{\widetilde{\gamma}_{p, i} \mid i \in\{1, \ldots, r\}, p \in \Delta \backslash \Delta_{i}\right\}$. As (1) is satisfied, we have $s=1$, which implies (2).
$(2) \Rightarrow(3) .-\quad$ Suppose first that $\gamma \equiv e_{p}$ for some $p \in \Delta$. For an ample divisor D on $\left(\mathbb{P}^{1}\right)^{r}$, we have $0=e_{p} \cdot \pi^{*}(D)=\pi_{*}(\gamma) \cdot D$, which implies that γ is contracted by π. Hence, γ is a curve of degree $d \geqslant 1$ in some $E_{q}, q \in \Delta$, and is thus equivalent to $d e_{q}$. As $-1=E_{p} \cdot e_{p}=E_{p} \cdot \gamma$, we have $q=p$ and $d=1$.

Suppose now that $\gamma \equiv \widetilde{\ell}_{i}$ for some $i \in\{1, \ldots, r\}$. For each $j \in\{1, \ldots, r\}$ with $j \neq i$, we have $\widetilde{H}_{i} \cdot \gamma=\widetilde{H}_{i} \cdot \widetilde{\ell}_{j} \stackrel{\text { Lemma }}{=}{ }^{5.1(4)}-n s_{j}<0$. Hence, $\pi(\gamma) \subset$ $\bigcap_{j \neq i} H_{j}=\ell_{i}$. As $\pi(\gamma) \cdot H_{i}=\pi^{*}\left(H_{i}\right) \cdot \gamma=\pi^{*}\left(H_{i}\right) \cdot \widetilde{\ell}_{i}=1$, we have $\pi(\gamma)=\ell_{i}$ and $\widetilde{\gamma}=\widetilde{\ell}_{i}$.

In the remaining case, $\gamma \equiv \widetilde{\gamma}_{p, i}$ for some $i \in\{1, \ldots, r\}$ and some $p \in$ $\Delta \backslash \Delta_{i}$. Hence, $\pi(\gamma)$ is numerically equivalent to $\pi\left(\widetilde{\gamma}_{p, i}\right)$, which is equivalent to ℓ_{i} (Lemma 5.2(2)). Hence, all coordinates of $\pi(\gamma)$ except the i-th one are
constant. As $\gamma \cdot E_{p}=\widetilde{\gamma}_{p, i} \cdot E_{p}=1$ (again by Lemma $5.2(2)$), the point p belongs to both $\pi(\gamma)$ and $\gamma_{p, i}$, which yields $\pi(\gamma)=\gamma_{p, i}$ and thus $\gamma=\widetilde{\gamma}_{p, i}$.
$(3) \Rightarrow(1)$. - We take effective 1 -cycles γ_{1}, γ_{2} on Y such that $\gamma \equiv \gamma_{1}+\gamma_{2}$ and prove that one of the two is zero, using (3).

For each $i \in\{1, \ldots, r\}$, we write $a_{i}=\pi^{*}\left(H_{i}\right) \cdot \gamma, b_{i}=\pi^{*}\left(H_{i}\right) \cdot \gamma_{1}$ and $c_{i}=\pi^{*}\left(H_{i}\right) \cdot \gamma_{2}$ and obtain $a_{i}=b_{i}+c_{i}$. As H_{i} is nef, $\pi^{*}\left(H_{i}\right)$ is nef, so $a_{i}, b_{i}, c_{i} \geqslant 0$. Moreover, γ satisfying (3), we have $\sum_{i=1}^{r} a_{i}=1$, which implies that, up to exchanging γ_{1} and γ_{2}, we may assume that $\sum_{i=1}^{r} a_{i}=\sum_{i=1}^{r} b_{i}$ and $c_{i}=0$ for $i=1, \ldots, r$. In particular, γ_{2} is a sum of irreducible curves contained in the exceptional divisors $E_{p}, p \in \Delta$.

Suppose first that $\gamma=e_{q}$ for some $q \in \Delta$. This gives $\sum_{i=1}^{r} a_{i}=\sum_{i=1}^{r} b_{i}=$ 0 , which implies that both γ_{1} and γ_{2} are sums of irreducible curves contained in the exceptional divisors $E_{p}, p \in \Delta$. For each $p^{\prime} \in \Delta$ and each irreducible curve $c \subset E_{p^{\prime}}$ of degree $d \geqslant 1$ we get $\sum_{p \in \Delta} E_{p} \cdot c=-d$. As $\sum_{p \in \Delta} E_{p} \cdot \gamma=-1$, this gives $\gamma_{1}=0$ or $\gamma_{2}=0$.

We may now take $s \in\{1, \ldots, r\}$ and either $\gamma=\widetilde{\ell}_{s}$ or $\gamma=\widetilde{\gamma}_{p, s}$ for some $p \in \Delta \backslash \Delta_{s}$. This gives $b_{s}=1$ and $b_{i}=0$ for all $i \in\{1, \ldots, r\} \backslash\{s\}$. Lemma 5.3 implies that γ_{1} is equivalent to a sum of curves contained in $\left\{\widetilde{\ell}_{i} \mid i \in\{1, \ldots, r\}\right\} \cup\left\{e_{p} \mid p \in \Delta\right\} \cup\left\{\widetilde{\gamma}_{p, i} \mid i \in\{1, \ldots, r\}, p \in \Delta \backslash \Delta_{i}\right\}$. As $b_{s}=1$ and $b_{i}=0$ for all $i \in\{1, \ldots, r\} \backslash\{s\}$, we have $\gamma_{1} \equiv \alpha+\beta$, where α is either equal to $\widetilde{\ell}_{s}$ or $\widetilde{\gamma}_{p, s}$ for some $p \in \Delta \backslash \Delta_{s}$ and where β is a non-negative sum of $e_{p}, p \in \Delta$. For each $p \in \Delta$, we obtain

$$
E_{p} \cdot \gamma=E_{p} \cdot \alpha+E_{p} \cdot \beta+E_{p} \cdot \gamma_{2} \leqslant E_{p} \cdot \alpha
$$

We now use the fact that we know the intersection of α and γ with E_{p} (which is given either by Lemma $5.1(2)$ or by Lemma $5.2(2)$, depending if the curve is equal to $\widetilde{\ell}_{s}$ or $\widetilde{\gamma}_{p, s}$).

If $\gamma=\widetilde{\gamma}_{p, s}$ for some $p \in \Delta \backslash \Delta_{s}$, then $1=E_{p} \cdot \gamma \leqslant E_{p} \cdot \alpha$, which implies that $\alpha=\widetilde{\gamma}_{p, s}$. If $\gamma=\widetilde{\gamma}_{s}$, then $1=E_{q} \cdot \gamma \leqslant E_{q} \cdot \alpha$ for each $q \in \Delta_{s}$, which implies that $\alpha=\widetilde{\gamma}_{s}$. In both cases, we get $\alpha=\gamma$, which implies that $E_{p} \cdot \gamma_{2}=0$ for each $p \in \Delta$, and thus that $\gamma_{2}=0$, as desired.

THEOREM 5.5. - The map $G \rightarrow$ Aut $_{Y}$ is an isomorphism.
Proof. - We first show that $G \xrightarrow{\sim} \operatorname{Aut}(Y)$. Let $\alpha \in \operatorname{Aut}(Y)$. For each irreducible curve $\gamma \subset Y$ that satisfies Proposition 5.4(1), the curve $\alpha(\gamma)$ also satisfies Proposition 5.4(1). Hence, the union $F \subset Y$ of all curves satisfying this assertion is also stable by $\operatorname{Aut}(Y)$.

By Proposition 5.4, we have

$$
F=\left(\bigcup_{p \in \Delta} E_{p}\right) \cup\left(\bigcup_{i=1}^{r} \tilde{\ell}_{i}\right) \cup\left(\bigcup_{i=1}^{r}\left(\bigcup_{p \in \Delta \backslash \Delta_{i}} \widetilde{\gamma}_{p, i}\right)\right) .
$$

We observe that the above union is the decomposition of F into irreducible components. Hence, α permutes the irreducible components. We now make the following observations:
(1) For each $i \in\{1, \ldots, r\}, \widetilde{\ell}_{i}$ intersects exactly $n \cdot s_{i}$ other irreducible components of F, namely the E_{p} with $p \in \Delta$.
(2) For each $p \in \Delta_{i}$, the divisor E_{p} intersects exactly r other irreducible components of F, namely the curve $\widetilde{\ell}_{i}$ and the curves $\widetilde{\gamma}_{p, j}$ with $j \in\{1, \ldots, r\} \backslash\{i\}$.
(3) For each $i \in\{1, \ldots, r\}$ and $p \in \Delta \backslash \Delta_{i}$, the curve $\widetilde{\gamma}_{p, i}$ intersects exactly $n \cdot s_{i}+1$ other irreducible components of F. Writing $j \in$ $\{1, \ldots, r\}$ the element such that $p \in \Delta_{j}$, the curve intersects E_{p} and all curves $\widetilde{\gamma}_{q, j}$ for each $q \in \Delta_{i}$.

If $r \geqslant 3$, the exceptional divisors E_{p} are the irreducible components of maximal dimension of F, so g permutes them. If $r=2$, then g also permutes the E_{p}, as these are the only irreducible components of F that intersect exactly 2 other irreducible components of F (we assumed $n \cdot s_{i} \geqslant 3$ for each i in the case $r=2$). In any case, g permutes the exceptional divisors E_{p} and is thus the lift of an automorphism \widehat{g} of $\left(\mathbb{P}^{1}\right)^{r}$: we observe that the birational self-map $\widehat{g}=\pi g \pi^{-1}$ of $\left(\mathbb{P}^{1}\right)^{r}$ restricts to an automorphism on the complement of Δ, and as Δ has codimension $\geqslant 2, \widehat{g}$ is an automorphism. We then use again the three observations above to see that $g\left(\widetilde{\ell}_{i}\right)=\widetilde{\ell}_{i}$ for each $i \in\{1, \ldots, r\}$, as the s_{i} are all distinct. Hence, $\widehat{g}\left(\ell_{i}\right)=\widehat{g}\left(\ell_{i}\right)$ for each i. This implies that \widehat{g} is of the form

$$
\begin{array}{clc}
\left(\mathbb{P}^{1}\right)^{r} & \longrightarrow & \left(\mathbb{P}^{1}\right)^{r} \\
\left(\left(\mu_{1}, \ldots, \mu_{r}\right),\right) & \longmapsto & \left(\left[u_{1}: \mu_{1} v_{1}+\kappa_{1} u_{1}\right], \ldots,\left[u_{r}: \mu_{r} v_{r}+\kappa_{r} u_{r}\right]\right)
\end{array}
$$

for some $\mu_{1}, \ldots, \mu_{r} \in \mathbf{k}^{*}$ and $\kappa_{1}, \ldots, \kappa_{r} \in \mathbf{k}$.
For each $i \in\{1, \ldots, r\}$, the restriction of \widehat{g} to ℓ_{i} corresponds to the automorphism $[u: v] \mapsto\left[u_{i}: \mu_{i} v_{1}+\kappa_{i} u_{i}\right]$. As it has to stabilize the set Δ_{i}, we have $\kappa_{i}=0$ and $\mu_{i} \in \mathbf{k}^{*}$ is of order n. This yields the isomorphism $G \simeq \operatorname{Aut}(Y)$.

To complete the proof, it suffices to show that Aut ${ }_{Y}$ is constant, or equivalently that its Lie algebra is trivial. (We refer to [6, §2.1] for background on infinitesimal automorphisms and vector fields). Recall that $\operatorname{Lie}\left(\right.$ Aut $\left._{Y}\right)=$ $H^{0}\left(Y, \mathcal{T}_{Y}\right)$, where \mathcal{T}_{Y} denotes the tangent sheaf. In other terms, Lie $\left(\operatorname{Aut}_{Y}\right)$

Abelian varieties as automorphism groups

consists of the global vector fields on Y. Denoting by $E=\biguplus_{p \in \Delta} E_{p}$ the exceptional divisor, we have an exact sequence of sheaves on Y

$$
0 \longrightarrow \mathcal{T}_{Y, E} \longrightarrow \mathcal{T}_{Y} \longrightarrow \bigoplus_{p \in \Delta}\left(i_{E_{p}}\right)_{*}\left(\mathcal{N}_{E_{p} / Y}\right) \longrightarrow 0
$$

where $\mathcal{T}_{Y, E}$ is the sheaf of vector fields that are tangent to E, and $\mathcal{N}_{E_{p} / Y}$ denotes the normal sheaf. Moreover, for any $p \in \Delta$, we have $E_{p} \simeq \mathbb{P}^{r-1}$ and this identifies $\mathcal{N}_{E_{p} / Y}$ with $\mathcal{O}_{\mathbb{P}^{r-1}}(-1)$; thus, $H^{0}\left(E_{p}, \mathcal{N}_{E_{p} / Y}\right)=0$. As a consequence, $H^{0}\left(Y, \mathcal{T}_{Y, E}\right) \xrightarrow{\sim} H^{0}\left(Y, \mathcal{T}_{Y}\right)$. Viewing vector fields as derivations of the structure sheaf \mathcal{O}_{Y}, this yields

$$
\operatorname{Der}\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}(-E)\right) \xrightarrow{\sim} \operatorname{Der}\left(\mathcal{O}_{Y}\right)
$$

where the left-hand side denotes the Lie algebra of derivations which stabilize the ideal sheaf of E.

The blow-up $\pi: Y \rightarrow\left(\mathbb{P}^{1}\right)^{r}$ contracts E to Δ and satisfies $\pi_{*}\left(\mathcal{O}_{Y}\right)=$ $\mathcal{O}_{\left(\mathbb{P}^{1}\right)^{r}} ;$ also, $\pi_{*}\left(\mathcal{O}_{Y}(-E)\right)=\mathcal{I}_{\Delta}$ (the ideal sheaf of $\left.\Delta\right)$. So π induces a homomorphism of Lie algebras $\pi_{*}: \operatorname{Der}\left(\mathcal{O}_{Y}\right) \rightarrow \operatorname{Der}\left(\mathcal{O}_{\left(\mathbb{P}^{1}\right)^{r}}\right)$, which is injective as π is birational. Moreover, π_{*} sends $\operatorname{Der}\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}(-E)\right)$ into $\operatorname{Der}\left(\mathcal{O}_{\left(\mathbb{P}^{1}\right)^{r}}, \mathcal{I}_{\Delta}\right)$, the Lie algebra of vector fields on $\left(\mathbb{P}^{1}\right)^{r}$ which vanish at each $p \in \Delta$. So it suffices to show that each such vector field is zero.

We have

$$
\operatorname{Der}\left(\mathcal{O}_{\left(\mathbb{P}^{1}\right)^{r}}\right)=H^{0}\left(\left(\mathbb{P}^{1}\right)^{r}, \mathcal{T}_{\left(\mathbb{P}^{1}\right)^{r}}\right)=\bigoplus_{i=1}^{r} H^{0}\left(\mathbb{P}^{1}, \mathcal{T}_{\mathbb{P}^{1}}\right)=\operatorname{Lie}\left(\mathrm{Aut}_{\mathbb{P}^{1}}\right)^{r}
$$

Moreover, $\operatorname{Lie}\left(\operatorname{Aut}_{\mathbb{P}^{1}}\right)=M_{2}(\mathbf{k}) / \mathbf{k}$ id, the quotient of the Lie algebra of 2×2 matrices by the scalar matrices. Let $\xi=\left(\xi_{1}, \ldots, \xi_{r}\right) \in \operatorname{Der}\left(\mathcal{O}_{\left(\mathbb{P}^{1}\right)^{r}}\right)$, with representative $\left(A_{1}, \ldots, A_{r}\right) \in M_{2}(\mathbf{k})^{r}$. Then ξ vanishes at $p=$ $\left(\left[x_{1}: y_{1}\right], \ldots,\left[x_{r}: y_{r}\right]\right)$ if and only if $\left(x_{i}, y_{i}\right)$ is an eigenvector of A_{i} for each $i \in\{1, \ldots, r\}$. Thus, if $\xi \in \operatorname{Der}\left(\mathcal{O}_{\left(\mathbb{P}^{1}\right)^{r}}, \mathcal{I}_{\Delta}\right)$, then $(0,1)$ is an eigenvector of each A_{i}, i.e., A_{i} is lower triangular. In addition, each point of Δ_{i} yields an eigenvector of A_{i}. So each A_{i} is scalar, and $\xi=0$ as desired.

Bibliography

[1] M. Brion, "Some basic results on actions of nonaffine algebraic groups", in Symmetry and Spaces, Progress in Mathematics, vol. 278, Birkhäuser, 2010, p. 1-20.
[2] M. Florence, "Realisation of Abelian varieties as automorphism groups", 2021, https://arxiv.org/abs/2102.02581.
[3] A. Grothendieck, "Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert", in Séminaire Bourbaki Vol. 13, Secrétariat Mathématique, 1960, Exp. 221, p. 249-276.
[4] D. Lombardo \& A. Maffei, "Abelian varieties as automorphism groups of smooth projective varieties", Int. Math. Res. Not. 2020 (2020), no. 7, p. 1942-1956.
[5] M. Madan \& M. Rosen, "The automorphism group of a function field", Trans. Am. Math. Soc. 115 (1992), no. 4, p. 923-929.
[6] G. Martin, "Infinitesimal automorphisms of algebraic varieties and vector fields on elliptic surfaces", Algebra Number Theory 16 (2022), no. 7, p. 1655-1704.
[7] H. Matsumura \& F. Oort, "Representability of group functors, and automorphisms of algebraic schemes", Invent. Math. 4 (1967), p. 1-25.
[8] D. Mumford, Abelian varieties, Hindustan Book Agency, 2008, corrected reprint of the 2nd ed. 1974.

[^0]: ${ }^{(*)}$ Reçu le 12 février 2021, accepté le 7 mai 2021.
 Keywords: Abelian varieties, automorphism group schemes, Albanese morphism.
 2020 Mathematics Subject Classification: 14K05, 14J50, 14L30, 14M20.
 (1) Universität Basel, Departement Mathematik und Informatik, Spiegelgasse 1, CH-4051 Basel, Switzerland
 (2) Université Grenoble Alpes, Institut Fourier, CS 40700, 38058 Grenoble Cedex 9, France - michel.brion@univ-grenoble-alpes.fr

 The first author is supported by the Swiss National Science Foundation Grant "Birational transformations of threefolds" 200020_178807. Both authors thank the referee for a careful reading and helpful comments.

 Article proposé par Damian Rössler.

