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A decomposition theorem for singular Kähler
spaces with trivial first Chern class

of dimension at most four (∗)

Patrick Graf (1)

Nemo:
Ad litteram nemo:
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Graf: Cum non inutile sit eandem veritatem
per methodos diversas perscrutari . . .

ABSTRACT. — Let X be a compact Kähler fourfold with klt singularities and
vanishing first Chern class, smooth in codimension two. We show that X admits
a Beauville–Bogomolov decomposition: a finite quasi-étale cover of X splits as a
product of a complex torus and singular Calabi–Yau and irreducible holomorphic
symplectic varieties. We also prove that X has small projective deformations and
the fundamental group of X is projective. To obtain these results, we propose and
study a new version of the Lipman–Zariski conjecture.

RÉSUMÉ. — Soit X une variété kählérienne compacte de dimension quatre, avec
des singularités klt et première classe de Chern nulle, lisse en codimension deux. Nous
montrons que X admet une decomposition de Beauville–Bogomolov: à un revêtement
quasi-étale fini près, X est un produit d’un tore complexe et des variétés singulières
de Calabi–Yau et holomorphes symplectiques irréductibles. Nous prouvons aussi que
X admet des deformations projectives petites et que le groupe fondamental de X
est projective. Pour obtenir ces resultats, nous proposons et étudions une nouvelle
version de la conjecture de Lipman–Zariski.

1. Introduction

Let X be a compact Kähler manifold such that c1(X) = 0 ∈ H2(X,R).
The structure of such X is in many aspects well-understood [6, 7, 26, 27]:
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• Geometry: a finite étale cover of X splits as a product of a com-
plex torus, simply connected Calabi–Yau manifolds and irreducible
holomorphic symplectic manifolds (Beauville–Bogomolov decompo-
sition).

• Deformation theory: The local deformation space of X is smooth
(Bogomolov–Tian–Todorov theorem), and X admits small projec-
tive deformations (Kodaira problem).

• Topology: the fundamental group π1(X) is projective, virtually
abelian, and finite if the augmented irregularity q̃(X) of X vanishes.

The BB (= Beauville–Bogomolov) decomposition is a cornerstone in the
classification of compact Kähler manifolds up to biholomorphic maps. The
subject of birational geometry, however, is rather a structure theory up to
bimeromorphic maps. As is well-known, in this context it is necessary to con-
sider singular analogues of the above manifolds. By this, we mean compact
Kähler spaces with klt singularities and c1(X) = 0. In the projective case,
the BB decomposition has been established by [12, 16, 18]. This result is
commonly referred to as the BBDGGHKP decomposition. But most of the
other properties listed in the beginning remain elusive even for projective
varieties.

Very recently, the decomposition theorem has been extended to the Käh-
ler case [3, 9, 15]. The final statement may therefore be called the

BBBCDGGGHKLNPS decomposition.

The goal of this paper is to give an independent proof of the decomposition
in dimension four. Our principal result, however, is a generalization of the
BTT (= Bogomolov–Tian–Todorov) theorem.

Theorem 1.1 (Singular BTT theorem in dimension four). — Let X be
a normal compact Kähler space of dimension ⩽ 4, with klt singularities and
such that c1(X) = 0 ∈ H2(X,R). Assume that dim Xsg ⩽ 1. Then the semiu-
niversal locally trivial deformation space Def lt(X) is smooth, unless possibly
if X is projective.

We remark that the assumption on the codimension of the singular locus
is satisfied e.g. if X has terminal singularities. In all cases where Theorem 1.1
does not apply, the projectivity of X comes from the vanishing of global
holomorphic 2-forms. Since the latter property is stable under locally trivial
deformations, we may draw the following consequence.

Corollary 1.2 (Kodaira problem in dimension four). — Let X be as
in Theorem 1.1. Then the semiuniversal family X → Def lt(X) is a strong
locally trivial algebraic approximation. In particular, X is locally algebraic.
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This puts [9, Thm. H] in its final form: we remove both the local algebraic-
ity assumption and the necessity to take a quasi-étale cover before obtaining
an algebraic approximation of X. Note also that Corollary 1.2 confirms [9,
Conj. K] in this particular case.

We now turn to fundamental groups. In [9, Thm. G], we showed that in
dimension four π1(X) is virtually abelian. In particular, this group is “vir-
tually projective”, i.e. it contains a normal subgroup of finite index which
is isomorphic to π1(Y ) for some projective manifold Y . Corollary 1.3 below
shows that passing to a subgroup is in fact not necessary. It also implies that
π1 of any Kähler fourfold of Kodaira dimension zero admitting a good mini-
mal model is projective. This gives some new evidence towards the conjecture
that every Kähler group is projective [2, (1.26)].

Campana’s Abelianity Conjecture [8, Conj. 7.3] also makes similar pre-
dictions for the fundamental group of the smooth locus π1(Xreg), but this is
currently out of reach even for X projective. Using Corollary 1.2, we can at
least confirm the conjecture for the profinite completion pπ1(Xreg).

Corollary 1.3 (Fundamental groups). — Let X be as in Theorem 1.1.
Then:

(1) The fundamental group π1(X) is projective.
(2) The algebraic fundamental group of the smooth locus pπ1(Xreg) is

virtually abelian, and finite if q̃(X) = 0.

Finally, we have the decomposition theorem mentioned in the title. For
the definition of (singular) Calabi–Yau and irreducible holomorphic symplec-
tic varieties, we refer to [9, Def. 6.11].

Corollary 1.4 (BB decomposition). — Let X be as in Theorem 1.1.
Then some quasi-étale cover of X splits as a product of a complex torus,
Calabi–Yau and irreducible holomorphic symplectic varieties.

The unitarily flat factor of TX

Let us briefly comment on the proof of Theorem 1.1. It relies on an
analysis of the unitarily flat factor F in the holonomy decomposition of TX .
To explain this, and also to fix notation, recall that in [9, Thm. C] we proved
in particular the following.

Setup and Notation 1.5 (Standard setting). — Let X be a normal com-
pact Kähler space with klt singularities such that c1(X) = 0 ∈ H2(X,R).
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Then after replacing X by a finite quasi-étale cover, the so-called holonomy
cover, the tangent sheaf of X decomposes as

TX = F ⊕
⊕
k∈K

Ek,

where the sheaves F and Ek satisfy the following:

• The restriction F
∣∣
Xreg

is unitarily flat, i.e. given by a representation
π1(Xreg) → SU(r), where r = rk(F ).

• Each summand Ek

∣∣
Xreg

has full holonomy group either SU(nk) or
Sp(nk/2), with respect to a suitable singular Ricci-flat metric. Here
nk = rk(Ek) ⩾ 2.

The natural conjecture concerning the unitarily flat factor F is that it
corresponds to the torus factor in the (conjectural) Beauville–Bogomolov de-
composition of X. It is convenient to rephrase this in different but equivalent
ways:

• The rank of F should equal the augmented irregularity of X, i.e. r =
q̃(X).

• If q̃(X) vanishes, then F should be the zero sheaf.

The conjecture follows from [3], but for the purpose of giving a logically
independent proof of Theorem 1.1, the following partial result is key. It
bounds the rank of F from above in terms of the dimension of the singular
locus of X and in fact holds in arbitrary dimension.

Theorem 1.6 (Bounding the flat factor). — In the standard setting 1.5,
assume that the augmented irregularity of X vanishes, q̃(X) = 0. Then:

(1) The unitarily flat factor F satisfies rk(F ) ⩽ dim Xsg.
(2) If dim Xsg ⩽ 1, then F = 0.

Remark. — In (1), we need to adopt the convention that the empty set
has dimension zero (as opposed to −1 or −∞) in order for the conclusion to
hold also if X is smooth.

The Lipman–Zariski Conjecture for direct summands

To prove Theorem 1.6, we propose and study a new variant of the Lipman–
Zariski Conjecture, which we explain now. The classical Lipman–Zariski
Conjecture (which is still open) states that if the tangent sheaf TX of a
complex algebraic variety or complex space is locally free, then X is smooth.
Here we ask what happens if TX is not necessarily locally free, but contains
a locally free direct summand.
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Question 1.7 (Lipman–Zariski Conjecture for direct summands). —
Let X be a complex space. Assume that the tangent sheaf of X admits a
direct sum decomposition

TX = E ⊕ F ,

where F is locally free. Under what assumptions on the rank of F and on
the singularities of X can we conclude that X is smooth?

Question 1.7 is formulated in a deliberately vague way. In this work, we
will concentrate on the case of klt singularities, but other classes of singu-
larities would be equally interesting.

Theorem 1.8 (Question 1.7 for klt singularities). — Let X be a normal
complex space with klt singularities such that the tangent sheaf admits a
direct sum decomposition

TX = E ⊕ F ,

where F is locally free of rank r. If dim Xsg ⩽ r − 1, then X is smooth.

Easy examples show that the bound on r in Theorem 1.8 is sharp (Re-
mark 3.2).

Acknowledgements

I would like to thank the anonymous referee for a quick but thorough
review of my paper, and also for helping me to improve the exposition.

2. Notation and basic facts

Unless otherwise stated, complex spaces are assumed to be countable at
infinity, separated, reduced and connected. Algebraic varieties and schemes
are always assumed to be defined over the complex numbers.

Definition 2.1 (Torsion-free differentials). — Let X be a reduced com-
plex space and p ∈ N a non-negative integer. The sheaf of torsion-free dif-
ferential p-forms on X is defined to be

qΩp
X := Ωp

X

/
tor Ωp

X
,

where Ωp
X :=

∧p Ω1
X is the sheaf of Kähler differentials and tor Ωp

X is the
subsheaf of Ωp

X consisting of the sections vanishing on some dense open
subset U ⊂ X. Equivalently, tor Ωp

X consists of those sections whose support
is contained in the singular locus Xsg.
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Definition 2.2 (Quasi-étale covers). — A cover is a finite, surjective
morphism γ : Y → X of normal, connected complex spaces. A cover γ is
called quasi-étale if there exists a closed subset Z ⊂ Y with codimY (Z) ⩾ 2
such that γ

∣∣
Y \Z

: Y \ Z → X is étale.

Definition 2.3. — Let X be a normal complex space. A maximally
quasi-étale cover of X is a quasi-étale Galois cover γ : Y → X satisfying
the following equivalent conditions:

(1) Any étale cover of Yreg extends to an étale cover of Y .
(2) Any quasi-étale cover of Y is étale.
(3) The natural map of étale fundamental groups pπ1(Yreg) → pπ1(Y )

induced by the inclusion Yreg ↪→ Y is an isomorphism.

Definition 2.4 (Irregularity). — The irregularity of a compact complex
space X is q(X) := h1(Y, OY ), where Y → X is any resolution of singulari-
ties. The augmented irregularity of X is

q̃(X) := max
{

q
(
X̃

) ∣∣∣ X̃ → X quasi-étale
}

∈ N0 ∪ {∞}.

Vector fields

Let X be a reduced complex space. A vector field on X is a (local) section
of the tangent sheaf TX := Hom

(
Ω1

X , OX

)
, where Ω1

X is the sheaf of Kähler
differentials.

Let v be a vector field. For any point x ∈ X, the germ of v at x is a
C-linear derivation vx : OX,x → OX,x and hence it can be restricted to an
element of the Zariski tangent space of X at x:

v(x) ∈
(
mx/m2

x

) ‹

=: TxX.

Note, however, that in general not every Zariski tangent vector at x is of the
form v(x) for some local vector field v.

Lemma 2.5. — Let Z ⊂ X be an analytic subset that is fixed by every
local automorphism of X. Then v(z) ∈ TzZ ⊂ TzX for every vector field v
on X defined near z ∈ Z.

Proof. — We will use the correspondence between derivations, vector
fields and local C-actions as described in [1, §1.4, §1.5]. The vector field
v induces a local C-action Φ: C × X → X. By the definition of local group
action, Φ(t, −) is an automorphism of germs (X, z) ∼−→

(
X, Φ(t, z)

)
for every

sufficiently small t ∈ C. It then follows from the assumption that Φ(t, z) ∈ Z
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for every t ∈ C. Now, we can recover the derivation δ corresponding to v
from Φ by the formula

δ(f)(x) = d
dt

∣∣∣∣
t=0

f
(
Φ(t, x)

)
(2.1)

for every f ∈ OX,z. Plugging the above statement into (2.1), we see that δ
stabilizes the ideal of Z, i.e. δ(IZ,z) ⊂ IZ,z. Hence δ induces a derivation of
OZ,z and then also an element of TzZ. □

Example. — Let X = C2 and let 0 ∈ C ⊂ X be a curve such that 0 is
a singular point of C. If v is a vector field on X that is tangent to C \ {0},
then its local flows restrict to automorphisms of C. These automorphisms
necessarily fix the singular point 0 ∈ Csg and hence v vanishes at the origin,
v(0) = 0.

Deformation theory

This is just a very quick reminder. For more details, see for example [15].

Definition 2.6 (Deformations of complex spaces). — A deformation of
a (reduced) compact complex space X is a proper flat morphism π : X →
(S, 0) from a (not necessarily reduced) complex space X to a complex space
germ (S, 0), equipped with a fixed isomorphism X0 := π−1(0) ∼= X.

Definition 2.7 (Algebraic approximations). — Let X be a compact
complex space and π : X → S a deformation of X. Consider the set of pro-
jective fibres

Salg :=
{

s ∈ S
∣∣ Xs is projective

}
⊂ S

and its closure Salg ⊂ S. We say that X → S is an algebraic approximation
of X if 0 ∈ Salg. We say that X → S is a strong algebraic approximation of
X if Salg = S as germs, i.e. Salg is dense near 0 ∈ S.

Definition 2.8 (Locally trivial deformations). — A deformation π :
X → S is called locally trivial if for every x ∈ X0 there exist open subsets
0 ∈ S◦ ⊂ S and x ∈ U ⊂ π−1(S◦) and an isomorphism

U
∼ //

π
  

(X0 ∩ U) × S◦

pr2xx
S◦.
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3. The Lipman–Zariski Conjecture for direct summands

In this section, we prove Theorem 1.8 from the introduction and the
following corollary. We then deduce Theorem 1.6.

Corollary 3.1 (Spaces with large flat summands). — Let X be a nor-
mal complex space with klt singularities such that

TX = E ⊕ F ,

where F
∣∣
Xreg

is flat (in the differential-geometric sense) of rank r, i.e. given
by a representation π1(Xreg) → GL(r,C). If dim Xsg ⩽ r − 1, then X has
only quotient singularities.

Remark 3.2 (Sharpness of Theorem 1.8). — The bound on dim Xsg in
Theorem 1.8 is sharp, as shown by the (easy) example X = Y × C, where
Y is a (non-smooth) isolated klt singularity. In this case TX has a rank one
free summand and dim Xsg = 1, but X is not smooth.

Remark 3.3 (Reformulation of Theorem 1.8). — The conclusion of The-
orem 1.8 could also be formulated in a somewhat oblique manner as follows:
every irreducible component of Xsg has dimension at least r.

Remark 3.4 (Comparison to previous results). — The “usual” Lipman–
Zariski Conjecture is well-known for spaces with klt, or even log canonical,
singularities [11, 14]. If r = n := dim X in Theorem 1.8, the statement
reduces to this result.

In general, dim Xsg = n−2 and then the only case left where Theorem 1.8
applies is r = n − 1. In this case, we may consider a (local) index one cover
X1 → X. There, also the rank one sheaf E will become locally free, hence X1
is smooth. Summing up, we see that [11, 14] only yield the weaker statement
that X has quotient singularities (instead of being smooth).

3.1. Proof of Theorem 1.8

Let n := dim X. Assuming that Xsg is non-empty, we will derive a
contradiction. Let f : Y → X be the functorial resolution. Pick an irre-
ducible component Z ⊂ Xsg and a sufficiently general point z ∈ Z. Then
Z is smooth at z, i.e. z ∈ Zreg. Let {Ei}i∈I be the set of exceptional
divisors satisfying f(Ei) ⊂ Z. For any nonempty subset J ⊂ I, denote
EJ :=

⋂
i∈J Ei ⊂ Y . Note that each EJ is smooth of dimension n − |J | (or

empty). Hence by Generic Smoothness, for any J with f(EJ) = Z, the re-
striction f

∣∣
EJ

: EJ → Z is smooth of relative dimension n−|J |−dim Z near
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z. Consider the fibre F := f−1(z) ⊂ Y and its decomposition into irreducible
components F =

⋃
λ∈Λ Fλ. As before, for any nonempty subset Λ′ ⊂ Λ de-

note FΛ′ :=
⋂

λ∈Λ′ Fλ. By the above observation, each FΛ′ is smooth of
dimension dim F + 1 − |Λ′|, where dim F = n − 1 − dim Z. In other words,
all components of F are smooth and intersect transversely of the correct
codimension. Therefore F will be a simple normal crossings variety, albeit
not necessarily a divisor in Y . (See also [28, Prop. 4.0.4] for a similar, but
somewhat stronger statement.) Shrinking X around z, we may without loss
of generality make the following

Additional Assumption 3.5. — The singular locus Z of X is smooth. The
sheaf F is free, isomorphic to O⊕r

X .

Let {v1, . . . , vr} be a basis of F and let {α1, . . . , αr} be the dual basis
of F ‹ , defined by αi(vj) = δij . Since F ⊂ TX is a direct summand, so
is F ‹ ⊂ Ω[1]

X . This enables us to consider the sections αi as reflexive 1-
forms on X. Evaluating the vector fields vi at the point z and taking into
account that Z is stabilized by their flows, we obtain vi(z) ∈ TzZ. Since
dim TzZ = dim Z ⩽ r − 1, by Lemma 2.5 there is a non-trivial relation

r∑
i=1

λivi(z) = 0 ∈ TzZ ⊂ TzX, λi ∈ C. (3.1)

Some coefficient in (3.1), say λ1, will be non-zero. Replacing v1 by
∑r

i=1 λivi,
we arrive at the

Additional Assumption 3.6. — The free sheaf F has a basis {v1, . . . , vr}
with the property that v1(z) = 0.

This means that z is stabilized by the flow of v1. Let ṽ1 be the lift of v1
to Y . Then the flow of ṽ1 stabilizes the fibre F = f−1(z), i.e. ṽ1 restricts to
a vector field on F . The same is then true of any irreducible component of
F . Fix one such component P ⊂ F , and note that P is smooth because F is
an snc variety.

On the other hand, let α̃1 be the lift of α1 to Y , which is a holomorphic
1-form by [23]. Since the function α̃1(ṽ1) is identically one, the restricted
form α̃1

∣∣
P

cannot be zero. Indeed, if p ∈ P is arbitrary then α̃1 evaluated on
ṽ1(p) ∈ TpP is non-zero. On the other hand, the restriction map factors as

H0(
Y, Ω1

Y

)
−→ H0(

F, qΩ1
F

)︸ ︷︷ ︸
=0

−→ H0(
P, Ω1

P

)
(3.2)

because P is smooth and not contained in the singular locus of F . The middle
term vanishes due to [17, Cor. 1.5] and [22, Thm. 4.1]. Hence (3.2) implies

– 901 –



Patrick Graf

α̃1
∣∣
P

= 0, contradicting our previous observation that this form is non-zero
and thus ending the proof. □

3.2. Proof of Corollary 3.1

Since the problem is local, we may assume X to be a germ. We argue by
induction on dim Xsg. If Xsg = ∅, there is nothing to show. Otherwise, by [9,
Prop. 5.8] there exists an open subset Xreg ⊂ X◦ ⊂ X admitting a maximally
quasi-étale cover γ◦ : Y ◦ → X◦ and satisfying dim(X \ X◦) ⩽ dim Xsg − 1.
We may extend γ◦ to a quasi-étale cover γ : Y → X, by [10, Thm. 3.4].

Y ◦ � � //

γ◦

��

Y

γ

��
X◦ � � // X

Note that Y reproduces all assumptions of Corollary 3.1. In particular, taking
the reflexive pullback of the decomposition TX = E ⊕ F , we get

TY = EY ⊕ FY

where FY

∣∣
Yreg

is flat. Restricting FY to Y ◦
reg and using property (3) com-

bined with [25], it follows that FY

∣∣
Y ◦ is flat, in particular locally free. Thus

Y ◦ is smooth thanks to Theorem 1.8. This implies
dim Ysg ⩽ dim(Y \ Y ◦) = dim(X \ X◦) ⩽ dim Xsg − 1.

By the induction hypothesis, Y has only quotient singularities and hence so
does X. □

3.3. Proof of Theorem 1.6

Recall that F is the unitarily flat factor of the tangent sheaf of X (or
rather, of its holonomy cover). Assume that rk(F ) ⩾ dim Xsg +1. By Corol-
lary 3.1, the space X has only quotient singularities. In particular, it is locally
algebraic and hence rk(F ) = q̃(X) = 0 by [9, Thm. C]. This contradiction
proves (1).

For (2), we only need to exclude the case that rk(F ) = 1. In this case,
F

∣∣
Xreg

is given by a representation π1(Xreg) → SU(1) = {1}, so it is
the trivial line bundle. By reflexivity, this implies F ∼= OX . In particu-
lar, H0(X, F ‹) ̸= 0. Since F ‹ ⊂ Ω[1]

X , this contradicts the assumption that
q̃(X) = 0. □
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4. Proof of main results

4.1. Torus covers revisited

In the standard setting 1.5, recall the notion of torus cover from [9,
Thm. B]: this is a quasi-étale cover γ : T × Z → X, where T is a complex
torus of dimension q̃(X), while Z satisfies ωZ

∼= OZ as well as q̃(Z) = 0. We
do not know if the map γ can always be chosen to be Galois. Indeed, this is
not obvious from the construction and taking the Galois closure of a given
γ might destroy the splitting property. The following weaker statement is
however sufficient for our purposes:

Proposition 4.1 (Torus covers revisited). — In the standard setting 1.5,
the torus cover can be chosen in such a way that it is a composition of quasi-
étale Galois morphisms:

T × Z
Galois−−−−−−−→ X ′ Galois−−−−−−−→ X.

Proof. — By [9, Cor. 4.2(1)], the augmented irregularity q̃(X) is finite.
Consider the index one cover X1 → X and choose a quasi-étale cover X2 →
X1 with q(X2) = q̃(X). Replacing X2 → X by its Galois closure X ′ → X
yields the first map in the statement to be proven. Cf. [9, Lem. 2.8] for the
existence of Galois closures in the analytic category.

For the second map, we know from [9, Thm. 4.1] that the Albanese map
X ′ → A := Alb(X ′) becomes trivial after a finite étale base change A1 → A.
Note that the latter map is automatically Galois because π1(A) is abelian.

F × A1 //

��

X ′

��
A1 // A.

Furthermore, F × A1 → X ′ is Galois, being the pullback of the Galois
morphism A1 → A along X ′ → A. We now set T := A1 and Z := F .
The proof that this is indeed a torus cover of X is the same as in [9, proof
of Cor. 4.2]. □

Lemma 4.2. — Notation as above.

(1) The tangent space T0 Def lt(T × Z) can be calculated as follows:
H1(T × Z, TT ×Z) = H1(T, TT ) ⊕ H1(Z, TZ) .

(2) If Def lt(Z) is smooth, then so is Def lt(T × Z). More precisely, in
this case Def lt(T × Z) = Def lt(T ) × Def lt(Z).
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Proof. — Let p : T × Z → T and r : T × Z → Z be the projections. The
proof is in a series of claims.

Claim 4.3. — The tangent sheaf of T × Z decomposes as

TT ×Z = p∗TT ⊕ r∗TZ .

Proof. — Clearly the decomposition exists on the smooth locus of T ×Z.
By reflexivity, it extends to a decomposition TT ×Z = p[∗]TT ⊕r[∗]TZ , where
p[∗]TT := (p∗TT ) ‹ ‹ and r[∗]TZ denote the reflexive pullback. Hence it suffices
to show that p∗TT and r∗TZ are already reflexive. For p∗TT , this is obvious
because TT is even (locally) free.

For r∗TZ , we use the characterization of reflexive sheaves as locally 2nd

syzygy sheaves, [24, Ch. I, Lemma 1.1.16 and proof of Lemma 1.1.10](1) .
That is, on sufficiently small open sets U ⊂ Z there exists an exact sequence

0 −→ TZ

∣∣
U

−→ O⊕n
U −→ O⊕m

U .

The sequence stays exact when pulled back along the flat morphism r,
showing that also r∗TZ

∣∣
T ×U

is reflexive. Of course, this argument shows
quite generally that the pullback of a reflexive sheaf via a flat map remains
reflexive. □

Claim 4.4. — For any i ⩾ 0, we have

Rip∗p∗TT = TT ⊗ Rip∗OT ×Z

and

Rir∗r∗TZ = TZ ⊗ Rir∗OT ×Z .

Proof. — For TT , this is simply the projection formula. Regarding TZ ,
some care is required because that sheaf is not locally free. But Rir∗OT ×Z is
locally free. Even better, this is the trivial vector bundle with fibre Hi(T, OT ).
So we need to check that for any Stein open subset U ⊂ Z,

Hi
(
r−1(U), r∗TZ

)
= H0(U, TZ) ⊗C Hi(T, OT ) . (4.1)

(1) The cited reference assumes the underlying space to be smooth, but the arguments
work verbatim for sheaves on normal complex spaces.
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But r−1(U) = T × U , so the Künneth formula [19, Thm. I] tells us that the
left-hand side equals(2)⊕

k+ℓ=i

Hk(U, TZ) ⊗C Hℓ(T, OT ) = H0(U, TZ) ⊗C Hi(T, OT ) (4.2)

since the higher cohomology groups on the Stein space U vanish. Claim 4.4
now follows by comparing (4.1) and (4.2). □

By Claim 4.3, statement (1) is reduced to the following claim.

Claim 4.5. — H1(T × Z, p∗TT ) = H1(T, TT ) and H1(T × Z, r∗TZ) =
H1(Z, TZ).

Proof. — Concerning the first factor, the Leray spectral sequence com-
bined with Claim 4.4 gives

0 −→ H1(T, TT ) −→ H1(T × Z, p∗TT ) −→ H0(
T, TT ⊗ R1p∗OT ×Z

)
,

where the last term vanishes because q(Z) = 0. We obtain that
H1(T × Z, p∗TT ) = H1(T, TT ) .

For the second factor, again by Claim 4.4 we have a similar exact sequence
0 −→ H1(Z, TZ) −→ H1(T × Z, r∗TZ) −→ H0(

Z, TZ ⊗ R1r∗OT ×Z

)
but here R1r∗OT ×Z is a trivial vector bundle (of rank equal to dim T ). To
conclude as before, we therefore need to know that H0(Z, TZ) = 0. This can
be seen as follows, where m = dim Z and Z̃ → Z is a resolution:

h0(Z, TZ) = h0
(

Z, Ω[m−1]
Z

)
contraction and ωZ

∼= OZ

= h0
(

Z̃, Ωm−1
Z̃

)
[23, Cor. 1.8]

= hm−1
(

Z̃, O
Z̃

)
Hodge theory on Z̃

= hm−1(Z, OZ) Z has rational singularities
= h1(Z, OZ) Serre duality [5, Ch. VII, Thm. 3.10]
= 0 because q(Z) = q̃(Z) = 0.

This ends the proof of Claim 4.5. □

(2) The assumptions of [19, Thm. I] are satisfied: TU and OT being Fréchet-n-sheaves
for all n ⩾ 0 means that their cohomology groups are Hausdorff. This is clear except for
H0(U, TU ), since these are finite-dimensional. But H0(U, TU ) is also Hausdorff because
any coherent analytic sheaf is a Fréchet sheaf [21, Thm. 55.5]. Concerning the conclusion,
the Fréchet space tensor product considered by Kaup boils down to the usual algebraic
one, the cohomology groups of the compact space T being finite-dimensional. Also, by [20,
Thm. III] the Fréchet sheaf tensor product Fε G actually is the usual one for coherent
analytic sheaves.
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For (2), assume that Def lt(Z) is smooth. Recall that Def lt(T ) is smooth in
any case because T is a complex torus. Hence also B := Def lt(T )×Def lt(Z) is
smooth. Consider the product deformation of T ×Z over B, i.e. the fibre over
a point (t, s) ∈ B is Tt × Zs. The Kodaira–Spencer map of this deformation,

κ : T0B −→ H1(T × Z, TT ×Z) ,

is an isomorphism by (1). In particular, it is surjective and this implies by
Lemma 4.6 below that Def lt(T ×Z) is smooth. Furthermore, our deformation
over B is pulled back from the semiuniversal deformation via a map

B −→ Def lt(T × Z),
which on tangent spaces induces the isomorphism κ. Hence the map itself is
likewise an isomorphism. This ends the proof. □

Lemma 4.6. — Let (x ∈ X), (y ∈ Y ) be germs of complex spaces and
f : X → Y a holomorphic map (i.e. f(x) = y). Assume that X is smooth
and that the induced map on Zariski tangent spaces dxf : TxX → TyY is
surjective. Then Y is smooth.

Proof. — Choose a closed embedding i : (y ∈ Y ) ↪→ (0 ∈ CN ), where
N = dim TyY . Consider the induced map g = i ◦ f : X → CN . This is a
submersion of complex manifolds, hence surjective (as germs). In particular,
i is surjective. Since i is an embedding, it is an isomorphism and in particular
Y is smooth. □

4.2. Proof of Theorem 1.1

Keeping notation, the smoothness of Def lt(Z) implies the smoothness of
Def lt(X) by Lemma 4.2, Proposition 4.1 and [15, Prop. 5.4]. We therefore
only need to show that Def lt(Z) is smooth. Note that dim Zsg ⩽ dim Xsg ⩽ 1
by assumption.

If dim Z ⩽ 2, then Z has only quotient singularities and hence the claim
follows directly from [15, Cor. 1.7]. If dim Z ∈ {3, 4}, we apply Theorem 1.6
to conclude that the unitarily flat factor of TZ vanishes, F = 0. Note that
here we have implicitly replaced Z by its holonomy cover Z̃, but this is harm-
less by [15, Prop. 5.4] again because Z̃ → Z can be taken to be Galois and
hence smoothness of Def lt(Z̃) implies smoothness of Def lt(Z). Consequently,
there are only four possibilities for the holonomy decomposition of TZ . In
slightly abused notation, they are:

• SU(3),
• SU(4),
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• Sp(2), and
• SU(2) ⊕ SU(2).

In the first two cases, Z is projective: we have H0(
Z, Ω[2]

Z

)
= 0 by the Bochner

principle [9, Thm. A], hence also H2(Z, OZ) = 0 by the same argument as
in the proof of Claim 4.5 (pass to a resolution Z̃ → Z and use Hodge sym-
metry on Z̃). The projectivity of Z now follows from Kodaira’s Embedding
Theorem as explained e.g. in [13, Prop. 4.10]. Since the torus factor T , being
of dimension ⩽ 1, is likewise projective, also X is projective. But we have
excluded this situation.

In the last two cases, Z carries a holomorphic symplectic form since
SU(2) = Sp(1). This implies smoothness of Def lt(Z) by [4, Thm. 4.7], cf. also
the footnote in the proof of [9, Thm. 8.4]. □

4.3. Proof of Corollary 1.2

Again let T × Z → X be a torus cover. If Theorem 1.1 applies, then
Def lt(X) is smooth and Corollary 1.2 follows directly from [15, Thm. 1.2].
The only case where Theorem 1.1 does not apply is if the holonomy cover
of Z is SU(3) or SU(4). But in this case, H2(Z, OZ) = 0 as we explained
in the proof of Theorem 1.1 above. Since also H2(T, OT ) = 0 for dimension
reasons, we conclude from the Künneth formula that H2(T × Z, OT ×Z) = 0.
This in turn implies H2(X, OX) = 0. This Hodge number is constant in
locally trivial families, as one can see e.g. by performing a simultaneous
resolution and using that X has rational singularities. That is, every locally
trivial deformation Xt of X still satisfies H2(Xt, OXt

) = 0. By Kodaira’s
Embedding Theorem (cf. proof of Theorem 1.1), Xt is projective for any t
(including Xt = X). In particular, any locally trivial deformation of X is a
strong algebraic approximation. □

4.4. Proof of Corollaries 1.3 and 1.4

The projectivity of π1(X) follows from Thom’s First Isotopy Lemma,
which in our situation says that X and Xt are homeomorphic. For more
details, cf. the proof of [13, Cor. 1.8]. Thus (1) is proved.

Regarding (2), we know from Corollary 1.2 that X is locally algebraic and
hence it admits a maximally quasi-étale cover γ : Y → X by [9, Prop. 5.9].
By (3), the map pπ1(Yreg) → pπ1(Y ) is an isomorphism. Also, pπ1(Yreg) =
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pπ1(γ−1(Xreg)) → pπ1(Xreg) is injective with image of finite index. It is there-
fore sufficient to prove the claim for pπ1(Yreg). But this reduces to [9, Thm. G]
applied to Y .

We already remarked above that we now know that X is locally algebraic.
Therefore Corollary 1.4 follows immediately from [9, Thm. H]. □
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