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Homomorphisms of commutator subgroups of braid
groups with small number of strings (∗)

Stepan Yu. Orevkov (1)

To Vladimir Lin in occasion of his 85th birthday

ABSTRACT. — For any n, we describe all endomorphisms of the braid group Bn

and of its commutator subgroup B′
n, as well as all homomorphisms B′

n → Bn. These
results are new only for small n because endomorphisms of Bn are already described
by Castel for n ⩾ 6, and homomorphisms B′

n → Bn and endomorphisms of B′
n

are already described by Kordek and Margalit for n ⩾ 7. We use very different
approaches for n = 4 and for n ⩾ 5.

RÉSUMÉ. — Pour tout n nous décrivons tous les endomophismes du groupe de
tresses Bn et de son sous-groupe dérivé B′

n ainsi que tous les homomorphismes B′
n →

Bn. Ces résultats ne sont nouveaux que pour n petits parce que les endomorphismes
de Bn sont déjà décrits par Castel pour n ⩾ 6 et les homomorphismes B′

n → Bn

ainsi que les endomorphismes de B′
n sont décrits par Kordek et Margalit pour n ⩾ 7.

Nous utilisons des approches très différentes pour n = 4 et pour n ⩾ 5.

1. Introduction

Let Bn be the braid group with n strings. It is generated by σ1, . . . , σn−1
(called standard or Artin generators) subject to the relations

σiσj = σjσi for |i− j| > 1; σiσjσi = σjσiσj for |i− j| = 1.
Let B′

n be the commutator subgroup of Bn.

In this paper we describe all endomorphisms of Bn and B′
n and homomor-

phisms B′
n → Bn for any n. These results are new only for small n because

endomorphisms of Bn are described by Castel in [4] for n ⩾ 6, and homo-
morphisms B′

n → Bn and endomorphisms of B′
n are described by Kordek

and Margalit in [11] for n ⩾ 7.

(*) Reçu le 7 décembre 2020, accepté le 15 février 2022.
(1) IMT, Univ. Paul Sabatier, Toulouse, France — Steklov Math. Inst., Moscow,

Russia — stepan.orevkov@math.univ-toulouse.fr
Article proposé par Jean-Pierre Otal.

– 105 –

mailto:stepan.orevkov@math.univ-toulouse.fr


Stepan Yu. Orevkov

The automorphisms of Bn and B′
n have been already known for any n:

Dyer and Grossman [5] proved that the only non-trivial element of Out(Bn)
corresponds to the automorphism Λ defined by σi 7→ σ−1

i for any i =
1, . . . , n − 1, and in [17] we proved that the restriction map Aut(Bn) →
Aut(B′

n) is an isomorphism for n ⩾ 4 (B′
3 is a free group of rank 2, thus its

automorphisms are known as well; see e.g. [15]).

The problem to study homomorphisms between braid groups and, espe-
cially, between their commutator subgroups was posed by Vladimir Lin [12,
13, 14] because he found its applications to the problem of superpositions
of algebraic functions (the initial motivation for Hilbert’s 13th problem);
see [13] and references therein.

Let us formulate the main results. We start with those about homomor-
phisms of B′

n to Bn and to itself.

Theorem 1.1 (proven for n ⩾ 7 in [11]). — Let n ⩾ 5. Then every
non-trivial homomorphism B′

n → Bn extends to an automorphism of Bn.

We prove this theorem in Section 2. Since B′′
n = B′

n and Aut(Bn) =
Aut(B′

n) for n ⩾ 5, the following two corollaries are, in fact, equivalent
versions of Theorem 1.1.

Corollary 1.2. — If n ⩾ 5, then any non-trivial endomorphism of
B′

n is bijective.

Corollary 1.3. — If n ⩾ 5, then any non-trivial homomorphism B′
n →

Bn is an automorphism of B′
n composed with the inclusion map.

Let R be the homomorphism
R : B4 −→ B3, σ1, σ3 7−→ σ1, σ2 7−→ σ2, (1.1)

(we denote it by R because, if we interpret Bn as π1(Xn) where Xn is the
space of monic squarefree polynomials of degree n, then R is induced by the
mapping which takes a degree 4 polynomial to its cubic resolvent).

For a group G, we denote its commutator subgroup, center, and abelian-
ization by G′, Z(G), and Gab respectively. We also denote the inner auto-
morphism y 7→ xyx−1 by x̃, the commutator xyx−1y−1 by [x, y], and the
centralizer of an element x (resp. of a subgroup H) in G by Z(x;G) (resp.
by Z(H;G)).

Given two group homomorphisms f : G1 →G2 and τ : Gab
1 →Z(im f ;G2),

we define the transvection of f by τ as the homomorphism f[τ ] : G1 →
G2 given by x 7→ f(x)τ(x) where x is the image of x in Gab

1 . To simplify
notation, we will not distinguish between τ and its composition with the
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canonical projection G1 → Gab
1 . So, we shall often speak of a transvection

by τ : G1 → Z(im f ;G2).

We say that two homomorphisms f, g : G1 → G2 are equivalent if there
exists h ∈ Aut(G2) such that f = hg. If, moreover, h ∈ Inn(G2), we say that
f and g are conjugate.

Theorem 1.4. — Any homomorphism φ : B′
4 → B4 either is equivalent

to a transvection of the inclusion map, or φ = fR for a homomorphism
f : B′

3 → B4 (since B′
3 is free [9], it has plenty of homomorphisms to any

group).

We prove this theorem in Section 3.

Corollary 1.5. — Any endomorphism of B′
4 is either an automor-

phism or a composition of R with a homomorphism B′
3 → B′

4.

As we already mentioned, B′
3 is free, thus its homomorphisms are evident.

Now let us describe endomorphisms of Bn. We say that a homomorphism is
cyclic if its image is a cyclic group (probably, infinite cyclic).

Theorem 1.6 (proven for n ⩾ 6 in [4]). — If n ⩾ 5, then any non-cyclic
endomorphism of Bn is a transvection of an automorphism.

For n ⩾ 7, this result is derived in [11] from Theorem 1.1. The same proof
works without any change for any n ⩾ 5.

Theorem 1.7. — Any endomorphism of B4 is either a transvection of
an automorphism, or it is of the form fR for some f : B3 → B4 (see
Proposition 1.9 for a general form of such f).

This theorem also can be derived from Theorem 1.4 in the same way as
it is done in [11] for n ⩾ 7.

Let ∆ = ∆n =
∏n−1

i=1
∏n−i

j=1 σj (the Garside’s half-twist), δ = δn =
σn−1 . . . σ2σ1, and γ = γn = σ1δn. One has δn = γn−1 = ∆2, and it is
known that Z(Bn) is generated by ∆2, and each periodic braid (i.e. a root
of a central element) is conjugate to δk or γk for some k ∈ Z.

It is well-known that B3 admits a presentation ⟨∆, δ | ∆2 = δ3⟩. By com-
bining this fact with basic properties of canonical reduction systems, it is
easy to prove the following descriptions of homomorphisms from B3 to Bn

for n = 3 or 4.

Proposition 1.8. — Any non-cyclic endomorphism of B3 is equivalent
to a transvection by τ of a homomorphism of the form ∆ 7→ ∆, δ 7→ XδX−1

for some X ∈ B3 and τ : Bab
3 → Z(B3) = ⟨∆2⟩.
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Proposition 1.9. — For any non-cyclic homomorphism φ : B3 → B4,
one of the following two possibilities holds:

(a) φ is equivalent to a transvection by τ of a homomorphism of the
form ∆3 7→ ∆4, δ3 7→ Xγ4X

−1 for some X ∈ B4 and τ : Bab
3 →

Z(B4) = ⟨∆2
4⟩;

(b) φ is equivalent to (ιψ)[τ ] where ψ is a non-cyclic endomorphism of
B3, ι : B3 → B4 is the standard embedding, and τ is a homomor-
phism Bab

3 → Z(B4) = ⟨∆2
4⟩.

Remark 1.10. — Since Bab
n

∼= Z(Bn) ∼= Z, the transvection in Theo-
rem 1.6 (and in the non-degenerate case in Theorem 1.7) is uniquely de-
termined by a single integer number. In contrast, (B′

4)ab ∼= Z2, thus the
transvection in Theorem 1.4 depends on two integers (here we have
Z(im(B′

4 ↪→ B4); B4) = Z(B′
4; B4) = Z(B4) ∼= Z). Notice also that two

transvections are involved in the case (b) of Proposition 1.9, thus the gen-
eral form of φ in this case is

∆3 7−→ f
(
ι(∆3)6k+1∆6l

4
)
, δ3 7−→ f

(
ι(Xδ3X

−1∆4k
3 )∆4l

4
)

with k, l ∈ Z, X ∈ B3, f ∈ Aut(B4).

2. The case n ⩾ 5

In this section we prove Theorem 1.1 which describes homomorphisms
B′

n → Bn for n ⩾ 5. The proof is very similar to the proof of the case
n ⩾ 5 of the main theorem of [17] which describes Aut B′

n. As we already
mentioned, Theorem 1.1 for n ⩾ 7 is proven by Kordek and Margalit in [11].
Some elements of their proof are valid for n ⩾ 5 (see Proposition 2.4 below)
which allowed us to omit a big part of our original proof based on [17].

Let Sn be the symmetric group. Let e : Bn → Z and µ : Bn → Sn be the
homomorphisms defined on the generators by e(σi) = 1 and µ(σi) = (i, i+1)
for i = 1, . . . , n−1. So, e(X) is the exponent sum (signed word length) of X.
Let Pn = kerµ be the pure braid group. Following [12], we denote Pn ∩ B′

n

by Jn, and µ|B′
n

by µ′, thus Jn = kerµ′.

For a pure braid X, we denote the linking number between the i-th and
the j-th strings of X by lkij(X). It can be defined as 1

2e(Xij) where Xij is
the 2-braid obtained from X by removal of all strings except the i-th and the
j-th ones. For 1 ⩽ i < j ⩽ n, we set σij = (σj−1 . . . σi+1)σi(σj−1 . . . σi+1)−1

(here σi,i+1 = σi). Then Pn is generated by {σ2
ij}1⩽i<j⩽n (see [1]) and we

denote the image of σ2
ij in Pab

n by Aij . We use the additive notation for Pab
n

and Jab
n .
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Lemma 2.1 ([17, Lemma 2.3]). — Pab
n (for any n) is free abelian group

with basis (Aij)1⩽i<j⩽n. The natural projection Pn → Pab
n is given by X 7→∑

i<j lkij(X)Aij.

If n ⩾ 5, then the homomorphism Jab
n → Pab

n induced by the inclusion
map defines an isomorphism of Jab

n with {
∑
xijAij |

∑
xij = 0} (notice that

this statement is wrong for n = 3 or 4; see [17, Proposition 2.4]).

From now on, till the end of this section, we assume that n ⩾ 5 and
φ : B′

n → Bn is a non-cyclic homomorphism. Since any group homomor-
phism G1 → G2 maps G′

1 to G′
2, we have φ(B′′

n) ⊂ B′
n. By [9] (see also [17,

Remark 2.2]), we have B′′
n = B′

n, thus

φ(B′
n) ⊂ B′

n.

Then [12, Theorem D] implies that

φ(Jn) ⊂ Jn.

Thus we may consider the endomorphism φ∗ of Jab
n induced by φ|Jn

. We
shall not distinguish between Jab

n and its isomorphic image in Pab
n (see

Lemma 2.1).

Following [12], we set

ci = σ−1
1 σi (i = 3, . . . , n− 1) and c = c3.

Lemma 2.2. — Suppose that µφ = µ′ and φ(c) = c. Then φ∗ = id.

Proof. — The exact sequence 1 → Jn → B′
n → An → 1 defines an action

of An on Jab
n by conjugation. Let V be a complex vector space with base

e1, . . . , en endowed with the natural action of Sn induced by the action on the
base. We identify Pab

n with its image in the symmetric square Sym2 V under
the homomorphism Aij → eiej . Then, by Lemma 2.1, we may identify Jab

n

with
{∑

xijeiej

∣∣xij ∈ Z,
∑
xij = 0

}
. These identifications are compatible

with the action of An. Thus W := Jab
n ⊗C is a CAn-submodule of Sym2 V .

For an element v of a CSn-module, let ⟨v⟩CSn
be the CSn-submodule

generated by v. It is shown in the proof of [17, Lemma 3.1], that W =
W2 ⊕W3 where

W2 = ⟨(e1 − e2)(e3 + · · · + en)⟩CSn
, W3 = ⟨(e1 − e2)(e3 − e4)⟩CSn

,

and that W2 and W3 are irreducible CSn-modules isomorphic to the Specht
modules corresponding to the partitions (n−1, 1) and (n−2, 2) respectively.
Since the Young diagrams of these partitions are not symmetric, W2 and W3
are also irreducible as CAn-modules.
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The condition µφ = µ′ implies that φ∗ is An-equivariant. Hence, by
Schur’s lemma, φ∗ = a idW2 ⊕ b idW3 . We have the identity

(n− 2)(e1 − e2)e3 = (e1 − e2)(e3 + · · · + en) +
∑
i⩾4

(e1 − e2)(e3 − ei)

whence, denoting e5 + · · · + en by e,

(n− 2)φ∗((e1 − e3)e2) = (e1 − e3)
(
a(e2 + e4 + e) + b((n− 3)e2 − e4 − e)

)
,

(n− 2)φ∗((e2 − e4)e3) = (e2 − e4)
(
a(e1 + e3 + e) + b((n− 3)e3 − e1 − e)

)
.

The condition φ(c) = c implies the φ-invariance of c2 ∈ Jn. Since the image
of c−2 in Jab

n is A12 −A34, we obtain that e1e2 − e3e4 is φ∗-invariant. Hence

(n− 2)(e1e2 − e3e4)
= (n− 2)φ∗(e1e2 − e3e4)
= (n− 2)φ∗

(
(e1 − e3)e2 + (e2 − e4)e3

)
=

(
2a+ (n− 4)b

)
(e1e2 − e3e4) + (a− b)(e1 + e2 − e3 − e4)e.

Since {eiej}i⩽j is a base of Sym2 V , it follows that 2a + (n − 4)b = n − 2
and a− b = 0 whence a = b = 1. □

Lemma 2.3. — Let φ1 and φ2 be equivalent homomorphisms B′
n → Bn.

Then µφ1 and µφ2 are conjugate.

Proof. — This fact immediately follows from Dyer – Grossman’s [5] clas-
sification of automorphisms of Bn (see the beginning of the introduction)
because µΛ = µ. □

Proposition 2.4 (Kordek and Margalit [11, Section 3, Proof of Theo-
rem 1.1, Cases 1–3 and Step 1 of Case 4]). — There exists f ∈ Aut(Bn)
such that fφ(ci) = ci for each odd i in the range 3 ⩽ i < n (recall that we
assume n ⩾ 5).

This proposition implies, in particular, that µφ is non-trivial, hence by
Lin’s result [12, Theorem C] µφ is conjugate either to µ′ or to νµ′ (when
n = 6) where ν is the restriction to A6 of the automorphism of S6 given by
(12) 7→ (12)(34)(56), (123456) 7→ (123)(45) (it represents the only nontrivial
element of Out(S6)).

Lemma 2.5. — If n = 6, then µφ is not conjugate to νµ′.

Proof. — Let H be the subgroup generated by c3 and c5. By Lemma 2.3
and Proposition 2.4 we may assume that φ|H = id. Then we have

µ′(H) = µφ(H) = {id, (12)(34), (12)(56), (34)(56)}.
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In particular, no element of {1, . . . , 6} is fixed by all elements of µφ(H). A
straightforward computation shows that

νµ′(H) = {id, (12)(34), (13)(24), (14)(23)}, (2.1)
thus 5 and 6 are fixed by all elements of νµ′(H). Hence these subgroups are
not conjugate in S6. □

Lemma 2.6. — There exists f ∈ Aut(Bn) such that fφ(c) = c and
µfφ = µ′.

Proof. — By Proposition 2.4 we may assume that
φ(c) = c. (2.2)

Then µφ is non-trivial, hence, by [12, Theorem C] combined with Lemma 2.5,
it is conjugate to µ′, i.e. there exists π ∈ Sn such that π̃µφ = µ′, i.e.
πµ(φ(x)) = µ(x)π for each x ∈ B′

n. For x = c this implies by (2.2) that
π commutes with (12)(34), hence π = π1π2 where π1 ∈ V4 (the group in
the right hand side of (2.1)) and π2(i) = i for i ∈ {1, 2, 3, 4}. Let Ṽ 4 =
{1, c,∆4, c∆4}. This is not a subgroup but we have µ(Ṽ 4) = V4. We can
choose y1 ∈ Ṽ 4 and y2 ∈ ⟨σ5, . . . , σn−1⟩ so that µ(yj) = πj , j = 1, 2. Let
y = y1y2. Then we have ỹ(c) = c±1 and µỹφ = π̃µφ = µ′. Thus, for f = Λkỹ,
k ∈ {0, 1}, we have fφ(c) = c and µfφ = µ′. □

Due to Lemma 2.6, from now on we assume that µφ = µ′ and φ(c) = c.
Then, by Lemma 2.2, we have φ∗ = id, hence (see Lemma 2.1)

lkij(x) = lkij(φ(x)) for any x ∈ Jn and 1 ⩽ i < j ⩽ n. (2.3)

Starting at this point, the proof of [17, Theorem 1.1] given in [17, Sec-
tion 5], can be repeated almost word-by-word in our setting. The only ex-
ception is the proof of [17, Lemma 5.8] (which is Lemma 2.11 below) where
the invariance of the isomorphism type of centralizers of certain elements is
used as well as Dyer–Grossman result [5]. However, as pointed out in [17,
Remark 5.15] (there is a misprint there: n ⩾ 6 should be replaced by n ⩾ 5),
there is another, even simpler, proof of Lemma 2.11 based on Lemma 2.7
(see below). This proof was not included in [17] by the following reason. At
that time we new only Garside-theoretic proof of Lemma 2.7 while the rest of
the proof of the main theorem for n ⩾ 6 used only Nielsen–Thurston theory
and results of [12]. So we wanted to make the proofs (at least for n ⩾ 6)
better accessible for readers who are not familiar with the Garside theory.
Now we learned from [11] that when we wrote that paper, Lemma 2.7 had
been already known for a rather long time [2, Lemma 4.9] and the proof
in [2] is based on Nielsen–Thurston theory.

In the rest of this section, for the reader’s convenience we re-expose Sec-
tion 5.1 of [17] (Sections 5.2–5.3 can be left without any change). In this
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re-exposition we give another proof of [17, Lemma 5.8] and omit the lemmas
which are no longer needed due to Proposition 2.4.

We shall consider Bn as a mapping class group of n-punctured disk D.
We assume that D is a round disk in C and the set of the punctures is
{1, 2, . . . , n}. Given an embedded segment I in D with endpoints at two
punctures, we denote with σI the positive half-twist along the boundary of
a small neighborhood of I. The set of all such braids is the conjugacy class
of σ1 in Bn. The arguments in the rest of this section are based on Nielsen–
Thurston theory. The main tool are the canonical reduction systems. One
can use [3], [6], or [10] as a general introduction to the subject. In [17] we
gave all precise definitions and statements needed there (using the language
and notation inspired mostly by [8]).

Lemma 2.7 ([2, Lemma 4.9], [17, Lemma A.2]). — Let x, y ∈ Bn be such
that xyx = yxy and each of x and y is conjugate to σ1. Then there exists
u ∈ Bn such that ũ(x) = σ1 and ũ(y) = σ2.

Let sh2 : Bn−2 → Bn be the homomorphism sh2(σi) = σi+2. We set

τ = σ
(n−2)(n−3)
1 sh2(∆−2

n−2).

We have τ ∈ Jn (in the notation of [17], τ = ψ2,n−2(1;σ(n−2)(n−3)
1 ,∆−2)).

Recall that we assume φ(c) = c, µφ = µ′, and hence (2.3) holds.

Lemma 2.8. — Let I and J be two disjoint embedded segments with end-
points at punctures. Then φ(σ−1

I σJ) = σ−1
I1
σJ1 where I1 and J1 are disjoint

embedded segments such that ∂I1 = ∂I and ∂J1 = ∂J .

Proof. — The braid σ−1
I σJ is conjugate to c, hence so is its image (be-

cause φ(c) = c). Therefore φ(σ−1
I σJ) = σ−1

I1
σJ1 for some disjoint I1 and J1.

The matching of the boundaries follows from (2.3) applied to σ−2
I σ2

J . □

Lemma 2.9 (cf. [17, Lemmas 5.1 and 5.3]). — Let C1 be a component of
the canonical reduction system of φ(τ). Then C1 cannot separate the punc-
tures 1 and 2, and it cannot separate the punctures i and j for 3 ⩽ i < j ⩽ n.

Proof. — Let u = σ−1
1 σij , 3 ⩽ i < j ⩽ n. By Lemma 2.8, φ(u) = σ−1

I σJ

with ∂I = {1, 2} and ∂J = {i, j}. Since φ(u) commutes with φ(τ), the result
follows. □

Lemma 2.10 (cf. [17, Lemma 5.7]). — φ(τ) is conjugate in Pn to τ .

Proof. — φ(τ) cannot be pseudo-Anosov because it commutes with φ(c)
which is c by our assumption, hence it is reducible.

If φ(τ) were periodic, then it would be a power of ∆2 because it is a pure
braid. This contradicts (2.3), hence φ(τ) is reducible non-periodic.
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Let C be the canonical reduction system for φ(τ). By Lemma 2.9, one of
the following three cases occurs.

Case 1. C is connected, the punctures 1 and 2 are inside C, all the other
punctures are outside C. — Then the restriction of φ(τ) (viewed as a dif-
feomorphism of D) to the exterior of C cannot be pseudo-Anosov because
φ(τ) commutes with φ(c) = c, hence it preserves a circle which separates
3 and 4 from 5, . . . , n. Hence φ(τ) is periodic which contradicts (2.3). Thus
this case is impossible.

Case 2. C is connected, the punctures 1 and 2 are outside C, all the
other punctures are inside C. — This case is also impossible and the proof
is almost the same as in Case 1. To show that φ(τ) cannot be pseudo-Anosov,
we note that it preserves a curve which encircles only 1 and 2.

Case 3. C has two components: C1 and C2 which encircle {1, 2} and
{3, . . . , n} respectively. — Let α be the interior braid of C2 (that is φ(τ)
with the strings 1 and 2 removed). It cannot be pseudo-Anosov by the same
reasons as in Case 1: because φ(τ) preserves a circle separating 3 and 4
from 5, . . . , n. Hence α is periodic. Using (2.3), we conclude that φ(τ) is a
conjugate of τ . Since the elements of Z(τ ; Bn) realize any permutation of
{1, 2} and of {3, . . . , n}, the conjugating element can be chosen in Pn. □

Lemma 2.11 (cf. [17, Lemma 5.8]). — There exists u ∈ Pn such that
φ(ci) = ũ(ci) for each i = 3, . . . , n− 1.

Proof. — Due to Lemma 2.10, without loss of generality we may assume
that φ(τ) = τ and τ(C) = C where C is the canonical reduction system for τ
consisting of two round circles C1 and C2 which encircle {1, 2} and {3, . . . , n}
respectively. Since the conjugating element in Lemma 2.10 is chosen in Pn,
we may assume that (2.3) still holds.

By Lemma 2.8, for each i = 3, . . . , n − 1, we have φ(ci) = σ−1
Ii
σJi with

∂Ii = {1, 2} and ∂Ji = {i, i+1}. Since τ commutes with each ci, the segments
Ii and Ji can be chosen disjoint from the circles C1 and C2. Hence σIi

= σ1
for each i, and all the segments Ji are inside C2.

Therefore the braids σJ3 , . . . , σJn−1 satisfy the same braid relations as
σ3, . . . , σn−1. Hence, by Lemma 2.7 combined with [17, Lemma 5.13], J3 ∪
· · · ∪ Jn−1 is an embedded segment. Hence it can be transformed to the
straight line segment [3, n] by a diffeomorphism identical on the exterior
of C2. Hence for the braid u represented by this diffeomorphism we have
ũ(ci) = ci, i ⩾ 3. The condition ∂Ji = {i, i+ 1} implies that u ∈ Pn. □

The rest of the proof of Theorem 1.1 repeats word-by-word [17, Sec-
tions 5.2–5.3].
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The rest of the proof of Theorem 1.1 repeats word-by-word [17, §§5.2–5.3].

Remark 2.12. Besides Nielsen-Thurston theory, in the case n = 5, the arguments
in [17, §5.3] use an auxiliary result [17, Lemma A.1] for which the only proof we
know is based on a slight modification of the main theorem of [16] which is proven
there using the Garside theory.

3. The case n = 4

We shall use the same notation as in [17, §6]. The groups B′
3 and B′

4 were
computed in [9], namely B′

3 is freely generated by u = σ2σ
−1
1 and t = σ−1

1 σ2, and
B′

4 = K4 ⋊ B′
3 where K4 = kerR (see (1)). The group K4 is freely generated by

c = σ3σ
−1
1 and w = σ2cσ

−1
2 . The action of B′

3 on K4 by conjugation is given by

ucu−1 = w, uwu−1 = w2c−1w, tct−1 = cw, twt−1 = cw2. (5)

The action of σ1 and σ2 on K4 is given by

σ1cσ
−1
1 = c, σ1wσ

−1
1 = c−1w, σ2cσ

−1
2 = w, σ2wσ

−1
2 = wc−1w. (6)

So, we also have B4 = K4 ⋊B3.
Besides the elements c, w, u, t of B′

4, we consider also

d = Δσ−3
1 σ−3

3 and g = R(d) = Δ2
3σ

−6
1

(here and below Δ = Δ4). One has (see Figure 1)

d = [c−1t, u−1], g = [t, u−1]. (7)

We denote the subgroup generated by c and d by H and the subgroup generated
by c and g by G.

c−1t u−1 t−1c u

Figure 1. the identity d = [c−1t, u−1].

Let ϕ : B′
4 → B4 be a homomorphism such that K4 6⊂ kerϕ.

Lemma 3.1. The restriction of ϕ to H is injective, ϕ(H) ⊂ B′
4, and ϕ(G) ⊂ B′

4.

Proof. We have H = hci ⋊ hdi and d acts on c by dcd−1 = c−1. Hence any non-
trivial normal subgroup of H contains a power of c. Thus, if ϕ|H were not injective,
kerϕ would contain a power of c and hence c itself because the target group B4 does
not have elements of finite order. Then we also have w ∈ kerϕ because w = ucu−1.
This contradicts the assumption K4 = hc, wi 6⊂ kerϕ, thus ϕ|H is injective.

We have dcd−1 = c−1, hence the image of ϕ(c) under the abelianization e : B4 →
Z is zero, i.e., ϕ(c) ∈ B′

4. By (7) we also have ϕ(d) ∈ B′
4 and ϕ(g) ∈ B′

4, thus
ϕ(H) ⊂ B′

4 and ϕ(G) ⊂ B′
4. �

Figure 3.1. The identity d = [c−1t, u−1].

Remark 2.12. — Besides Nielsen–Thurston theory, in the case n = 5, the
arguments in [17, Section 5.3] use an auxiliary result [17, Lemma A.1] for
which the only proof we know is based on a slight modification of the main
theorem of [16] which is proven there using the Garside theory.

3. The case n = 4

We shall use the same notation as in [17, Section 6]. The groups B′
3 and

B′
4 were computed in [9], namely B′

3 is freely generated by u = σ2σ
−1
1 and

t = σ−1
1 σ2, and B′

4 = K4 ⋊B′
3 where K4 = kerR (see (1.1)). The group K4

is freely generated by c = σ3σ
−1
1 and w = σ2c σ

−1
2 . The action of B′

3 on K4
by conjugation is given by

ucu−1 = w, uwu−1 = w2c−1w, tct−1 = cw, twt−1 = cw2. (3.1)

The action of σ1 and σ2 on K4 is given by

σ1cσ
−1
1 = c, σ1wσ

−1
1 = c−1w, σ2cσ

−1
2 = w, σ2wσ

−1
2 = wc−1w. (3.2)

So, we also have B4 = K4 ⋊ B3.

Besides the elements c, w, u, t of B′
4, we consider also

d = ∆σ−3
1 σ−3

3 and g = R(d) = ∆2
3σ

−6
1

(here and below ∆ = ∆4). One has (see Figure 3.1)

d = [c−1t, u−1], g = [t, u−1]. (3.3)

We denote the subgroup generated by c and d by H and the subgroup gen-
erated by c and g by G.

Let φ : B′
4 → B4 be a homomorphism such that K4 ̸⊂ kerφ.

Lemma 3.1. — The restriction of φ to H is injective, φ(H) ⊂ B′
4, and

φ(G) ⊂ B′
4.
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g c g−1 w−1 c−1 w

Figure 3.2. The identity gcg−1 = w−1c−1w

Proof. — We have H = ⟨c⟩ ⋊ ⟨d⟩ and d acts on c by dcd−1 = c−1.
Hence any non-trivial normal subgroup of H contains a power of c. Thus, if
φ|H were not injective, kerφ would contain a power of c and hence c itself
because the target group B4 does not have elements of finite order. Then we
also have w ∈ kerφ because w = ucu−1. This contradicts the assumption
K4 = ⟨c, w⟩ ̸⊂ kerφ, thus φ|H is injective.

We have dcd−1 = c−1, hence the image of φ(c) under the abelianization
e : B4 → Z is zero, i.e., φ(c) ∈ B′

4. By (3.3) we also have φ(d) ∈ B′
4 and

φ(g) ∈ B′
4, thus φ(H) ⊂ B′

4 and φ(G) ⊂ B′
4. □

Lemma 3.2. — φ(c) and φ(g) do not commute.

Proof. — Suppose that φ(c) and φ(g) commute. Then φ(c) = φ(gcg−1).
Hence (see Figure 3.2) φ(c) = φ(w−1c−1w), i.e., φ factors through the quo-
tient of B′

4 by the relation wc = c−1w. Let us denote this quotient group by
B̂′

4.

The relation wc = c−1w allows us to put any word
∏

j c
kjwlj with lj =

±1 into the normal form ck1−k2+k3−···wl1+l2+l3+··· in B̂′
4. Due to (3.1), the

conjugation by t of the word w−1cwc (which is equal to 1 in B̂′
4) yields

1 = t(w−1cwc)t−1 = (w−2c−1)(cw)(cw2)(cw) = w−1cw2cw = c−2w2

(here in the last step we put the word into the above normal form). Conju-
gating once more by t and putting the result into the normal form, we get

1 = t(c−2w2)t−1 = (w−1c−1)(w−1c−1)(cw2)(cw2) = w−1c−1wcw2 = c2w2.

Thus c−2w2 = c2w2 = 1, i.e., c4 = 1 in B̂′
4, hence φ(c4) = 1 which contradicts

Lemma 3.1. □

As in [17], we denote the stabilizer of 1 under the natural action of B3
on {1, 2, 3} by B1,2. It is well-known (and easy to prove by Reidemeister-
Schreier method) that B1,2 is isomorphic to the Artin group of type B2,
that is ⟨x, y |xyxy = yxyx⟩. The Artin generators x and y of the latter
group correspond to σ2

1 and σ2.
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ψ(σ2) = c ψ(σ2
1) = g

Figure 3.3. The images of the generators under ψ : B1,2 → B′
4.

10 S. YU. OREVKOV

Lemma 3.4. ϕ(d2c6) is conjugate in B4 to d2k, d2kc6k, or hk for some integer
k 6= 0, where h = Δ2Δ−4

3 = Δ−2
3 σ3σ2σ

2
1σ2σ3.

Proof. Let x = d2c6. By Lemma 3.3, G = Z(x;B′
4), hence ϕ(G) ⊂ Z(ϕ(x);B4).

By Lemma 3.1 we also have ϕ(G) ⊂ B′
4, hence ϕ(G) ⊂ Z(ϕ(x);B′

4). Then it follows
from Lemma 3.2 that Z(ϕ(x);B′

4) is non-commutative. The isomorphism classes of
the centralizers (in B′

4) of all elements of B′
4 are computed in [17, Table 6.1]. We

see in this table that Z(ϕ(x);B′
4) is non-commutative only in the required cases

(see the corresponding canonical reduction systems in Figure 4) unless ϕ(x) = 1.
However the latter case is impossible by Lemma 3.1. �

dm and cm (d2c6)m hm

Figure 4. Canonical reduc. systems for dm, cm, (d2c6)m, hm, m 6= 0.

Lemma 3.5. There exists an automorphism of B4 which takes ϕ(c) and ϕ(d) to
ck and dk respectively for an odd positive integer k.

Proof. Let x = d2c6 and y = d2c−6. Since y = dxd−1, the images of x and y are
conjugate and both of them belong to one of the conjugacy classes indicated in
Lemma 3.4. The canonical reduction systems for d2k, d2kc6k, and hk for k 6= 0
are shown in Figure 4. Since x and y commute, the canonical reduction systems of
their images can be chosen disjoint from each other. Hence, up to composing ϕ with
an inner automorphism of B4,

�

ϕ(x),ϕ(y)
�

is either (hk1 , hk2) or
�

d2k1cl1 , d2k2cl2
�

where lj ∈ {0,±6kj}, j = 1, 2. Since x and y are conjugate, by comparing the
linking numbers between different pairs of strings, we deduce that k1 = k2 and
(in the second case) l1 = ±l2. Moreover, ϕ(x) 6= ϕ(y) by Lemma 3.1. Hence,

up to exchange of x and y (which is realizable by composing ϕ with d̃), we have
ϕ(x) = d2kc6k and ϕ(y) = d2kc−6k whence, using that xy−1 = c12, we obtain
ϕ(c12) = ϕ(xy−1) = c12k. Since the canonical reduction systems of any braid and
its non-zero power coincide (see, e.g., [7, Lemmas 2.1–2.3]), we obtain ϕ(c) = ck

and ϕ(d) = dk. By composing ϕ with Λ if necessary, we can arrive to k > 0. The
relation dkckd−k = c−k combined with Lemma 3.1 implies that k is odd. �

Lemma 3.6. ϕ(K4) ⊂ K4.

Proof. Lemma 3.5 implies that ck is mapped to ϕ(c) by an automorphism of B4.
Since K4 is a characteristic subgroup of B′

4 (see [17, Lemma 6.5]) and B′
4 is a

characteristic subgroup of B4, we deduce that ϕ(c) ∈ K4. The same arguments
can be applied to any other homomorphism of B′

4 to B4 whose kernel does not
contain K4, in particular, they can be applied to ϕũ whence ϕũ(c) ∈ K4. Since
ϕ(w) = ϕũ(c), we conclude that ϕ(K4) = hϕ(c),ϕ(w)i ⊂ K4. �

Let

F = G ∩K4.

Figure 3.4. Canonical reduc. systems for dm, cm, (d2c6)m, hm, m ̸= 0.

Lemma 3.3 (cf. [17, Lemma 6.2]). — We have G = Z(d2c6; B′
4) and this

group is generated by g and c subject to the defining relation gcgc = cgcg.

Proof. — The centralizer of d2c6 in B4 is the stabilizer of its canonical
reduction system which is shown in Figure 3.4, and (see [8, Theorem 5.10]) it
is the image of the injective homomorphism B1,2 ×Z → B4, (X,n) 7→ Y σn

1 ,
where the 4-braid Y is obtained from the 3-braid X by doubling the first
strand. It follows that Z(d2c6; B′

4) is the isomorphic image of B1,2 under
the homomorphism ψ : B1,2 → B′

4 defined on the generators by ψ(σ2
1) = g,

ψ(σ2) = c (see Figure 3.3), thus Z(d2c6; B′
4) = G. As we have pointed out

above, B1,2 is the Artin group of type B2, hence so is G and gcgc = cgcg is
its defining relation. □

Lemma 3.4. — φ(d2c6) is conjugate in B4 to d2k, d2kc6k, or hk for some
integer k ̸= 0, where h = ∆2∆−4

3 = ∆−2
3 σ3σ2σ

2
1σ2σ3.

Proof. — Let x = d2c6. By Lemma 3.3, G = Z(x; B′
4), hence φ(G) ⊂

Z(φ(x); B4). By Lemma 3.1 we also have φ(G) ⊂ B′
4, hence φ(G) ⊂

Z(φ(x); B′
4). Then it follows from Lemma 3.2 that Z(φ(x); B′

4) is non-
commutative. The isomorphism classes of the centralizers (in B′

4) of all el-
ements of B′

4 are computed in [17, Table 6.1]. We see in this table that
Z(φ(x); B′

4) is non-commutative only in the required cases (see the corre-
sponding canonical reduction systems in Figure 3.4) unless φ(x) = 1. How-
ever the latter case is impossible by Lemma 3.1. □

Lemma 3.5. — There exists an automorphism of B4 which takes φ(c)
and φ(d) to ck and dk respectively for an odd positive integer k.

Proof. — Let x = d2c6 and y = d2c−6. Since y = dxd−1, the images of
x and y are conjugate and both of them belong to one of the conjugacy
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classes indicated in Lemma 3.4. The canonical reduction systems for d2k,
d2kc6k, and hk for k ̸= 0 are shown in Figure 3.4. Since x and y commute,
the canonical reduction systems of their images can be chosen disjoint from
each other. Hence, up to composing φ with an inner automorphism of B4,(
φ(x), φ(y)

)
is either (hk1 , hk2) or

(
d2k1cl1 , d2k2cl2

)
where lj ∈ {0,±6kj},

j = 1, 2. Since x and y are conjugate, by comparing the linking numbers
between different pairs of strings, we deduce that k1 = k2 and (in the second
case) l1 = ±l2. Moreover, φ(x) ̸= φ(y) by Lemma 3.1. Hence, up to exchange
of x and y (which is realizable by composing φ with d̃), we have φ(x) = d2kc6k

and φ(y) = d2kc−6k whence, using the fact that xy−1 = c12, we obtain
φ(c12) = φ(xy−1) = c12k. Since the canonical reduction systems of any
braid and its non-zero power coincide (see, e.g., [7, Lemmas 2.1–2.3]), we
obtain φ(c) = ck and φ(d) = dk. By composing φ with Λ if necessary, we
can arrive to k > 0. The relation dkckd−k = c−k combined with Lemma 3.1
implies that k is odd. □

Lemma 3.6. — φ(K4) ⊂ K4.

Proof. — Lemma 3.5 implies that ck is mapped to φ(c) by an auto-
morphism of B4. Since K4 is a characteristic subgroup of B′

4 (see [17,
Lemma 6.5]) and B′

4 is a characteristic subgroup of B4, we deduce that
φ(c) ∈ K4. The same arguments can be applied to any other homomor-
phism of B′

4 to B4 whose kernel does not contain K4, in particular, they can
be applied to φũ whence φũ(c) ∈ K4. Since φ(w) = φũ(c), we conclude that
φ(K4) = ⟨φ(c), φ(w)⟩ ⊂ K4. □

Let
F = G ∩ K4.

Lemma 3.7. —

(a) The group F is freely generated by c and c1 = w−1c−1w.
(b) Let a1, . . . , am−1 and b1, . . . , bm be non-zero integers, and let a0 and

am be any integers. Then ca0wb1ca1 . . . wbmcam is in F if and only
if m is even and bj = (−1)j for each j = 1, . . . ,m.

Proof. — The relation on g and c in Lemma 3.3 is equivalent to

g−1cgc = cgcg−1. (3.4)

Recall that G = ⟨c, g⟩. We have R(c) = 1 and, by (3.3), g = R(d) ∈ B′
3

whence R(g) = g. Hence R(G) is generated by g. By definition, F =
ker(R|G), hence F is the normal closure of c in G, i.e., F is generated by the
elements g̃k(c), k ∈ Z. We have g̃(c) = c1 (see Figure 3.2) and

g̃(c1) = g̃2(c) = g c−1(cgcg−1)g−1 by (3.4)= g c−1(g−1cgc)g−1 = c−1
1 c c1
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whence by induction we obtain g̃k(c) ∈ ⟨c, c1⟩ for all positive k. Similarly,

g̃−1(c) = (g−1cgc)c−1 by (3.4)= (cgcg−1)c−1 = c(gcg−1)c−1 = c c1c
−1

and g̃−1(c1) = c whence g̃k(c) ∈ ⟨c, c1⟩ for all negative k. Thus F = ⟨c, c1⟩.

To check that c and c1 is a free base of F (which completes the proof
of (a)), it is enough to observe that if, in a reduced word in x, y, we replace
each xk with ck and each yk with w−1c−kw, then we obtain a reduced word
in c and w. The statement (b) also easily follows from this observation. □

Lemma 3.8. — If x ∈ F and x = [w−1, A] with A ∈ K4, then x =
[w−1, ck], k ∈ Z.

Proof. — Let A = wb1ca1 . . . wbmcamwbm+1 , m ⩾ 0, where a1, . . . , am

and b2, . . . , bm are non-zero while b1 and bm+1 may or may not be zero. If
m = 0, then [w−1, A] = 1 = [w−1, c0] and we are done. If m = 1, then
[w−1, A] = wb1−1ca1w c−a1w−b1 where, by Lemma 3.7(b), we must have
b1 = 0, hence [w−1, A] = [w−1, ca1 ] as required. Suppose that m ⩾ 2. Then

[w−1, A] = wb1−1ca1 . . . wbmcamw c−amw−bm . . . c−a1w−b1

and this is a reduced word in c, w. Hence, by Lemma 3.7(b), the sequence
of the exponents of w in this word (starting form b1 − 1 when b1 ̸= 1 or from
b2 when b1 = 1) should be (−1, 1,−1, 1, . . . ,−1, 1). Such a sequence cannot
contain (. . . , bm, 1,−bm, . . . ). A contradiction. □

Lemma 3.9. — If φ(d2) = d2 and φ(c) = c, then w−1φ(w) ∈ F .

Proof. — For any k ∈ Z we have

σk
3w = σk

3 (σ2σ3)(σ−1
1 σ−1

2 ) = (σ2σ3)σk
2 (σ−1

1 σ−1
2 )

= (σ2σ3)(σ−1
1 σ−1

2 )σk
1 = wσk

1 ,

hence σk
3wσ

−k
1 = w = σ−k

3 wσk
1 and we obtain

d2wd−2 = ∆2σ−6
1 (σ−6

3 wσ6
1)σ6

3∆−2 = σ−6
1 (σ6

3wσ
−6
1 )σ6

3 = c6wc6. (3.5)

Set x = w−1φ(w), i.e., φ(w) = wx. The relation (3.5) combined with our
hypothesis on c and d2 implies

c6wxc6 = φ(c6wc6) = φ(d̃2(w)) = d̃2(wx) = d̃2(w)d̃2(x) = c6wc6d2xd−2

whence x(c6d2) = (c6d2)x, i.e., x ∈ Z(d2c6). On the other hand, φ(w) ∈
K4 by Lemma 3.6, hence x = w−1φ(w) ∈ K4. By Lemma 3.3 we have
Z(d2c6; B′

4) = G, thus x ∈ Z(d2c6) ∩ K4 = G ∩ K4 = F . □

Lemma 3.10. — There exists f ∈ Aut(B4) and a homomorphism τ :
B′

4 → Z(B4) such that fφ(c) = c, fφ(d2) = d2, and Rfφ = R id[τ ].
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Proof. — By Lemma 3.5 we may assume that φ(c) = ck and φ(d) = dk

for an odd positive k. For x ∈ K4, we denote its image in Kab
4 by x and we

use the additive notation for Kab
4 . Consider the homomorphism π : B4 →

Aut(Kab
4 ) = GL(2,Z), where π(x) is defined as the automorphism of Kab

4
induced by x̃; here we identify Aut(Kab

4 ) with GL(2,Z) by choosing c and w
as a base of Kab

4 . By Lemma 3.6, φ(w) ∈ K4, hence we may write φ(w) =
pc+ qw with p, q ∈ Z. Then, for any x ∈ B4, we have

πφ(x).P = P.π(x) where P =
(
k p
0 q

)
. (3.6)

(P is the matrix of the endomorphism of Kab
4 induced by φ|K4). By (3.5)

we have

π(d2) =
(

1 12
0 1

)
hence π(d2k).P − P.π(d2) =

(
0 12k(q − 1)
0 0

)
. (3.7)

Since φ(d2) = d2k, we obtain from (3.6) combined with (3.7) that q = 1, i.e.,
φ(w) = pc+ w. By (3.1) we have φ(u)ckφ(u)−1 = φ(ucu−1) = φ(w), hence

k φ(u)cφ(u)−1 = φ(w) = pc+ w.

Therefore k = 1 because pc + w cannot be a multiple of another element
of Kab

4 . Notice that σ̃1(c) = c, σ̃1(d2) = d2, and σ̃1(w) = c−1w (see (3.2)).
Hence, for f = σ̃p

1, we have

fφ(c) = c, fφ(d2) = d2, fφ(w) = w. (3.8)

It remains to show that Rfφ = R id[τ ] for some τ : B′
4 → Z(B4). Let

x ∈ B′
4. Since B′

4 = K4 ⋊ B′
3 and B4 = K4 ⋊ B3, we may write x = x1a1

and fφ(x) = x2a2 with x1 = R(x) ∈ B′
3, x2 = Rfφ(x) ∈ B3, and a1, a2 ∈

K4. The equation (3.6) for fφ (and hence with the identity matrix for P
because (3.8) means that fφ|K4 induces the identity mapping of Kab

4 ) reads
πfφ(x) = π(x), that is π(x2a2) = π(x1a1). Since a1, a2 ∈ K4 ⊂ kerπ, this
implies that

π(x1) = π(x2). (3.9)
Let S1 =

( 1 −1
0 1

)
and S2 = ( 1 0

1 1 ). It is well-known that the mapping σ1 7→ S1,
σ2 7→ S2 defines an isomorphism between B3/⟨∆4

3⟩ and SL(2,Z). From (3.2)
we see that π(σ1) = S1 and π(σ−1

1 σ2σ1) = S2. Hence ker(π|B3) = ⟨∆4
3⟩ =

R(Z(B4)). Therefore (3.9) implies that x2 = x1R(τ(x)) for some element
τ(x) of Z(B4). It is easy to check that τ is a group homomorphism, thus,
recalling that x1 = R(x) and x2 = Rfφ(x), we get Rfφ(x) = x2 =
x1R(τ(x)) = R(xτ(x)) = R id[τ ](x). □

Lemma 3.11. — If φ|K4 = id and Rφ = R id[τ ] for some homomorphism
τ : B′

4 → Z(B4), then φ = id[τ ].
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Proof. — Since B′
4 = K4 ⋊B′

3 and K4 ⊂ ker τ , it is enough to show that
φ|B′

3
= id[τ ]. So, let x ∈ B′

3. The condition Rφ = R id[τ ] means that φ(x) =
xaτ(x) with a ∈ K4. Let b be any element of K4. Then xbx−1 ∈ K4, hence
φ(xbx−1) = xbx−1 (because φ|K4 = id). Since φ(x) = xaτ(x), φ(b) = b, and
τ(x) is central, it follows that
xbx−1 = φ(xbx−1) = φ(x)bφ(x)−1 = xaτ(x)bτ(x)−1a−1x−1 = xaba−1x−1

whence aba−1 = b. This is true for any b ∈ K4, thus a ∈ Z(K4). Since K4 is
free, we deduce that a = 1, hence φ(x) = xτ(x) = id[τ ](x). □

Proof of Theorem 1.4. — Recall that we assume in this section that φ
is a homomorphism B′

4 → B4 such that K4 ̸⊂ kerφ.

By Lemma 3.10 we may assume that φ(c) = c, φ(d2) = d2, and Rφ =
R id[τ ] for some τ : B′

4 → Z(B4), in particular, Rφ(u) = R(uτ(u)). The
latter condition means that φ(u) = uaτ(u) with a ∈ K4. Then, by (3.1), we
have

φ(w) = φ(ucu−1) = uaca−1u−1 = ũ(c [c−1, a]) = w[w−1, ũ(a)],
thus w−1φ(w) = [w−1, A] for A = ũ(a) ∈ K4. By Lemma 3.9 we have also
w−1φ(w) ∈ F . Then Lemma 3.8 implies that w−1φ(w) = [w−1, ck] for some
integer k, that is φ(w) = ckwc−k. Hence, (c̃−kφ)|K4 = id. Since c ∈ kerR,
we have Rc̃−k = R whence Rc̃−kφ = Rφ = R id[τ ]. This fact combined
with (c̃−kφ)|K4 = id and Lemma 3.11 implies that c̃−kφ = id[τ ], i.e., φ is
equivalent to id[τ ]. □
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