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An explicit estimate of the Bergman kernel
for positive line bundles *)

Xu Wane D

ABSTRACT. — We shall give an explicit estimate of the lower bound of the
Bergman kernel associated to a positive line bundle. In the compact Riemann surface
case, our result can be seen as an explicit version of Tian’s partial C%-estimate.

RESUME. — Nous donnerons une estimation explicite de la borne inférieure du
noyau de Bergman associé a un fibré de droites positif. Dans le cas de la surface
compacte de Riemann, notre résultat peut étre vu comme une version explicite de
Iestimation partielle C° de Tian.

1. Introduction

Let (L,e™?) be a positive line bundle over an n-dimensional complex
manifold X. Let m be a positive integer. Let Kx be the canonical line
bundle over X. We call

w(@) A u(z) e~ mo@)
Kpng(z) := sup (2) () pene
wEHO(X,K x +mL) qu/\ue

, (1.1)

the Bergman kernel forms and

Ju()|2e=mo @)
Boo(x) = sup ,
() weH(X,mL) [y [ul?e™? MA 4

(100(m¢))"

n!

MA,,4 = , (1.2)

the Bergman kernel functions. In [21] Tian proved that if X is compact then
(rigorously speaking, Tian only proved the identity for the Bergman kernel
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function, but the Hérmander method used in his proof also applies to the
Bergman kernel form)

Km¢ .
li =1 Bine = .
mg)noo MA’W¢ mgr})o ® (27‘(‘)"

(1.3)

Effective lower bound estimate (with Ricci curvature, diameter and vol-
ume assumptions) for B, is known as Tian’s partial C°-estimate [22]. The
first general result is obtained by Donaldson—Sun [10] using proof by contra-
diction. Our main results are the followings:

THEOREM A. — Let (L,e™?) be a positive line bundle over a compact
Riemann surface X. Put w := MAy = i00¢. Denote by Ricw := 100 logw
the Ricci form of w. Assume that

Ricw <w, Lo =27,

where Ly denotes the infimum of the length of closed geodesics in X, then
1
Ky/MAy > —.
o/MAg > o

THEOREM B. — Let (L,e~?) be a positive line bundle over a compact
Riemann surface X. If

—w/2 < Ricw <w/2, Lo> 27r\[2,

1

Remark. — There always exist closed geodesics on a compact Riemann
surface. In case X = P! and w = 2-i90log(1 + |2|?) we have

Ricw =w, Lo =2m,

a direct computation gives L = —Kx and K,/MA, = 7=. We do not know

whether )
Ky/MA, > —
o/MAy > -

is always true with the assumptions in Theorem A. On the other hand,
Theorem A implies Kp,4/MA,,4 > 1/(8) for every positive integer m. This
is also nearly optimal since by (1.3)

lim Km¢/MAm¢ = 1/(2’/T)
m—» 00
In case Ricw < 0, Lo/2 is equal to the injectivity radius by Klingenberg’s

estimate (let ¢ go to infinity in (3.4)). For example if X = C/I" is a torus
and w = i09(|z|?/2) then Ricw = 0 and Ly = infozyer 7|

In the first version of this paper, a weaker version of the above theorems
is proved using an Ohsawa—Takegoshi type theorem, a variant of the Blocki—

Zwonek estimate [6] and the isoperimetric inequality. Later we find that one
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may use the Hessian comparison theorem to simplify the proof and generalize
the above theorems to the following higher dimensional cases.

THEOREM AN. — Let (L,e~?) be a positive line bundle over an
n-dimensional compact complex manifold X . Assume that the sectional cur-
vature of w := 1900¢ is bounded above by 1/(4n) and Ly > 2m+/n then

1 n!
Ky/MAg 2 5 ey

THEOREM BN. — Let (L,e™®) be a positive line bundle over an
n-dimensional compact manifold X. Assume that the sectional curvature of
w = i00¢ is bounded above by 1/(8n), Ly > 2w v/2n and Ricw > —w/2.

1 n!
Then B¢ 2 3 7(87\'71,)" .

Remark. — Since the Ricci curvature is certain sum of sectional curva-
ture, the curvature assumptions in Theorem Bn also imply a lower bound
of the sectional curvature. Hence one may use [13, Corollary 2.3.2] to find a
lower bound of Lg in terms of the lower bound of the volume and the upper
bound of the diameter. Thus, except for the upper bound of the sectional
curvature, the assumptions in Theorem Bn follow from the standard assump-
tions in Tian’s partial C%-estimate (for results on Tian’s partial C%-estimate,
see [1, 7, 8, 10, 14, 15, 16, 20, 23, 24, 26], etc). Our main contribution is the
explicit constant in the estimate. Moreover, our estimate implies that
1 nl
2 (8wn)" ()
for all positive integers m. From the last section in [10], it seems that for
general positive line bundles over higher dimensional manifolds, the Ricci
curvature assumptions might not enough to derive (x).

Bm¢7 Z
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2. Hessian comparison theorem

DEFINITION 2.1. — Let X be a Riemann manifold. Denote by K(V,W)
the sectional curvature of the tangent plane spanned by V.W. Fix © € X,
the injectivity radius at x € X is defined as

inj(x) := sup{r > 0: exp, |p(o,r) is diffeomorphism}
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where exp,, : T, X — X denotes the exponential map at x and B(0,r) denotes
the ball of radius r around 0 € T, X. We call injyx := inf,cx inj(z) the
injectivity radius of X.

The following 00-comparison theorem is a direct consequence of the Hes-
sian comparison theorem (see [11, Lemma 1.13 in p. 14 and Theorem A in

p. 19]).

THEOREM 2.2. — Let X1, Xo be Kdhler manifolds. Let v : [0,b] — X,
and v : [0,b] — X5 be unit speed geodesics. With the definition above,
suppose that

b < min{inj(71(0)), inj(72(0))} (2.1)
and for allt € [0,b], v1 L1 (t) and va LA2(t),
K(91(t),v1) < K(§2(t), v2). (2.2)

Let d; := d(-,v;(0)) be distance functions. If f : (0,b) — R is smooth and
increasing then

00(f 0 di)(Vi, Vi) > i00(f 0 da) (Va, Va) (2.3)
forallt € (0,0), V; € T, (nX;, j = 1,2, such that [Vi| = V2| and
(1), V1) = (92(0), V2), (1 (1), JVi) = (F2(t), JV2).

We shall apply the above theorem to Xo = P" with the Fubini study
metric form wy = 2i0dlog(1 + |2|?). A direct computation gives
1
E(WV,W) =7 (14 3(V,JW)?), VVLW, inj(z)= . (2.4)

In particular, K(V,W) =11in case n = 1 and K(V,W) > 1/4 in case n > 2.
We also need the following distance function formula on C* C P™

dy :=4d(0,2) = 2/O|Z| 13_3;2 = 2arctan |z|.
Put
Y = logsin®(dy/2)
we have
2
= log e G2 = log o7 —log(1 + |2 <0
and

i00vy > —id0log(1 + |2|*) = —wa /2.
Apply the above theorem to f(x) = logsin®(z/2) and b = 7 we get:
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COROLLARY 2.3. — Let (Xy,w1) be an n-dimension Kdhler manifold.
Fix x € Xy. Put

_ Jlogsin*(d(z,x)/2) d(z,x) <
V=)= {O d(z,z) > 7.

Assume that inj(x) > 7 and

{the sectional curvature of wy is mo bigger than 1, n=1;
the sectional curvature of wy is no bigger than 1/4, n > 2,
then i00y > —w1/2 on X.
Proof. — By the lemma below, we can write
P(z) = 2f(d(z,2)/2).

Since inj(z) > mw, we know that d(z,z) is smooth on a neighborhood of
{d(z,x) < 7}, hence the lemma below implies that ¢ is C*' on X;. Thus
it suffices to verify positivity (in the sense of current) of i90v¥ + wy/2 on

{d(z,z) # 7}, which follows directly by the theorem above. O
LEMMA 2.4. — The following function
logsint 0<t< /2
£t = /
0 t>m/2
is CYY in t > 0.
Proof. — By a direct computation, we have
cost/sint 0<t< /2 —sin"2t 0<t< /2
f/(t): / / , f”(t): /
0 t>m/2 0 t>m/2.

Hence f’ is continuous and f” is locally bounded and the lemma follows. [

3. An Ohsawa—Takegoshi type theorem

We shall use the following Ohsawa—Takegoshi type theorem [4, 18, 19],
which is a special case of the main theorem in [12].

THEOREM 3.1. — Let (L,e~®) be a positive line bundle on an
n-dimensional compact compler manifold. Fiz x € X. Assume that there
is a non-positive function G smooth outside x such that G(z) —log |z — z|*"
is smooth near r and

i00¢ + Nid0G = 0
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on X for some constant A > 1. Then Ky in (1.1) satisfies
K¢($) A—1 1
> 1 _ 3.1
MA4(x) = A toiset [ MA, (8-1)

where MAy is defined in (1.2).

Proof. — Let us rephrase the proof in [18]. Our curvature assumption
implies that
&' = ¢ + Amax{G —t,0}
defines a singular metric on Cyy;s x L with non-negative curvature current.
Hence Berndtsson’s theorem [2] implies that (notice that ¢'(z) = ¢(z))
Ky
log 50 (z)
MA,(x)
is a convex function of t. By a direct computation (see the lemma below, see
also the appendix in [18] or Theorem 3.8 in [3]) we find that
+ K¢t (l‘) A—1 1

li = li T 3.2
B T W B L ey vy (32

is finite since G(z) —log |z —z|*" is smooth near z. Hence e'K ¢ (z)/MA,(z),
as a convex function of ¢ bounded near —oo, must be increasing. Thus
A—1 . MA¢(£L’)

— 0 ; t —_
Ko(@) = €'Kgo() > tilznooe Ko (w) = A tggloo e ot MAg

gives our estimate. |
LEMMA 3.2. — Put
IFI1Z = / " F N Fe~ ¢ max{G-t0} - p e gO(X, Kx + L),
X

then

" _
Jlim_ |2 = . i 1 " F(xlz/[/;i(;‘))e—ﬂs) im et 5 MA,.
Proof. — Consider a positive Borel measure p on X defined by

dp = FANFe 0.
Then

w(X) :/ "“FAFe?, WG < s) :/ "FAFe?,
bl

G<s

and we have

P2 = [ X0 an x(s) = Amaxs,0}
X
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Since G < 0 on X, using the Lebesgue—Stieltjes integral we can write

0
/X e O qp = Mp(X) - / (G < s)de X670, (3:3)

— 00

Since p(X) is finite (note that X is compact) and A > 1, we have

0
hm e HF|? = hm (—e t/ (G < s) de_X(s_t))

= lim ( w(G < s)de” (St))
t——oo
= lim ( u(G < s)e e~ MDD ds)
t——oo
—t
= lim ( / (G<a+t)e ~(att)g=(A=1a da>
t——o0
—(A=1)a : —s
= ()\/O (-1 da> Sgr_noo (G < s)e™)

A _
= —— lim e_s/ i F A Fe™ @,
A—=1s=—o0 G<s

which gives the lemma (note that {G < s} converges to the single point z).
O

3.1. Proof of Theorem A, B, An, Bn

Proof of Theorem A, An. — By Klingenberg’s estimate (see [25, Corol-
lary 1.2]), if the sectional curvature is no bigger than 1/¢ then we have

min{Lo/2,vcm} <injy < Lo/2. (3.4)
Hence our assumptions implies that the injectivity radius of (X,w/n), w =
100¢, is no less than w. Thus one may apply Corollary 2.3 to (X1,w;) =
(X,w/n). Put G = ni. Corollary 2.3 implies that
i00¢ + 2i00G > 0
By Theorem 3.1 (A = 2), we get
Ky (z) 1 , 1 1 1

o) — =i
MAy(@) ~ 2ot et [~ MA,  2ioococ

w™

- flog51n2"( d(z,z)/2)<t nl
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Note that limg_.q Sigs =1 gives
. 1 1
im = "
t—— -t wn ty— ¢ n"w
7720 €7 fiogsinrn(d(za) 2 <t ST e Jae ) <aet/em it
1
— T 92n,n’
Tt 25

from which Theorem A, An follows.

O

Proof of Theorem B, Bn. — By the Ricci curvature assumption, ¢ and
100¢ defines a metric on L — Kx with curvature

i® = w + Ricw > w/2.

Thus one may apply Corollary 2.3 to (X1,w1) = (X,w/(2n)). Put G = ny
then

i© + 200G > 0.
Apply Theorem 3.1 to L — Kx, we get Theorem B, Bn. |

4. Another proof of a weaker version of Theorem A, B

In this section we shall give another proof of Theorem A, B with an extra
volume assumption.

THEOREM C. — Let (L,e™?) be a positive line bundle over a compact
Riemann surface X. If

/w>87r, Ricw <w, Lo > 2w,
b'e

1
then K¢/MA¢ 2 Sn-

THEOREM D. — Let (L,e™?) be a positive line bundle over a compact
Riemann surface X. If

/w>167r, —w/2 < Ricw < w/2, Lo > 272,
X

then By > ﬁ.

4.1. The Blocki—Zwonek estimate

We shall study the right hand side of (3.1) using a variant of Blocki—
Zwonek’s estimate [6, Proof of Theorem 3] (see also [5, Section 10] for related
results).

- 812 —
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LEMMA 4.1. — With the notation in Theorem 3.1. Let w be an arbitrary
Kdhler form on X. Then
d G=t)?
7/ Wn 2 a(. a3 ) ) Wq = Wq/q!,
dt S 2 [, 100G N w1

where
o(G=t):= do, do:=v2
( ) /G=t Z |8G | 8,2[3
is the measure of the hypersurface {G =t} with respect to w.
Proof. — Notice that

0 Gawa’ﬁ o}
V= ot 2 e o

satisfies V(G —t) = 0, hence it can be used to compute % fG<t, in particular,
we have

d / / 1 do
— Wn = Lyw, = Viw,=— —_
dt Jao G<t " e Jeon V2 Ja=t |0G],,

Hence the Cauchy—Schwarz inequality gives

O [ oGz
dt Joor "7 V2 [,_,10G|, do

B (G =1t)?
C 210G Nwyy
B o(G =1t)?
2, 100G Awn_1
where we use the Stokes theorem in the last equality. O
Since

Gl < G2 — wp < / Wn,
Ga<t Gi<t

in order to get the best estimate from (3.1), one should choose G to be the
following envelope, say g4 . x, defined by

sup{G < 0 : G(2) — log|z — z|*" smooth near z, i00¢ + \iddG > 0}. (4.1)
It is known that (see [9])
€x(L) :=sup{A>0:3G<0 on X with the blue part in (4.1) holds} (4.2)

is equal to the Seshadri constant up to a constant factor n. If 0 < A < e, (L)
then g¢ . x, as an envelope, must satisfy

(i00¢ + Xi00gy » 2)" = (27n\)"0, (4.3)

- 813 -
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on {ggzn < 0}, where §, is the Dirac measure defined by [, fd. = f(z).
Thus if we choose G = g4 ,.» and w = i09¢ then

/ 100G N\ wp_1 = / (100G + w/X — w/X) Awp—1 (4.4)
G<t

G<t

:/ (i85G+w/A)Awn_1—@/ wn (45)
G<t A G<t

< / (100G + w/X) Awp—1 — ﬁ/ W, (4.6)
G<0 A Ja<t

S fs) e

where we use [,_, 100G Awy,_1 = 0 (since G = 0 outside {G < 0}) in (4.7).
In case n =1, (4.3) directly gives
/ 100G = 100G + w/\ —w/\ = 2w—/ w/A. (4.8)
a<t G<t

G<t
Hence Lemma 4.1 implies

d < o(G=1t)?

4 > 4.9
dt G<tw 4T — ( )

2
X f a<t¥
4.2. Isoperimetric inequality

We shall use the following result (see inequality (5.4) in [17, Proposi-
tion 5.2]).

LEMMA 4.2 (Isoperimetric inequality). — Let U be an open subset of a
compact Riemann surface (X,w). Assume that

A= / / w, Ricw <

o(0U)? > min{ L%, A(47 — kA)}, (4.10)
where Ly denotes the infimum of the length of simple closed geodesics in X .

Then

Proof. — By the definition of the Seshadri constant in (4.2), we know
that in case n = 1, the Hodge decomposition gives

1
€, = deg(L) ::/ (L) = —/ w. (4.11)
X 27 Jx
Hence if onJ > 8r then e, > 4. Hence we can take A = 2 in (4.9), which
gives
_ 2
i/ w > M. (4.12)
dt Jeoo Am — fG<tw

— 814 —
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Now, since Ricw < w, L > 47% and

/ wg/ w=2tA=4r < f/ w,
G<t G<0

one may apply the above lemma to U = {G < t}. Then by (4.10) we have

o(G =1)? > min{4r? A(4r — A)} = A(dr — A), A:= w.

a<t
iz ]
— w = w
dt Jaer a<t

which implies that e~* fG <, w Is increasing with respect to ¢ < 0. Hence

lim eft/ w < 670/ w =27\ = 4m.
t——o0 G<t G<0

Then by (3.1) we have Ky > ¢=. O

Thus (4.12) gives

Theorem D follows by a similar argument (see the difference between the
proof of Theorem A, B above).
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