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An explicit estimate of the Bergman kernel
for positive line bundles (∗)

Xu Wang (1)

ABSTRACT. — We shall give an explicit estimate of the lower bound of the
Bergman kernel associated to a positive line bundle. In the compact Riemann surface
case, our result can be seen as an explicit version of Tian’s partial C0-estimate.

RÉSUMÉ. — Nous donnerons une estimation explicite de la borne inférieure du
noyau de Bergman associé à un fibré de droites positif. Dans le cas de la surface
compacte de Riemann, notre résultat peut être vu comme une version explicite de
l’estimation partielle C0 de Tian.

1. Introduction

Let (L, e−ϕ) be a positive line bundle over an n-dimensional complex
manifold X. Let m be a positive integer. Let KX be the canonical line
bundle over X. We call

Kmϕ(x) := sup
u∈H0(X,KX +mL)

u(x) ∧ u(x) e−mϕ(x)∫
X
u ∧ u e−mϕ , (1.1)

the Bergman kernel forms and

Bmϕ(x) := sup
u∈H0(X,mL)

|u(x)|2e−mϕ(x)∫
X

|u|2e−mϕ MAmϕ
, MAmϕ := (i∂∂(mϕ))n

n! , (1.2)

the Bergman kernel functions. In [21] Tian proved that if X is compact then
(rigorously speaking, Tian only proved the identity for the Bergman kernel
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function, but the Hörmander method used in his proof also applies to the
Bergman kernel form)

lim
m→∞

Kmϕ

MAmϕ
= lim
m→∞

Bmϕ = 1
(2π)n . (1.3)

Effective lower bound estimate (with Ricci curvature, diameter and vol-
ume assumptions) for Bmϕ is known as Tian’s partial C0-estimate [22]. The
first general result is obtained by Donaldson–Sun [10] using proof by contra-
diction. Our main results are the followings:

Theorem A. — Let (L, e−ϕ) be a positive line bundle over a compact
Riemann surface X. Put ω := MAϕ = i∂∂ϕ. Denote by Ricω := i∂∂ logω
the Ricci form of ω. Assume that

Ricω ⩽ ω, L0 ⩾ 2π,
where L0 denotes the infimum of the length of closed geodesics in X, then

Kϕ/MAϕ ⩾
1

8π .

Theorem B. — Let (L, e−ϕ) be a positive line bundle over a compact
Riemann surface X. If

−ω/2 ⩽ Ricω ⩽ ω/2, L0 ⩾ 2π
√

2,
then Bϕ ⩾ 1

16π .

Remark. — There always exist closed geodesics on a compact Riemann
surface. In case X = P1 and ω = 2 · i∂∂ log(1 + |z|2) we have

Ricω = ω, L0 = 2π,
a direct computation gives L = −KX and Kϕ/MAϕ = 1

4π . We do not know
whether

Kϕ/MAϕ ⩾
1

4π
is always true with the assumptions in Theorem A. On the other hand,
Theorem A implies Kmϕ/MAmϕ ⩾ 1/(8π) for every positive integer m. This
is also nearly optimal since by (1.3)

lim
m→∞

Kmϕ/MAmϕ = 1/(2π).

In case Ricω ⩽ 0, L0/2 is equal to the injectivity radius by Klingenberg’s
estimate (let c go to infinity in (3.4)). For example if X = C/Γ is a torus
and ω = i∂∂(|z|2/2) then Ricω = 0 and L0 = inf0 ̸=γ∈Γ |γ|.

In the first version of this paper, a weaker version of the above theorems
is proved using an Ohsawa–Takegoshi type theorem, a variant of the Blocki–
Zwonek estimate [6] and the isoperimetric inequality. Later we find that one
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may use the Hessian comparison theorem to simplify the proof and generalize
the above theorems to the following higher dimensional cases.

Theorem An. — Let (L, e−ϕ) be a positive line bundle over an
n-dimensional compact complex manifold X. Assume that the sectional cur-
vature of ω := i∂∂ϕ is bounded above by 1/(4n) and L0 ⩾ 2π

√
n then

Kϕ/MAϕ ⩾ 1
2

n!
(4πn)n .

Theorem Bn. — Let (L, e−ϕ) be a positive line bundle over an
n-dimensional compact manifold X. Assume that the sectional curvature of
ω := i∂∂ϕ is bounded above by 1/(8n), L0 ⩾ 2π

√
2n and Ricω ⩾ −ω/2.

Then Bϕ ⩾ 1
2

n!
(8πn)n .

Remark. — Since the Ricci curvature is certain sum of sectional curva-
ture, the curvature assumptions in Theorem Bn also imply a lower bound
of the sectional curvature. Hence one may use [13, Corollary 2.3.2] to find a
lower bound of L0 in terms of the lower bound of the volume and the upper
bound of the diameter. Thus, except for the upper bound of the sectional
curvature, the assumptions in Theorem Bn follow from the standard assump-
tions in Tian’s partial C0-estimate (for results on Tian’s partial C0-estimate,
see [1, 7, 8, 10, 14, 15, 16, 20, 23, 24, 26], etc). Our main contribution is the
explicit constant in the estimate. Moreover, our estimate implies that

Bmϕ ⩾
1
2

n!
(8πn)n (⋆)

for all positive integers m. From the last section in [10], it seems that for
general positive line bundles over higher dimensional manifolds, the Ricci
curvature assumptions might not enough to derive (⋆).
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2. Hessian comparison theorem

Definition 2.1. — Let X be a Riemann manifold. Denote by K(V,W )
the sectional curvature of the tangent plane spanned by V,W . Fix x ∈ X,
the injectivity radius at x ∈ X is defined as

inj(x) := sup{r > 0 : expx |B(0,r) is diffeomorphism}
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where expx : TxX → X denotes the exponential map at x and B(0, r) denotes
the ball of radius r around 0 ∈ TxX. We call injX := infx∈X inj(x) the
injectivity radius of X.

The following ∂∂-comparison theorem is a direct consequence of the Hes-
sian comparison theorem (see [11, Lemma 1.13 in p. 14 and Theorem A in
p. 19]).

Theorem 2.2. — Let X1, X2 be Kähler manifolds. Let γ1 : [0, b] → X1
and γ2 : [0, b] → X2 be unit speed geodesics. With the definition above,
suppose that

b ⩽ min{inj(γ1(0)), inj(γ2(0))} (2.1)
and for all t ∈ [0, b], v1⊥γ̇1(t) and v2⊥γ̇2(t),

K(γ̇1(t), v1) ⩽ K(γ̇2(t), v2). (2.2)

Let dj := d( · , γj(0)) be distance functions. If f : (0, b) → R is smooth and
increasing then

i∂∂(f ◦ d1)(V1, V1) ⩾ i∂∂(f ◦ d2)(V2, V2) (2.3)

for all t ∈ (0, b), Vj ∈ Tγj(t)Xj, j = 1, 2, such that |V1| = |V2| and

(γ̇1(t), V1) = (γ̇2(t), V2), (γ̇1(t), JV1) = (γ̇2(t), JV2).

We shall apply the above theorem to X2 = Pn with the Fubini study
metric form ω2 = 2 i∂∂ log(1 + |z|2). A direct computation gives

K(V,W ) = 1
4

(
1 + 3(V, JW )2)

, ∀ V⊥W, inj(x) = π. (2.4)

In particular, K(V,W ) = 1 in case n = 1 and K(V,W ) ⩾ 1/4 in case n ⩾ 2.
We also need the following distance function formula on Cn ⊂ Pn

d2 := d(0, z) = 2
∫ |z|

0

dx
1 + x2 = 2 arctan |z|.

Put
ψ = log sin2(d2/2)

we have

ψ = log tan2(d2/2)
1 + tan2(d2/2)

= log |z|2 − log(1 + |z|2) ⩽ 0

and
i∂∂ψ ⩾ −i∂∂ log(1 + |z|2) = −ω2/2.

Apply the above theorem to f(x) = log sin2(x/2) and b = π we get:
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Corollary 2.3. — Let (X1, ω1) be an n-dimension Kähler manifold.
Fix x ∈ X1. Put

ψ(z) :=
{

log sin2(d(z, x)/2) d(z, x) ⩽ π

0 d(z, x) > π.

Assume that inj(x) > π and{
the sectional curvature of ω1 is no bigger than 1, n = 1;
the sectional curvature of ω1 is no bigger than 1/4, n ⩾ 2,

then i∂∂ψ ⩾ −ω1/2 on X.

Proof. — By the lemma below, we can write

ψ(z) = 2f(d(z, x)/2).

Since inj(x) > π, we know that d(z, x) is smooth on a neighborhood of
{d(z, x) ⩽ π}, hence the lemma below implies that ψ is C1,1 on X1. Thus
it suffices to verify positivity (in the sense of current) of i∂∂ψ + ω1/2 on
{d(z, x) ̸= π}, which follows directly by the theorem above. □

Lemma 2.4. — The following function

f(t) =
{

log sin t 0 < t ⩽ π/2
0 t > π/2

is C1,1 in t > 0.

Proof. — By a direct computation, we have

f ′(t) =
{

cos t/ sin t 0 < t ⩽ π/2
0 t > π/2

, f ′′(t) =
{

− sin−2 t 0 < t ⩽ π/2
0 t > π/2.

Hence f ′ is continuous and f ′′ is locally bounded and the lemma follows. □

3. An Ohsawa–Takegoshi type theorem

We shall use the following Ohsawa–Takegoshi type theorem [4, 18, 19],
which is a special case of the main theorem in [12].

Theorem 3.1. — Let (L, e−ϕ) be a positive line bundle on an
n-dimensional compact complex manifold. Fix x ∈ X. Assume that there
is a non-positive function G smooth outside x such that G(z) − log |z − x|2n
is smooth near x and

i∂∂ϕ+ λ i∂∂G ⩾ 0
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on X for some constant λ > 1. Then Kϕ in (1.1) satisfies
Kϕ(x)

MAϕ(x) ⩾
λ− 1
λ

lim
t→−∞

1
e−t

∫
G<t

MAϕ
, (3.1)

where MAϕ is defined in (1.2).

Proof. — Let us rephrase the proof in [18]. Our curvature assumption
implies that

ϕt+is := ϕ+ λmax{G− t, 0}
defines a singular metric on Ct+is × L with non-negative curvature current.
Hence Berndtsson’s theorem [2] implies that (notice that ϕt(x) = ϕ(x))

log
Kϕt(x)
MAϕ(x)

is a convex function of t. By a direct computation (see the lemma below, see
also the appendix in [18] or Theorem 3.8 in [3]) we find that

lim
t→−∞

et
Kϕt(x)
MAϕ(x) = λ− 1

λ
lim

t→−∞

1
e−t

∫
G<t

MAϕ
(3.2)

is finite since G(z)− log |z−x|2n is smooth near x. Hence etKϕt(x)/MAϕ(x),
as a convex function of t bounded near −∞, must be increasing. Thus

Kϕ(x) = e0Kϕ0(x) ⩾ lim
t→−∞

etKϕt(x) = λ− 1
λ

lim
t→−∞

MAϕ(x)
e−t

∫
G<t

MAϕ

gives our estimate. □

Lemma 3.2. — Put

∥F∥2
t :=

∫
X

in
2
F ∧ Fe−ϕ−λmax{G−t,0}, F ∈ H0(X,KX + L),

then

lim
t→−∞

e−t∥F∥2
t = λ

λ− 1
in

2
F (x) ∧ F (x)e−ϕ(s)

MAϕ(x) lim
t→−∞

e−t
∫
G<t

MAϕ.

Proof. — Consider a positive Borel measure µ on X defined by

dµ := in
2
F ∧ F e−ϕ.

Then

µ(X) =
∫
X

in
2
F ∧ F e−ϕ, µ(G < s) =

∫
G<s

in
2
F ∧ F e−ϕ,

and we have

∥F∥2
t =

∫
X

e−χ(G−t) dµ, χ(s) := λmax{s, 0}.
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Since G ⩽ 0 on X, using the Lebesgue–Stieltjes integral we can write∫
X

e−χ(G−t) dµ = eλtµ(X) −
∫ 0

−∞
µ(G < s) de−χ(s−t), (3.3)

Since µ(X) is finite (note that X is compact) and λ > 1, we have

lim
t→−∞

e−t∥F∥2
t = lim

t→−∞

(
−e−t

∫ 0

−∞
µ(G < s) de−χ(s−t)

)
= lim
t→−∞

(
−e−t

∫ 0

t

µ(G < s) de−λ(s−t)
)

= lim
t→−∞

(
λ

∫ 0

t

µ(G < s)e−se−(λ−1)(s−t) ds
)

= lim
t→−∞

(
λ

∫ −t

0
µ(G < a+ t)e−(a+t)e−(λ−1)a da

)
=

(
λ

∫ ∞

0
e−(λ−1)a da

)
lim

s→−∞

(
µ(G < s)e−s)

= λ

λ− 1 lim
s→−∞

e−s
∫
G<s

in
2
F ∧ Fe−ϕ,

which gives the lemma (note that {G<s} converges to the single point x).
□

3.1. Proof of Theorem A, B, An, Bn

Proof of Theorem A, An. — By Klingenberg’s estimate (see [25, Corol-
lary 1.2]), if the sectional curvature is no bigger than 1/c then we have

min{L0/2,
√
c π} ⩽ injX ⩽ L0/2. (3.4)

Hence our assumptions implies that the injectivity radius of (X,ω/n), ω :=
i∂∂ϕ, is no less than π. Thus one may apply Corollary 2.3 to (X1, ω1) =
(X,ω/n). Put G = nψ. Corollary 2.3 implies that

i∂∂ϕ+ 2 i∂∂G ⩾ 0.

By Theorem 3.1 (λ = 2), we get

Kϕ(x)
MAϕ(x) ⩾

1
2 lim
t→−∞

1
e−t

∫
nψ<t

MAϕ
= 1

2 lim
t→−∞

1
e−t

∫
log sin2n(d(z,x)/2)<t

ωn

n!
.
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Note that lims→0
sin s
s = 1 gives

lim
t→−∞

1
e−t

∫
log sin2n(d(z,x)/2)<t

ωn

n!
= lim
t→−∞

1
e−t

∫
d(z,x)<2et/(2n)

nnωn
1

n!

= 1
πn

n! 22nnn
,

from which Theorem A, An follows. □

Proof of Theorem B, Bn. — By the Ricci curvature assumption, ϕ and
i∂∂ϕ defines a metric on L−KX with curvature

iΘ = ω + Ricω ⩾ ω/2.
Thus one may apply Corollary 2.3 to (X1, ω1) = (X,ω/(2n)). Put G = nψ
then

iΘ + 2 i∂∂G ⩾ 0.
Apply Theorem 3.1 to L−KX , we get Theorem B, Bn. □

4. Another proof of a weaker version of Theorem A, B

In this section we shall give another proof of Theorem A, B with an extra
volume assumption.

Theorem C. — Let (L, e−ϕ) be a positive line bundle over a compact
Riemann surface X. If∫

X

ω ⩾ 8π, Ricω ⩽ ω, L0 ⩾ 2π,

then Kϕ/MAϕ ⩾ 1
8π .

Theorem D. — Let (L, e−ϕ) be a positive line bundle over a compact
Riemann surface X. If∫

X

ω ⩾ 16π, −ω/2 ⩽ Ricω ⩽ ω/2, L0 ⩾ 2π
√

2,

then Bϕ ⩾ 1
16π .

4.1. The Blocki–Zwonek estimate

We shall study the right hand side of (3.1) using a variant of Blocki–
Zwonek’s estimate [6, Proof of Theorem 3] (see also [5, Section 10] for related
results).
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Lemma 4.1. — With the notation in Theorem 3.1. Let ω be an arbitrary
Kähler form on X. Then

d
dt

∫
G<t

ωn ⩾
σ(G = t)2

2
∫
G<t

i∂∂G ∧ ωn−1
, ωq := ωq/q!,

where

σ(G = t) :=
∫
G=t

dσ, dσ :=
√

2
∑ Gαω

αβ

|∂G|ω
∂

∂zβ
⌋ωn,

is the measure of the hypersurface {G = t} with respect to ω.

Proof. — Notice that

V := ∂

∂t
+

∑ Gαω
αβ

|∂G|2ω

∂

∂zβ

satisfies V (G−t) = 0, hence it can be used to compute d
dt

∫
G<t

, in particular,
we have

d
dt

∫
G<t

ωn =
∫
G<t

LV ωn =
∫
G=t

V ⌋ωn = 1√
2

∫
G=t

dσ
|∂G|ω

.

Hence the Cauchy–Schwarz inequality gives
d
dt

∫
G<t

ωn ⩾
σ(G = t)2

√
2

∫
G=t |∂G|ω dσ

= σ(G = t)2

2
∫
G=t i∂G ∧ ωn−1

= σ(G = t)2

2
∫
G<t

i∂∂G ∧ ωn−1
,

where we use the Stokes theorem in the last equality. □

Since
G1 ⩽ G2 =⇒

∫
G2<t

ωn ⩽
∫
G1<t

ωn,

in order to get the best estimate from (3.1), one should choose G to be the
following envelope, say gϕ,x,λ, defined by

sup{G⩽ 0 : G(z) − log|z−x|2n smooth near x, i∂∂ϕ+λ i∂∂G⩾ 0}. (4.1)

It is known that (see [9])

ϵx(L) := sup{λ⩾ 0 : ∃ G⩽ 0 on X with the blue part in (4.1) holds} (4.2)

is equal to the Seshadri constant up to a constant factor n. If 0 < λ < ϵx(L)
then gϕ,x,λ, as an envelope, must satisfy

(i∂∂ϕ+ λ i∂∂gϕ,x,λ)n = (2πnλ)nδx (4.3)
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on {gϕ,x,λ < 0}, where δx is the Dirac measure defined by
∫
X
f δx = f(x).

Thus if we choose G = gϕ,x,λ and ω = i∂∂ϕ then∫
G<t

i∂∂G ∧ ωn−1 =
∫
G<t

(i∂∂G+ ω/λ− ω/λ) ∧ ωn−1 (4.4)

=
∫
G<t

(i∂∂G+ ω/λ) ∧ ωn−1 − n

λ

∫
G<t

ωn (4.5)

⩽
∫
G<0

(i∂∂G+ ω/λ) ∧ ωn−1 − n

λ

∫
G<t

ωn (4.6)

= n

λ

(∫
G<0

ωn −
∫
G<t

ωn

)
, (4.7)

where we use
∫
G<0 i∂∂G∧ωn−1 = 0 (since G = 0 outside {G < 0}) in (4.7).

In case n = 1, (4.3) directly gives∫
G<t

i∂∂G =
∫
G<t

i∂∂G+ ω/λ− ω/λ = 2π −
∫
G<t

ω/λ. (4.8)

Hence Lemma 4.1 implies
d
dt

∫
G<t

ω ⩾
σ(G = t)2

4π − 2
λ

∫
G<t

ω
. (4.9)

4.2. Isoperimetric inequality

We shall use the following result (see inequality (5.4) in [17, Proposi-
tion 5.2]).

Lemma 4.2 (Isoperimetric inequality). — Let U be an open subset of a
compact Riemann surface (X,ω). Assume that

A :=
∫
U

ω ⩽
1
2

∫
X

ω, Ricω ⩽ k ω.

Then
σ(∂U)2 ⩾ min{L2

0, A(4π − kA)}, (4.10)
where L0 denotes the infimum of the length of simple closed geodesics in X.

Proof. — By the definition of the Seshadri constant in (4.2), we know
that in case n = 1, the Hodge decomposition gives

ϵx = deg(L) :=
∫
X

c1(L) = 1
2π

∫
X

ω. (4.11)

Hence if
∫
X
ω ⩾ 8π then ϵx ⩾ 4. Hence we can take λ = 2 in (4.9), which

gives
d
dt

∫
G<t

ω ⩾
σ(G = t)2

4π −
∫
G<t

ω
. (4.12)
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Now, since Ricω ⩽ ω, L2
0 ⩾ 4π2 and∫

G<t

ω ⩽
∫
G<0

ω = 2πλ = 4π ⩽
1
2

∫
X

ω,

one may apply the above lemma to U = {G < t}. Then by (4.10) we have

σ(G = t)2 ⩾ min{4π2, A(4π −A)} = A(4π −A), A :=
∫
G<t

ω.

Thus (4.12) gives
d
dt

∫
G<t

ω ⩾
∫
G<t

ω,

which implies that e−t ∫
G<t

ω is increasing with respect to t < 0. Hence

lim
t→−∞

e−t
∫
G<t

ω ⩽ e−0
∫
G<0

ω = 2πλ = 4π.

Then by (3.1) we have Kϕ ⩾ ω
8π . □

Theorem D follows by a similar argument (see the difference between the
proof of Theorem A, B above).
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