

Annales de la Faculté des Sciences de Toulouse

MATHÉMATIQUES

STEPAN YU. OREVKOV *Homomorphisms of commutator subgroups of braid groups with small number of strings*

Tome XXXIII, nº 1 (2024), p. 105-121.

<https://doi.org/10.5802/afst.1763>

© les auteurs, 2024.

Les articles des *Annales de la Faculté des Sciences de Toulouse* sont mis à disposition sous la license Creative Commons Attribution (CC-BY) 4.0 <http://creativecommons.org/licenses/by/4.0/>

Publication membre du centre Mersenne pour l'édition scientifique ouverte <http://www.centre-mersenne.org/> e-ISSN : 2258-7519

pp. 105-121

Homomorphisms of commutator subgroups of braid groups with small number of strings (∗)

STEPAN YU. OREVKOV⁽¹⁾

To Vladimir Lin in occasion of his 85th birthday

ABSTRACT. — For any *n*, we describe all endomorphisms of the braid group B_n and of its commutator subgroup B'_n , as well as all homomorphisms $B'_n \to B_n$. These results are new only for small *n* because endomorphisms of *Bn* are already described by Castel for $n \ge 6$, and homomorphisms $B'_n \to B_n$ and endomorphisms of B'_n are already described by Kordek and Margalit for $n \geq 7$. We use very different approaches for $n = 4$ and for $n \geq 5$.

RÉSUMÉ. — Pour tout *n* nous décrivons tous les endomophismes du groupe de tresses B_n et de son sous-groupe dérivé B'_n ainsi que tous les homomorphismes $B'_n \to$ *Bn*. Ces résultats ne sont nouveaux que pour *n* petits parce que les endomorphismes de B_n sont déjà décrits par Castel pour $n \geqslant 6$ et les homomorphismes $B'_n \to B_n$ ainsi que les endomorphismes de B'_n sont décrits par Kordek et Margalit pour $n \geq 7$. Nous utilisons des approches très différentes pour $n = 4$ et pour $n \geq 5$.

1. Introduction

Let \mathbf{B}_n be the braid group with *n* strings. It is generated by $\sigma_1, \ldots, \sigma_{n-1}$ (called *standard* or *Artin* generators) subject to the relations

 $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| > 1$; $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for $|i - j| = 1$.

Let \mathbf{B}'_n be the commutator subgroup of \mathbf{B}_n .

In this paper we describe all endomorphisms of \mathbf{B}_n and \mathbf{B}'_n and homomorphisms $\mathbf{B}'_n \to \mathbf{B}_n$ for any *n*. These results are new only for small *n* because endomorphisms of \mathbf{B}_n are described by Castel in [\[4\]](#page-16-0) for $n \geq 6$, and homomorphisms $\mathbf{B}'_n \to \mathbf{B}_n$ and endomorphisms of \mathbf{B}'_n are described by Kordek and Margalit in [\[11\]](#page-17-0) for $n \geq 7$.

^(*) Reçu le 7 décembre 2020, accepté le 15 février 2022.

⁽¹⁾ IMT, Univ. Paul Sabatier, Toulouse, France — Steklov Math. Inst., Moscow, Russia — stepan.orevkov@math.univ-toulouse.fr

Article proposé par Jean-Pierre Otal.

The automorphisms of \mathbf{B}_n and \mathbf{B}'_n have been already known for any *n*: Dyer and Grossman [\[5\]](#page-16-1) proved that the only non-trivial element of $Out(\mathbf{B}_n)$ corresponds to the automorphism Λ defined by $\sigma_i \mapsto \sigma_i^{-1}$ for any $i =$ 1, ..., $n-1$, and in [\[17\]](#page-17-1) we proved that the restriction map Aut(\mathbf{B}_n) \rightarrow Aut (\mathbf{B}'_n) is an isomorphism for $n \geq 4$ (\mathbf{B}'_3 is a free group of rank 2, thus its automorphisms are known as well; see e.g. [\[15\]](#page-17-2)).

The problem to study homomorphisms between braid groups and, especially, between their commutator subgroups was posed by Vladimir Lin [\[12,](#page-17-3) [13,](#page-17-4) [14\]](#page-17-5) because he found its applications to the problem of superpositions of algebraic functions (the initial motivation for Hilbert's 13th problem); see [\[13\]](#page-17-4) and references therein.

Let us formulate the main results. We start with those about homomorphisms of \mathbf{B}'_n to \mathbf{B}_n and to itself.

THEOREM 1.1 (proven for $n \geq 7$ in [\[11\]](#page-17-0)). — Let $n \geq 5$. Then every *non-trivial homomorphism* $\mathbf{B}'_n \to \mathbf{B}_n$ *extends to an automorphism of* \mathbf{B}_n *.*

We prove this theorem in Section [2.](#page-4-0) Since $\mathbf{B}''_n = \mathbf{B}'_n$ and $\text{Aut}(\mathbf{B}_n) =$ $Aut(\mathbf{B}'_n)$ for $n \geqslant 5$, the following two corollaries are, in fact, equivalent versions of Theorem [1.1.](#page-2-0)

COROLLARY 1.2. $\overline{}$ *If* $n \geq 5$ *, then any non-trivial endomorphism of* \mathbf{B}'_n *is bijective.*

COROLLARY 1.3. \longrightarrow *If* $n \geq 5$ *, then any non-trivial homomorphism* $\mathbf{B}'_n \rightarrow$ \mathbf{B}_n *is an automorphism of* \mathbf{B}'_n *composed with the inclusion map.*

Let *R* be the homomorphism

$$
R: \mathbf{B}_4 \longrightarrow \mathbf{B}_3, \qquad \sigma_1, \sigma_3 \longmapsto \sigma_1, \quad \sigma_2 \longmapsto \sigma_2, \tag{1.1}
$$

(we denote it by *R* because, if we interpret \mathbf{B}_n as $\pi_1(X_n)$ where X_n is the space of monic squarefree polynomials of degree *n*, then *R* is induced by the mapping which takes a degree 4 polynomial to its cubic resolvent).

For a group *G*, we denote its commutator subgroup, center, and abelianization by G' , $Z(G)$, and G^{ab} respectively. We also denote the inner automorphism $y \mapsto xyx^{-1}$ by \tilde{x} , the commutator $xyx^{-1}y^{-1}$ by $[x, y]$, and the controlling of an element x (resp. of a subgroup H) in C by $Z(x; C)$ (resp. centralizer of an element *x* (resp. of a subgroup *H*) in *G* by $Z(x; G)$ (resp. by $Z(H;G)$).

Given two group homomorphisms $f: G_1 \to G_2$ and $\tau: G_1^{\mathfrak{ab}} \to Z(\text{im } f; G_2)$, we define the *transvection* of *f* by τ as the homomorphism $f_{[\tau]} : G_1 \to$ *G*₂ given by $x \mapsto f(x)\tau(\bar{x})$ where \bar{x} is the image of *x* in G_1^{ab} . To simplify notation, we will not distinguish between τ and its composition with the

 $-106-$

canonical projection $G_1 \to G_1^{\mathfrak{ab}}$. So, we shall often speak of a transvection by $\tau: G_1 \to Z(\text{im } f; G_2)$.

We say that two homomorphisms $f, q: G_1 \rightarrow G_2$ are *equivalent* if there exists $h \in Aut(G_2)$ such that $f = hq$. If, moreover, $h \in Inn(G_2)$, we say that *f* and *g* are *conjugate*.

THEOREM 1.4. — *Any homomorphism* $\varphi : \mathbf{B}'_4 \to \mathbf{B}_4$ *either is equivalent to a transvection of the inclusion map, or* $\varphi = fR$ *for a homomorphism* $f: \mathbf{B}'_3 \to \mathbf{B}_4$ (since \mathbf{B}'_3 is free [\[9\]](#page-17-6), it has plenty of homomorphisms to any *group).*

We prove this theorem in Section [3.](#page-10-0)

COROLLARY 1.5. $-$ *Any endomorphism of* \mathbf{B}'_4 *is either an automorphism or a composition of R with a homomorphism* $\mathbf{B}'_3 \to \mathbf{B}'_4$ *.*

As we already mentioned, \mathbf{B}'_3 is free, thus its homomorphisms are evident. Now let us describe endomorphisms of \mathbf{B}_n . We say that a homomorphism is *cyclic* if its image is a cyclic group (probably, infinite cyclic).

THEOREM 1.6 (proven for $n \geq 6$ in [\[4\]](#page-16-0)). — If $n \geq 5$, then any non-cyclic *endomorphism of* \mathbf{B}_n *is a transvection of an automorphism.*

For $n \geq 7$, this result is derived in [\[11\]](#page-17-0) from Theorem [1.1.](#page-2-0) The same proof works without any change for any $n \geq 5$.

THEOREM 1.7. — Any endomorphism of B_4 is either a transvection of *an automorphism, or it is of the form* fR *for some* $f : \mathbf{B}_3 \to \mathbf{B}_4$ (see *Proposition [1.9](#page-4-1) for a general form of such f).*

This theorem also can be derived from Theorem [1.4](#page-3-0) in the same way as it is done in [\[11\]](#page-17-0) for $n \geq 7$.

Let $\Delta = \Delta_n = \prod_{i=1}^{n-1} \prod_{j=1}^{n-i} \sigma_j$ (the Garside's half-twist), $\delta = \delta_n =$ $\sigma_{n-1} \ldots \sigma_2 \sigma_1$, and $\gamma = \gamma_n = \sigma_1 \delta_n$. One has $\delta^n = \gamma^{n-1} = \Delta^2$, and it is known that $Z(\mathbf{B}_n)$ is generated by Δ^2 , and each periodic braid (i.e. a root of a central element) is conjugate to δ^k or γ^k for some $k \in \mathbb{Z}$.

It is well-known that \mathbf{B}_3 admits a presentation $\langle \Delta, \delta | \Delta^2 = \delta^3 \rangle$. By combining this fact with basic properties of canonical reduction systems, it is easy to prove the following descriptions of homomorphisms from \mathbf{B}_3 to \mathbf{B}_n for $n=3$ or 4.

Proposition 1.8. — *Any non-cyclic endomorphism of* **B**³ *is equivalent to a transvection by* τ *of a homomorphism of the form* $\Delta \mapsto \Delta$, $\delta \mapsto X\delta X^{-1}$ *for some* $X \in \mathbf{B}_3$ *and* $\tau : \mathbf{B}_3^{\mathfrak{ab}} \to Z(\mathbf{B}_3) = \langle \Delta^2 \rangle$ *.*

Stepan Yu. Orevkov

PROPOSITION 1.9. — *For any non-cyclic homomorphism* $\varphi : \mathbf{B}_3 \to \mathbf{B}_4$, *one of the following two possibilities holds:*

- (a) φ *is equivalent to a transvection by* τ *of a homomorphism of the form* $\Delta_3 \mapsto \Delta_4$, $\delta_3 \mapsto X\gamma_4 X^{-1}$ *for some* $X \in \mathbf{B}_4$ *and* $\tau : \mathbf{B}_3^{\text{ab}} \to$ $Z(\mathbf{B}_4) = \langle \Delta_4^2 \rangle$;
- (b) φ *is equivalent to* $(\iota \psi)_{[\tau]}$ *where* ψ *is a non-cyclic endomorphism of* \mathbf{B}_3 , $\iota : \mathbf{B}_3 \to \mathbf{B}_4$ *is the standard embedding, and* τ *is a homomor* $phism \ \mathbf{B}_3^{\mathfrak{ab}} \to Z(\mathbf{B}_4) = \langle \Delta_4^2 \rangle.$

Remark 1.10. — Since $\mathbf{B}_n^{\text{ab}} \cong Z(\mathbf{B}_n) \cong \mathbb{Z}$, the transvection in Theorem [1.6](#page-3-1) (and in the non-degenerate case in Theorem [1.7\)](#page-3-2) is uniquely determined by a single integer number. In contrast, $(\mathbf{B}'_4)^{\mathfrak{a}\mathfrak{b}} \cong \mathbb{Z}^2$, thus the transvection in Theorem [1.4](#page-3-0) depends on two integers (here we have $Z(im(\mathbf{B}'_4 \hookrightarrow \mathbf{B}_4); \mathbf{B}_4) = Z(\mathbf{B}'_4; \mathbf{B}_4) = Z(\mathbf{B}_4) \cong \mathbb{Z}$. Notice also that two transvections are involved in the case [\(b\)](#page-4-2) of Proposition [1.9,](#page-4-1) thus the general form of φ in this case is

$$
\Delta_3 \longmapsto f\big(\iota(\Delta_3)^{6k+1}\Delta_4^{6l}\big), \qquad \delta_3 \longmapsto f\big(\iota(X\delta_3 X^{-1}\Delta_3^{4k})\Delta_4^{4l}\big)
$$

with $k, l \in \mathbb{Z}, X \in \mathbf{B}_3, f \in \text{Aut}(\mathbf{B}_4).$

2. The case $n \geq 5$

In this section we prove Theorem [1.1](#page-2-0) which describes homomorphisms $\mathbf{B}'_n \to \mathbf{B}_n$ for $n \geq 5$. The proof is very similar to the proof of the case $n \geqslant 5$ of the main theorem of [\[17\]](#page-17-1) which describes Aut \mathbf{B}'_n . As we already mentioned, Theorem [1.1](#page-2-0) for $n \geq 7$ is proven by Kordek and Margalit in [\[11\]](#page-17-0). Some elements of their proof are valid for $n \geq 5$ (see Proposition [2.4](#page-6-0) below) which allowed us to omit a big part of our original proof based on [\[17\]](#page-17-1).

Let \mathbf{S}_n be the symmetric group. Let $e : \mathbf{B}_n \to \mathbb{Z}$ and $\mu : \mathbf{B}_n \to \mathbf{S}_n$ be the homomorphisms defined on the generators by $e(\sigma_i) = 1$ and $\mu(\sigma_i) = (i, i+1)$ for $i = 1, \ldots, n-1$. So, $e(X)$ is the exponent sum (signed word length) of X. Let $\mathbf{P}_n = \ker \mu$ be the pure braid group. Following [\[12\]](#page-17-3), we denote $\mathbf{P}_n \cap \mathbf{B}'_n$ by \mathbf{J}_n , and $\mu|_{\mathbf{B}'_n}$ by μ' , thus $\mathbf{J}_n = \ker \mu'$.

For a pure braid *X*, we denote the linking number between the *i*-th and the *j*-th strings of *X* by $lk_{ij}(X)$. It can be defined as $\frac{1}{2}e(X_{ij})$ where X_{ij} is the 2-braid obtained from *X* by removal of all strings except the *i*-th and the *j*-th ones. For $1 \leq i < j \leq n$, we set $\sigma_{ij} = (\sigma_{j-1} \dots \sigma_{i+1}) \sigma_i (\sigma_{j-1} \dots \sigma_{i+1})^{-1}$ (here $\sigma_{i,i+1} = \sigma_i$). Then \mathbf{P}_n is generated by $\{\sigma_{ij}^2\}_{1 \leq i < j \leq n}$ (see [\[1\]](#page-16-2)) and we denote the image of σ_{ij}^2 in $\mathbf{P}_n^{\mathfrak{ab}}$ by A_{ij} . We use the additive notation for $\mathbf{P}_n^{\mathfrak{ab}}$ and $\mathbf{J}_n^{\mathfrak{ab}}$.

LEMMA 2.1 ([\[17,](#page-17-1) Lemma 2.3]). $-\mathbf{P}_n^{\mathfrak{ab}}$ *(for any n) is free abelian group with basis* $(A_{ij})_{1 \leqslant i < j \leqslant n}$ *. The natural projection* $\mathbf{P}_n \to \mathbf{P}_n^{\mathfrak{ab}}$ *is given by* $X \mapsto \sum_{i \leq j} \operatorname{lk}_{ij}(X) A_{ij}$ *.* $\sum_{i \leq j}$ lk_{*ij*}</sub> (*X*)*A*_{*ij*}.

If $n \geq 5$, then the homomorphism $J_n^{ab} \to P_n^{ab}$ induced by the inclusion *map defines an isomorphism of* J_n^{ab} *with* $\{\sum x_{ij} A_{ij} | \sum x_{ij} = 0\}$ *(notice that this statement is wrong for* $n = 3$ *or* 4*; see* [\[17,](#page-17-1) Proposition 2.4]*)*.

From now on, till the end of this section, we assume that $n \geq 5$ and φ : $\mathbf{B}'_n \to \mathbf{B}_n$ is a non-cyclic homomorphism. Since any group homomorphism $G_1 \rightarrow G_2$ maps G'_1 to G'_2 , we have $\varphi(\mathbf{B}_n'') \subset \mathbf{B}_n'$. By [\[9\]](#page-17-6) (see also [\[17,](#page-17-1) Remark 2.2]), we have $\mathbf{B}''_n = \mathbf{B}'_n$, thus

$$
\varphi(\mathbf{B}_n') \subset \mathbf{B}_n'.
$$

Then [\[12,](#page-17-3) Theorem D] implies that

 $\varphi(\mathbf{J}_n) \subset \mathbf{J}_n$.

Thus we may consider the endomorphism φ_* of $\mathbf{J}_n^{\mathfrak{ab}}$ induced by $\varphi|_{\mathbf{J}_n}$. We shall not distinguish between J_n^{ab} and its isomorphic image in P_n^{ab} (see Lemma [2.1\)](#page-5-0).

Following [\[12\]](#page-17-3), we set

$$
c_i = \sigma_1^{-1} \sigma_i
$$
 $(i = 3, ..., n - 1)$ and $c = c_3$.

LEMMA 2.2. — *Suppose that* $\mu \varphi = \mu'$ *and* $\varphi(c) = c$ *. Then* $\varphi_* = id$ *.*

Proof. — The exact sequence $1 \to \mathbf{J}_n \to \mathbf{B}'_n \to \mathbf{A}_n \to 1$ defines an action of \mathbf{A}_n on \mathbf{J}_n^{ab} by conjugation. Let *V* be a complex vector space with base e_1, \ldots, e_n endowed with the natural action of \mathbf{S}_n induced by the action on the base. We identify $\mathbf{P}_n^{\mathfrak{ab}}$ with its image in the symmetric square $\text{Sym}^2 V$ under the homomorphism $A_{ij} \rightarrow e_i e_j$. Then, by Lemma [2.1,](#page-5-0) we may identify $J_n^{\mathfrak{a}\mathfrak{b}}$ with $\{\sum x_{ij}e_ie_j \mid x_{ij} \in \mathbb{Z}, \sum x_{ij} = 0\}$. These identifications are compatible with the action of \mathbf{A}_n . Thus $W := \mathbf{J}_n^{\mathfrak{ab}} \otimes \mathbb{C}$ is a $\mathbb{C}\mathbf{A}_n$ -submodule of $\text{Sym}^2 V$.

For an element *v* of a $\mathbb{C}\mathbf{S}_n$ -module, let $\langle v \rangle_{\mathbb{C}\mathbf{S}_n}$ be the $\mathbb{C}\mathbf{S}_n$ -submodule generated by *v*. It is shown in the proof of [\[17,](#page-17-1) Lemma 3.1], that $W =$ $W_2 \oplus W_3$ where

$$
W_2 = \langle (e_1 - e_2)(e_3 + \dots + e_n) \rangle_{\mathbb{C}\mathbf{S}_n}, \qquad W_3 = \langle (e_1 - e_2)(e_3 - e_4) \rangle_{\mathbb{C}\mathbf{S}_n},
$$

and that W_2 and W_3 are irreducible $\mathbb{C}\mathbf{S}_n$ -modules isomorphic to the Specht modules corresponding to the partitions $(n-1, 1)$ and $(n-2, 2)$ respectively. Since the Young diagrams of these partitions are not symmetric, W_2 and W_3 are also irreducible as $\mathbb{C}\mathbf{A}_n$ -modules.

The condition $\mu \varphi = \mu'$ implies that φ_* is \mathbf{A}_n -equivariant. Hence, by Schur's lemma, $\varphi_* = a \, \mathrm{id}_{W_2} \oplus b \, \mathrm{id}_{W_3}$. We have the identity

$$
(n-2)(e_1-e_2)e_3 = (e_1-e_2)(e_3 + \cdots + e_n) + \sum_{i \geqslant 4} (e_1 - e_2)(e_3 - e_i)
$$

whence, denoting $e_5 + \cdots + e_n$ by e ,

$$
(n-2)\varphi_*((e_1-e_3)e_2) = (e_1-e_3)(a(e_2+e_4+e)+b((n-3)e_2-e_4-e)),(n-2)\varphi_*((e_2-e_4)e_3) = (e_2-e_4)(a(e_1+e_3+e)+b((n-3)e_3-e_1-e)).
$$

The condition $\varphi(c) = c$ implies the φ -invariance of $c^2 \in \mathbf{J}_n$. Since the image of c^{-2} in $\mathbf{J}_n^{\mathfrak{ab}}$ is $A_{12} - A_{34}$, we obtain that $e_1e_2 - e_3e_4$ is φ_* -invariant. Hence

$$
(n-2)(e_1e_2 - e_3e_4)
$$

= $(n-2)\varphi_*(e_1e_2 - e_3e_4)$
= $(n-2)\varphi_*((e_1 - e_3)e_2 + (e_2 - e_4)e_3)$
= $(2a + (n-4)b)(e_1e_2 - e_3e_4) + (a-b)(e_1 + e_2 - e_3 - e_4)e.$

Since $\{e_i e_j\}_{i\leq j}$ is a base of Sym²V, it follows that $2a + (n-4)b = n-2$ and $a - b = 0$ whence $a = b = 1$.

LEMMA 2.3. — Let φ_1 and φ_2 be equivalent homomorphisms $\mathbf{B}'_n \to \mathbf{B}_n$. *Then* $\mu\varphi_1$ *and* $\mu\varphi_2$ *are conjugate.*

Proof. — This fact immediately follows from Dyer – Grossman's [\[5\]](#page-16-1) classification of automorphisms of \mathbf{B}_n (see the beginning of the introduction) because $\mu \Lambda = \mu$.

PROPOSITION 2.4 (Kordek and Margalit [\[11,](#page-17-0) Section 3, Proof of Theorem 1.1, Cases 1–3 and Step 1 of Case 4. \ldots *There exists* $f \in Aut(\mathbf{B}_n)$ *such that* $f\varphi(c_i) = c_i$ *for each odd i in the range* $3 \leq i \leq n$ *(recall that we assume* $n \geqslant 5$.

This proposition implies, in particular, that $\mu\varphi$ is non-trivial, hence by Lin's result [\[12,](#page-17-3) Theorem C] $\mu\varphi$ is conjugate either to μ' or to $\nu\mu'$ (when $n = 6$) where *ν* is the restriction to **A**₆ of the automorphism of **S**₆ given by $(12) \mapsto (12)(34)(56), (123456) \mapsto (123)(45)$ (it represents the only nontrivial element of $Out(\mathbf{S}_6)$.

LEMMA 2.5. — *If* $n = 6$, then $\mu\varphi$ *is not conjugate to* $\nu\mu'$.

Proof. — Let *H* be the subgroup generated by c_3 and c_5 . By Lemma [2.3](#page-6-1) and Proposition [2.4](#page-6-0) we may assume that $\varphi|_H = id$. Then we have

$$
\mu'(H) = \mu \varphi(H) = \{id, (12)(34), (12)(56), (34)(56)\}.
$$

In particular, no element of $\{1,\ldots,6\}$ is fixed by all elements of $\mu\varphi(H)$. A straightforward computation shows that

$$
\nu\mu'(H) = \{\text{id}, (12)(34), (13)(24), (14)(23)\},\tag{2.1}
$$

thus 5 and 6 are fixed by all elements of $\nu\mu'(H)$. Hence these subgroups are not conjugate in \mathbf{S}_6 . □

LEMMA 2.6. — *There exists* $f \in Aut(\mathbf{B}_n)$ *such that* $f\varphi(c) = c$ *and* $\mu f \varphi = \mu'.$

Proof. — By Proposition [2.4](#page-6-0) we may assume that

$$
\varphi(c) = c.\tag{2.2}
$$

Then $\mu\varphi$ is non-trivial, hence, by [\[12,](#page-17-3) Theorem C] combined with Lemma [2.5,](#page-6-2) it is conjugate to μ' , i.e. there exists $\pi \in \mathbf{S}_n$ such that $\tilde{\pi}\mu\varphi = \mu'$, i.e.
 $\pi\mu(\varphi(x)) = \mu(x)\pi$ for each $x \in \mathbf{R}'$. For $x = c$ this implies by (2.2) that $\pi\mu(\varphi(x)) = \mu(x)\pi$ for each $x \in \mathbf{B}'_n$. For $x = c$ this implies by [\(2.2\)](#page-7-0) that *π* commutes with (12)(34), hence $\pi = \pi_1 \pi_2$ where $\pi_1 \in V_4$ (the group in the right hand side of [\(2.1\)](#page-7-1)) and $\pi_2(i) = i$ for $i \in \{1, 2, 3, 4\}$. Let \tilde{V}_4 = ${1, c, \Delta_4, c\Delta_4}$. This is not a subgroup but we have $\mu(\widetilde{V}_4) = V_4$. We can choose $y_1 \in V_4$ and $y_2 \in \langle \sigma_5, \ldots, \sigma_{n-1} \rangle$ so that $\mu(y_i) = \pi_i$, $j = 1, 2$. Let $y = y_1 y_2$. Then we have $\tilde{y}(c) = c^{\pm 1}$ and $\mu \tilde{y} \varphi = \tilde{\pi} \mu \varphi = \mu'$. Thus, for $f = \Lambda^k \tilde{y}$, $k \in \{0, 1\}$, we have $f \varphi(c) = c$ and $\mu f \varphi = \mu'$. $k \in \{0, 1\}$, we have $f\varphi(c) = c$ and $\mu f\varphi = \mu'$

Due to Lemma [2.6,](#page-7-2) from now on we assume that $\mu \varphi = \mu'$ and $\varphi(c) = c$. Then, by Lemma [2.2,](#page-5-1) we have $\varphi_* = id$, hence (see Lemma [2.1\)](#page-5-0)

$$
lk_{ij}(x) = lk_{ij}(\varphi(x)) \qquad \text{for any } x \in J_n \text{ and } 1 \leq i < j \leq n. \tag{2.3}
$$

Starting at this point, the proof of [\[17,](#page-17-1) Theorem 1.1] given in [\[17,](#page-17-1) Section 5], can be repeated almost word-by-word in our setting. The only exception is the proof of [\[17,](#page-17-1) Lemma 5.8] (which is Lemma [2.11](#page-9-0) below) where the invariance of the isomorphism type of centralizers of certain elements is used as well as Dyer–Grossman result [\[5\]](#page-16-1). However, as pointed out in [\[17,](#page-17-1) Remark 5.15 (there is a misprint there: $n \geq 6$ should be replaced by $n \geq 5$), there is another, even simpler, proof of Lemma [2.11](#page-9-0) based on Lemma [2.7](#page-8-0) (see below). This proof was not included in [\[17\]](#page-17-1) by the following reason. At that time we new only Garside-theoretic proof of Lemma [2.7](#page-8-0) while the rest of the proof of the main theorem for $n \geq 6$ used only Nielsen–Thurston theory and results of [\[12\]](#page-17-3). So we wanted to make the proofs (at least for $n \geq 6$) better accessible for readers who are not familiar with the Garside theory. Now we learned from [\[11\]](#page-17-0) that when we wrote that paper, Lemma [2.7](#page-8-0) had been already known for a rather long time [\[2,](#page-16-3) Lemma 4.9] and the proof in [\[2\]](#page-16-3) is based on Nielsen–Thurston theory.

In the rest of this section, for the reader's convenience we re-expose Section 5.1 of [\[17\]](#page-17-1) (Sections 5.2–5.3 can be left without any change). In this re-exposition we give another proof of [\[17,](#page-17-1) Lemma 5.8] and omit the lemmas which are no longer needed due to Proposition [2.4.](#page-6-0)

We shall consider \mathbf{B}_n as a mapping class group of *n*-punctured disk \mathbb{D} . We assume that $\mathbb D$ is a round disk in $\mathbb C$ and the set of the punctures is $\{1, 2, \ldots, n\}$. Given an embedded segment *I* in $\mathbb D$ with endpoints at two punctures, we denote with σ_I the positive half-twist along the boundary of a small neighborhood of *I*. The set of all such braids is the conjugacy class of σ_1 in \mathbf{B}_n . The arguments in the rest of this section are based on Nielsen– Thurston theory. The main tool are the canonical reduction systems. One can use [\[3\]](#page-16-4), [\[6\]](#page-16-5), or [\[10\]](#page-17-7) as a general introduction to the subject. In [\[17\]](#page-17-1) we gave all precise definitions and statements needed there (using the language and notation inspired mostly by [\[8\]](#page-17-8)).

Lemma 2.7 ([\[2,](#page-16-3) Lemma 4.9], [\[17,](#page-17-1) Lemma A.2]). — *Let x, y* ∈ **B***ⁿ be such that* $xyx = yxy$ *and each of x and y is conjugate to* σ_1 *. Then there exists* $u \in \mathbf{B}_n$ *such that* $\widetilde{u}(x) = \sigma_1$ *and* $\widetilde{u}(y) = \sigma_2$ *.*

Let
$$
\text{sh}_2 : \mathbf{B}_{n-2} \to \mathbf{B}_n
$$
 be the homomorphism $\text{sh}_2(\sigma_i) = \sigma_{i+2}$. We set
\n
$$
\tau = \sigma_1^{(n-2)(n-3)} \text{sh}_2(\Delta_{n-2}^{-2}).
$$

We have $\tau \in J_n$ (in the notation of [\[17\]](#page-17-1), $\tau = \psi_{2,n-2}(1; \sigma_1^{(n-2)(n-3)}, \Delta^{-2})$). Recall that we assume $\varphi(c) = c$, $\mu\varphi = \mu'$, and hence [\(2.3\)](#page-7-3) holds.

Lemma 2.8. — *Let I and J be two disjoint embedded segments with endpoints at punctures. Then* $\varphi(\sigma_I^{-1}\sigma_J) = \sigma_{I_1}^{-1}\sigma_{J_1}$ *where* I_1 *and* J_1 *are disjoint embedded segments such that* $\partial I_1 = \partial I$ *and* $\partial J_1 = \partial J$.

Proof. — The braid $\sigma_I^{-1} \sigma_J$ is conjugate to *c*, hence so is its image (because $\varphi(c) = c$). Therefore $\varphi(\sigma_I^{-1}\sigma_J) = \sigma_{I_1}^{-1}\sigma_{J_1}$ for some disjoint I_1 and J_1 . The matching of the boundaries follows from [\(2.3\)](#page-7-3) applied to $\sigma_I^{-2} \sigma_J^2$ \Box

LEMMA 2.9 (cf. $[17,$ Lemmas 5.1 and 5.3]). — Let C_1 be a component of *the canonical reduction system of* $\varphi(\tau)$ *. Then* C_1 *cannot separate the punctures* 1 *and* 2, *and it cannot separate the punctures i and j for* $3 \le i \le j \le n$ *.*

Proof. — Let $u = \sigma_1^{-1} \sigma_{ij}$, $3 \leq i < j \leq n$. By Lemma [2.8,](#page-8-1) $\varphi(u) = \sigma_I^{-1} \sigma_J$ with $\partial I = \{1, 2\}$ and $\partial J = \{i, j\}$. Since $\varphi(u)$ commutes with $\varphi(\tau)$, the result follows. \Box

LEMMA 2.10 (cf. [\[17,](#page-17-1) Lemma 5.7]). $-\varphi(\tau)$ *is conjugate in* \mathbf{P}_n *to* τ *.*

Proof. — $\varphi(\tau)$ cannot be pseudo-Anosov because it commutes with $\varphi(c)$ which is *c* by our assumption, hence it is reducible.

If $\varphi(\tau)$ were periodic, then it would be a power of Δ^2 because it is a pure braid. This contradicts [\(2.3\)](#page-7-3), hence $\varphi(\tau)$ is reducible non-periodic.

Let *C* be the canonical reduction system for $\varphi(\tau)$. By Lemma [2.9,](#page-8-2) one of the following three cases occurs.

Case 1. C is connected, the punctures 1 *and* 2 *are inside C, all the other punctures are outside* C . — Then the restriction of $\varphi(\tau)$ (viewed as a diffeomorphism of D) to the exterior of *C* cannot be pseudo-Anosov because $\varphi(\tau)$ commutes with $\varphi(c) = c$, hence it preserves a circle which separates 3 and 4 from $5, \ldots, n$. Hence $\varphi(\tau)$ is periodic which contradicts [\(2.3\)](#page-7-3). Thus this case is impossible.

Case 2. C is connected, the punctures 1 *and* 2 *are outside C, all the other punctures are inside C. —* This case is also impossible and the proof is almost the same as in Case 1. To show that $\varphi(\tau)$ cannot be pseudo-Anosov, we note that it preserves a curve which encircles only 1 and 2.

Case 3. C has two components: C_1 *and* C_2 *which encircle* $\{1,2\}$ *and* $\{3,\ldots,n\}$ *respectively.* — Let α be the interior braid of C_2 (that is $\varphi(\tau)$) with the strings 1 and 2 removed). It cannot be pseudo-Anosov by the same reasons as in Case 1: because $\varphi(\tau)$ preserves a circle separating 3 and 4 from $5, \ldots, n$. Hence α is periodic. Using [\(2.3\)](#page-7-3), we conclude that $\varphi(\tau)$ is a conjugate of τ . Since the elements of $Z(\tau; \mathbf{B}_n)$ realize any permutation of $\{1,2\}$ and of $\{3,\ldots,n\}$, the conjugating element can be chosen in \mathbf{P}_n . □

LEMMA 2.11 (cf. [\[17,](#page-17-1) Lemma 5.8]). — *There exists* $u \in \mathbf{P}_n$ *such that* $\varphi(c_i) = \tilde{u}(c_i)$ *for each* $i = 3, \ldots, n - 1$.

Proof. — Due to Lemma [2.10,](#page-8-3) without loss of generality we may assume that $\varphi(\tau) = \tau$ and $\tau(C) = C$ where *C* is the canonical reduction system for τ consisting of two round circles C_1 and C_2 which encircle $\{1,2\}$ and $\{3,\ldots,n\}$ respectively. Since the conjugating element in Lemma [2.10](#page-8-3) is chosen in \mathbf{P}_n , we may assume that [\(2.3\)](#page-7-3) still holds.

By Lemma [2.8,](#page-8-1) for each $i = 3, ..., n - 1$, we have $\varphi(c_i) = \sigma_{I_i}^{-1} \sigma_{J_i}$ with $\partial I_i = \{1, 2\}$ and $\partial J_i = \{i, i+1\}$. Since τ commutes with each c_i , the segments *I*_i and *J*_{*i*} can be chosen disjoint from the circles C_1 and C_2 . Hence $\sigma_{I_i} = \sigma_1$ for each *i*, and all the segments J_i are inside C_2 .

Therefore the braids $\sigma_{J_3}, \ldots, \sigma_{J_{n-1}}$ satisfy the same braid relations as $\sigma_3, \ldots, \sigma_{n-1}$. Hence, by Lemma [2.7](#page-8-0) combined with [\[17,](#page-17-1) Lemma 5.13], *J*₃ ∪ $\cdots \cup J_{n-1}$ is an embedded segment. Hence it can be transformed to the straight line segment [3*, n*] by a diffeomorphism identical on the exterior of C_2 . Hence for the braid u represented by this diffeomorphism we have $\widetilde{u}(c_i) = c_i, i \ge 3$. The condition $\partial J_i = \{i, i+1\}$ implies that $u \in \mathbf{P}_n$. □

The rest of the proof of Theorem [1.1](#page-2-0) repeats word-by-word [\[17,](#page-17-1) Sections 5.2–5.3].

Figure 3.1. The identity $d = [c^{-1}t, u^{-1}]$.

Remark 2.12. — Besides Nielsen–Thurston theory, in the case $n = 5$, the arguments in [17, Section 5.3] use an auxiliary [res](#page-17-1)ult [\[17,](#page-17-1) Lemma A.1] for which the only proof we know is based on a slight modification of the main
theorem of [16] which is proven there using the Garside theory theorem of $[16]$ which is proven there using the Garside theory.

 ρ finite order. Then we also have w ϵ $\mathbf{d} \cdot \mathbf{f}$ and $\mathbf{d} \cdot \mathbf{f}$ in $\mathbf{d} \cdot \mathbf{g}$ **3.** The case $n = 4$

We shall use the same notation as in [17, Section 6]. The groups \mathbf{B}'_3 and \mathbf{d} \mathbf{B}'_4 were computed in [\[9\]](#page-17-6), namely \mathbf{B}'_3 is freely generated by $u = \sigma_2 \sigma_1^{-1}$ and $t = \sigma_1^{-1} \sigma_2$, and $\mathbf{B}'_4 = \mathbf{K}_4 \rtimes \mathbf{B}'_3$ where $\mathbf{K}_4 = \ker R$ (see [\(1.1\)](#page-2-1)). The group \mathbf{K}_4 is freely generated by $c = \sigma_3 \sigma_1^{-1}$ and $w = \sigma_2 c \sigma_2^{-1}$. The action of **B**[']₃ on **K**₄ by conjugation is given by

$$
ucu^{-1} = w, \quad uwu^{-1} = w^2c^{-1}w, \quad tct^{-1} = cw, \quad twt^{-1} = cw^2. \tag{3.1}
$$

The action of σ_1 and σ_2 on \mathbf{K}_4 is given by

$$
\sigma_1 c \sigma_1^{-1} = c
$$
, $\sigma_1 w \sigma_1^{-1} = c^{-1} w$, $\sigma_2 c \sigma_2^{-1} = w$, $\sigma_2 w \sigma_2^{-1} = w c^{-1} w$. (3.2)
So, we also have $\mathbf{B}_4 = \mathbf{K}_4 \rtimes \mathbf{B}_3$.

Besides the elements c, w, u, t of \mathbf{B}'_4 , we consider also

$$
d = \Delta \sigma_1^{-3} \sigma_3^{-3}
$$
 and $g = R(d) = \Delta_3^2 \sigma_1^{-6}$

(here and below $\Delta = \Delta_4$). One has (see Figure [3.1\)](#page-10-1)

$$
d = [c^{-1}t, u^{-1}], \qquad g = [t, u^{-1}]. \tag{3.3}
$$

We denote the subgroup generated by *c* and *d* by *H* and the subgroup generated by *c* and *g* by *G*.

Let $\varphi : \mathbf{B}'_4 \to \mathbf{B}_4$ be a homomorphism such that $\mathbf{K}_4 \not\subset \ker \varphi$.

LEMMA 3.1. — *The restriction of* φ *to H is injective,* $\varphi(H) \subset \mathbf{B}'_4$ *, and* $\varphi(G) \subset \mathbf{B}'_4$.

 $-114-$

Figure 3.2. The identity $gcg^{-1} = w^{-1}c^{-1}w$

Proof. — We have $H = \langle c \rangle \rtimes \langle d \rangle$ and *d* acts on *c* by $dcd^{-1} = c^{-1}$. Hence any non-trivial normal subgroup of *H* contains a power of *c*. Thus, if $\varphi|_H$ were not injective, ker φ would contain a power of *c* and hence *c* itself because the target group \mathbf{B}_4 does not have elements of finite order. Then we also have $w \in \text{ker }\varphi$ because $w = ucu^{-1}$. This contradicts the assumption $\mathbf{K}_4 = \langle c, w \rangle \not\subset \text{ker}\,\varphi$, thus $\varphi|_H$ is injective.

We have $dcd^{-1} = c^{-1}$, hence the image of $\varphi(c)$ under the abelianization $e: \mathbf{B}_4 \to \mathbb{Z}$ is zero, i.e., $\varphi(c) \in \mathbf{B}'_4$. By [\(3.3\)](#page-10-2) we also have $\varphi(d) \in \mathbf{B}'_4$ and $\varphi(g) \in \mathbf{B}'_4$, thus $\varphi(H) \subset \mathbf{B}'_4$ and $\varphi(G) \subset \mathbf{B}'_4$. □

LEMMA 3.2. $-\varphi(c)$ *and* $\varphi(q)$ *do not commute.*

Proof. — Suppose that $\varphi(c)$ and $\varphi(g)$ commute. Then $\varphi(c) = \varphi(gcg^{-1})$. Hence (see Figure [3.2\)](#page-11-0) $\varphi(c) = \varphi(w^{-1}c^{-1}w)$, i.e., φ factors through the quotient of \mathbf{B}'_4 by the relation $wc = c^{-1}w$. Let us denote this quotient group by $\widehat{\mathbf{B}}'_{4}$.

The relation $wc = c^{-1}w$ allows us to put any word $\prod_j c^{k_j} w^{l_j}$ with $l_j =$ ± 1 into the normal form $c^{k_1-k_2+k_3-\cdots}w^{l_1+l_2+l_3+\cdots}$ in \widehat{B}'_4 . Due to [\(3.1\)](#page-10-3), the conjugation by *t* of the word $w^{-1}cwc$ (which is equal to 1 in $\hat{\mathbf{B}}'_{4}$) yields

$$
1 = t(w^{-1}cwc)t^{-1} = (w^{-2}c^{-1})(cw)(cw^2)(cw) = w^{-1}cw^2cw = c^{-2}w^2
$$

(here in the last step we put the word into the above normal form). Conjugating once more by *t* and putting the result into the normal form, we get

$$
1 = t(c^{-2}w^{2})t^{-1} = (w^{-1}c^{-1})(w^{-1}c^{-1})(cw^{2})(cw^{2}) = w^{-1}c^{-1}wcw^{2} = c^{2}w^{2}.
$$

Thus $c^{-2}w^2 = c^2w^2 = 1$, i.e., $c^4 = 1$ in $\widehat{\mathbf{B}}'_4$, hence $\varphi(c^4) = 1$ which contradicts Lemma [3.1.](#page-10-4) \Box

As in [\[17\]](#page-17-1), we denote the stabilizer of 1 under the natural action of \mathbf{B}_3 on $\{1, 2, 3\}$ by $\mathbf{B}_{1,2}$. It is well-known (and easy to prove by Reidemeister-Schreier method) that $\mathbf{B}_{1,2}$ is isomorphic to the Artin group of type B_2 , that is $\langle x, y | xyxy = yxyx \rangle$. The Artin generators *x* and *y* of the latter group correspond to σ_1^2 and σ_2 .

Figure 3.3. The images of the generators under $\psi : \mathbf{B}_{1,2} \to \mathbf{B}'_4$.

Figure 3.4. Canonical reduc. systems for d^m , c^m , $(d^2c^6)^m$, h^m , $m \neq 0$.

LEMMA 3.3 (cf. [\[17,](#page-17-1) Lemma 6.2]). — *We have* $G = Z(d^2c^6; \mathbf{B}'_4)$ and this *group is generated by g and c subject to the defining relation* $g c g c = c g c g$.

Proof. — The centralizer of d^2c^6 in \mathbf{B}_4 is the stabilizer of its canonical reduction system which is shown in Figure [3.4,](#page-12-0) and (see $[8,$ Theorem 5.10]) it is the image of the injective homomorphism $\mathbf{B}_{1,2} \times \mathbb{Z} \to \mathbf{B}_4$, $(X, n) \mapsto Y \sigma_1^n$, where the 4-braid Y is obtained from the 3-braid X by doubling the first strand. It follows that $Z(d^2c^6; \mathbf{B}'_4)$ is the isomorphic image of $\mathbf{B}_{1,2}$ under the homomorphism $\psi : \mathbf{B}_{1,2} \to \mathbf{B}'_4$ defined on the generators by $\psi(\sigma_1^2) = g$, $\psi(\sigma_2) = c$ (see Figure [3.3\)](#page-12-1), thus $Z(d^2c^6; \mathbf{B}'_4) = G$. As we have pointed out howe $\mathbf{R}_{1,0}$ is the Artin group of type R_2 bence so is G and $acac = caca$ is above, $\mathbf{B}_{1,2}$ is the Artin group of type B_2 , hence so is *G* and $g c g c = c g c g$ is its defining relation \Box and \Box are all \Box its defining relation. □

LEMMA 3.4. $\rightarrow \varphi(d^2c^6)$ is conjugate in \mathbf{B}_4 to $d^{2k}, d^{2k}c^{6k},$ or h^k for some integer $k \neq 0$, where $h = \Delta^2 \Delta_3^{-4} = \Delta_3^{-2} \sigma_3 \sigma_2 \sigma_1^2 \sigma_2 \sigma_3$. LEMMA 3.4. — $\varphi(d^2c^6)$ is conjugate in \mathbf{B}_4 to d^{2k} , $d^{2k}c^{6k}$, or h^k for some \int *integer* $k \neq 0$ *, where* $h = \Delta^2 \Delta_3^{-4} = \Delta_3^{-2} \sigma_3 \sigma_2 \sigma_1^2 \sigma_2 \sigma_3^2$.

Proof. — Let $x = d^2c^6$. By Lemma [3.3,](#page-12-2) $G = Z(x; \mathbf{B}'_4)$, hence $\varphi(G) \subset$ $a_0 = \text{det } x = a \text{ } c$. By common 3.3, $G = \mathbb{Z}(x, \mathbf{D}_4)$, hence $\mathbb{Q}(G) \subset \mathbb{Z}(x, \mathbf{D}_4)$. Then $\mathbb{Z}(x, \mathbf{D}_1)$. \mathbf{D}_2 , \mathbf{I} arrive 2.1 arrive to k arrive $\mathbb{Z}(G) \subset \mathbb{Z}(x, \mathbf{D}_4)$. $Z(\varphi(x); \mathbf{B}_4)$. By Lemma [3.1](#page-10-4) we also have $\varphi(G) \subset \mathbf{B}'_4$, hence $\varphi(G) \subset Z(\varphi(x); \mathbf{B}'_4)$. By Lemma 3.1 we also have $\varphi(G) \subset \mathbf{B}'_4$. commutative. The isomorphism classes of the centralizers (in \mathbf{B}'_4) of all el- $Z(\varphi(x); \mathbf{B}'_4)$ is non-commutative only in the required cases (see the corre- $\mathcal{L}(\varphi(x), \mathcal{L}_4)$ is non-commutative only in the reducted cases (see the corresponding canonical reduction systems in Figure [3.4\)](#page-12-0) unless $\varphi(x) = 1$. Howcharacteristic substitute of B4, we deduce the $\frac{1}{2}$ contracted that $\frac{1}{2}$ contractes that $\frac{1}{2}$ arguments are same arguments of $\frac{1}{2}$ and $\frac{1}{2}$ ever the latter case is impossible by Lemma [3.1.](#page-10-4) □ ⁴ to B⁴ whose kernel does not $Z(\varphi(x); \mathbf{B}'_4)$. Then it follows from Lemma [3.2](#page-11-1) that $Z(\varphi(x); \mathbf{B}'_4)$ is nonements of \mathbf{B}'_4 are computed in [\[17,](#page-17-1) Table 6.1]. We see in this table that

LEMMA 3.5. — *There exists an automorphism of* B_4 *which takes* $\varphi(c)$ and $\varphi(d)$ to c^k and d^k respectively for an odd positive integer k .

Proof. — Let $x = d^2c^6$ and $y = d^2c^{-6}$. Since $y = dxd^{-1}$, the images of x and y are conjugate and both of them belong to one of the conjugacy classes indicated in Lemma [3.4.](#page-12-3) The canonical reduction systems for d^{2k} , $d^{2k}c^{6k}$, and h^k for $k \neq 0$ are shown in Figure [3.4.](#page-12-0) Since *x* and *y* commute, the canonical reduction systems of their images can be chosen disjoint from each other. Hence, up to composing φ with an inner automorphism of \mathbf{B}_4 , $(\varphi(x), \varphi(y))$ is either (h^{k_1}, h^{k_2}) or $(d^{2k_1}c^{l_1}, d^{2k_2}c^{l_2})$ where $l_j \in \{0, \pm 6k_j\},$ $j = 1, 2$. Since *x* and *y* are conjugate, by comparing the linking numbers between different pairs of strings, we deduce that $k_1 = k_2$ and (in the second case) $l_1 = \pm l_2$. Moreover, $\varphi(x) \neq \varphi(y)$ by Lemma [3.1.](#page-10-4) Hence, up to exchange of *x* and *y* (which is realizable by composing φ with \tilde{d}), we have $\varphi(x) = d^{2k} c^{6k}$ and $\varphi(y) = d^{2k}c^{-6k}$ whence, using the fact that $xy^{-1} = c^{12}$, we obtain $\varphi(c^{12}) = \varphi(xy^{-1}) = c^{12k}$. Since the canonical reduction systems of any braid and its non-zero power coincide (see, e.g., [\[7,](#page-17-10) Lemmas 2.1–2.3]), we obtain $\varphi(c) = c^k$ and $\varphi(d) = d^k$. By composing φ with Λ if necessary, we can arrive to $k > 0$. The relation $d^k c^k d^{-k} = c^{-k}$ combined with Lemma [3.1](#page-10-4) implies that *k* is odd. \Box

LEMMA 3.6. — $\varphi(\mathbf{K}_4) \subset \mathbf{K}_4$.

Proof. — Lemma [3.5](#page-12-4) implies that c^k is mapped to $\varphi(c)$ by an automorphism of \mathbf{B}_4 . Since \mathbf{K}_4 is a characteristic subgroup of \mathbf{B}'_4 (see [\[17,](#page-17-1) Lemma 6.5^{\vert}) and \mathbf{B}'_4 is a characteristic subgroup of \mathbf{B}_4 , we deduce that $\varphi(c) \in \mathbf{K}_4$. The same arguments can be applied to any other homomorphism of \mathbf{B}'_4 to \mathbf{B}_4 whose kernel does not contain \mathbf{K}_4 , in particular, they can be applied to $\varphi \tilde{u}$ whence $\varphi \tilde{u}(c) \in \mathbf{K}_4$. Since $\varphi(w) = \varphi \tilde{u}(c)$, we conclude that $\varphi(\mathbf{K}_4) = {\varphi(c), \varphi(w)} \subset \mathbf{K}_4$. $\varphi(\mathbf{K}_4) = \langle \varphi(c), \varphi(w) \rangle \subset \mathbf{K}_4.$

Let

$$
F=G\cap {\bf K}_4.
$$

Lemma 3.7. —

- (a) *The group F is freely generated by c* and $c_1 = w^{-1}c^{-1}w$.
- (b) Let a_1, \ldots, a_{m-1} and b_1, \ldots, b_m be non-zero integers, and let a_0 and a_m *be any integers. Then* $c^{a_0}w^{b_1}c^{a_1} \ldots w^{b_m}c^{a_m}$ *is in F if and only if m is even and* $b_j = (-1)^j$ *for each* $j = 1, \ldots, m$ *.*

Proof. — The relation on *g* and *c* in Lemma [3.3](#page-12-2) is equivalent to

$$
g^{-1}cgc = cgcg^{-1}.\tag{3.4}
$$

Recall that $G = \langle c, g \rangle$. We have $R(c) = 1$ and, by [\(3.3\)](#page-10-2), $g = R(d) \in \mathbb{B}'_3$ whence $R(g) = g$. Hence $R(G)$ is generated by *g*. By definition, $F =$ $\ker(R|_G)$, hence F is the normal closure of c in G, i.e., F is generated by the elements $\tilde{g}^k(c)$, $k \in \mathbb{Z}$. We have $\tilde{g}(c) = c_1$ (see Figure [3.2\)](#page-11-0) and

$$
\widetilde{g}(c_1) = \widetilde{g}^2(c) = g c^{-1} (c g c g^{-1}) g^{-1} \stackrel{\text{by}(3.4)}{=} g c^{-1} (g^{-1} c g c) g^{-1} = c_1^{-1} c c_1
$$

whence by induction we obtain $\widetilde{g}^k(c) \in \langle c, c_1 \rangle$ for all positive *k*. Similarly,

$$
\widetilde{g}^{-1}(c) = (g^{-1}cgc)c^{-1} \stackrel{\text{by (3.4)}}{=} (cgcg^{-1})c^{-1} = c(gcg^{-1})c^{-1} = c c_1c^{-1}
$$

and $\tilde{g}^{-1}(c_1) = c$ whence $\tilde{g}^k(c) \in \langle c, c_1 \rangle$ for all negative *k*. Thus $F = \langle c, c_1 \rangle$.

To check that c and c_1 is a free base of F (which completes the proof of [\(a\)](#page-13-1)), it is enough to observe that if, in a reduced word in x, y , we replace each x^k with c^k and each y^k with $w^{-1}c^{-k}w$, then we obtain a reduced word in *c* and *w*. The statement [\(b\)](#page-13-2) also easily follows from this observation. \Box

LEMMA 3.8. − *If* $x \in F$ *and* $x = [w^{-1}, A]$ *with* $A \in \mathbf{K}_4$ *, then* $x =$ $[w^{-1}, c^k], k \in \mathbb{Z}$.

Proof. — Let $A = w^{b_1}c^{a_1} \dots w^{b_m}c^{a_m}w^{b_{m+1}}, m \geq 0$, where a_1, \dots, a_m and b_2, \ldots, b_m are non-zero while b_1 and b_{m+1} may or may not be zero. If $m = 0$, then $[w^{-1}, A] = 1 = [w^{-1}, c^0]$ and we are done. If $m = 1$, then $[w^{-1}, A] = w^{b_1-1}c^{a_1}w c^{-a_1}w^{-b_1}$ where, by Lemma [3.7](#page-13-3)[\(b\)](#page-13-2), we must have $b_1 = 0$, hence $[w^{-1}, A] = [w^{-1}, c^{a_1}]$ as required. Suppose that $m \ge 2$. Then

$$
[w^{-1}, A] = w^{b_1 - 1} c^{a_1} \dots w^{b_m} c^{a_m} w c^{-a_m} w^{-b_m} \dots c^{-a_1} w^{-b_1}
$$

and this is a reduced word in *c*, *w*. Hence, by Lemma [3.7](#page-13-3)[\(b\)](#page-13-2), the sequence of the exponents of *w* in this word (starting form $b_1 - 1$ when $b_1 \neq 1$ or from *b*₂ when *b*₁ = 1) should be $(-1, 1, -1, 1, \ldots, -1, 1)$. Such a sequence cannot contain $(\ldots, b_m, 1, -b_m, \ldots)$. A contradiction. □

LEMMA 3.9.
$$
If \varphi(d^2) = d^2 \text{ and } \varphi(c) = c, \text{ then } w^{-1}\varphi(w) \in F.
$$

Proof. — For any $k \in \mathbb{Z}$ we have

$$
\sigma_3^k w = \sigma_3^k (\sigma_2 \sigma_3) (\sigma_1^{-1} \sigma_2^{-1}) = (\sigma_2 \sigma_3) \sigma_2^k (\sigma_1^{-1} \sigma_2^{-1})
$$

= $(\sigma_2 \sigma_3) (\sigma_1^{-1} \sigma_2^{-1}) \sigma_1^k = w \sigma_1^k$,

hence $\sigma_3^k w \sigma_1^{-k} = w = \sigma_3^{-k} w \sigma_1^{k}$ and we obtain

$$
d^2wd^{-2} = \Delta^2 \sigma_1^{-6} (\sigma_3^{-6}w \sigma_1^6) \sigma_3^6 \Delta^{-2} = \sigma_1^{-6} (\sigma_3^6 w \sigma_1^{-6}) \sigma_3^6 = c^6 w c^6.
$$
 (3.5)

Set $x = w^{-1}\varphi(w)$, i.e., $\varphi(w) = wx$. The relation [\(3.5\)](#page-14-0) combined with our hypothesis on c and d^2 implies

$$
c^{6}wxc^{6} = \varphi(c^{6}wc^{6}) = \varphi(\tilde{d}^{2}(w)) = \tilde{d}^{2}(wx) = \tilde{d}^{2}(w)\tilde{d}^{2}(x) = c^{6}wc^{6}d^{2}xd^{-2}
$$

whence $x(c^6d^2) = (c^6d^2)x$, i.e., $x \in Z(d^2c^6)$. On the other hand, $\varphi(w) \in$ **K**₄ by Lemma [3.6,](#page-13-4) hence $x = w^{-1}\varphi(w) \in \mathbf{K}_4$. By Lemma [3.3](#page-12-2) we have $Z(d^2c^6; \mathbf{B}'_4) = G$, thus $x \in Z(d^2c^6) \cap \mathbf{K}_4 = G \cap \mathbf{K}_4 = F$.

LEMMA 3.10. — *There exists* $f \in Aut(\mathbf{B}_4)$ *and a homomorphism* τ : $\mathbf{B}'_4 \to Z(\mathbf{B}_4)$ *such that* $f\varphi(c) = c$, $f\varphi(d^2) = d^2$, and $Rf\varphi = R\mathrm{id}_{[\tau]}$.

Proof. — By Lemma [3.5](#page-12-4) we may assume that $\varphi(c) = c^k$ and $\varphi(d) = d^k$ for an odd positive *k*. For $x \in \mathbf{K}_4$, we denote its image in \mathbf{K}_4^{ab} by \bar{x} and we use the additive notation for $\mathbf{K}_4^{\mathfrak{ab}}$. Consider the homomorphism $\pi : \mathbf{B}_4 \to$ $Aut(\mathbf{K}_4^{\mathfrak{ab}}) = GL(2, \mathbb{Z})$, where $\pi(x)$ is defined as the automorphism of $\mathbf{K}_4^{\mathfrak{ab}}$ induced by \widetilde{x} ; here we identify Aut (\mathbf{K}_{4}^{ab}) with $GL(2,\mathbb{Z})$ by choosing \overline{c} and \overline{w} as a base of $\mathbf{K}_4^{\mathfrak{ab}}$. By Lemma [3.6,](#page-13-4) $\varphi(w) \in \mathbf{K}_4$, hence we may write $\overline{\varphi(w)}$ = $p\bar{c} + q\bar{w}$ with $p, q \in \mathbb{Z}$. Then, for any $x \in \mathbf{B}_4$, we have

$$
\pi \varphi(x). P = P.\pi(x) \quad \text{where} \quad P = \begin{pmatrix} k & p \\ 0 & q \end{pmatrix}.
$$
 (3.6)

(*P* is the matrix of the endomorphism of $\mathbf{K}_4^{\mathfrak{ab}}$ induced by $\varphi|_{\mathbf{K}_4}$). By [\(3.5\)](#page-14-0) we have

$$
\pi(d^2) = \begin{pmatrix} 1 & 12 \\ 0 & 1 \end{pmatrix} \text{ hence } \pi(d^{2k}).P - P.\pi(d^2) = \begin{pmatrix} 0 & 12k(q-1) \\ 0 & 0 \end{pmatrix}. (3.7)
$$

Since $\varphi(d^2) = d^{2k}$, we obtain from [\(3.6\)](#page-15-0) combined with [\(3.7\)](#page-15-1) that $q = 1$, i.e., $\overline{\varphi(w)} = p\bar{c} + \bar{w}$. By [\(3.1\)](#page-10-3) we have $\varphi(u)c^k\varphi(u)^{-1} = \varphi(ucu^{-1}) = \varphi(w)$, hence $k \overline{\varphi(u)c\varphi(u)^{-1}} = \overline{\varphi(w)} = p\overline{c} + \overline{w}.$

Therefore $k = 1$ because $p\bar{c} + \bar{w}$ cannot be a multiple of another element of \mathbf{K}_4^{ab} . Notice that $\tilde{\sigma}_1(c) = c$, $\tilde{\sigma}_1(d^2) = d^2$, and $\tilde{\sigma}_1(w) = c^{-1}w$ (see [\(3.2\)](#page-10-5)).
Hence for $f = \tilde{\sigma}^p$ we have Hence, for $f = \tilde{\sigma}_1^p$, we have

$$
f\varphi(c) = c, \qquad f\varphi(d^2) = d^2, \qquad \overline{f\varphi(w)} = \overline{w}.
$$
 (3.8)

It remains to show that $Rf\varphi = R\text{id}_{[\tau]}$ for some $\tau : \mathbf{B}'_4 \to Z(\mathbf{B}_4)$. Let $x \in \mathbf{B}'_4$. Since $\mathbf{B}'_4 = \mathbf{K}_4 \rtimes \mathbf{B}'_3$ and $\mathbf{B}_4 = \mathbf{K}_4 \rtimes \mathbf{B}_3$, we may write $x = x_1 a_1$ and $f\varphi(x) = x_2a_2$ with $x_1 = R(x) \in \mathbf{B}'_3$, $x_2 = Rf\varphi(x) \in \mathbf{B}_3$, and $a_1, a_2 \in$ **K**₄. The equation [\(3.6\)](#page-15-0) for $f\varphi$ (and hence with the identity matrix for *P* because [\(3.8\)](#page-15-2) means that $f\varphi|_{\mathbf{K}_4}$ induces the identity mapping of $\mathbf{K}_4^{\mathfrak{ab}}$) reads $\pi f \varphi(x) = \pi(x)$, that is $\pi(x_2 a_2) = \pi(x_1 a_1)$. Since $a_1, a_2 \in \mathbf{K}_4 \subset \ker \pi$, this implies that

$$
\pi(x_1) = \pi(x_2). \tag{3.9}
$$

Let $S_1 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ and $S_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. It is well-known that the mapping $\sigma_1 \mapsto S_1$, $\sigma_2 \mapsto S_2$ defines an isomorphism between $\mathbf{B}_3/\langle \Delta_3^4 \rangle$ and $\text{SL}(2,\mathbb{Z})$. From [\(3.2\)](#page-10-5) we see that $\pi(\sigma_1) = S_1$ and $\pi(\sigma_1^{-1}\sigma_2\sigma_1) = S_2$. Hence ker $(\pi|_{\mathbf{B}_3}) = \langle \Delta_3^4 \rangle =$ *R*(*Z*(**B**₄)). Therefore [\(3.9\)](#page-15-3) implies that $x_2 = x_1 R(\tau(x))$ for some element $\tau(x)$ of $Z(\mathbf{B}_4)$. It is easy to check that τ is a group homomorphism, thus, recalling that $x_1 = R(x)$ and $x_2 = Rf\varphi(x)$, we get $Rf\varphi(x) = x_2 =$ $x_1R(\tau(x)) = R(x\tau(x)) = R \text{id}_{[\tau]}(x).$

LEMMA 3.11. $-$ *If* $\varphi|_{\mathbf{K}_4} = \text{id}$ *and* $R\varphi = R \text{id}_{[\tau]}$ *for some homomorphism* $\tau : \mathbf{B}'_4 \to Z(\mathbf{B}_4)$, then $\varphi = \mathrm{id}_{[\tau]}$.

Stepan Yu. Orevkov

Proof. — Since $\mathbf{B}'_4 = \mathbf{K}_4 \rtimes \mathbf{B}'_3$ and $\mathbf{K}_4 \subset \ker \tau$, it is enough to show that $\varphi|_{\mathbf{B}'_3} = \mathrm{id}_{[\tau]}$. So, let $x \in \mathbf{B}'_3$. The condition $R\varphi = R\mathrm{id}_{[\tau]}$ means that $\varphi(x) =$ $x a \tau(x)$ with $a \in \mathbf{K}_4$. Let *b* be any element of \mathbf{K}_4 . Then $x b x^{-1} \in \mathbf{K}_4$, hence $\varphi(xbx^{-1}) = xbx^{-1}$ (because $\varphi|_{\mathbf{K}_4} = id$). Since $\varphi(x) = xa\tau(x)$, $\varphi(b) = b$, and $\tau(x)$ is central, it follows that

$$
xbx^{-1} = \varphi(xbx^{-1}) = \varphi(x)b\varphi(x)^{-1} = xa\tau(x)b\tau(x)^{-1}a^{-1}x^{-1} = xaba^{-1}x^{-1}
$$

whence $aba^{-1} = b$. This is true for any $b \in \mathbf{K}_4$, thus $a \in Z(\mathbf{K}_4)$. Since \mathbf{K}_4 is free, we deduce that $a = 1$, hence $\varphi(x) = x\tau(x) = id_{[\tau]}(x)$.

Proof of Theorem [1.4.](#page-3-0) — Recall that we assume in this section that φ is a homomorphism $\mathbf{B}'_4 \to \mathbf{B}_4$ such that $\mathbf{K}_4 \not\subset \text{ker }\varphi$.

By Lemma [3.10](#page-14-1) we may assume that $\varphi(c) = c$, $\varphi(d^2) = d^2$, and $R\varphi =$ *R* id_[τ] for some τ : **B**[']₄ \to *Z*(**B**₄), in particular, $R\varphi(u) = R(u\tau(u))$. The latter condition means that $\varphi(u) = u a \tau(u)$ with $a \in \mathbf{K}_4$. Then, by [\(3.1\)](#page-10-3), we have

$$
\varphi(w) = \varphi(ucu^{-1}) = uaca^{-1}u^{-1} = \widetilde{u}(c[c^{-1}, a]) = w[w^{-1}, \widetilde{u}(a)],
$$

thus $w^{-1}\varphi(w) = [w^{-1}, A]$ for $A = \tilde{u}(a) \in \mathbf{K}_4$. By Lemma [3.9](#page-14-2) we have also $w^{-1}\varphi(w) \in F$. Then I emma 3.8 implies that $w^{-1}\varphi(w) = [w^{-1}, e^k]$ for some $w^{-1}\varphi(w) \in F$. Then Lemma [3.8](#page-14-3) implies that $w^{-1}\varphi(w) = [w^{-1}, c^k]$ for some integer *k*, that is $\varphi(w) = c^k w c^{-k}$. Hence, $(\tilde{c}^{-k} \varphi)|_{\mathbf{K}_4} = \text{id}$. Since $c \in \text{ker } R$, we have $R\tilde{c}^{-k} = R$ whence $R\tilde{c}^{-k}\varphi = R\varphi = R\operatorname{id}_{[\tau]}$. This fact combined with $(\tilde{c}^{-k}\varphi)|_{\mathbf{K}_4} =$ id and Lemma [3.11](#page-15-4) implies that $\tilde{c}^{-k}\varphi = id_{[\tau]}$, i.e., φ is equivalent to $id_{[\tau]}$. . □

Acknowledgments

I am grateful to the referee for remarks and corrections.

Bibliography

- [1] E. Artin, "Theory of braids", *Ann. Math.* **48** (1947), p. 101-126.
- [2] R. W. Bell & D. Margalit, "Braid groups and the co-Hopfian property", *J. Algebra* **303** (2006), no. 1, p. 275-294.
- [3] J. S. Birman, A. Lubotzky & J. McCarthy, "Abelian and solvable subgroups of the mapping class group", *Duke Math. J.* **50** (1983), p. 1107-1120.
- [4] F. Castel, *Geometric representations of the braid groups*, Astérisque, vol. 378, Société Mathématique de France, 2016, vi+175 pages.
- [5] J. L. Dyer & E. K. Grossman, "The automorphism group of the braid groups", *Am. J. Math.* **103** (1981), p. 1151-1169.
- [6] B. Farb & D. Margalit, *A primer on mapping class groups*, Princeton Mathematical Series, vol. 49, Princeton University Press, 2012.

- [7] J. Gonzalez-Meneses, "The *n*th root of a braid is unique up conjugacy", *Algebr. Geom. Topol.* **3** (2003), p. 1103-1118.
- [8] J. GONZÁLEZ-MENESES & B. WIEST, "On the structure of the centralizer of a braid", *Ann. Sci. Éc. Norm. Supér.* **37** (2004), no. 5, p. 729-757.
- [9] E. A. Gorin & V. Ya. Lin, "Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids", *Math. USSR, Sb.* **7** (1969), p. 569- 596.
- [10] N. V. Ivanov, *Subgroups of Teichmüller modular groups*, Translations of Mathematical Monographs, vol. 115, American Mathematical Society, 1992, xii+127 pages.
- [11] K. KORDEK & D. MARGALIT, "Homomorphisms of commutator subgroups of braid groups", *Bull. Lond. Math. Soc.* **54** (2022), no. 1, p. 95-111.
- [12] V. Ya. Lin, "Braids and Permutations", <https://arxiv.org/abs/math/0404528>, 2004.
- [13] ——— , "Algebraic functions, configuration spaces, Teichmüller spaces, and new holomorphically combinatorial invariants", *Funkts. Anal. Prilozh.* **45** (2011), no. 3, p. 55- 78, English transl. in *Funct. Anal. Appl* **45** (2011), no. 3, p. 204–224.
- [14] ——— , "Some problems that I would like to see solved", 2015, Abstract of a talk. Technion. <http://www2.math.technion.ac.il/~pincho/Lin/Abstracts.pdf>.
- [15] W. Magnus, A. Karrass & D. Solitar, *Combinatorial group theory: presentations of groups in terms of generators and relations*, Pure and Applied Mathematics, vol. 13, Interscience Publishers, 1966.
- [16] S. Yu. Orevkov, "Algorithmic recognition of quasipositive braids of algebraic length two", *J. Algebra* **423** (2015), p. 1080-1108.
- [17] ——— , "Automorphism group of the commutator subgroup of the braid group", *Ann. Fac. Sci. Toulouse, Math.* **26** (2017), no. 5, p. 1137-1161.