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A construction of representations of 3-manifold groups
into PU(2, 1) through Lefschetz fibrations (∗)

Ruben Dashyan (1)

ABSTRACT. — We obtain infinitely many (non-conjugate) representations of 3-
manifold fundamental groups into a lattice in Isom(H2

C), the holomorphic isometry
group of complex hyperbolic space. The lattice is an orbifold fundamental group of
a branched covering of the projective plane along an arrangement of hyperplanes
constructed by Hirzebruch. The 3-manifolds are related to a Lefschetz fibration of
the complex hyperbolic orbifold.

RÉSUMÉ. — Nous obtenons un nombre infini de représentations non-conjuguées
de groupes fondamentaux de 3-variétés dans un réseau du groupe Isom(H2

C) des iso-
métries holomorphes de l’espace hyperbolique complexe. Ce réseau est un groupe
fondamental orbifold d’un revêtement du plan projectif ramifié le long d’un arran-
gement de droites, construit par Hirzebruch. Les 3-variétés sont liées à une fibration
de Lefschetz de l’orbifold hyperbolique complexe.

1. Introduction

Spherical Cauchy–Riemann structures (spherical CR manifolds) are geo-
metric structures which have been studied since the work of Cartan (see [1,
2]). Those are the (S3, Isom(H2

C))-structures, where S3 is seen as the bound-
ary at infinity ∂∞H2

C of the complex hyperbolic plane H2
C. These structures

are not part of Thurston’s eight geometries. A spherical CR structure on a
manifold M is called uniformizable if there exists an open subset Ω of S3

on which ρ(π1(M)) acts freely and properly discontinuously, so that M is
homeomorphic to quotient manifold ρ(π1(M))\Ω. Like the complete (G,X)-
structures, for any representation ρ : π1(M) → Isom(H2

C), there is at most
one uniformizable spherical CR structure on the manifold M with holonomy
ρ. Given a spherical CR structure with holonomy ρ or just a representation

(*) Reçu le 13 octobre 2019, accepté le 22 juillet 2021.
(1) Institut de Mathématiques de Jussieu-Paris Rive Gauche, 4 place Jussieu, boîte

courrier 247, 75252 Paris Cedex 5, France
Article proposé par Jean-Pierre Otal.
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ρ, a candidate open subset is the discontinuity domain of ρ(π1(M)), that is
the largest open subset of S3 on which ρ(π1(M)) acts properly discontinu-
ously. In particular, whenever the discontinuity domain is empty, then the
representation ρ cannot be the holonomy representation of a uniformizable
spherical CR structure.

Only few examples of 3-dimensional hyperbolic manifolds carrying such
structures and not many more representations of fundamental groups into
Isom(H2

C) are known. For instance, if M is the complement of the figure-
eight knot, Falbel has shown that there are essentially two representations of
π1(M) into Isom(H2

C), that the author denotes by ρ1 and ρ2, whose boundary
representations π1(∂M) → Isom(H2

C) are unipotent [8]. The representation
ρ1 is not the holonomy of a uniformizable structure since the domain of dis-
continuity of its image is empty. However it is shown that ρ1 is the holonomy
of a branched spherical CR structure on the figure-eight knot. Later, Falbel
and Wang have shown that the complement of the figure-eight knot admits
a branched spherical CR structure with holonomy ρ2 [9] and Deraux and
Falbel have shown it admits a uniformizable spherical CR structure with
holonomy ρ2 [6].

We introduce a method for constructing infinitely many non-conjugate
representations of fundamental groups of closed hyperbolic 3-dimensional
manifolds into a lattice in Isom(H2

C). The domain of discontinuity of those
representations happens to be empty, so that they cannot arise as holonomies
of uniformizable structures, unlike the example of Deraux–Falbel. Neverthe-
less, we do not know whether they are the holonomies of branched spherical
CR structures as in [8, 9].

Besides, since these representations take actually their values in a lattice
in Isom(H2

C), their existence may also be interpreted from the angle of the
Kahn–Marković theorem.

The method relies on the careful examination of the properties of a com-
plex hyperbolic surface, in Section 2. It focuses on the particular example of
Hirzebruch’s surface Y1, which was originally introduced as an example of a
complex hyperbolic surface, that is the quotient of the complex hyperbolic
plane H2

C by a uniform lattice, isomorphic to π1(Y1) [12, 20].

On the one hand, Y1 is a branched covering space of degree 55 of a complex
surface, denoted by P̂2, which is the blow-up of the complex projective plane
P2 at 4 points (none three of which lie on the same line). The 6 lines in P2

passing through each pair among those 4 points form the complete quadrangle
(see Figure 2.1). Besides, the preimage by the blow-up P̂2 → P2 of each of
the 4 points is isomorphic to the complex projective line P1. The branched
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covering map Y1 → P̂2 ramifies exactly over those 10 = 6 + 4 lines in P̂2,
with ramification index 5.

On the other hand, the conics in P2 passing through those 4 points give
rise to a rational map P2 → P1, called the pencil of conics. It lifts to a
Lefschetz fibration P̂2 → P1 (see Section 3).

P̂2 blow-up
//

Lefschetz fibration

��

P2

pencil of conics

��

P1

The Lefschetz fibration P̂2 → P1 admits sections P̂2 ←↩ P1. Furthermore,
the union of the singular fibers under P̂2 → P1 consists of the proper trans-
forms in P̂2 of the 6 lines of the complete quadrangle in P2. This Lefschetz
fibration is related to a Lefschetz fibration Y1 → C over a complex curve C
of genus 6 which is derived as shown in the following commutative diagram
(see Proposition 5.2).

Y1

branched covering

����

fibration
xxxxC

branched covering

����

* 


section
88

P̂2

fibration
xxxxP1
+ �

section
88

In particular, the branched covering map Y1 → P̂2 induces, by restriction, a
branched covering map from each fiber under Y1 → C into a fiber of P̂2 → P1.
Hence the properties of Y1 → C may be read from those of P̂2 → P1. The
generic fibers of Y1 → C are smooth curves of genus 76. There are also
4×52 singular fibers, each of which consists of 10 smooth curves intersecting
normally at 52 points in total (see Proposition 5.4).

Notation 1.1. — To a branched covering map χ : Y → X corresponds an
unbranched covering χu : Y u → Xu where Y u denotes the complement in Y
of the branch locus and Xu the complement in X of the ramification locus.
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One obtains the diagram

Y1
u

covering

����

fibration
wwww

Cu

covering

����

) 	

section
77

P̂2
u

fibration
wwww

(P1)u
* 


section
77

where there is neither ramification nor singular fibers anymore.

Section 4 is devoted to the careful study of the monodromy of the fi-
bration P̂2

u
→ (P1)u (see Corollary 3.6) and hence that of Y1

u → Cu too.
Since the fibers under P̂2

u
→ (P1)u are spheres with four punctures, the

fibration induces a representation of π1((P1)u) into the mapping class group
Mod0,4 of a sphere, with 4 marked points. The monodromy representation
proves to be an isomorphism and those groups are moreover isomorphic to
the principal congruence subgroup Γ(2) in PSL2(Z) (of index 6). That fact
has motivated the choice of the complex hyperbolic surface Y1, so that the
calculations and proofs are simpler than with more complicated mapping
class groups. The Nielsen–Thurston classification of the mapping classes as
reducible or pseudo-Anosov corresponds to classification of the elements of
Γ(2) as hyperbolic and parabolic (Γ(2) contains no elliptic element). See for
instance the proof of Proposition 6.2.

Let F0 denote the generic fiber of Y1 → C. For any γ in π1(Cu), let Mγ

denote the 3-dimensional manifold, obtained as the surface bundle over the
circle with fiber F0 and where the homeomorphism is the monodromy of
the fibration Y1

u → Cu along γ (see Section 6). There is a natural mapping
Mγ → Y1 which induces a morphism

ργ : π1(Mγ)→ π1(Y1).
Since π1(Y1) is isomorphic to a lattice in Isom(H2

C), the morphism ργ yields
a representation into that lattice and in particular in Isom(H2

C).

It is remarkable that every mapping class in Mod0,4 can be realized as the
monodromy along a curve in (P1)u, of the fibration P̂2

u
→ (P1)u. Since the

generic fiber of P̂2 → P1 is a sphere with 4 marked points, all the possible
surface bundles with the sphere as fiber and with monodromy preserving
each of the 4 marked points are hence obtained in this way.
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The same construction of surface bundles for the fibration P̂2
u
→ (P1)u,

instead of Y1
u → Cu as above, produces representations of the fundamental

groups of all those surface bundles. More precisely, the complex hyperbolic
structure on Y1 descends to a branched complex hyperbolic structure on
P̂2 by the branched covering Y1 → P̂2. And the fibers of the latter surface
bundles are seen as orbifolds with isotropy of order 5 at each of the four
marked points. For γ in π1(Cu), the surface bundle Mγ is nothing but a
branched covering of the orbifold surface bundle whose monodromy is the
image of γ by π1(Cu)→ π1((P1)u).

Proposition 1.2. — For each element f of Mod0,4, consider the surface
bundle Mf with monodromy f and with fiber the orbifold with the sphere as
underlying space and with isotropy of order 5 at each of the four marked
points. There is a representation of the orbifold fundamental group of Mf

into a lattice in Isom(H2
C).

Section 6 describes the manifold Mγ to a small extent, the group π1(Mγ)
and properties of the representation ργ with respect to the element γ in
π1(Cu).

Proposition 1.3. — For any γ in π1(Cu), the limit set of the image of
the representation ργ : π1(Mγ)→ π1(Y1) is all of ∂∞H2

C.

Proposition 1.4. — For any element γ in π1(Cu), if its image in π1(C)
is not trivial, then

(1) the kernel of ργ is equal to the kernel of π1(F0)→ π1(Y1),
(2) the monodromy of the fibration Y1

u → Cu along γ is pseudo-Anosov,
(3) the surface bundle Mγ admits a real hyperbolic structure,
(4) the kernel is not of finite type.

In that case, the representation ργ : π1(Mγ) → π1(Y1) provides a rep-
resentation of the fundamental group of the hyperbolic manifold Mγ into a
complex hyperbolic lattice. However, determining the hyperbolic structure
of Mγ is a difficult problem which will not be addressed.

Finally, the family of representations constructed in this way is the source
of infinitely many conjugacy classes of representations of hyperbolic mani-
folds of dimension 3 into a complex hyperbolic lattice.

Theorem 1.5. — For any two γ1 and γ2 in π1(Cu), if the image in
π1(C) of γ1 is not conjugate to that of γ2 or its inverse, then either the
groups π1(Mγ1) and π1(Mγ2) are not isomorphic or, if such an isomorphism
Φ : π1(Mγ1)→ π1(Mγ2) exists, then the representations ργ1 and ργ2 ◦ Φ are
not conjugate.
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Unfortunately, even though the present construction yields infinitely
many non-conjugate representations of fundamental groups of hyperbolic
3-manifolds into PU(2, 1), absolutely none of them is uniformizable. The
reason comes from the nature of the construction which relies on a Lefschetz
fibration of a complex hyperbolic surface. In order to hope for exhibiting
such uniformizable representations, one should probably relax some parts of
this construction, either by searching for other maps from three manifolds
into the complex surface, or by taking as a starting point, instead of a Lef-
schetz fibration of a complex hyperbolic surface, a Lefschetz fibration of a
complex surface which still admits a representation of its fundamental group
into PU(2, 1) (see below).

Furthermore, the method seems reproducible with other complex hyper-
bolic lattices. Indeed, let Qn be the quotient, in the sense of geometric in-
variant theory, of (P1)n by the diagonal action of Aut(P1). In other words,
Qn is the set of configurations of n marked points in the projective line. Let
also Q∗

n denote the usual quotient, by the diagonal action of Aut(P1), of the
subset of (P1)n formed by all the n-tuples of pairwise distinct points. The
fibrations P̂2 → P1 and P̂2

u
→ (P1)u may actually be interpreted as the for-

getful mappings Q5 → Q4 and Q∗
5 → Q∗

4, respectively, which forget the last
point of the configuration (see Proposition 3.4). In passing, this observation
explains morally the particular role of the fibration P̂2 → P1.

It is remarkable that these spaces Qn appear at the heart of the con-
struction by Deligne–Mostow of complex hyperbolic lattices. The forgetful
mappings Qn → Qp for p < n (which forget, say, the last n − p points of a
configuration) provide natural fibrations for the Deligne–Mostow lattice quo-
tients as well. Therefore, one might expect that the Deligne–Mostow lattices
have the tendency to contain surface bundles.

There exist several constructions of complex hyperbolic lattices [5, 13,
17, 19]. Originally, the Deligne–Mostow lattices were discovered by consider-
ing hypergeometric functions which are multi-valued and induce monodromy
representations of a fundamental group of Q∗

n in PU(n − 3, 1). Finally, un-
der an integral condition called ΣINT, Deligne and Mostow show that the
monodromy takes its values in a lattice [17, Theorem 3.2].

Note that the monodromy representation into PU(n − 3, 1) exists,
whether or not its image is a lattice. And the forgetful mappings provide
fibrations. Those more general monodromy representations may be a start-
ing point to exhibit uniformizable representations. Therefore, even though
the present construction focuses on the particular complex hyperbolic sur-
face Y1 and on the corresponding lattice in Isom(H2

C), the method should
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generalize to a much larger class of surfaces bundles, so as to obtain repre-
sentations of their fundamental groups into Isom(H2

C) and possibly spherical
CR structures.
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2. A complex hyperbolic surface

This section presents a particular construction of smooth complex al-
gebraic surfaces, studied by Hirzebruch [12] (see also [15, Section 1.4, Ex-
ample 6] and [19]). These algebraic varieties are obtained by resolving the
singularities of some branched covering spaces of the complex projective
plane. Under some conditions (see Theorem 2.11), the surfaces happen to be
quotients of the complex hyperbolic plane H2

C by a lattice.

2.1. Arrangement of hyperplanes and Hirzebruch’s construction

Consider an arrangement of a number k (greater than 2) of lines D1, . . . ,
Dk in P2 whose equations are respectively ℓ1 = 0, . . . , ℓk = 0 where ℓ1, . . . , ℓk
are linear forms in the homogeneous coordinates z1, z2, z3. Assume that not
all lines of the arrangement pass through one point. And let n be an integer
greater than 1.

Example 2.1. — The complete quadrangle in P2 is formed by the lines
connecting each pair among four points in general position, that is to say,
no three of them are colinear. It is also called the complete quadrilateral
arrangement. There are three double intersection points and four triple ones
which are the initial four points.

Any such four points are equivalent up to a projective transformation.
Indeed, any three of the lines, not having a common triple point, give an
affine coordinate system and, in suitable homogeneous coordinates [z1 : z2 :
z3], the arrangement is given by the equation

z1z2z3(z2 − z1)(z3 − z2)(z1 − z3) = 0
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Figure 2.1. The complete quadrangle.

and the four triple points by [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1]. If one
sets z4 = 0, then the arrangement consists of the lines Dab defined by the
equation za − zb = 0 where {a, b} is any (unordered) subset of {1, 2, 3, 4}.

Proposition 2.2 (see [12]). — The extension C(P2)
((
ℓ2
ℓ1

) 1
n , . . . ,

(
ℓk
ℓ1

) 1
n

)
of the function field C(P2) determines a normal algebraic surface X and an
abelian branched covering map χ : X → P2 of degree nk−1, ramified over the
arrangement of lines with index n.

The smooth complex surface Y obtained by resolving the singularities of
X is an abelian branched covering space of some blow-up P̂2 of the projective
plane P2. Remark 2.7 provides a local description of Y in terms of coordi-
nates and equations. Lemma 2.9 describes the ramifications of the branched
covering map Y → P̂2.

The normal variety X is described as a fiber product with respect to the
diagram

X

χ
����

// Pk−1

cn
����

P2
ℓ
// Pk−1
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where ℓ : P2 → Pk−1 maps [z] = [z1 : z2 : z3] to [ℓ1(z) : · · · : ℓk(z)] and cn is
the branched covering map defined in homogeneous coordinates as

cn([u1 : · · · : uk]) = [u1
n : · · · : ukn].

As a set, the fiber product may be defined as
X = {(p, r) ∈ P2 × Pk−1 | ℓ(p) = cn(r)}

and the morphisms X → P2 and X → Pk−1 as the restrictions to X of the
projections pr1 : P2 × Pk−1 → P2 and pr2 : P2 × Pk−1 → Pk−1, respectively,
on the first and on the second component. In particular, the fiber χ−1(p) of
a point p, lying on exactly m lines of the arrangement, consists of nk−1−m

distinct points.

Remark 2.3. — The morphisms αs : Pk−1 → Pk−1 defined by

αs([u1 : · · · : uk])→ [u1 : · · · : us−1 : use
2πi
n : us+1 : · · · : uk],

where 1 ⩽ s ⩽ k, generate Aut(cn). The automorphism group acts on P2 ×
Pk−1, trivially on the first component. This action restricts to an action on
X by automorphisms of Aut(χ). Since the fibers under χ and cn are the
same and that Aut(cn) acts transitively on the fibers, Aut(cn) and Aut(χ)
are naturally isomorphic.

Remark 2.4. — The group Aut(χ) is generated by the k automorphisms
denoted by αD, indexed by the lines D of the arrangement, satisfying for
any lines D′ and D′′ of the arrangement(

ℓD′

ℓD′′

)1/n
◦ αD = e

2πi
n (δD,D′ −δD,D′′ )

(
ℓD′

ℓD′′

)1/n

where δ is the Kronecker delta. The product
∏
D αD is the identity. For

every line D of the arrangement, the automorphism αD corresponds to a
small loop turning around D counterclockwise.

Remark 2.5. — A point q in X is singular if and only if its image χ(q)
in P2 lies on more than two lines of the arrangement.

The singularities of X may be resolved by adequate blow-ups, so as to
obtain a smooth algebraic surface Y and a morphism ρ : Y → X. Moreover,
let τ : P̂2 → P2 denote the blow-up of the projective plane at each of its
points where more than two lines of the arrangement meet. There exists a
morphism σ : Y → P̂2 such that the following diagram is commutative.

Y
ρ
//

σ
����

X

χ
����

P̂2
τ
// P2
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σ is a branched covering map of degree nk−1 and ramifies over the proper
transforms in P̂2 of the lines of the arrangement and over the exceptional
curves P(TpP2). The ramification indices are equal to n.

Notation 2.6. — Consider the tautological line bundle O(−1) over the
projective space Pd−1

O(−1)

zz ##

Pd−1 Cdoo

which is also the blow-up of Cd at the origin. Local coordinate charts of
O(−1) may be given as follows. Consider Cd is equipped with the coordinates
(v1, . . . , vd) and Pd−1 with the homogeneous ones [v1 : · · · : vd]. If Ur denotes
the domain of the affine chart in Pd−1 defined by vr ̸= 0 and with coordinates

vs|r = vs
vr

for s different form r

then its inverse image in O(−1) is the domain of the local chart with coor-
dinates (v1|r, . . . , vr−1|r, vr, vr+1|r, . . . , vd|r) corresponding to the point (v, ℓ)
in O(−1) with

v = (vrv1|r, . . . , vrvr−1|r, vr, vrvr+1|r, . . . , vrvd|r)

and
ℓ = [v1|r : · · · : vr−1|r : 1 : vr+1|r : · · · : vk|r].

Remark 2.7 (Coordinates). — Adapted coordinates are introduced as fol-
lows. On the coordinate chart uk ̸= 0 of Pk−1, choose affine coordinates

(v1, . . . , vk−1) =
(
u1

uk
, . . . ,

uk−1

uk

)
,

so that the defining equations of X in the neighborhood of q are

vs
n = us

n

ukn
= ℓs
ℓk

for s from 1 to k − 1.

Around a point p = D1∩D2 · · ·Dm ⊂ P2, with lk(p) ̸= 0, choose an affine
coordinate chart (w1, w2) where

w1 = ℓ1

ℓk
and w2 = ℓ2

ℓk
.

We then have, for s between 3 and k − 1,
ℓs
ℓk

= αsw1 + βsw2 + γs
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with constants αs, βs and γs = 0 if and only if s is not greater than some
integer m (equal to the number of lines containing p).

The local equations around (p, r) ∈ X ⊂ P2 × Pk−1 are then given in
coordinates (w1, w2, v1, · · · , vk−1) of P2 × Pk−1 by

v1
n = w1 , v2

n = w2

and, for 3 ⩽ s ⩽ k − 1,

vs
n = αsw1 + βsw2 + γs.

In order to describe Y locally in terms of coordinates and equations, we first
blow up the (w1, w2)-space by considering the coordinate charts (w1, w2|1)
and (w1|2, w2) (see Notation 2.6). We have that τ(w1, w2|1) = (w1, w2|1w1).
Next, in the affine coordinate chart (v1, . . . , vk−1) of Pk−1, we blow up the
(v1, . . . , vm)-space at its origin, hence obtaining m coordinate charts, indexed
by an integer r between 1 and m,

(v1|r, . . . , vr−1|r, vr, vr+1|r, . . . , vm|r, vm+1, . . . , vk−1)

defined by vs|r = vs/vr for s between 1 and m, different from r. Up to
a permutation of the indices 1, . . . ,m, one may assume for simplicity that
r = 1. In the coordinates

(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1),

the equations defining Y are
v1
n = w1

vs|1
n = αs + βsw2|1 for 2 ⩽ s ⩽ m

vs
n = αsw1 + βsw1w2|1 + γs for m < s < k.

In coordinates, we obtain

χ(w1, w2, v1, . . . , vk−1) = (w1, w2)

and

ρ(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk)
= (w1, w2|1w1, v1, v2|1v1, . . . , vm|1v1, vm+1, . . . , vk).

The morphism σ : Y → P̂2 (satisfying χ ◦ ρ = τ ◦ σ) is described in local
coordinates by

σ(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk) = (w1, w2|1).

Lemma 2.8 ([12, p. 122]). — If a point p in P2 belongs to a number
m, greater than 2, of lines of the arrangement, say D1, . . . , Dm, then each
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singular point q of X over p is resolved into a smooth curve C and the
restriction σ|C : C → P(TpP2) is a branched covering map.

C �
�

//

σ|C
����

Y
ρ
//

σ
����

X

χ
����

P(TpP2) � � // P̂2
τ
// P2

More precisely, σ|C is of degree nm−1, ramified over the m points in
P(TpP2) corresponding to the directions in TpP2 tangent to the lines of the
arrangement passing through p. The Euler characteristic of C is e(C) =
nm−1(2−m) +m · nm−2.

In the following lemma we use the definition of the automorphisms αD
of χ given in Remark 2.4.

Lemma 2.9. — Every automorphism α of χ extends as an automorphism
of σ which coincides with α outside of the exceptional divisor of ρ : Y → X.

For each singular point q in X, lying over a point p in P2, StabAut(χ)(q)
is generated by the automorphisms αD, where D is a line of the arrangement
passing through p.

The automorphism of χ corresponding to a small loop turning around
P(TpP2) counterclockwise is ∏

D∋p
αD.

Finally, the Galois group Aut(σ|C) of σ|C : C → P(TpP2) is isomorphic
to the quotient of StabAut(χ)(q) by the cyclic subgroup generated by∏

D∋p
αD.

Notation 2.10. — By a slight abuse of notation, αD or the letter α will
indifferently denote automophisms of Pk−1, of X, of Y or even of C.

Proof. — In order to show that the automorphisms of χ extend as auto-
morphisms of σ, it suffices to prove it for the generators αD. Furthermore it
suffices to prove it locally using coordinates (see Remark 2.7).

Let p be a point in P2 which belongs to a number m, greater than 2,
of lines of the arrangement, say D1, . . . , Dm, and let q be a singular point
in X over p. Consider, without loss of generality, the (w1, w2, v1, . . . , vk−1)
coordinate system of X and the (w1, w2|1, v1, v2|1 . . . , vm|1, vm+1, . . . , vk−1)
coordinate system of Y . The point p has coordinates (w1, w2) = (0, 0) and
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q has coordinates of the form (0, . . . , 0, vm+1, . . . , vk−1) where vs is not zero
for m < s < k.

In the coordinate system of X,

• if D is not the line at infinity Dk,

αD(w1, w2, v1, . . . , vk−1) = (w1, w2, v1, . . . , vs−1, e
2πi
n vs, vs+1, . . . , vk−1)

for some s,
• if D is Dk,

αD(w1, w2, v1, . . . , vk−1) = (w1, w2, e
− 2πi

n v1, . . . , e
− 2πi

n vk−1).

Therefore, in the corresponding coordinate system of Y ,

(1) if D is the line D1 defined by the equation w1 = 0,
αD(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, e
2πi
n v1, e

− 2πi
n v2|1, . . . , e

− 2πi
n vm|1, vm+1, . . . , vk−1),

(2) if D passes through p in P2 but is not D1,
αD(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, v1, v2|1, . . . , vs−1|1, e
2πi
n vs|1, vs+1|1, . . . , vm|1, vm+1, . . . , vk−1)

for some s,
(3) if D is Dk,
αD(w1, w2|1, v1, v2|1 . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, e
− 2πi

n v1, v2|1, . . . , vm|1, e
− 2πi

n vm+1, . . . , e
− 2πi

n vk−1),

(4) if D does not pass through p in P2 and is not Dk,
αD(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vs−1, e
2πi
n vs, vs+1, . . . , vk−1)

for some s.

In each case, αD extends to the exceptional divisor of ρ : Y → X.

Since q has coordinates of the form (0, . . . , 0, vm+1, . . . , vk−1) where vs
is not zero for m < s < k, it appears that StabAut(χ)(q) is the subgroup
generated by the automorphisms αD1 , . . . , αDm .

Consider a loop in P̂2

γ :
{

[0, 2π] −→ P̂2

t 7−→ (w1(t), w2|1(t)) = (εeit, w2|1(0))
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turning around P(TpP2) and not meeting the proper transforms of the lines
D1, . . . , Dm (ε is arbitrarily small and w2|1 is constant). Finding a lift γ̃ :
[0, 2π]→ Y of γ amounts to finding continuous functions v1, v2|1, . . . , vm|1,
vm+1, . . . , vk−1 satifying the equations

v1(t)n = w1(t)
vs|1(t)n = αs + βsw2|1(t) for 2 ⩽ s ⩽ m

vs(t)n = αsw1(t) + βsw1(t)w2|1(t) + γs for m < s < k

that is to say

v1(t)n = εeit

vs|1(t)n = vs|1(0)n for 2 ⩽ s ⩽ m

vs(t)n = vs(0)n + ε(αs + βsw2|1(0))(eit − 1) for m < s < k.

Thus

γ̃(2π) = (w1(0), w2|1(0), e 2πi
n v1(0), v2|1(0), . . . , vm|1(0), vm+1(0), . . . , vk−1(0))

= α1 ◦ α2 ◦ · · · ◦ αm(γ̃(0))

Since σ|C is the restriction of the Galois branched covering map σ, the
morphism StabAut(χ)(q)→ Aut(σ|C) is surjective. The automorphism∏

D∋p
αD

fixes C so it is in the kernel of StabAut(χ)(q) → Aut(σ|C). Finally, since
StabAut(χ)(q) has nm elements and that Aut(σ|C) has as many elements as
the degree of σ|C , that is nm−1, the morphism

StabAut(χ)(q)
⟨
∏
D∋p αD⟩

→ Aut(σ|C)

is bijective, for cardinality reasons. □

Theorem 2.11 (Miyaoka–Yau [14]). — If the Chern classes of a com-
pact complex surface Y of general type satisfy

c1(Y )2 = 3c2(Y )

then Y is the quotient of the complex hyperbolic plane H2
C by a lattice.

In [12], Hirzebruch finds three cases where, given an arrangement of lines
and a exponent n, the corresponding surface Y is of general type and satis-
fies c1(Y )2 = 3c2(Y ). Therefore those surfaces admit a complex hyperbolic
structure. Hirzebruch denotes them by Y1, Y2 and Y3.
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Example 2.12. — The surface Y1 corresponds to the complete quadrangle
and to the exponent n = 5. Hence σ : Y1 → P̂2 is a branched covering map of
degree 55 which ramifies over the six lines of the arrangement and the four
exceptional curves, all with index 5.

This paper focuses on the surface Y1.

3. The pencil of conics, an example of Lefschetz fibration

A Lefschetz fibration P̂2 → P1 is defined in this section and will allow to
derive a similar one Y1 → C in Section 5.

A conic in the complex projective plane P2 is the zero-locus of a quadratic
form in the variables z1, z2, z3. The vector space Sym2(C3∗) of all quadratic
forms on C3 is of dimension 6. Since the one and only way for two quadratic
forms to define the same conic is to be proportional, the set of conics may
be naturally identified with the projective space P(Sym2(C3∗)).

Figure 3.1. The pencil of conics. A generic fiber in red and one of the
3 singular fibers in blue.

The set of conics passing through four points given in P2, none three of
which lie on the same line, say p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1],
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p4 = [1 : 1 : 1], corresponds to a line in P(Sym2(C3∗)). For any fifth point
(distinct from the first four), there is exactly one conic passing through
the five points. And even when the fifth point happens to collide with any
point p among the first four, prescribing in addition any line in the tangent
plane TpP2, there is again exactly one conic passing through p1, . . . , p4 and
tangent to that line. Following the previous considerations, there is a natural
mapping f : P̂2 → P1, where P̂2 denotes the projective plane blown up at
the four points. Each exceptional curve in P̂2, obtained by blowing up a
point p among the four, is naturally identified with P(TpP2). The map f is a
fibration whose fibers are the proper transforms in P̂2 of the conics passing
through the four points. Moreover, for each point p among the four, f admits
a section P1 → P(TpP2) which maps a conic to its tangent line at p.

P(TpP2) � � // P̂2

f
����

P1
##

cc

Among those conics, represented by points in P1, exactly three are singu-
lar. Each of them is the union of two lines, one passing through two among
the four points and the second passing through the two others. Those six
lines together form the complete quadrangle. The points in P(TpP2) cor-
responding to the singular conics are the lines of the arrangement passing
through p.

In coordinates, the pencil of conics may be defined as
[z1 : z2 : z3] 7→ [(z1 − z3)z2 : z1(z2 − z3)].

This is a rational mapping defined everywhere except at the points p1 =
[1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : 1 : 1] where the
polynomials (z1− z3)z2 and z1(z2− z3) vanish simultaneously. Nevertheless,
blowing up the projective plane at one of the four points, say p3, one ends up
with local coordinate charts (w1, w2|1) and (w1|2, w2) defined as ws = zs/z3
and wr|s = wr/ws, for r, s ∈ {1, 2}, where the rational mapping extends in
the neighborhood of the exceptional curve P(Tp3P2) as

(w1, w2|1) 7→ [(w1 − 1)w2|1 : w1w2|1 − 1]
and

(w1|2, w2) 7→ [w2w1|2 − 1 : w1|2(w2 − 1)].

Note that the fiber over [1 : 0] is the singular conic defined by z1(z2−z3) =
0, the one over [0 : 1] is defined by (z1 − z3)z2 = 0 and also the one over
[1 : 1] is defined by (z1 − z2)z3 = 0. Those three are the only singular fibers.
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The pencil of conics described above is a simple example of Lefschetz
pencil or fibration.

Definition 3.1. — A Lefschetz pencil or Lefschetz fibration f is re-
spectively a rational mapping or morphism from a complex surface S to a
complex curve C such that, for every point s in S (where f is defined),

(1) either f is a submersion at s
(2) or the differential dsf of f at s is zero but the second symmetric

differential d2
sf is a nondegenerate quadratic form.

Remarks 3.2. —

(1) If f happens to be a submersion everywhere (and also proper, which
is guaranted when S is compact), then Ehresmann’s fibration theo-
rem yields that f is a differentiable fiber bundle. In general, except
over a finite number of points in C, f is a fiber bundle whose fiber
is called the generic fiber of the Lefschetz fibration.

(2) Besides, the shape of the singular fibers are prescribed by the condi-
tion (2) in the previous definition. Indeed, at a point s of S where f
is not submersive, the holomorphic analogue of Morse lemma holds
that there exists local charts of S and C, centered at s and f(s)
respectively, where f is as simple as (x, y) 7→ xy. Hence, in the
neighborhood of s and up to a holomorphic transformation, the fiber
passing through s is the union of two lines intersecting transversally.

Observe that in the local coordinate chart

(x, y) =
(
z1 − z3

z1
,

z2

z2 − z3

)
centered at the point [1 : 0 : 1], the rational mapping defining the pencil of
conics is expressed as f(x, y) = [xy : 1], so f may be easily expressed in the
normal form without resorting to the Morse lemma.

Theorem 3.3 (Picard–Lefschetz formula). — Let f : S → C be a Lef-
schetz fibration where S and C are compact. In local charts of S and C,
centered respectively at a singular point s of a singular fiber and at p = f(s),
the monodromy of the generic fiber, corresponding to a loop in C\{p} turning
counterclockwise around p, is a right-handed Dehn twist.

The previous result allows to understand the behavior of the fibration
in the neighborhood of each singular fiber, but not globally. In order to
understand the global picture, there is actually another interpretation of the
fibration f : P̂2 → P1.

– 785 –



Ruben Dashyan

D∗0

Figure 3.2. A right-handed Dehn twist and the monodromy along a
loop turning about 0, of the fibration f : f−1(D) ∩ D2 → D.

Proposition 3.4. — For any integer greater than 3, let Qn denote the
quotient of (P1)n by the diagonal action of Aut(P1), in the sense of geometric
invariant theory. Then Q4 is isomorphic to P1, Q5 to P̂2 and the diagram
below is commutative:

(v1, v2, v3, v4, v5)
_

��

� //

[
det(v1,v4)
det(v1,v5) : det(v2,v4)

det(v2,v5) : det(v3,v4)
det(v3,v5)

]
Q5 //

��

P̂2

f

��

Q4 // P1

(v1, v2, v3, v4) � //

[
det(v1,v3)
det(v1,v4) : det(v2,v3)

det(v2,v4)

]
where (v1, . . . , v5 denote nonzero vectors in C2 representing points in P1).

Remarks 3.5. —

(1) The group Aut(P1) of the automorphisms of P1 is simply the group
PGL2(C) which is also PSL2(C). The group acts transitively on
triples of distinct points in P1. Hence the space Qn becomes inter-
esting only for n greater than 3.

(2) The mapping (v1, v2, v3, v4) 7−→
[

det(v1,v3)
det(v1,v4) : det(v2,v3)

det(v2,v4)

]
is nothing

but the cross ratio of four points in P1, which is invariant by the
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diagonal action of Aut(P1). Note that the cross ratio is defined pro-
vided that none three of the four points are equal.

(3) An element (v1, . . . , vn) in (P1)n is stable (respectively semi-stable)
under the action of Aut(P1), in the sense of geometric invariant
theory, if and only if the largest number of points among v1, . . . , vn
that coincide is less (respectively not greater) than n/2.

Let Q∗
n denote the quotient (in the usual sense), by the diagonal

action of Aut(P1), of the subset of (P1)n formed by all the n-tuples
of distinct points.

For n = 4, Q∗
4 is the subset of Q4 of all stable points and the

remainder consists of the classes of 4-tuples (z1, z2, z3, z4) two of
whose components coincide [7, Example 11.4].

For n = 5, the difference between Q∗
5 and Q5 is the set of classes

of 5-tuples (z1, z2, z3, z4, z5) such that za = zb for some distinct
indices a and b [7, Example 11.5].

(4) The 10 subsets of the form za = zb in Q5 play symmetric roles,
whereas their counterparts in P̂2 consists of the six lines of the ar-
rangement and the four exceptional curves, apparently arising in a
different way. This difference is related to the fact that the forget-
ful map Q5 → Q4 does not treat equally the five components of
5-tuples.

Proof. — The maps do not depend on the choice of the representatives
v1, . . . , v5 and are well defined. Let ([z1 : 1], [z2 : 1], [z3 : 1], [0 : 1], [1 : 0]) be
a representative of a point (v1, v2, v3, v4, v5) in Q∗

5 (the proof is similar if the
5-tuple is not of that form). Then[

det(v1, v4)
det(v1, v5) : det(v2, v4)

det(v2, v5) : det(v3, v4)
det(v3, v5)

]
= [z1 : z2 : z3]

and [
det(v1, v3)
det(v1, v4) : det(v2, v3)

det(v2, v4)

]
=

[
z1 − z3

z1
: z2

z2 − z3

]
= f([z1 : z2 : z3])

so that the diagram is commutative. □

Corollary 3.6. — The monodromy representation of the fibration f :
Q∗

5 → Q∗
4 is a morphism π1(Q∗

4) → Mod0,4 such that the image of each
generator of π1(Q∗

4) is a right-handed Dehn twist, as drawn in Figure 3.3.

Remark 3.7. — The monodromy representation is a particular case of the
point pushing map appearing in the Birman exact sequence (see [10, Theo-
rem 4.6]). Indeed, viewing Q∗

4 as a sphere with 3 punctures, the monodromy
along (the homotopy class of) a loop γ in Q∗

4 is, according to Corollary 3.6
and Figure 3.3, the mapping class obtained by pushing the base point of Q∗

4
along γ.
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···

·

·

·

·

·

·
·

·

·

Figure 3.3. The monodromy of the forgetful mapping Q∗
5 → Q∗

4 along
the grey loop is a right-handed Dehn twist along the dashed loop.

4. The monodromy of the pencil of conics

A natural approach to understand and describe the mapping class group
Mod0,4 of the sphere with four marked points is to consider the torus with
four marked points. Indeed, the torus is a double branched covering space of
the sphere, with ramification over 4 points. The automorphism group is gen-
erated by the hyperelliptic involution: identifying the torus with the quotient
R2/Z2, the hyperelliptic involution is induced by the linear transformation
(x, y) 7→ (−x,−y) corresponding to the matrix −I2. The hyperelliptic invo-
lution stabilizes four points of the torus.

The group Mod1,1 is naturally isomorphic to SL2(Z), via the linear action
which descends to R2/Z2. By using the hyperelliptic involution this yields
the following classical isomorphism.

Fact 4.1. — Mod0,4 is isomorphic to Γ(2), the principal congruence
subgroup of level 2 in PSL2(Z), that is to say, the kernel of the morphism
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PSL2(Z) → PSL2(Z/2Z) induced by the reduction modulo 2 (not to be con-
fused with its counterpart in SL2(Z)).

The group Γ(2) has multiple interests in the present context, which are
not purely coincidental as shown in the following. Recall that the group
PSL2(Z) is a lattice in PSL2(R) generated by the elements

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)

and a fundamental domain is drawn in Figure 4.1. Alternatively, PSL2(Z) is
generated by S and TS. Those two are very particular elements of PSL2(Z),
since S is a hyperbolic rotation of angle π and TS is a hyperbolic rotation
of angle − 2π

3 , whose centers are corners of the fundamental domain drawn
in Figure 4.1, respectively i and eiπ/3 in the half-plane model.

With Figure 4.1, the following statement becomes quite straightforward.

Proposition 4.2. — The 3-punctured sphere (P1)u is homeomorphic to
the quotient Γ(2)\H2

R, which is a hyperbolic surface with 3 cusps. A presen-
tation of Γ(2) is ⟨T∞, T0, T1 | T∞T0T1 = 1⟩ where

T∞ = T 2 T1 = (TS)1T 2(TS)−1 T0 = (TS)2T 2(TS)−2.

0 1

∞
∞

0 1

Figure 4.1. A fundamental domain of PSL2(Z) in the half-plane and
disk models of hyperbolic plane. The skeleton of an ideal triangle
drawn with dashes.
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This diagram sums up the facts presented above.

Γ(2)
AA

isomorphism (4.1)

��

^^

uniformization (4.2)

��

Mod0,4 π1((P1)u)monodromy
oo

π1(Q∗
4)

Birman (3.7)

]]

cross ratio (3.4)

@@

Finally, the monodromy morphism π1((P1)u) → Mod0,4 is an isomor-
phism and it is quite elementary to determine whether the monodromy of a
loop is pseudo-Anosov by calculating the trace of the corresponding element
of Γ(2). Such an element may be given

(1) either in the form of a matrix, with the advantage of being able to
compute its trace easily,

(2) or as a product of the generators T∞, T0, T1, which allows to read
that element of Γ(2) as a loop in the sphere with three punctures.

However, if an element of Γ(2) is given in the latter form, rather than as
a matrix, there is no direct method for calcutating either its entries or its
trace other than computing the product.

5. A Lefschetz fibration of the Hirzebruch’s surface

Composing σ : Y1 → P̂2 and f : P̂2 → P1 yields a fibration f◦σ : Y1 → P1.

Let p be one of the four triple intersection points of the arrangement of
lines in P2, and q be one of the 52 points of X over p. Let C be the connected
curve in Y1 obtained by resolving the singular point q in X. By Lemma 2.8,
the Euler characteristic of C is (since n = 5 and m = 3 in the Lemma)

e(C) = 53−1(2− 3) + 3 · 53−2 = −10
so that C is a smooth curve of genus 6. The restriction σ|C : C → P(TpP2)
is a branched covering map of degree 52 which ramifies over the points in
P(TpP2) corresponding to the lines of the arrangement passing through p.
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The exact same goes for f ◦ σ|C : C → P1, since f|P(TpP2) : P(TpP2)→ P1 is
an isomorphism.

C �
�

//

σ|C
����

Y1

σ
����

f◦σ

����

P(TpP2) � � // P̂2

f
����

P1
##

cc

As well as the fibration f : P̂2 → P1 admits natural sections

P1 → P(TpP2) ⊂ P̂2,

one may want to show that the inclusion C → Y1 is a section of a fibration
Y1 → C. Indeed, Proposition 5.2 states that there exists a fibration Y1 → C
with connected fibers. In other words, its composition with the branched
covering map f ◦ σ|C : C → P1 is the Stein factorization of f ◦ σ : Y1 → P1.

The proof of Proposition 5.2 and that of Corollary 5.4 resort implicitly
and repeatedly to the following proposition.

Proposition 5.1. — Let X be a locally path-connected topological space,
χ : Y → X be a topological covering map and let x be a point in X.

(1) There is a natural action (on the right) of π1(X,x) over χ−1(x).
(2) If X is path-connected, then the mapping χ−1(x) → π0(Y ), which

maps any point y to the path-connected component of Y containing
y, induces a bijection χ−1(x)/π1(X,x)→ π0(Y ).

In other words, the orbit of a point y in χ−1(x) under the ac-
tion of π1(X,x) is exactly the intersection of χ−1(x) with the path-
connected components of Y containing y.

(3) If χ is a Galois covering map, then, for any y in χ−1(x), there exists
a morphism αy : π1(X,x)→ Aut(χ) such that yg = αy(g)y for any
g in π1(X,x).

(4) If χ is a Galois covering map and X is path-connected, then the
restriction χ|Z : Z → X to a path-connected component Z of Y
containing a point z is a Galois covering map whose Galois group
Aut(χ|Z) is naturally isomorphic to the subgroup Imαz of Aut(χ).

(5) If χ is a Galois covering map and Y is path-connected, then for any
y in χ−1(x),

1 // π1(Y, y) χ∗ // π1(X,x)
αy
// Aut(χ) // 1

is a short exact sequence.

– 791 –



Ruben Dashyan

Proposition 5.2. — There exists a fibration Y1 → C with connected
fibers, such that the inclusion C → Y1 is a section and that the following
diagram is commutative.

Y1

f◦σ

����

~~~~
C
/ �

>>

f◦σ|C     

P1

The curve C is of genus 6 and the generic fiber under Y1 → C is a smooth
curve of genus 76. The singular fibers under Y1 → C lie over the points of C
over which the branched covering map f ◦ σ|C : C → P1 is ramified, so that
there are 3× 5 such fibers.

Proof. — For any point b in P1, f−1(b) is the proper transform in P̂2 of
a conic in P2. f−1(b) and P(TpP2) meet at a single point, denoted by bp.

If b is not one of the three points for which f−1(b) is singular, then f−1(b)
does not intersect (the proper transforms of) the lines of the arrangement
but intersects the four exceptional curves P(Tp′P2). Since they intersect nor-
mally, (f ◦σ)−1(b) is smooth and the restriction σ|(f◦σ)−1(b) : (f ◦σ)−1(b)→
f−1(b) is a Galois branched covering map which ramifies exactly over the
intersection of f−1(b) with the four exceptional curves.

Let Z be a connected component of (f ◦ σ)−1(b). Consider the branched
covering map σ|Z : Z → f−1(b) and the corresponding unbranched one σ|Z

u :
Zu → f−1(b)u. Zu (obtained from Z by removing the branch points) is still
connected. Hence, given any base point z ∈ Zu, the Galois group Aut(σ|Z)
is naturally isomorphic to the image subgroup of αz : π1(f−1(b)u, σ(z)) →
Aut(σ). Since f−1(b)u is homeomorphic to a sphere with four punctures, the
fundamental group π1(f−1(b)u, σ(z)) is generated by the homotopy classes of
four loops around the punctures (three are actually enough). The subgroup
Imαz is hence generated (see Lemma 2.9) by (any three among) the four
elements ∏

D∋p′

αD.

Besides, StabAut(χ)(q) is generated (see Lemma 2.9) by the automorphisms
αD, for the lines D passing through p. It appears, on the one hand, that
StabAut(χ)(q)∩Aut(σ|Z) is the cyclic subgroup generated by

∏
D∋p αD which

acts trivially on C and, on the other hand, that StabAut(χ)(q) Aut(σ|Z) =
Aut(σ).
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As bp belongs to f−1(b), Z ∩ σ−1(bp) is not empty. Let z be a point in
the latter set and let α be an automorphism of σ such that α(z) ∈ C. Since
Aut(σ) = StabAut(χ)(q) + Aut(σ|Z), α may actually be chosen in Aut(σ|Z),
so that α(z) ∈ Z ∩ C. And since StabAut(χ)(q) ∩ Aut(σ|Z) acts trivially on
C, Z ∩ C contains exactly one point.

If b is one of the three points for which f−1(b) is singular, f−1(b) is more
precisely the union of (the proper tranforms of) two lines of the arrangement,
say D12 and D34, the former passing through triple intersection points de-
noted by p1 and p2 and the latter through p3 and p4. By a slight abuse of
notations, the proper transforms, denoted by D12 and D34, intersect at a
point p5 and each of them also intersects two of the exceptional curves, the
former at p1 and p2, the latter at p3 and p4. Since the intersections are nor-
mal, σ−1(D12) is smooth and the restriction σ : σ−1(D12)→ D12 is a Galois
branched covering map of degree 54 ramified over p1, p2, p5, with index 5.
The exact same goes for σ−1(D34) over p3, p4, p5.

Furthermore, if Z12 is a connected component of σ−1(D12), then
Aut(σ|Z12) is naturally isomorphic to the subgroup of Aut(σ) generated by

αD34

∏
D∋p1

αD
∏
D∋p2

αD

and if Z34 is a connected component of σ−1(D34), then Aut(σ|Z34) is natu-
rally isomorphic to the subgroup of Aut(σ) generated by

αD12

∏
D∋p3

αD
∏
D∋p4

αD.

Therefore, the subgroup of Aut(σ), denoted by H, preserving the connected
components of σ−1(D12 ∪ D34) is generated by αD12 , αD34 and the four
elements ∏

D∋p′

αD

with p′ ∈ {p1, p2, p3, p4}.

Let Z be a connected component of σ−1(D12 ∪D34) and let z be a point
in Z such that σ(z) = bp. Assuming that p = p1, bp is then the point
in P(TpP2) corresponding to the direction tangent to D12. In particular,
αD12(z) = z since σ(z) = bp. Let α be an automorphism of σ such that
α(z) ∈ C. Since Aut(σ) = StabAut(χ)(q) + H, α may actually be chosen in
H, so that α(z) ∈ Z ∩ C. And since StabAut(χ)(q) ∩ H acts trivially on z,
Z ∩ C contains exactly one point.

In conclusion, each connected component of (f ◦ σ)−1(b) meets C at
exactly one point and one can define a fibration Y1 → C by mapping any
connected component of (f ◦ σ)−1(b) to the only point in its intersection
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with C. This fibration is nothing but the Stein factorization of f ◦ σ, since
the fibers of Y1 → C are exactly the connected components of those of
f ◦ σ : Y1 → P1.

As f◦σ|C : C → P1 is a branched covering map of degree 52, a generic fiber
(f ◦σ)−1(b) has then 52 connected components and total Euler characteristic

55(2− 4) + 54 × 4 = −6× 54

so that each connected component has Euler characteristic −6×52 and genus
1 + 3× 52 = 76. □

In the remainder of the present section, the base curve and the generic
and singular fibers are studied in more detail.

Notation 5.3. — In the following, fundamental groups of the spaces at
play will be considered quite often. In order to avoid choosing base points
each time, one should choose them once and for all. Let y0 be a base point in
Y1
u which will also serve as a base point of Y1. Let c0 denote the projection

of y0 to C so that c0 will be the base point of both C and Cu. Besides, the
fiber over c0 of Y1 → C will be denoted by F0 and will be called the base
fiber. The point y0 belongs to F0 and will be its base point. One may obtain
base points similarly for P̂2, P̂2

u
, P(TpP2), P(TpP2)u, P1 and (P1)u.

Corollary 5.4. — The 15 singular fibers under Y1 → C are isomor-
phic to

(S12 × I34) ∪ (I12 × S34)
where S12 and S34 are connected components of σ−1(D12) and σ−1(D34)
respectively and I12 and I34 are the subsets of S12 and S34 respectively whose
points lie over the intersection point of D12 and D34.

S12 is a compact curve of genus 6 and a Galois branched covering space
of D12, of degree 52, ramified over three points and I12 consists of 5 points.
The exact same goes for S34 and I34.

Proof. — Let D12 and D34 denote the two irreducible components of
a singular fiber of P̂2 → P1 (see Figure 3.1). Then σ−1(D12) is a Galois
branched covering space of D12 of degree 55−1 = 54 and ramified over 3
points with ramification index 5 (one is the point where D12 and D34 in-
tersect and the other two are points where D12 intersects two of the four
exceptional curves). Hence the Euler characteristic of σ−1(D12) is

54(2− 3) + 3× 53 = −2× 53.

Let S12 be a connected component of σ−1(D12). The Galois group Aut(σ|S12)
is isomorphic to the quotient of the subgroup of Aut(σ) generated by the
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Figure 5.1. Two representations of the shape of the 15 singulars fibers:
one on the left where the irreducible components are symbolically
represented as line segments, one on the right where the irreducible
components are more realistic whereas their intersection points are
marked as thick dots.

three elements (two are actually enough)

α34, α12α13α23, α12α14α24

by ⟨α12⟩. The fiber has then 52 connected components, so that each of them
has Euler characteristic −2× 5 and genus 1 + 5 = 6. The same goes for the
connected components of σ−1(D34). Let S34 be one of them and assume that
it meets S12 at a point q. The Galois group Aut(σ|S34) is isomorphic to the
quotient of the subgroup of Aut(σ) generated by the elements

α12, α34α13α14, α34α23α24

by ⟨α34⟩. Since the intersection of the subgroups

⟨α34, α12α13α23, α12α14α24⟩ and ⟨α12, α34α13α14, α34α23α24⟩

is ⟨α12, α34⟩ which acts trivially on the point q, S12 and S34 meet at exactly
one point.

The connected component of σ−1(D12 ∪ D34) containing q is the union
of the orbit of S12 under the action of ⟨α34, α12α13α23, α12α14α24⟩ and the
orbit of S34 under the action of ⟨α12, α34α13α14, α34α23α24⟩. These orbits
consists of five copies of S12 and S34 respectively (see Figure 5.1). □

Remarks 5.5. — The curves S12 and S34 are biholomorphic since they
are covering spaces of lines of the arrangement which play symmetric roles.
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The resolution of the 52 singularities of the singular fibers yields curves
of genus 6× (5 + 5) + (5− 1)2 = 76 (see Figure 5.1), which is indeed equal
to the genus of the generic fiber.

The following lemma aims at describing the kernel of a morphism from a
free group to a finite abelian group. Consider the topological interpretation
of a free group as a fundamental group of a wedge sum of circles. More
precisely, the image in the torus Rm/Zm of the coordinate axes of Rm is a
wedge sum ofm circles, denoted byBm, with a base point b. The fundamental
group π1(Bm, b) is indeed a free group with m generators c1, . . . , cm. The
group morphism π1(Bm, b) → Zm induced by the inclusion Bm → Rm/Zm
is nothing but the abelianization morphism, mapping the generator c1 to the
element (1, 0, . . . , 0) and so on.

Lemma 5.6. — If R is a subgroup of Zm of index d then the torus Rm/R
is naturally a covering space of Rm/Zm, of degree d. Let B̂m denote the
covering space of Bm, obtained by pulling back Bm as follows.

(B̂m, b̂) �
�

//

����

(Rm/R, 0)

����

(Bm, b) �
�

// (Rm/Zm, 0)

Then the kernel of the morphism π1(Bm, b) → Zm/R is isomorphic to the
fundamental group π1(B̂m, b̂). Moreover, B̂m has the homotopy type of a
wedge sum of d(m− 1) + 1 circles.

If R = kZm, then d = km and the kernel of π1(Bm, b) → (Z/kZ)m is
generated by the elements c1

k, . . . , cm
k and the commutators [cip, cjq] for

1 ⩽ i, j ⩽ m and 1 ⩽ p, q ⩽ k.

Proof. — All the assertions are quite straightforward. The Euler charac-
teristic of Bm is e(Bm) = 1 −m. Thus that of B̂m is e(B̂m) = d e(Bm) =
d(1−m). Since B̂m has the homotopy type of a wedge of circles, the number
of those circles must be d(m− 1) + 1. □

Proposition 5.7. — As a covering space of (P1)u, Cu admits a hyper-
bolic structure. More precisely, Cu is homeomorphic to the quotient of H2

R by
the normal subgroup of Γ(2) of index 52 formed by all the possible products
of T∞, T0 and T1 (and their inverses) where the numbers of occurrences of
T∞, T0 and T1 respectively (counted with their multiplicity, say, p for T∞

p)
differ by multiples of 5. Besides, that group is generated by T∞

5, T0
5, T1

5

and commutators of powers of T∞, T0, T1.
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Remark 5.8. — Since the generators T∞, T0, T1 satisfy the relation

T∞T0T1 = 1,

the previous properties may be written only in terms of two of the generators.
As a fundamental group of a sphere with three punctures, π1(Cu) is indeed
isomorphic to the free group with two generators, say T∞ and T0.

Any element of π1(Cu), written as a product of T∞, T0 and T1, may
be interpreted as (the homotopy class of) the lift to Cu of a loop in (P1)u
obtained by turning around the puncture corresponding to the factor T∞,
T0 or T1, each time one of them appears in the product. Representing a loop
in (P1)u rather than in Cu is indeed easier since Cu is a Riemann surface of
genus 6 with 15 punctures.

Proof. — The unbranched covering map σ : Cu → (P1)u induces a short
exact sequence

1 // π1(Cu, y)
(σ|Cu )∗
// π1((P1)u, σ(y))

αy
// Aut(σ|Cu) // 1

where y denotes the base point of Cu. Identify π1((P1)u, σ(y)) with

Γ(2) = ⟨T∞, T0, T1 | T∞T0T1 = 1⟩

(see Proposition 4.2). With Lemma 2.9, the image of T∞ by αy is the auto-
morphism αD of σ where D is the line of the arrangement corresponding, in
the identification of Γ(2)\H2

R with (P1)u and P(TpP2), to the image of ∞.
And similarly for 0 and 1.

Identify Aut(σ|C) with (Z/5Z)2 so that the morphism αy : Γ(2) →
(Z/5Z)2 maps T∞ to (1, 0), T0 to (0, 1) and T1 to (−1,−1). Since π1(Cu, y)
is isomorphic to the kernel of αy, it is also isomorphic to the subgroup of
Γ(2) formed by the products of T∞, T0 and T1 (and their inverses) where
the number of occurrences of T∞, T0 and T1 respectively (counted with their
multiplicity, say, p for T∞

p) differ by multiples of 5.

According to Lemma 5.6, π1(Cu, y) is isomorphic to the subgroup of Γ(2)
generated by T∞

5, T0
5, T1

5 and commutators of powers of T∞, T0, T1. □

The Riemann surface C may also be uniformized. Instead of cusps and
parabolic isometries as on (P1)u and Cu, consider the hyperbolic orbifold
structure on P1 where the three points in P1 \ (P1)u have conic angle 2π/5.
Such a structure may be constructed by considering a (regular) hyperbolic
triangle with angle π/5 at each vertex. Thus the quotient of H2

R by the tri-
angle group T (5, 5, 5) is an orbifold homeomorphic to P1: the triangle group
T (5, 5, 5) is the subgroup of index 2, formed by the orientation-preserving
isometries, of the group generated by the reflections with respect to the
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Figure 5.2. A hyperbolic triangle with angle π/5 at each vertex.

sides of the hyperbolic triangle with angle π/5 at each vertex. It is gener-
ated by the rotations of angle 2π/5 around the vertices of the triangle and
any two adjacent translates of the triangle form a fundamental domain. Let
R1, R2, R3 denote the rotations of angle 2π/5 around the vertices of such a
triangle, indexed such that they satisfy the relation R3R2R1 = 1.

Proposition 5.9. — The Riemann surface C is homeomorphic to the
quotient of H2

R by the normal subgroup of T (5, 5, 5) of index 52 formed by
all the possible products of R1, R2 and R3 (and their inverses) where the
numbers of occurrences of R1, R2 and R3 respectively (counted with their
multiplicity, say, p for R1

p) differ by multiples of 5. Besides, that group is
generated by commutators of powers of R1, R2, R3.

Proof. — Similar to the proof of Proposition 5.7. □

Proposition 5.10. — The surjective morphism π1(Cu) → π1(C) in-
duced by the inclusion Cu → C is the restriction (to the corresponding sub-
groups) of the morphism Γ(2)→ T (5, 5, 5) mapping T∞, T0, T1 to R3, R2, R1
respectively. In particular, the kernel is the smallest normal subgroup of Γ(2)
generated by T∞

5, T1
5, T0

5. The kernel contains all the parabolic elements of
π1(Cu).

Proof. — Following Propositions 5.7 and 5.9, π1(Cu) and π1(C) are iden-
tified to subgroups of Γ(2) and T (5, 5, 5) respectively, in such a way that the
diagram

π1(Cu)

����

� � // Γ(2) ≃ π1((P1)u)

����

π1(C) �
�

// T (5, 5, 5)
is commutative, where T (5, 5, 5) is seen as the fundamental group of quo-
tient orbifold and that the morphism Γ(2)→ T (5, 5, 5) maps the generators

– 798 –



Construction of representations of 3-manifold groups

T∞, T0, T1 to R3, R2, R1 respectively. Observe that the kernel of the latter
morphism is the smallest normal subgroup of Γ(2) generated by the three
elements T∞

5, T1
5, T0

5. As these elements belong to π1(Cu), the kernel of the
morphism π1(Cu) → π1(C) is also the smallest normal subgroup of π1(Cu)
generated by T∞

5, T1
5, T0

5.

Any parabolic element of π1(Cu) is conjugate in Γ(2) to a power of T∞,
T0 or T1, hence to a power of T∞

5, T0
5 or T1

5 according to Proposition 5.7.
Therefore, any parabolic element is contained in the kernel. □

Recall that the morphism π1(C) → π1(Y1) is injective (see Proposi-
tion 5.2) and that π1(Y1) is isomorphic to a lattice in Isom(H2

C).

Proposition 5.11. — The image of π1(C) in Isom(H2
C) stabilizes a

complex line in H2
C.

Proof. — T. Yamazaki and M. Yoshida have determined a lattice in
Isom(H2

C), that they denote by G1, such that P̂2 appears as the quotient
of H2

C by G1 and that Hirzebruch’s surface Y1 is the quotient by the commu-
tator subgroup [G1, G1] [20, Section 4]. According to Proposition 5.9, π1(C)
is isomorphic to a subgroup of the triangle group T (5, 5, 5) generated by
commutators of powers of R1, R2, R3. Those elements correspond to loops
around the three lines of the arrangement passing through a common triple
point. Their images in G1 are of the form R(ij), R(jk), R(ik) for some dis-
tinct indices i, j and k (see [20, Section 2]). Choosing for example, R(01),
R(02) and R(12), it appears that those matrices preserve the line in C3 di-
rected by (0, 0, 1), which is positive. Therefore they preserve a complex plane
in C3 with signature (1, 1) and hence a complex line in H2

C. □

6. Representations of 3-manifold groups

Recall Notation 5.3 about base points of fundamental groups. For any
element γ in π1(Cu), letMγ → R/Z be the surface bundle over the circle with
fiber F0 and where the homeomorphism is the monodromy of the fibration
Y1
u → Cu along γ. If a loop R/Z→ Cu represents γ, then there is a natural

mapping Mγ → Y1 such that the diagram

Mγ
//

����

Y1

����

R/Z // C

is commutative. For instance, if the loop R/Z → Cu happens to be an
embedding or an immersion, then the same goes for Mγ → Y1.
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The mapping Mγ → Y1 induces a morphism ργ : π1(Mγ) → π1(Y1) and
hence a representation into a complex hyperbolic lattice. The manifold Mγ ,
the fibration Mγ → R/Z and of course the conjugacy class of the represen-
tation ργ depends only on the conjugacy class of γ in π1(Cu). Observe that
it does depend on the orientation of γ.

The group π1(Mγ) is isomorphic to the semi-direct product ⟨γ⟩⋉π1(F0).

1 // π1(F0) �
�

// π1(Mγ) // //

ργ

��

⟨γ⟩?
_oo //

��

1

π1(Y1) // // π1(C)? _oo

Proposition 6.1. — For any γ in π1(Cu), the limit set of the image of
the representation ργ : π1(Mγ)→ π1(Y1) is all of ∂∞H2

C.

The proposition shows that the representation ργ is quite chaotic. If the
limit set were not all ∂∞H2

C, then a natural question would have been to
understand the quotient by the image of ργ , of its domain of discontinu-
ity, which might have given rise to a spherical Cauchy–Riemann structure.
However, the domain of discontinuity will always be empty with this kind of
construction which relies on a (singular) fibration of the complex hyperbolic
manifold.

Proof. — Since π1(Y1) is (isomorphic to) a uniform lattice, its limit set
Λ(π1(Y1)) is all of ∂∞H2

C and π1(Y1) does not preserve any point on the
boundary. Besides, since the fundamental group of the fiber of Y1

u → Cu is a
normal subgroup of π1(Y1

u), its image by the surjective morphism π1(Y1
u)→

π1(Y1) is a normal subgroup N of π1(Y1).

If the limit set Λ(N) of N were empty, then N would have been contained
in a compact subgroup of Isom(H2

C). As N is discrete, N would have been
finite and π1(C) would have been of finite index in π1(Y1) which is impossible.

Therefore, since N is a normal subgroup of π1(Y1), that Λ(N) is not
empty and that π1(Y1) does not preserve any point on the boundary, Λ(N)
is equal to Λ(π1(Y1)). Finally, since π1(Mγ) contains π1(F0), the limit set of
the image of π1(Mγ)→ π1(Y1) is all ∂∞H2

C. □

Proposition 6.2. — For any element γ in π1(Cu), if its image in π1(C)
is not trivial, then

(1) the kernel of ργ is equal to the kernel of π1(F0)→ π1(Y1),
(2) the monodromy of the fibration Y1

u → Cu along γ is pseudo-Anosov,
(3) the surface bundle Mγ admits a real hyperbolic structure,
(4) the kernel is not of finite type.
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Example 6.3. — Consider the element

T1T0T∞ = T1T0T1
−1T0

−1 = [T1, T0] =
(

5 8
8 13

)
in Γ(2) which corresponds to a element of π1(Cu), according to Proposi-
tion 5.7. The trace of the matrix is 18 so that the monodromy along the
corresponding loop is pseudo-Anosov. The corresponding element of Mod0,4
is the commutator of Dehn twists along intersecting loops.

Proof. — As the morphism π1(C) → π1(Y1) induced by the inclusion of
C in Y1 is injective, the image in π1(Y1) of an element in π1(Cu) is trivial if
and only if its image in π1(C) is trivial.

Any element of π1(Mγ) may be written as a product of the form γmω with
m in Z and ω in π1(F0). The image of such an element by the composition
π1(Mγ) → π1(Y1) → π1(C) is the image of γm. Now, γm is in ker ργ if and
only if m = 0, hence ker ργ is contained in π1(F0).

Since γ is not in the kernel of the morphism π1(Cu) → π1(C), it is
a hyperbolic element of π1(Cu), according to Proposition 5.10. The corre-
sponding element of Γ(2) has a representing matrix conjugate to a diagonal
matrix whose entries are real numbers, inverse of each other. The action of
the representing matrix on the plane has two privileged directions or folia-
tions, one that is contracted and one that is dilated. The same goes for the
action of the element of Γ(2) on the sphere with 4 marked points and for
the action on F0 of the monodromy along γ. In other words, the monodromy
of the fibration along γ is pseudo-Anosov (see [3] and [10, Section 11.2 and
Theorem 13.2]).

According to Thurston’s hyperbolization theorem for surface bundles over
the circle [11, 16, 18], Mγ admits a real hyperbolic structure.

The kernel of π1(F0) → π1(Y1) is a subgroup invariant by the pseudo-
Anosov monodromy of γ. According to [16, Lemma 6.2.5], if such a subgroup
is of finite type, then it is of finite index. However, since the limit set of the
image of π1(F0) in π1(Y1) is all of ∂∞H2

C, the image of π1(F0) → π1(Y1)
cannot be finite and its kernel cannot be of finite index. Therefore, the kernel
is not of finite type. □

Theorem 6.4. — For any two γ1 and γ2 in π1(Cu), if the image in
π1(C) of γ1 is not conjugate to that of γ2 or its inverse, then either the
groups π1(Mγ1) and π1(Mγ2) are not isomorphic or, if such an isomorphism
Φ : π1(Mγ1)→ π1(Mγ2) exists, then the representations ργ1 and ργ2 ◦ Φ are
not conjugate.
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Proof. — Let γ1 and γ2 be two elements in π1(Cu). Assume that there
exists an isomorphism Φ : π1(Mγ1)→ π1(Mγ2) and that the representations
ργ2 ◦ Φ and ργ1 are conjugate. In other terms, there exists an element φ0ψ0
in π1(Y1

u), with φ0 in the fundamental group of the fiber and ψ0 in π1(Cu),
such that the diagram

π1(Mγ1) Φ //

ργ1

��

π1(Mγ2)

ργ2

��

π1(Y1)
Intρ(φ0ψ0)

// π1(Y1)

is commutative, where Intρ(φ0ψ0) is the inner automorphisms of π1(Y1) as-
sociated to ρ(φ0ψ0). By replacing γ1 by ψ0γ1ψ0

−1, one may assume that
ψ0 = 1. Therefore the diagram

π1(Mγ1) Φ //

ργ1

��

π1(Mγ2)

ργ2

��

π1(Y1)

%%

Intρ(φ0)
// π1(Y1)

yy

π1(C)

is commutative. In particular, the images of π1(Mγ1) and π1(Mγ2) in π1(C)
are equal. The image is generated indifferently by the image of γ1 or γ2 and
is either trivial or an infinite cyclic subgroup. Hence the image γ1 is equal
to that of γ2 or its inverse. □
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