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A Nonvanishing Conjecture for Cotangent Bundles (∗)

Andreas Höring (1) and Thomas Peternell (2)

ABSTRACT. — In this paper we study the positivity of the cotangent bundle of
projective manifolds. We conjecture that the cotangent bundle is pseudoeffective if
and only the manifold has non-zero symmetric differentials. We confirm this conjec-
ture for most projective surfaces that are not of general type.

RÉSUMÉ. — Dans ce papier nous étudions la positivité du fibré cotangent des
variétés projective lisses. Nous conjecturons que le fibré cotangent est pseudoeffectif
si et seulement si la variété possède des formes holomorphes symétriques non-nulles.
Nous montrons cette conjecture pour la plupart des surfaces projectives lisses qui ne
sont pas de type général.

1. Introduction

1.1. Main result

A central part in the minimal model program in algebraic geometry is
the so-called nonvanishing conjecture: given a projective manifold or, more
generally, a variety with klt singularities, X, whose canonical class KX is
pseudoeffective, one has

H0(X,OX(mKX)) ̸= 0
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for some positive integer m. This conjecture has been proven some time ago
in dimension at most three, but is wide open in higher dimensions.

In analogy to the nonvanishing conjecture, one might ask for

Conjecture 1.1. — Let X be a normal projective variety with klt sin-
gularities. Let 1 ⩽ q ⩽ dimX. Then Ω[q]

X , the sheaf of reflexive holomorphic
differentials in degree q, is pseudoeffective, (see Definition 3.5), if and only
if for some positive integer m one has

H0(X,S[m]Ω[q]
X ) ̸= 0.

In the case q = dimX, this is of course the nonvanishing conjecture
stated above. There is an important difference with the classical case of the
canonical bundle: while the pseudoeffectivity of KX is equivalent to the non-
uniruledness of the manifold, we do not know many examples where Ωq

X is
pseudoeffective, but not big. We expect that this property is actually quite
restrictive, our Theorem 1.2 confirms this intuition in the first non-trivial
case.

In this paper we are mainly interested in the case q = 1. The only general
result confirming Conjecture 1.1 is given in [29, Thm. 1.6], [23, Thm. 1.2]:
Suppose X is klt with KX ≡ 0. If Ω[1|

X is pseudoeffective, there is a quasi-étale
cover X̃ → X such that q(X̃) > 0. In particular one has H0(X,S[m]Ω[1]

X ) ̸= 0
for some positive integer m ([3, Prop. 2.2], see also Lemma 4.6). If KX ̸≡ 0,
Conjecture 1.1 is delicate, even for smooth surfaces. In this case we can
assume without loss of generality that X is minimal, see Proposition 4.1. By
surface classification, see Corollary 4.14, the problem starts with κ(X) = 1.
We basically settle this case:

Theorem 1.2. — Let f : X → B be a (minimal) smooth elliptic surface
with κ(X) = 1 such that Ω1

X is pseudoeffective. Suppose one of the following.

(1) f is not isotrivial;
(2) f is isotrivial and the general fibre has trivial group automorphism

group Z2;
(3) the tautological class on P(Ω1

X) is nef in codimension one.

Then q̃(X) > 0 (see Definition 2.2), so there is a positive integer m such
that

H0(X,SmΩ1
X) ̸= 0.

Note that each of the cases requires a different proof, Theorem 1.2 is
obtained as the union of Corollary 5.5, Corollary 6.8 and Corollary 6.13.
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In general, the pseudoeffectivity of Ω[1]
X does not imply q̃(X) > 0: a

smooth complete intersection surfaceX ⊂ PN is simply connected, so q̃(X) =
0. However, if N ⩾ 4 and the multidegrees are sufficiently high, the cotangent
bundle Ω1

X is ample [10].

For surfaces of general type, Conjecture 1.1 is open. If c2
1(X) > c2(X),

then by Bogomolov’s vanishing theorem

h0(X,SmΩ1
X)) ∼

(
c2

1(X) − c2(X)
6

)
m3,

but already the boundary case c2
1(X) = c2(X) is unclear.

In higher dimension, things get worse due to the singularities of min-
imal models. For example, we know Conjecture 1.1 for terminal threefolds
with numerically trivial canonical class, but we cannot deduce easily Conjec-
ture 1.1 for smooth threefolds X with κ(X) = 0, although X has a terminal
minimal model as above.

We would finally like to point out the connection to a question posed
by H.Esnault, see [12]: let X be a projective (or compact Kähler) manifold
whose fundamental group π1(X) is infinite. Does there exist a positive integer
m such that

H0(X,SmΩ1
X) ̸= 0?

An intermediate step might be to prove that Ω1
X is pseudoeffective.

Brunebarbe–Klingler–Totaro confirm Esnault’s conjecture if there is a rep-
resentation

π1(X) −→ GL(N,C)
with infinite image. The key point of their proof is to show that in many
cases, the cotangent bundle Ω1

X is even big.

Theorem 1.2 fits in this framework: combining Theorem 1.2 and a well-
known argument (see Appendix A) one sees that an elliptic surface should
have pseudoeffective cotangent bundle if and only if the fundamental group
π1(X) is infinite. Thus the nonvanishing would be a consequence of Esnault’s
conjecture. Unfortunately it is a priori not clear if the fundamental group is
infinite, in particular Theorem 1.2 can not be deduced from [12].

1.2. Strategy of the proof

Let X be a smooth projective surface such that KX is nef and c1(KX)2 =
0. Then KX is semiample, so we have the Iitaka fibration

f : X −→ B
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such that the general fibre F is elliptic and mKX ≃ f∗A with A an ample
divisor. Assume now that ΩX := Ω1

X is pseudoeffective, then one expects that
there exists a pseudoeffective subsheaf of ΩX that is induced by a pull-back
from the base B. Let f∗ΩB → ΩX be the cotangent map, and denote by

f∗ΩB(D) ⊂ ΩX

the saturation (cf. Setup 5.1 for the definition of D). If f∗ΩB(D) is pseu-
doeffective, Proposition 5.2 shows that q̃(X) > 0. Thus the main issue in
Theorem 1.2 is to show that f∗ΩB(D) is pseudoeffective. A natural ap-
proach is to show that the sheaf ΩX → ωX/B(−D) is not pseudoeffective if
f is not almost smooth(1). However, by a theorem of Brunella [13], the line
bundle ωX/B(−D) is always pseudoeffective! This leads us to considering the
more refined quotient sheaf

ΩX −→ IZ ⊗ ωX/B(−D) −→ 0,

where Z has support in the singular points of the reduction of the fibres. The
basic idea of the proof of Theorem 1.2 is to show that the torsion-free sheaf
IZ ⊗ωX/B(−D) is not strongly pseudoeffective (see Definition 3.7), although
its bidual is a pseudoeffective line bundle. Thanks to a result of Demailly–
Peternell–Schneider [20] this idea leads immediately to the result in the
non-isotrivial case, see Section 5. For an isotrivial fibration this approach
only yields the weaker statement appearing as part c) of the main theorem,
see Subsection 6.4. On the other hand we know that X is birational to a
quotient (C × E)/G, so we aim to compute explicitly the spaces of global
sections

H0(X,SiΩX ⊗ OX(jA)),
following a strategy introduced by Sakai [36]. Apart from the technical setup,
the main difficulty is to understand the local obstruction near the fixed points
of the group action. For A1-singularities this information is provided by [11,
Prop. 3.2]. We expect that a similar description of the local obstruction for
klt singularities would allow to handle the case when the elliptic curve has
non-trivial group automorphisms.

1.3. Structure of the paper

In Section 3 we introduce a positivity notion (“strongly pseudoeffective”)
that is adapted for this type of torsion-free sheaf, and present material on
pseudoeffective torsion free sheaves which will be used in later sections.

(1) See the introduction of Section 5 for the almost smooth case.
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Section 4 is concerned with some general results on varieties with pseu-
doeffective cotangent sheaves. In particular, generalised Kodaira dimensions
are introduced and a relation to the MRC fibration is studied.

The last two sections are devoted to the proof of Theorem 1.2. Section 5
gives the general setup and settles the case that the elliptic fibration is
not isotrivial. The surprisingly difficult isotrivial case finally is studied in
Section 6.

Acknowledgements

We thank C. Gachet for pointing out the Example 3.9 and the referee for
very valuable comments.

2. Basic notations

We work over the complex numbers, for general definitions we refer to [27].
We use the terminology of [19] and [31] for birational geometry and notions
from the minimal model program and [32] for notions of positivity. Manifolds
and varieties will always be supposed to be irreducible and reduced.

Notation 2.1. — Let X be a normal complex variety. As usual, Ω1
X de-

notes the sheaf of Kähler differentials, and we set

Ω[q]
X :=

( q∧
Ω1

X

)∗∗

.

If X is klt and µ : X̂ → X a is desingularization, then by [25, Thm. 1.4],

Ω[q]
X = µ∗(Ωq

X̂
).

If q = 1 and X smooth, we simply set ΩX := Ω1
X . Finally, for any normal

variety X, we denote by TX := (Ω1
X)∗ its tangent sheaf.

A finite surjective map γ : X ′ → X between normal varieties is quasi-
étale if its ramification divisor is empty (or equivalently, by purity of the
branch locus, γ is étale over the smooth locus of X).

Definition 2.2. — Let X be a normal projective variety with klt singu-
larities. Then, as usual,

q(X) = h1(X,OX) = h0(X,Ω[1]
X )

is the irregularity of X. Further, we denote by q̃(X) the maximal irregularity
q(X̃), where X̃ → X is any quasi-étale cover.
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While the irregularity q(X) is a birational invariant of projective varieties
with klt singularities, this is not the case for q̃(X):

Example 2.3. — Let τ : E1 → P1 be a (hyper)elliptic curve, and denote
by iE1 the involution induced by the double cover. Let E2 be an elliptic
curve, and denote by iE2 the involution defined by z 7→ −z. The surface

X ′ := (E1 × E2)/⟨iE1 × iE2⟩
is normal and has A1-singularities in the branch points of the quasi-étale
map E1 × E2 → X ′. The projection on the first factor induces an isotrivial
elliptic fibration

f ′ : X ′ −→ P1 = E1/⟨iE1⟩
that has exactly 2g(E1) + 2 singular fibres, all of them are multiple fibres of
multiplicity 2 such that the reduction is isomorphic to P1 = E2/⟨iE2⟩. By
construction we have q̃(X ′) ⩾ g(E1) + g(E2) > 0.

Denote by µ : X → X ′ the minimal resolution, then the induced ellip-
tic fibration f : X → P1 is relatively minimal, isotrivial and has exactly
2g(E1) + 2 singular fibres, all of them of type I∗

0 (in Kodaira’s terminology,
see [4, V, Table 3]).

In the classical case where E1 is an elliptic curve, the surface X is a K3
surface of Kummer type. In particular we have q̃(X) = 0.

3. Pseudoeffective sheaves

Notation 3.1. — Let G be a coherent sheaf on a variety X, and let T ⊂ G
its torsion subsheaf. Then we denote by G/Tor the quotient G/T . Further-
more, we set

S[m](G) := (SmG)∗∗.

3.1. Projectivization of sheaves

Definition 3.2. — Let F be a coherent sheaf on a variety X. Then we
denote by π : P(F) → X the projectivisation of F in the sense of [1, II, §2,
Sect. 2].

We denote by ζP(F) (or ζ when no confusion is possible) the Cartier di-
visor class associated to the tautological line bundle OP(F)(1).

Remark. — The reduction of any fibre of π is a projective space, and π
is locally trivial if and only if F is locally free [1, p. 27].
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For locally free sheaves, the following definition of pseudoeffectivity is
now in common.

Definition 3.3. — Let X be a projective variety, and let F be a locally
free sheaf on X. Denote by π : P(F) → X the projectivisation, and by ζ
the tautological class on P(F). We say that F is pseudoeffective if ζ is a
pseudoeffective Cartier divisor class.

Remark. — By [21, Lem. 2.7], the locally free sheaf F is pseudoeffective
if and only if for some ample Cartier divisor H on X and for all c > 0 there
exist numbers j ∈ N and i ∈ N such that i > cj and

H0(X,SiF ⊗ OX(jH)) ̸= 0.
It is not difficult to generalise Druel’s argument to the case where H is big,
see [28, Lem. 2.2.] for a proof.

We will use the following lemma, which will be generalised below.
Lemma 3.4. — Let f : X → Y be a surjective morphism of projective

varieties and F a locally free sheaf on Y . Then F is pseudoeffective if and
only if f∗(F) is pseudoeffective.

Remark. — Note that the statement applies in particular to the normal-
isation, so for locally free sheaves pseudoeffectivity can be verified on the
normalisation.

Proof. — Recall the pull-back formula for the tautological classes
ζP(f∗(F)) = p∗(ζP(F)),

where p : P(f∗(F)) = P(F) ×Y X → P(F) is the canonical projection. Thus
we are reduced to the case where F has rank one, which is immediate by [32,
Thm. 2.2.26, Prop. 2.2.43]. □

3.2. Strongly pseudoeffective torsion-free sheaves

For the purpose of this paper it is not sufficient to discuss the positivity of
locally free sheaves, in fact we will need the more subtle positivity properties
of torsion-free sheaves. It will suffice to consider normal varieties.

We first recall the definition of pseudoeffectivity for reflexive sheaves
from [21] and [29, Def. 2.1].

Definition 3.5. — Let X be a normal projective variety, and let F be
a reflexive sheaf on X. Then F is pseudoeffective if for some ample Cartier
divisor H on X and for all c > 0 there exist numbers j ∈ N and i ∈ N such
that i > cj and

H0(X,S[i]F ⊗ OX(jH)) ̸= 0.
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Remark. — An equivalent definition using an adapted resolution of sin-
gularities of P(F) is given in [29].

Example 3.6. — Our definition of pseudoeffectivity is less restrictive than
[9, Def. 7.1]: if G ⊂ F is a pseudoeffective reflexive subsheaf, then F is
pseudoeffective. In particular if F = L ⊕ H where L is pseudoeffective and
H an antiample reflexive sheaf, then F is pseudoeffective in the sense of
Definition 3.5, but not in the sense of [9, Def. 7.1].

Definition 3.5 makes also sense for torsion-free sheaves, but would not
be very useful: by definition a torsion-free sheaf would be pseudoeffective if
and only if its bidual is pseudoeffective. The following definition takes this
difference into account:

Definition 3.7. — Let X be a normal projective variety, and let F be
a torsion free sheaf on X. We say that F is strongly pseudoeffective if for
some ample Cartier divisor H on X and for all c > 0 there exist numbers
j ∈ N and i ∈ N such that i > cj and

H0(X, (SiF)/Tor ⊗ OX(jH)) ̸= 0.
Remark 3.8. — For locally free sheaves, the Definitions 3.3, 3.5, 3.7 ob-

viously coincide. Even for reflexive sheaves, Definition 3.7 is more restrictive
than Definition 3.5: in general (SiF)/Tor is not reflexive and has less global
sections than its bidual, so we might have

H0(X, (SiF)/Tor ⊗ OX(jH)) = 0,
although F is pseudoeffective in the sense of Definition 3.5. We thank C. Ga-
chet for the following example:

Example 3.9. — Let
C2 −→ X = {(x, y, z) ∈ C3 | xy − z2 = 0}, (u, v) 7−→ (u2, v2, uv)

be the double cover of the A1-singularity, we identify the polynomial ring
of X to its image C[u2, v2, uv] in C[u, v]. The invariant elements under the
involution

j : C[u, v] −→ C[u, v], f(p) 7−→ −f(−p)
are exactly the odd polynomials, i.e. the polynomials that can be written as
uf + vg with f, g ∈ C[u2, v2, uv]. Denote this set by C[u, v]Z2 , then C[u, v]Z2

has a natural structure of C[u2, v2, uv]-module that is reflexive, but not (lo-
cally) free. The tensor power (C[u, v]Z2)⊗2 is generated by u2, v2, uv, so it
naturally embeds into C[u2, v2, uv]. Remembering that this ring is actually
the function ring of the A1-singularity, we see that (C[u, v]Z2)⊗2 is isomor-
phic to the maximal ideal defining the origin.

Let now q : A → X be the quotient of an abelian surface under the
involution z 7→ −z, so X is the singular Kummer surface. Since S[2]ΩX is
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globally generated, the sheaf of reflexive differentials Ω[1]
X is pseudoeffective.

Let us see that it is not strongly pseudoeffective: we have Ω[1]
X ≃ F ⊕ F ,

where F is the sheaf of Z2-invariants for the natural action on ΩA ≃ OAdz1⊕
OAdz2. It is immediate to see that, near the fixed points, the Z2-action on
OAdzl identifies to the action j in the paragraph above. Thus, using the
local computation, we see that

F⊗i ≃

I
i
2
Xsing

if i even,

I
i−1

2
Xsing

⊗ F if i odd.

Combined with Example 3.12 this shows that F is not strongly pseudoeffec-
tive.

In general it is not clear if one can check strong pseudoeffectivity by
looking at a tautological class on (a modification of) the projectivisation.
However there is a natural construction in a special case:

Setup 3.10. — Let F be a torsion-free sheaf on a normal projective variety
X such that

F ≃ IZ ⊗ E
where IZ is an ideal sheaf and E is a locally free sheaf.

Let µ : X̂ → X be the blow-up of the ideal sheaf IZ , then X̂ is a (not
necessarily normal) variety [27, II, Prop. 7.16]. We denote by

OX̂(1) := µ−1(IZ)OX̂

the tautological sheaf on X̂. Recall that by the definition of the blow-up [1,
II, §3] one has

µ∗(OX̂(i)) = Ii
Z ∀ i ⩾ 0. (3.1)

Note also that if Z is locally generated by a regular sequence, one has SiIZ ≃
Ii

Z for all i ⩾ 0 (e.g. [6, Prop. 2.2.8]). In particular the blowup BlIZ
(X)

coincides with the projectivisation P(IZ).

Lemma 3.11. — In the situation of Setup 3.10, the torsion-free sheaf F
is strongly pseudoeffective if and only if the locally free sheaf OX̂(1) ⊗ µ∗E
on the variety X̂ is pseudoeffective.

Proof. — Let H be an ample Cartier divisor on X. By the projection
formula and (3.1) one has

µ∗(µ∗(OX(jH) ⊗ SiE) ⊗ OX̂(i)) ≃ OX(jH) ⊗ SiE ⊗ Ii
Z

for all i ⩾ 0. Moreover we know by [33] that

(SiIZ)/Tor ≃ Ii
Z .

– 863 –



Andreas Höring and Thomas Peternell

Thus we obtain that
H0(X̂, Si(OX̂(1) ⊗ µ∗E) ⊗ OX̂(jµ∗H)) ≃ H0(X, (SiF)/Tor ⊗OX(jH))

for all i ⩾ 0. Now we apply [21, Lem. 2.7], cf. also the Remark after Defini-
tion 3.3. □

Example 3.12. — Let X be a normal projective variety, and let IZ ⊂ OX

an ideal sheaf. Then IZ is not strongly pseudoeffective by Lemma 3.11.

On the other hand let Z ⊂ P2 be a point, then IZ ⊗ OP2(1) is strongly
pseudoeffective. Indeed the locally free sheaf OX̂(1)⊗µ∗OP2(1) on the blowup
X̂ ≃ F1 is pseudoeffective, since it is isomorphic to OF1(F ) where F is the
strict transform of a line through Z.

Corollary 3.13. — In the situation of Setup 3.10, suppose that the
ideal sheaf IZ is locally generated by a regular sequence (e.g. if Z is a locally
complete intersection scheme). Then the following statements are equivalent:

(1) The sheaf F is strongly pseudoeffective;
(2) The locally free sheaf OX̂(1) ⊗ µ∗E on the blow-up

µ : X̂ = BlIZ
X −→ X,

is pseudoeffective;
(3) The tautological line bundle OP(F)(1) on the projectivisation P(F)

is pseudoeffective.

Proof. — The equivalence between (1) and (2) is shown in Lemma 3.11.

Denote by π̂ : P(µ∗E) → X̂ the projectivisation, and by OP(µ∗E)(1) its
tautological sheaf. Since OX̂(1) is µ-ample and OP(µ∗E)(1) is π̂-ample and
µ ◦ π̂-nef, we know that π̂∗(OX̂(1)) ⊗ OP(µ∗E)(1) is µ ◦ π̂-ample. Since IZ is
locally generated by a regular sequence, we have SiIZ ≃ Ii

Z for all i ⩾ 0
(e.g. [6, Prop. 2.2.8]). Thus for all i ⩾ 0 we have

(µ ◦ π̂)∗((π̂)∗(OX̂(i)) ⊗ OP(µ∗E)(i))
≃ µ∗(OX̂(i) ⊗ µ∗SiE) ≃ Ii

Z ⊗ SiE ≃ Si(IZ ⊗ E).

Therefore we have an isomorphism ψ : P(µ∗E) → P(F) such that
ψ∗OP(F)(1) = π̂∗(OX̂(1)) ⊗ OP(µ∗E)(1). Thus (2) and (3) are equivalent. □

3.3. Generalised Kodaira–Iitaka dimensions and functoriality

In this subsection we introduce a Kodaira–Iitaka dimension for reflexive
sheaves and establish functoriality.
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Definition 3.14. — Let X be a normal projective variety, and let F
be a reflexive sheaf on X. Let π : P → X be a desingularization of the
normalization of the unique component P′(F) of P(F) dominating X such
that the preimage of the singular locus of X and of the singular locus of the
sheaf F is a divisor in P . Let ζ be a tautological class on P , [29, Def. 2.2].
Then we define

κ(X,F) = κ(P, ζ).

By construction κ(P, ζ) ⩾ 0 if and only if H0(X,S[m](F)) ̸= 0 for some
m ∈ N.

Remark. — If π : P → X denotes the projection, then

H0(P,OP (mζ)) = H0(X,S[m](F))

for all positive numbers m, and therefore the definition is independent on
the choices made.

We will use Definition 3.14 in Section 4 to introduce a generalised Kodaira
dimenion of X (Definition 4.5).

The next result generalizes Lemma 3.4 for finite morphisms.

Lemma 3.15. — Let f : X̃ → X be a finite morphism of normal projec-
tive varieties. Let F be a reflexive sheaf on X. Then the following holds:

(1) The reflexive pullback f [∗](F) is pseudoeffective if and only if F is
pseudoeffective.

(2) One has κ(X̃, f [∗](F)) = κ(X,F).

Proof. — Let π : P → X be the projective manifold from Definition 3.14,
and ζ a tautological class on P . By the construction of ζ (see [29, Def. 2.2]),
we have

π∗(OP (mζ)) ≃ S[m](F) (3.2)
for all positive integers m. We introduce the fibre product

P̃ := P ×X X̃.

Let σ : P̂ → P̃ be a desingularization, which is an isomorphism outside the
singular locus of P̃ and set ζ̂ := σ∗p∗

1(ζ), where p1 : P̃ → P denotes the
projection. Let π̃ : P̃ → X̃ be the projection and π̂ := π̃ ◦ σ.

Claim. — There exists a π̂-exceptional divisor D̂ on P̂ , such that

π̂∗(O
P̂

(m(ζ̂ + D̂))) ≃ S[m]f [∗](F)

for all m ∈ N.
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Proof of the claim. — By [35, III.5.10.3] there exists π̂-exceptional divi-
sor D̂ on P̂ such that

π̂∗(O
P̂

(m(ζ̂ + D̂)))
is reflexive for all m ∈ N.

Let X0 ⊂ X be the locus where X is smooth and F is locally free. Since
X is normal and F is reflexive, the complement of X0 has codimension at
least two. Set now X̃0 = f−1(X0). Since X0 is smooth, the restriction f |

X̃0
is flat. Thus by flat base change [27, III, Prop. 9.3] we have an isomorphism

π̃∗(p∗
1(OP (mζ)) ≃ f∗S[m](F)

over X̃0. Since F is locally free on X0, we have

f∗S[m](F) ≃ f [∗]S[m](F)

over X̃0. Thus π̂∗(O
P̂

(m(ζ̂ + D̂))) and f [∗]S[m](F) are isomorphic over X̃0.
Since they are both reflexive, they are isomorphic : indeed the complement
of X̃0 has codimension at least two, since f is finite. For the same reason
we have

f [∗]S[m](F) ≃ S[m]f [∗](F),
which shows the claim. □

Proof of (1). — If F is pseudoeffective, fix an ample Cartier divisor H
on X. Since f is finite, a section of S[i]F ⊗ OX(jH) pulls back to a section
S[i](f [∗](F))⊗OX(jf∗H). Thus f [∗](F) is pseudoeffective, by Definition 3.5.

Assume now that f [∗](F) is pseudoeffective, so the divisor class ζ̂ + D̂ is
pseudoeffective by [29, Lem. 2.3]. Let now µ : P̂ → P ′ and p′

1 : P ′ → P be the
Stein factorisation of the generically finite morphism p1◦σ, i.e. µ is birational
onto the normal variety P ′ and p′

1 is finite. Then ζ̂ = (p1◦σ)∗ζ = (p′
1◦µ)∗ζ, so

µ∗(ζ̂ + D̂) = (p′
1)∗ζ + µ∗(D̂)

is a pseudoeffective Weil divisor class (cf. [35, II, Defn.5.5]). Setting D =
(p′

1)∗µ∗(D̂), we have an inclusion of Weil divisors µ∗(D̂) ⊂ (p′
1)∗D. Thus we

have an inclusion of Weil divisor classes

(p′
1)∗ζ + µ∗(D̂) ⊂ (p′

1)∗(ζ +D),

which shows that (p′
1)∗(ζ+D) is pseudoeffective. Since ζ+D is Cartier, this

shows that ζ + D is pseudoeffective. Since D̂ is π̂-exceptional, the effective
divisor D is π-exceptional. By (3.2) we thus have

π∗(OP (m(ζ +D)))∗∗ = π∗(OP (mζ)∗∗ ≃ S[m](F)
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for all m ∈ N. This shows that

S[m](F) ≃ π∗(OP (mζ) ↪−→ π∗(OP (m(ζ +D)))

↪−→ π∗(OP (m(ζ +D)))∗∗ ≃ S[m](F)

is a chain of isomorphisms for all m ∈ N. Hence the reflexive sheaf F is
pseudoeffective by [29, Lem. 2.3].

Proof of (2). — As for the first statement, the inequality κ(X̃, f [∗](F)) ⩾
κ(X,F) is immediate. Let us show the other inequality: by the claim we know
that ζ̂ + D̂ is a tautological class on P̂ . Thus by assumption, one has

κ(P̂ , ζ̂ + D̂) = κ((X̃, f [∗](F))) ⩾ 0.

Hence κ(P ′, (p′
1)∗(ζ) + µ∗(D̂)) = κ((X̃, f [∗](F))) ⩾ 0, and,

κ(P ′, (p′
1)∗(ζ +D)) ⩾ κ(P ′, (p′

1)∗(ζ) + µ∗(D̂)),

where we use again the inclusion (p′
1)∗ζ + µ∗(D̂) ⊂ (p′

1)∗(ζ +D). Since

κ(P ′, (p′
1)∗(ζ +D)) = κ(P, ζ +D)),

by [38, Thm. 5.13], the statement follows. □

In Section 4 this will be applied to sheaves of reflexive differentials, cf.
Corollary 4.6.

3.4. Pseudoeffective sheaves on fibered surfaces

The results of this section will be relevant to the study of elliptic sur-
faces. Let us recall the Zariski decomposition on surfaces [5, Thm.], [32,
Thm. 2.3.19]:

• Let D be an effective Q-divisor on a smooth surface. Then there
exist uniquely determined effective Q-divisors P and N with

D = P +N

such that P is nef, the divisor N =
∑
ajNj is zero or has negative

definite intersection matrix and P ·Nj = 0 for all j.
• The same statement holds if D is pseudoeffective, except that in

this case P is not necessarily effective.

The following lemma is well-known to experts, we give the details in order
to prepare the proof of its singular version in Lemma 3.17.
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Lemma 3.16. — Let X be a smooth projective surface, and let f : X → B
be a fibration over a smooth curve B. Let L be a pseudoeffective line bundle
on X such that LF ≃ OF for the general fibre F of f . Let D be a Cartier
divisor such that L ≃ OX(D), and let

D = P +N

its Zariski decomposition. Then the following holds:

(1) Up to taking multiples, one has OX(P ) ≃ f∗M with M a nef line
bundle.

(2) If P ̸≡ 0, one has κ(L) ⩾ 1.
(3) If P ≡ 0, there exists m ∈ N and a numerically trivial line bundle

M on B such that κ(X,L⊗m ⊗ f∗M∗) = 0.

Proof. — Note that the statements are invariant under taking multiples.

Up to replacing L by some multiple, we can assume that P and N are
Cartier divisors. Since N is effective and

OF ≃ OF (D) ≃ OF (P ) ⊗ OF (N)

we see that N has support in the fibres of f and OF (N) ≃ OF (P ) ≃ OF .
Thus the direct image sheaf f∗(OX(P )) is locally free of rank one, and we
have

OX(P ) = f∗(f∗OX(P )) ⊗ OX(E)
where E is an effective divisor, supported in fibers of f . Since P 2 ⩾ 0 and
E2 ⩽ 0 [4, III, Lem. 8.2], it follows E2 = 0. Hence by [4, III, Lem. 8.2] there
exists a number k such that kE = f∗(H) with some effective divisor H.
Thus, again up to replacing L by some multiple, we have OX(P ) = f∗M for
some line bundle M on B.

If M ̸≡ 0, it is ample on B, so

1 = κ(M) = κ(P ) = κ(L).

If P ≡ 0, then M ≡ 0, so κ(L⊗ f∗M∗) = κ(N) = 0. □

Lemma 3.17. — Let X̂ be an irreducible reduced projective surface, and
let f̂ : X̂ → B be a fibration over a smooth curve B such that the general
fibre F is smooth. Let L̂ be a pseudoeffective line bundle on X̂ such that
L̂|F ≃ OF .

(1) There exists m ∈ N and a numerically trivial line bundle M on B

such that h0(X̂, L̂⊗m ⊗ f̂∗M) > 0.
(2) If h0(X̂, L̂⊗m ⊗ f̂∗M) > 1 for some numerically trivial line bundle

M , then h0(X̂, L̂⊗k) > 1 for some k ∈ N.
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Remark 3.18. — We will frequently apply the lemma in the case where
B is a rational curve. In this case one obtains h0(X̂, L̂⊗m) > 0 for some
m ∈ N.

Since the dimension of the space of global sections is not necessarily
invariant under normalisation, the statement requires some work:

Proof. — Note that the statement is invariant under taking multiples.

Let µ : X → X̂ be the composition of normalisation and desingular-
isation, set f := f̂ ◦ µ. Then µ∗L̂ =: OX(D) is pseudoeffective, and we
denote by

D = P +N

the Zariski decomposition. By Lemma 3.16(1) we have, up to taking mul-
tiples, that OX(P ) ≃ f∗M for some line bundle on M . Thus we see that
L̂ ≃ f̂∗M ⊗ N̂ , where N̂ is a Cartier divisor on X̂ such that N ≡ µ∗N̂ . By
Lemma 3.16(2) and (3) it is sufficient to show that we can choose N̂ to be
effective.

Since
N̂ ≃ L̂⊗ (f̂)∗M∗,

we have OF (N̂) ≃ OF . Thus (f̂)∗OX̂(N̂) is locally free of rank one, hence
for some m ≫ 0, we have

H0(X̂,OX̂(mF ) ⊗ OX̂(N̂)) ≃ H0(B,OB(m) ⊗ (f̂)∗OX̂(N̂)) ̸= 0.

Thus we can fix an effective Cartier divisor E on X̂ such that OX̂(E) ≃
OX(mF ) ⊗ OX̂(N̂). We can decompose

E = f∗EB +R

where EB is an effective Q-divisor on B and R is an effective divisor such
that for every connected component R′ ⊂ R we have a strict set-theoretical
inclusion R′ ⊊ f̂−1(f̂(R′)). Up to taking multiples and replacing EB by a
linearly equivalent divisor, we can also suppose that supp(f∗EB) ⊂ Xnons.
Now observe that

µ∗E = µ∗f∗EB + µ∗R

is a Zariski decomposition. Since

µ∗E ≡ mF +N.

is also a Zariski decomposition and the negative part of the Zariski de-
composition is unique in the numerical equivalence class, we finally obtain
N = µ∗R. □
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Corollary 3.19. — Let X be a smooth projective surface, and let f :
X → B a fibration over a smooth rational curve B. Let Z ⊂ X be a local
complete intersection of codimension 2. Let L be a line bundle on X such that
LF ≃ OF for the general fibre F of f . Then IZ ⊗L is strongly pseudoeffective
if and only if κ(X, IZ ⊗L) ⩾ 0, i.e., if there exists a positive integer m such
that

H0(X, Im
Z ⊗ Lm) ̸= 0.

Proof. — One direction being obvious, so assume that IZ ⊗L is pseudo-
effective. Let

µ : X̂ −→ X

be the blow-up of X along Z and denote by E the exceptional divisor. Since
Z does not surject onto B, the general fibre of f ◦ µ is smooth.

By Corollary 3.13 the line bundle OX̂(1) ⊗ µ∗(L) ≃ OX̂(−E) ⊗ µ∗(L)
is pseudoeffective. By Remark 3.18 we see that there exists some m ∈ N
such that

H0(X̂,OX̂(−mE) ⊗ µ∗(L⊗m)) ̸= 0.
Since Z is a local complete intersection, we have µ∗(OX̂(−mE)) = Im

Z . Thus
we conclude by the projection formula. □

4. Pseudoeffective cotangent sheaves and the Nonvanishing
Conjecture

In this section we gather some basic facts on the behaviour of pseudoef-
fective cotangent sheaves under birational maps and finite covers. We also
establish a relation with the MRC fibration of the variety.

Proposition 4.1. — Let µ : X̂ → X be a birational morphism of nor-
mal projective varieties.

(1) If Ω[q]
X̂

is pseudoeffective, so is Ω[q]
X .

(2) Suppose that X is smooth. Then the converse also holds.

Proof.

(1). — We choose ample divisors Ĥ on X̂ and H on X such that

Ĥ + E = µ∗(H)
with E an effective divisor supported on the exceptional locus of µ. By
assumption, for all c > 0, there are numbers i and j with i > cj such that

H0(X̂, S[i]Ω[q]
X̂

⊗ OX̂(jĤ)) ̸= 0.
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In particular,

0 ̸= H0(X̂, S[i]Ω[q]
X̂

⊗ OX̂(jµ∗H)) = H0(X,µ∗(S[i]Ω[q]
X̂

) ⊗ OX(jH)).

Since µ∗(S[i]Ω[q]
X̂

) ⊂ S[i]Ω[q]
X , we conclude.

(2). — Suppose that X is smooth. By (1), we may assume X̂ to be
smooth as well. Then all the involved sheaves are locally free, in particular

Siµ∗(Ωq
X) = µ∗(SiΩq

X) ⊂ SiΩq

X̂
,

and the claim follows. □

Example 4.2. — Assertion 4.1(2) fails in general if X is singular, even
if X has only canonical singularities. In fact, the paper [26] constructs a
normal projective surface X with the following properties.

• X has only ADE singularities ;
• the minimal desingularization X̂ is rationally connected ;
• H0(X,S[2]Ω1

X) ̸= 0.

Thus Ω1
X̂

is not pseudoeffective in contrast to Ω[1]
X .

Another example is a K3 surface of Kummer type, see Example 2.3.

Corollary 4.3. — Let X be a normal projective variety with klt sin-
gularities, and let X 99K X ′ be a composition of divisorial contractions and
flips. If Ω[q]

X is pseudoeffective, so is Ω[q]
X′ .

Proof. — By Proposition 4.1(1) it suffices to treat the case of a flip µ :
X 99K X ′. Since a flip is an isomorphism in codimension two, one has

H0(X,S[i]Ω[q]
X ⊗ OX(jH)) ≃ H0(X ′, S[i]Ω[q]

X′ ⊗ OX′(jµ∗H))
for all i, j ∈ N. Thus the condition in Definition 3.5 holds for a big Q-Cartier
divisor, which is sufficient (see [28, Lem. 2.2]). □

Proposition 4.4. — Let f : X̃ → X be a finite surjective morphism
of normal projective varieties. If Ω[q]

X is pseudoeffective, so is Ω[q]
X̃

. If f is
quasi-étale, the converse also holds.

Proof. — Over the smooth locus of X we have a injective morphism

f∗(SiΩq
Xnons

) −→ S[i]Ω[q]
X̃
.

Since the complement of f−1(Xnons) has codimension at least two, the mor-
phism extends to

f [∗](S[i]Ω[q]
X ) −→ S[i](Ω[q]

X̃
).

which gives the first claim.
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Assume now that f is quasi-étale and that Ω[q]
X̃

is pseudoeffective. Then

f [∗](Ω[q]
X ) ≃ Ω[q]

X̃
is pseudoeffective. Now we conclude by Lemma 3.15. □

At this point we introduce generalised Kodaira dimension:

Definition 4.5. — Let X be a normal projective variety with klt singu-
larities and 1 ⩽ q ⩽ n. Then we define

κq(X) = κ(X,Ω[q]
X ).

In case q = dimX, we have of course κq(X) = κ(X).

As a corollary to Lemma 3.15 we obtain a generalisation of [3, Prop. 2.2]:

Proposition 4.6. — Let X̃ → X be a quasi-étale morphism of projec-
tive varieties with klt singularities. Then

κq(X̃) = κq(X)

for all 1 ⩽ q ⩽ dimX.

Proof. — This follows from Lemma 3.15, since for a quasi-étale morphism

f [∗](Ω[q]
X ) = Ω[q]

X̃
. □

Remark 4.7. — Let µ : X̂ → X be a birational morphism of normal
projective varieties with klt singularities. Then κq(X̂) ⩽ κq(X) with equality
if X is smooth. The same inequality holds if µ : X̂ 99K X is a composition
of divisorial contractions and flips.

Although Conjecture 1.1 can be formulated for any p, we are mainly
interested in the case p = 1. We next confirm the conjecture for p = 1 in
case KX ≡ 0.

Proposition 4.8. — Let X be a normal projective variety with klt sin-
gularities such that KX ≡ 0. Assume that X is smooth in codimension two,
e.g., X has terminal singularities. Then the following are equivalent:

(1) Ω[1]
X is pseudoeffective ;

(2) we have q̃(X) > 0, i.e., there exists a quasi-étale cover X̃ → X such
that H0(X̃,Ω[1]

X̃
) ̸= 0 ;

(3) we have H0(X,S[m]Ω1
X)) ̸= 0 for some positive integer m, i.e.,

κ1(X) ⩾ 0.

Proof. — By [29, Thm. 1.6] we know that (1) implies (2). By Proposi-
tion 4.6 we know that (2) implies (3) which obviously implies (1). □
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We will now discuss the relation between the pseudoeffectivity of Ωq
X and

the MRC fibration. First, the rational connectedness criterion given in [17]
can be stated as follows.

Theorem 4.9. — Let X be a projective manifold of dimension n. Then
X is rationally connected if and only if for all 1 ⩽ q ⩽ n the vector bundle
Ωq

X is not pseudoeffective.
Proof. — If X is rationally connected, it is dominated by very free ra-

tional curves [30, IV.3.9]. It is then straightforward to verify the vanishing
condition in Definition 3.5.

Assume that Ωq
X is not pseudoeffective for all 1 ⩽ q ⩽ n. Let F ⊂ Ωq

X

be an invertible subsheaf, then F is not pseudoeffective (see Example 3.6).
Hence by [17, Thm. 1.1], X is rationally connected. □

Theorem 4.9 can be generalised as follows.
Theorem 4.10. — Let X be a projective variety of dimension n. Fix

some r ∈ {1, . . . , n} and assume that Ω[q]
X is not pseudoeffective for all r ⩽

q ⩽ n.

Then X is uniruled, and the base Z of the MRC fibration satifies dimZ ⩽
r − 1.

Proof. — By Proposition 4.1 we can assume without loss of generality
that X is smooth. Since KX = Ωn

X is not pseudoeffective, the manifold X is
uniruled by [9]. Hence we consider the MRC fibration

f : X 99K Z.

Up to replacing Z by a resolution and X by a blow-up, we may assume, by
Proposition 4.1, that Z is smooth and f is a morphism.

Arguing by contradiction we suppose that d := dimZ ⩾ r. By [24], the
variety Z is not uniruled, hence KZ is pseudoeffective. Choose HZ ample on
Z and set HX = f∗(HZ). Since KZ is pseudoeffective, for all c > 0 there
exist integers i and j with i > cj such that

H0(Z,OZ(iKZ) ⊗ OZ(jHZ)) ̸= 0.
Since 0 ̸= f∗(Ωd

Z) ⊂ Ωd
X , it follows that
H0(X,SiΩd

X ⊗ OX(jHX)) ̸= 0.
Thus Ωd

X is pseudoeffective and d ⩾ r, a contradiction to our assumption. □

If X is smooth, the converse to Theorem 4.10 is also true:
Proposition 4.11. — Let X be a uniruled projective manifold of di-

mension n, and let f : X 99K Z be the MRC fibration. If d = dimZ, then
Ωq

X is not pseudoeffective for all d+ 1 ⩽ q ⩽ n.
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Proof. — Let F be a general fibre of f . Then F is rationally connected
of dimension dimF = n − d. Let C ⊂ F be a general very free rational
curve [30, IV.3.9], so TF |C is ample. Then

TX |C ≃ O⊕d
C ⊕ TF |C .

Thus for every q ⩾ d + 1, the exterior power
∧q

TX |C is ample. Hence Ωq
X

is not pseudoeffective. □

For smooth varieties, the MRC-fibration should allow to reduce Conjec-
ture 1.1 to non-uniruled varieties:

Conjecture 4.12. — Let X be a uniruled projective manifold, and let
f : X 99K Z be the MRC fibration to the projective manifold Z. Let 1 ⩽ q ⩽
n. Then Ωq

X is pseudoeffective if and only if Ωq
Z is pseudoeffective.

Note that, by Proposition 4.1, we may assume f holomorphic. Then one
direction is clear: if Ωq

Z is pseudoeffective, then so is f∗(Ωq
Z) by Lemma 3.4.

Hence Ωq
X is pseudoeffective, see Example 3.6. Vice versa assume that Ωq

X

is pseudoeffective. Applying [7, Cor. 1.3.2], f factors into a sequence of divi-
sorial contractions and flips, ending with a Mori fibre space f ′ : X ′ → Z of
relative Picard number one. By Corollary 4.3, we may therefore assume that
f is a Mori contraction, but now X may have terminal singularities instead
of being smooth.

Proposition 4.13. — Conjecture 4.12 is true in dimension three.

Proof. — As just noticed it suffices to treat Mori contractions f : X → Z
where X has terminal singularities. Since Z is not uniruled, we may assume
that dimZ = 2; otherwise Z is a curve of genus g ⩾ 1 and there is nothing
to prove. Further, since KZ is pseudoeffective, only the case q = 1 needs to
be treated. Now f is a generically a conic bundle [2, 4.1]. More precisely, the
singular locus of X being finite, there is a finite set B = f(Sing(X)) in Z
such that, setting Z0 = Z \ B and X0 = f−1(Z0), the map f0 : X0 → Z0
is a conic bundle with only finitely many non-reduced fibers. Furthermore,
f−1(B) is one-dimensional.

Since −KX is relatively ample and relatively globally generated on X0, we
can choose a very ample Cartier divisorH on Z such that −KX/Z+f∗H =: A
is ample and satisfies H0(X,OX(A)) ̸= 0. In particular there is an injection

ωX/Z ↪−→ OX(f∗H). (4.1)

Claim. — For every c > 1 there exist positive integers k, j such that
k ⩾ cj such that

H0(X0, f
∗SkΩZ ⊗ OX(j(A+ f∗H))) ̸= 0.

– 874 –



A Nonvanishing Conjecture for Cotangent Bundles

Since f−1(B) has codimension at least two, this shows that f∗ΩZ is pseu-
doeffective. Thus ΩZ is pseudoeffective by Lemma 3.4.

Proof of the claim. — Since ΩX is pseudoeffective, there exist positive
integers i, j such that i ⩾ 2cj such that

H0(X0, S
iΩX ⊗ OX(jA)) ̸= 0.

We consider the canonical exact sequence

0 −→ f∗(ΩZ0) df−→ ΩX0 −→ ΩX0/Z0 −→ 0. (4.2)
Since X0 → Z0 is a conic bundle, we know that df cannot vanish along a
divisor D. Thus ΩX/Z is torsion free and the singular locus of ΩX/Z is at
most one-dimensional. Thus we get

H0(X0, f
∗SkΩZ0 ⊗ ω

[i−k]
X0/Z0

⊗ OX(jA)) ̸= 0.

for some k ∈ {0, . . . , i}. Since ω[i−k]
X0/Z0

⊗ OX(jA) has negative degree on the
fibres of f if i− k > j we see that k ∈ {i− j, . . . , j}. Note that since i ⩾ 2cj
and c > 1 this implies that k ⩾ j. Using the morphism (4.1) obtain

H0(X0, f
∗SkΩZ0 ⊗ OX(jA+ (i− k)f∗H)) ̸= 0.

Since i− k ⩽ j we finally obtain the claim. □

Remark. — The key point of the proof above is that the morphism df
does not vanish along a divisor D0. In higher dimension, since the total space
of the Mori fibre space is not necessarily smooth, this might very well happen.
Then this type of argument only shows that f∗ΩZ(D) is pseudoeffective
where D has support inside the support of D0. At least in dimension three
we also see that

H0(X,SmΩX) = H0(Z, SmΩZ)
where X 99K Z is the MRC fibration of a uniruled smooth threefold X and
Z is smooth.

Corollary 4.14. — Let X be a smooth projective surface such that ΩX

is pseudoeffective. If κ(X) ⩽ 0, then Conjecture 1.1 holds.

Proof. — If κ(X) = −∞, the surface X is uniruled. Since ΩX is pseu-
doeffective, by Proposition 4.11 the base of the MRC fibration is a curve of
genus at least one. Thus we have q(X) > 0.

If κ(X) = 0, let Xmin be the minimal model of X. Then ΩXmin is
pseudoeffective by Proposition 4.1. Thus by Proposition 4.8 one has
H0(Xmin, S

mΩ1
Xmin

)) ̸= 0 for some positive integer m. Since Xmin is smooth,
we have an isomorphism

H0(X,SmΩ1
X)) ≃ H0(Xmin, S

mΩ1
Xmin

)). □
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In the next two sections we will deal with surfacesX of Kodaira dimension
κ(X) = 1.

5. Elliptic surfaces: general set-up and the non-isotrivial case

We are starting here to study elliptic fibrations f : X → B with κ(X) = 1
towards Conjecture 1.1. If f is almost smooth, i.e., the only singular fibers
are multiples of elliptic curves, then c2(X) = e(X) = 0 [4, III, Prop. 11.4].
Thus by Noether’s formula χ(X,OX) ⩽ 0, and therefore q(X) > 0, so there
is nothing to prove. We first fix notations.

5.1. Elliptic fibrations: the setup

Setup 5.1. — Let X be a smooth projective surface, and let f : X → B
be an elliptic fibration onto a smooth curve B. We set

D =
∑
b∈B

f∗b− (f∗b)red,

so D is an effective divisor having support exactly on the irreducible com-
ponents of a fibre that are not reduced. The exact sequence

0 −→ f∗ΩB −→ ΩX −→ ΩX/B −→ 0

induces an exact sequence

0 −→ f∗ΩB(D) −→ ΩX −→ IZ ⊗ ωX/B(−D) −→ 0, (5.1)

where Z is a local complete intersection scheme of codimension two whose
support coincides with the singular points of the reduction (f∗b)red of the
fibres [37, Prop. 3.1(iii)].

We denote by π : P(ΩX) → X the projectivisation, and by ζ → P(ΩX)
the tautological class.

We set
Y := P(IZ ⊗ ωX/B(−D)) ⊂ P(ΩX). (5.2)

Since IZ is a local complete intersection of codimension two, the projectivi-
sation coincides with the blow-up of the ideal sheaf IZ (see Setup 3.10). In
particular Y is a prime divisor in P(ΩX) and

[Y ] = ζ − π∗c1(f∗ΩB(D)). (5.3)
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Denote by K ⊂ B the finite set of points such that the fibre f∗b is not
multiple and not reduced. The divisor D can be decomposed as

D =
s∑

i=1
(mi − 1)Fi +

∑
b∈K

D0,b, (5.4)

where the Fi are the reductions of multiple f -fibres and

D0 :=
∑
b∈K

D0,b

is simply the remainder, i.e. the part of D coming from non-multiple, non-
reduced fibres. It follows from Kodaira’s classification [4, V, §7, Table 3]
that the support of D0 does not contain any fibre, so the intersection matrix
of D0 is negative definite by Zariski’s lemma [4, III, Lem. 8.2]. It is now
straightforward to check that (5.4) is the Zariski decomposition of D (see
Section 3.4) with P =

∑s
i=1(mi − 1)Fi.

If f is relatively minimal, the canonical bundle formula [4, V, Thm. 12.1,
Prop. 12.2] holds:

ωX ≃ f∗(ωB ⊗ (R1f∗OX)∗) ⊗ OX

(
s∑

i=1
(mi − 1)Fi

)
, (5.5)

and deg(R1f∗OX)∗ = χ(X,OX).

Finally assume that f is relatively minimal and B = P1. Then (5.5)
implies that

KX/B −D ∼ aF −D0 (5.6)
where a = χ(X,OX) and F is a general fibre.

Proposition 5.2. — In the situation of Setup 5.1, suppose that f∗ΩB(D)
is pseudoeffective. Then we have q̃(X) > 0.

Proof. — The statement is trivial if g(B) ⩾ 1, so assume B ≃ P1.
We follow the philosophy of [15, §3.5]. By Remark 3.18 one has
κ(f∗ΩB(D)) ⩾ 0. Choose a positive integer m and a non-zero section s ∈
H0(X, (f∗ΩB(D))⊗m). Let E be the divisor defined by s. Note that E is
supported on fibers of f and that

E ∼ m(D − 2F ),
where F is a general fibre of f . By the discussion in Setup 5.1 we know that
the nef part of D is represented by

∑s
i=1(mi − 1)Fi ≡ λF where the Fi are

the reductions of multiple f -fibres. Since

D ∼Q
1
m
E + 2F,

is a decomposition in effective divisors and 2F is nef, we obtain λ ⩾ 2.
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Introducing the Q-divisor ∆ =
∑s

i=1(1 − 1
mi

)pi with pi = f(Fi), we have
f∗∆ =

∑s
i=1(mi − 1)Fi, so

s∑
i=1

(
1 − 1

mi

)
= λ ⩾ 2.

Thus f has at least three multiple fibers. Then there is a ramified base change
B̃ → B inducing an étale map

X̃ −→ X

such that f̃ : X̃ → B̃ has no multiple fibers and g(B̃) ⩾ 1, see e.g. [22,
IV.9.12]. Thus q̃(X) ̸= 0. □

5.2. The non-isotrivial case

In the situation of Setup 5.1, assume furthermore that the elliptic fibra-
tion f is not isotrivial. Let F be a general fibre, then its Kodaira–Spencer
class is not zero. Thus we have a non-split extension defined by the restriction
of (5.1) to F

0 −→ OF −→ ΩX |F −→ ΩF ≃ OF −→ 0.
Denote by ζF → P(ΩX |F ) the tautological class. Then the (1,1)-class ζF is
nef with ζ2

F = 0, moreover it is represented by the current of integration over
the curve C defined by the quotient ΩX |F → OF . We recall the following
result:

Lemma 5.3 ([20, Ex. 1.7]). — Let hF be any singular metric on ζF such
that the curvature current ΘhF

(ζF ) is positive. Then
ΘhF

(ζF ) = [C]
where [C] is the current of integration over C.

Proposition 5.4. — In the situation of Setup 5.1, assume that f is not
isotrivial. If ζ is pseudoeffective, the line bundle f∗ΩB(D) is pseudoeffective.

Proof. — By assumption there exists a singular metric h on ζ such that
Θh(ζ) ⩾ 0. Then we can consider the Siu decomposition

Θh(ζ) =
∑

k

ν(Θh(ζ), Yk)[Yk] + P

where Yk ⊂ P(ΩX) are prime divisors and P is a positive closed current
such that the (countably many) irreducible components of E+(P ) [8, §2.2.1]
have codimension at least two. Let now F be a very general f -fibre, so that
P(ΩX |F ) does not contain any positive dimensional irreducible component
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of E+(P ) then the restriction hF of the metric h to P(ΩX |F ) is well-defined
and yields a singular metric on ζF . Moreover we have a decomposition

ΘhF
(ζF ) = (Θh(ζ))|F =

∑
ν(Θh(ζ), Yk)[Yk ∩ F ] + P |F .

By Lemma 5.3 we see that P |F = 0, and there exists a unique Yk (say Y1)
such that Y1 ∩ F = C and ν(Θh(ζ), Y1) = 1.

Since the intersection Y1 ∩ F coincides with C on all the general fibres
and the quotient ΩX |F → ΩF is the restriction of the quotient Ω1

X → IZ ⊗
ωX/B(−D) we obtain that Y1 = Y . Thus we have

Θh(ζ) − [Y ] =
∑
k⩾2

ν(Θh(ζ), Yk)[Yk] + P

which is a positive current. By (5.3) this implies the statement. □

Remark. — The non-isotriviality of f is crucial for the preceding argu-
ment: if f is isotrivial, the restriction ΩX |F of the cotangent bundle to F is
isomorphic to O⊕2

F . Thus Lemma 5.3 does not apply and in fact there are
infinitely many possibilities for the positive current ΘhF

(ζF ). This makes it
impossible to reconstruct the singular locus of Θh(ζ) from its restriction over
a general fibre.

By Proposition 5.2 and 4.6, we conclude

Corollary 5.5. — Let X be a smooth projective surface, and let f :
X → B be a non-isotrivial elliptic fibration Then the following are equivalent:

(1) Ω1
X is pseudoeffective ;

(2) we have q̃(X) > 0 ;
(3) we have H0(X,SmΩ1

X)) ̸= 0 for some positive integer m

In summary, Conjecture 1.1 holds for non-isotrivial elliptic surfaces.

6. Elliptic surfaces: the isotrivial case

In this section we treat isotrivial elliptic fibrations and prove parts (2)
and (3) of Theorem 1.2.

6.1. Notation

In the situation of Setup 5.1, assume that
f : X −→ B
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is relatively minimal and isotrivial. Denote by E the elliptic curve such that
a general f -fibre is isomorphic to E. By [37, §2] there exists a smooth curve
C and a finite group G acting diagonally on the product C × E such that
X is birational to the quotient (C × E)/G and the fibration f corresponds
to the fibration (C × E)/G → C/G ≃ B induced by projection on the first
factor.

More precisely, denote by q : C×E → (C×E)/G the quotient map, and
by pC : (C × E)/G → C/G the map induced by the projection pC . Denote
by λ : R → (C × E)/G the minimal resolution of singularities, then the
exceptional divisors are Hirzebruch–Jung strings [37, 2.0.2] and the singular
fibres of

fR := pC ◦ λ : R −→ B

are described in [37, Thm. 2.1]. Following Serrano, we call fR the standard
model of the isotrivial fibration f .

The standard isotrivial fibration fR factors through its relative minimal
model. Since we assumed that f is relatively minimal and the relative min-
imal model of an elliptic surface is unique, we have a birational morphism
µ : R → X such that fR = f ◦ µ. We summarise the construction in a
commutative diagram:

R

λ

$$

µ

��

C × E

q

��

X

f

��

(C × E)/G

pC

��

B C/G

(6.1)

In general the birational map µ is not an isomorphism [37, (2.4)], but as
shown in Lemma 6.2 below, it is an isomorphism unless E has non-trivial
group automorphisms. The following lemma is well-known, we recall the
proof for the convenience of the reader:

Lemma 6.1. — Using the Notation 6.1, let x ∈ C be a point with non-
trivial stabiliser Gx ≃ Z2 on C. Then Gx acts either by translation or as the
involution z 7→ −z on the elliptic curve x× E.

In particular the corresponding singular fiber of f is either a multiple
elliptic curve or a curve of type I∗

0 in Kodaira’s classification, see e.g., [4,
V, §7, Table 3].

Proof. — We follow the description of the singularities of (C × E)/G
in [37, 2.0.2]: if Gx ≃ Z2 acts freely on x × E, the quotient (C × E)/G is
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smooth near the fibre which is multiple elliptic. Assume now that there exists
a point e ∈ E with non-trivial stabiliser Gx,e ⊂ Gx. Then Gx,e is a subgroup
of the group automorphism group Aut(E, e). In view of [27, IV, Cor. 4.7] this
strongly limits the possibilities. Since we assumed that Gx ≃ Z2, the group
Gx,e = Gx acts as z 7→ −z and (C × E)/G has four singularities of type A1
along the fibre. Thus the fibre in the minimal resolution has type I∗

0 . □

Lemma 6.2. — Let f : X → B be a minimal isotrivial elliptic fibration
as in Notation 6.1. If E trivial group automorphism group Z2, the fibration
f : X → B is standard. Moreover all the singular fibres are multiple elliptic
curves or of type I∗

0 .
Proof. — Since the fibration is isotrivial the J-function is constant for all

the smooth fibres, hence extends as a constant function to B. Thus by [34,
Table IV.3.1] this excludes singular fibres of type IN and I∗

N . Since E has
trivial group automorphism group Z2, its J-invariant is distinct from 0 and
1. Hence again by [34, Table IV.3.1] this leaves only the possibility of singular
fibres that are either multiple elliptic curves or of type I∗

0 . But these fibres
are standard, cp. the proof of Lemma 6.1 above. □

6.2. Relatively minimal standard isotrivial fibrations

Assumption 6.3. — In the whole subsection we assume that
f : X −→ B

is a relatively minimal, isotrivial elliptic fibration such that all the singular
fibres are multiple elliptic curves or of type I∗

0 . In particular the fibration is
standard, for simplicity of the exposition we thus identify X = R.

We have the following crucial
Lemma 6.4. — Using the Notation 6.1, let Z denote the set of points

in x ∈ C such that Gx acts as the involution z 7→ −z on the elliptic curve
x× E.

If f∗ΩB(D) is not pseudoeffective, then Z has at least 2g(C)−1 elements.
Proof. — Since f∗ΩB(D) is not pseudoeffective, we have B ≃ P1.

The action of G on the curve C defines a Galois cover ψ : C → C/G ≃ P1

of degree d = |G|. By the Hurwitz formula we have
2g(C) − 2 = degKC = −2d+ degR,

where R is the ramification divisor of ψ. If x ∈ Z, then it is a point with
stabiliser Gx ≃ Z2, hence ψ ramifies with order 2 in x. Thus degRx = 1 and

#(Z) = 2g(C) − 2 + 2d− degRt,
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where Rt ⊂ R is the ramification corresponding to points y ∈ C such that
Gy ≃ Zmy acts by translation on y×E (see Lemma 6.1). If y ∈ C is a point
with this property, every point in its orbit G.y has the same property. Since
the orbit has length d

my
, this induces a ramification divisor of order dmy−1

my
.

Now note that the corresponding f - fibre over y = ψ(y) is multiple elliptic
with multiplicity my, so it defines a component of D that is numerically
equivalent to my−1

my
F where F is a general fibre of f . Thus we see that

f∗ΩP1(D) is pseudoeffective if∑
y∈P1, Gy acts by translation

my − 1
my

⩾ 2.

Suppose now that this is not the case: then we have

degRt =
∑

y∈C, Gy acts by translation
d

(
my − 1
my

)
< 2d,

hence #(Z) = 2g(C) − 2 + 2d− degRt > 2g(C) − 2. □

Construction 6.5. — We again use the Notation 6.1. Let A be an ample
Cartier divisor on (C×E)/G, and setAX = λ∗A. Then by definition (and [28,
Lem. 2.2]) the vector bundle ΩX is not pseudoeffective if and only if there
exists a c > 0 such that for all i, j ∈ N such that i > cj one has

H0(X,SiΩX ⊗ OX(jAX)) = 0.

Denote by D ⊂ X the exceptional locus of λ, then we have morphisms

H0(X,SiΩX ⊗ OX(jAX))� _

��

H0(X \D,SiΩX ⊗ OX(jAX))
≃
��

H0((C × E)/G \ λ(D), SiΩ(C×E)/G ⊗ O(C×E)/G(jA))
� _

��

H0(C × E \ q−1(λ(D)), SiΩC×E ⊗ OC×E(jq∗A))
≃
��

H0(C × E,SiΩC×E ⊗ OC×E(jq∗A))

where the last isomorphism is due to the fact that SiΩC×E is reflexive, since
C × E is smooth.

Finally let AC be an ample divisor on C and AE an ample divisor of
degree one on E. Set

A := p∗
C(AC) ⊗ p∗

E(AE)
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with the canonical projections pC : C × E → C and pE : C × E → E. Then
for some l ∈ N sufficiently high we have an inclusion

OC×E(q∗A) ↪−→ OC×E(lA),

so for all i, j ∈ N we obtain an inclusion

Φ = Φi,j,l : H0(X,SiΩX ⊗ OX(jAX))
↪−→ H0(C × E,SiΩC×E ⊗ OC×E(jlA)). (6.2)

Definition 6.6. — We say that a η ∈ H0(C×E,SiΩC×E ⊗OC×E(jA))
induces a holomorphic symmetric differential with values in AX on X if it
is in the image of an inclusion Φ in (6.2).

Remarks. — The definition is a slight abuse of terminology, since the
inclusion Φ in (6.2) is only defined for j divisible by l. Since in the definition
of pseudoeffectivity we can always replace i and j by il and jl, we will, for
the simplicity of notation, ignore this point.

Note also that the chain of inclusions does not use that C is proper, so
the terminology also applies to an analytic open subset ∆×E ⊂ C×E with
some subgroup Gx ⊂ G acting on ∆ × E.

6.3. The nonvanishing conjecture for standard isotrivial fibrations

The goal of this subsection is to prove the following

Theorem 6.7. — Let X be a smooth projective surface that admits rel-
atively minimal, isotrivial elliptic fibration

f : X −→ B

such that all the singular fibres are multiple elliptic curves or of type I∗
0 . If

f∗ΩB(D) is not pseudoeffective, then ΩX is not pseudoeffective.

By Proposition 5.2 and 4.6 and Lemma 6.2 we thus obtain:

Corollary 6.8. — Let f : X → B be a relatively minimal isotrivial
elliptic fibration such that the general fibre has trivial group automorphism
group Z2. Then the following are equivalent:

(1) Ω1
X is pseudoeffective ;

(2) we have q̃(X) > 0 ;
(3) we have H0(X,SmΩ1

X)) ̸= 0 for some positive integer m
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The proof of Theorem 6.7 is done by showing that if i ≫ j, a non-zero
η ∈ H0(C × E,SiΩC×E ⊗ OC×E(jA))

does not induce a holomorphic symmetric differential on X. In other words,
Φ = 0. Since the details are somewhat technical, let us first recall and reprove
a result of Sakai.

Example 6.9 ( [36, §4, (D)]). — Let C be a hyperelliptic curve, and let
τ = (iC , iE) be the involution on C×E defined by the hyperelliptic involution
iC on C and the map iE : E → E, z 7→ −z on an elliptic curve E. The
minimal resolution X → (C ×E)/⟨τ⟩, has an isotrivial fibration f : X → P1

such that all the singular fibres are of type I∗
0 , in particular it is relatively

minimal and standard. Then one has
H0(X,SiΩX) = 0 ∀ i ∈ N.

Proof. — Let

p∗
Cα⊗ p∗

Eβ ∈ H0(C × E,SiΩC×E) =
i⊕

l=0
H0(C × E, p∗

Cω
⊗l
C ⊗ p∗

Eω
⊗i−l
E )

be a rank one tensor, i.e. α ∈ H0(C,ω⊗l
C ) and β ∈ H0(E,ω⊗i−l

E ) for some
l ∈ 0, . . . , i.

Assume that α ⊗ β induces a holomorphic symmetric differential on X.
Arguing by contradiction we assume that α ̸= 0 and β ̸= 0.

If (x, 0) is a fixed point of τ , choose local coordinates z1 on C and z2 on E
such that locally near (x, 0), the involution is given by (z1, z2) 7→ (−z1,−z2).
In these local coordinates we write α = fα(z1)dzl

1 and β = fβ(z2)dzi−l
2 .

For a general point in the exceptional divisor over the point (x, 0), we can
choose local coordinates (u, v) on X such that z1 = u2, z2 = uv. In these
coordinates the exceptional divisor is given by u = 0. Substituting (z1, z2)
by these coordinates we see that α⊗ β induces the meromorphic symmetric
differential

fα(
√
u) · fβ(

√
u) · dul (udv + vdu)i−l

(2
√
u)i

.

on X. Looking at the term of dui we see that the differential is holomorphic
along the exceptional divisor if and only if

fα(
√
u) · fβ(

√
u)

(
√
u)i

is holomorphic, i.e. if and only if α⊗ β vanishes with order at least i in the
fixed point. Since 0 ̸= β ∈ H0(E,ω⊗i−l

E ) ≃ H0(E,OE) does not vanish, this
shows that α ∈ H0(C,ω⊗l

C ) vanishes with order i in x. Since the involution
iC has 2g(C) + 2 fixed points, we obtain that α vanishes along a divisor of

– 884 –



A Nonvanishing Conjecture for Cotangent Bundles

degree at least i · (2g(C)+2). Since degω⊗l
C = l · (2g(C)−2) < i · (2g(C)+2)

we obtain that α = 0. Since H0(E,ω⊗i−l
E ) has dimension one for every i− l

one can reduce the general case to rank one tensors, so the statement follows.
This settles the proof of the example. □

In the proof of Theorem 6.7 we have h0(E,ω⊗i−l
E ⊗ OE(jAE)) > 1, so

the symmetric differentials are not global rank one tensors. Somewhat sur-
prisingly, this leads to a much weaker local obstruction (cf. [11, Prop. 3.2]),
i.e., the vanishing order of the symmetric differential in a fixed point can be
strictly smaller than i. We will improve this local estimate by taking into
account that the vanishing order along E is bounded by j degAE .

The local obstruction – Setup. — Let us describe the local obstruction
for a holomorphic symmetric differential on C ×E to induce a holomorphic
symmetric differential on X: using the notation of Lemma 6.4, fix a point
x ∈ Z ⊂ C, and let τx be the generator of Gx ≃ Z2. Let 0 ∈ E be a
fixed point of τx, for this local computation we choose AE := 0 to be the
corresponding ample divisor of degree one(2).

Let x ∈ ∆ ⊂ C be a small disc and choose a local coordinate z1 such that
the action of Gx is given by z1 7→ −z1 (in particular x = 0). We have

H0(∆ × E,O∆×E(jA)) ≃ C{z1} ⊗H0(E,OE(jAE)),

where z1 is a local coordinate on ∆ and C{z1} denotes the algebra of con-
vergent power series in z1.

Since E is an elliptic curve, we have h0(E,OE(jAE)) = j, and we may
choose a basis of sections sj,0, . . . , sj,j−2, sj,j such that sj,k vanishes with
order exactly k in the neutral element 0 of the elliptic curve. In particular
we have a C-basis of H0(∆ × E,O∆×E(jA))

zn−k
1 sj,k n ∈ N, k = 0, . . . , j − 2, j.

Note that by construction zn−k
1 sj,k vanishes with order exactly n in (0, 0).

Since E is an elliptic curve, its cotangent bundle is trivial and we denote
by dz2 a global generator of ΩE . Let now

H0(∆ ×E,SiΩ∆×E ⊗ O∆×E(jA)) ≃
i⊕

l=0
H0(∆ ×E,O∆×E(jA)) ⊗ dzl

1dzi−l
2

(2) We make this choice in order to simplify the notation. Since the obstruction depends
only on a small neighbourhood of 0 ∈ E, the statement in Corollary 6.11 is independent
of this choice.
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be the space of symmetric differentials with values in O∆×E(jA). Then we
can decompose

H0(∆ × E,SiΩ∆×E ⊗ O∆×E(jA)) =
⊕
n∈N

Vn

where Vn is generated by

zn−k
1 sj,kdzl

1dzi−l
2 k = 0, . . . ,min{j, n}, l = 0 . . . i.

Let now ω ∈ H0(∆ × E,SiΩ∆×E ⊗ O∆×E(jA)), and let

ω =
∑
n∈N

ωn

be the decomposition such that ωn ∈ Vn. Finally let

M := z1dz2 − s1,1dz1

be the holomorphic 1-form with values in A giving in local coordinates the
form z1dz2 − z2dz1.

In the setup just introduced, the following holds :

Lemma 6.10. — Let S be the minimal resolution of (∆ × E)/Gx. If ω
induces a holomorphic symmetric differential with values in AS on S (see
Definition 6.6), then for all n ∈ N the form ωn induces a holomorphic sym-
metric differential with values in AS. Moreover, if n < i, there exists a
differential

ηn ∈ H0
(

∆ × E,S
i+n

2 Ω∆×E ⊗ O∆×E

((
j − i− n

2

)
A

))
such that ωn = ηn ×M

i−n
2 .

Remark. — Since Gx ≃ Z2 acts locally as (z1, z2) 7→ (−z1,−z2), one has
n = i mod 2 [11, §3], so i+n

2 and i−n
2 are positive integers.

Proof. — The property of being holomorphic is local, so we can just apply
the proof of [11, Prop. 3.2]. □

Since H0(E,OE((j − i−n
2 )AE)) = 0 for j − i−n

2 < 0 this implies :

Corollary 6.11. — If ω ∈ H0(∆ × E,SiΩ∆×E ⊗ O∆×E(jA)) induces
a holomorphic symmetric differential with values in AS on S, then

ω ∈ H0(∆ × E, In
0,0 ⊗ SiΩ∆×E ⊗ O∆×E(jA))

where I0,0 is the ideal sheaf of the origin and n ⩾ i− 2j.
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Proof of Theorem 6.7. — We use the notation of Subsection 6.1 and
Construction 6.5. Denote by Z ⊂ C the set of points in x ∈ C such that
the stabiliser Gx = ⟨τx⟩ acts as the involution z 7→ −z on the elliptic curve
x× E. Since f∗ΩB(D) is not pseudoeffective and all the fibres are multiple
elliptic or of type I∗

0 , we know by Lemma 6.4 that Z has at least 2g − 1
element where g = g(C).

For every x ∈ Z we fix a point x′ ∈ (x × E) such that (x, x′) is a fixed
point of τx.

Fix some rational ϵ > 0 such that 2g−2
2g−1 + ϵ < 1 and fix a positive integer

N such that (
2g − 2
2g − 1 + ϵ

)
N ∈ N.

Assume now that

η ∈ H0(C × E,SiΩC×E ⊗ OC×E(jA))

induces a holomorphic symmetric differential with values in AX on X (see
Definition 6.6). Then for every x ∈ Z, the restriction to some neighbour-
hood ∆ × E induces a holomorphic symmetric differential on the minimal
resolution S of (∆ ×E)/Gx. Thus by Corollary 6.11 we have for every i ∈ N
that

η ∈ H0

(
C × E,

(⊗
x∈Z

In
(x,x′)

)
⊗ SiΩC×E ⊗ O∆×E(jA).

)
with n ⩾ i− 2j.

Observe that if i ⩾ 2
1− 2g−2

2g−1 −ϵ
j one has

n ⩾

(
2g − 2
2g − 1 + ϵ

)
i.

Thus we get an inclusion

ηN ∈ H0

(
C × E,

(⊗
x∈Z

I
( 2g−2

2g−1 +ϵ)Ni

(x,x′)

)
⊗ SNiΩC×E ⊗ OC×E(NjA)

)
.

We claim that this last vector space is zero for i ⩾ 2
1− 2g−2

2g−1 −ϵ
j. As explained

after Theorem 6.7, this shows the statement.

Proof of the claim. — Recall that

SiΩC×E =
i⊕

l=0
p∗

Cω
l
C ⊗ p∗

Eω
i−l
E ≃

i⊕
l=0

p∗
Cω

l
C
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since ωE ≃ OE . Since ωl
C ↪→ ωi

C for l < i we are reduced to showing that

H0

(
C × E,

(⊗
x∈Z

I
( 2g−2

2g−1 +ϵ)Ni

(x,x′)

)
⊗ p∗

Cω
Ni
C ⊗ OC×E(NjA)

)
= 0

for i ≫ j. By Definition 3.7 this is the same as proving that⊗
x∈Z

I
( 2g−2

2g−1 +ϵ)N

(x,x′) ⊗ p∗
Cω

N
C

is not strongly pseudoeffective. Arguing by contradiction assume that the
sheaf is strongly pseudoeffective.

Let µ : S → C × E be the blowup of the (reduced) set
⋃

x∈Z(x, x′) ⊂
C ×E and denote by OS(1) the tautological sheaf, i.e. the ideal sheaf of the
exceptional divisor of µ. Recall that S is isomorphic to the blowup of the
ideal sheaf

⊗
x∈Z I

( 2g−2
2g−1 +ϵ)N

(x,x′) (e.g. [27, II, Ex. 7.11]), so by Corollary 3.13 the
line bundle

OS

((
2g − 2
2g − 1 + ϵ

)
N

)
⊗ µ∗p∗

Cω
N
C

is pseudoeffective. By Lemma 3.16, applied to the elliptic fibration pC ◦ µ :
S → C, there exists m ∈ N and a numerically trivial line bundle M on C
such that

H0
(
S,OS

((
2g − 2
2g − 1 + ϵ

)
mN

)
⊗ µ∗p∗

C(ωmN
C ⊗M∗)

)
̸= 0.

Thus we have

H0

(
C × E,

⊗
x∈Z

I
( 2g−2

2g−1 +ϵ)mN

(x,x′) ⊗ µ∗p∗
C(ωmN

C ⊗M∗)
)

̸= 0. (6.3)

Yet by Lemma 6.4 we know that Z has at least 2g − 1 elements, hence

deg
(⊗

x∈Z

I
( 2g−2

2g−1 +ϵ)mN
x

)
⩾ mN

(
2g − 2
2g − 1 + ϵ

)
· 2g − 1 > mN(2g − 2).

Since deg(ωmN
C ⊗M∗) = mN(2g−2), we obtain a contradiction to (6.3). □

6.4. Isotrivial fibrations and the Zariski decomposition

Let f : X → P1 be an isotrivial elliptic fibration over a rational curve,
and assume that ΩX is pseudoeffective. Since the proof of Theorem 6.7 is
a bit tedious, we present here a more conceptual approach based on the
ideas of Subsection 5.2. The considerations of this section are independent
of whether f is standard or not.
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We use the notations of the setup 5.1. Let ζ be the tautological class of
P(ΩX). If the elliptic fibration f is not almost smooth, we would like to show
that the subvariety

Y := P(IZ ⊗ ωX/B(−D)) ⊂ P(ΩX)

defined by f is in the negative part of the Zariski decomposition of ζ. If f
is isotrivial, the restriction P(ΩX |F ) over a general fibre F is isomorphic to
P1 ×F , so the proof of Proposition 5.4 does not apply. We therefore have to
use some global information to explicitly compute the restriction ζ|Y .

Proposition 6.12. — In the situation of Setup 5.1, assume that f is
isotrivial, relatively minimal and not almost smooth. Then ζ|Y is not pseu-
doeffective.

Proof. — By Corollary 3.13 the statement is equivalent to showing that
IZ ⊗ ωX/B(−D) is not strongly pseudoeffective. By Corollary 3.19 this is
equivalent to showing that

H0(X, Ik
Z ⊗ (ωX/B(−D))⊗k) = 0

for all k ∈ N. Recall the canonical bundle formula (5.5), formula (5.6) and [4,
III,Prop. 11.4, Rem. 11.5]:

χ(X,OX) = e(X)
12 = 1

12
∑
b∈K

e(Xb).

Here the set K ⊂ B consists of all the points such that the reduction of
the scheme-theoretic fibre Xb is not an elliptic curve. From these facts, we
obtain,

KX/B −D ∼Q
∑
b∈K

(e(Xb)
12 F −D0,b).

Now the proof is finished by observing that

κ

(
X, IZ,b ⊗ e(Xb)

12 F

)
= −∞

for all b ∈ K. This is done by a tedious case by case calculation, using that,
by the proof of Lemma 6.1, the non-multiple fibres are of Kodaira’s type II ,
III , IV , II ∗, III ∗, IV ∗ or I∗

0 . The details are left to the interested reader. □

As an application, we obtain

Corollary 6.13. — Let X be a smooth projective surface such that KX

is nef and κ(X) = 1. Denote by ζ the tautological divisor on π : P(ΩX) → X.
If ζ is pseudoeffective and nef in codimension one, then we have q̃(X) > 0.
In particular, by [3, Prop. 2.2], we have H0(X,SmΩ1

X) ̸= 0 for some positive
integer m.
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Proof. — If the Iitaka fibration is isotrivial and not almost smooth, we
see by Proposition 6.12 that the restriction ζ|Y is not pseudoeffective. Thus
Y is in the negative part of the divisorial Zariski decomposition, hence ζ is
not nef in codimension one.

Thus we know that f is almost smooth or not isotrivial. If the Iitaka
fibration is almost smooth, then c2(X) = 0 [4, III, Prop. 11.4] and thus
q̃(X) > 0 as already noticed at the beginning of Section 5.

If the Iitaka fibration φ : X → B is not isotrivial, we conclude by Corol-
lary 5.5. □

Remark. — By Proposition 6.12 the restriction ζ|Y is not pseudoeffective,
so by divisorial Zariski decomposition there exists a c > 0 such that ζ − cY
is pseudoeffective. If we prove that ζ − Y is pseudoeffective, we obtain the
nonvanishing conjecture as in Corollary 5.5. However this is not obvious,
even in simple situations.

Appendix A. Fundamental group of elliptic surfaces

The following statement is essentially a consequence of [15, §3.5]

Lemma A.1. — Let f : X → B be a smooth elliptic surface such that
the cotangent bundle ΩX is not pseudoeffective. Then the fundamental group
of X is finite.

Proof. — By Proposition 4.1 we can assume without loss of generality
that X is minimal. Since ΩX is not pseudoeffective, we have B ≃ P1. If f is
almost smooth, there exists an étale cover B′ × E → X with E an elliptic
curve (see introduction to Section 5). In particular ΩB′×E is pseudoeffective,
a contradiction to Proposition 4.4. Thus f is not almost smooth, hence by [18,
Lem. 1.39] and [16, Cor. 12.10] one has π1(X) ≃ π1(B,∆), where (B,∆) is
the orbifold structure defined by the multiple fibres. Since B is a curve,
by [14, App. C], we can find a finite étale cover X ′ → X such that the
orbifold divisor of X ′ → B′ is empty. Since ΩX′ is not pseudoeffective by
Proposition 4.4, we have B′ ≃ P1. Thus π1(X ′) ≃ π1(B′) ≃ {1}. □
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