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Inhomogeneous spin q-Whittaker polynomials (∗)

Alexei Borodin (1) and Sergei Korotkikh (2)

ABSTRACT. — We introduce and study an inhomogeneous generalization of the
spin q-Whittaker polynomials from [15]. These are symmetric polynomials, and we
prove a branching rule, skew dual and non-dual Cauchy identities, and an integral
representation for them. Our main tool is a novel family of deformed Yang–Baxter
equations.

RÉSUMÉ. — Nous introduisons et étudions une généralisation inhomogène des po-
lynômes spin de q-Whittaker de [15]. Ce sont des polynômes symétriques, et nous
prouvons une règle de branchement, des identités de Cauchy asymétriques duales et
non duales, et une représentation intégrale pour ces polynômes. Nous prouvons une
règle de branchement, des identités de Cauchy asymétriques, duales et non-duelles,
et une représentation intégrale pour ces polynômes. Notre outil principal est une
nouvelle famille d’équations de Yang–Baxter déformées.

1. Introduction

Background

Connections between integrable lattice models and the theory of symmet-
ric functions have been long known to be important to both domains; one
might, for example, consult the following works (the list is certainly incom-
plete): Fomin–Kirillov [22], Tsilevich [35], Brubaker–Bump–Friedberg [17],
Zinn-Justin [38], Korff [25], Wheeler-Zinn-Justin [36, 37], Motegi-Sakai [31],
Motegi [30], Cantini–de Gier–Wheeler [21], Garbali–de Gier–Wheeler [23],
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Borodin [4, 5], Borodin–Petrov [9, 10], Borodin–Wheeler [13, 15], Garbali–
Wheeler [24], Buciumas–Scrimshaw [18], Mucciconi-Petrov [32], Petrov [33].

In particular, in [4, 9, 10, 15] families of spin Hall–Littlewood and q-
Whittaker symmetric functions were introduced. They generalized the clas-
sical families of the Hall–Littlewood and q-Whittaker symmetric polynomials
(both of which are special cases of the Macdonald symmetric functions, see
Macdonald [28]), and the additional spin parameter was related to the spin
in the underlying integrable vertex models. It was shown, in particular, that
symmetric functions from those families satisfy explicit branching rules as
well as (skew) Cauchy and dual Cauchy identities. A different version of the
spin q-Whittaker polynomials was also recently suggested in [32]; it appears
to enjoy a few valuable properties that the original one lacked.

The introduction of the spin Hall–Littlewood functions was prompted by
their usefulness in asymptotic analysis of a variety of probabilistic systems
that include certain integrable models of directed polymers in random media
and exclusions processes in (1+1)-dimensions, see Borodin–Corwin–Petrov–
Sasamoto [6, 7], where they arose as an orthogonal basis of eigenfunctions
for Hamiltonians of certain associated (“dual”) quantum integrable systems.
Probabilistic applications of the spin q-Whittaker polynomials were demon-
strated by Bufetov–Mucciconi–Petrov [20] and Mucciconi-Petrov [32].

In [10] an inhomogeneous version of the spin Hall–Littlewood functions
was introduced. The inhomogeneities appear naturally from the point of
view of the vertex models involved, and they are also crucial for some of the
probabilistic applications, such as the analysis of the Asymmetric Simple
Exclusion Process (ASEP) and the stochastic six vertex model with vary-
ing initial conditions, see Aggarwal–Borodin [2] and Aggarwal [1], and large
time asymptotics of the exponential jump model of Borodin–Petrov [11]. Cu-
riously, while the inhomogeneities significantly change the symmetric func-
tions, they do not affect the product factors of the (skew) Cauchy identities.

The main goal of the present work is to define and study inhomogeneous
spin q-Whittaker polynomials. So far it has been unclear how to do that.
Even though the approach of [15], that allowed to obtain the homogeneous
spin q-Whittaker polynomials from the Hall–Littlewood ones via the proce-
dure of fusion, is also applicable in the inhomogeneous case, the resulting
functions do not appear to satisfy the dual Cauchy identity involving both q-
Whittaker and Hall–Littlewood functions, which is the most natural require-
ment. Indeed, we show that the “correct” inhomogeneous spin q-Whittaker
polynomials (those that do satisfy the dual Cauchy identity with the inho-
mogeneous spin Hall–Littlewood functions) are different from the functions
naively obtained via fusion. These two families (the “naive” and the “correct”
one) can be united in a (non-dual) Cauchy identity, however.
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With equal inhomogeneities our inhomogeneous polynomials degenerate
to those of [15]. It remains to be seen if the modified definitions of [32] can be
applied in the inhomogeneous setting, and if this would again lead to more
desirable properties.

In the next subsection we list the properties of these new inhomogeneous
symmetric polynomials that we were able to prove. The new key ingredient
of our approach is a deformed Yang–Baxter equation for the vertex weights
of the underlying integrable vertex model; it is also discussed below.

Main results

For a pair of sequences of complex parameters S = (s0, s1, s2, . . . ) and
Ξ = (ξ0, ξ1, ξ2, . . . ) we define functions Fλ/µ(κ1, . . . , κn | Ξ, S), which depend
on n variables κ1, . . . , κn and are labeled by pairs of partitions λ, µ. Here are
the main facts we prove about them.

• The functions Fλ/µ(κ1, . . . , κn | Ξ, S) are symmetric polynomials in
κ1, . . . , κn.

• For a single variable, Fλ/µ(κ | Ξ, S) has a fully factorized expression.
To write it down, we first define an auxiliary function ZWλ/µ(κ |
Ξ, S) as a partition function of a one-row vertex model of the form

. . .

(√
s2ξ2

κ
, s

(1)
1

) (√
s3ξ3

κ
, s

(1)
2

) · · ·m2(λ′)m1(λ′)

λ1 − µ1

· · ·m2(µ′)m1(µ′)

0

This partition function is the product of weights of all the vertices
in this row, where each vertex has four nonnegative integral labels
on the edges incident to it. The labels on the vertical edges are the
multiplicities in λ′ and µ′: for j ⩾ 1, mj(µ′) = µj − µj+1, mj(λ′) =
λj − λj+1. For any k ⩾ 1 we defined s

(1)
k :=

√
sksk+1ξk+1/ξk. The

weights of the vertices are given by (note that all the square roots
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will disappear upon substitution into these weights)

j l

i

k

(t, s)
= 1i+j=k+l 1i⩾l s2lt−2l (s2/t2; q)i−l(t2; q)l

(s2; q)i

(q; q)i

(q; q)i−l(q; q)l
.

Even though the row is semi-infinite, the number of vertices of
weight not equal to 1 is readily seen to be finite.

Then the polynomial Fλ/µ(κ | Ξ, S) is defined by the following
expression:

Fλ/µ(κ | Ξ, S) := (−1)|µ|−|λ| (τΞS)µ

Sλ

cτΞS(µ)
cS(λ) (κs0/ξ0)λ1−µ1

× (κ−1s1ξ1; q)λ1−µ1

(q; q)λ1−µ1

ZWλ/µ(κ | Ξ, S),

where τΞS = (s(1)
1 , s

(1)
2 , . . . ), and

cS(λ) :=
∏
i⩾1

(s2
i ; q)λi−λi+1

(q; q)λi−λi+1

, Sλ :=
∏
i⩾1

sλi
i−1.

• The following branching rule holds:

Fλ/ν(κ1, . . . , κn | Ξ, S)

=
∑

µ

Fλ/µ(κ1, . . . , κm | Ξ, S)Fµ/ν(κm+1, . . . , κn | τm
S Ξ, τm

Ξ S),

where τk
S Ξ = (ξ(k)

0 , ξ
(k)
1 , ξ

(k)
2 , . . . ), τk

ΞS = (s(k)
0 , s

(k)
1 , s

(k)
2 , . . . ) with

ξ
(k)
i :=

√
ξi+ksi+kξi/si, s

(k)
i :=

√
si+kξi+ksi/ξi,

Together with the partition function expression for the one-variable
polynomials, this allows to write the general Fλ/µ(κ1, . . . , κn | Ξ, S)
in terms of the partition function for the vertex model in Figure 1.1,
see Section 5.1.

• The functions Fλ(κ1, . . . , κn | Ξ, S) := Fλ/∅(κ1, . . . , κn | Ξ, S) sat-
isfy the following stability relation:
Fλ(κ1, . . . , κn−1, snξn | Ξ, S) = Fλ(κ1, . . . , κn−1 | Ξ, S).

• We have the following dual Cauchy identity:∑
λ

F̃
∗
λ′(u1, . . . , um | Ξ, S)Fλ(κ1, . . . , κn | Ξ, S) =

n∏
i=1

m∏
j=1

1 − ujκi

1 − ujξisi
,
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where F̃
∗
λ′ denotes a certain stable version of the inhomogeneous spin

Hall–Littlewood functions described in Section 5.2. This identity is a
particular case of a more general dual skew Cauchy identity, which is
proved in Theorem 5.10. In these dual Cauchy identities the number
of nonzero terms is always finite, thus no convergence conditions are
needed.

• Let S̄ = (s−1
0 , s−1

1 , s−1
2 , . . . ), then the following Cauchy-type sum-

mation identity holds:∑
λ

F∗
λ(χ1, . . . , χm | S̄, S)Fλ(κ1, . . . , κn | S, S) =

n∏
i=1

m∏
j=1

(κi; q)∞(s2
i χj ; q)∞

(s2
i ; q)∞(κiχj ; q)∞

,

where F∗
λ denotes a certain rescaling of the functions Fλ. This iden-

tity could be either viewed as holding in suitable rings of power
series or numerically under certain restrictions on the parameters,
see Theorem 6.1. There is also a more general skew version of this
identity, provided in Theorem 6.1 as well.

• The polynomials Fµ admit an integral representation of the form

Fµ(κ1, . . . , κn | Ξ, S) =
∮

C

dz1

2πiz1
· · ·
∮

C

dzk

2πizk

∏
α<β

zα − zβ

zα − qzβ

×
k∏

α=1

(
ξ−1

0
zα − ξ−1

µ′
α

sµ′
α

µ′
α−1∏
j=1

1 − sjξjzα

zαξj − sj

n∏
i=1

1 − zακi

1 − zαξisi

)
,

where k = µ1, and the integration contour C is depicted in Figure 5.3
and described immediately before Theorem 5.13.

Comparing with [15], for s0 = s1 = · · · = s and ξ0 = ξ1 = · · · = ξ

our functions F̃λ/µ and Fλ/µ reduce to the spin q-Whittaker and stable spin
Hall–Littlewood functions from [15]; in particular, our functions degenerate
to the usual Hall–Littlewood and q-Whittaker polynomials when s = 0.

Deformed Yang–Baxter equations

The key tool that allowed us to prove most of the results above is a family
of identities that we call deformed Yang–Baxter equations. Their detailed
exposition can be found in Section 3. While the conventional Yang–Baxter
equations for vertex models have the general form

R(12)
x R(13)

y R(23)
z = R(23)

z R(13)
y R(12)

x ,

where x, y, z are parameters subject to certain relations (in our setting the
parameters x, y, z are pairs of complex numbers), and R(12)

x , R(13)
y , R(23)

z
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. . .

. . .

. . .

...
...

...

(√
s2ξ2

κ1
, s

(1)
1

) (√
s3ξ3

κ1
, s

(1)
2

)
(√

s3ξ3
κ2

, s
(2)
1

) (√
s4ξ4

κ2
, s

(2)
2

)

(√
sn+1ξn+1

κn
, s

(n)
1

) (√
sn+2ξn+2

κn
, s

(n)
2

)

· · ·m2(λ′)m1(λ′)

an

a2

a1

· · ·m2(µ′)m1(µ′)

0

...

0

0

Figure 1.1. The model used to compute the function Fλ/µ.

are operators acting in two of the three tensor factors in a tensor product
V1 ⊗ V2 ⊗ V3 with suitable linear spaces Vi. It turns out that in certain
situations one can add an additional degree of freedom resulting in equations
of the form

R(12)
x(τ)R

(13)
y(τ)R

(23)
z(τ) = R(23)

z′(τ)R
(13)
y′(τ)R

(12)
x′(τ).

where the subscripts x(τ), y(τ), z(τ) and x′(τ), y′(τ), z′(τ) now depend on
a new parameter τ . Note that the deformed equation has different operators
in the left-hand and right-hand sides.

In this work we provide two examples of the deformed Yang–Baxter equa-
tion; one of them implies that the functions Fλ/µ(κ1, . . . , κn | Ξ, S) are
symmetric, while the other one is crucial for proving the Cauchy identi-
ties. Additionally, we describe a method we use to deform the previously
known Yang–Baxter equations. Such deformations might be useful in other
contexts. For instance, in the end of Section 3 we briefly mention a differ-
ent application: One can use a deformation of a higher rank Yang–Baxter
equation to extend the results of [14] on integral representations for certain
observables of a colored stochastic higher spin six-vertex model. Unfortu-
nately, so far our understanding of the deformed Yang–Baxter equation is
based solely on computational tricks we use to derive them; we are not aware
of either a representation theoretic meaning of such equations or a complete
list of situations where one might expect to see them.
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Applications to probability

The inhomogeneous spin q-Whittaker functions Fλ/µ(κ1, . . . , κn | Ξ, S)
can be defined in terms of a new stochastic integrable vertex model with
parameters attached to diagonals, see Section 5. Earlier results [9, 10, 14]
suggest that this model could be studied via Cauchy-type identities, which
would lead to explicit expressions for averages of certain natural observables.
Indeed, such an approach is also applicable to our new model. However,
very recently another method of analyzing stochastic vertex models was
introduced by Bufetov–Korotkikh [19]. It is less constructive but yields more
general results; its key feature is a certain local relation for q-moments of the
height functions for the model. The adaptation of this method to the setting
of the present paper is done in [26], and it leads to novel probabilistic results
that include, in particular, large scale asymptotics for partition functions
of a new integrable extension of the Beta polymer model of Barraquand–
Corwin [3].

Layout of the paper

In Section 2, we recall the definition and properties of the (stochastic)
higher spin six vertex model and its extensions obtainable by fusion. In par-
ticular, we list several instances of the Yang–Baxter equation used through-
out the work. In Section 3, we introduce the deformed Yang–Baxter equa-
tions; our construction there is based on certain rationality properties of the
vertex weights. Section 4 is devoted to row operators. On one hand, these
operators encode partition functions of single rows of a vertex model subject
to certain boundary conditions, while on the other hand, the row operators
capture the branching structure of our symmetric functions. In the same
section we also prove exchange relations between the row operators using
the (deformed) Yang–Baxter equations and a “zipper” argument. Having
developed the framework of row operators, in Section 5 we define the inho-
mogeneous spin q-Whittaker functions Fλ/µ(κ1, . . . , κn | Ξ, S) and provide
proofs of the above-listed properties. Finally, in Section 6 we state and prove
the (skew) Cauchy identity between the functions Fλ/µ(κ1, . . . , κn | S, S) and
Fλ/µ(χ1, . . . , χm | S̄, S).

Additionally, in the end of the paper we include an appendix with a
condensed list of the numerous expressions used in the work, to help the
potential reader to follow the text.
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Notation

In this work we follow the standard notations regarding partitions: A
partition λ is a monotone infinite sequence (λ1, λ2, λ3, . . . ) of nonnegative
integers satisfying

λ1 ⩾ λ2 ⩾ λ3 ⩾ · · · ⩾ 0, |λ| := λ1 + λ2 + λ3 + · · · < ∞.

The coordinates λi are called parts of the partition. For a partition λ, its
length l(λ) is equal to the number of nonzero parts λi, while mk(λ) is used
to denote the number of parts λi equal to k. The conjugate λ′ of a partition
λ is defined by λ′

i = #{j ⩾ 1 : λj ⩾ 1}.

For a pair of partitions λ, µ, we write µ ⊂ λ iff for any i ⩾ 1 we have
µi ⩽ λi. Further, we say the partition λ interlaces the partition µ, and write
λ ≻ µ, if λi ⩾ µi ⩾ λi+1 for all i ⩾ 1. Note that in this case we also have
0 ⩽ l(λ) − l(µ) ⩽ 1.

Throughout the text we use the following notation for q-Pochhammer
symbol:

(x; q)n :=
n∏

i=1
(1 − xqi−1),

with the convention (x; q)0 := 1. We also often assume that |q| < 1, so the
notation (x; q)∞ makes sense both numerically and formally in the space of
power series in q.

2. Preliminaries on vertex models and the Yang–Baxter equation

Vertex models considered in this work consist of collections of vertices
with oriented edges between them. A configuration of a model is an assign-
ment of integer labels to all edges in a way such that the (arrow) conservation
law holds: for each vertex the sum of labels of the incoming edges equals the
sum of labels of the outgoing ones. To each configuration we assign a weight,
which is equal to the product of local weights corresponding to each vertex
and depending on the labels around the vertex. In this section we describe
various local weights, as well as recall several known properties of them.

2.1. Higher spin vertex weights

We start with the (stochastic) higher spin six vertex model. Our exposi-
tion in this section follows [10] and [15], up to a change of notation discussed
in Remark 2.1 below.
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Consider vertices on a square grid with vertical edges directed upwards
and having integer labels from Z⩾0, and horizontal edges directed to the
right and having labels from {0, 1}. To each configuration of labels around
a vertex we assign a vertex weight, which is denoted by

j l

i

k

ws
u;s = ws

u;s(i, j; k, l) (2.1)

and given explicitly by the following table

0 0

g

g

ws
u;s

0 1

g

g − 1

ws
u;s

1 0

g

g + 1

ws
u;s

1 1

g

g

ws
u;s

1 − suqg

1 − su

(qg − 1)su

1 − su

1 − s2qg

1 − su

s2qg − su

1 − su

(2.2)

Here q is a fixed global “quantization” parameter of the model, the pa-
rameters u, s are local “spectral” and “spin” parameters, respectively, that
vary depending on the vertex, and g ∈ Z⩾0 denotes any nonnegaive integer.
We assume that q, u, s are algebraically independent variables. All unlisted
weights are set to 0, enforcing the conservation law:

ws
u;s(i, j; k, l) = 0, unless i + j = k + l.

The weights ws
u;s are closely related to matrix coefficients of the higher

spin R-matrix of Uq(ŝl2), see [4, Proposition 2.4] for details. As a consequence
of this, they satisfy a version of the Yang–Baxter equation (also sometimes
referred to as the LLR equation), see, e.g., [15, Proposition 2.2]: for any
a1, b1 ∈ Z⩾0 and a2, a3, b2, b3 ∈ {0, 1} we have∑

l1,l2,l3

ws
x;s(a1, a2; l1, l2)ws

y;s(l1, a3; b1, l3)Rx/y(l2, l3; b2, b3)

=
∑

l1,l2,l3

Rx/y(a2, a3; l2, l3)ws
y;s(a1, l3; l1, b3)ws

x;s(l1, l2; b1, b2). (2.3)
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Here Rz denotes the R-matrix defined by

Rz(0, 0; 0, 0) = Rz(1, 1; 1, 1) = 1 − qz,

Rz(0, 1; 0, 1) = 1 − z, Rz(0, 1; 1, 0) = z(1 − q),
Rz(1, 0; 0, 1) = 1 − q, Rz(1, 0; 1, 0) = q(1 − z),

and for all values not listed above Rz(i, j; k, l) = 0.

Throughout this work, instead of writing equations like (2.3), we exten-
sively use graphical notation for partition functions of vertex models. In
general, we consider a collection of vertices and oriented edges (possibly of
different kinds) connected to them, with some edges connecting a pair of
vertices, and some edges being connected to only one vertex with the other
end being free. The edges of the former type are called internal edges, while
the edges of the latter type are referred to as boundary edges. Additionally,
to each vertex we assign a family of vertex weights, with each weight corre-
sponding to a particular configuration of labels of the edges connected with
the vertex, for example (2.1), and to each boundary edge we assign a la-
bel which is called the boundary condition corresponding to the edge. Given
such data, the corresponding partition function is defined as the sum of the
products of the weights of all vertices, taken over all possible assignments of
labels to the internal edges satisfying the conservation law.

For example, the Yang–Baxter equation (2.3) for the weights ws
u;s can be

graphically interpreted as follows:

a3

b3
a2

b2

a1

b1

ws
x;s

ws
y;s

Rx/y =

a3

b3
a2

b2

a1

b1

ws
y;s

ws
x;s

Rx/y (2.4)

The vertices with horizontal and vertical edges have the weights ws
u;s given

by (2.1), while the vertices with diagonal edges, which we call tilted vertices,
correspond to the R-matrix:

i

k

l

j

Rz
= Rz(i, j; k, l).
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Note that the diagrams we use have two kinds of edges, which visually differ
by their thickness. Throughout this work we follow the convention that thin
edges carry labels from {0, 1}, while thick edges are labeled by any non-
negative integer.
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Remark 2.1. — The letter s in the superscript of the notation ws
u;s stands

for “stochastic”, and should not be confused with the spin parameter s of a
vertex. We use such a notation to distinguish our weights from the weights
wu;s often used in this context, cf. [4, 10, 15]. Our weights ws

u;s coincide with
the weights Lu,s used in [10], and they are related to the weights wu;s by [10,
(2.2) and (2.3)]:

ws
u;s(i, j; k, l) = (−s)l (s2; q)k

(q; q)k

(q; q)i

(s2; q)i
wu;s(i, j; k, l).

The word “stochastic” refers to the fact that the sum of these weights
over different labels of the outgoing edges (and fixed values of the incoming
ones) is identically equal to 1, cf. Remark 2.2 below.

2.2. Fusion

The weights ws
u;s can be used to reach more general vertex models by a

procedure called fusion that we review below. See [15, Section 4] and [10,
Section 5] for a more detailed exposition of the fusion procedure, as well as
further references.

Fix J > 0 and consider a column consisting of J vertices having weights
ws

u;s, ws
qu;s, . . . , ws

qJ−1u;s starting from the bottom. This configuration is
called a J-column, and using the Yang–Baxter equation one can show that,
under specific boundary left and right conditions, this column of vertices
behaves like a single vertex of a new type, with left and right edges having
labels from {0, . . . , J}.

More precisely, for j ⩾ 0 set

Zj(J) :=
∑

a1+···+aJ =j

q
∑J

r=1
(r−1)ar = q

j(j−1)
2 (q; q)J

(q; q)j(q; q)J−j
,

where the sum is taken over all sequences (a1, . . . , aJ) ∈ {0, 1}J satisfying∑J
r=1 ar = j, and the equality is a particular case of the q-binomial identity.

For i, j, k, l ∈ Z⩾0 such that i + j = k + l and j, l ⩽ J define vertex weights

– 12 –
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W(J)
u;s by

W(J)
u;s (i, j; k, l) := Zl(J)

Zj(J)q−
∑J

r=1
(r−1)br

×
∑

a1+···+aJ =j

q
∑J

r=1
(r−1)ar



...

k

a1

a2

aJ

i

b1

b2

bJ

ws
u;s

ws
qu;s

ws
qJ−1u;s



. (2.5)

Here (b1, . . . , bJ) ∈ {0, 1}J is any vector satisfying
∑J

r=1 br = l. It turns out
that the right-hand side of (2.5) does not depend on the particular choice
of (b1, . . . , bJ), since a direct computation for J = 2 shows that the right-
hand side is not changed when bi and bi+1 are swapped, see [10, Propo-
sition 5.4]. This independence property is called q-exchangeability and it
allows to stack (2.5) horizontally, identifying a row of J-columns with a
single row of “fused” vertices: for i1, . . . , iL, j, k1, . . . , kL, l ∈ Z⩾0 such that∑L

m=1 im + j =
∑L

m=1 km + l we have

W(J)
u1;s1

(i1, j0; k1, j1)W(J)
u2;s2

(i2, j1; k2, j2) . . . W(J)
uL;sL

(iL, jL−1; kL, jL)

= Zl(J)
Zj(J)q−

∑J

r=1
(r−1)br

×
∑

a1+···+ar=j

q
∑J

r=1
(r−1)ar


. . .

. . .

. . .

...
...

k1 kL

a1

a2

aJ

i1 iL

b1

b2

bJ

ws
u1;s1

ws
qu1;s1

ws
qJ−1u1;s1

ws
uL;sL

ws
quL;sL

ws
qJ−1uL;sL



, (2.6)
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where we set jr = j +
∑r

m=1 im −
∑r

m=1 km. Note that by the q-exchangeab-
ility we can also rewrite (2.5) as

W(J)
u;s (i, j; k, l)

:=
∑

b1+···+bL=l

∑
a1+···+aJ =j

q
∑J

r=1
(r−1)ar

Zj(J)



...

k

a1

a2

aJ

i

b1

b2

bJ

ws
u;s

ws
qu;s

ws
qJ−1u;s


. (2.7)

The resulting weights W(J)
u;s can be given by an explicit expression ob-

tained in [29], here we use a slightly different form of this expression given
in [12, Theorem C.1.1] (1) and originated from [16]:

W(J)
u;s (i, j; k, l) = 1i+j=k+l ul−jqiJsj+l

×
min(j,k)∑

p=0
ϕ(k − p, k + l − p; suqJ , su)ϕ(p, j; sq−J/u, q−J), (2.8)

where
ϕ(a, b; x, y) := (y/x)a (x; q)a(y/x; q)b−a

(y; q)b

(q; q)b

(q; q)a(q; q)b−a
.

Actually, one can construct the weights W(J)
u;s by fusing vertices with the

weights Rz, expressing W(J)
u;s via a J ×M rectangular grid of the vertices with

weights Rzi,j
for a certain choice of parameters zi,j and specific boundary

conditions. We are not using this construction for the current work; more
details on this approach can be found in [8, Appendix].

2.3. Simplification of W-weights

The weights W(J)
u;s are rather complicated, but in this work we only use

a particular “q-Hahn” specialization of them: When u = s the weights W(J)
u;s

(1) Our weights W(J)
u;s (i, j; k, l) coincide with the extension WJ,M (u/s; q;

ie1, je1, ke1, le1)|qM =s−2 of the weights WL,M (x/y; q; A, B, C, D) from [12, App. C].
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simplify, with all but the p = j term vanishing in (2.8), providing the fol-
lowing expression

j l

i

k

W s
t,s

= W s
t,s(i, j; k, l) := W(J)

s;s (i, j; k, l)
∣∣∣
qJ =t−2

= 1i+j=k+l 1i⩾l s2lt−2l (s2/t2; q)i−l(t2; q)l

(s2; q)i

(q; q)i

(q; q)i−l(q; q)l
. (2.9)

Here we have used the fact that for fixed i, j, k, l the weight W(J)
u;s (i, j; k, l)

depends rationally on qJ for sufficiently large J , so we can introduce a new
parameter t and replace qJ by t−2.

Similarly to Remark 2.1, the weights W s
t,s defined above differ from the

weights Wx from [15, (35)], and these two families of weights are related by

W s
s,t(i, j; k, l) = (−s)l (s2; q)k

(q; q)k

(q; q)i

(s2; q)i
W−s/t2(i, j; k, l), (2.10)

where the global spin parameter from [15] is assumed to be equal to s.

The vertices with the weights W s
t,s satisfy a version of the Yang–Baxter

equation: for every a1, a2, a3, b1, b2, b3 ∈ Z⩾0 we have

a1

b1

a2

b2

a3

b3

W s
t2,t3

W s
t1,t3

W s
t1,t2 =

a1

b1
a2

b2

a3

b3

W s
t1,t3

W s
t2,t3

W s
t1,t2 (2.11)

where the tilted vertex is just a rotation by 45◦ of the vertex with the
weights W s

t1,t2
. This Yang–Baxter equation is given in [15, Corollary 4.3] :

it can be proved either by a direct computation, or using the Yang–Baxter
equation (2.4) together with fusion.
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Remark 2.2. — Apart from the Yang–Baxter equation, the weights ws
u;s,

W s
t,s and W(J)

u;s satisfy another property, namely, they are stochastic: we have∑
k,l

ws
u;s(i, j; k, l) = 1,

∑
k,l

W s
t,s(i, j; k, l) = 1,

∑
k,l

W(J)
u;s (i, j; k, l) = 1,

with fixed i, j in the appropriate label sets. The stochasticity of ws
u;s is proved

by a direct computation, while for W s
t,s and W(J)

u;s it follows from (2.7) and
the stochasticity of ws

u;s:∑
k,l

W(J)
u;s (i, j; k, l)

:=
∑

k

∑
b1,...,bJ ∈{0,1}

∑
a1+···+aJ =j

q
∑J

r=1
(r−1)ar

Zj(J)



...

k

a1

a2

aJ

i

b1

b2

bJ

ws
u;s

ws
qu;s

ws
qJ−1u;s


=

∑
a1+···+aJ =j

q
∑J

r=1
(r−1)ar

Zj(J) = 1,

see [10, Section 5] for a more detailed explanation.

We use the weights ws
u;s and W s

t,s instead of wu;s and Wx from [4, 10, 11]
because the deformations of the Yang–Baxter equation in Section 3 below
look more natural for the stochastic weights.

2.4. Dual weights

Apart from vertices with edges oriented along the up-right direction we
also use vertices with edges oriented along the up-left direction. We call
them dual vertices, and their weights are closely related to the weights of
the regular vertices. Such vertices play an important role for symmetric
functions arising from vertex models, especially for the proofs of Cauchy
type summation identities for such functions. Dual vertex weights were used
in [15], and they are equivalent to the conjugated weights from [10]. Since
our weights ws and W s differ from the weights used in those works, our
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dual vertex weights also differ, though we do not state the exact matching
between these weights; it can be readily recovered from the definitions below,
Remark 2.1 and (2.10).

Define dual vertex weights ws∗
u;s by the following relation:

j l

i

k

ws∗
u;s = ws∗

u;s(i, l; k, j) := s−2l (q; q)i

(s2; q)i

(s2; q)k

(q; q)k
ws

u;s(k, j; i, l)

= s−2l (q; q)i

(s2; q)i

(s2; q)k

(q; q)k
j l

k

i

ws
u;s . (2.12)

The explicit values of weights ws∗
u;s can be computed from (2.2) and they are

summarized below:

0 0

g

g

ws∗
u;s

0 1

g

g + 1

ws∗
u;s

1 0

g

g − 1

ws∗
u;s

1 1

g

g

ws∗
u;s

1 − suqg

1 − su

−s−1u(1 − s2qg)
1 − su

1 − qg

1 − su

qg − s−1u

1 − su

(2.13)

As before, all unlisted configurations have weight 0, with the conservation
law taking the form

ws∗
u;s(i, l; k, j) = 0, unless i + l = k + j.
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Looking at the explicit values, one can establish another relation between
the weights ws

u,s and ws∗
u,s:

j l

i

k

ws∗
u;s = s − u

s(1 − us) (1 − j) (1 − l)

i

k

ws
u−1;s . (2.14)

This is essentially the relation between the initial and conjugated weights
in [10] that was used to prove the Cauchy identity there.

Using the definition (2.12), the dual weights ws∗
u;s can be interpreted as

rescaled ws
u,s weights reflected across the horizontal axis and with the di-

rection of all edges reversed. Thus, one can rewrite the Yang–Baxter equa-
tion (2.4) in terms of the dual weights by reversing the orientation of all
the edges, reflecting the whole vertex diagrams on both sides of (2.4) across
the horizontal axis and then renormalizing the weights. It turns out that the
factors arising form this rescaling actually cancel out(2), and we arrive at the
following Yang–Baxter equation:

b3

a3
b2

a2

a1

b1

ws∗
x;s

ws∗
y;s

R∗
x/y =

b3

a3
b2

a2

a1

b1

ws∗
y;s

ws∗
x;s

R∗
x/y (2.15)

where

j

l

k

i

R∗
z

= Rz−1(i, j; k, l).

Alternatively, one can recover the same Yang–Baxter equation using (2.14).

There is also another Yang–Baxter equation that involves both W s
t,s

and ws∗
u;s.

(2) Cancellation of the terms (−s)−2l uses the conservation law of the tilted vertex.
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Proposition 2.3. — Assume that x, y, s, t are variables satisfying xs =
yt. Then for any a1, b1 ∈ {0, 1} and a2, b2, a3, b3 ∈ Z⩾0 we have

b1

a1

a2

b2

a3

b3

W s
t,s

ws∗
x;s

ws∗
y;t =

b1

a1

a2

b2

a3

b3

ws∗
x;s

W s
t,s

ws∗
y;t (2.16)

where the tilted vertices are rotated by 45◦ vertices with the weights ws∗
y;t.

Proof. — There are three ways to prove Proposition 2.3. First, it can be
verified by a direct computation, which reduces to four equalities between
partition functions corresponding to the values of a1, b1, with each partition
function consisting of at most two summands. Alternatively, using (2.14),
we can reduce the Yang–Baxter equation (2.16) to the equation

1 − a1

1 − b1
a2

b2

a3

b3

W s
t,s

ws
x−1;s

ws
y−1;t =

1 − a1

1 − b1
a2

b2

a3

b3

ws
x−1;s

W s
t,s

ws
y−1;t (2.17)

which follows from (2.4) by fusion. Finally, one can see (2.16) or, more pre-
cisely, (2.17) as a particular case of the Yang–Baxter equation for the weights
W(J)

u;s :∑
l1,l2,l3

W(J)
y;s (a3, a2; l3, l2)W(I)

x;s(l3, a1; b3, l1)W(I)
xy−1q−J/2;q−J/2(l2, l1; b2, b1)

=
∑

l1,l2,l3

W(I)
xy−1q−J/2;q−J/2(a2, a1; l2, l1)W(I)

x;s(a3, l1; l3, b1)W(J)
y;s (l3, l2; b3, b2),

which in turn can be seen as the n = 1 case of the master Yang–Baxter
equation from [12, C.1.2]. □
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In this work we also use a dual analogue of the weights W s
t,s. Define

j l

i

k

W s∗
t,s = W s∗

t,s(i, l; k, j)

:= s−2l (q; q)i

(s2; q)i

(s2; q)k

(q; q)k
· t2k (t2; q)j

(q; q)j

(q; q)l

(t2; q)l
W s

t,s(k, j; i, l)

= 1i+l=j+k 1i⩾j t2i−2j (s2/t2; q)i−j(t2; q)j

(s2; q)i

(q; q)i

(q; q)i−j(q; q)j
,

(2.18)

where for the last computation we used (2.9) and the relation i − j = k − l
implied by 1i+l=j+k.

3. Deformations of Yang–Baxter equations

The Yang–Baxter equations listed in the previous section have the same
structure: they change positions of vertices while leaving the vertices them-
selves and their weights unchanged. In this section we introduce deformed
Yang–Baxter equations, which change the weights of vertices in a nontrivial
way.

We start with a straightforward deformation of (2.11).

Proposition 3.1. — We have the following equality of rational func-
tions in t1, t2, t3, η:

∑
l1,l2,l3

W s
ηt2,ηt3

(a3, a2; l3, l2)W s
t1,t3

(l3, a1; b3, l1)W s
ηt1,ηt2

(l2, l1; b2, b1)

=
∑

l1,l2,l3

W s
t1,t2

(a2, a1; l2, l1)W s
ηt1,ηt3

(a3, l1; l3, b1)W s
t2,t3

(l3, l2; b3, b2),
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or, equivalently,

a1

b1

a2

b2

a3

b3

W s
ηt2,ηt3

W s
t1,t3

W s
ηt1,ηt2 =

a1

b1
a2

b2

a3

b3

W s
ηt1,ηt3

W s
t2,t3

W s
t1,t2

(3.1)
where the tilted vertex is a vertex with weights W s, rotated by 45◦.

Proof. — Note that

j l

i

k

W s
ηt,ηs

= (η2t2; q)l

(t2; q)l

(s2; q)i

(η2s2; q)i
j l

i

k

W s
t,s

.

Applying this equality to (3.1) and cancelling common factors corresponding
to internal edges, we reduce (3.1) to (2.11) with both sides multiplied by

(η2t2
1; q)b1

(t2
1; q)b1

(t2
3; q)a3

(η2t2
3; q)a3

. □

There is also another possible deformation, which is crucial for the main
results of this work. This time we deform the Yang–Baxter equation (2.16):

Proposition 3.2. — Let η, x, y, s, t be parameters satisfying the relation
xs = yt. The following equality of rational functions holds:

∑
l1,l2,l3

W s
t,s(a3, a2; l3, l2)ws∗

ηx;ηs(l3, l1; b3, a1)ws∗
y;t(l2, b1; b2, l1)

=
∑

l1,l2,l3

ws∗
ηy;ηt(a2, l1; l2, a1)ws∗

x;s(a3, b1; l3, l1)W s
t,s(l3, l2; b3, b2),
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or, equivalently,

b1

a1

a2

b2

a3

b3

W s
t,s

ws∗
ηx;ηs

ws∗
y;t =

b1

a1

a2

b2

a3

b3

ws∗
x;s

W s
t,s

ws∗
ηy;ηt (3.2)

where the tilted vertex is a vertex with weights ws∗, rotated by 45◦.

The proof is based on the following observation: note that the weights
ws

u;s(g, j; g+j−l, l) and ws∗
u;s(g, l; g+l−j, j) depend on g as rational functions

in α = qg. This suggests that we can set q to be a generic non-zero complex
number, extend the weights to get a model where certain edges have complex
labels rather than integer ones, and then specialize these complex labels in
a specific way to get a deformation of the initial model.

In more detail, assume that q ∈ C\{0} and consider the vertex weights
ws∗

u;s. Using the explicit values (2.13) of these weights, we can define their
extension denoted by

j l

α

β

w̃s∗
u;s = ŵs∗

u;s(α, l; β, j)

with α, β ∈ C\{0} being complex labels assigned to the vertical edges. The
values of ŵs∗

u;s are given by

0 0

α

α

ŵs∗
u;s

0 1

α

qα

ŵs∗
u;s

1 0

α

q−1α

ŵs∗
u;s

1 1

α

α

ŵs∗
u;s

1 − suα

1 − su

−s−1u(1 − s2α)
1 − su

1 − α

1 − su

α − s−1u

1 − su

(3.3)
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and all other values are 0. One can immediately observe that for any i, k ∈
Z⩾0 the weight ŵs∗

u;s(qi, l; qk, j) is equal to ws∗
u;s(i, l; k, j). Moreover, compar-

ing (3.3) with (2.13) we can find a more general specialization, producing
ws∗-weights with deformed parameters: For any complex η we have

j l

η2(1−j)qi

η2(1−j)qk

ŵs∗
u;s = 1 − η2su

1 − su
j l

i

k

ws∗
ηu;ηs . (3.4)

Similarly, we can perform such a extension for the weights W s
t,s. Here

we have four edge labels which can be substituted by complex numbers, for
the application below we modify the horizontal incoming and the vertical
outgoing edges, while leaving the other two untouched. For i, l ∈ Z⩾0 and
α, β ∈ C\{0} define weights Ŵ s

t,s(i, α; β, l) by setting

α l

i

qi−lα

Ŵ s
t,s = Ŵ s

t,s(i, α; qi−lα, l)

:= 1i−l⩾0 s2lt−2l (s2/t2; q)i−l(t2; q)l

(s2; q)i

(q; q)i

(q; q)i−l(q; q)l
,

while Ŵ s
t,s(i, α; β, l) = 0 for all other choices of β. Note that these weight do

not actually depend on α, so we can change α without affecting the weight.

Now we can apply the idea explained above to prove Proposition 3.2.

Proof of Proposition 3.2. — Since both sides are rational in η and q, it
is enough to prove the equality when η, q are generic complex numbers. Fix
a1, a3, b1, b2 ∈ Z⩾0 and let ∆ ∈ Z. Rewrite the Yang–Baxter equation (2.16)
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as

b1

a1

a3

b2

α

q∆α

Ŵ s
t,s

ŵs∗
x;s

ws∗
y;t =

b1

a1

a3

b2

α

q∆α

ws∗
x;s

Ŵ s
t,s

ŵs∗
y;t (3.5)

where α = qN for sufficiently large N ∈ Z⩾0, and on both sides we are
summing over all configurations of internal edges such that the vertex weights
are nonzero.(3) Note that both sides of (3.5) are rational functions in α, equal
at infinitely many points, hence (3.5) holds for any α.

The proof is finished by (3.4) – multiplying both sides of (3.5) by 1−xs
1−η2xs =

1−yt
1−η2yt and substituting α = η2(1−a1)qa2 readily implies the claim. □

Remark 3.3. — Proposition 3.1 can also be obtained in a manner similar
to Proposition 3.2. In order to do that one needs to extend the weights W s

t,s

with respect to another pair of labels

j α

qk−j α

k

W
s
t,s

:= 1k−j⩾0 α2 logq(s/t)

× (qα; q)k−j(s2/t2; q)k−j

(q; q)k−j

(t2; q)∞

(αt2; q)∞

(qk−jαs2; q)∞

(s2; q)∞
,

(3) There is still a finite number of such configurations, even with some edges now
having complex labels.
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and then use the following generalization of the Yang–Baxter equation (2.11):

a1

b3

a2

b2

q∆α

α

W
s
t2,t3

W s
t1,t3

W
s
t1,t2 =

a1

b3

a2

b2

q∆α

α

W
s
t1,t3

W s
t2,t3

W s
t1,t2

Colored deformed Yang–Baxter equations

As mentioned earlier, the deformed Yang–Baxter equation from Proposi-
tion 3.2 plays an essential role for the results of this work. However, initially
we have discovered it in a different context, which is briefly described in the
remainder of this section. The argument below is not relevant to the rest of
this work, so we will omit details, limiting ourselves to a rough outline of
the main ideas.

For a fixed n ∈ Z⩾1, colored vertex models are defined in the same way as
the vertex models from Section 2, but with integer labels replaced by n-tuples
of nonnegative integers called compositions. The entries in the compositions
are interpreted as numbers of paths of a specific color passing through the
edge, hence the term “colored”. The first stochastic version of such a model
was introduced in [27], and, in the current context, it was studied in [12]
and [14].

It turns out that one can repeat all the constructions from Section 2 get-
ting the colored analogues of the weights ws

u;s, W s
t,s and W(J)

u;s . For example,
the colored version of the weights ws

u;s is explicitly described by the following
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table:

0 0

I

I

wcol
u;s

ei ei

I

I

wcol
u;s

0 ei

I

I − ei

wcol
u;s

1 − sxq
∑n

r=1
Ir

1 − sx

(s2qIi − sx)q
∑n

r=i+1
Ir

1 − sx

sx(qIi − 1)q
∑n

r=i+1
Ir

1 − sx

ei 0

I

I + ei

wcol
u;s

ei ej

I

I + ei − ej

wcol
u;s

ej ei

I

I + ej − ei

wcol
u;s

1 − s2q
∑n

r=1
Ir

1 − sx

sx(qIj − 1)q
∑n

r=j+1
Ir

1 − sx

s2(qIi − 1)q
∑n

r=i+1
Ir

1 − sx

(3.6)

Here we assume that i < j are integers between 1 and n, I = (I1, . . . , In)
denotes an n-tuple of nonnegative integers, ei denotes an n-tuple with 1 at
the ith position and 0 elsewhere, and 0 = e0 := (0, . . . , 0). Note that these
weights depend rationally on qIc for each c ∈ {1, . . . , n}, hence we can again
substitute the labels of the thick edges by complex parameters. The resulting
weights satisfy the following property:

ej el

(T
η2,j

A)
∣∣

αc=qIc

(T
η2,j

B)
∣∣

βc=qKc

ŵcol
u;s = ej el

I

K

wcol
u/η;ηs ,

where A = (α1, . . . , αn) and B = (β1, . . . , βn) are tuples of non-zero complex
numbers, and Tη2,j is the operator that multiplies the jth coordinate by η2

and leaves the other coordinates unchanged. Using (2.14) one can readily see
that for n = 1 the equality above is equivalent to (3.4).
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Following the same notation, the colored analogue of the q-Hahn weights
W s

t,s is given by, cf. [8, (6.17)],

J L

I

K

W col
t,s

= 1I+J=K+L(s2/t2)|L| (s2/t2; q)|I|−|L|(t2; q)|L|

(s2; q)|I|

×
n∏

c=1
1Ic⩾Lc

qL[1,c−1](Ic−Lc)(q; q)Ic

(q; q)Lc
(q; q)Ic−Lc

,

where |I| := I1 + · · · + In and |L| := L1 + · · · + Ln. Similarly to the n = 1
case, the colored versions of vertex weights above satisfy various forms of
the Yang–Baxter equation. It turns out that we can deform some of these
equations for the colored model using the same trick of replacing integer
labels by complex ones. For instance, the colored analogue of (2.17) holds,
and repeating the same argument as in Proposition 3.2 one can get the
following deformed Yang–Baxter equation for x/s = y/t:

ea

eb
A1

B1

A2

B2

W col
t,s

wcol
x/η;ηs

wcol
y;t =

ea

eb

A1

B1

A2

B2

wcol
x;s

W col
t,s

wcol
y/η;ηt

For n = 1 this deformed Yang–Baxter equation is equivalent to Proposi-
tion 3.2.

The deformed equation above can be used in the following way: Rotating
the pictures on both sides of the equality by 90◦, rescaling and considering
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the limiting regime s, x → 0, x/s = y/t = const, one gets

A2

B2

ea

eb

A1

B1

W O
y;t

wcol
y;t

wO
η2t/y =

A2

B2

ea

eb

A1

B1

wcol
y/η,tη

W O
y;t

wO
t/y (3.7)

where the weights W O
y;t are given by

K I

J

L

W O
y;t

= 1I+J=K+L

(t2; q)|L|

(yt)|L|

×
n∏

c=1

qLc(I[c+1,n]−L[c+1,n])(qIc−Lc+1; q)Lc

(q; q)Lc

,

while the weights wO
z are certain degenerations of the weights wcol

u;s .

Now we can use a standard strategy: given a Yang–Baxter equation
like (3.7), there is a way to produce a Cauchy-type summation identity by
repeatedly applying the Yang–Baxter equation to vertices in row partition
functions. Various examples of this procedure are described in [4, 10, 12, 15,
36], and in the case of varying parameters of the tilted crosses this is per-
formed in Propositions 4.6 and 5.10 below. It turns out that this procedure
applied to (3.7) results in a Cauchy-type summation identity of the form

Eu|Ξ,S(O) = f(u | Ξ, S),
where the expectation is taken with respect to a certain probability measure
depending on parameters u, Ξ, S and described in terms of the stochastic
(inhomogeneous) colored higher spin six-vertex model, the observable O is
closely related to q-moments of the colored height function of the colored
vertex model, and the functions f are partition functions of the colored
vertex model wth specific boundary conditions. This identity, in less gen-
erality, was first obtained in [14] in the case of the homogeneous colored
vertex model, where the same strategy was used to produce a Cauchy-like
summation identity starting from a non-deformed Yang–Baxter equation,
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cf. [14, Theorem 4.7]. Our deformation allows to extend that result to the
inhomogeneous case, answering [14, Remark 6.5].

However, there now exists a completely different approach used in [19] to
achieve more general results about q-moments of the height functions; thus,
we are not pursuing this topic here any further.

4. Row operators

In this section we introduce row operators, which form an algebraic frame-
work for our results. The operators depend on one variable, κ or u depending
on the operator, as well as two infinite sequences of nonzero complex inho-
mogeneity parameters Ξ = (ξ0, ξ1, ξ2, . . . ) and S = (s0, s1, s2, . . . ), which are
fixed throughout the section and are assumed to satisfy si+kξi+ksi/ξi ̸= 1
for any i, j ∈ Z⩾0.

In what follows, all non-tilted vertices in our diagrams will have one of
the four types of weights: ws

u;s, W s
t,s, ws∗

u;s, W s∗
t,s; the pictorial notation for

these vertices will always coincide with the pictures from (2.1), (2.9), (2.12)
and (2.18) respectively. To simplify the figures below, we will interchangeably
use the following equivalent notations

j l

i

k

ws
u;s = ws


j l

i

k

(u; s)


= j l

i

k

(u; s)

for the vertices with weights ws
u,s, and similarly for the other three types of

weights. As the thickness and the direction of edges uniquely determine the
weight family, this should not cause confusion.

4.1. Mixed shift

Before discussing the row operators, we would like to define a certain
transformation, which is regularly applied to the sequences Ξ and S through-
out the further text. For an integer k ∈ Z⩾0 and a pair of sequences A =
(a0, a1, . . . ), B = (b0, b1, . . . ) such that bi ̸= 0 for any i ∈ Z⩾0 introduce a
mixed shift operator τB by

τk
BA = (a(k)

0 , a
(k)
1 , . . . ), a

(k)
i =

√
ai+kbi+kai/bi. (4.1)
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Note that for any k, l ⩾ 0 we have

τk
B′τ l

BA = τk+l
B A, where B′ := τ l

AB.

We will regularly use this construction with sequences A and B being equal
to Ξ or S. Set

ξ
(k)
i :=

√
ξi+ksi+kξi/si, s

(k)
i :=

√
si+kξi+ksi/ξi,

τk
S Ξ = (ξ(k)

0 , ξ
(k)
1 , ξ

(k)
2 , . . . ), τk

ΞS = (s(k)
0 , s

(k)
1 , s

(k)
2 , . . . ).

The square roots here are treated formally: for each parameter ξi we fix
a symbol

√
ξi subject to relation

√
ξi

2 = ξi, and similarly for si. One can
alternatively treat the parameters Ξ and S as complex variables, and fix a
branch of the square root. However, for the majority of expressions we do
not need square roots at all due to the relations

s
(k)
i /ξ

(k)
i = si/ξi, s

(k)
i ξ

(k)
i = si+kξi+k.

4.2. Row operators Ti and Ta

Define an infinite dimensional vector space V :=
⊕

λ∈Y C(q)|λ⟩ over C(q)
with a basis {|λ⟩}λ∈Y enumerated by partitions (we only allow finite linear
combinations of basis vectors). We think of this space as the space of possible
configurations of a semi-infinite collection of vertical edges of a vertex model,
where |λ⟩ corresponds to a configuration such that for any j ⩾ 1 the jth edge
has label mj(λ′) = λj −λj+1. We also define a space V∨ :=

⊕
λ∈Y C(q)⟨λ| ⊂

V∗ with the basis {⟨λ|}λ∈Y dual to the basis {|λ⟩}λ∈Y: ⟨λ|µ⟩ = 1λ=µ.

Let κ ∈ C(q) be a variable, and for each a ⩾ 0 introduce operators
Ta(κ | Ξ, S) in End(V) by

Ta(κ | Ξ, S) :

|µ⟩ 7→
∑

λ

W s


a . . . 0

m1(µ′)

m1(λ′)

m2(µ′)

m2(λ′)(√
s1ξ1

κ
, s1
) (√

s2ξ2
κ

, s2
)


|λ⟩. (4.2)

Here the coefficients are given in terms of partition functions of a semi-
infinite row, with the vertex in the ith column having the weight W s

t,s with

parameters (t, s) = (
√

siξi

κ , si). Since this substitution of the parameters
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(t, s) is extensively used throughout the text, for convenience we rewrite (2.9)
as

W s

 j l

i

k (√
sξ
κ

, s
)
 = 1i+j=k+l1i⩾l (κs/ξ)l

× (κs/ξ; q)i−l(κ−1sξ; q)l

(s2; q)i

(q; q)i

(q; q)i−l(q; q)l
. (4.3)

We immediately note that the expression above depends polynomially on κ.

We also need to clarify what we mean by a partition function of the
semi-infinite row. Let λ, µ be a pair of partitions with l(λ), l(µ) < L for
some L ∈ Z⩾0, and consider the partition function of the first L vertices
of the row above, with the right outgoing edge having label 0. Then the
Lth vertex of this finite row has labels 0 around it and the weight W s of
this vertex is equal to 1, hence we can reduce L by 1 without changing the
partition function. So, the partition function of the finite row consisting of
the first L vertices does not depend on L as long as l(λ), l(µ) ⩽ L, so we can
drop L from the notation and work with the semi-infinite row, with all but
finitely many vertices having weight 1. Note that the label of the horizontal
edge between the (L−1)st and the Lth columns is also uniquely determined
by the conservation law in columns 1, 2, . . . , L−1, and the fact that it equals
0 is equivalent to the fact that λ1 = µ1 + a.

The discussion above implies that all coefficients in (4.2) are finite prod-
ucts of weights W s. By (4.3), all these weights are polynomials in κ, thus
⟨λ|Ta(κ | Ξ, S)|µ⟩ can be viewed as a polynomial in κ. Moreover, note that
by the conservation law in columns 1, 2, . . . , r − 1, the label of the horizontal
edge immediately to the left of the rth column is uniquely determined and
is equal to λr − µr (recall that λ1 − µ1 = a). Hence, using vanishing of the
weights W s

t,s(i, j; k, l) for l > i, we have

0 ⩽ λ1 − µ1, 0 ⩽ λr − µr ⩽ µr−1 − µr for r ⩾ 2.

The condition above is equivalent to the interlacing λ ≻ µ of partitions, that
is, λ1 ⩾ µ1 ⩾ λ2 ⩾ µ2 ⩾ . . . .

So, we can sum up the discussion above as follows: ⟨λ|Ta(κ | Ξ, S)|µ⟩,
that is, the partition function from (4.2), depends polynomially on κ and
satisfies

⟨λ|Ta(κ | Ξ, S)|µ⟩ = 0 unless µ ≺ λ and λ1 = µ1 + a. (4.4)
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In particular, the sum over λ in (4.2) is finite, and Ta(κ | Ξ, S) is well-defined
as an element of End(V).

Similarly, we define a dual row operator using the vertex weights W s∗
s,t:

T∗
a(κ | Ξ, S) :

|λ⟩ 7→
(

κ

s0ξ0

)λ1∑
µ

W s∗


a . . . 0

m1(λ′)

m1(µ′)

m2(λ′)

m2(µ′)(√
s1ξ1

κ
, s1
) (√

s2ξ2
κ

, s2
)


|µ⟩.

(4.5)

Here the coefficients are given in terms of the partition function of the semi-
infinite row of vertices with the weights W s∗, where the parameters of ith
vertex are again

(√
siξi

κ , si

)
. Note that we also multiply the sum by a factor

that depends only on λ1. It will be needed in Proposition 4.1 below.

Additionally, we need row operators constructed from vertices with ws∗-
weights. For a ∈ {0, 1} set

T ∗
a (u | Ξ, S) :

|λ⟩ 7→
∑

µ

ws∗


a . . . 0

m1(λ′)

m1(µ′)

m2(λ′)

m2(µ′)

(uξ1; s1) (uξ2; s2)


|µ⟩, (4.6)

where u ∈ C(q) is assumed to satisfy usiξi ̸= 1 and in the partition func-
tion we are using a semi-infinite row of vertices with ws∗-weights, setting
the parameters of the ith vertex to (uξi; si). As for Ta and T∗

a, due to the
conservation law we can compute each coefficient ⟨µ|T ∗

a (u | Ξ, S)|λ⟩ using
only a finite number of vertices.

4.3. Linear combinations B,B∗ and B̃

It turns out that instead of working directly with the row operators
Ta,T∗

a and Ta, it is more convenient to define certain linear combinations of
them. We denote these linear combinations by B(κ | Ξ, S),B∗(κ | Ξ, S) and
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B̃∗(u | Ξ, S)(4) and set:

B(κ | Ξ, S) :=
∑
a⩾0

(κs0/ξ0)a (κ−1s0ξ0; q)a

(q; q)a
Ta(κ | Ξ, S), (4.7)

B∗(κ | Ξ, S) =
∑
a⩾0

T∗
a(κ | Ξ, S), (4.8)

B̃∗(u | Ξ, S) =
1∑

a=0
(−uξ0/s0)a T ∗

a (u | Ξ, S). (4.9)

One can readily see that both combinations B∗(κ | Ξ, S) and B̃∗(u | Ξ, S)
are well-defined linear operators in End(V), though the linear combination
B(κ | Ξ, S) is not. In particular, compositions like B̃∗(u | Ξ, S)B(κ | Ξ, S) are
not a priori well-defined. To remedy this issue, we treat B(κ | Ξ, S) as an
infinite matrix in V with respect to the basis {|λ⟩}λ

(5) : in view of (4.4) we
have

⟨λ|B(κ | Ξ, S)|µ⟩ = (κs0/ξ0)λ1−µ1
(κ−1s0ξ0; q)λ1−µ1

(q; q)λ1−µ1

⟨λ|Tλ1−µ1(κ | Ξ, S)|µ⟩.

(4.10)
Moreover, ⟨λ|B(κ | Ξ, S)|µ⟩ = 0 unless µ ≺ λ.

To justify compositions of such operators, consider a space Ẽnd(V) con-
sisting of infinite matrices M with respect to the basis {|λ⟩}λ, satisfying

⟨λ|M |µ⟩ = 0 unless l(λ) ⩽ l(µ) + A and λ1 ⩾ µ1 − B,

for certain integers A, B ∈ Z⩾0 depending on M . Then the usual matrix
multiplication is well defined on the space Ẽnd(V)(6) , and B(κ | Ξ, S) can be
considered as an element of Ẽnd(V) with (A, B) = (1, 0). Moreover, using
the conservation law in a way similar to the derivation of (4.4), we have

⟨λ|B̃∗(u | Ξ, S)|µ⟩ = 0 unless λ ≺ µ and µ1 − λ1 ∈ {0, 1}. (4.11)

Thus, B̃∗(u | Ξ, S) is also an element of Ẽnd(V), with (A, B) = (0, 1), so
arbitrary compositions of operators B(κ | Ξ, S) and B̃∗(u | Ξ, S) are well
defined as elements of Ẽnd(V).

The space Ẽnd(V) provides only a partial resolution to the problem
of interpreting B(κ | Ξ, S) as an operator, since in general the operator

(4) Here we mostly follow the notation used in [15], but our notation B(κ | Ξ, S)
corresponds to C(x) from [15].

(5) so we will often call B(κ | Ξ, S) an operator
(6) Any matrix element of the product can be computed as a sum over partitions whose

Young diagrams fit inside a finite rectangle.
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B∗(κ | Ξ, S) is not an element of Ẽnd(V). Moreover, it turns out that the
computation of the product B∗(χ | Ξ, S)B(κ | Ξ, S) in general requires infi-
nite summations, cf. Remark 6.6 below. Since we are not using the operators
B∗(κ | Ξ, S) for a large part of the text, we postpone this issue until Theo-
rem 6.1, where we will treat it using convergence of formal power sums.

The linear combinations B(κ | Ξ, S) and B∗(κ | Ξ, S) are closely related
to each other:

Proposition 4.1. — For any pair of partitions λ, µ, we have

⟨µ|B∗(κ | Ξ, S)|λ⟩ = (τΞS)2µ

S2λ

cτΞS(µ)
cS(λ) ⟨λ|B(κ | τSΞ, τΞS)|µ⟩, (4.12)

where τS and τΞ are mixed shift operators, and

cS(λ) :=
∏
i⩾1

(s2
i ; q)λi−λi+1

(q; q)λi−λi+1

, S2λ :=
∏
i⩾1

(si−1)2λi .

Proof. — For the duration of the proof, set

τSΞ = (ξ′
0, ξ′

1, ξ′
2, . . . ), τΞS = (s′

0, s′
1, s′

2, . . . ).

In particular, we have ξ′
is

′
i = ξi+1si+1 and ξ′

i/s′
i = ξi/si.

Recall that applying the conservation law to the row partition function
⟨λ|Ta(κ | Ξ, S)|µ⟩ we can uniquely determine the labels of horizontal edges:
the horizontal edge between columns c − 1 and c has label λc − µc. Thus,
using (4.10), we can write an explicit expression for B(κ | τSΞ, τΞS) in terms
of the vertex weights W s:

⟨λ|B(κ | τSΞ, τΞS)|µ⟩ = (κs0/ξ0)λ1−µ1
(κ−1s′

0ξ′
0; q)λ1−µ1

(q; q)λ1−µ1

×
∏
c⩾1

W s√
s′

cξ′
c/κ, s′

c

(mc(µ′), λc − µc; mc(λ′), λc+1 − µc+1). (4.13)

Similarly, applying the same argument for the dual weights, we get

⟨µ|B∗(κ | Ξ, S)|λ⟩ =
( κ

s0ξ0

)λ1

×
∏
c⩾1

W s∗√
scξc/κ, sc

(mc(λ′), λc+1 − µc+1; mc(µ′), λc − µc). (4.14)

Now a direct computation using the explicit expressions from (2.9) and (2.18)
shows that for any parameters t1, t2 and η we have

W s∗
t1,t2

(i, l; k, j) = t−2l
2

(q; q)i

(t2
2; q)i

(η2t2
2; q)k

(q; q)k
·t2k

1
(t2

1; q)j

(q; q)j

(q; q)l

(η2t2
1; q)l

W s
ηt1,ηt2

(k, j; i, l).
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Substituting t1 =
√

scξc/κ, t2 = sc and η =
√

sc+1ξc+1
scξc

, we arrive at

W s∗√
scξc/κ, sc

(i, l; k, j) = s−2l
c (κ−1scξc)k (q; q)i

(s2
c ; q)i

(s′
c

2; q)k

(q; q)k

(κ−1scξc; q)j

(q; q)j

× (q; q)l

(κ−1s′
cξ′

c; q)l
W s√

s′
cξ′

c/κ, s′
c

(k, j; i, l).

Applying the equation above to (4.13), we see that all the Pochhammer
symbols depending on j, l cancel out due to the relation s′

cξ′
c = sc+1ξc+1, so

we get

⟨λ|B(κ | τSΞ, τΞS)|µ⟩ =
( κ

s0ξ0

)λ1 S2λ

(τΞS)2µ

cS(λ)
cτΞS(µ)

×
∏
c⩾1

W s∗√
scξc/κ,sc

(mc(λ′), λc+1 − µc+1; mc(µ′), λc − µc),

where we have used the relation
S2λ

(τΞS)2µ
= (s0ξ0)µ1s2λ1−2µ1

0

∞∏
c=1

s2(λc+1−µc+1)
c

∞∏
c=1

(scξc)µc+1−µc .

The proof is finished by comparing with (4.14). □

Remark 4.2. — Up to a multiplication by a factor consisting of (S)2λ and
cS(λ), our operators B(κ | Ξ, S), B∗(κ | Ξ, S) and B̃(u | Ξ, S) degenerate to
the operators C,B∗, B̃ from [15] when S = (s, s, s, . . . ) and Ξ = (1, 1, 1, . . . ).
We also want to clarify that the usage of the letter T for row operators is
not universally standard: for example, [10] and [15] use letters A, B, C, D for
analogues of such operators. Partially to avoid confusion with this alternative
notation we are using the tilde in the notation B̃∗(u | Ξ, S). Another reason
is the connection with stable spin Hall–Littlewood functions described in
Section 5.2 below.

4.4. Fusion of the operators B̃∗

Here we prove that in some cases the operator B∗(κ | Ξ, S) can be ob-
tained using operators B̃∗(u | Ξ, S). This will only be used later as a step in
the proof of Theorem 6.1.

Proposition 4.3. — For any J ∈ Z⩾1 we have

B̃∗(1 | S, S)B̃∗(q | S, S) . . . B̃∗(qJ−1 | S, S) = B∗(qJ | S̄, S), (4.15)
where

S̄ := (s−1
0 , s−1

1 , . . . ).
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Proof. — This is a reformulation of the fusion procedure described in
Section 2.2. We start with an observation that the relation (2.12) between
the weights ws

u;s and ws∗
u;s can be stacked vertically to obtain

...

k

a1

a2

aJ

i

b1

b2

bJ

ws∗
u1;s

ws∗
u2;s

ws∗
uJ ;s

= s−2
∑J

r=1
br

(q; q)i

(s2; q)i

(s2; q)k

(q; q)k


...

i

aJ

a2

a1

k

bJ

b2

b1

ws
uJ ;s

ws
u2;s

ws
u1;s


. (4.16)

At the same time, using the defining relation (2.18) for the weights W s∗
t,s, we

have

qkJ (q−J ; q)l

(q; q)l

(q; q)j

(q−J ; q)j
lj

i

k

W s∗
q−J/2,s = s−2l (q; q)i

(s2; q)i

(s2; q)k

(q; q)k
j l

k

i

W s
q−J/2,s

.

Applying the identities above to (2.5) and using the simplifying specialization
u = s from Section 2.3, we get

(−1)l−jqiJ
lj

i

k

W s∗
q−J/2,s

= q−
∑J

r=1
(r−1)br

∑
a1+···+aJ =j

q
∑J

r=1
(r−1)ar


...

k

aJ

a2

a1

i

bJ

b2

b1

ws∗
sqJ−1,s

ws∗
sq,s

ws∗
s,s


, (4.17)
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where b1, . . . , bJ ∈ {0, 1} satisfy
∑J

r=1 br = l, and we have used the relation

Zj(J) = (−1)jqJj (q−J ; q)j

(q; q)j
.

Let λ, µ be partitions and take L > l(λ), l(µ). Similarly to (2.6) we can
fuse L dual columns by stacking (4.17) horizontally L times with the param-
eters s being equal to s1, s2, . . . , sL. Setting the bottom (resp. top) boundary
condition to a configuration corresponding to |λ⟩ (resp. ⟨µ|), and assuming
that all boundary edges on the right have labels equal to 0, we see that
the parameter L becomes irrelevant and we can take L → ∞ to get, using
notations (4.5) and (4.6),

(−1)j⟨µ|T∗
j (qJ | S̄, S)|λ⟩ =

∑
a1+···+aJ =j

q
∑J

r=1
(r−1)ar

× ⟨µ|T ∗
a1

(1 | S, S)T ∗
a2

(q | S, S) . . . T ∗
aJ

(qJ−1 | S, S)|λ⟩. (4.18)
Recall that

B∗(qJ | S̄, S) =
∑
j⩾0

T∗
j (qJ | S̄, S),

B̃∗(qr−1 | S, S) =
∑

ar∈{0,1}

(−1)ar q(r−1)ar T ∗
ar

(qr−1 | S, S), r = 1, . . . , J,

so the claim follows after multiplying (4.18) by (−1)j and summing
over j. □

4.5. Infinite 0th column

There is a useful interpretation of the linear combinations B(κ | Ξ, S) and
B̃∗(u | Ξ, S) in terms of the operators Ta and T ∗

a with an additional 0th
column with “infinite” vertical labels. For a partition λ and an integer N ⩾
λ1, let λ̂(N) denote the partition (N, λ1, λ2, . . . ), and set Ξ̂ = (1, ξ0, ξ1, . . . ),
Ŝ = (1, s0, s1, . . . ).

Proposition 4.4. — For any partitions λ, µ and any a ∈ Z⩾0, we have

⟨λ|B(κ | Ξ, S)|µ⟩ = (s2
0; q)∞

(κs0ξ−1
0 ; q)∞

lim
N→∞

⟨λ̂(N+a)|Ta(κ | Ξ̂, Ŝ)|µ̂(N)⟩,

where the convergence holds in the space of formal power series in q. Simi-
larly, for any i ∈ {0, 1} we have

⟨µ|B̃∗(u | Ξ, S)|λ⟩ = (1 − us0ξ0) lim
N→∞

⟨µ̂(N−i)|T ∗
i (u | Ξ̂, Ŝ)|λ̂(N)⟩,

– 37 –



Alexei Borodin and Sergei Korotkikh

where the convergence holds in the space of formal power series in q. In both
cases the convergence also holds numerically, when q ∈ C satisfies |q| < 1
and si+kξi+ksi/ξi ̸= q−m for any i, k, m ∈ Z⩾0.

Proof. — We start with the first equality. Recall that from (4.10) we have

⟨λ|B(κ | Ξ, S)|µ⟩ = (κs0/ξ0)∆ (κ−1s0ξ0; q)∆

(q; q)∆
⟨λ|T∆(κ | Ξ, S)|µ⟩,

where ∆ = λ1 − µ1. On the other hand, separating the first vertex of the
row partition function used to define the operator Ta, we have

⟨λ̂(N+a)|Ta(κ | Ξ̂, Ŝ)|µ̂(N)⟩ = W s

 a ∆

N − µ1

N + a − λ1

(
√

ξ0s0
κ

, s0)

 ⟨λ|T∆(κ | Ξ, S)|µ⟩.

Hence, the claim follows from the limiting relation (cf. (4.3))

lim
N→∞

W s√
ξ0s0/κ,s0

(N − µ1, i; N − λ1 + i, ∆)

= (κs0/ξ0)∆ (κs0/ξ0; q)∞

(s2
0; q)∞

(κ−1s0ξ0; q)∆

(q; q)∆
.

The other equality follows similarly, using the limiting relation (cf. (2.13))

lim
N→∞

ws∗
uξ0;s0

(N − λ1, i; N − µ1 − i, ∆) = 1
1 − uξ0s0

(−uξ0/s0)∆

for i, ∆ ∈ {0, 1}. □

4.6. Exchange relations

The vertex weights we are using are distinguished by the Yang–Baxter
equation, which makes the models with these weights integrable. In terms
of row operators, the Yang–Baxter equation turns into so-called exchange
relations. In this section we cover the exchange relations between operators
B(κ | Ξ, S) and B̃∗(u | Ξ, S), which will result in various algebraic properties
of the symmetric functions constructed in the next section. We start with
relations resembling commutativity of operators.

Proposition 4.5. — The following relations hold:
B(κ1 | Ξ, S)B(κ2 | τSΞ, τΞS) = B(κ2 | Ξ, S)B(κ1 | τSΞ, τΞS),

B̃∗(u1 | Ξ, S)B̃∗(u2 | Ξ, S) = B̃∗(u2 | Ξ, S)B̃∗(u1 | Ξ, S).
(4.19)
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Proof. — We start with the second relation. It suffices to prove that for
any partitions µ, λ the following relation holds:

⟨µ|B̃∗(u1 | Ξ, S)B̃∗(u2 | Ξ, S)|λ⟩ = ⟨µ|B̃∗(u2 | Ξ, S)B̃∗(u1 | Ξ, S)|λ⟩.

Note that the tilted cross weights R∗ in the Yang–Baxter equation (2.15)
depend only on the ratio x/y. Hence, after setting s = sr, x = u1ξr, y = u2ξr,
the Yang–Baxter equation (2.15) gives

b3

a3
b2

a2

a1

b1

(u1ξr, sr)

(u2ξr, sr)

R∗
u1/u2 =

b3

a3
b2

a2

a1

b1

(u2ξr, sr)

(u1ξr, sr)

R∗
u1/u2

where all non-tilted vertices have ws∗-weights. Stacking L columns horizon-
tally and iterating the Yang–Baxter equation above for r = 1, . . . , L, we can
move the tilted cross R∗

u1/u2
through L columns to get

. . .0

. . .0
0

0

iL

jL

i1

j1

(u1ξL, sL)

(u2ξL, sL)

(u1ξ1, s1)

(u2ξ1, s1)

R∗
u1/u2 =

. . .

0
. . .

0
0

0

iL

jL

i1

j1

(u2ξL, sL)

(u1ξL, sL)

(u2ξ1, s1)

(u1ξ1, s1)

R∗
u1/u2

Note that in the identity above we have also specified the left and right
boundary conditions to be 0. In this case the conservation law forces the
tilted crosses on both sides to be trivial of the form

0

0 0

0
and have

weight 1, hence for any partitions λ, µ such that l(λ), l(µ) < L we get∑
ν

⟨µ|T ∗
0 (u2 | Ξ, S)|ν⟩⟨ν|T ∗

0 (u1 | Ξ, S)|λ⟩

=
∑

ν

⟨µ|T ∗
0 (u1 | Ξ, S)|ν⟩⟨ν|T ∗

0 (u2 | Ξ, S)|λ⟩,

with sums on both sides being finite. Since L was arbitrary, we can re-
move the restrictions on l(λ) and l(µ). One finishes the proof by replacing
Ξ, S, λ, µ, ν by Ξ̂, Ŝ, λ̂(N), µ̂(N), ν̂(N) and applying Proposition 4.4.
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To prove the first equation we will use a similar argument, but this time
the tilted cross will change while we move it through the columns. Again, it
suffices to prove

⟨λ|B(κ1 | Ξ, S)B(κ2 | τSΞ, τΞS)|µ⟩ = ⟨λ|B(κ2 | Ξ, S)B(κ1 | τSΞ, τΞS)|µ⟩.

This time we use the deformed Yang–Baxter equation from Proposi-
tion 3.1. Setting t1 =

√
srξr

κ1
, t2 =

√
srξr

κ2
, t3 = sr, η =

√
sr+1ξr+1/

√
srξr

in (3.1), we obtain

a1

b1

a2

b2

a3

b3 (√
srξr

κ1
, sr

)
(√

s′
rξ′

r
κ2

, s′
r

) (√
s′

rξ′
r

κ1
,

√
s′

rξ′
r

κ2

)

=

a1

b1
a2

b2

a3

b3

(√
s′

rξ′
r

κ1
, s′

r

)
(√

srξr
κ2

, sr

)
(√

srξr
κ1

,
√

srξr
κ2

)

where all the vertices use W s-weights with indicated parameters, and we set

τSΞ = (ξ′
0, ξ′

1, . . . ), τΞS = (s′
0, s′

1, . . . ).

Note that due to the equality ξ′
rs′

r = ξr+1sr+1 the weights of the tilted
cross on the left-hand side for r = i coincide with the weights of the tilted
cross on the right-hand side for r = i + 1. This suggests that we can stack
columns with r = 1, . . . , L horizontally, place a tilted cross with parameters(√ sL+1ξL+1

κ1
,
√

sL+1ξL+1
κ2

)
on the right, and iterate the equation above, mov-

ing the tilted cross and changing the parameters of it to
(√

s1ξ1
κ1

,
√

s1ξ1
κ2

)
.

The resulting equation with 0 boundary conditions on the left and on the
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right is given below:

0 . . .

0 . . .
0

0

iL

jL

i1

j1 (√
sLξL

κ1
, sL

)
(√

s′
L

ξ′
L

κ2
, s′

L

)
(√

s1ξ1
κ1

, s1
)

(√ s′
1ξ′

1
κ2

, s′
1

)

=

0

. . .
0

. . .

0

0

i1

j1

iL

jL

(√ s′
1ξ′

1
κ1

, s′
1

)
(√

s1ξ1
κ2

, s1
)
(√

s′
L

ξ′
L

κ1
, s′

L

)
(√

sLξL
κ2

, sL

)

Note that on both sides of the equation above the tilted cross must again be
trivial with weight 1, hence for any partitions λ, µ such that l(λ), l(µ) < L
we obtain
⟨µ|T0(κ1 | Ξ, S)T0(κ2 | τSΞ, τΞS)|λ⟩ = ⟨µ|T0(κ2 | Ξ, S)T0(κ1 | τSΞ, τΞS)|λ⟩.

Since L was arbitrary, we can remove the restrictions on l(λ), l(µ). The proof
is then finished by replacing Ξ, S, λ, µ with Ξ̂, Ŝ, λ̂(N), µ̂(N), multiplying both
sides by

(s2
0; q)∞(s0s1ξ1/ξ0; q)∞

(κ1s0/ξ0; q)∞(κ2s0/ξ0; q)∞
,

and applying Proposition 4.4. □

The next exchange relation involves operators B(κ | Ξ, S) and B̃∗(u | Ξ, S).

Proposition 4.6. — The following exchange relation holds:

B̃∗(u | Ξ, S)B(κ | τSΞ, τΞS) = 1 − uκ

1 − uξ1s1
B(κ | τSΞ, τΞS)B̃∗(u | τSΞ, τΞS).

(4.20)

Proof. — The proof is similar to the proof of Proposition 4.5: we will take
a suitable Yang–Baxter equation, iterate it for several columns, choose cer-
tain specific boundary conditions, and use Proposition 4.4. For the duration
of the proof we again set

τSΞ = (ξ′
0, ξ′

1, . . . ), τΞS = (s′
0, s′

1, . . . ).
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We start with the deformed Yang–Baxter equation from Proposition 3.2,
where we set

s = s′
r =

√
srsr+1ξr+1/ξr, t =

√
sr+1ξr+1

κ
,

x = uξ′
r = u

√
ξrξr+1sr+1/sr, y = u

√
κξr+1sr+1, η =

√
ξrsr

ξr+1sr+1

to get

b1

a1

a2

b2

a3

b3

(√
s′

rξ′
r

κ
, s′

r

)(uξr ; sr) (
u

√
κs′

rξ′
r ;

√
s′

rξ′
r

κ

)

=
b1

a1

a2

b2

a3

b3

(uξ′
r ; s′

r)

(√
s′

rξ′
r

κ
, s′

r

)
(

u

√
κsrξr ;

√
srξr

κ

)

where vertices have W s-weights, and the remaining vertices have ws∗-
weights.

Note that the tilted cross in the left-hand side for r = i coincides with
the tilted cross in the right-hand side for r = i + 1, so we can stack several

– 42 –



Inhomogeneous spin q-Whittaker polynomials

columns horizontally and iterate the Yang–Baxter equation to get

. . .1

0 . . .
0

0

iL

jL

i1

j1

(uξL; sL)(√
s′

L
ξ′

L
κ

, s′
L

)(uξ1; s1)(√
s′

1ξ′
1

κ
, s′

1

)
⋆

=
. . .

1

0

. . .

0

0

i1

j1

iL

jL

(uξ′
1; s′

1)

(√
s1ξ1

κ
, s1
)

(uξ′
L; s′

L)

(√
sLξL

κ
, sL

)
(4.21)

Here the parameters of the tilted cross on the left-hand side are(
u
√

κsL+1ξL+1,
√

sL+1ξL+1
κ

)
, and on the right-hand side they are(

u
√

κs1ξ1,
√

s1ξ1
κ

)
.

Let λ, µ be partitions with l(λ), l(µ) < L, and set ir = mr(µ′), jr =
mr(λ′). In particular, iL = 0, which by (4.3) forces the ⋆-vertex on the left-

hand side of (4.21) to have configuration g 0

0

g

. Hence, the tilted cross

on the left-hand side must be trivial with the weight 1. On the other hand,
the only possible configuration for the tilted cross on the right-hand side

of (4.21) is
0

0

1

1

with weight 1 − uκ

1 − uξ1s1
. Hence, we get

⟨λ|T ∗
1 (u | Ξ, S)T0(κ | τSΞ, τΞS)|µ⟩

= 1 − uκ

1 − uξ1s1
⟨λ|T0(κ | τSΞ, τΞS)T ∗

1 (u | τSΞ, τΞS)|µ⟩.

– 43 –



Alexei Borodin and Sergei Korotkikh

We complete the proof by the following application of Proposition 4.4:
⟨λ|B̃∗(u | Ξ, S)B(κ | τSΞ, τΞS)|µ⟩

= (1 − uξ0s0) (s′
0

2; q)∞

(κs′
0/ξ′

0; q)∞
lim

N→∞
⟨λ̂(N−1)|T ∗

1 (u | Ξ̂, Ŝ)T0(κ | τŜΞ̂, τΞ̂Ŝ)|µ̂(N)⟩

= (1 − uξ0s0) 1 − uκ

1 − uξ0s0

(s′
0

2; q)∞

(κs′
0/ξ′

0; q)∞

× lim
N→∞

⟨λ̂(N−1)|T0(κ | τŜΞ̂, τΞ̂Ŝ)T ∗
1 (u | τŜΞ̂, τΞ̂Ŝ)|µ̂(N)⟩

= 1 − uκ

1 − uξ1s1
⟨λ|B(κ | τSΞ, τΞS)B̃∗(u | τSΞ, τΞS)|µ⟩,

where we have used the relation ξ′
0s′

0 = ξ1s1. □

5. Inhomogeneous spin q-Whittaker functions

In this section for any pair of partitions λ, µ we define a function
Fλ/µ(κ1, . . . , κn | Ξ, S) in variables κ1, . . . , κn as a partition function of a
certain vertex model with vertices having W -weights. These functions are
symmetric polynomials in κ1, . . . , κn, and they depend on inhomogeneity pa-
rameters Ξ = (ξ0, ξ1, ξ2, . . . ) and S = (s0, s1, s2, . . . ). We also prove several
algebraic properties of these functions using the exchange relations from the
previous section.

5.1. Vertex model construction

For a pair of partitions λ, µ with l(λ), l(µ) < L consider a grid of vertices
consisting of n rows and L columns. For convenience, we number the rows
from top to bottom, while the columns are numbered from the left to the
right, starting from 1 in both cases. To a vertex at the intersection of the
ith row and the jth column we assign the weight W s

t,s with parameters t =√
ξi+jsi+j

κi
and s =

√
si+jξi+jsj/ξj . Define boundary conditions as follows:

• the labels of all right edges are equal to 0;
• the left incoming edge in the ith row has label ai;
• the bottom edge in the jth column has label mj(µ′) = µj − µj+1;
• the top edge in the jth column has label mj(λ′) = λj − λj+1.

The resulting partition function ZW
(a1,...,an)
λ/µ (κ1, . . . , κn | Ξ, S) is depicted

in Figure 5.1, where we use the notation s
(i)
j :=

√
si+jξi+jsj/ξj .
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Similarly to the row partition functions from the previous section, the
conservation law forces all labels to the right of the l(λ)th column in the
partition function ZW

(a1,...,an)
λ/µ (κ1, . . . , κn | Ξ, S) to be 0, with all vertices to

the right of the l(λ)th column having weight 1. Hence, the partition function
does not actually depend on L and, taking L → ∞, we can instead consider
a semi-infinite grid, with n rows and an infinite number of columns.

Using the partition function ZW
(a1,...,an)
λ/µ (κ1, . . . , κn | Ξ, S) we set

Fs
λ/µ(κ1, . . . , κn | Ξ, S) :=

∑
a1,...,an

(
n∏

i=1
(κis0/ξ0)ai

(κ−1
i siξi; q)ai

(q; q)ai

)
× ZW

(a1,...,an)
λ/µ (κ1, . . . , κn | Ξ, S), (5.1)

where the sum is over (a1, . . . , an) ∈ Zn
⩾0 such that

∑n
r=1 ar = λ1 − µ1.

Renormalizing, we define inhomogeneous spin q-Whittaker functions by

Fλ/µ(κ1, . . . , κn | Ξ, S) := (−1)|µ|−|λ| (τn
Ξ S)µ

Sλ

cτn
Ξ S(µ)

cS(λ) Fs
λ/µ(κ1, . . . , κn | Ξ, S),

(5.2)
where

cS(λ) :=
∏
i⩾1

(s2
i ; q)λi−λi+1

(q; q)λi−λi+1

, Sλ :=
∏
i⩾1

sλi
i−1.

In the particular case µ = ∅ we also use the following notation(7)

Fλ(κ1, . . . , κn | Ξ, S) := Fλ/∅(κ1, . . . , κn | Ξ, S).

Remark 5.1. — When Ξ = ξ∞ := (ξ, ξ, . . . ) and S = s∞ := (s, s, . . . ),
the functions Fλ/µ(κ1, . . . , κn | Ξ, S) turn into the spin q-Whittaker func-
tions introduced in [15]. More precisely, if we let FBW

λ/µ (x1, . . . , xn) denote
the functions from [15], then

FBW
λ/µ (x1, . . . , xn) = Fλ/µ(−ξx1, . . . , −ξxn | ξ∞, s∞).

Remark 5.2. — The letter s in the notation Fs
λ/µ(κ1, . . . , κn | Ξ, S) stands

for “stochastic”; it is explained by the following identity:
n∏

i=1

(κis0ξ−1
0 ; q)∞

(siξis0/ξ0; q)∞

∑
λ

Fs
λ(κ1, . . . , κn | Ξ, S) = 1.

This easily follows from Remark 2.2 in the following way. First we consider
the partition function from Figure 5.1 with µ = ∅. Since W s

t,s(i, j, k, l) = 0
unless i ⩾ l, any configuration with non-zero weight must have edge labels

(7) Throughout the text we freely use λ instead of λ/∅ in similar contexts; this should
not cause any confusion.

– 45 –



Alexei Borodin and Sergei Korotkikh

. . .

. . .

. . .

...
...

...

(√
s2ξ2

κ1
, s

(1)
1

) (√
s3ξ3

κ1
, s

(1)
2

)
(√

s3ξ3
κ2

, s
(2)
1

) (√
s4ξ4

κ2
, s

(2)
2

)

(√
sn+1ξn+1

κn
, s

(n)
1

) (√
sn+2ξn+2

κn
, s

(n)
2

)

· · ·m2(λ′)m1(λ′)

an

a2

a1

· · ·m2(µ′)m1(µ′)

0

...

0

0

Figure 5.1. Partition function ZW
(a1,...,an)
λ/µ (κ1, . . . , κn | Ξ, S).

equal to 0 for all the edges to the right of the diagonal i+j = n+1. Hence we
can consider only the first n columns of the partition function, and instead of
0 boundary condition on the right we can take a sum over all possible labels
of the outgoing edges on the right. Taking additionally a sum over possible
boundary conditions on the top we end up with a partition function hav-
ing a fixed incoming configuration and a “free” boundary condition for the
outgoing edges. Applying the stochasticity of the weights W s

t,s consequently
at each vertex starting from the top-right corner and going down and left,
we get ∑

λ

ZW
(a1,...,an)
λ/∅ (κ1, . . . , κn | Ξ, S) = 1.

Hence,

∑
λ

Fs
λ(κ1, . . . , κn | Ξ, S) =

∑
a1,...,an⩾0

n∏
i=1

(κis0/ξ0)ai
(κ−1

i siξi; q)ai

(q; q)ai

and the identity follows from the q-binomial theorem

∑
a⩾0

xa (y; q)a

(q; q)a
= (xy; q)∞

(x; q)∞
.
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. . .

. . .

. . .

...
...

...

(u1ξ1, s1) (u1ξ2, s2)

(u2ξ1, s1) (u2ξ2, s2)

(unξ1, s1) (unξ2, s2)

· · ·m2(λ′)m1(λ′)

an

a2

a1

· · ·m2(µ′)m1(µ′)

0

...

0

0

Figure 5.2. Partition function Zw
(a1,...,an)
λ/µ (κ1, . . . , κn | Ξ, S).

5.2. Inhomogeneous stable spin Hall–Littlewood functions

It is also useful to consider another family of functions that straight-
forwardly generalizes both inhomogeneous spin Hall–Littlewood functions
from [10] and stable Hall–Littlewood functions from [23] and [15].

Let u1, . . . , un be a collection of variables. Similarly to the construction
of the functions Fλ/µ above, consider a grid of vertices consisting of n rows
and L columns, with the vertex at the intersection of the ith row and the
jth column having the ws-weight with parameters (uiξj ; sj). For a pair of
partitions λ, µ with l(λ), l(µ) < L define boundary conditions in the same
way as before:

• the labels of all right edges are equal to 0;
• the left incoming edge in the ith row has label ai for some ai ∈ {0, 1};
• the bottom edge in the jth column has label mj(µ′) = µj − µj+1;
• the top edge in the jth column has label mj(λ′) = λj − λj+1.

The resulting partition function is denoted by Zw
(a1,...,an)
λ/µ (u1, . . . , un | Ξ, S),

and its depiction is given in Figure 5.2.
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The inhomogeneous stable spin Hall–Littlewood functions F̃λ/µ(u1, . . . , un |
Ξ, S)(8) are defined by

F̃
s
λ′/µ′(u1, . . . , un | Ξ, S)

:=
∑

a1,...,an∈{0,1}

n∏
i=1

(−uξ0s0)aiZw
(a1,...,an)
λ/µ (u1, . . . , un | Ξ, S),

F̃λ′/µ′(u1, . . . , un | Ξ, S)

:= (−1)|µ|−|λ| Sµ

Sλ

cS(µ)
cS(λ) F̃

s
λ′/µ′(u1, . . . , un | Ξ, S).

(5.3)

Note that we use conjugated partitions λ′ and µ′: this is needed to obtain
usual Hall–Littlewood polynomials as a degeneration of F̃λ/µ, see [15]. Also
note that the parameter s0 is actually artificial: both F̃

s
λ′/µ′(u1, . . . , un |

Ξ, S) and Sλ/Sµ have factor sλ1−µ1
0 with no other dependence on s0, thus

F̃λ′/µ′(u1, . . . , un | Ξ, S) does not depend on s0 at all.

For Ξ = 1∞ and S = s∞ the functions F̃λ/µ(u1, . . . , un | Ξ, S) degener-
ate to the stable spin Hall–Littlewood functions used in [15] and originating
from [23]. Actually, the stability property holds for the inhomogeneous ana-
logue as well: we have

F̃λ/µ(u1, . . . , un−1, 0 | Ξ, S) = F̃λ/µ(u1, . . . , un−1 | Ξ, S),
which can be readily verified using the expression for the partition function
Zw

(a1,...,an)
λ/µ (κ1, . . . , κn | Ξ, S) and the explicit values of weights ws

u;s for
u = 0.

At the same time, the functions F̃λ/µ(u1, . . . , un | Ξ, S) are closely re-
lated to the inhomogeneous spin Hall–Littlewood functions F defined in [10,
Definition 4.4]. Actually, we already have those functions in our setting: one
has

(−1)|µ|−|λ| Sµ

Sλ

cŜ(µ̂(N))
cŜ(λ̂(N+n))

Zw
(1,1,...,1)
λ̂(N+n)/µ̂(N)(u1, . . . , un | Ξ̂, Ŝ)

= Fλ′/µ′(u1, . . . , un | Ξ, S),
since both sides are defined using the same partition function, up to a renor-
malization of the weights mentioned in Remark 2.1 and resulting in the
prefactor on the left-hand side. Here N ∈ Z⩾1 is a sufficiently large integer,
which implicitly enters the right-hand side via the index λ′/µ′ of the func-
tion F: In [10] partitions are replaced by signatures, that is, nonincreasing

(8) We follow the notation F̃λ/µ to be consistent with [15] and to differentiate from
the non-stable version of these functions, which is commonly denoted by Fλ/µ.
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integer sequences, and in the right-hand side we treat λ′ and µ′ as signatures
of lengths N + n and N , respectively, by adding an appropriate number of
0’s at the end. We also use the notation from Proposition 4.4 to shift the
sequences of parameters Ξ and S to the right, so that the partition function
from Figure 5.2 starts with the column having parameters (uiξ0, s0).

Moreover, it turns out that one can interpret the functions
F̃λ/µ(u1, . . . , un | Ξ, S) as a special case of the inhomogeneous spin Hall–
Littlewood functions Fλ/µ. To see it, note that(s0)−l

1 l

i

k

(uξ0, s0)



∣∣∣∣∣∣∣∣∣∣∣
s0→0

= (−uξ0s0)l
∣∣
s0→1.

Applying this to the 0th column of the partition function Zw
(1,1,...,1)
λ̂(N+n)/µ̂(N)(u1,

. . . , un | Ξ̂, Ŝ), one can rewrite (5.3) as(
sµ1−λ1

0 Zw
(1,1,...,1)
λ̂(N+n)/µ̂(N)

(u1, . . . , un | Ξ̂, Ŝ)
)∣∣∣∣

s0→0

= F̃
s
λ′/µ′(u1, . . . , un | Ξ, S)

∣∣∣
s0→1

or, using the relation

(q; q)N−µ1

(q; q)N+n−λ1

(
sλ1−µ1

0
Sµ

Sλ

cŜ(µ̂(N))
cŜ(λ̂(N+n))

)∣∣∣∣∣
s0→0

=
(

Sµ

Sλ

cS(µ)
cS(λ)

)∣∣∣∣
s0→1

,

one can renormalize everything to get

(q; q)N−µ1

(q; q)N+n−λ1

Fλ′/µ′(u1, . . . , un | Ξ, S)
∣∣
s0=0 = F̃λ′/µ′(u1, . . . , un | Ξ, S),

where in the left-hand side we again implicitly treat λ′ and µ′ as signatures
of lengths N + n and N respectively, while the right-hand side does not
depend on s0.

The observation above allows us to immediately translate certain results
from [10] to our setting. For example, we immediately see that the func-
tions F̃λ(u1, . . . , un | Ξ, S) are symmetric in u1, . . . , un since the same result
holds for the functions Fλ/µ(u1, . . . , un | Ξ, S), see [10, Proposition 4.5]. We
also have an explicit formula in the case µ = ∅, which is similar to [10,

– 49 –



Alexei Borodin and Sergei Korotkikh

Theorem 4.14] and [23, Remark 2]:

F̃λ(u1, . . . , un | Ξ, S)

= 1
(q; q)n−l(λ)

∑
σ∈Sn

σ

( ∏
1⩽α<β⩽n

uα − quβ

uα − uβ

n∏
i=1

φ̃λi
(ui | Ξ, S)

)
,

where the sum is over permutations of n elements that act on functions in
u1, . . . , un by permuting variables, and for k ⩾ 1 we set

φ̃0(u | Ξ, S) = 1 − q, φ̃k(u | Ξ, S) = ξ0u(1 − q)
1 − skξku

k−1∏
j=1

ξju − sj

1 − sjξju
.

5.3. Row operator representations

To prove algebraic properties of the functions Fλ/µ, instead of using the
whole defining partition functions, it is more convenient to construct them
row by row using the row operators introduced earlier.

Proposition 5.3. — For any partitions λ, µ we have

Fs
λ/µ(κ1, . . . , κn | Ξ, S)

= ⟨λ|B(κ1 | τSΞ, τΞS)B(κ2 | τ2
S Ξ, τ2

ΞS) . . .B(κn | τn
S Ξ, τn

Ξ S)|µ⟩

= S2λ

(τΞS)2µ

cS(λ)
cτΞS(µ)

× ⟨µ|B∗(κn | τn−1
S Ξ, τn−1

Ξ S) . . .B∗(κ2 | τSΞ, τΞS)B∗(κ1 | Ξ, S)|λ⟩, (5.4)
where τΞ and τS are the mixed shift operators defined by (4.1).

Proof. — The second equality follows at once from Proposition 4.1, so
we focus on the first equality.

Recall that
τ i

SΞ = (ξ(i)
0 , ξ

(i)
1 , . . . ), τ i

ΞS = (s(i)
0 , s

(i)
1 , . . . ),

where s
(i)
j =

√
si+jξi+jsj/ξj , and ξ

(i)
j satisfy ξ

(i)
j s

(i)
j = ξi+jsi+j .

Thus, the parameters of the (i, j)th vertex in the partition function
ZW

(a1,...,an)
λ/µ (κ1, . . . , κn | Ξ, S) coincide with the parameters of the jth ver-

tex in the row of vertices used to define Tai(κi | τ i
SΞ, τ i

ΞS), or, equivalently,
we have

ZW
(a1,...,an)
λ/µ (κ1, . . . , κn | Ξ, S)

= ⟨λ|Ta1(κ1 | τSΞ, τΞS) . . .Tan
(κn | τn

S Ξ, τn
Ξ S)|µ⟩.

– 50 –



Inhomogeneous spin q-Whittaker polynomials

On the other hand, using relations s
(i)
0 ξ

(i)
0 = siξi and s

(i)
0 /ξ

(i)
0 = s0/ξ0, we see

that the coefficients in (5.1) coincide with the coefficients in (4.7), concluding
the proof. □

As a corollary we observe that the functions Fλ/µ(κ1, . . . , κn | Ξ, S) are
polynomials in κ1, . . . , κn. Indeed, matrix coefficients of the operator C(κ |
Ξ, S) are polynomials in κ, so Proposition 5.3 implies polynomiality.

Proposition 5.4. — For any partitions λ, µ we have

F̃
s
λ′/µ′(u1, . . . , un | Ξ, S)

= S2λ

S2µ

cS(λ)
cS(µ) ⟨µ|B̃∗(un | Ξ, S) . . . B̃∗(u2 | Ξ, S)B̃∗(u1 | Ξ, S)|λ⟩. (5.5)

Proof. — Similarly to the proof of (5.3), we consider the partition func-
tion Zw

(a1,...,an)
λ/µ (u1, . . . , un | Ξ, S) row by row, interpreting it as a matrix

coefficient of a composition of row operators. In addition, here we will change
the weights ws to the weights ws∗ using (2.12). We have already used this
change of weights for a single column during the discussion of fusion of the
row operators B̃∗(u | Ξ, S), see (4.16).

Noting that for the partition function Zw
(a1,...,an)
λ/µ (u1, . . . , un | Ξ, S) the

sum of all labels of edges between columns L − 1 and L is equal to λL − µL,
we can use (4.16) for each column in Zw

(a1,...,an)
λ/µ (u1, . . . , un | Ξ, S) to get

Zw
(a1,...,an)
λ/µ (u1, . . . , un | Ξ, S)

= s−λ1
0 S2λ

s−µ1
0 S2µ

cS(λ)
cS(µ) ⟨µ|T ∗

an
(un | Ξ, S) . . . T ∗

a2
(u2 | Ξ, S)T ∗

a1
(u1 | Ξ, S)|λ⟩.

The claim follows by comparing coefficients in (4.9) and (5.3). □

5.4. Properties of the inhomogeneous spin q-Whittaker functions

So far we have been establishing an algebraic framework to analyse the
functions Fλ/µ(κ1, . . . , κn| | Ξ, S). Here we finally use it to prove our main
results about these functions.

Proposition 5.5 (Branching rule). — For any partitions λ, µ and 1 ⩽
m < n we have

Fλ/µ(κ1, . . . , κn | Ξ, S)

=
∑

ν

Fλ/ν(κ1, . . . , κm | Ξ, S)Fν/µ(κm+1, . . . , κn | τm
S Ξ, τm

Ξ S), (5.6)

where the sum on the right-hand side is finite.
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Proof. — A similar claim for the functions Fs
λ/µ follows at once from

Proposition 5.3 by an insertion of the summation
∑

ν |ν⟩⟨ν| = id:

Fs
λ/µ(κ1, . . . , κn | Ξ, S) = ⟨λ|B(κ1 | τSΞτΞS) . . .B(κn | τn

S Ξ, τn
Ξ S)|µ⟩

=
∑

ν

⟨λ|B(κ1 | τSΞ, τΞS) . . .B(κm | τm
S Ξ, τm

Ξ S)|ν⟩

× ⟨ν|B(κm+1 | τm+1
S Ξ, τm+1

Ξ S) . . .B(κn | τn
S Ξ, τn

Ξ S)|µ⟩

=
∑

ν

Fs
λ/ν(κ1, . . . , κm | Ξ, S)Fs

ν/µ(κm+1, . . . , κn | τm
S Ξ, τm

Ξ S).

To reach (5.6), one multiplies the above equality by

(−1)|µ|−|λ| (τn
Ξ S)µ

Sλ

cτn
Ξ S(µ)

cS(λ) = (−1)|µ|−|λ| (τn
Ξ S)µ

(τm
Ξ S)ν

cτn
Ξ S(µ)

cτm
Ξ S(ν)

(τm
Ξ S)ν

Sλ

cτm
Ξ S(ν)
cS(λ) .

□

Proposition 5.6. — We have

Fλ/µ(κ | Ξ, S) =


(−κ)|λ|−|µ|∏

i⩾1ξµi−λi

i−1 ( siξi

si−1ξi−1
)µi/2

× (κ−1siξi;q)λi−µi
(κsi/ξi;q)µi−λi+1 (q;q)λi−λi+1

(q;q)λi−µi
(q;q)µi−λi+1 (s2

i
;q)λi−λi+1

if µ ≺ λ,

0 otherwise.

Proof. — This is a result of an explicit computation consisting of the fol-
lowing steps: we consider an expression of ⟨λ|C(κ | τSΞ, τΞS)|µ⟩ as a product
of the vertex weights W s, which is done in (4.13) by using the conserva-
tion law, then plug in the explicit values of the weights W s from (4.3), and
finally renormalize the resulting functions Fs

λ/µ(κ | Ξ, S) to obtain the func-
tions Fλ/µ(κ | Ξ, S) using (5.2). □

Note that the square roots ( siξi

si−1ξi−1
)µi/2 in the expression from Proposi-

tion 5.6 are due to the renormalization (5.2), which involves square roots.

Corollary 5.7. — For a pair of partitions λ, µ the function
Fλ/µ(κ1, . . . , κn | Ξ, S) vanishes unless for any r ⩾ 1 we have

µ′
r ⩽ λ′

r ⩽ µ′
r + n.

In particular,
Fλ/µ(κ1, . . . , κn | Ξ, S) = 0 unless µ ⊂ λ and l(λ) ⩽ l(µ) + n.

Proof. — We use the following elementary observation: if partitions µ
and λ interlace, that is,

λ1 ⩾ µ1 ⩾ λ2 ⩾ µ2 ⩾ λ3 ⩾ . . . ,

then for any r ⩾ 1 we have
λ′

r = #{i : λi ⩾ r} ⩽ #{i : µi ⩾ r} + 1 = µ′
r + 1.
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Now the claim follows from Propositions 5.5 and 5.6: the function
Fλ/µ(κ1, . . . , κn | Ξ, S) vanishes unless there exists a sequence of partitions

µ = ν(0) ≺ ν(1) ≺ · · · ≺ ν(n) = λ. □

Corollary 5.8. — We have the following stability property
Fλ(κ1, . . . , κn−1, snξn | Ξ, S) = Fλ(κ1, . . . , κn−1 | Ξ, S).

Proof. — From Proposition 5.6 we have

Fλ(κ | Ξ, S) =

(−κ)|λ|ξ−λ1
0

(s1ξ1/κ; q)λ1(q; q)λ1

(q; q)λ1(s2
1; q)λ1

if λ2 = λ3 = · · · = 0,

0 otherwise.

After replacing Ξ, S by τn−1
S Ξ, τn−1

Ξ S and setting κ = s
(n−1)
1 ξ

(n−1)
1 = snξn,

we get
Fλ(snξn | τn−1

S Ξ, τn−1
Ξ S) = 1λ=∅.

The claim now follows from the branching rule of Proposition 5.5 for m =
n − 1. □

Theorem 5.9. — The functions Fλ/µ(κ1, . . . , κn | Ξ, S) are symmetric
polynomials in κ1, . . . , κn.

Proof. — The functions Fλ/µ(κ1, . . . , κn | Ξ, S) were observed to be poly-
nomials in Section 5.3. To prove that they are symmetric, we use Propo-
sition 5.3 to write Fs

λ/µ(κ1, . . . , κn | Ξ, S) as a matrix coefficient of a com-
position of the row operators B(κ | τ i

SΞ, τ i
ΞS) with shifted inhomogeneities.

Proposition 4.5 shows that this composition is invariant under simple trans-
positions exchanging κi and κi+1, which implies the claim. □

Note that, via Proposition 5.4 and the second relation from Proposi-
tion 4.5, the same argument can be applied to the functions F̃λ/µ(u1, . . . , un |
Ξ, S) to directly prove that they are symmetric.

For our next result we need dual functions defined by

F̃
∗
λ′/µ′(u1, . . . , un | Ξ, S) := cS(λ)

cS(µ) F̃λ′/µ′(u1, . . . , un | Ξ, S),

F̃
s∗
λ′/µ′(u1, . . . , un | Ξ, S) := S2µ

S2λ

cS(µ)
cS(λ) F̃

s
λ′/µ′(u1, . . . , un | Ξ, S)

= (−1)|µ|−|λ| Sµ

Sλ

cS(µ)
cS(λ) F̃

∗
λ′/µ′(u1, . . . , un | Ξ, S). (5.7)

In view of Proposition 5.4, we have

F̃
s∗
λ′/µ′(u1, . . . , un | Ξ, S) = ⟨µ|B̃∗(un | Ξ, S) . . . B̃∗(u2 | Ξ, S)B̃∗(u1 | Ξ, S)|λ⟩.

(5.8)
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Theorem 5.10. — For any partitions µ, ν the following identity holds∑
λ

F̃
∗
λ′/ν′(u1, . . . , um | Ξ, S)Fλ/µ(κ1, . . . , κn | Ξ, S)

=
n∏

i=1

m∏
j=1

1−ujκi

1−ujξisi

∑
λ

Fν/λ(κ1, . . . , κn | Ξ, S)F̃
∗
µ′/λ′(u1, . . . , um | τn

S Ξ, τn
Ξ S),

with both sums above having finitely many nonzero terms.

Proof. — Note that by (5.2) and (5.7), Theorem 5.10 is equivalent to the
following identity:∑

λ

F̃
s∗
λ′/ν′(u1, . . . , um | Ξ, S)Fs

λ/µ(κ1, . . . , κn | Ξ, S)

=
n∏

i=1

m∏
j=1

1−ujκi

1−ujξisi

∑
λ

Fs
ν/λ(κ1, . . . , κn | Ξ, S)F̃

s∗
µ′/λ′(u1, . . . , um | τn

S Ξ, τn
Ξ S).

So we will actually prove this identity instead of the identity in the theorem.
The proof follows a standard outline given in [15, Theorem 7.3]: We rewrite
the matrix element

Eν
µ(κ1, . . . , κn; u1, . . . , um | Ξ, S) := ⟨ν|B̃∗(um | Ξ, S) . . . B̃∗(u1 | Ξ, S)

× B(κ1 | τSΞ, τΞS)B(κ2 | τ2
S Ξ, τ2

ΞS) . . .B(κn | τn
S Ξ, τn

Ξ S)|µ⟩

in two different ways, corresponding to the two sides of the claim.

For the left-hand side we insert
∑

λ |λ⟩⟨λ| = id between the operators C
and B̃∗ to get

Eν
µ(κ1, . . . , κn; u1, . . . , um | Ξ, S)

=
∑

λ

F̃
s∗
λ′/ν′(u1, . . . , um | Ξ, S)Fs

λ/µ(κ1, . . . , κn | Ξ, S),

where we have used Proposition 5.3 and relation (5.8).

On the other hand, set

B(n)(κ1, . . . , κn | Ξ, S) := B(κ1 | τSΞ, τΞS)B(κ2 | τ2
S Ξ, τ2

ΞS) . . .B(κn | τn
S Ξ, τn

Ξ S)

and iterate the exchange relation from Proposition 4.6 to get

B̃∗(u | Ξ, S)B(n)(κ1, . . . , κn | Ξ, S)

=
n∏

i=1

1 − uκi

1 − uξisi
B(n)(κ1, . . . , κn | Ξ, S)B̃∗(u | τn

S Ξ, τn
Ξ S).
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Hence,

Eν
µ(κ1, . . . , κn; u1, . . . , um | Ξ, S) =

n∏
i=1

m∏
j=1

1 − ujκi

1 − ujξisi

× ⟨ν|B(n)(κ1, . . . , κn | Ξ, S)B̃∗(um | τn
S Ξ, τn

Ξ S) . . . B̃∗(u1 | τn
S Ξ, τn

Ξ S)|µ⟩.

Now we can again insert
∑

λ |λ⟩⟨λ| = id and obtain

Eν
µ(κ1, . . . , κn; u1, . . . , um | Ξ, S) =

n∏
i=1

m∏
j=1

1 − ujκi

1 − ujξisi

×
∑

λ

Fs
ν/λ(κ1, . . . , κn | Ξ, S)F̃

s∗
µ′/λ′(u1, . . . , um | τn

S Ξ, τn
Ξ S). □

By setting µ = ∅ or (µ, ν) = (∅,∅) and noting that

F∅/λ(κ1, . . . , κn | Ξ, S) = F̃∅/λ(u1, . . . , um | Ξ, S) = 1λ=∅,

Theorem 5.10 immediately leads to the following results:

Corollary 5.11 (Pieri rule). — For any partition ν we have
n∏

i=1

m∏
j=1

1 − ujκi

1 − ujξisi
Fν(κ1, . . . , κn | Ξ, S)

=
∑

λ

F̃
∗
λ′/ν′(u1, . . . , um | Ξ, S)Fλ(κ1, . . . , κn | Ξ, S).

Corollary 5.12 (Dual Cauchy identity). — We have∑
λ

F̃
∗
λ′(u1, . . . , um | Ξ, S)Fλ(κ1, . . . , κn | Ξ, S) =

n∏
i=1

m∏
j=1

1 − ujκi

1 − ujξisi
.

5.5. Integral representation

We can use the dual Cauchy identity of Corollary 5.12 and previously
known results about inhomogeneous (stable) spin Hall–Littlewood functions
to obtain a multivariate integral representation for the inhomogeneous spin
q-Whittaker functions.

To formulate the result, set q to be a complex number such that 0 <
|q| < 1 and assume that the variables κ1, . . . , κn and the parameters Ξ =
(ξ0, ξ1, . . . ), S = (s0, s1, . . . ) are complex numbers such that there exists a
positively-oriented simple contour C on the complex plane satisfying the
following conditions:
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siξ
−1
i

s−1
i ξ−1

iC

0
qC

Figure 5.3. A possible of configuration of {ξisi}∞
i=1, {ξ−1

i si}∞
i=1 and

C for Theorem 5.13.

• all points {0} and {ξ−1
i si}∞

i=1 are inside the contour C;
• all points {ξ−1

i s−1
i }∞

i=1 are outside of the contour C;
• the image qC of the contour C under the multiplication by q is in-

side C.

An example of such a configuration is sketched in Figure 5.3.

Theorem 5.13. — Under the above assumptions, we have

Fµ(κ1, . . . , κn | Ξ, S) =
∮

C

dz1

2πiz1
· · ·
∮

C

dzk

2πizk

∏
α<β

zα − zβ

zα − qzβ

×
k∏

α=1

(
ξ−1

0
zα − ξ−1

µ′
α

sµ′
α

µ′
α−1∏
j=1

1 − sjξjzα

zαξj − sj

n∏
i=1

1 − zακi

1 − zαξisi

)
,

where k = µ1.

Proof. — We will use the orthogonality of F̃λ, cf. [10, Theorem 7.4]: for
any pair of partitions λ, µ such that l(µ) ⩽ L we have

(q; q)L−l(µ)cS(λ)
(1 − q)L

∮
C

dz1

2πi · · ·
∮

C

dzL

2πi
∏
α<β

zα − zβ

zα − qzβ
F̃λ(z1, . . . , zL | Ξ, S)

×
L∏

α=1
z−1

α φ̃µα(z−1
α | Ξ, S) = 1λ=µ, (5.9)

where
Ξ = (ξ−1

0 , ξ−1
1 , ξ−1

2 , . . . )
and the functions φ̃k(u | Ξ, S) were defined at the end of Section 5.2.
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Fixing a partition µ, conjugating partitions in (5.9), setting L = k =
µ1 = l(µ′) and multiplying by Fλ(κ1, . . . , κn | Ξ, S), we get

1
(1 − q)k

∮
C

dz1

2πi · · ·
∮

C

dzk

2πi
∏
α<β

zα − zβ

zα − qzβ

× F̃
∗
λ′(z1, . . . , zk | Ξ, S)Fλ(κ1, . . . , κn | Ξ, S)

k∏
α=1

z−1
α φ̃µ′

α
(z−1

α | Ξ, S)

= 1λ=µ · Fλ(κ1, . . . , κn | Ξ, S).

Summing over λ and using Corollary 5.12, we arrive at the integral repre-
sentation for Fµ(κ1, . . . , κn | Ξ, S). □

6. A Cauchy identity

In this section we use fusion of B̃∗-operators to get a Cauchy-like iden-
tity between inhomogeneous spin q-Whittaker functions Fλ/µ similar to [10,
Corollary 4.10] and [15, Theorem 7.1]. However, during the proof we will
lose the degrees of freedom corresponding to the parameters Ξ, proving an
identity involving only functions with Ξ = S and Ξ = S̄. Recall that for a
sequence S = (s0, s1, . . . ) we set

S̄ := (s−1
0 , s−1

1 , s−1
2 , . . . ).

6.1. Ξ = S and Ξ = S̄ specializations

We start with the description of a simplification of functions
Fλ/µ(κ1, . . . , κn|Ξ, S) when Ξ = S and Ξ = S̄. In these two cases, the param-
eters of the vertex weights in the partition function ZW

(a1,...,an)
λ/µ (κ1, . . . , κn |

Ξ, S) degenerate to ( si+j√
κi

, si+j) for Ξ = S, and to (κ− 1
2

i , sj) for Ξ = S̄, where
i and j denote the row and the column of the corresponding vertex. These
parameters are depicted in Figure 6.1.

Note that the action of the mixed shift operators τΞ and τS also simplifies:

τSS = τS, τSS̄ = S̄, τ S̄S = S,

where τ denotes the ordinary shift operator

τ iS := (si, si+1, si+2, . . . ), i ⩾ 0.
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. . .

. . .

. . .

...
...

(
s2√
κ1

, s2
) (

s3√
κ1

, s3
)

(
s3√
κ2

, s3
) (

s4√
κ2

, s4
)

(
sn+1√

κn
, sn+1

) (
sn+2√

κn
, sn+2

)

· · ·m2(λ′)m1(λ′)

an

a2

a1

· · ·m2(µ′)m1(µ′)

0

...

0

0

. . .

. . .

. . .

...
...

(
κ

−1/2
1 , s1

) (
κ

−1/2
1 , s2

)
(

κ
−1/2
2 , s1

) (
κ

−1/2
2 , s2

)

(
κ

−1/2
n , s1

) (
κ

−1/2
n , s2

)

· · ·m2(λ′)m1(λ′)

an

a2

a1

· · ·m2(µ′)m1(µ′)

0

...

0

0

Figure 6.1. Partition functions ZW
(a1,...,an)
λ/µ (κ1, . . . , κn | S, S) and

ZW
(a1,...,an)
λ/µ (κ1, . . . , κn | S̄, S)

Then the functions Fλ/µ(κ1, . . . , κn | Ξ, S) simplify to

Fλ/µ(κ1, . . . , κn | S, S)

= (−1)|µ|−|λ| (τnS)µ

Sλ

cτnS(µ)
cS(λ) Fs

λ/µ(κ1, . . . , κn | S, S)

= (−1)|µ|−|λ| (τnS)µ

Sλ

cτnS(µ)
cS(λ)

×
∑

a1,...,an

(
n∏

i=1
κai

i

(s2
i /κi; q)ai

(q; q)ai

)
ZW

(a1,...,an)
λ/µ (κ1, . . . , κn | S, S).

Fλ/µ(κ1, . . . , κn | S̄, S)

= (−1)|µ|−|λ| Sµ

Sλ

cS(µ)
cS(λ)F

s
λ/µ(κ1, . . . , κn | S̄, S)

= (−1)|µ|−|λ| Sµ

Sλ

cS(µ)
cS(λ)

×
∑

a1,...,an

(
n∏

i=1
(κis

2
0)ai

(κ−1
i ; q)ai

(q; q)ai

)
ZW

(a1,...,an)
λ/µ (κ1, . . . , κn | S̄, S).
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6.2. Cauchy identity

For any pair of partitions λ, µ define dual inhomogeneous spin q-Whittaker
polynomials by (cf. (5.2))

F∗
λ/µ(κ1, . . . , κn | Ξ, S) := cS(λ)

cτn
Ξ S(µ)Fλ/µ(κ1, . . . , κn | Ξ, S).

Additionally, define

Fs∗
λ/µ(κ1, . . . , κn | Ξ, S) := (τn

Ξ S)2µ

S2λ

cτn
Ξ S(µ)

cS(λ) Fs
λ/µ(κ1, . . . , κn | Ξ, S)

= (−1)|µ|−|λ| (τn
Ξ S)µ

Sλ

cτn
Ξ S(µ)

cS(λ) F∗
λ/µ(κ1, . . . , κn | Ξ, S).

In view of Proposition 5.3, we have

Fs∗
λ/µ(κ1, . . . , κn | Ξ, S)

= ⟨µ|B∗(κn | τn−1
S Ξ, τn−1

Ξ S) . . .B∗(κ2 | τSΞ, τΞS)B∗(κ1 | Ξ, S)|λ⟩.

Theorem 6.1. — The following identity holds in the space of formal
power series in κ1, . . . , κn, χ1, . . . , χm, q with rational in S coefficients:∑

λ

F∗
λ/ν(χ1, . . . , χm | S̄, S)Fλ/µ(κ1, . . . , κn | S, S)

=
n∏

i=1

m∏
j=1

(κi; q)∞(s2
i χj ; q)∞

(s2
i ; q)∞(κiχj ; q)∞

×
∑

λ

Fν/λ(κ1, . . . , κn | S, S)F∗
µ/λ(χ1, . . . , χm | τnS̄, τnS). (6.1)

Proof. — Similarly to the proof of Theorem 5.10, we will actually prove
an equivalent identity∑

λ

Fs∗
λ/ν(χ1, . . . , χm | S̄, S)Fs

λ/µ(κ1, . . . , κn | S, S)

=
n∏

i=1

m∏
j=1

(κi; q)∞(s2
i χj ; q)∞

(s2
i ; q)∞(κiχj ; q)∞

×
∑

λ

Fs
ν/λ(κ1, . . . , κn | S, S)Fs∗

µ/λ(χ1, . . . , χm | τnS̄, τnS), (6.2)

which is obtained by rescaling F, F∗ to Fs, Fs∗.

Following the proof of Theorem 5.10, let
B(n)(κ1, . . . , κn | S, S) = B(κ1 | τS, τS) . . .B(κn | τnS, τnS).

– 59 –



Alexei Borodin and Sergei Korotkikh

Then the exchange relation of Proposition 4.6 together with the relation
τSS = τS imply

B̃∗(1 | S, S) . . . B̃∗(qJ−1 | S, S)B(n)(κ1, . . . , κn | S, S)

=
n∏

i=1

(κi; q)J

(s2
i ; q)J

B(n)(κ1, . . . , κn | S, S)B̃∗(1 | τnS, τnS) . . . B̃∗(qJ−1 | τnS, τnS).

Now we can use Proposition 4.3 to get

B∗(qJ | S̄, S)B(n)(κ1, . . . , κn | S, S)

=
n∏

i=1

(κi; q)∞(s2
i qJ ; q)∞

(s2
i ; q)∞(κiqJ ; q)∞

B(n)(κ1, . . . , κn | S, S)B∗(qJ | τnS̄, τnS).

Iterating this equation m-times for J = J1, . . . , Jm, we obtain

B∗(qJm | S̄, S) . . .B∗(qJ1 | S̄, S)C(n)(κ1, . . . , κn | S, S)

=
n∏

i=1

m∏
j=1

(κi; q)∞(s2
i qJj ; q)∞

(s2
i ; q)∞(κiqJj ; q)∞

B(n)(κ1, . . . , κn | S, S)

× B∗(qJm | τnS̄, τnS) . . .B∗(qJ1 | τnS̄, τnS),

which, after taking the matrix element ⟨ν| · |µ⟩, inserting a summation∑
λ |λ⟩⟨λ| = id, and using both identities from Proposition 5.3, gives the

claim of the theorem for χr = qJr .

Up until now we have operated with finite sums of rational functions: one
can see(9) that for (χ1, . . . , χm) = (qJ1 , . . . , qJm) with {Jr}m

r=1 ∈ Z⩾1 both
sums in (6.1) have finitely many nonzero terms. But for general parameters
χ the sum in the left-hand side is infinite, so we need to be careful with the
general statement.

We say that a formal power series f ∈ K[[x1, . . . , xr]] over a field K
is of order at least N if coefficients of all monomials xa1

1 . . . xar
r such that∑r

i=1 ai < N are equal to 0. We claim that Fλ/µ(κ1, . . . , κn | Ξ, S) is a
formal power series in K[[κ1, . . . , κn, q]] of order at least λ1 − µ1 − n, where
K = Q(Ξ,S) is the field of rational functions in variables Ξ = (ξ0, ξ1, . . . )
and S = (s0, s1, . . . ). To see that, note that the matrix coefficients of Ta are
formal power series in κ, q, that is

⟨λ|Ta(κ | Ξ, S)|µ⟩ ∈ K[[κ, q]],

(9) for example, using Proposition 4.3 and the discussion from Section 4.3
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while the coefficient of Ta in the definition (4.7) of the operator B(κ | Ξ, S)
has order at least a − 1 with respect to κ, q:

κasa
0ξ−a

0
(κ−1s0ξ0; q)a

(q; q)a
=
∏a

i=1(κξ−1
0 − s2

0qi−1)
(q; q)a

.

Hence, the matrix element
⟨λ|C(κ | Ξ, S)|µ⟩ ∈ K[[κ, q]]

has order at least λ1 − µ1 − 1. Therefore, by Proposition 5.3, the function
Fλ/µ(κ1, . . . , κn | Ξ, S) is a formal power series in κ1, . . . , κn, q of order at
least λ1 − µ1 − n.

Now we can finish the proof. The right-hand side of (6.1) is clearly a
formal power series in χ, κ, q. For the sum on the left-hand side, the term
corresponding to λ has order at least 2λ1 − µ1 − ν1 − n − m. Moreover, the
summand corresponding to λ vanishes if l(λ) is greater than either l(µ) + n
or l(ν) + m. Overall this means that all but finitely many summands in the
left-hand side have order at least N for any N ⩾ 1. Hence both sides of (6.1)
are elements of K[[κ1, . . . , κn, χ1, . . . , χm, q]], which are equal after substitu-
tion (χ1, . . . , χm) = (qJ1 , . . . , qJm) for any integer vector (Jr)m

r=1 ∈ Zm
⩾1

(10) .
An iterative application of the following elementary statement finishes the
proof. □

Lemma 6.2 ([34, Lemma 3.2]). — Let F (z, q) and G(z, q) be formal
power series satisfying F (qJ , q)=G(qJ , q) for infinitely many integers J ⩾1.
Then F (z, q) = G(z, q).

Remark 6.3. — The convergence from Theorem 6.1 also holds numeri-
cally if

|κ1|, . . . , |κn| ⩽ κ, |χ1|, . . . , |χm| ⩽ χ, 0 < |q|, κχ < 1,

and s2
i ̸= q−m for any i, m ∈ Z⩾0. For the right-hand side of (6.1) the con-

vergence is immediate, while for the left-hand side this can be verified as
follows: Using Proposition 5.6, the one variable functions Fλ/µ(κi | Ξ, S) can
be bounded by C|κi||λ| (τSΞ)µ

(Ξ)λ , where C is a positive constant not depending
on λ, µ (to reach this bound it is enough to bound a finite number of possibly
appearing q-Pochhammer symbols (x, q)a by a uniform constant and rear-
range the remaining terms). Then, by the branching rule of Proposition 5.5,
we obtain an upper bound

|Fλ/µ(κ1, . . . , κn | Ξ, S)| ⩽ C|λ|dκ|λ|/(Ξ)λ,

(10) Note that such a substitution is well-defined and it behaves well with respect to the
convergence of formal power series, as well as the notion of order defined earlier. Indeed,
the substitution cannot reduce the order of a formal power series, hence the substitution
preserves convergence.
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for some C, d > 0 not depending on λ. This bound is sufficient for proving
the convergence of the left-hand side of (6.1).

Remark 6.4. — One can note a similarity between Theorem 6.1 and the
Ξ = S case of the Cauchy identity for inhomogeneous spin Hall–Littlewood
functions [10, Corollary 4.10]. Thus, one might hope that it is possible to
remove the restriction Ξ = S, although we don’t know how to do that.

By setting µ and ν equal to ∅ one immediately obtains a Cauchy type
summation identity:

Corollary 6.5. — The following identity holds in the space of formal
power series in κ1, . . . , κn, χ1, . . . , χm, q with rational in S coefficients:

∑
λ

F∗
λ(χ1, . . . , χm | S̄, S)Fλ(κ1, . . . , κn | S, S) =

n∏
i=1

m∏
j=1

(κi; q)∞(s2
i χj ; q)∞

(s2
i ; q)∞(κiχj ; q)∞

.

The same identity holds numerically for 0< |q|, |κ1|, ..., |κn|, |χ1|, ..., |χm|<1.

Remark 6.6. — As noted in [15, Section 7.2], in the simplest case when
n = m = 1 Corollary 6.5 reads∑

a⩾0
(−κ/s0)a (κ−1s2

1; q)a

(s2
1; q)a

· (−χs0)a (χ−1; q)a

(q; q)a
= (κ; q)∞(s2

1χ; q)∞

(s2
1; q)∞(κχ; q)∞

,

which is equivalent to the q-Gauss summation identity. Actually, we have

∑
a⩾0

(−κ/ξ0)a (κ−1s1ξ1; q)a

(s2
1; q)a

· (−χξ0)a (χ−1s1ξ−1
1 ; q)a

(q; q)a

= (κs1/ξ1; q)∞(χs1ξ1; q)∞

(s2
1; q)∞(κχ; q)∞

,

which, along the lines of Remark 6.4, may correspond to a hypothetical more
general version of Theorem 6.1 with arbitrary Ξ.

Appendix

Below we give the expressions and identities which are frequently used
throughout the paper as intermediate steps for the main results. They are
listed in the order they appear in the text.
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Vertex weights ws
u;s, W s

t,s, ws∗
u;s and W s∗

t,s, Section 2:

0 0

g

g

ws
u;s

0 1

g

g − 1

ws
u;s

1 0

g

g + 1

ws
u;s

1 1

g

g

ws
u;s

1 − suqg

1 − su

(qg − 1)su

1 − su

1 − s2qg

1 − su

s2qg − su

1 − su

(2.2)

j l

i

k

W s
t,s

= 1i+j=k+l 1i⩾l s2lt−2l (s2/t2; q)i−l(t2; q)l

(s2; q)i

(q; q)i

(q; q)i−l(q; q)l
,

(2.9)

0 0

g

g

ws∗
u;s

0 1

g

g + 1

ws∗
u;s

1 0

g

g − 1

ws∗
u;s

1 1

g

g

ws∗
u;s

1 − suqg

1 − su

−s−1u(1 − s2qg)
1 − su

1 − qg

1 − su

qg − s−1u

1 − su

(2.13)

j l

i

k

W s∗
t,s = 1i+l=j+k 1i⩾j t2i−2j (s2/t2; q)i−j(t2; q)j

(s2; q)i

(q; q)i

(q; q)i−j(q; q)j
.

(2.18)
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Deformed Yang–Baxter equations, see Section 2 for the case η = 1 and
Section 3 for the general case:

a1

b1

a2

b2

a3

b3

W s
ηt2,ηt3

W s
t1,t3

W s
ηt1,ηt2 =

a1

b1
a2

b2

a3

b3

W s
ηt1,ηt3

W s
t2,t3

W s
t1,t2 (3.1)

b1

a1

a2

b2

a3

b3

W s
t,s

ws∗
ηx;ηs

ws∗
y;t =

b1

a1

a2

b2

a3

b3

ws∗
x;s

W s
t,s

ws∗
ηy;ηt (3.2)

Notation for the mixed shift operator and the inverse sequence, here
A = (a0, a1, a2, . . . ):

τk
BA = (a(k)

0 , a
(k)
1 , . . . ), a

(k)
i =

√
ai+kbi+kai/bi, A = (a−1

0 , a−1
1 , a−1

2 , . . . ).

Row operators Ta,T∗
a and T ∗

a , Section 4: Row operators Ta,T∗
a and T ∗

a ,
Section 4:

⟨λ|Ta(κ | Ξ, S) |µ⟩ = a . . . 0

m1(µ′)

m1(λ′)

m2(µ′)

m2(λ′)(√
s1ξ1

κ
, s1

)(√
s2ξ2

κ
, s2

)
, (4.2)
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⟨µ|T∗
a(κ | Ξ, S) |λ⟩ =

(
κ

s0ξ0

)λ1

a . . . 0

m1(λ′)

m1(µ′)

m2(λ′)

m2(µ′)(√
s1ξ1

κ
, s1

)(√
s2ξ2

κ
, s2

)
,

(4.5)

⟨µ| T ∗
a (u | Ξ, S) |λ⟩ = a . . . 0

m1(λ′)

m1(µ′)

m2(λ′)

m2(µ′)

(uξ1; s1) (uξ2; s2)
. (4.6)

Row operators B,B∗ and B̃∗, Section 4:

B(κ | Ξ, S) :=
∑
a⩾0

(κs0/ξ0)a (κ−1s0ξ0; q)a

(q; q)a
Ta(κ | Ξ, S), (4.7)

B∗(κ | Ξ, S) =
∑
a⩾0

T∗
a(κ | Ξ, S),

B̃∗(u | Ξ, S) =
1∑

a=0
(−uξ0/s0)a T ∗

a (u | Ξ, S). (4.9)

The duality between B and B∗, Proposition 4.1:

⟨µ|B∗(κ | Ξ, S)|λ⟩ = (τΞS)2µ

S2λ

cτΞS(µ)
cS(λ) ⟨λ|B(κ | τSΞ, τΞS)|µ⟩, (4.12)

where

cS(λ) :=
∏
i⩾1

(s2
i ; q)λi−λi+1

(q; q)λi−λi+1

, S2λ :=
∏
i⩾1

(si−1)2λi .

Fusion of operators, Proposition 4.3:

B̃∗(1 | S, S)B̃∗(q | S, S) . . . B̃∗(qJ−1 | S, S) = B∗(qJ | S̄, S). (4.15)

Exchange relations, Propositions 4.5, 4.6:

B(κ1 | Ξ, S)B(κ2 | τSΞ, τΞS) = B(κ2 | Ξ, S)B(κ1 | τSΞ, τΞS), (4.19)

B̃∗(u1 | Ξ, S)B̃∗(u2 | Ξ, S) = B̃∗(u2 | Ξ, S)B̃∗(u1 | Ξ, S),

B̃∗(u | Ξ, S)B(κ | τSΞ, τΞS) = 1 − uκ

1 − uξ1s1
B(κ | τSΞ, τΞS)B̃∗(u | τSΞ, τΞS).

(4.20)
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The functions Fλ/µ and F̃λ/µ are defined using vertex models in Sec-
tions 5.1 and 5.2. The renormalizations Fs

λ/µ and F̃
s
λ/µ are given by:

Fλ/µ(κ1, . . . , κn | Ξ, S) := (−1)|µ|−|λ| (τn
Ξ S)µ

Sλ

cτn
Ξ S(µ)

cS(λ) Fs
λ/µ(κ1, . . . , κn | Ξ, S),

F̃λ′/µ′(u1, . . . , un | Ξ, S) := (−1)|µ|−|λ| Sµ

Sλ

cS(µ)
cS(λ) F̃

s
λ′/µ′(u1, . . . , un | Ξ, S),

cS(λ) :=
∏
i⩾1

(s2
i ; q)λi−λi+1

(q; q)λi−λi+1

, Sλ :=
∏
i⩾1

sλi
i−1.

The expressions for Fs
λ/µ and F̃

s
λ/µ in terms of B and B̃∗, Propositions 5.3,

5.4:

Fs
λ/µ(κ1, . . . , κn | Ξ, S)

= ⟨λ|B(κ1 | τSΞ, τΞS)B(κ2 | τ2
S Ξ, τ2

ΞS) . . .B(κn | τn
S Ξ, τn

Ξ S)|µ⟩

= S2λ

(τΞS)2µ

cS(λ)
cτΞS(µ)

× ⟨µ|B∗(κn | τn−1
S Ξ, τn−1

Ξ S) . . .B∗(κ2 | τSΞ, τΞS)B∗(κ1 | Ξ, S)|λ⟩, (5.4)

F̃
s
λ′/µ′(u1, . . . , un | Ξ, S)

= S2λ

S2µ

cS(λ)
cS(µ) ⟨µ|B̃∗(un | Ξ, S) . . . B̃∗(u2 | Ξ, S)B̃∗(u1 | Ξ, S)|λ⟩. (5.5)

The dual functions F∗
λ/µ, Section 6:

F∗
λ/µ(κ1, . . . , κn | Ξ, S) := cS(λ)

cτn
Ξ S(µ)Fλ/µ(κ1, . . . , κn | Ξ, S).

Fs∗
λ/µ(κ1, . . . , κn | Ξ, S) := (τn

Ξ S)2µ

S2λ

cτn
Ξ S(µ)

cS(λ) Fs
λ/µ(κ1, . . . , κn | Ξ, S)

= (−1)|µ|−|λ| (τn
Ξ S)µ

Sλ

cτn
Ξ S(µ)

cS(λ) F∗
λ/µ(κ1, . . . , κn | Ξ, S).
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