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Intrinsic volumes of sublevel sets (∗)

Benoît Jubin (1)

ABSTRACT. — We establish formulas that give the intrinsic volumes, or curvature
measures or Lipschitz–Killing curvatures, of sublevel sets of functions defined on
Riemannian manifolds as integrals of functionals of the function and its derivatives
up to order 3. For instance, in the Euclidean case, if f ∈ C3(Rn,R) and 0 is a
regular value of f , then the intrinsic volume of degree n − k of the sublevel set
M0

f := f−1(]−∞, 0]), if the latter is compact, is given by

Ln−k(M0
f ) =

Γ(k/2)
2πk/2(k − 1)!

∫
M0

f

div

(
Pn,k(Hess(f), ∇f)√

f2(3k−2) + ∥∇f∥2(3k−2)
∇f

)
voln

for 1 ⩽ k ⩽ n, where the Pn,k’s are polynomials given in the text.
This includes as special cases the Euler–Poincaré characteristic of sublevel sets

and the nodal volumes of functions defined on Riemannian manifolds. Therefore,
these formulas give generalizations of the Kac–Rice formula.

Finally, we use these formulas to prove the Lipschitz continuity of the intrinsic
volumes of sublevel sets.

RÉSUMÉ. — Nous établissons des formules donnant les volumes intrinsèques, ou
mesures de courbure ou courbures de Lipschitz–Killing, des ensembles de sous-niveau
de fonctions définies sur des variétés riemanniennes, comme intégrales de fonction-
nelles de la fonction et de ses dérivées jusqu’à l’ordre 3. Par exemple, dans le cas
euclidien, si f ∈ C3(Rn,R) et 0 est une valeur régulière de f , alors le volume intrin-
sèque de degré n − k de l’ensemble de sous-niveau M0

f := f−1(]−∞, 0]), lorsque ce
dernier est compact, est donné par

Ln−k(M0
f ) =

Γ(k/2)
2πk/2(k − 1)!

∫
M0

f

div

(
Pn,k(Hess(f), ∇f)√

f2(3k−2) + ∥∇f∥2(3k−2)
∇f

)
voln

pour 1 ⩽ k ⩽ n, où les Pn,k sont des polynômes donnés dans l’article.
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Poincaré characteristic, sublevel set, excursion set, nodal set, nodal volume, Kac–Rice
formula.
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Benoît Jubin

Ces formules incluent comme cas particuliers la caractéristique d’Euler–Poincaré
des ensembles de sous-niveau et les volumes nodaux des fonctions définies sur des
variétés riemanniennes. Elles peuvent donc être vues comme des généralisations de
la formule de Kac–Rice.

Finalement, nous utilisons ces formules pour prouver la continuité de Lipschitz
des volumes intrinsèques des ensembles de sous-niveau.

Introduction

Intrinsic volumes are geometric invariants attached to well-behaved sub-
sets of Riemannian manifolds. They include the volume and the Euler–
Poincaré characteristic. Among their applications in the field of integral
geometry are Weyl’s tube formula ([22]), that gives the volumes of tubu-
lar neighborhoods of submanifolds, and the kinematic formula of Blaschke,
Chern and Santaló ([7, 8]), that gives the average intrinsic volumes of the
intersection of two submanifolds over all rigid motions of one of them. They
were introduced in their modern form by Herbert Federer in the seminal
article [9], where they are called curvature measures, after special cases in
convex geometry were treated by Hermann Minkowski. Among the vast lit-
erature on their subject, we only mention the book [18], the survey on a
related topic [21], and the articles [11, 12, 24].

In this article, we study the intrinsic volumes of sublevel sets of func-
tions defined on Riemannian manifolds. These were already studied from
the point of view of Morse theory in [10]. Since intrinsic volumes include
the volume of the boundary, this study encompasses volumes of level sets,
and in particular of zero sets, also called nodal sets. The first closed explicit
formulas computing nodal volumes appeared in [2], which was a motivation
for the present article. These formulas can be seen as generalizations of the
Kac–Rice formula (see for instance [19]).

Sublevel sets are also studied in probability theory, where superlevel sets
of random fields are called excursion sets; see for instance the books [1, 4]
and the articles [2, 17, 23]. The importance of the formulas obtained in
this paper for the study of random fields (as studied in [2]), compared to
existing Kac–Rice formulas, stems from the fact that they are in closed form
as opposed to being limits of integrals depending on a parameter.

Main results

We now describe the contents of this article in more detail. In this in-
troduction, we restrict ourselves to the flat case. In Section 1, we recall
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Intrinsic volumes of sublevel sets

the definition and main properties of intrinsic volumes. If N is a flat com-
pact n-dimensional Riemannian manifold with boundary, they take the form
Ln(N) = vol(N) and

Ln−k(N) = bk

∫
∂N

tr
(∧k−1

S

)
vol∂N (0.1)

for 1 ⩽ k ⩽ n, where bk ∈ R and S is the second fundamental form of ∂N
in N .

In Section 2, we specialize our study to the case where N is a sublevel
set. Namely, let M be a flat n-dimensional Riemannian manifold (without
boundary), let f ∈ C3(M,R), and assume that a ∈ R is a regular value
of f and that the sublevel set Ma := f−1(]−∞, a]) is compact. The second
fundamental form of ∂Ma in M can be expressed in terms of the gradient
and the Hessian of f . An important lemma (Lemma 2.2) establishes that
the above integrand is then a polynomial in ∇f and Hess(f) divided by
∥∇f∥2(k−1). We then use the divergence theorem to transform the above
integral over ∂Ma into an integral over Ma. This leads to our main formula
which, in the flat case, reads

Ln−k(Ma) = bk

∫
Ma

div
(

Pn,k(Hess(f),∇f)√
(f − a)2(3k−2) + ∥∇f∥2(3k−2)

∇f

)
volM (0.2)

for 1 ⩽ k ⩽ n, where the Pn,k’s are polynomials given in the text (Theo-
rem 2.9). The main advantage of this formula is that it is an explicit integral
over Ma (and not ∂Ma) of a continuous functional in f and its derivatives
up to order 3.

Since the intrinsic volume of degree n−1 is half the volume of the bound-
ary, this formula can be used to compute the volume of level sets. If the
ambient manifold M is compact, one can use the intrinsic volume of either
the sublevel or the superlevel set, yielding for the volume of the zero set Zf

of f the formula

vol(Zf ) = 1
2

∫
M

σf

η3
f

(
f∥∇f∥2 + Hess(f)(∇f,∇f) − η2

f ∆ f
)

volM (0.3)

where σf is the sign of f and ηf :=
√
f2 + ∥∇f∥2. This formula was obtained

in the case of a flat torus in [2]. As in [2], one can do an integration by parts to
eliminate σf and obtain an integral over M where the integrand is a Lipschitz
continuous functional of f and its derivatives up to order 2 (Equation (2.38)).
This regularity allows one to apply techniques of the Malliavin calculus to
obtain results about the expected value, variance and higher moments of
the nodal volumes of certain families of random fields (see [2]), and more
generally of the intrinsic volumes of their excursion sets.
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In Section 3, after recalling basic facts on natural topologies on Cp(M,R),
the uniform and the (Whitney) strong Cp-topologies, we prove that the con-
dition of validity of our formulas (regularity of the considered value of the
function) is generic. Then, we prove the continuity of intrinsic volumes of
sublevel sets. For instance, if 0 ⩽ k ⩽ n, then the function

Lsub
n−k : Reg3

pb(M,R)U −→ R (0.4)
(f, a) 7−→ Ln−k(Ma

f )
is Lipschitz continuous, where the domain is the set of couples (f, a) where
f ∈ C3(M,R) is proper bounded below and a ∈ R is a regular value of f ,
and is equipped with the uniform C3-topology (Theorem 3.9). In particular,
the Euler–Poincaré characteristic of sublevel sets is locally constant.

Conventions and notation

• If P is a proposition, then [P ] := 1 if P else 0.
• We denote by pri the projection on the ith factor of a direct product.
• The bracket ⌊−⌋ : R → Z denotes the floor function.
• If a, b ∈ R, then Ja, bK := Z ∩ [a, b].
• If a ∈ R, then N⩾a := {n ∈ N | n ⩾ a} ∪ {∞} and similarly for

similar symbols.
• The symbol

⊙
(resp.

∧
) denotes the symmetric (resp. exterior)

product or power of vector spaces.
• Unless otherwise specified, manifolds are Hausdorff, paracompact,

real, finite-dimensional, and smooth, that is, of class C∞.
• The space of smooth sections of the vector bundle E → M is denoted

by Γ(E → M) or Γ(p)(E → M) if the differentiability class p ∈ N
need be specified. For instance, the metric tensor of a Riemannian
manifold M is an element of Γ(

⊙2
T ∗M → M).

Acknowledgments

The author thanks Guillaume Poly and the anonymous referee for useful
suggestions.

1. Intrinsic volumes

Let (M, g) be an n-dimensional compact Riemannian manifold with
boundary. Its metric will also be denoted by ⟨−,−⟩ and its associated norm
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by ∥−∥. This metric induces inner products on all tensor, symmetric and
exterior powers of tangent and cotangent spaces. We denote by ∇lc its Levi-
Civita connection. Let volM be the Riemannian density on M and vol∂M be
the induced density on ∂M . The symbol vol will also denote the associated
volume of (sub)manifolds.

Let R ∈ Γ(
⊙2∧2

T ∗M → M) be the covariant curvature tensor of M .
Let S := ((∇lc ν|T ∂M )T )♭ ∈ Γ(

⊙2
T ∗∂M → ∂M) be the second fundamen-

tal form of ∂M in M , where ν ∈ Γ(TM |∂M → ∂M) is the outward unit
normal vectorfield on ∂M and (−)T : TM |∂M → T∂M denotes the tangen-
tial component, and ♭ : T∂M → T ∗∂M denotes the isomorphism induced by
the metric. The symbol tr denotes the trace of a bilinear form on a Euclidean
vector space.

For the exterior product of symmetric bilinear forms, ∧ :
⊙2∧p V ×⊙2∧q V →

⊙2∧p+q V, also called in differential geometry the Kulkarni–
Nomizu product, see for instance [9, §2].

For 0 ⩽ k ⩽ n, the intrinsic volume of degree n− k of M is defined as

Ln−k(M) := ak

∫
M

tr
(∧k/2

R

)
volM

+
⌊ k−1

2 ⌋∑
m=0

bk,m

∫
∂M

tr
(∧m

R|∂M ∧
∧k−1−2m

S

)
vol∂M (1.1)

where

ak := [k even]
(−2π)k/2 (k/2)!

for 0 ⩽ k, (1.2)

bk,m := (−1)mΓ(k/2 −m)
2m+1πk/2m!(k − 1 − 2m)!

for 0 ⩽ m ⩽

⌊
k − 1

2

⌋
. (1.3)

We also set

bk := bk,0 = Γ(k/2)
2πk/2(k − 1)!

for 1 ⩽ k. (1.4)

Note that bk can also be written bk = Γ(1+k/2)
k!πk/2 = (k!vol(Bk))−1 where Bk is

the k-dimensional Euclidean unit ball.

Remark 1.1. — Formula (1.1) was obtained by specializing the general
definition [1, Def. 10.7.2], which holds for Whitney stratified spaces of pos-
itive reach in Riemannian manifolds (including Riemannian manifolds with
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corners), to the case of Riemannian manifolds with boundary.(1) The in-
tegrands, which are contractions of the curvature tensor and the second
fundamental form, are called the Lipschitz–Killing curvatures of ∂M in M .
More general versions Ln−k(M,A) can be defined for Borel subsets A ⊆ M
and are called curvature measures in M . The intrinsic volumes are the total
measures of these curvature measures, that is, Ln−k(M) = Ln−k(M,M).

One has

Ln(M) = vol(M), (1.5)

Ln−1(M) = 1
2vol(∂M), (1.6)

L0(M) = χ(M). (1.7)

The first two equalities immediately follow from a0 = 1 and from a1 = 0
and b1 = 1

2 respectively (indeed, tr(
∧0

Rx) is the trace of the identity of∧0
T ∗

xM ≃ R, which is 1, and similarly for tr(
∧0

Sx)). The third equality
is the Gauss–Bonnet–Chern theorem (see [5] for the original article, and [6,
20] for manifolds with boundary), where the right-hand side is the Euler–
Poincaré characteristic of M , and in particular is an integer and is zero in
the odd-dimensional boundaryless case.

Since a2 = −b2 = −(2π)−1, one has

Ln−2(M) = − 1
2π

∫
M

scal volM + 1
2π

∫
∂M

(trS) vol∂M (1.8)

where scal denotes the scalar curvature of M . Note that trS is (n− 1) times
the mean curvature of ∂M in M .

If M is flat, that is, R = 0, then Formula (1.1) simplifies, since only the
summand corresponding to m = 0 may be nonzero, giving

Ln−k(M) = bk

∫
∂M

tr
(∧k−1

S

)
vol∂M (1.9)

for 1 ⩽ k ⩽ n.

The trace of an exterior (actually, Kulkarni–Nomizu) power can be com-
puted using minors of the matrix of S (see [1, (7.2.7)]). For the top power,
this gives tr(

∧n−1
S) = (n− 1)! detS. Therefore,

χ(M) = bn(n− 1)!
∫

∂M

(detS) vol∂M if n ⩾ 1, (1.10)

(1) The general formula of [1, Def. 10.7.2] takes a simpler form in the case of manifolds
with boundary. In particular, Equation (1.2) above giving the values of the ak’s agrees
with [1, (7.6.1)]. As for the bk,m’s, we recover [1, (10.7.5)] when m = 0.
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where detS is “the” Lipschitz–Killing, or Gauss–Kronecker, curvature of ∂M
in M .

Example 1.2. — We compute as an example the intrinsic volumes of
the n-dimensional Euclidean unit ball Bn using Equation (1.9). We have
Ln−k(Bn) = bk

∫
∂Bn

tr(
∧k−1

S)vol∂Bn
. Note that vol(∂Bn) = nvol(Bn) and

tr(
∧k−1

S) = (n−1)!
(n−k)! by [1, (7.2.11)]. Therefore, Ln−k(Bn) = nvol(Bn)

k!vol(Bk)
(n−1)!
(n−k)! =(

n
k

)vol(Bn)
vol(Bk) , in agreement with [1, (6.3.7)] and [16, Thm. 9.2.4]. This is essen-

tially the computation in [1, Footnote 20, p. 247].

2. Intrinsic volumes of sublevel sets

2.1. Sublevel sets and level sets

If f : M → R is a function on a set and a ∈ R, then the a-sublevel set of
f is defined by

Ma
f := f−1(]−∞, a]

)
(2.1)

also written Ma if there is no risk of confusion, and the a-level set of f is
f−1(a).

Let M be a manifold, let p ∈ N⩾1, and let f ∈ Cp(M,R). The real number
a ∈ R is a regular value of f if f(x) = a implies d f(x) ̸= 0 for all x ∈ M .
We define the sets

Regp(M,R) := {(f, a) ∈ Cp(M,R) × R | a is a regular value of f}, (2.2)
Regp

c(M,R) := {(f, a) ∈ Regp(M,R) | Ma
f is compact}. (2.3)

We also set Cp
a−reg(M,R) := pr1

(
Regp(M,R) ∩ (Cp(M,R) × {a})

)
and simi-

larly for Cp
a−reg,c(M,R).

Proposition 2.1. — Let M be a manifold, let p ∈ N⩾1, and let (f, a) ∈
Regp(M,R). Then, Ma

f is a full-dimensional Cp-submanifold with boundary
of M . Its manifold boundary, equal to its topological boundary, is the Cp-
hypersurface ∂Ma

f = f−1(a).

Proof. — By the submersion theorem, f−1(a) is a Cp-hypersurface of M .
By considering separately points x ∈ M such that f(x) < a and such that
f(x) = a, one checks that Ma

f is a full-dimensional Cp-submanifold with
boundary of M , and that ∂Ma

f = f−1(a). □
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2.2. Intrinsic volumes of sublevel sets

Let (M, g) be an n-dimensional Riemannian manifold (not necessarily
compact, but without boundary). Let f ∈ C2(M,R). Its gradient is defined
by ∇f := (d f)♯. Its Hessian is defined by Hess(f) := ∇lc d f = (∇lc ∇f)♭.
Its Laplacian is the trace of its Hessian, ∆ f := tr(Hess(f)).

Let (f, a) ∈ Reg2(M,R). By Proposition 2.1, the set Ma is a full-dimens-
ional C2-submanifold with boundary of M and its boundary is the C2-
hypersurface ∂Ma. The outward unit normal vectorfield of ∂Ma is ν = ∇f

∥∇f∥ .
Therefore, one has ∇lc ν = ∥∇f∥−1 ∇lc ∇f+d∥∇f∥−1 ⊙∇f , which has tan-
gential component ∥∇f∥−1 ∇lc ∇f . Therefore, the second fundamental form
of ∂Ma in M is given by

S =
Hess(f)|∇f⊥

∥∇f∥
. (2.4)

We briefly explain the idea underlying the rest of this subsection. By
Formula (2.4), the integrals in the sum on m in Formula (1.1) are equal to∫

∂Ma

∥∇f∥2m+1−k tr
(∧m

R|∇f⊥ ∧
∧k−1−2m

Hess(f)|∇f⊥

)
vol∂Ma . (2.5)

We will convert these integrals on ∂Ma into integrals on Ma by using the
divergence theorem. To do this, we need to find a vectorfield X ∈ X(Ma)
such that

X|∂Ma = ν = ∇f
∥∇f∥

and ∥∇f∥2m+1−k tr
(∧m

R|∇f⊥ ∧
∧k−1−2m

Hess(f)|∇f⊥

)
X

has a divergence which is integrable on Ma. Besides the boundary, the pos-
sibly problematic points are the points where ∇f = 0, first because of the
factor ∥∇f∥2m+1−k, and also because of the restriction to ∇f⊥. Since the
two regions of interest are at f = a and at ∇f = 0, it makes sense to look
for a vectorfield of the form X = F ◦ ∇f

a−f where F ∈ C1(TM, TM) is fiber-
preserving such that F (u) ∼∞

u
∥u∥ and F vanishes sufficiently fast at 0 for

the divergence to be integrable.

We now make this idea precise.

Lemma 2.2. — For all n, k,m ∈ N such that 1 ⩽ k ⩽ n and 0 ⩽ m ⩽
⌊ k−1

2 ⌋, there exists a homogeneous polynomial Pn,k,m with integer coefficients
such that for any n-dimensional Euclidean vector space with orthonormal
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basis (V,B), any v ∈ V\{0}, and any symmetric bilinear forms H ∈
⊙2 V∗

and R ∈
⊙2∧2 V∗, one has

tr
(∧m

R|v⊥ ∧
∧k−1−2m

H|v⊥

)
=
Pn,k,m

(
(rijkl), (hij), (vi)

)
∥v∥2(k−1) (2.6)

where (rijkl) (resp. (hij) and (vi)) are the coefficients of R (resp. H and v)
in B.

For the sake of definiteness, if B = (ei)1⩽i⩽n is an orthonormal basis of
V, we consider the basis (ei ∧ ej)1⩽i<j⩽n of

∧2 V. The coefficients of R can
be written (rijkl)1⩽i,j,k,l⩽n with i < j and k < l and (i, j) ⩽ (k, l) in the
lexicographic order.

Proof. — Let n, k,m, (V,B), v,H,R be as in the statement. Set ai :=√∑i
j=1 v

2
j for 1 ⩽ i ⩽ n. One has |v1| = a1 ⩽ · · · ⩽ an = ∥v∥.

We first assume that v1 ̸= 0. Let U be the change of basis matrix defined
by Ui1 := vi/∥v∥, and if j ⩾ 2, then Uij := βij/(aj−1aj) with βij := −vivj

if i < j, or a2
j−1 if i = j, or 0 if j < i. It is an orthogonal matrix and the

matrix U−1HU restricted to the rows and columns 2 ⩽ i, j ⩽ n is the matrix
of H|v⊥ in an orthonormal basis. Since the βij ’s are polynomials in the vk’s
and ak’s, one has

ai−1aiaj−1aj(U−1HU)ij =
n∑

k=1

n∑
l=1

βkiβljhkl ∈ Z[(vi), (ai), (hij)]

for 2 ⩽ i, j ⩽ n.

Let V be the change of basis matrix in
∧2 V associated with U . Its co-

efficients are given by Vijkl = UikUjl − UilUjk for 1 ⩽ i, j, k, l ⩽ n with
i < j and k < l. As with U , the matrix V −1RV restricted to the rows and
columns 2 ⩽ i, j, k, l ⩽ n (with i < j and k < l) is the matrix of R|v⊥ in an
orthonormal basis. As above, one has

ai−1aiaj−1ajak−1akal−1al(V −1RV )ijkl ∈ Z[(vi), (ai), (rijkl)]

for 2 ⩽ i, j, k, l ⩽ n (with i < j and k < l).

The coefficients of an exterior power of a form are minors of the coeffi-
cients of that form. The coefficients of an exterior product and of a trace are
similarly obtained using polynomial operations. Therefore, denoting the left-
hand side of Equation (2.6) by T (v,H,R), we obtain that for every n, k,m
as in the statement of the lemma, there exists a homogeneous polynomial
P ∈ Z[(vi), (ai), (hij), (rijkl)] and a function α : J1, nK → N such that for all
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(V,B), v,H,R as in the statement of the lemma, if v1 ̸= 0, then one has

T (v,H,R) = P
(
(vi), (ai), (hij), (rijkl)

) n∏
i=1

a−αi
i . (2.7)

We can furthermore assume that this rational function is irreducible, that is,
if αi > 0, then ai is not a factor of P . By counting the number of products
involved in the computation of T (v,H,R), we obtain αn ⩽ 2(2m+ (k − 1 −
2m)) = 2(k − 1).

We now prove that αi = 0 for i < n (that is, only an can occur at the
denominator). For any fixed forms H and R, the function v 7→ T (H,R, v) is
bounded on V \ {0}. Therefore, the rational function on the right-hand side
of Equation (2.7) has no pole on V \ {0}, so one has αi = 0 for i < n.

Equation (2.7) holds for v1 ̸= 0 and both sides are continuous functions
of v ∈ V \ {0}, so the equality holds for all v ∈ V \ {0}.

Finally, we prove that P is a polynomial function of the vk’s, which is
equivalent to the fact that the ak’s occur in P only with even exponents. The
polynomial P is a linear combination of monomials in (hij), (rijkl), where
the coefficient of each such monomial is a polynomial in (vi), (ai). Since each
monomial is uniquely determined by its multidegree, the arguments of the
next two paragraphs (the first dealing with the ai’s with i < n and the
second with an) can be applied separately to each monomial, for instance
by considering partial differentiations of the function (v,H,R) 7→ T (v,H,R)
with respect to the hij ’s and the rijkl’s.

First, note that T (v,H,R) is invariant under orthogonal transforma-
tions of V, that is, if f ∈ SO(V), then T (f∗v, f∗H, f∗R) = T (v,H,R).
All the ai’s as functions of the vk’s are smooth at en, so the function
(v,H,R) 7→ T (v,H,R) is smooth at any (en, H,R). Therefore, by invari-
ance under orthogonal transformations, it is also smooth at any (e2, H,R).
Among the ai’s seen as functions of the vk’s, only a1 is not smooth at e2.
Therefore, a1 only occurs in P with even exponents. Proceeding similarly,
since a2 is the only of the remaining ai’s that is not smooth at e3, it only oc-
curs in P with even exponents. Proceeding by steps, all ai’s with 1 ⩽ i ⩽ n−1
only occur in P with even exponents.

As for an, we compute its exponent in each monomial in (hij), (rijkl)
(taking into account the denominator a−αn

n , so that the exponent is in Z).
By invariance of T (v,H,R) under the homothety v 7→ λv for λ ̸= 0, the
exponent of an, say d, has to be compensated by a total degree in the vi’s
equal to −d. The map v 7→ −v leaves T (v,H,R) invariant, and multiplies
the monomial by (−1)d. Therefore, d is even. □
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Definition 2.3. — For all n, k,m ∈ N such that 1 ⩽ k ⩽ n and 0 ⩽
m ⩽ ⌊ k−1

2 ⌋, we define Pn,k,m to be the (unique) polynomial whose existence
is asserted in Lemma 2.2. For other values of the indices, we set Pn,k,m := 0.
We set Pn,k := Pn,k,0.

Remark 2.4. — One has

dim
⊙2

V∗ = n(n+ 1)
2

and dim
⊙2∧2

V∗ = n(n− 1)(n(n− 1) + 2)
8 .

Therefore, Pn,k,m has n+ [k− 1 − 2m ⩾ 1] n(n+1)
2 + [m ⩾ 1] n(n−1)(n(n−1)+2)

8
variables. By homogeneity considerations, Pn,k,m has degree 2(k − 1) in the
coefficients of v, degree k− 1 − 2m in the coefficients of H, and degree m in
the coefficients of R.

The proof shows how to compute the Pn,k,m’s. For instance, with the
notation of the proof, one has

(U−1HU)ij = 1
ai−1aiaj−1aj

×

(
a2

i−1hija
2
j−1+vivj

i−1∑
k=1

j−1∑
l=1

vkhklvl −a2
i−1vj

j−1∑
l=1

hilvl −a2
j−1vi

i−1∑
k=1

vkhkj

)
for 2 ⩽ i, j ⩽ n, from which one can compute the coefficients of any exterior
power of H|v⊥ , and similarly for R|v⊥ , for the exterior product, and finally
for the trace. We consider a few special cases:

• If k = 1 (hence m = 0), then the left-hand side of (2.6) is the trace
of the identity on

∧0
v⊥ ≃ R, so Pn,1 = 1.

• For the case k = 2 (hence m = 0), note that tr(H|v⊥) = trH −
∥v∥−2 H(v, v). This gives

Pn,2 =
n∑

i=1

∑
j ̸=i

v2
j

hii − 2
∑
i<j

vivjhij . (2.8)

The first such polynomial is P2,2 = v2
2h11 − 2v1v2h12 + v2

1h22. This
is simply H(u, u) where u is any of the two unit vectors orthogonal
to v.

• For the case (n, k,m) = (n, n, 0), one has detH = det(H|v⊥)∥v∥−2×
H(v, vH) where vH is the projection of v onto (v⊥)⊥H parallel to
v⊥, provided that H|v⊥ is nondegenerate. Indeed, considering an
orthonormal basis (fi)1⩽i⩽n of V with f1 = v

∥v∥ and (fi)2⩽i⩽n a
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diagonalizing basis for H|v⊥ , one has

detH = det


H( v

∥v∥ ,
v

∥v∥ ) . . . H( v
∥v∥ , fi) . . .

...
. . . 0 0

H( v
∥v∥ , fi) 0 λi 0

... 0 0
. . .

 .

A double expansion of this determinant yields

detH = (detH|v⊥) ∥v∥−2 H

(
v, v −

n∑
i=2

H(v, fi
λi

)fi

)
as claimed.

Applying Lemma 2.2 to (R,H, v) = (R,Hess(f),∇f), one obtains

tr
(∧m

R|∇f⊥ ∧
∧k−1−2m

Hess(f)|∇f⊥

)
= Pn,k,m(R,Hess(f),∇f)

∥∇f∥2(k−1) . (2.9)

In view of the special cases considered above, and under the nondegeneracy
condition for the third equation, one has

Pn,1(Hess(f),∇f) = 1, (2.10)
Pn,2(Hess(f),∇f) = ∥∇f∥2 ∆ f − Hess(f)(∇f,∇f), (2.11)

Pn,n(Hess(f),∇f) = det(Hess(f)) ∥∇f∥2n

Hess(f)
(
∇f, (∇f)Hess(f)

) . (2.12)

We now state the version of the divergence theorem that will be useful to
us. The divergence of a C1-vectorfield X ∈ X(M) is defined by LX volM =
(divX) volM , where L denotes the Lie derivative. Many generalizations of
the standard divergence theorem have been proved, relaxing hypotheses on
the regularity and compactness of the manifold or stratified space and on
the regularity of the vectorfield, encompassing the present statement. We
include a proof for the convenience of the reader.

Theorem 2.5 (Divergence theorem). — Let (M, g) be a compact n-
dimensional Riemannian manifold with boundary. Let X ∈ X(M) be a con-
tinuous vectorfield on M which is of class C1 on intM and such that divX ∈
L1(M). Then, ∫

M

(divX)volM =
∫

∂M

⟨X, ν⟩vol∂M . (2.13)

where ν is the outward unit normal vectorfield on ∂M .

Proof. — If X is of class C1 on M , then this is the standard diver-
gence theorem. Else, we consider the geodesic flow from the boundary of
M along the outward unit normal vectorfield ν. For ϵ > 0 small enough, set
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θϵ : ∂M → M,x 7→ exp(x,−ϵνx) and set Mϵ := M \
⋃

s∈[0,ϵ[ θs(∂M). For ϵ
small enough, Mϵ is a compact submanifold with boundary of M , and θϵ

induces a diffeomorphism ϑϵ : ∂M ∼−→ ∂Mϵ. Applying the standard diver-
gence theorem on Mϵ, one obtains

∫
Mϵ

(divX) volM =
∫

∂Mϵ
⟨X, νϵ⟩ vol∂Mϵ

.
When ϵ → 0, the left-hand side converges to

∫
M

(divX) volM by Lebesgue’s
dominated convergence theorem, since divX ∈ L1(M). The right-hand side
is equal, by change of variable, to

∫
∂M

⟨ϑ∗
ϵX, ν⟩(detTϑϵ) vol∂M , which con-

verges to
∫

∂M
⟨X, ν⟩ vol∂M since the integrand is uniformly convergent and

∂M is compact. □

We can now prove a first general result.

Theorem 2.6. — Let (M, g) be an n-dimensional Riemannian manifold.
Let (f, a) ∈ Reg3

c(M,R).

For 1 ⩽ k ⩽ n and 0 ⩽ m ⩽ ⌊ k−1
2 ⌋, let Fk,m ∈ C1(TM, TM) be fiber-

preserving such that Fk,m(u) ∼∞
u

∥u∥ . Then, for 0 ⩽ k ⩽ n, one has

Ln−k(Ma) = ak

∫
Ma

tr
(∧k/2

R

)
volM

+
⌊ k−1

2 ⌋∑
m=0

bk,m

∫
Ma

div
(

∥∇f∥2m+3(1−k)

Pn,k,m(R,Hess(f),∇f)
(
Fk,m ◦ ∇f

a− f

))
volM (2.14)

under the condition that the divergence appearing in the integral exists and
is integrable.

Assume that M is flat. For 1 ⩽ k ⩽ n, let Fk ∈ C1(TM, TM) be fiber-
preserving such that Fk(u) ∼∞

u
∥u∥ . Then, for 1 ⩽ k ⩽ n, one has

Ln−k(Ma) = bk

∫
Ma

div
(

∥∇f∥3(1−k)Pn,k(Hess(f),∇f)
(
Fk ◦ ∇f

a− f

))
volM .

(2.15)
under the same conditions.

Remark 2.7. — By “F (u) ∼∞
u

∥u∥ ”, we mean that lim∥u∥→+∞∥F (u) −
u

∥u∥ ∥ = 0 locally uniformly in τM (u) ∈ M .
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Proof. — Starting with the definition (1.1), we use the expression of the
second fundamental form (2.4) and Equation (2.9) to obtain

Ln−k(M) = ak

∫
M

tr
(∧k/2

R

)
volM

+
⌊ k−1

2 ⌋∑
m=0

bk,m

∫
∂M

Pn,k,m(R,Hess(f),∇f)
∥∇f∥3(k−1)−2m

vol∂M . (2.16)

The asymptotic property of Fk,m ensures that the vectorfield whose diver-
gence is considered in the statement is continuous on ∂Ma and its value
there is

∥∇f∥2m+3(1−k)Pn,k,m(R,Hess(f),∇f) ∇f
∥∇f∥

.

Finally, the hypotheses of the proposition ensure that the divergence theorem
applies. □

Remark 2.8. — Since Pn,1 = 1, the theorem for k = 1 holds for (f, a) ∈
Reg2

c(M,R).

Our next step is to find explicit functions F (in particular proving that
some exist) making the divergence appearing in the theorem integrable. We
consider radial maps of the form Fk,m(u) = ∥u∥3(k−1)−2mGk,m(∥u∥)u with
Gk,m ∈ C1(R⩾0,R). The condition Gk,m(x) ∼+∞ x2(m+1)−3k ensures that
Fk,m(u) ∼∞

u
∥u∥ . Examples of functions G satisfying these conditions are

given by Gk,m(x) :=
(
1 + x2(3k−2(m+1)))−1/2. We set

ηf,ℓ :=
√
f2ℓ + ∥∇f∥2ℓ (2.17)

for ℓ ⩾ 0. With these choices for F and G, one obtains

Fk,m ◦
(

∇f
a− f

)
= ∥f∥3(k−1)−2m ∇f

ηf−a,3k−2(m+1)
(2.18)

on intMa, which yields the following theorem.

Theorem 2.9. — Let (M, g) be an n-dimensional Riemannian manifold.
Let (f, a) ∈ Reg3

c(M,R). For 0 ⩽ k ⩽ n, one has

Ln−k(Ma) = ak

∫
Ma

tr
(∧k/2

R

)
volM

+
⌊ k−1

2 ⌋∑
m=0

bk,m

∫
Ma

div
(
Pn,k,m(R,Hess(f),∇f)

ηf−a,3k−2(m+1)
∇f
)

volM . (2.19)
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If M is flat and 1 ⩽ k ⩽ n, then

Ln−k(Ma) = bk

∫
Ma

div
(
Pn,k(Hess(f),∇f)

ηf−a,3k−2
∇f
)

volM . (2.20)

For k = 1, 2, this gives

Ln−1(Ma) = 1
2

∫
Ma

div
(

∇f
ηf−a

)
volM , (2.21)

Ln−2(Ma) = − 1
2π

∫
Ma

scal volM

+ 1
2π

∫
Ma

div
(

∥∇f∥2 ∆ f − Hess(f)(∇f,∇f)
ηf−a,4

∇f
)

volM .

(2.22)

Similarly, when M is flat and Hess(f)|∇f⊥ is nondegenerate, if n ⩾ 1, one
has

χ(Ma) = bn

∫
Ma

div
(

det(Hess(f)) ∥∇f∥2n

Hess(f)
(
∇f, (∇f)Hess(f)

)
ηf−a,3n−2

∇f

)
volM . (2.23)

Remark 2.10. — There are obviously many natural choices for the func-
tions F and G. For instance, one can take Fk,m := Fk. With the Fk’s given
above, the divergence corresponding to the mth summand reads

div
(

∥∇f∥2mPn,k,m(R,Hess(f),∇f)
ηf−a,3k−2

∇f
)
. (2.24)

In the case of nodal volumes, other choices are given in the next subsection.

Remark 2.11. — Intrinsic volumes can be defined for Riemannian man-
ifolds with corners, and even Whitney stratified spaces of positive reach in
Riemannian manifolds. Since the divergence theorem admits generalizations
to these settings, it is possible to extend the above results to sublevel sets of
functions defined on Riemannian manifolds with boundary or corners, and
to Whitney stratified spaces in Riemannian manifolds, under the assumption
that the function is transverse to the boundary or the strata respectively.
Boundary terms will appear in the formulas. We do not carry out this gen-
eralization in full and only give a formula for nodal volumes in the next
subsection (see Remark 2.13).

2.3. Nodal volumes

In this subsection, we show how we can compute the intrinsic volumes
of the zero sets, or nodal sets, of functions defined on compact Riemannian
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manifolds. Let (M, g) be a compact n-dimensional Riemannian manifold. Let
f ∈ C2

0−reg(M,R) (class C2 is sufficient by Remark 2.8). The zero set of f is
Zf := f−1(0) = ∂M0

f = ∂M0
−f . By (1.6), one has vol(Zf ) = Ln−1(M0

f ) +
Ln−1(M0

−f ). Since M0
f ∪ M0

−f = M and M0
f ∩ M0

−f = Zf is negligible in
M , Formula (2.21) gives an integral on M . Using the general formula of
Theorem 2.6 yields

vol(Zf ) = −1
2

∫
M

div
(
F1 ◦ ∇f

|f |

)
volM (2.25)

(where minus the absolute value appears since f is negative on M0
f and

positive on M0
−f ). Of course, this identity could have been obtained directly

by applying the divergence theorem to the identity vol(Zf ) =
∫

∂M0
f

vol∂M0
f
.

Recalling the definition of ηf,ℓ by Equation (2.17), we set

ηf := ηf,1 =
√
f2 + ∥∇f∥2. (2.26)

We also write σf : M → {−1, 0, 1} for the sign of f .

Setting, in Formula (2.25), F1(u) := G1(∥u∥)u with respectively G1(x) :=
(1 + x2)−1/2 and 2

π
arctan x

x and tanh x
x , one obtains

vol(Zf ) = 1
2

∫
M

σf

η3
f

(
f∥∇f∥2 + Hess(f)(∇f,∇f) − η2

f ∆ f
)

volM (2.27)

and

vol(Zf ) = 1
π

∫
M

(
∥∇f∥−1

(
arctan ◦∥∇f∥

f

)(
Hess(f)(∇f,∇f)

∥∇f∥2 − ∆ f

)

+ η−2
f

(
∥∇f∥2 − f Hess(f)(∇f,∇f)

∥∇f∥2

))
volM (2.28)

and

vol(Zf ) = 1
2

∫
M

(
∥∇f∥−1

(
tanh ◦∥∇f∥

f

)(
Hess(f)(∇f,∇f)

∥∇f∥2 − ∆ f

)

+
(

cosh ◦∥∇f∥
f

)−2(∥∇f∥2

f2 − Hess(f)(∇f,∇f)
f∥∇f∥2

))
volM (2.29)

(see [15] for the computation details).

Remark 2.12. — In the last three formulas, all terms of the integrands are
bounded on M and continuous on M \ Zf . Indeed, the Hessian expressions
are quadratic in ∥∇f∥, the arctan and tanh expressions are linear in ∥∇f∥
when ∥∇f∥ is small, and the cosh expression is exponentially small in |f |
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when |f | is small. However, not all terms need be continuous on M . This
problem is dealt with below.

Remark 2.13. — Fulfilling the promise made in Remark 2.11, let M be
a compact Riemannian manifold with boundary. If f intersects ∂M trans-
versely, then Formula (2.25) becomes

vol(Zf ) = 1
2

(∫
∂M

〈
F ◦ ∇f

f
, v

〉
vol∂M −

∫
M

(
div
(
F ◦ ∇f

f

))
volM

)
.

(2.30)
Note that by the transversality assumption, Zf ∩ ∂M is negligible in ∂M .
This formula reduces in dimension 1 to [2, Prop. 3].

Remark 2.14. — The cases considered in [2] correspond to M = (R/Z)n

with the standard flat metric. In particular, Formula (2.27) is essentially [2,
Prop. 5] (in the case of (R/Z)n with the standard flat metric). In dimension 1,
the general formula (2.25) reduces to [2, Prop. 2], and in that case, only the
condition limx→±∞ F (x) = ±1 is required if one considers the integral as an
improper Lebesgue integral. Similarly, Formula (2.27) reduces to [2, Prop. 1]
and Formula (2.28) to [2, Cor. 1 of Prop. 2].

More generally, the intrinsic volumes of subsets have the additivity
property

Ln−k(A) + Ln−k(B) = Ln−k(A ∪B) − Ln−k(A ∩B) (2.31)
when A,B are subsets of a compact n-dimensional Riemannian manifold M
such that all terms are well-defined (see [9, Thm. 5.16(6)]). Therefore, if
f ∈ C3

0−reg(M,R), then

Ln−k(Zf ) = Ln−k(M0
f ) + Ln−k(M0

−f ) − Ln−k(M). (2.32)
The terms corresponding to the first summand in (2.19) cancel out, so that

Ln−k(Zf ) =
⌊ k−1

2 ⌋∑
m=0

bk,m

∫
M

σk
f div

(
Pn,k,m(R,Hess(f),∇f)

ηf,3k−2(m+1)
∇f
)

volM .

(2.33)
The exponent k of σf is congruent modulo 2 to degHess(f) Pn,k,m +
deg∇f Pn,k,m+1 = 3k−2(1+m) by Remark 2.4. In particular, Ln−k(Zf ) = 0
for k even, as expected. One can also consider Zf as a Riemmannian mani-
fold with curvature R̃ and obtain

Ln−1−k(Zf ) = ak

∫
Zf

tr
(∧k/2

R̃

)
volZf

(2.34)

where R̃ is given by the Gauss formula for the curvature of submanifolds,
R̃(X,Y, Z, T ) = R(X,Y, Z, T ) + S(X,Z)S(Y, T ) − S(X,T )S(Y, Z) (2.35)
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for X,Y, Z, T ∈ X(Zf ).

We return to the question raised in Remark 2.12 of having continu-
ous integrands. The only non-continuous terms in the integrands of Equa-
tions (2.27), (2.28), (2.29) are of the form

σfh
(
Hess(f)(∇f,∇f) − ∆ f ∥∇f∥2) (2.36)

with h ∈ C1(M,R), respectively h = η−3
f and h = ∥∇f∥−3

(
arctan ◦ ∥∇f∥

|f |

)
and h = ∥∇f∥−3

(
tanh ◦ ∥∇f∥

|f |

)
. This is dealt with in [2] (in the case of

Equation (2.27) on a flat torus) using an integration by parts. The same
method extends to compact Riemannian manifolds as follows. One has

Hess(f)(∇f,∇f) − (∆ f)∥∇f∥2 = ⟨∇f,∇lc
∇f ∇f − (∆ f)∇f⟩.

Therefore,
σfh

(
Hess(f)(∇f,∇f) − (∆ f)∥∇f∥2) =

〈
∇|f |, h

(
∇lc

∇f ∇f − (∆ f)∇f
)〉
.

We temporarily assume that f is of class C3 and we use the fact that
div (|f |h(∇lc

∇f ∇f − (∆ f)∇f)) has a vanishing integral on M (by the stan-
dard divergence theorem). Therefore,∫

M

σfh
(
Hess(f)(∇f,∇f) − (∆ f)∥∇f∥2) volM

=
∫

M

|f | div (h ((∆ f)∇f − ∇lc
∇f ∇f)) volM .

One has div((∆ f)∇f) = (∆ f)2 + ⟨∇ ∆ f,∇f⟩. The Bochner formula yields

div (∇lc
∇f ∇f) = div

(
1
2∇∥∇f∥2

)
= 1

2 ∆∥∇f∥2

= ⟨∇ ∆ f,∇f⟩ + ∥Hess f∥2 + Ric(∇f,∇f)
where the norm of the Hessian is the Hilbert–Schmidt norm. Therefore, the
third derivatives cancel out. Since C2(M,R) is dense in C3(M,R) for the
(Whitney) strong C2-topology (see for instance [14, Thm. II.2.6] and the
next section for function space topologies) and the involved quantities are
continuous in this topology, one has, for any f of class C2,∫

M

σfh
(
Hess(f)(∇f,∇f) − (∆ f)∥∇f∥2) volM

=
∫

M

|f |
(
h
(
(∆ f)2 − ∥Hess f∥2 − Ric(∇f,∇f)

)
+ ⟨∇h, (∆ f)∇f − ∇lc

∇f ∇f⟩
)

volM . (2.37)
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For example, one has ∇η−3
f = −3η−5

f (f∇f + ∇lc
∇f ∇f), so (2.27)

becomes

vol(Zf )

= 1
2

∫
M

(
|f |
η3

f

(
∥∇f∥2 − |f | ∆ f + (∆ f)2 − ∥Hess f∥2 − Ric(∇f,∇f)

)
+ 3η−5

f

(
f Hess(f)(∇f,∇f) + Hess(f)(∇f,∇lc

∇f ∇f)

− (∆ f)2(f∥∇f∥2 + Hess(f)(∇f,∇f))
))

volM . (2.38)

In the case of a flat torus, this is [2, Prop. 7].

Remark 2.15. — These formulas can also be written in terms of the
tracefree Hessian. Recall that Hess0(f) = Hess(f) − ∆ f

n id. A tracefree
linear map is Hilbert–Schmidt-orthogonal to the identity, so ∥Hess f∥2 =
(∆ f)2

n + ∥Hess0 f∥2.

In Equation (2.38), the integrand is a Lipschitz continuous functional
of f ∈ C2

0−reg(M,R) (see next section for the precise setting), so one can
apply techniques of the Malliavin calculus (see [2]). The only difference
between (2.38) and [2, Prop. 7] is the additional term involving the Ricci
curvature, |f |η−3

f Ric(∇f,∇f), and this term is in the required domain of
the Malliavin calculus by the same proof as [2, Lem. 2 p. 26]. Therefore,
[2, Thm. 1] holds on any compact Riemannian manifold. Similarly, For-
mula (2.30) shows that the extra boundary terms are not problematic, so [2,
Thm. 1] holds on any compact Riemannian manifold with corners, a gener-
alization which includes [2, Thm. 2] as a special case.

3. Continuity of the intrinsic volumes of sublevel sets

3.1. Review of function space topologies

For this subsection, we refer to [14, Ch. II] for details. Let (M, g) be a
Riemannian manifold and p ∈ N. We will use two different topologies on
the set Cp(M,R), the uniform Cp-topology, and the finer (Whitney) strong
Cp-topology. The resulting topological spaces will be denoted with the sub-
scripts U and S respectively.

If 0 ⩽ i ⩽ p and f ∈ Cp(M,R), then ∇lci f ∈ Γ(p−i)(
⊗i

T ∗M → M).
We denote by ∥∇lci f(x)∥ the norm of this multilinear form induced by
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the norm gx on T ∗
xM , and by ∥∇lci f∥∞ the supremum of these norms for

x ∈ M . Let p ∈ N. The uniform Cp-topology is the group topology such that
a neighborhood basis of 0 is given by

Up(ϵ) :=
{
f ∈ Cp(M,R)

∣∣∣∣∣
p∑

i=0
∥∇lci

f∥∞ < ϵ

}
(3.1)

for ϵ ∈ R>0. The strong Cp-topology is the group topology such that a
neighborhood basis of 0 is given by

Sp(ϵ) :=
{
f ∈ Cp(M,R)

∣∣∣∣∣ ∀ x ∈ M

p∑
i=0

∥∇lci
f(x)∥ < ϵ(x)

}
(3.2)

for ϵ ∈ C0(M,R>0). The uniform and strong C∞-topologies are obtained as
the unions of the corresponding Cp-topologies.

Then, Cp(M,R)S is a complete Baire topological ring (but not metriz-
able nor a topological vector space if M is not compact), and Cp(M,R)U is
a Fréchet space. The strong Cp-topology does not depend on the Riemann-
ian metric (it could actually be defined using norms of usual derivatives in
charts as in [14, II.1]). These topologies differ in the control of functions
at infinity (in particular, they are equal when M is compact, and equal to
the compact-open Cp-topology). Furthermore, results involving the strong
topology will often remain true for the uniform topology when restricted to
proper functions.

The product Cp(M,R) × R will be considered with the corresponding
product topology, and the sets Regp(M,R) and Regp

c(M,R) defined in Equa-
tions (2.2) and (2.3) with the corresponding subspace topologies.

Although Cp(M,R)U is metrizable, there is no natural choice of a met-
ric if p > 0 (and M has strictly positive dimension) or if M is not com-
pact. On the other hand, the space C0(M,R)U has a natural extended norm
(a norm that can take infinite values) given by ∥f∥∞ := supx∈M |f(x)| for
f ∈ C0(M,R) and giving rise to an extended distance. When we speak of
Lipschitz continuity of a map from Cp(M,R)U (and similarly from its prod-
uct with R or a subspace of one of these) to R, we mean Cp(M,R)U -local
∥−∥∞-Lipschitz continuity. More precisely, the map L : Cp(M,R)U → R
is Lipschitz continuous if Cp(M,R)U has an open cover such that for all
V ⊆ Cp(M,R) in this cover, there exists C ∈ R such that for all f, g ∈ V ,
one has |L(g) − L(f)| ⩽ C∥g − f∥∞. Since ∥−∥∞ is continuous at 0, Lips-
chitz continuity implies continuity. Note however that with this definition,
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Lipschitz continuity does not imply uniform continuity when the domain is
not compact.(2)

The strong topology has the disadvantage that the inclusion of constant
functions, R → Cp(M,R)S , a 7→ (x 7→ a), is not continuous when M is not
compact. For example, the function

τ : Cp(M,R)U × R −→ Cp(M,R)U

(f, a) 7−→ f − a.
(3.3)

is Lipschitz continuous, but the analogous result (for mere continuity) with
the strong topology does not hold. Therefore, when studying sublevel sets
at varying heights, we will use the uniform topology and we will restrict
our attention to proper functions, and when studying sublevel sets at a
fixed height, we will use the strong topology if we want to allow nonproper
functions.

We denote by Cp
p(M,R) (resp. Cp

b(M,R)) the set of proper (resp. bounded
below) functions in Cp(M,R), and by Cp

pb(M,R) := Cp
p(M,R) ∩ Cp

b(M,R)
the set of proper bounded below functions. Similarly, we set Regp

∗ :=
Regp(M,R) ∩ (Cp

∗(M,R) × R) for ∗ = b,p,pb.

Proposition 3.1. — Let p ∈ N. At least one (resp. all) sublevel set(s) of
f ∈ Cp(M,R) is/are compact if and only if f is bounded below (resp. proper
bounded below). In particular, Regp

pb(M,R) ⊆ Regp
c(M,R). The subsets

Cp
b(M,R) and Cp

p(M,R) and Cp
pb(M,R) are open and closed in Cp(M,R)U .

Proof. — Obvious. □

Example 3.2. — For a given function, the set of real numbers such that
the associated sublevel set is compact can be any downset. Indeed, consider
the functions on R which send x to respectively x or a or a+ ex or x2. The
sets of real numbers such that the associated sublevel set is compact are ∅
and ]−∞, a[ and ]−∞, a] and R respectively.

Recall that ηf was defined by Equation (2.26) and τ by Equation (3.3).

Lemma 3.3. — The function inf : C0(M,R)U → R ∪ {−∞} is Lipschitz
continuous. The function η : C1(M,R)U → C0(M,R)U is Lipschitz contin-
uous. Let p ∈ N. The function η : C1+p

0−reg(M,R)X → Cp(M,R>0)X is Lip-
schitz continuous for X = U and continuous for X = S. The function
m := inf ◦η ◦ τ : C1+p(M,R)U × R → R is Lipschitz continuous.

(2) In a more elementary setting, the square function on real numbers is an exam-
ple, and for an example where the domain is totally bounded, consider the sign function
σ : [−1, 1] \ {0} → R, which is Lipschitz continuous since locally constant, and not uni-
formly continuous.
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Proof. — Obvious. □

Proposition 3.4. — Let p ∈ N⩾1. The subset Regp
p(M,R) is open and

dense in Cp
p(M,R)U × R. The subset Cp

0−reg(M,R) (resp. Cp
0−reg,c(M,R))

is open and dense in Cp(M,R)S (resp. Cp
0−c(M,R)S). The three openness

results actually hold for the (uniform or strong) C0-topology.

Proof. — One has, Regp
p(M,R) =

(
m|Cp

p(M,R)U

)−1(R>0), which is there-
fore open in Cp

p(M,R)U . Similarly, Cp
0−reg(M,R) = η−1 (Cp−1(M,R>0)

)
is

open in Cp
p(M,R)S .

As for density, by the Morse–Sard theorem, if f ∈ Cn(M,R), then the
set of regular values of f is dense. This implies that Regp

p(M,R) is dense in
Cmax(n,p)(M,R)U ×R, which is dense in Cp(M,R)U ×R (see [14, Thm. II.2.6]).

For Cp
0−reg(M,R), one can use the transversality theorem as follows. Let

f ∈ Cp(M,R) and ϵ ∈ C1(M,R>0). Let (ϕi)i∈I be a smooth partition of unity
subordinated to some locally finite atlas of M . Consider the map Φ: M ×
R|I| → R, (x, (λi)) 7→ f(x) + ϵ(x)

∑
i λiϕi(x). Then, Φ is submersive, so for

almost all tuples (λi), the map Φ(−, (λi)) is transverse to 0.

The proofs work similarly with the compactness requirement added. □

3.2. Continuity of the intrinsic volumes

We begin with the special cases of the volume and the nodal volume,
which will be needed in the proof of the general case. We actually prove a
more general statement, where △ denotes the symmetric difference of two
sets.

Proposition 3.5. — Let (M, g) be a Riemannian manifold. The func-
tions

Reg1
pb(M,R)2

U −→ R⩾0 (3.4)(
(f, a), (g, b)

)
7−→ vol(Ma

f △M b
g )

and
Reg1

pb(M,R)U −→ R⩾0 (3.5)
(f, a) 7−→ vol(Ma

f )

are continuous (resp. Lipschitz continuous) when the domains are given the
uniform C0-topology (resp. are restricted to functions of class C2 and given
the uniform C2-topology).
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The functions

C1
0−reg,c(M,R)2

S −→ R⩾0 (3.6)
(f, g) 7−→ vol(M0

f △M0
g )

and
C1

0−reg,c(M,R)S −→ R⩾0 (3.7)
f 7−→ vol(M0

f )

are continuous when the domains are given the strong C0-topology.

The function

Reg1
pb(M,R)U −→ R⩾0 (3.8)

(f, a) 7−→ vol(∂Ma
f )

is continuous when the domain is given the uniform C1-topology.

Remark 3.6. — The continuity of nodal volumes was proved in the Eu-
clidean case in [3, Thm. 3], with a similar proof.

We first prove a lemma.

Lemma 3.7. — Let f ∈ C1
0−reg,c(M,R). For any neighborhood V of Zf ,

there exists an open neighborhood W of f in the strong C0-topology (and, if
f is proper, in the uniform C0-topology) such that for any h, k ∈ W , one has
Zh ⊆ V and M0

h△M0
k ⊆ V .

Proof. — Let f and V be as in the statement. Then M0
f is compact. Let

H,K be compact subsets such that Mf
0 \ V ⊆ H ⊂⊂ Mf

0 ⊂⊂ K ⊆ Mf
0 ∪ V .

By Proposition 2.1, f is strictly negative on intM0
f , so ϵ0 := inf{−f(x) | x ∈

H} > 0.

In the proper case, one has ϵ1 := inf{f(x) | x ∈ M \ K} > 0 and we set
W := f +U0(min(ϵ0, ϵ1)). In the nonproper case, let ϵ2 := min(ϵ0, inf{f(x) |
x ∈ ∂K}) > 0, let ϵ ∈ C0(M,R>0) be the function equal to ϵ2 on K and
min(ϵ2, f) on M \K, and set W := f + S0(ϵ). In both cases, if h ∈ W , one
has Zh ⊆ K \H ⊆ V , and similarly M0

h△M0
k ⊆ V if h, k ∈ W . □

Proof of the proposition. —

(i). — Let Φ be the first function in the proposition. Since Ma
f =

M0
τ(f,a) and τ is Lipschitz continuous, it suffices to consider 0-sublevel sets.

Let ((f, 0), (g, 0)) ∈ Reg1
pb(M,R)2. If ((h, 0), (k, 0)) ∈ Reg1

pb(M,R)2, then
(M0

f △M0
g )△(M0

h△M0
k ) ⊆ (M0

f △M0
h) ∪ (M0

g △M0
k ), so |Φ((f, 0), (g, 0)) −

Φ((h, 0), (k, 0))| ⩽ Φ((f, 0), (h, 0)) + Φ((g, 0), (k, 0)). Therefore, it suffices to
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prove the continuity (resp. Lipschitz continuity) of Φ on the diagonal. Conti-
nuity is proved by Lemma 3.7 and we defer the proof of Lipschitz continuity
to the end of the proof.

(ii). — In the non-proper case, it is similarly sufficient to prove the
continuity of the third function, say Ψ, on the diagonal, and Lemma 3.7 also
proves the result.

(iii). — The second (resp. fourth) function is equal to Φ(−, (1, 0)) (resp.
Ψ(−, 1)), so it is continuous.

(iv). — We now prove continuity of nodal volumes. By Lipschitz con-
tinuity of τ , we can restrict our attention to (f, 0) ∈ Reg1

pb(M,R)U . Then,
Zf is a compact C1-hypersurface. For any x ∈ Zf , there exists a smooth
chart ϕ : U → Rn such that ϕ(U) = ]0, 1[n and ϕ(Zf ∩ U) is the graph of a
C1-function fϕ : ]0, 1[n−1 → ]1/3, 2/3[ with ∥d fϕ∥∞ < 1. Since Zf is com-
pact, there exists a finite cover (Ui)i∈I of Zf by such sets, and we denote by
ϕi : Ui → Rn the corresponding charts. Let (ψi)i∈I be a smooth partition of
unity subordinated to (Ui)i∈I .

By Lemma 3.7, there exists a neighborhood V of f such that the nodal
set of any h ∈ V is included in

⋃
i∈I Ui. For any i ∈ I, by the implicit

function theorem, there exists a neighborhood Vi ⊆ V of f in the C1-topology
such that for any h ∈ Vi, the hypersurface ϕi(Ui ∩ Zh) is the graph of
a function hi : ]0, 1[n−1 → ]0, 1[ with ∥dhi∥∞ < 2. One then has ∇hi =

−
(

∂(h◦ϕ−1
i

)
∂xd

)−1
∇(h◦ϕ−1

i ). Set W :=
⋂

i∈I Vi. For any i ∈ I, let ji : Γ(hi) ↪→
]0, 1[n be the inclusion of the graph of hi. Finally, denote by prn−1 : ]0, 1[n →
]0, 1[n−1 the projection on the first n− 1 factors.

Let h ∈ W and let j : Zh ↪→ M be the inclusion. Then,

vol(Zh) =
∑
i∈I

∫
Ui∩Zh

j∗(ψi volM )

=
∑
i∈I

∫
Γ(hi)

ji
∗ϕi∗(ψi volM )

=
∑
i∈I

∫
]0,1[n−1

√
1 + ∥∇hi∥2prn−1∗ϕi∗(ψi volM )

=
∑
i∈I

∫
]0,1[n−1

√
1 +

(
∂(h ◦ ϕ−1

i )
∂xd

)−2

∥∇(h ◦ ϕ−1
i )∥2(prn−1 ◦ϕi)∗(ψi volM ).

On this expression, the continuity of vol(Z−) for the uniform C1-topology is
clear.

– 934 –



Intrinsic volumes of sublevel sets

(v). — We now prove the Lipschitz continuity statement. Let (f, 0) ∈
Reg2

pb(M,R). Let K be a compact neighborhood of Zf on which ∇f does
not vanish. By Lemma 3.7, there exists an open neighborhood V0 of f in
the uniform C0-topology such that for any h, k ∈ V0, one has Zh ⊆ K and
Mh△Mk ⊆ K. Set ϵ := 1

2 inf{∥∇f(x)∥ | x ∈ K} > 0 and V := V0 ∩
(f + U1(ϵ)). Set C := ∥∇f∥∞,K + ϵ. Let h, k ∈ C2

0−reg,c(M,R) ∩ V0. Then,
M0

h△M0
k ⊆ K. Furthermore, M0

h△M0
k is included in the union of the tubular

neighborhoods of Zh of radius C
ϵ2 ∥h − k∥∞,K and of Zk of same radius, as

we now prove.

Let x ∈ M0
h△M0

k . One can suppose that k(x) ⩽ 0 ⩽ h(x). Therefore,
0 ⩽ h(x) ⩽ ∥h − k∥∞,K . Consider the maximal integral curve c defined by
c(0) = x and c′(t) = −∇h(c(t)). Let T := inf{t ⩾ 0 | c(t) ∈ Zh ∪ Zk}. One
has c([0, T ]) ⊆ M0

h△M0
k ⊆ K. One has (h◦c)′ = ⟨∇h, c′(t)⟩ = ∥∇h(c(t))∥2 ⩾

(∥∇f(c(t))∥ − ϵ)2 ⩾ ϵ2. Since 0 ⩽ h(c(T )) ⩽ h(c(0)) = h(x), the mean value
theorem gives T ⩽ 1

ϵ2h(x) ⩽ 1
ϵ2 ∥h − k∥∞,K . On the other hand, one has

∥c′(t)∥ ⩽ C for t ∈ [0, T ]. Therefore, d(c(0), c(T )) ⩽ C
ϵ2 ∥h− k∥∞,K

Now we need to bound the volume of these tubular neighborhoods of Zh

(and Zk). By part (iv) of the proof, nodal volumes are continuous, hence
locally bounded. By Gauss’s equation (2.35) for the curvature of subman-
ifolds and Equation (2.4) for the second fundamental form, there exists a
C2

U -neighborhood of f such that the curvature of Zh is bounded for h in this
neighborhood. Therefore, by [13, Thm. 8.16(i)] (and the comments preceding
it concerning the passage from area to volume of tubes and the adaptation
to negative lower bounds on the curvature of the ambient manifold), the
volume of tubes around Zh is bounded by a linear function of the radius,
uniformly in a C2

U -neighborhood W of f . Therefore, there exists A ∈ R such
that if h, k ∈ C2

0−reg,c(M,R) ∩V ∩W , then vol(M0
h△M0

k ) ⩽ A
ϵ ∥h−k∥∞. □

Remark 3.8. — The volume function is not uniformly continuous, as the
pairs of constant functions equal to ± 1

n on a nonempty compact manifold M
show: the volume of the 0-sublevel set jumps from 0 to vol(M) for two
arbitrarily close functions. Similar examples can be given for any nonzero
intrinsic volume. Recall indeed (see Subsection 3.1) that (local) Lipschitz
continuity does not imply uniform continuity when the domain is not com-
plete.

Theorem 3.9. — Let (M, g) be an n-dimensional Riemannian manifold.
If 0 ⩽ k ⩽ n, then the function

Lsub
n−k : Reg3

pb(M,R)U −→ R (3.9)
(f, a) 7−→ Ln−k(Ma

f )
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is Lipschitz continuous, and the function
Ln−k(M0

−) : C3
0−reg,c(M,R)S −→ R (3.10)

f 7−→ Ln−k(M0
f )

is continuous.
Remark 3.10. — By Remark 2.8, the functions Lsub

n−1 and Ln−1(M0
−) are

also defined for C2-functions, and the proof below applies. For mere conti-
nuity in the proper case, the result even holds for C1-functions, as proved in
Proposition 3.5.

Remark 3.11. — Since the Euler–Poincaré characteristic is an integer,
one obtains that χ(M−

− ) is locally constant on Reg3
pb(M,R)U and χ(M0

−) is
locally constant on C3

0−reg,c(M,R)S . Note that this result also follows from
Morse theory.

Lemma 3.12. — Let (M, g) be an n-dimensional Riemannian manifold
and p ∈ N. Let n, k,m ∈ N. The function

Yn,k,m : Regp+3(M,R)U −→ Cp(M,R)U

(f, a) 7−→ div
(
Pn,k,m(R,Hess(f),∇f)

ηf−a,3k−2(m+1)
∇f
) (3.11)

is Lipschitz continuous. The function Yn,k,m(−, 0) : Cp+3
0−reg(M,R)S →

Cp(M,R)S is continuous.
Proof. — The result follows from the continuity of the four functions

τ : Regp+3(M,R)U −→ Cp+3
0−reg(M,R)U ,

η−,3k−2(m+1) : Cp+3
0−reg(M,R)X −→ Cp+2(M,R>0)X ,

Pn,k,m(R,Hess(−),∇−)∇− : Cp+3(M,R)X −→ Xp+1(M)X ,

div : Xp+1(M)X −→ Cp(M,R)X

for X = U, S, with Lipschitz continuity when X = U . □

Proof of the theorem. — Because of the general identity M b
f = Ma

f+a−b,
it is sufficient to consider (f, 0), (g, 0) ∈ Reg3

p(M,R). By Formula (2.19),
one has∣∣Ln−k(M0

g ) − Ln−k(M0
f )
∣∣

⩽ |ak|

∣∣∣∣∣
∫

M0
g

tr
(∧k/2

R

)
volM −

∫
M0

f

tr
(∧k/2

R

)
volM

∣∣∣∣∣
+

⌊ k−1
2 ⌋∑

m=0
|bk,m|

∣∣∣∣∣
∫

M0
g

Yn,k,m(g, 0)volM −
∫

M0
f

Yn,k,m(f, 0)volM

∣∣∣∣∣. (3.12)
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As for the first term, the integrand tr
(∧k/2

R
)

is locally bounded on M ,
and vol(M0

g △M0
f ) is controlled by d(f, g) by Proposition 3.5.

As for the summands, it suffices to bound∫
M0

g △M0
f

max(|Yn,k,m(f, 0)|, |Yn,k,m(g, 0)|)volM

and ∫
M0

f
∩M0

g

|Yn,k,m(g, 0) − Yn,k,m(f, 0)|volM .

The first term is dealt with by Proposition 3.5 (and the fact that Yn,k,m(−, 0)
is continuous by the lemma, hence locally bounded) and the second by the
lemma. □
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