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Persisting entropy structure for nonlocal cross-diffusion
systems (∗)

Helge Dietert (1) and Ayman Moussa (2)

ABSTRACT. — For cross-diffusion systems possessing an entropy (i.e. a Lyapunov
functional) we study nonlocal versions and exhibit sufficient conditions to ensure
that the nonlocal version inherits the entropy structure. These nonlocal systems
can be understood as population models per se or as approximation of the classical
ones. With the preserved entropy, we can rigorously link the approximating nonlocal
version to the classical local system. From a modelling perspective, this gives a way
to prove a derivation of the model and, from a PDE perspective, this provides a
regularisation scheme to prove the existence of solutions. A guiding example is the
SKT model [22]. In this context, we answer positively the question raised by [12] for
the derivation and thus complete the derivation.

1. Introduction

1.1. Cross-diffusion systems with entropy structure

Our starting points are cross-diffusion systems of n species with densities
u = (ui)1⩽i⩽n solving a system

∂tui − div

 n∑
j=1

aij(u)∇uj

 = 0, for i = 1, . . . , n, (1.1)

on a domain Ω supplemented with boundary conditions and initial data uinit.
Here aij are given scalar functions (Rn

⩾0 → R⩾0) and the unknowns are the
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model densities ui’s, which are therefore expected to be nonnegative. The
matrix A(u) := (aij(u)) is called the diffusion matrix and is always assumed
to be positive definite. As this work focuses on the entropy structure for the
diffusion, we do not consider here any reaction terms.

Without any assumptions on the aij ’s, the only estimate that we have on
system (1.1) is the conservation of the overall mass, i.e.

d
dt

∫
Ω
ui = 0,

for i = 1, . . . , n. Due to the severe nonlinearity of the system, this sole control
is not sufficient to obtain the existence of global solutions. Searching for a
Lyapunov functional of the form

H(u) :=
∫

Ω

n∑
i=1

hi(ui), (1.2)

where hi ∈ C 0(R⩾0) ∩ C 2(R>0), we find formally without boundary terms
that

d
dtH(u) = −

∫
Ω

∇u1
...

∇un

 ·M(u)

∇u1
...

∇un

 ,

with M : Rn
>0 → Rn×n defined by

M(y) =


h′′

1(y1) 0 . . . 0
0 h′′

2(y2) . . . 0
...

...
. . .

...
0 0 . . . h′′

n(yn)



a11(y) a12(y) . . . a1n(y)
a21(y) a22(y) . . . a2n(y)

...
...

. . .
...

an1(y) an2(y) . . . ann(y)

. (1.3)

Hence we have a positive dissipation I = −dH/dt if (the symmetric part of)
M is positive semi-definite. This motivates the following definition, where
the second part quantifies the dissipation.

Definition 1.1 (Entropy structure). — We say that the system (1.1)
has an entropy structure if there exist n functions h1, . . . , hn ∈ C 0(R⩾0) ∩
C 2(R>0) such that the corresponding matrix map M : Rn

>0 → Rn×n defined
by (1.3) takes its values in the cone of positive definite matrices. We say that
this entropy structure is uniform when there exist furthermore n functions
α1, . . . , αn : R⩾0 → R⩾0 such that for all (z, v) ∈ Rn × Rn

>0 it holds

zT ·M(v)z ⩾
n∑

i=1
αi(vi)2z2

i . (1.4)

For a given entropy structure the functions hi’s are called the entropy densi-
ties, αi’s are the dissipations and the functional H defined in (1.2) is called
the entropy.
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Remark 1.2. — From the assumed positive definiteness of the diffusion
matrix A, it directly follows that for every entropy structure all the functions
hi, i = 1, . . . , n, are convex.

Remark 1.3. — For typical examples, as the SKT system (1.5) below, the
entropy densities hi have diverging derivative towards the origin so that we
define the matrix map M only for positive arguments. In this work, we also
take R⩾0 for the range of the densities which is the most common case. In
general the entropy structure can also be defined for bounded subsets of R,
cf. [15].

Smooth solutions for the system (1.1) are known to exist, at least lo-
cally in time, thanks to the work of Amann [1] which gives also a criteria
of explosion for such solutions. Apart from the very specific case of triangu-
lar system [13], for global solutions the current literature allows only weak
solutions and relies crucially on the entropy structure.

For an overview of such cross-diffusion systems we refer to [15], which
gives a list of examples in the introduction and also uses the quantified
condition (1.4). Note that [15] allows in principle more general entropies
but, apart from the volume-filling models, all examples have the additive
form (1.2) required in this work.

A guiding example is the SKT system with densities u1 and u2{
∂tu1 = ∆

(
(d1 + d12u2)u1

)
,

∂tu2 = ∆
(
(d2 + d21u1)u2

) (1.5)

with parameters d1, d2, d12, d21 ⩾ 0. This system has been introduced by
Shigesada, Kawasaki and Teramoto [22]. Writing the system in divergence
form (1.1), the matrix (aij(u))ij reads(

d1 + d12u2 d12u1
d21u2 d2 + d21u1

)
.

For nonnegative solutions this matrix has nonnegative trace and determi-
nant. As remarked by Chen and Jüngel [6] the following entropy allows to
symmetrize the system

H(u1, u2) :=
∫
Td

(
h1(u1) + h2(u2)

)
, (1.6)

with
h1(z) = d21ψ(z), h2(z) := d12ψ(z), ψ(z) = z log(z) − z + 1. (1.7)

Indeed, one checks that

M(u1, u2) =
(
h′′

1(u1) 0
0 h′′

2(u2)

)(
d1 + d12u2 d12u1
d21u2 d2 + d21u1

)
= d12d21

(
⋆ 1
1 ⋆

)
,
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so that M is symmetric and still has nonnegative determinant and trace.
Thus M is positive semi-definite and forms with H an entropy structure
again under the necessary condition that the solution is nonnegative.

It is also known (see [10, 15, 16] for instance) that the previous entropy
structure of the additive form (1.2) can be found for substantial generaliza-
tion of (1.5) in the following general class of cross-diffusion systems{

∂tu1 = ∆
(
µ1(u1, u2)u1

)
,

∂tu2 = ∆
(
µ2(u1, u2)u2

)
,

(1.8)

where the nonlinear functions µ1 and µ2 are assumed C 0(R2
⩾0) ∩ C 1(R2

>0)
so that (1.8) can be written in divergence form (1.1) in order for the entropy
structure to makes sense. For the analysis of the PDE the difficulty comes
from the cross-diffusion effect so that we will focus on the case without self-
diffusion (imposing that µi does not depend on ui){

∂tu1 = ∆
(
µ1(u2)u1

)
,

∂tu2 = ∆
(
µ2(u1)u2

)
.

(1.9)

The contribution of this paper is a constructive answer to the following
question.

Main question. — For a cross-diffusion system with an entropy H of
the form (1.2), does there exist a spatial mollification of the diffusion such
that the mollified system still has an entropy?

These mollified systems are called nonlocal because the diffusion rate
of one species at a given point x does not depend anymore solely on the
population density at this place, but on a space average around it.

We provide a family of spatial mollifications of the cross-diffusion keeping
the entropy structure, where our intuition takes its origin from the article [8]
in which the first author of the current article exhibited an entropy struc-
ture for the SKT systems under a spatial discretization. To the best of our
knowledge, the current literature does not offer any prior example of per-
sisting entropy structure for a nonlocal cross-diffusion systems.

Approximation results. The usage of a spatial mollification was first
proposed by Bendahme et al. [3] and Lepoutre et al. [17] where no rigorous
link with the original model was established.

Having the entropy structure at hand, we can rigorously perform the limit
from the mollified nonlocal system to the original local system. This gives
immediately a new proof of existence of global weak entropy solutions.
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Such an existence result is nontrivial because an adequate approximation
scheme has to create nonnegative solutions and to keep the entropy structure,
as it has been done before by an entropic change of variable [15] or with a
semi-discrete scheme [10].

Derivation from particle models. The main motivation comes from
the derivation of many particle models as a mean-field limit. The starting
point is by Fontbona and Méléard [12] who performed a stochastic derivation
of a regularised cross-diffusion system with a nonlocal spatial regularisation.
Their aim was not to produce an adequate approximation scheme but to
derive the SKT system from a particle model. However, they could not handle
the last step of the derivation and they explicitly raised the question, whether
it is possible to find the classical local cross-diffusion system in the limit of
small regularisation.

A partial answer in this direction is given in [20] in the special case of
triangular diffusion coefficients. The recent work by Chen et al. [5] uses the
same approximation by spatial mollifiers and manage to prove rigorously
the limit of small regularization and large population at the same time.
In the aspect of taking both asymptotic limits at once, the analysis of [5]
goes beyond the program of [12]. However, for proving the uniform stability
of the mollified systems, [5] impose the assumption of small cross-diffusion
coefficients so that the cross-diffusion terms can be handled perturbatively.
Hence the result of [5] does not cover the full SKT system (1.5).

In general, our proposed regularisation scheme is different to the one
used in [5, 12] but agrees on the important example of a linear rate SKT sys-
tem (1.5). Hence we provide, to the best of our knowledge, the first complete
derivation of this popular cross-diffusion model via nonlocal approximation.

For completeness, we note that other approaches for the derivation of
cross-diffusion systems are fast reaction asymptotics [9, 14, 24] or spatial
discretisations (without convolution). The later method was formally pro-
posed in [8] and recently revisited rigorously in [2].

Plan. In the following Sections 1.2 and 1.3, we introduce our nonlocal
mollifications keeping the entropy structure. We then state the existence and
convergence results for the mollified systems in the following Section 1.4. In
the remainder of the paper these results are then proved.

As we focus on the approximation scheme, we will show existence of so-
lutions of the regularised systems by PDE techniques, where we already see
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the effectiveness of the regularisation. We expect that the stochastic deriva-
tion can be adapted; but leave a general derivation from particle models for
future work.

Another future direction is the study of the gradient flow structure. For-
mally, the original local system often has a gradient flow structure which
in most studies is only used in the form of the dissipation inequality (an
exception is [25]). Having found a regularisation, we plan for future work
to investigate the gradient flow formulation of the nonlocal system and the
limit towards the local system. Such limits of gradient flows are an active
field and we only mention [4, 18, 21] as starting points.

1.2. Regularisation on the torus

The starting point was [8], where the entropy structure was understood
for the linear rates SKT model in a spatial discretisation. In this paper the
intuition is to relate the entropy structure to the reversibility of a Markov
chain modelling an N -particle system whose mean-field limit converges (for-
mally) to the spatially discrete system.

Briefly, the idea in [8] is that, on a particle model with discrete space
variable, the entropy structure is obtained by imposing that a pair of particles
is jumping together with a suitable rate. Trying to use this idea for a nonlocal
approximation, we intuitively want to make pairs of particle with a given
distance jump together. In order to identify the pairs, we therefore take the
convolution reflected between the two species.

For Ω = Td and a nonnegative measure ρ on Td this motivates the fol-
lowing regularisation of (1.5){

∂tu1 = ∆
(
(d1 + d12 u2 ⋆ ρ)u1

)
,

∂tu2 = ∆
(
(d2 + d21 u1 ⋆ ρ̌)u2

)
,

(1.10)

where ρ̌ is the reflected measure. To understand why such a system may
preserve an entropy structure if any, it is instructive to study the particular
case of a Dirac measure ρ = δa. In that case, using the translation operator
τaf := f( · − a), and applying this operator to the second equation, the
previous system becomes{

∂tu1 = ∆
(
(d1 + d12 τau2)u1

)
,

∂tτau2 = ∆
(
(d2 + d21 u1)τau2

)
,

that is, we recover a standard SKT system in which the second species u2 is
replaced by the shifted one τau2. In particular, for H of the form (1.2) we
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recover directly
d
dtH(u1, τau2) = −

∫
Td

(
∇u1

∇τau2

)
·M
(
u1, τau2

)( ∇u1
∇τau2

)
,

where M is the same matrix associated to H, as in the usual local case. Due
to the translation invariance of the Lebesgue measure, we haveH(u1, τau2) =
H(u1, u2) and we therefore recover the entropy structure in the sense that
H still defines a Lyapunov functional with a dissipation.

In the case of a general nonnegative measure ρ, the previous computation
can be reproduced once noted that the system (1.10) can be rewritten (the
Laplacian does not act on the translation variable y)

∂tu1 =
∫
Td

∆
(
(d1 + d12 τyu2)u1

)
dρ(y),

∂tu2 =
∫
Td

∆
(
(d2 + d21 τ−yu1)u2

)
dρ(y),

and using once more the translation invariance of the Lebesgue measure
(after integrating in the variable x), one recovers this time

d
dtH(u1, u2) = −

∫
Td

{∫
Td

(
∇u1

∇τyu2

)
·M
(
u1, τyu2

)( ∇u1
∇τyu2

)}
dρ(y).

This computation can be adapted to the generalised SKT system (1.8) with
the following caution: the spatial regularisation has to be applied after the
nonlinearity, without affecting the self-diffusion. By rescaling the time, the
kernel can be normalised (i.e. ρ defines a probability measure) and we find,
more precisely, the following proposition.

Proposition 1.4. — Consider two smooth functions µ1, µ2 : R2
⩾0 →

R⩾0 and the corresponding system (1.8). If this system has an entropy H,
then for any nonnegative smooth kernel ρ of integral 1, any smooth solution
of the following nonlocal system (τy is the translation operator)

∂tu1 − ∆
[∫

Td

ρ(y)µ1
(
u1, τyu2)

)
dy u1

]
= 0,

∂tu2 − ∆
[∫

Td

ρ̌(y)µ2
(
τyu1, u2)

)
dy u2

]
= 0

(1.11)

satisfies
d
dtH(u1(t), u2(t)) ⩽ 0.

If the entropy structure of the system (1.8) is furthermore assumed uniform
with dissipation α1 and α2, then we have formally

d
dtH(u1(t), u2(t)) +D(t) ⩽ 0,
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where

D(t) :=
∫
Td

α1(u1(t))2|∇u1(t)|2 +
∫
Td

α2(u2(t))2|∇u2(t)|2.

Remark 1.5. — We considered here a smooth setting in order to avoid
tedious justifications for the computations below, but we will show later how
this can be made rigorous in the a weaker setting (see Theorem 1.10).

Proof. — Denoting by h1 and h2 the entropy densities, we find by mul-
tiplying the first equation of (1.11) by h′

1(u1) and integrating over Td that
d
dt

∫
Td

h1(u1) dx = −
∫
Td

h′′
1(u1)∇u1 ·

{∫
Td

ρ(y)∇(µ1(u1, τyu2)u1) dy
}

dx

= −
∫
Td

ρ(y)
{∫

Td

h′′
1(u1)∇u1 · ∇(µ1(u1, τyu2)u1) dx

}
dy,

where τy is the translation operator and ∇ acts on the x (not noted) variable
only. We have a similar formula for the second equation, that is

d
dt

∫
Td

h2(u2) dx = −
∫
Td

ρ̌(y)
{∫

Td

h′′
1(u2)∇u2 · ∇(µ2(τyu1, u2)u2) dx

}
dy.

Intuitively speaking, we want to collect the pairs u1(x) and u2(x−y) in both
expressions. This motivates in the double integral in the variables x, y of the
last right hand side the change of variable (x, y) 7→ (z −w,−w). Using that
the translation commutes with differential operators, we find

d
dt

∫
Td

h2(u2)

= −
∫
Td

ρ̌(−w)
{∫

Td

h′′
2(τwu2)∇τwu2 · ∇(µ1(u1, τwu2)τwu2)dz

}
dw.

Since ρ̌(−w) = ρ(w), renaming the variables as before, we collect both con-
tributions as
d
dtH(u1(t), u2(t)) = −

∫
Td

ρ(y)
{∫

Td

(
∇u1

∇τyu2

)
·M
(
u1, τyu2

)( ∇u1
∇τyu2

)}
dy,

where M is given by (1.3), the coefficients of the matrix A being the one
used to write (1.8) in divergence form (1.1). The fact that H is a Lyapunov
functional and the precised dissipation in case of uniform entropy follow (for
the latter, use the normalisation of ρ). □

If there is no self diffusion in the generalised system (1.8) like in (1.9),
the nonlocal system (1.11) becomes simply{

∂tu1 = ∆
(
(µ1(u2) ⋆ ρ)u1

)
,

∂tu2 = ∆
(
(µ2(u1) ⋆ ρ̌)u2

)
.

(1.12)
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Thus, compared to [12], the spatial regularisation is applied after the non-
linearity, while they do it the opposite way in their stochastic derivation.
However, in the fundamental case of the (linear) SKT system (1.5), we get
the same system.

For these systems with the Laplace structure, another important role
is played by the duality estimates, see [10, 16, 20]. An advantage of the
previous scheme is that these duality estimates naturally continue to work
in the nonlocal versions.

Remark 1.6. — In the regularisation (1.11) the rate (µi)i=1,2 is averaged
with respect to the cross-diffusion influence but a possible nonlinear self-
diffusion is not regularised. However, a nonlinear self-diffusion tends to im-
prove the entropy-dissipation estimates and we thus focus on cases without
self-diffusion.

For stochastic derivations it is, nevertheless, interesting to also regularise
the self-diffusion. In a general setting this destroys the entropy structure and
we need a compatibility with the entropy structure. For such a regularisation
consider a symmetric kernel σ, i.e. σ̌ = σ, and assume that (1.8) can be
written as {

∂tu1 = ∆
(
(µ1(u2) + κ1(u1))u1

)
,

∂tu2 = ∆
(
(µ2(u1) + κ2(u2))u2

)
,

where the system without the κ has an entropy structure with an entropy
H consisting of h1 and h2 and matrix map M . We then propose the regu-
larisation

∂tu1(x) = ∆x

[(∫
y∈Td

ρ(x−y)µ1
(
u2(y)

)
dy

+
∫

y∈Td

σ(x−y)κ1
(
u1(y)

)
dy
)
u1(x)

]
,

∂tu2(y) = ∆y

[(∫
x∈Td

ρ(x−y)µ2
(
u1(x)

)
dx

+
∫

x∈Td

σ(x−y)κ2
(
u2(x)

)
dx
)
u2(y)

]
.

For the dissipation we then find

− d
dtH(u1, u2) = Iµ + I1 + I2,

where Iµ is the dissipation with κ1 = κ2 = 0 and thus has a good sign. The
new terms are after using symmetrisation σ̌ = σ

Ii = 1
2

∫
x∈Ω

∫
y∈Rd

σ(y)
(

∇ui(x)
∇ui(x− y)

)
·Ni

(
∇ui(x)

∇ui(x− y)

)
dy dx
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with

Ni =
(
h′′

i (ui(x)) 0
0 h′′

i (ui(x− y))

)(
κ1(ui(x− y)) ui(x)κ′

1(ui(x− y))
ui(x− y)κ′

1(ui(x)) κ1(ui(x))

)
for i = 1, 2.

Hence H is still an entropy if (Ni)i=1,2 are always positive semi-definite
which gives an extra condition on the system. We note, however, that for
the studied SKT system (1.5) this condition is always satisfied under the
natural assumption that effect on the other species is of the same form as
the self-diffusion effect, i.e. that it takes the form{

∂tu1 = ∆
(
(d1 + d12u

α
2 + d11u

β
1 )u1

)
,

∂tu2 = ∆
(
(d2 + d21u

β
1 + d22u

α
2 )u2

)
,

for constants d1, d2, d11, d12, d21, d22, α, β ∈ R>0 with αβ ⩽ 1 (see, e.g., [10]
for the discussion of the local case).

Remark 1.7 (Dirichlet boundary condition by penalisation). — For cross-
diffusion systems where the entropy-dissipation is sufficient for controlling
the nonlinearity, we can impose Dirichlet boundary conditions by a penali-
sation method. We sketch the argument and the estimate formally for the
linear rate SKT system{

∂tu1 = ∆
(
(d1 + d11u1 + d12u2)u1

)
,

∂tu2 = ∆
(
(d2 + d21u1 + d22u2)u2

)
with active self-diffusion, i.e. d11, d22 > 0, which has the same entropy func-
tional (1.6) as (1.5).

For the penalisation problem take N large enough such that Ω ⊂⊂
(−N,N)d and identify the hypercube [−N,N ]d with the flat torus Td

N :=
(R/2NZ)d. Assume constant in time Dirichlet boundary conditions for
species ui given by bi and suppose the boundary data can be extended to a
twice continuously differentiable map bi : Td

N → (0,∞) with ∥∇2bi∥∞ ≲ 1.

Using the spatial regularisation with parameter ϵ > 0 and a penalisation
with parameter δ > 0, we arrive at the system
∂tu1,ε,δ −∆((d1 +d11u1,ε δ +d12u2,ε,δ ⋆ ρε)u1,ε,δ) = −1

δ
(u1,ε,δ −b1)1Td

N
\Ω,

∂tu2,ε,δ −∆((d2 +d21u1,ε,δ ⋆ ρ̌ε +d22u2,ε,δ)u2,ε,δ) = −1
δ

(u2,ε,δ −b2)1Td
N

\Ω.

As discussed before, the convolution keeps the entropy structure but the
penalisation term may break it. The idea is that the entropy structure only
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depends on the second derivative so that we can shift the entropy functional
accordingly, i.e. we consider the new entropy

H(u1, u2) =
∫
Td

N

(
h1(u1) − h′

1(b1)u1 − h1(b1) + h′
1(b1)b1

+ h2(u2) − h′
2(b2)u2 − h2(b2) + h′

2(b2)b2

)
so that the penalisation term creates a term with a good sign. We then find
the dissipation
d
dtH = −

∫
Td

N

∇u1,ε,δ h
′′
1(u1,ε,δ) ∇

(
(d1 + d11u1,ε δ + d12u2,ε,δ ⋆ ρε)u1,ε,δ

)
−
∫
Td

N

∇u2,ε,δ h
′′
2(u2,ε,δ) ∇

(
(d2 + d22u2,ε δ + d21u1,ε,δ ⋆ ρ̌ε)u2,ε,δ

)
−
∫
Td

N

∆(h′
1(b1))

(
(d1 + d11u1,ε δ + d12u2,ε,δ ⋆ ρε)u1,ε,δ

)
−
∫
Td

N

∆(h′
2(b2))

(
(d2 + d22u2,ε δ + d21u1,ε,δ ⋆ ρ̌ε)u2,ε,δ

)
− 1
δ

∫
Td

N

[
(h′

1(u1,ε,δ)−h′
1(b1))(u1,ε,δ − b1)+(h′

2(u2,ε,δ)−h′
2(b1))(u2,ε,δ −b2)

]
.

The first two lines are exactly the dissipation we have found for the regu-
larised system. The next two lines are error terms and the last line is a good
dissipation term from the penalisation. Hence we find for a constant c that
d
dtH ⩽ −

∫
Td

N

(d11d21|∇u1,ε,δ|2 + d22d12|∇u2,ε,δ|2)

− 1
δ

∫
Td

N

[
(h′

1(u1,ε,δ)−h′
1(b1))(u1,ε,δ −b1)+(h′

2(u2,ε,δ)−h′
2(b1))(u2,ε,δ −b2)

]
+ c (1 + ∥u1,ε,δ∥2

2 + ∥u2,ε,δ∥2
2).

As the error term can be controlled by the entropy and dissipation, this
yields a uniform control. Hence we can pass to the limit. By the dissipation
we can control the nonlinearity and by the penalisation term the prescribed
boundary data are obtained.

1.3. General regularisation scheme

In the previous subsection we considered the special case of two species
on the torus. In this subsection we will generalise the regularisation scheme
to several species and general domains Ω. Here the boundary implies that
the specific Laplace structure as in (1.8) is not preserved and we have the
general divergence structure as in (1.1), see Remark 1.9.
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For the two densities case on the torus, we used the convolution in order
to define how a pair is interacting in the cross-diffusion. In the general case of
n densities on a domain Ω, the suitable generalisation is a kernel K : Ωn →
R⩾0 between all densities and the intuitive idea is that the cross-diffusion
between the densities u1(x1), u2(x2), . . . , un(xn) at positions x1, x2, . . . , xn ∈
Ω happens with the intensity K(x1, x2, . . . , xn). The idea of using a kernel on
a bounded domain has been proposed in [17], where K is the fundamental
solution the (Neumann) operator Id −δ∆ with 0 < δ ≪ 1. However, the
authors kept the Laplace structure and applied the regularisation before the
nonlinearity so that the entropy structure was lost, see Remark 1.9 below.

At the boundary such a general tuple cannot diffuse freely if we impose
no-flux boundary conditions. Hence in order to rule out boundary terms we
further assume that

K(x1, . . . , xn) = 0 if xi ∈ ∂Ω for i = 1, . . . , n. (1.13)

A family of kernel Kϵ for ϵ > 0 then yields an approximation of the
local system if the kernel is concentrating on the diagonal as ϵ → 0, i.e. for
a species i = 1, . . . , n, a point xi ∈ Ω and a sufficiently nice test function
ϕ : Ωn → R it holds that

∏
j ̸=i

∫
xj∈Ω

dxjK
ϵ(x1, . . . , xn)ϕ(x1, . . . , xn) −→ ϕ(xi, . . . , xi) as ϵ −→ 0,

where we introduced the notation
∏

j ̸=i

∫
xj∈Ω dxj to denote the repeated

integral over all coordinates xj with j ̸= i, i.e.

∏
j ̸=i

∫
xj∈Ω

dxj :=
∫

x1∈Ω
dx1· · ·

∫
xi−1∈Ω

dxi−1

∫
xi+1∈Ω

dxi+1· · ·
∫

xn∈Ω
dxn.

A natural candidate of such kernels Kϵ is a smoothing of

Kϵ(x1, . . . , xn) = Cϵ1|xi−xj |⩽ϵ,i,j=1,...,n

with a cutoff towards the boundary and a suitable constant Cϵ.

We can now state our proposed general regularisation.

Proposition 1.8. — Let n ∈ N be the number of densities and assume
rates (aij)i,j=1,...,n such that the local system (1.1) has an entropy H.
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For a constant ϵ > 0, a domain Ω ∈ Rd and a kernel K : Ωn → R⩾0
satisfying (1.13), suppose of densities u1, . . . , un : Ω → R⩾0 evolving in time
t by the nonlocal system (i = 1, . . . , n)

∂tui(xi) − ϵ∆ui(xi)

− divxi

(∏
k ̸=i

∫
xk∈Ω

dxk K(x1, . . . , xn)
n∑

j=1
aij

(
u1(x1), . . . , un(xn)

)
∇uj(xj)

)
= 0 (1.14)

supplemented in the case of boundaries with von Neumann boundary condi-
tions

n · ∇ui(x) = 0 for x ∈ ∂Ω. (1.15)

Then it holds formally that

d
dtH(u1(t), . . . , un(t)) ⩽ 0.

In the case of uniform dissipations (αi)i it holds that

d
dtH(u1(t), . . . , un(t)) +D(t) ⩽ 0,

where

D(t) =
n∑

i=1

∫
Ω

[
ϵ h′′

i (ui(x)) + αi(ui(x))2wi(x)
]

|∇ui(x)|2 dx

with the weights (wi)i=1,...,n defined as

∏
j ̸=i

∫
xj∈Ω

dxjK(x1, . . . , xn) = wi(xi) ⩾ 0, ∀ xi ∈ Ω. (1.16)

Here we added a small global diffusion with ϵ in order to compensate
that the kernel K vanishes at the boundary so that the system becomes
uniformly parabolic and we can obtain global regularity estimates for the
regularised system. By the assumption (1.13) the imposed von Neumann
boundary conditions imply zero-flux boundary conditions.
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Proof. — In order to obtain the estimate, the idea is to collect the inter-
action in a tuple u1(x1), . . . , un(xn). We then find for the dissipation

− d
dtH(u(t))

= −
n∑

i=1

d
dt

∫
xi∈Ω

hi(xi) dxi

=
n∑

i=1

∫
xi

∇ui(xi)h′′
i (ui(xi))

·

ϵ+
∏
k ̸=i

∫
xk∈Ω

dxk K(x1, . . . , xn)
n∑

j=1
aij

(
u1(x1), . . . , un(xn)

)
∇uj(xj)

dxi

=
∫

x1

dx1· · ·
∫

xn

dxnK(x1, . . . , xn)

∇u1(x1)
...

∇un(xn)

·M
(
u1(x1), . . . , un(xn)

)∇u1(x1)
...

∇un(xn)


+ ϵ

∫
x∈Ω

n∑
i=1

h′′
i (ui(x)) |∇ui(x)|2 dx,

where M is the matrix from the entropy structure, Definition 1.1, and
the boundary terms vanish due to the von Neumann boundary condition
and (1.13).

By the assumed sign of the matrix M and the lower bound by αi, respec-
tively, the result follows. □

Remark 1.9. — The previous regularisation (1.10) for two species in the
simple setting Ω = Rd or Ω = Td is exactly recovered by setting K(x1, x2) =
ρ(x1 − x2) and dropping the normal diffusion with ϵ.

This leaves the question whether the Laplace structure of a system of a
the form (1.8) can be preserved in the nonlocal version. Applying the regu-
larisation procedure for a general kernel K, we can rewrite the regularised
evolution in the Laplace structure if

∇xK(x, y) = −∇yK(x, y).

This, however, is only true if K has a convolution structure and thus does
not work for domains with boundaries. Indeed we find for the two species
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system (1.8) the regularisation

∂tu1(x) − ϵ∆u1 − ∆x

[∫
y∈Ω

K(x, y)µ1
(
u1(x), u2(y)

)
dy u1(x)

]
= −∇x

[∫
y∈Ω

[
(∂xK)(x, y) + (∂yK)(x, y)

]
µ1
(
u1(x), u2(y)

)
dy u1(x)

]
,

∂tu2(y) − ϵ∆u2 − ∆y

[∫
x∈Ω

K(x, y)µ2
(
u1(x), u2(y)

)
dxu2(y)

]
= −∇y

[∫
x∈Ω

[
(∂xK)(x, y) + (∂yK)(x, y)

]
µ2
(
u1(x), u2(y)

)
dxu2(y)

]
,

(1.17)
which contains corrector terms for the defect of the convolution structure on
the right hand side.

For the linear rate SKT system, this matches the regularisation follow-
ing the discrete structure in [8], where we identified the entropy with the
reversibility of a corresponding Markov chain, see Appendix A.

1.4. Results

Having introduced the regularisation schemes, we can now state our rig-
orous existence and approximation results.

Our first result shows that the regularisation (1.12) for (1.9) is sufficient
to find solutions satisfying the entropy-dissipation inequality. It will be clear
from the proof below that the diffusivity µi’s could be assumed sublinear,
instead of being controlled by the entropy densities. The self-diffusion could
be included via the more general approximation (1.11) (for which there is
a similar existence result) but we have chosen to avoid it to simplify the
presentation.

Theorem 1.10. — Consider the generalised SKT system (1.9) with
µ1, µ2 ∈ C 0(R⩾0) ∩ C 1(R>0). Assume that it admits a uniform entropy
structure with entropy H, entropy densities h1, h2 ∈ C 0(R⩾0) ∩ C 2(R>0)
and dissipations α1, α2 : R⩾0 → R⩾0. Assume furthermore two positive con-
stants δ,A such that for all z ∈ R⩾0

δ ⩽ µ1(z) ⩽ A(1 + h2(z)) and δ ⩽ µ2(z) ⩽ A(1 + h1(z)). (1.18)

Fix ρ ∈ C 2(Td) nonnegative having integral 1 over Td, and a bounded initial
data uinit

1 , uinit
2 satisfying for some positive constant γ

γ ⩽ uinit
i ⩽ γ−1,
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so that H init := H(uinit
1 , uinit

2 ) < +∞. Then, there exist positive functions

u1, u2 ∈ C 0([0, T ]; L2(Td)) ∩ L2(0, T ; H1(Td)) ∩ L∞(0, T ; L∞(Td)), (1.19)

such that (u1, u2) is a distributional solution to the system (1.12) initiated
by (uinit

1 , uinit
2 ). This solution (u1, u2) satisfies furthermore the following es-

timates for i = 1, 2:

• conservation of the mass: ui ∈ C 0([0, T ]; L1(Td)) and for t ∈ [0, T ]∫
Td

ui(t) =
∫
Td

uinit
i . (1.20)

• entropy estimate: hi(ui) ∈ C 0([0, T ]; L1(Td)) and for t ∈ [0, T ]

H(u1(t), u2(t)) +
∫ t

0
D(s) ds ⩽ H init, (1.21)

where

D(t) :=
∫
Td

α1(u1(t))2|∇u1(t)|2 + α2(u2(t))2|∇u2(t)|2.

• maximum principle:

γ exp
(
−ABT,init∥∆ρ∥L∞(Td)

)
⩽ ui ⩽ γ−1 exp

(
ABT,init∥∆ρ∥L∞(Td)

)
, (1.22)

where
BT,init := T (1 +H init).

• duality estimate:∫
QT

([
µ1(u2) ⋆ ρ

]
u1 +

[
µ2(u1) ⋆ ρ̌

]
u2
)

(u1 + u2)

≲d (1 + 2ABT,init)
(∫

Td

(uinit
1 )2 +

∫
Td

(uinit
2 )2

)
, (1.23)

where the constant behind ≲d depends only on the dimension d.

Remark 1.11. — The upper bound in assumption (1.18) is natural for
many cross-diffusion systems. For instance if µ1 and µ2 are given by power-
laws (as in [10]), the entropy densities are precisely given by the same expo-
nents (with an exception for the linear case). See also Remark 1.13.

Using the uniform control by the entropy, we can prove the following
limit theorem. Together with the previous existence result, this shows, as a
by-product, the (known) existence of weak solutions to the generalised SKT
system (1.9).
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Theorem 1.12. — Consider the assumptions of Theorem 1.10, for a
sequence of nonnegative functions (ρn)n ∈ C 2(Td)N which converges weakly
towards the Dirac mass, with dissipation rates α1 and α2 vanishing on a
set of measure 0. Assume furthermore that the diffusivities are strictly sub-
quadratic or controlled by the entropy densities, that is

lim
z→+∞

µ1(z)
h2(z) + z2 + µ2(z)

h1(z) + z2 = 0. (1.24)

Then, the corresponding sequence of solutions (u1,n, u2,n)n given by Theo-
rem 1.10 converges (up to a subsequence) in L1(QT ) towards a weak global
solution (u1, u2) of the SKT system which satisfies for a.e. t ∈ [0, T ] the con-
servation of the mass (1.20), the entropy estimate (1.21) and the following
duality estimate∫

QT

(
µ1(u2)u1 + µ2(u1)u2

)
(u1 + u2)

≲d (1 + 2ABT,init)
∫
Td

(uinit
1 )2 +

∫
Td

(uinit
2 )2. (1.25)

Remark 1.13. — The assumption (1.24) is crucial to avoid any concen-
tration in the nonlinearities of the system. However, in practice (see for
instance the power-law case in [10]) the control of gradients of the entropy
estimate gives raise (by Sobolev embedding) to another estimate on µ1(u2)
and µ2(u1).

In a general setting we described the regularisation scheme (1.14), for
which we can state the following existence result.

Theorem 1.14. — Consider a cross-diffusion system (1.1) for n species
and rates aij ∈ C 0(Rn

⩾0), i, j = 1, . . . , n. Assume that it admits a uniform
entropy structure with entropy H, entropy densities h1, . . . , hn ∈ C 0(R⩾0) ∩
C 2(R>0) and dissipations α1, . . . , αn : R⩾0 → R⩾0.

For i ̸= j define ãij : Rn
⩾0 → R by

∂j ãij(v) = aij(v), v ∈ Rn
⩾0, and ãij(v) = 0, if vj = 0.

Suppose that v 7→ ãij(v) is continuously differentiable with respect to vi and
that there exists a constant A such that for all v ∈ Rn

⩾0 and i = 1, . . . , n

aii(v) ⩽ A (1 + h1(v1) + · · · + hn(vn)),
ãij(v)
vi

⩽ A (1 + h1(v1) + · · · + hn(vn)),

and
∂iãij(v) ⩽ A (1 + h1(v1) + · · · + hn(vn)).
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Let Ω ∈ Rd be a domain with piecewise C 1 boundary and K ∈ C 2
c (Ωn)

be a nonnegative kernel satisfying (1.13). Further fix bounded initial data
uinit = (uinit

1 , . . . , uinit
n ) satisfying for some positive constant γ

γ ⩽ uinit
i ⩽ γ−1,

so that H init := H(uinit) < +∞. Then, there exists positive functions

u1, . . . , un ∈ C 0([0, T ]; L2(Ω)) ∩ L2(0, T ; H1(Ω)) ∩ L∞(0, T ; L∞(Ω)), (1.26)

such that (u1, . . . , un) is a distributional solution to the system (1.17) with
initial data uinit and von Neumann boundary data (1.15). Furthermore, the
solution u = (u1, . . . , un) satisfies the following estimates for i = 1, . . . , n:

• conservation of the mass: ui ∈ C 0([0, T ]; L1(Ω)) and for t ∈ [0, T ]∫
Ω
ui(t) =

∫
Ω
uinit

i . (1.27)

• entropy estimate: hi(ui) ∈ C 0([0, T ]; L1(Ω)) and for t ∈ [0, T ]

H(u(t))) +
∫ t

0
D(s) ds ⩽ H init,

D(t) =
n∑

i=1

∫
Ω

[
ϵ h′′

i (ui(x)) + αi(ui(x))2wi(x)
]

|∇ui(x)|2 dx
(1.28)

with the weights (wi)i=1,...,n defined in (1.16).
• maximum principle:

γ exp (−MT ) ⩽ ui ⩽ γ−1 exp (MT ) , (1.29)

where

M = 2A max(∥K∥∞, ∥∇K∥∞, ∥∇2K∥∞) (|Ω| +H init). (1.30)

• ϵ regularity:

sup
t∈[0,T ]

∥ui(t, · )∥2
L2(Ω) +ϵ

∫ T

0
∥∇ui(t, · )∥2

L2(Ω) ⩽ exp
[
TM

(
2+ 1

ϵ

)]
∥uinit

i ∥2
L2(Ω).

Under the assumption that the dissipation is big enough, one can con-
clude that the approximations converge to the local version. In the setting of
their time-discretisation approximation scheme, [7] discusses possible condi-
tions for such a convergence. Nevertheless, they need to treat the SKT case
separately.

As the SKT case is the motivating example, we focus on the SKT case,
where we replace the duality estimate with a positive self-diffusion. For
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n species with densities u = (u1, . . . , un) the SKT system corresponds to
the evolution

∂tui = ∆

diui +
n∑

j=1
dijujui

 (1.31)

with constants d1, . . . , dn ⩾ 0 and (dij)ij ⩾ 0. Furthermore, suppose that
there exist weights π1, . . . , πn ⩾ 0 such that the diffusion coefficients satisfy
the detailed balance condition

πidij = πjdji, for i, j = 1, . . . , n, (1.32)

see [8] for a discussion on the condition. Then the evolution (1.31) has an
entropy structure with

hi(z) = πi

(
z log z − z + 1

)
and dissipation

αi(z) = πidii.

Theorem 1.15. — Given a bounded domain Ω ⊂ Rd with C 1 boundary
and an increasing sequence of sets (Am)m∈N with Am ⊂⊂ Ω and Am ↑ Ω as
m → ∞. Suppose that there exists a constant c and extension operators Em :
W 1,2(Am) → W 1,2(Rd) such that ∥Em∥W 1,2→W 1,2 ⩽ c and ∥Em∥Lp→Lp ⩽ c
for p = 2 + 2/d.

Assume a corresponding sequence of nonnegative regularisation kernels
(Km)m∈N in C 2

c (Ωn) for n densities satisfying (1.13) with weights wm
i , i =

1, . . . , n, as in (1.16). Suppose that the weights always map to [0, 1] and

wm
i (x) = 1, for x ∈ Am and i = 1, . . . , n.

Moreover, suppose that Km concentrates along the diagonal, i.e.

Km(x1, . . . , xn) = 0, if |xi − xj | ⩾ 1
m

for some i, j = 1, . . . , n.

Consider the SKT system (1.31) for n densities with constants
d1, . . . , dn ⩾ 0 and (dij)ij ⩾ 0 and weights π1, . . . , πn ⩾ 0 satisfying (1.32)
and dii > 0 for i = 1, . . . , n with initial data uinit = (uinit

1 , . . . , uinit
n ) with

γ ⩽ uinit
i ⩽ γ−1

for i = 1, . . . , n and a constant γ ∈ R>0.

Then there exists a sequence of (ϵm)m∈N with ϵm ↓ 0 as m → ∞ such that
the approximating solutions (um)m as constructed in Theorem 1.14 converge
along a subsequence to u in Lq([0, T )×Ω;Rn

⩾0) with q = 2+(1/2d). The limit
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u is a nonnegative weak solution to (1.31) with the no-flux boundary condi-
tions satisfying the entropy-dissipation inequality, i.e. for ϕ ∈ C ∞([0, T ]×Ω)
with ϕ(T, · ) ≡ 0 and i = 1, . . . , n it holds

−
∫ T

0

∫
Ω
ui ∂tϕ+

∫ T

0

∫
Ω

 n∑
j=1

aij(u)∇uj

 · ∇ϕ =
∫

Ω
uinit

i ϕ(0, · ),

where

aij(u) =
{
di + 2diiui +

∑
j ̸=i dijuj if i = j,

dijui otherwise.

Remark 1.16. — A sequence of such sets Am can be constructed for lo-
cally Lipschitz domains. For this, locally write the boundary as a graph of
d − 1 variables and locally then such a sequence can be constructed. For
the construction of extensions we refer to the treatment of [11, Section 5.4]
and [23, Section VI].

2. The convolution scheme on the flat torus

This section is dedicated to the proofs of Theorem 1.10 and Theorem 1.12
on the torus. For the domain, we introduce the notation

QT := [0, T ) × Td,

and start by recalling some useful results about the Kolmogorov equation,
that is

∂tz − ∆(µz) = G, (2.1)
z(0, · ) = zinit, (2.2)

where G, µ and zinit are given and z is the unknown. Solutions will be
understood in the following sense:

Definition 2.1. — Given a measurable function µ : QT → R, and two
square-integrable functions G, zinit : QT → R we say that z ∈ L1(QT ) is a
distributional solution of (2.1)–(2.2) if zµ is integrable on QT and for all
test function φ ∈ D(QT ) it holds that

−
∫

QT

z(∂tφ+ µ∆φ) =
∫
Td

zinitφ(0, · ) +
∫

QT

Gφ.
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2.1. Reminder on the Kolmogorov equation

The following result is directly extracted from [20], more precisely merg-
ing results obtained in Theorem 3, Proposition 2 and Proposition 3 therein.

Theorem 2.2. — Fix µ ∈ L∞(QT ) such that infQT
µ > 0. For any

zinit ∈ L2(Td) there exists a unique solution z to (2.1) – (2.2) in the sense
of Definition 2.1. This solution belongs to L2(QT ) and satisfies

• maximum principle: if G and zinit are nonnegative, then so is z;
• duality estimate: µ1/2z ∈ L2(QT ) and∫

QT

µz2 ≲d

(
1 +

∫
QT

µ

)(∫
Td

(zinit)2 + T

∫
QT

G2
)
,

where the constant behind ≲d depends only on the dimension;
• sequential stability: for fixed G and zinit as above, the map µ 7→ z,

restricted to those µ who are bounded and positively lower-bounded,
is continuous in the L1(QT ) topology for the argument µ and the
L2(QT ) topology for the image z.

We will use two corollaries of the previous theorem.

Corollary 2.3. — Consider the assumptions of Theorem 2.2, with G =
0. If furthermore zinit is bounded with γ ⩽ zinit ⩽ γ−1 for some positive con-
stant γ and if ∆µ ∈ L1(0, T ; L∞(Td)), then z ∈ L∞(QT ) with the estimate

γ exp
(

−
∫ T

0
∥(∆µ)−(s)∥L∞(Td)ds

)
⩽ z ⩽ γ−1 exp

(∫ T

0
∥(∆µ)+(s)∥L∞(Td) ds

)
,

where the exponents + and − refer to (respectively) the positive and negative
parts.

Proof. — Define

Φ(t) := γ−1 exp
(∫ t

0
∥(∆µ)+(s)∥L∞(Td) ds

)
− z,

Ψ(t) := z − γ exp
(

−
∫ t

0
∥(∆µ)−(s)∥L∞(Td) ds

)
,

which satisfy

(∂tΦ − ∆(µΦ))(t, x) = (Φ + z)(t, x)(∥(∆µ)+(t)∥L∞(Td) − ∆µ(t, x)) ⩾ 0,
(∂tΨ − ∆(µΨ))(t, x) = (z − Ψ)(t, x)(∆µ(t, x) + ∥(∆µ)−(t)∥L∞(Td)) ⩾ 0.

The conclusion follows using the maximum principle of Theorem 2.2, since
Φ and Ψ are initially nonnegative. □
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Corollary 2.4. — Consider the assumptions of Theorem 2.2, with G =
0. If furthermore ∆µ ∈ L1(0, T ; L∞(QT )), then z ∈ L∞(0, T ; L2(Td)) ∩
L2(0, T ; H1(Td)) with the following estimate for a.e. t ∈ [0, T ]∫

Td

z(t)2 +
∫ t

0

∫
Td

µ|∇z|2 ⩽ exp
(∫ t

0
∥(∆µ)+(s)∥L∞(Td) ds

)∫
Td

(zinit)2. (2.3)

Proof. — We first assume that µ and the initial data are smooth. In that
case, we can rewrite the Kolmogorov equation (2.1) as standard parabolic
equation, and we get the smoothness of the solution z. In this situation, we
can rigorously multiply the equation by z and integrating by parts, to get

1
2

d
dt

∫
Td

z(t)2 +
∫
Td

µ(t)|∇z(t)|2 = −
∫
Td

z(t)∇z(t) · ∇µ(t)

= 1
2

∫
Td

z(t)2∆µ(t) ⩽ 1
2∥(∆µ)+(t)∥L∞(Td)

∫
Td

z(t)2.

We have thus

1
2

d
dt

{
exp
(

−
∫ t

0
∥(∆µ)+(s)∥L∞(Td) ds

)∫
Td

z(t)2
}

+ exp
(

−
∫ t

0
∥(∆µ)+(s)∥L∞(Td) ds

)∫
Td

µ(t)|∇z(t)|2 ⩽ 0,

and we infer after time integration the stated estimate. For the moment,
we only established the estimate in the case of smooth data. Replacing µ
and zinit by smooth approximations (µn)n and (zinit

n )n, approaching them
in L1(QT ) and L2(Td) respectively, with furthermore ∥(∆µn)+∥L∞(QT ) ⩽
∥(∆µ)+∥L∞(QT ), we get a sequence (zn)n which, by the sequential stability
of Theorem 2.2, approaches z in L2(QT ). The usual semi-continuity argu-
ment for weak convergence allows to obtain that z ∈ L∞(0, T ; L2(Td)) ∩
L2(0, T ; H1(Td)), with the estimate (2.3) being satisfied for a.e. t. □

2.2. Proof of Theorem 1.10

Proof. — We start by proving the four a priori estimates, under the
assumption of positivity and regularity (1.19).

• conservation of the mass: since ui ∈ C 0([0, T ]; L2(Td)), it also be-
longs to C 0([0, T ]; L1(Td)) and this is sufficient (via a density argu-
ment) to use 1Td as test function which allows to recover (1.20).

• entropy estimate: the hi’s and µi’s are locally Lipschitz, so bound-
edness of the ui’s and their belonging to C 0([0, T ]; L2(Td)) imply
hi(ui), µi(ui) ∈ C 0([0, T ]; L1(Td)), for i = 1, 2. With the same type
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of arguments we recover h′
i(ui) ∈ L2(0, T ; H1(Td)). This is sufficient

to justify the following formula for all t ∈ [0, T ], by density of smooth
functions,∫ t

0

∫
Td

h′
i(ui)∂tui =

∫
Td

hi(ui(t)) −
∫
Td

hi(uinit
i ).

Similarly, we have that (with the analogous formula for the other
species)

−
∫ t

0

∫
Td

h′
1(u1)∆

([
µ1(u2) ⋆ ρ

]
u1
)

=
∫ t

0

∫
Td

h′′
1(u1)∇u1 · ∇

([
µ1(u2) ⋆ ρ

]
u1
)
,

which is sufficient to reproduce rigorously the computation done in
the proof of Proposition 1.4 and integrate it time to get (1.21).

• maximum principle: we have (using assumption (1.18) and the en-
tropy estimate)∫ T

0
∥∆ (µ1(u2) ⋆ ρ) (s)∥L∞(Td) ds ⩽ ∥µ1(u2)∥L1(QT )∥∆ρ∥L∞(Td)

⩽ AT (1 +H init)∥∆ρ∥L∞(Td)

and likewise for ∆(µ2(u1) ⋆ ρ̌) so that (1.22) follows directly from
Corollary 2.3.

• duality estimate: the function z := u1 + u2 solves the following
Kolmogorov equation

∂tz − ∆(µz) = 0,
z(0, · ) = uinit

1 + uinit
2 ,

with
µ := (µ1(u2) ⋆ ρ)u1 + (µ2(u1) ⋆ ρ̌)u2

u1 + u2
,

where µ is well-defined thanks to the positivity of the ui’s and fur-
thermore bounded. The duality estimate of Theorem 2.2 implies∫

QT

([
µ1(u2) ⋆ ρ

]
u1 +

[
µ2(u1) ⋆ ρ̌

]
u2
)
(u1 + u2)

≲d

(
1 +

∫
QT

µ

)(∫
Td

(uinit
1 )2 +

∫
Td

(uinit
2 )2

)
. (2.4)

To recover (1.23), simply notice that µ ⩽ µ1(u2) ⋆ ρ+ µ2(u1) ⋆ ρ̌ so
that using the normalisation of ρ and assumption (1.18),∫

QT

µ ⩽
∫

QT

µ1(u2) +
∫

QT

µ2(u1) ⩽ A
(∫

QT

(2 + h1(u1) + h2(u2))
)

⩽ 2ABT,init,
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where we used the entropy estimate and the constant BT,init :=
T (1 +H init).

These estimates have been proven for a positive solution with regular-
ity (1.19) whose existence has been assumed. We now construct a solution
by a fixed-point argument.

On the set E := L1(QT ) × L1(QT ) we define the map Θ : E → E which
sends (u1, u2) to the solutions (u•

1, u
•
2) (in the sense of Definition 2.1) of{

∂tu
•
1 = ∆

([
µ1(u+

2 ∧M) ⋆ ρ
]
u•

1
)
,

∂tu
•
2 = ∆

([
µ2(u+

1 ∧M) ⋆ ρ̌
]
u•

2
)
,

where the cutoff constant M > 0 will be fixed later on. By continuity of µ1
and µ2 we have

max(µ1(x), µ2(x)) ⩽ C, ∀ x ∈ [0,M ]. (2.5)
In particular, Theorem 2.2 applies and ensures that the previous map is
well-defined. Moreover, (2.5) implies for (u1, u2) ∈ E that

|∆
(
µ1(u+

2 ∧M) ⋆ ρ
)
| = |µ1(u+

2 ∧M) ⋆∆ρ| ⩽ C∥∆ρ∥L1(Td),

and likewise for ∆
(
µ2(u+

1 ∧ M) ⋆ ρ
)
. Hence we infer from Corollaries 2.3

and 2.4 that the images u•
1 and u•

2 are nonnegative and uniformly bounded
in L∞(QT ) and L2(0, T ; H1(Td)). Moreover by the equations, the time deriva-
tives are also uniformly bounded in L2(0, T ; H−1(Td)). That means that there
exists a constant c such that

Θ(E)⊂K :=
{

(v1, v2)∈E :
max

(
∥vi∥L∞(QT ), ∥vi∥L2(0,T ;H1(Td)),

∥∂tvi∥L2(0,T ;H−1(Td))
)
⩽c for i=1, 2

}
.

Then by the Aubin–Lions lemma the convex set K is also compact in E.
Hence Schauder’s fixed-point theorem applies and ensures that there exists
a fixed-point (u1, u2) ∈ K, solving therefore (the ui’s are nonnegative){

∂tu1 = ∆
([
µ1(u2 ∧M) ⋆ ρ

]
u1
)
,

∂tu2 = ∆
([
µ2(u1 ∧M) ⋆ ρ̌

]
u2
)
.

(2.6)

The bounds obtained for elements in K also ensure that u1 and u2 both
belong to C 0([0, T ]; L2(Td)) so that we have the required regularity (1.19).
In order to conclude we just need to fix a constant M such that the corre-
sponding saturation vanishes. For this purpose, we consider

M = 2γ−1 exp(ABT,init∥∆ρ∥∞),
where the constants A and BT,init are defined in the statement of Theo-
rem 1.10 and we recall that γ > 0 is such that

γ ⩽ uinit
i ⩽ γ−1.
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We now define

t⋆ := sup
{
t ∈ [0, T ] : max

i=1,2
∥ui∥L∞([0,t]×Td) ⩽

3M
4

}
.

By Corollary 2.3, we have t⋆ > 0 and up to any t ∈ (0, t⋆) the cutoff M has
been irrelevant. Thus, for t ∈ (0, t⋆) all the a priori estimates apply and in
particular the entropy estimate which implies

∥µ1(u2)∥L1([0,t]×Td) ⩽ A
∫ t

0

(
1 +

∫
Td

h2(u2)
)

⩽ At(1 +H init) ⩽ ABT,init,

with a similar estimate for the other species. This in turn implies by Corol-
lary 2.3 that for t < t⋆

max
i=1,2

∥ui∥L∞([0,t]×Td) ⩽
M

2 ,

which proves that t⋆ = T by the usual continuity argument and our fixed-
point (u1, u2) is the required solution. □

2.3. From nonlocal to local SKT

We start with a compactness tool already used in [16] that we adapt
slightly to our setting. The proofs are only included for the reader’s conve-
nience.

Lemma 2.5. — Fix α : R>0 → R⩾0 having a negligible set of zeros.
Consider a sequence of positive functions (wn)n ∈ W1,1(QT ) such that

(i) (wn)n bounded in L2(QT );
(ii) (∂twn)n bounded in L1(0, T ; H−m(Td)) for some integer m;
(iii) (α(wn)∇wn)n bounded in L2(QT ).

Then (wn)n admits an a.e. converging subsequence.
Proof. — By assumption (iii) the sequence (∇F (wn))n is bounded in

L2(QT ), where F : R⩾0 → R⩾0 is defined by

F (z) :=
∫ z

0
1 ∧ α.

Moreover, F is an increasing (because α > 0 a.e.) 1-Lipschitz function van-
ishing at 0. In particular, we infer from (i) the same bound for (F (wn))n. Up
to a subsequence we can thus assume that (wn)n and (F (wn))n respectively
converge weakly to w and w̃ in L2(QT ). Using (ii) we thus infer from [19,
Proposition 3] that (up to a subsequence),∫

QT

wnF (wn) −→
n→∞

∫
QT

ww̃. (2.7)
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At this stage we use the Minty–Browder or Leray–Lions trick: one first es-
tablishes that∫

QT

:=hn︷ ︸︸ ︷
(F (wn) − F (w))(wn − w)

=
∫

QT

F (wn)wn +
∫

QT

F (w)w −
∫

QT

F (wn)w −
∫

QT

F (w)wn −→
n→∞

0

by exploiting the L2(QT ) weak convergences (wn)n ⇀n w, (F (wn))n ⇀n w̃,
together with (2.7). Then, since F is increasing, we have hn ⩾ 0 so that
the previous convergence may be seen as the convergence of (hn)n to 0 in
L1(QT ). In particular, up to some subsequence, we get that (hn)n converges
a.e. to 0 which in turn implies (increasingness of F ) that (wn)n → w. □

Proof of Theorem 1.12. — Using the duality estimate of Theorem 1.10
we first have∫

QT

([
µ1(u2,n) ⋆ ρn

]
u1,n +

[
µ2(u1,n) ⋆ ρ̌n

]
u2,n

)
(u1,n +u2,n) ≲d,init 1, (2.8)

where the constant depends on the dimension and initial data but is uni-
form in n. In particular, both species satisfy (since µ1 and µ2 are positively
lower-bounded) assumptions (i) and (ii) of Lemma 2.5. Using the entropy
estimate of Theorem 1.10, we have also for both species that (αi(ui,n)∇un)n

bounded in L2(QT ), which validates assumption (iii) of the lemma since the
dissipation rates αi are assumed a.e. positive on R>0. We infer therefore
from the previous lemma that, up to a subsequence (that we do not label),
(u1,n)n and (u2,n)n converge a.e. to some u1 and u2, respectively.

We now pass to the limit (in D ′(QT )) in the products[
µ1(u2,n) ⋆ ρn

]
u1,n and

[
µ2(u1,n) ⋆ ρ̌n

]
u2,n.

W.l.o.g. we can focus on the first one. Since (u2,n)n converges to u2 a.e., so
does (µ1(u2,n)n to µ1(u2), by continuity of µ1.

The assumption (1.18) and the entropy estimate of Theorem 1.10 imply
that (µ1(u2,n))n is bounded in L∞(0, T ; L1(Td)). As this is not sufficient
to prevent possible concentration in the space variable, we use the growth
assumption (1.24), to establish the uniform integrability of (µ1(u2,n))n. In-
deed, since µ1 is continuous, the sequence cR := inf{z ⩾ 0 : µ1(z) ⩾ R}
diverges to +∞ with R and we have∫

QT

µ1(u2,n)1µ1(u2,n)⩾R ⩽
∫

QT

µ1(u2,n)1u2,n⩾cR

⩽ sup
z⩾cR

Φ(z)
∫

QT

h2(u2,n) + u2
2,n,
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where Φ(z) := µ1(z)
h2(z)+z2 goes to 0 as z → +∞, by assumption (1.24).

Since µ2 is positively lower-bounded (thanks to assumption (1.18)), we infer
from (2.8) a bound for (u2,n)n in L2(QT ) (we use here the nonnegativity
of all the involved functions). Using the entropy estimate and the previous
inequalities, we therefore infer

lim
R→+∞

sup
n

∫
QT

µ1(u2,n)1µ1(u2,n)⩾R = 0,

which establishes uniform integrability.

Therefore, Vitali’s convergence theorem implies that (µ1(u2,n))n con-
verges to µ1(u2) in L1(QT ). The sequence (µ1(u2,n) ⋆ ρn)n shares the same
behaviour. In particular, (µ1(u2,n) ⋆ ρn)n is also uniformly integrable and
adding a subsequence if necessary, we can assume that it converges a.e. to-
wards µ1(u2). Now, to conclude we write

wn :=
[
µ1(u2,n) ⋆ ρn

]
u1,n =

[
µ1(u2,n) ⋆ ρn

]1/2 [
µ1(u2,n) ⋆ ρn

]1/2
u1,n.

As already noticed, (wn)n converges a.e. to the expected limit µ1(u2)u1. The
previous writing together with the duality estimate (2.8) and the Cauchy–
Schwarz inequality shows that (wn)n is bounded in L1(QT ). Even better,
(wn)n is the product of a L2-uniformly integrable sequence with an L2-
bounded one so that (wn)n is uniformly integrable and the Vitali convergence
theorem applies once more to get the convergence of (wn)n towards µ1(u2)u1.

The previous reasoning (which applies to both species) allows to pass
to the limit of the equations. The limit satisfies the estimates by Fatou’s
lemma. □

3. General regularised scheme on a domain

In this section, we study the general regularisation scheme introduced
in Proposition 1.8 and prove the corresponding results Theorem 1.14 and
Theorem 1.15.

3.1. Existence of regularised solutions

We start with proving the existence of solutions for the regularised
scheme, i.e. Theorem 1.14.
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The advantage of the regularisation is that the cross-diffusion terms are
controllable and we thus rewrite the evolution as

∂tui(xi) − divxi

[(
ϵ+
∏
k ̸=i

∫
xk∈Ω

dxk K(x1, . . . , xn) aii(u1(x1), . . . , un(xn))
)

∇ui(xi)
]

= divxi

[∏
k ̸=i

∫
xk∈Ω

dxk K(x1, . . . , xn)
∑
j ̸=i

aij(u1(x1), . . . , un(xn))∇uj(xj)
]
.

For the cross-diffusion terms, the ãij in Theorem 1.14 are defined such
that

aij(u1(x1), . . . , un(xn))∇uj(xj) = ∇xj
ãij(u1(x1), . . . , un(xn))

so that the partial derivative can formally be integrated by parts onto the
kernelK, where no boundary terms appear due to (1.15). Hence the evolution
can be rewritten as

∂tui − ∇
(
(ϵ+ ai[u])∇ui

)
+ bi[u]∇ui + ci[u]ui = 0, (3.1)

with von Neumann boundary conditions and

ai[u](xi) =
∏
k ̸=i

∫
xk∈Ω

dxk K(x1, . . . , xn) aii(u1(x1), . . . , un(xn)), (3.2)

bi[u](xi) =
∑
j ̸=i

∏
k ̸=i

∫
xk∈Ω

dxk ∂jK(x1, . . . , xn) ∂iãij(u1(x1), . . . , un(xn)), (3.3)

ci[u](xi) =
∑
j ̸=i

∏
k ̸=i

∫
xk∈Ω

dxk ∂ijK(x1, . . . , xn) ãij(u1(x1), . . . , un(xn))
ui(xi)

. (3.4)

The assumptions of Theorem 1.14 then imply for xi ∈ Ω that
|ai[u](xi)| ⩽ A ∥K∥∞(|Ω| +H(u)),
|bi[u](xi)| ⩽ A ∥∇K∥∞(|Ω| +H(u)),
|ci[u](xi)| ⩽ A ∥∇2K∥∞(|Ω| +H(u)).

(3.5)

This is enough to prove the existence of solutions by a Galerkin scheme.

Proof of Theorem 1.14. — Let σ ∈ C ∞
c (Rn) a nonnegative mollification

kernel with suppσ ⊂ B1 and
∫
σdx = 1 and define

σm(x) = md σ(mx).
Extending ai, bi, ci with zero outside Ω, we consider for m ∈ N the following
system

∂tu
m
i − ∇

(
(ϵ+ ((ai[um] ∧M) ⋆ σm)∇um

i

)
+ ((bi[um] ∧M) ⋆ σm)∇um

i + ((ci[um] ∧M) ⋆ σm)um
i = 0, (3.6)
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with von Neumann boundary conditions, i = 1, . . . , n and the constant M
as in (1.30).

By a standard Galerkin scheme (e.g. taking the von Neumann eigenvec-
tors of the Laplacian on Ω), the system (3.6) has a solution um

i with initial
data uinit

i and has any Hk, k ∈ N, regularity after an arbitrary short time.
Hence we can apply the maximum principle for parabolic equations and find
as in Corollary 2.3 that

γ exp (−TM) ⩽ um
i ⩽ γ−1 exp (TM) .

Furthermore, each um
i is preserving the mass. Finally, we can test (3.6)

against um
i to find the followig estimate independent of m:

sup
t∈[0,T ]

∥um
i (t, · )∥2

L2(Ω)+ϵ
∫ T

0
∥∇um

i (t, · )∥2
L2(Ω) ⩽ exp

[
TM

(
2+ 1

ϵ

)]
∥uinit

i ∥2
L2(Ω),

where i = 1, . . . , n and we used the cutoff with M . Note that here the right
hand side is bounded by assumption. Hence we find for a constant C(T )
independent of m that

∥∂tu
m
i ∥L2(0,T,H−1(Ω)) ⩽ C(T )

for i = 1, . . . , n.

By Aubin–Lions lemma we can therefore find a subsequence (relabelling
with m) and

ui ∈ C 0([0, T ]; L2(Ω)) ∩ L2(0, T ; H1(Ω)) ∩ L∞(0, T ; L∞(Ω)),
for i = 1, . . . , n such that um

i converges almost everywhere to ui and ∇um
i

converges L2 weakly to ∇ui. Moreover, it holds that
γ exp (−TM) ⩽ ui ⩽ γ−1 exp (TM) .

The convergence implies that for ϕ ∈ C ∞(ΩT ) with ϕ(T, · ) ≡ 0 it holds that

−
∫ T

0

∫
Ω
ui∂tϕ+

∫ T

0

∫
Ω

(ϵ+ ai[u] ∧M)∇ui · ∇ϕ+
∫ T

0

∫
Ω

(bi[u] ∧M) · ∇ui ϕ

+
∫ T

0

∫
Ω

(ci[u] ∧M)ui ϕ =
∫

Ω
uinit

i ϕinit,

i.e. u = (u1, . . . , un) is a weak solution with von Neumann boundary data.
Moreover, by the continuity this implies directly the conservation of mass.

Until a time T ∗ ⩽ T for which
sup

t∈[0,T ∗]
sup
x∈Ω

max(ai[u], |bi[u]|, ci[u]) ⩽M,

the cutoff M is not applied and we have a weak solution of (3.1). As in the
Laplace case on the torus in Section 2, the proven regularity is sufficient to
justify rigorously the formal entropy estimate as in Proposition 1.8.
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The assumptions (3.5) then imply that at time T ∗ it holds that

sup
x∈Ω

max(ai[u], |bi[u]|, ci[u]) ⩽ M

2
and thus by continuity T ∗ = T and we have constructed the claimed solution.

□

3.2. Limit for the SKT system

Having constructed the nonlocal approximation, we now prove Theo-
rem 1.15.

The assumption of the extension operator allows to find a uniform
Gagliardo–Nirenberg inequality.

Lemma 3.1. — Assume the setup of Theorem 1.15. Then there exists a
uniform c for the Gagliardo–Nirenberg inequality

∥f∥p
Lp(Am) ⩽ c

(
∥f∥(1−θ)p

L1(Am)∥∇f∥θp
L2(Am) + ∥f∥p

L1(Am)

)
∀ f : Am −→ R,

holds on all Am, where m ∈ N, θ = 2/p and p = 2 + 2/d.

Proof. — By the extension operator Em and the Gagliardo–Nirenberg
inequality on Rd we find

∥f∥p
Lp(Am) ⩽ ∥Em(f)∥p

Lp(Rd)

≲ ∥Em(f)∥(1−θ)p

L1(Rd) ∥∇Em(f)∥2
L2(Rd)

≲ ∥f∥(1−θ)p
L1(Am)

(
∥f∥2

L2(Am) + ∥∇f∥2
L2(Am)

)
.

As p > 2, we can interpolate ∥f∥L2(Am) between ∥f∥L1(Am) and ∥f∥Lp(Am)
and absorb the contribution of ∥f∥Lp(Am) so that the claimed inequality
follows. □

The first lemma ensures the integrability and determines the sequence ϵ.

Lemma 3.2. — Assume the setup of Theorem 1.15. Then there exists a
constant CT and a decreasing sequence (ϵm)m with ϵm ↓ 0 such that

∥um
i ∥Lp̃([0,T )×Ω) ⩽ CT

for i = 1, . . . , n and p̃ = 2 + 1/d.

Proof. — For the regularisation kernel Km and ϵm > 0, we find by The-
orem 1.14 a solution um which satisfies

(i) ∥um
i ∥L∞(0,T ;L1(Ω)) ⩽ c for i = 1, . . . , n (conservation of mass),

(ii) ∥∇um
i ∥2

L2(0,T ;L2(Ω)) ⩽ ϵ−1
m exp(ϵ−1

m )c (ϵ-dependent estimate),
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(iii) ∥∇um
i ∥2

L2(0,T ;L2(Am)) ⩽ c (dissipation estimate in the set Am on
which the weights are wm

i ≡ 1)

for a constant c independent of m.

The parameters θ and p of the Gagliardo–Nirenberg in Lemma 3.1 are
chosen such that θp = 2. Hence we find on Am that for i = 1, . . . , n∫ T

0
∥um

i ∥p
Lp(Am)dt ≲

∫ T

0

(
∥∇um

i ∥2
L2(Am) ∥um

i ∥(1−θ)p
L1(Am) + ∥um

i ∥p
L1(Am)

)
dt.

With the gradient control from the dissipation and the conservation of mass
this shows ∫

[0,T )×Am

|um
i |p dxdt ⩽ cd

for a constant cd independent of m.

As the domain Ω is assumed to have C 1 boundary, we can also apply the
argument of Lemma 3.1 to find over Ω that for i = 1, . . . , n∫ T

0
∥um

i ∥p
Lp(Ω)dt ≲

∫ T

0

(
∥∇um

i ∥2
L2(Ω) ∥um

i ∥(1−θ)p
L1(Ω) + ∥um

i ∥p
L1(Ω)

)
dt.

Hence we find for a constant ce independent of m that∫
[0,T )×Ω

|um
i |p dx dt ⩽ ce

(
1 + ce

ϵm
exp(ϵ−1

m )
)
.

As p̃ < p we can find q ∈ (0, 1) so that the Hölder inequality implies
∥f∥Lp̃([0,T )×B) ⩽ (T |B|)q ∥f∥Lp([0,T )×B)

for B ⊂ Ω and f ∈ Lp([0, T ) ×B).

By splitting Ω into Am and Ω \Am we therefore find (as |Am| ⩽ |Ω|)
∥um

i ∥Lp̃([0,T )×Ω) ⩽ ∥um
i ∥Lp̃([0,T )×Am) + ∥um

i ∥Lp̃([0,T )×(Ω\Am))

⩽ T q |Ω|qc1/p
d + T q |Ω \Am|qc1/p

e

(
1 + exp(ϵ−1

m )
ϵm

)1/p

.

As |Ω \Am| → 0 and q ∈ (0, 1), we can therefore find a sequence ϵm ↓ 0 such
that |Ω \ Am|q(1 + ϵ−1

m exp(ϵ−1
m ))1/p is bounded by a constant independent

of m. The claim then follows directly from the given estimate. □

We can now proceed with the convergence result.

Proof of Theorem 1.15. — Inside each good set Am, the dissipation and
mass conservation give a uniform estimate for um

i in L∞(0, T ; L1(Am)) and
L2(0, T ; H1(Am)) for i = 1, . . . , n and m ⩾ m. By the equation this also
gives a uniform estimate of the time-derivative in L1(0, T ; H−k(Am)) for a
large enough k ∈ N (depending only on dimension d). Hence on Am we have
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compactness for um
i . As Am ↑ Ω, a diagonal argument shows that along

a subsequence (which we relabel with m) that for i = 1, . . . , n there exist
ui : [0, T )×Ω such that um

i → ui a.e. Moreover, choosing ϵm as in Lemma 3.2
we find ui ∈ Lp̃([0, T ) × Ω).

By the dissipation inequality we find that

∥
√
wm

i ∇um
i ∥L2([0,T )×Ω)

is uniformly bounded. Hence along a subsequence
√
wm

i ∇um
i converges

weakly in L2 to a limit ψi. As wm
i is the constant 1 inside the set Am

and Am ↑ Ω, it follows that
√
wm

i ∇um
i ⇀ ∇u and ∇u ∈ L2.

As um preserves the mass, is nonnegative and satisfies the entropy-
dissipation inequality, the same is true for the limit u by using the stated
regularity. Moreover, the stated regularity gives the claimed convergence.

It thus remains to check that u is a weak solution. As um satisfies von
Neumann boundary data and Km vanishes at the boundary, the constructed
solutions satisfy for all ϕ ∈ C ∞([0, T ] × Ω with ϕ(T, · ) ≡ 0 and i = 1, . . . , n
that

−
∫ T

0

∫
Ω
um

i ∂tϕ+ ϵm

∫ T

0

∫
Ω

∇um
i · ϕ

+
∫ T

0

∫
Ω

(∏
k ̸=i

∫
xk∈Ω

dxkK
m(x1, . . . , xn)

n∑
j=1

aij(um
1 (x1), . . . , um

n (xn))∇um
j (xj)

)
· ∇ϕ

=
∫

Ω
uinit

i ϕ(0, · ).

For the diffusion from dij with i ̸= j and i, j = 1, . . . , n, we must therefore
show that for all test function ϕ∫ T

0

∫
Ωn

Km(x1, . . . , xn)um
i (t, xi)∇um

j (t, xj) ∇ϕ(t, xi) dx1 . . . dxndt

−→
∫ T

0

∫
Ω
ui(t, x)∇uj(t, x) ∇ϕ(t, x) dxdt.

We rewrite the nonlinear diffusion term as∫ T

0

∫
Ωn

Km(x1, . . . , xn)um
i (t, xi)∇um

j (t, xj) ∇ϕ(t, xi) dx1 . . . dxndt

=
∫ T

0

∫
Ω

√
wm

j (xj)∇um
j (t, xj)ψm(t, xj) dxi dt,
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where

ψm(t, xj) = 1√
wm

j (xj)

∏
k ̸=j

∫
Ω

dxk K
m(x1, . . . , xn)um

i (t, xi) ∇ϕ(t, xi).

By the definition of the weight wm
j , we can apply Jensen’s inequality for

p̃ ⩾ 2 to find that

∥ψm∥Lp̃([0,T )×Ω) ⩽ ∥um
i ∇ϕ∥Lp̃([0,T )×Ω).

By the proven convergence and regularity of um
i we find that ψm → ui∇ϕ

a.e. in [0, T ) × Ω. The previous inequality gives a uniform bound of ψm in
Lp̃ with p̃ > 2 so that ψm converges strongly in L2 to ui∇ϕ. As

√
wm

j ∇um
j

converges weakly in L2 to ∇uj , this proves the claimed convergence.

The other terms in the weak formulation converge more directly in the
limit and we thus have found a weak solution. □

Appendix A. Microscopic reversibility

In the linear SKT model (1.5), the entropy was understood as reversiblity
in a microscopic model in [8] and this gave us the intuition about the nonlocal
entropy structure. In this appendix we discuss in the case of two species how
the form in Remark 1.9 in the general regularisation on bounded domains
by a kernel K : Ω2 → R⩾0 appears formally from the microscopic entropy
structure.

In the microscopic picture of [8] we considered a spatial discretisation in
the one-dimensional setting so that we have discrete positions {1, . . . , N}.
On this discrete setting we consider many particles of the two species 1 and 2
and we then obtain a reversible cross-diffusion behaviour if a pair consisting
of a particle of species 1 at position i and a particle of species 2 at position j
jumps together with rate Rr(i, j) to the positions i+1 and j+1, respectively.
Likewise the pair can jump with a rate Rl(i, j) to i−1 and j−1, respectively.
We then have the reversibility (and thus the entropy structure) if

Rr(i, j) = Rl(i+ 1, j + 1). (A.1)
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In the formal mean-field limit we then find the evolution for the densities
u1 and u2 the following nonlinear system

∂tu1(i) =
M∑

j=1

{
Rr(i− 1, j)u1(i− 1)u2(j) +Rl(i+ 1, j)u1(i+ 1)u2(j)

− (Rl(i, j) +Rr(i, j))u1(i)u2(j)
}

∂tu2(j) =
M∑

i=1

{
Rr(i, j − 1)u1(i)u2(j − 1) +Rl(i, j + 1)u1(i)u2(j + 1)

− (Rl(i, j) +Rr(i, j))u1(i)u2(j)
}

for which we can indeed verify the entropy

H =
M∑

i=1

[
h(u1(i)) + h(u2(i))

]
where h′(x) = log x as

d
dtH = −

∑
i,j

Rr(i, j)
[(
u1(i+ 1)u2(j + 1) − u1(i)u2(j)

)
×
(

log(u1(i+ 1)u2(j + 1)) − log(u1(i)u2(j))
)]
.

For the formal limit of the discrete system to a PDE, we denote the
centred discrete Laplacian

(∆df)(i) = f(i+ 1) + f(i− 1) − 2f(i).

We can then rewrite the evolution as

∂tu1(i) = ∆d

∑
j

Rl(i, j) +Rr(i, j)
2 u1(i)u2(j)


+ 1

2
∑

j

{
u1(i+1)u2(j)

[
Rl(i+1, j) −Rr(i+1, j)

]
+ u1(i−1)u2(j)

[
Rr(i−1, j) −Rr(i+1, j)

]}
and likewise for u2. By the microscopic reversibility (A.1) we note that this
is exactly the discrete form of the regularisation found in (1.17).
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